Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/****************************************************************************
   3 *
   4 * Driver for the IFX 6x60 spi modem.
   5 *
   6 * Copyright (C) 2008 Option International
   7 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   8 *		      Denis Joseph Barrow <d.barow@option.com>
   9 *		      Jan Dumon <j.dumon@option.com>
  10 *
  11 * Copyright (C) 2009, 2010 Intel Corp
  12 * Russ Gorby <russ.gorby@intel.com>
  13 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 * Driver modified by Intel from Option gtm501l_spi.c
  15 *
  16 * Notes
  17 * o	The driver currently assumes a single device only. If you need to
  18 *	change this then look for saved_ifx_dev and add a device lookup
  19 * o	The driver is intended to be big-endian safe but has never been
  20 *	tested that way (no suitable hardware). There are a couple of FIXME
  21 *	notes by areas that may need addressing
  22 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  23 *	you need to use this driver for another platform.
  24 *
  25 *****************************************************************************/
  26#include <linux/dma-mapping.h>
  27#include <linux/module.h>
  28#include <linux/termios.h>
  29#include <linux/tty.h>
  30#include <linux/device.h>
  31#include <linux/spi/spi.h>
  32#include <linux/kfifo.h>
  33#include <linux/tty_flip.h>
  34#include <linux/timer.h>
  35#include <linux/serial.h>
  36#include <linux/interrupt.h>
  37#include <linux/irq.h>
  38#include <linux/rfkill.h>
  39#include <linux/fs.h>
  40#include <linux/ip.h>
  41#include <linux/dmapool.h>
  42#include <linux/gpio.h>
  43#include <linux/sched.h>
  44#include <linux/time.h>
  45#include <linux/wait.h>
  46#include <linux/pm.h>
  47#include <linux/pm_runtime.h>
  48#include <linux/spi/ifx_modem.h>
  49#include <linux/delay.h>
  50#include <linux/reboot.h>
  51
  52#include "ifx6x60.h"
  53
  54#define IFX_SPI_MORE_MASK		0x10
  55#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
  56#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
  57#define IFX_SPI_MODE			SPI_MODE_1
  58#define IFX_SPI_TTY_ID			0
  59#define IFX_SPI_TIMEOUT_SEC		2
  60#define IFX_SPI_HEADER_0		(-1)
  61#define IFX_SPI_HEADER_F		(-2)
  62
  63#define PO_POST_DELAY		200
  64#define IFX_MDM_RST_PMU	4
  65
  66/* forward reference */
  67static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  68static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  69				unsigned long event, void *data);
  70static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  71
  72/* local variables */
  73static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  74static struct tty_driver *tty_drv;
  75static struct ifx_spi_device *saved_ifx_dev;
  76static struct lock_class_key ifx_spi_key;
  77
  78static struct notifier_block ifx_modem_reboot_notifier_block = {
  79	.notifier_call = ifx_modem_reboot_callback,
  80};
  81
  82static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  83{
  84	gpio_set_value(IFX_MDM_RST_PMU, 1);
  85	msleep(PO_POST_DELAY);
  86
  87	return 0;
  88}
  89
  90static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  91				 unsigned long event, void *data)
  92{
  93	if (saved_ifx_dev)
  94		ifx_modem_power_off(saved_ifx_dev);
  95	else
  96		pr_warn("no ifx modem active;\n");
  97
  98	return NOTIFY_OK;
  99}
 100
 101/* GPIO/GPE settings */
 102
 103/**
 104 *	mrdy_set_high		-	set MRDY GPIO
 105 *	@ifx: device we are controlling
 106 *
 107 */
 108static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 109{
 110	gpio_set_value(ifx->gpio.mrdy, 1);
 111}
 112
 113/**
 114 *	mrdy_set_low		-	clear MRDY GPIO
 115 *	@ifx: device we are controlling
 116 *
 117 */
 118static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 119{
 120	gpio_set_value(ifx->gpio.mrdy, 0);
 121}
 122
 123/**
 124 *	ifx_spi_power_state_set
 125 *	@ifx_dev: our SPI device
 126 *	@val: bits to set
 127 *
 128 *	Set bit in power status and signal power system if status becomes non-0
 129 */
 130static void
 131ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 132{
 133	unsigned long flags;
 134
 135	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 136
 137	/*
 138	 * if power status is already non-0, just update, else
 139	 * tell power system
 140	 */
 141	if (!ifx_dev->power_status)
 142		pm_runtime_get(&ifx_dev->spi_dev->dev);
 143	ifx_dev->power_status |= val;
 144
 145	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 146}
 147
 148/**
 149 *	ifx_spi_power_state_clear	-	clear power bit
 150 *	@ifx_dev: our SPI device
 151 *	@val: bits to clear
 152 *
 153 *	clear bit in power status and signal power system if status becomes 0
 154 */
 155static void
 156ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 157{
 158	unsigned long flags;
 159
 160	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 161
 162	if (ifx_dev->power_status) {
 163		ifx_dev->power_status &= ~val;
 164		if (!ifx_dev->power_status)
 165			pm_runtime_put(&ifx_dev->spi_dev->dev);
 166	}
 167
 168	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 169}
 170
 171/**
 172 *	swap_buf_8
 173 *	@buf: our buffer
 174 *	@len : number of bytes (not words) in the buffer
 175 *	@end: end of buffer
 176 *
 177 *	Swap the contents of a buffer into big endian format
 178 */
 179static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 180{
 181	/* don't swap buffer if SPI word width is 8 bits */
 182	return;
 183}
 184
 185/**
 186 *	swap_buf_16
 187 *	@buf: our buffer
 188 *	@len : number of bytes (not words) in the buffer
 189 *	@end: end of buffer
 190 *
 191 *	Swap the contents of a buffer into big endian format
 192 */
 193static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 194{
 195	int n;
 196
 197	u16 *buf_16 = (u16 *)buf;
 198	len = ((len + 1) >> 1);
 199	if ((void *)&buf_16[len] > end) {
 200		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 201		       &buf_16[len], end);
 202		return;
 203	}
 204	for (n = 0; n < len; n++) {
 205		*buf_16 = cpu_to_be16(*buf_16);
 206		buf_16++;
 207	}
 208}
 209
 210/**
 211 *	swap_buf_32
 212 *	@buf: our buffer
 213 *	@len : number of bytes (not words) in the buffer
 214 *	@end: end of buffer
 215 *
 216 *	Swap the contents of a buffer into big endian format
 217 */
 218static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 219{
 220	int n;
 221
 222	u32 *buf_32 = (u32 *)buf;
 223	len = (len + 3) >> 2;
 224
 225	if ((void *)&buf_32[len] > end) {
 226		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 227		       &buf_32[len], end);
 228		return;
 229	}
 230	for (n = 0; n < len; n++) {
 231		*buf_32 = cpu_to_be32(*buf_32);
 232		buf_32++;
 233	}
 234}
 235
 236/**
 237 *	mrdy_assert		-	assert MRDY line
 238 *	@ifx_dev: our SPI device
 239 *
 240 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 241 *	now.
 242 *
 243 *	FIXME: Can SRDY even go high as we are running this code ?
 244 */
 245static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 246{
 247	int val = gpio_get_value(ifx_dev->gpio.srdy);
 248	if (!val) {
 249		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 250				      &ifx_dev->flags)) {
 251			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 252
 253		}
 254	}
 255	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 256	mrdy_set_high(ifx_dev);
 257}
 258
 259/**
 260 *	ifx_spi_timeout		-	SPI timeout
 261 *	@arg: our SPI device
 262 *
 263 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 264 *	and error events.
 265 */
 266static void ifx_spi_timeout(struct timer_list *t)
 267{
 268	struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
 269
 270	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 271	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 272	mrdy_set_low(ifx_dev);
 273	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 274}
 275
 276/* char/tty operations */
 277
 278/**
 279 *	ifx_spi_tiocmget	-	get modem lines
 280 *	@tty: our tty device
 281 *	@filp: file handle issuing the request
 282 *
 283 *	Map the signal state into Linux modem flags and report the value
 284 *	in Linux terms
 285 */
 286static int ifx_spi_tiocmget(struct tty_struct *tty)
 287{
 288	unsigned int value;
 289	struct ifx_spi_device *ifx_dev = tty->driver_data;
 290
 291	value =
 292	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 293	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 294	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 295	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 296	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 297	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 298	return value;
 299}
 300
 301/**
 302 *	ifx_spi_tiocmset	-	set modem bits
 303 *	@tty: the tty structure
 304 *	@set: bits to set
 305 *	@clear: bits to clear
 306 *
 307 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 308 *	and flag that an update to the modem is needed.
 309 *
 310 *	FIXME: do we need to kick the tranfers when we do this ?
 311 */
 312static int ifx_spi_tiocmset(struct tty_struct *tty,
 313			    unsigned int set, unsigned int clear)
 314{
 315	struct ifx_spi_device *ifx_dev = tty->driver_data;
 316
 317	if (set & TIOCM_RTS)
 318		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 319	if (set & TIOCM_DTR)
 320		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 321	if (clear & TIOCM_RTS)
 322		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 323	if (clear & TIOCM_DTR)
 324		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 325
 326	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 327	return 0;
 328}
 329
 330/**
 331 *	ifx_spi_open	-	called on tty open
 332 *	@tty: our tty device
 333 *	@filp: file handle being associated with the tty
 334 *
 335 *	Open the tty interface. We let the tty_port layer do all the work
 336 *	for us.
 337 *
 338 *	FIXME: Remove single device assumption and saved_ifx_dev
 339 */
 340static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 341{
 342	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 343}
 344
 345/**
 346 *	ifx_spi_close	-	called when our tty closes
 347 *	@tty: the tty being closed
 348 *	@filp: the file handle being closed
 349 *
 350 *	Perform the close of the tty. We use the tty_port layer to do all
 351 *	our hard work.
 352 */
 353static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 354{
 355	struct ifx_spi_device *ifx_dev = tty->driver_data;
 356	tty_port_close(&ifx_dev->tty_port, tty, filp);
 357	/* FIXME: should we do an ifx_spi_reset here ? */
 358}
 359
 360/**
 361 *	ifx_decode_spi_header	-	decode received header
 362 *	@buffer: the received data
 363 *	@length: decoded length
 364 *	@more: decoded more flag
 365 *	@received_cts: status of cts we received
 366 *
 367 *	Note how received_cts is handled -- if header is all F it is left
 368 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 369 *	taken from the incoming header.
 370 *
 371 *	FIXME: endianness
 372 */
 373static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 374			unsigned char *more, unsigned char *received_cts)
 375{
 376	u16 h1;
 377	u16 h2;
 378	u16 *in_buffer = (u16 *)buffer;
 379
 380	h1 = *in_buffer;
 381	h2 = *(in_buffer+1);
 382
 383	if (h1 == 0 && h2 == 0) {
 384		*received_cts = 0;
 385		*more = 0;
 386		return IFX_SPI_HEADER_0;
 387	} else if (h1 == 0xffff && h2 == 0xffff) {
 388		*more = 0;
 389		/* spi_slave_cts remains as it was */
 390		return IFX_SPI_HEADER_F;
 391	}
 392
 393	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 394	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 395	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 396	return 0;
 397}
 398
 399/**
 400 *	ifx_setup_spi_header	-	set header fields
 401 *	@txbuffer: pointer to start of SPI buffer
 402 *	@tx_count: bytes
 403 *	@more: indicate if more to follow
 404 *
 405 *	Format up an SPI header for a transfer
 406 *
 407 *	FIXME: endianness?
 408 */
 409static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 410					unsigned char more)
 411{
 412	*(u16 *)(txbuffer) = tx_count;
 413	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 414	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 415}
 416
 417/**
 418 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 419 *	@ifx_dev: our SPI device
 420 *
 421 *	The transmit buffr needs a header and various other bits of
 422 *	information followed by as much data as we can pull from the FIFO
 423 *	and transfer. This function formats up a suitable buffer in the
 424 *	ifx_dev->tx_buffer
 425 *
 426 *	FIXME: performance - should we wake the tty when the queue is half
 427 *			     empty ?
 428 */
 429static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 430{
 431	int temp_count;
 432	int queue_length;
 433	int tx_count;
 434	unsigned char *tx_buffer;
 435
 436	tx_buffer = ifx_dev->tx_buffer;
 437
 438	/* make room for required SPI header */
 439	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 440	tx_count = IFX_SPI_HEADER_OVERHEAD;
 441
 442	/* clear to signal no more data if this turns out to be the
 443	 * last buffer sent in a sequence */
 444	ifx_dev->spi_more = 0;
 445
 446	/* if modem cts is set, just send empty buffer */
 447	if (!ifx_dev->spi_slave_cts) {
 448		/* see if there's tx data */
 449		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 450		if (queue_length != 0) {
 451			/* data to mux -- see if there's room for it */
 452			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 453			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 454					tx_buffer, temp_count,
 455					&ifx_dev->fifo_lock);
 456
 457			/* update buffer pointer and data count in message */
 458			tx_buffer += temp_count;
 459			tx_count += temp_count;
 460			if (temp_count == queue_length)
 461				/* poke port to get more data */
 462				tty_port_tty_wakeup(&ifx_dev->tty_port);
 463			else /* more data in port, use next SPI message */
 464				ifx_dev->spi_more = 1;
 465		}
 466	}
 467	/* have data and info for header -- set up SPI header in buffer */
 468	/* spi header needs payload size, not entire buffer size */
 469	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 470					tx_count-IFX_SPI_HEADER_OVERHEAD,
 471					ifx_dev->spi_more);
 472	/* swap actual data in the buffer */
 473	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 474		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 475	return tx_count;
 476}
 477
 478/**
 479 *	ifx_spi_write		-	line discipline write
 480 *	@tty: our tty device
 481 *	@buf: pointer to buffer to write (kernel space)
 482 *	@count: size of buffer
 483 *
 484 *	Write the characters we have been given into the FIFO. If the device
 485 *	is not active then activate it, when the SRDY line is asserted back
 486 *	this will commence I/O
 487 */
 488static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 489			 int count)
 490{
 491	struct ifx_spi_device *ifx_dev = tty->driver_data;
 492	unsigned char *tmp_buf = (unsigned char *)buf;
 493	unsigned long flags;
 494	bool is_fifo_empty;
 495	int tx_count;
 496
 497	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 498	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 499	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 500	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 501	if (is_fifo_empty)
 502		mrdy_assert(ifx_dev);
 503
 504	return tx_count;
 505}
 506
 507/**
 508 *	ifx_spi_chars_in_buffer	-	line discipline helper
 509 *	@tty: our tty device
 510 *
 511 *	Report how much data we can accept before we drop bytes. As we use
 512 *	a simple FIFO this is nice and easy.
 513 */
 514static int ifx_spi_write_room(struct tty_struct *tty)
 515{
 516	struct ifx_spi_device *ifx_dev = tty->driver_data;
 517	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 518}
 519
 520/**
 521 *	ifx_spi_chars_in_buffer	-	line discipline helper
 522 *	@tty: our tty device
 523 *
 524 *	Report how many characters we have buffered. In our case this is the
 525 *	number of bytes sitting in our transmit FIFO.
 526 */
 527static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 528{
 529	struct ifx_spi_device *ifx_dev = tty->driver_data;
 530	return kfifo_len(&ifx_dev->tx_fifo);
 531}
 532
 533/**
 534 *	ifx_port_hangup
 535 *	@port: our tty port
 536 *
 537 *	tty port hang up. Called when tty_hangup processing is invoked either
 538 *	by loss of carrier, or by software (eg vhangup). Serialized against
 539 *	activate/shutdown by the tty layer.
 540 */
 541static void ifx_spi_hangup(struct tty_struct *tty)
 542{
 543	struct ifx_spi_device *ifx_dev = tty->driver_data;
 544	tty_port_hangup(&ifx_dev->tty_port);
 545}
 546
 547/**
 548 *	ifx_port_activate
 549 *	@port: our tty port
 550 *
 551 *	tty port activate method - called for first open. Serialized
 552 *	with hangup and shutdown by the tty layer.
 553 */
 554static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 555{
 556	struct ifx_spi_device *ifx_dev =
 557		container_of(port, struct ifx_spi_device, tty_port);
 558
 559	/* clear any old data; can't do this in 'close' */
 560	kfifo_reset(&ifx_dev->tx_fifo);
 561
 562	/* clear any flag which may be set in port shutdown procedure */
 563	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 564	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 565
 566	/* put port data into this tty */
 567	tty->driver_data = ifx_dev;
 568
 569	/* allows flip string push from int context */
 570	port->low_latency = 1;
 571
 572	/* set flag to allows data transfer */
 573	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 574
 575	return 0;
 576}
 577
 578/**
 579 *	ifx_port_shutdown
 580 *	@port: our tty port
 581 *
 582 *	tty port shutdown method - called for last port close. Serialized
 583 *	with hangup and activate by the tty layer.
 584 */
 585static void ifx_port_shutdown(struct tty_port *port)
 586{
 587	struct ifx_spi_device *ifx_dev =
 588		container_of(port, struct ifx_spi_device, tty_port);
 589
 590	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 591	mrdy_set_low(ifx_dev);
 592	del_timer(&ifx_dev->spi_timer);
 593	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 594	tasklet_kill(&ifx_dev->io_work_tasklet);
 595}
 596
 597static const struct tty_port_operations ifx_tty_port_ops = {
 598	.activate = ifx_port_activate,
 599	.shutdown = ifx_port_shutdown,
 600};
 601
 602static const struct tty_operations ifx_spi_serial_ops = {
 603	.open = ifx_spi_open,
 604	.close = ifx_spi_close,
 605	.write = ifx_spi_write,
 606	.hangup = ifx_spi_hangup,
 607	.write_room = ifx_spi_write_room,
 608	.chars_in_buffer = ifx_spi_chars_in_buffer,
 609	.tiocmget = ifx_spi_tiocmget,
 610	.tiocmset = ifx_spi_tiocmset,
 611};
 612
 613/**
 614 *	ifx_spi_insert_fip_string	-	queue received data
 615 *	@ifx_ser: our SPI device
 616 *	@chars: buffer we have received
 617 *	@size: number of chars reeived
 618 *
 619 *	Queue bytes to the tty assuming the tty side is currently open. If
 620 *	not the discard the data.
 621 */
 622static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 623				    unsigned char *chars, size_t size)
 624{
 625	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 626	tty_flip_buffer_push(&ifx_dev->tty_port);
 627}
 628
 629/**
 630 *	ifx_spi_complete	-	SPI transfer completed
 631 *	@ctx: our SPI device
 632 *
 633 *	An SPI transfer has completed. Process any received data and kick off
 634 *	any further transmits we can commence.
 635 */
 636static void ifx_spi_complete(void *ctx)
 637{
 638	struct ifx_spi_device *ifx_dev = ctx;
 639	int length;
 640	int actual_length;
 641	unsigned char more = 0;
 642	unsigned char cts;
 643	int local_write_pending = 0;
 644	int queue_length;
 645	int srdy;
 646	int decode_result;
 647
 648	mrdy_set_low(ifx_dev);
 649
 650	if (!ifx_dev->spi_msg.status) {
 651		/* check header validity, get comm flags */
 652		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 653			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 654		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 655				&length, &more, &cts);
 656		if (decode_result == IFX_SPI_HEADER_0) {
 657			dev_dbg(&ifx_dev->spi_dev->dev,
 658				"ignore input: invalid header 0");
 659			ifx_dev->spi_slave_cts = 0;
 660			goto complete_exit;
 661		} else if (decode_result == IFX_SPI_HEADER_F) {
 662			dev_dbg(&ifx_dev->spi_dev->dev,
 663				"ignore input: invalid header F");
 664			goto complete_exit;
 665		}
 666
 667		ifx_dev->spi_slave_cts = cts;
 668
 669		actual_length = min((unsigned int)length,
 670					ifx_dev->spi_msg.actual_length);
 671		ifx_dev->swap_buf(
 672			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 673			 actual_length,
 674			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 675		ifx_spi_insert_flip_string(
 676			ifx_dev,
 677			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 678			(size_t)actual_length);
 679	} else {
 680		more = 0;
 681		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 682		       ifx_dev->spi_msg.status);
 683	}
 684
 685complete_exit:
 686	if (ifx_dev->write_pending) {
 687		ifx_dev->write_pending = 0;
 688		local_write_pending = 1;
 689	}
 690
 691	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 692
 693	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 694	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 695	if (!srdy)
 696		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 697
 698	/* schedule output if there is more to do */
 699	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 700		tasklet_schedule(&ifx_dev->io_work_tasklet);
 701	else {
 702		if (more || ifx_dev->spi_more || queue_length > 0 ||
 703			local_write_pending) {
 704			if (ifx_dev->spi_slave_cts) {
 705				if (more)
 706					mrdy_assert(ifx_dev);
 707			} else
 708				mrdy_assert(ifx_dev);
 709		} else {
 710			/*
 711			 * poke line discipline driver if any for more data
 712			 * may or may not get more data to write
 713			 * for now, say not busy
 714			 */
 715			ifx_spi_power_state_clear(ifx_dev,
 716						  IFX_SPI_POWER_DATA_PENDING);
 717			tty_port_tty_wakeup(&ifx_dev->tty_port);
 718		}
 719	}
 720}
 721
 722/**
 723 *	ifx_spio_io		-	I/O tasklet
 724 *	@data: our SPI device
 725 *
 726 *	Queue data for transmission if possible and then kick off the
 727 *	transfer.
 728 */
 729static void ifx_spi_io(unsigned long data)
 730{
 731	int retval;
 732	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 733
 734	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 735		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 736		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 737			ifx_dev->gpio.unack_srdy_int_nb--;
 738
 739		ifx_spi_prepare_tx_buffer(ifx_dev);
 740
 741		spi_message_init(&ifx_dev->spi_msg);
 742		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 743
 744		ifx_dev->spi_msg.context = ifx_dev;
 745		ifx_dev->spi_msg.complete = ifx_spi_complete;
 746
 747		/* set up our spi transfer */
 748		/* note len is BYTES, not transfers */
 749		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 750		ifx_dev->spi_xfer.cs_change = 0;
 751		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 752		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 753		ifx_dev->spi_xfer.bits_per_word =
 754			ifx_dev->spi_dev->bits_per_word;
 755
 756		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 757		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 758
 759		/*
 760		 * setup dma pointers
 761		 */
 762		if (ifx_dev->use_dma) {
 763			ifx_dev->spi_msg.is_dma_mapped = 1;
 764			ifx_dev->tx_dma = ifx_dev->tx_bus;
 765			ifx_dev->rx_dma = ifx_dev->rx_bus;
 766			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 767			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 768		} else {
 769			ifx_dev->spi_msg.is_dma_mapped = 0;
 770			ifx_dev->tx_dma = (dma_addr_t)0;
 771			ifx_dev->rx_dma = (dma_addr_t)0;
 772			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 773			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 774		}
 775
 776		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 777
 778		/* Assert MRDY. This may have already been done by the write
 779		 * routine.
 780		 */
 781		mrdy_assert(ifx_dev);
 782
 783		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 784		if (retval) {
 785			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 786				  &ifx_dev->flags);
 787			tasklet_schedule(&ifx_dev->io_work_tasklet);
 788			return;
 789		}
 790	} else
 791		ifx_dev->write_pending = 1;
 792}
 793
 794/**
 795 *	ifx_spi_free_port	-	free up the tty side
 796 *	@ifx_dev: IFX device going away
 797 *
 798 *	Unregister and free up a port when the device goes away
 799 */
 800static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 801{
 802	if (ifx_dev->tty_dev)
 803		tty_unregister_device(tty_drv, ifx_dev->minor);
 804	tty_port_destroy(&ifx_dev->tty_port);
 805	kfifo_free(&ifx_dev->tx_fifo);
 806}
 807
 808/**
 809 *	ifx_spi_create_port	-	create a new port
 810 *	@ifx_dev: our spi device
 811 *
 812 *	Allocate and initialise the tty port that goes with this interface
 813 *	and add it to the tty layer so that it can be opened.
 814 */
 815static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 816{
 817	int ret = 0;
 818	struct tty_port *pport = &ifx_dev->tty_port;
 819
 820	spin_lock_init(&ifx_dev->fifo_lock);
 821	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 822		&ifx_spi_key, 0);
 823
 824	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 825		ret = -ENOMEM;
 826		goto error_ret;
 827	}
 828
 829	tty_port_init(pport);
 830	pport->ops = &ifx_tty_port_ops;
 831	ifx_dev->minor = IFX_SPI_TTY_ID;
 832	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 833			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 834	if (IS_ERR(ifx_dev->tty_dev)) {
 835		dev_dbg(&ifx_dev->spi_dev->dev,
 836			"%s: registering tty device failed", __func__);
 837		ret = PTR_ERR(ifx_dev->tty_dev);
 838		goto error_port;
 839	}
 840	return 0;
 841
 842error_port:
 843	tty_port_destroy(pport);
 844error_ret:
 845	ifx_spi_free_port(ifx_dev);
 846	return ret;
 847}
 848
 849/**
 850 *	ifx_spi_handle_srdy		-	handle SRDY
 851 *	@ifx_dev: device asserting SRDY
 852 *
 853 *	Check our device state and see what we need to kick off when SRDY
 854 *	is asserted. This usually means killing the timer and firing off the
 855 *	I/O processing.
 856 */
 857static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 858{
 859	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 860		del_timer(&ifx_dev->spi_timer);
 861		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 862	}
 863
 864	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 865
 866	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 867		tasklet_schedule(&ifx_dev->io_work_tasklet);
 868	else
 869		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 870}
 871
 872/**
 873 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 874 *	@irq: our IRQ number
 875 *	@dev: our ifx device
 876 *
 877 *	The modem asserted SRDY. Handle the srdy event
 878 */
 879static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 880{
 881	struct ifx_spi_device *ifx_dev = dev;
 882	ifx_dev->gpio.unack_srdy_int_nb++;
 883	ifx_spi_handle_srdy(ifx_dev);
 884	return IRQ_HANDLED;
 885}
 886
 887/**
 888 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 889 *	@irq: interrupt number
 890 *	@dev: our device pointer
 891 *
 892 *	The modem has either entered or left reset state. Check the GPIO
 893 *	line to see which.
 894 *
 895 *	FIXME: review locking on MR_INPROGRESS versus
 896 *	parallel unsolicited reset/solicited reset
 897 */
 898static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 899{
 900	struct ifx_spi_device *ifx_dev = dev;
 901	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 902	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 903
 904	if (val == 0) {
 905		/* entered reset */
 906		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 907		if (!solreset) {
 908			/* unsolicited reset  */
 909			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 910		}
 911	} else {
 912		/* exited reset */
 913		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 914		if (solreset) {
 915			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 916			wake_up(&ifx_dev->mdm_reset_wait);
 917		}
 918	}
 919	return IRQ_HANDLED;
 920}
 921
 922/**
 923 *	ifx_spi_free_device - free device
 924 *	@ifx_dev: device to free
 925 *
 926 *	Free the IFX device
 927 */
 928static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 929{
 930	ifx_spi_free_port(ifx_dev);
 931	dma_free_coherent(&ifx_dev->spi_dev->dev,
 932				IFX_SPI_TRANSFER_SIZE,
 933				ifx_dev->tx_buffer,
 934				ifx_dev->tx_bus);
 935	dma_free_coherent(&ifx_dev->spi_dev->dev,
 936				IFX_SPI_TRANSFER_SIZE,
 937				ifx_dev->rx_buffer,
 938				ifx_dev->rx_bus);
 939}
 940
 941/**
 942 *	ifx_spi_reset	-	reset modem
 943 *	@ifx_dev: modem to reset
 944 *
 945 *	Perform a reset on the modem
 946 */
 947static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 948{
 949	int ret;
 950	/*
 951	 * set up modem power, reset
 952	 *
 953	 * delays are required on some platforms for the modem
 954	 * to reset properly
 955	 */
 956	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 957	gpio_set_value(ifx_dev->gpio.po, 0);
 958	gpio_set_value(ifx_dev->gpio.reset, 0);
 959	msleep(25);
 960	gpio_set_value(ifx_dev->gpio.reset, 1);
 961	msleep(1);
 962	gpio_set_value(ifx_dev->gpio.po, 1);
 963	msleep(1);
 964	gpio_set_value(ifx_dev->gpio.po, 0);
 965	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 966				 test_bit(MR_COMPLETE,
 967					  &ifx_dev->mdm_reset_state),
 968				 IFX_RESET_TIMEOUT);
 969	if (!ret)
 970		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 971			 ifx_dev->mdm_reset_state);
 972
 973	ifx_dev->mdm_reset_state = 0;
 974	return ret;
 975}
 976
 977/**
 978 *	ifx_spi_spi_probe	-	probe callback
 979 *	@spi: our possible matching SPI device
 980 *
 981 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 982 *	GPIO setup.
 983 *
 984 *	FIXME:
 985 *	-	Support for multiple devices
 986 *	-	Split out MID specific GPIO handling eventually
 987 */
 988
 989static int ifx_spi_spi_probe(struct spi_device *spi)
 990{
 991	int ret;
 992	int srdy;
 993	struct ifx_modem_platform_data *pl_data;
 994	struct ifx_spi_device *ifx_dev;
 995
 996	if (saved_ifx_dev) {
 997		dev_dbg(&spi->dev, "ignoring subsequent detection");
 998		return -ENODEV;
 999	}
1000
1001	pl_data = dev_get_platdata(&spi->dev);
1002	if (!pl_data) {
1003		dev_err(&spi->dev, "missing platform data!");
1004		return -ENODEV;
1005	}
1006
1007	/* initialize structure to hold our device variables */
1008	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1009	if (!ifx_dev) {
1010		dev_err(&spi->dev, "spi device allocation failed");
1011		return -ENOMEM;
1012	}
1013	saved_ifx_dev = ifx_dev;
1014	ifx_dev->spi_dev = spi;
1015	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1016	spin_lock_init(&ifx_dev->write_lock);
1017	spin_lock_init(&ifx_dev->power_lock);
1018	ifx_dev->power_status = 0;
1019	timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
 
 
1020	ifx_dev->modem = pl_data->modem_type;
1021	ifx_dev->use_dma = pl_data->use_dma;
1022	ifx_dev->max_hz = pl_data->max_hz;
1023	/* initialize spi mode, etc */
1024	spi->max_speed_hz = ifx_dev->max_hz;
1025	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1026	spi->bits_per_word = spi_bpw;
1027	ret = spi_setup(spi);
1028	if (ret) {
1029		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1030		kfree(ifx_dev);
1031		return -ENODEV;
1032	}
1033
1034	/* init swap_buf function according to word width configuration */
1035	if (spi->bits_per_word == 32)
1036		ifx_dev->swap_buf = swap_buf_32;
1037	else if (spi->bits_per_word == 16)
1038		ifx_dev->swap_buf = swap_buf_16;
1039	else
1040		ifx_dev->swap_buf = swap_buf_8;
1041
1042	/* ensure SPI protocol flags are initialized to enable transfer */
1043	ifx_dev->spi_more = 0;
1044	ifx_dev->spi_slave_cts = 0;
1045
1046	/*initialize transfer and dma buffers */
1047	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1048				IFX_SPI_TRANSFER_SIZE,
1049				&ifx_dev->tx_bus,
1050				GFP_KERNEL);
1051	if (!ifx_dev->tx_buffer) {
1052		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1053		ret = -ENOMEM;
1054		goto error_ret;
1055	}
1056	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1057				IFX_SPI_TRANSFER_SIZE,
1058				&ifx_dev->rx_bus,
1059				GFP_KERNEL);
1060	if (!ifx_dev->rx_buffer) {
1061		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1062		ret = -ENOMEM;
1063		goto error_ret;
1064	}
1065
1066	/* initialize waitq for modem reset */
1067	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1068
1069	spi_set_drvdata(spi, ifx_dev);
1070	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1071						(unsigned long)ifx_dev);
1072
1073	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1074
1075	/* create our tty port */
1076	ret = ifx_spi_create_port(ifx_dev);
1077	if (ret != 0) {
1078		dev_err(&spi->dev, "create default tty port failed");
1079		goto error_ret;
1080	}
1081
1082	ifx_dev->gpio.reset = pl_data->rst_pmu;
1083	ifx_dev->gpio.po = pl_data->pwr_on;
1084	ifx_dev->gpio.mrdy = pl_data->mrdy;
1085	ifx_dev->gpio.srdy = pl_data->srdy;
1086	ifx_dev->gpio.reset_out = pl_data->rst_out;
1087
1088	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1089		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1090		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1091
1092	/* Configure gpios */
1093	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1094	if (ret < 0) {
1095		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1096			ifx_dev->gpio.reset);
1097		goto error_ret;
1098	}
1099	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1100	ret += gpio_export(ifx_dev->gpio.reset, 1);
1101	if (ret) {
1102		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1103			ifx_dev->gpio.reset);
1104		ret = -EBUSY;
1105		goto error_ret2;
1106	}
1107
1108	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1109	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1110	ret += gpio_export(ifx_dev->gpio.po, 1);
1111	if (ret) {
1112		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1113			ifx_dev->gpio.po);
1114		ret = -EBUSY;
1115		goto error_ret3;
1116	}
1117
1118	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1119	if (ret < 0) {
1120		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1121			ifx_dev->gpio.mrdy);
1122		goto error_ret3;
1123	}
1124	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1125	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1126	if (ret) {
1127		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1128			ifx_dev->gpio.mrdy);
1129		ret = -EBUSY;
1130		goto error_ret4;
1131	}
1132
1133	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1134	if (ret < 0) {
1135		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1136			ifx_dev->gpio.srdy);
1137		ret = -EBUSY;
1138		goto error_ret4;
1139	}
1140	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1141	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1142	if (ret) {
1143		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1144			ifx_dev->gpio.srdy);
1145		ret = -EBUSY;
1146		goto error_ret5;
1147	}
1148
1149	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1150	if (ret < 0) {
1151		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1152			ifx_dev->gpio.reset_out);
1153		goto error_ret5;
1154	}
1155	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1156	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1157	if (ret) {
1158		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1159			ifx_dev->gpio.reset_out);
1160		ret = -EBUSY;
1161		goto error_ret6;
1162	}
1163
1164	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1165			  ifx_spi_reset_interrupt,
1166			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1167			  ifx_dev);
1168	if (ret) {
1169		dev_err(&spi->dev, "Unable to get irq %x\n",
1170			gpio_to_irq(ifx_dev->gpio.reset_out));
1171		goto error_ret6;
1172	}
1173
1174	ret = ifx_spi_reset(ifx_dev);
1175
1176	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1177			  ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
1178			  ifx_dev);
 
1179	if (ret) {
1180		dev_err(&spi->dev, "Unable to get irq %x",
1181			gpio_to_irq(ifx_dev->gpio.srdy));
1182		goto error_ret7;
1183	}
1184
1185	/* set pm runtime power state and register with power system */
1186	pm_runtime_set_active(&spi->dev);
1187	pm_runtime_enable(&spi->dev);
1188
1189	/* handle case that modem is already signaling SRDY */
1190	/* no outgoing tty open at this point, this just satisfies the
1191	 * modem's read and should reset communication properly
1192	 */
1193	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1194
1195	if (srdy) {
1196		mrdy_assert(ifx_dev);
1197		ifx_spi_handle_srdy(ifx_dev);
1198	} else
1199		mrdy_set_low(ifx_dev);
1200	return 0;
1201
1202error_ret7:
1203	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1204error_ret6:
1205	gpio_free(ifx_dev->gpio.srdy);
1206error_ret5:
1207	gpio_free(ifx_dev->gpio.mrdy);
1208error_ret4:
1209	gpio_free(ifx_dev->gpio.reset);
1210error_ret3:
1211	gpio_free(ifx_dev->gpio.po);
1212error_ret2:
1213	gpio_free(ifx_dev->gpio.reset_out);
1214error_ret:
1215	ifx_spi_free_device(ifx_dev);
1216	saved_ifx_dev = NULL;
1217	return ret;
1218}
1219
1220/**
1221 *	ifx_spi_spi_remove	-	SPI device was removed
1222 *	@spi: SPI device
1223 *
1224 *	FIXME: We should be shutting the device down here not in
1225 *	the module unload path.
1226 */
1227
1228static int ifx_spi_spi_remove(struct spi_device *spi)
1229{
1230	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1231	/* stop activity */
1232	tasklet_kill(&ifx_dev->io_work_tasklet);
1233	/* free irq */
1234	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
1235	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
1236
1237	gpio_free(ifx_dev->gpio.srdy);
1238	gpio_free(ifx_dev->gpio.mrdy);
1239	gpio_free(ifx_dev->gpio.reset);
1240	gpio_free(ifx_dev->gpio.po);
1241	gpio_free(ifx_dev->gpio.reset_out);
1242
1243	/* free allocations */
1244	ifx_spi_free_device(ifx_dev);
1245
1246	saved_ifx_dev = NULL;
1247	return 0;
1248}
1249
1250/**
1251 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1252 *	@spi: SPI device
1253 *
1254 *	No action needs to be taken here
1255 */
1256
1257static void ifx_spi_spi_shutdown(struct spi_device *spi)
1258{
1259	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1260
1261	ifx_modem_power_off(ifx_dev);
1262}
1263
1264/*
1265 * various suspends and resumes have nothing to do
1266 * no hardware to save state for
1267 */
1268
1269/**
1270 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1271 *	@dev: device being suspended
1272 *
1273 *	Suspend the modem. No action needed on Intel MID platforms, may
1274 *	need extending for other systems.
1275 */
1276static int ifx_spi_pm_suspend(struct device *dev)
1277{
1278	return 0;
1279}
1280
1281/**
1282 *	ifx_spi_pm_resume	-	resume modem on system resume
1283 *	@dev: device being suspended
1284 *
1285 *	Allow the modem to resume. No action needed.
1286 *
1287 *	FIXME: do we need to reset anything here ?
1288 */
1289static int ifx_spi_pm_resume(struct device *dev)
1290{
1291	return 0;
1292}
1293
1294/**
1295 *	ifx_spi_pm_runtime_resume	-	suspend modem
1296 *	@dev: device being suspended
1297 *
1298 *	Allow the modem to resume. No action needed.
1299 */
1300static int ifx_spi_pm_runtime_resume(struct device *dev)
1301{
1302	return 0;
1303}
1304
1305/**
1306 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1307 *	@dev: device being suspended
1308 *
1309 *	Allow the modem to suspend and thus suspend to continue up the
1310 *	device tree.
1311 */
1312static int ifx_spi_pm_runtime_suspend(struct device *dev)
1313{
1314	return 0;
1315}
1316
1317/**
1318 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1319 *	@dev: our device
1320 *
1321 *	Check conditions and queue runtime suspend if idle.
1322 */
1323static int ifx_spi_pm_runtime_idle(struct device *dev)
1324{
1325	struct spi_device *spi = to_spi_device(dev);
1326	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1327
1328	if (!ifx_dev->power_status)
1329		pm_runtime_suspend(dev);
1330
1331	return 0;
1332}
1333
1334static const struct dev_pm_ops ifx_spi_pm = {
1335	.resume = ifx_spi_pm_resume,
1336	.suspend = ifx_spi_pm_suspend,
1337	.runtime_resume = ifx_spi_pm_runtime_resume,
1338	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1339	.runtime_idle = ifx_spi_pm_runtime_idle
1340};
1341
1342static const struct spi_device_id ifx_id_table[] = {
1343	{"ifx6160", 0},
1344	{"ifx6260", 0},
1345	{ }
1346};
1347MODULE_DEVICE_TABLE(spi, ifx_id_table);
1348
1349/* spi operations */
1350static struct spi_driver ifx_spi_driver = {
1351	.driver = {
1352		.name = DRVNAME,
1353		.pm = &ifx_spi_pm,
1354	},
1355	.probe = ifx_spi_spi_probe,
1356	.shutdown = ifx_spi_spi_shutdown,
1357	.remove = ifx_spi_spi_remove,
1358	.id_table = ifx_id_table
1359};
1360
1361/**
1362 *	ifx_spi_exit	-	module exit
1363 *
1364 *	Unload the module.
1365 */
1366
1367static void __exit ifx_spi_exit(void)
1368{
1369	/* unregister */
1370	spi_unregister_driver(&ifx_spi_driver);
1371	tty_unregister_driver(tty_drv);
1372	put_tty_driver(tty_drv);
 
1373	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1374}
1375
1376/**
1377 *	ifx_spi_init		-	module entry point
1378 *
1379 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1380 *	We need to initialize upper-edge spi driver after the tty
1381 *	driver because otherwise the spi probe will race
1382 */
1383
1384static int __init ifx_spi_init(void)
1385{
1386	int result;
1387
1388	tty_drv = alloc_tty_driver(1);
1389	if (!tty_drv) {
1390		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1391		return -ENOMEM;
1392	}
1393
1394	tty_drv->driver_name = DRVNAME;
1395	tty_drv->name = TTYNAME;
1396	tty_drv->minor_start = IFX_SPI_TTY_ID;
1397	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1398	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1399	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1400	tty_drv->init_termios = tty_std_termios;
1401
1402	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1403
1404	result = tty_register_driver(tty_drv);
1405	if (result) {
1406		pr_err("%s: tty_register_driver failed(%d)",
1407			DRVNAME, result);
1408		goto err_free_tty;
1409	}
1410
1411	result = spi_register_driver(&ifx_spi_driver);
1412	if (result) {
1413		pr_err("%s: spi_register_driver failed(%d)",
1414			DRVNAME, result);
1415		goto err_unreg_tty;
1416	}
1417
1418	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1419	if (result) {
1420		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1421			DRVNAME, result);
1422		goto err_unreg_spi;
1423	}
1424
1425	return 0;
1426err_unreg_spi:
1427	spi_unregister_driver(&ifx_spi_driver);
1428err_unreg_tty:
1429	tty_unregister_driver(tty_drv);
1430err_free_tty:
1431	put_tty_driver(tty_drv);
1432
1433	return result;
1434}
1435
1436module_init(ifx_spi_init);
1437module_exit(ifx_spi_exit);
1438
1439MODULE_AUTHOR("Intel");
1440MODULE_DESCRIPTION("IFX6x60 spi driver");
1441MODULE_LICENSE("GPL");
1442MODULE_INFO(Version, "0.1-IFX6x60");
v3.15
 
   1/****************************************************************************
   2 *
   3 * Driver for the IFX 6x60 spi modem.
   4 *
   5 * Copyright (C) 2008 Option International
   6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
   7 *		      Denis Joseph Barrow <d.barow@option.com>
   8 *		      Jan Dumon <j.dumon@option.com>
   9 *
  10 * Copyright (C) 2009, 2010 Intel Corp
  11 * Russ Gorby <russ.gorby@intel.com>
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License version 2 as
  15 * published by the Free Software Foundation.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  25 * USA
  26 *
  27 * Driver modified by Intel from Option gtm501l_spi.c
  28 *
  29 * Notes
  30 * o	The driver currently assumes a single device only. If you need to
  31 *	change this then look for saved_ifx_dev and add a device lookup
  32 * o	The driver is intended to be big-endian safe but has never been
  33 *	tested that way (no suitable hardware). There are a couple of FIXME
  34 *	notes by areas that may need addressing
  35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
  36 *	you need to use this driver for another platform.
  37 *
  38 *****************************************************************************/
  39#include <linux/dma-mapping.h>
  40#include <linux/module.h>
  41#include <linux/termios.h>
  42#include <linux/tty.h>
  43#include <linux/device.h>
  44#include <linux/spi/spi.h>
  45#include <linux/kfifo.h>
  46#include <linux/tty_flip.h>
  47#include <linux/timer.h>
  48#include <linux/serial.h>
  49#include <linux/interrupt.h>
  50#include <linux/irq.h>
  51#include <linux/rfkill.h>
  52#include <linux/fs.h>
  53#include <linux/ip.h>
  54#include <linux/dmapool.h>
  55#include <linux/gpio.h>
  56#include <linux/sched.h>
  57#include <linux/time.h>
  58#include <linux/wait.h>
  59#include <linux/pm.h>
  60#include <linux/pm_runtime.h>
  61#include <linux/spi/ifx_modem.h>
  62#include <linux/delay.h>
  63#include <linux/reboot.h>
  64
  65#include "ifx6x60.h"
  66
  67#define IFX_SPI_MORE_MASK		0x10
  68#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
  69#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
  70#define IFX_SPI_MODE			SPI_MODE_1
  71#define IFX_SPI_TTY_ID			0
  72#define IFX_SPI_TIMEOUT_SEC		2
  73#define IFX_SPI_HEADER_0		(-1)
  74#define IFX_SPI_HEADER_F		(-2)
  75
  76#define PO_POST_DELAY		200
  77#define IFX_MDM_RST_PMU	4
  78
  79/* forward reference */
  80static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
  81static int ifx_modem_reboot_callback(struct notifier_block *nfb,
  82				unsigned long event, void *data);
  83static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
  84
  85/* local variables */
  86static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
  87static struct tty_driver *tty_drv;
  88static struct ifx_spi_device *saved_ifx_dev;
  89static struct lock_class_key ifx_spi_key;
  90
  91static struct notifier_block ifx_modem_reboot_notifier_block = {
  92	.notifier_call = ifx_modem_reboot_callback,
  93};
  94
  95static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
  96{
  97	gpio_set_value(IFX_MDM_RST_PMU, 1);
  98	msleep(PO_POST_DELAY);
  99
 100	return 0;
 101}
 102
 103static int ifx_modem_reboot_callback(struct notifier_block *nfb,
 104				 unsigned long event, void *data)
 105{
 106	if (saved_ifx_dev)
 107		ifx_modem_power_off(saved_ifx_dev);
 108	else
 109		pr_warn("no ifx modem active;\n");
 110
 111	return NOTIFY_OK;
 112}
 113
 114/* GPIO/GPE settings */
 115
 116/**
 117 *	mrdy_set_high		-	set MRDY GPIO
 118 *	@ifx: device we are controlling
 119 *
 120 */
 121static inline void mrdy_set_high(struct ifx_spi_device *ifx)
 122{
 123	gpio_set_value(ifx->gpio.mrdy, 1);
 124}
 125
 126/**
 127 *	mrdy_set_low		-	clear MRDY GPIO
 128 *	@ifx: device we are controlling
 129 *
 130 */
 131static inline void mrdy_set_low(struct ifx_spi_device *ifx)
 132{
 133	gpio_set_value(ifx->gpio.mrdy, 0);
 134}
 135
 136/**
 137 *	ifx_spi_power_state_set
 138 *	@ifx_dev: our SPI device
 139 *	@val: bits to set
 140 *
 141 *	Set bit in power status and signal power system if status becomes non-0
 142 */
 143static void
 144ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
 145{
 146	unsigned long flags;
 147
 148	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 149
 150	/*
 151	 * if power status is already non-0, just update, else
 152	 * tell power system
 153	 */
 154	if (!ifx_dev->power_status)
 155		pm_runtime_get(&ifx_dev->spi_dev->dev);
 156	ifx_dev->power_status |= val;
 157
 158	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 159}
 160
 161/**
 162 *	ifx_spi_power_state_clear	-	clear power bit
 163 *	@ifx_dev: our SPI device
 164 *	@val: bits to clear
 165 *
 166 *	clear bit in power status and signal power system if status becomes 0
 167 */
 168static void
 169ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
 170{
 171	unsigned long flags;
 172
 173	spin_lock_irqsave(&ifx_dev->power_lock, flags);
 174
 175	if (ifx_dev->power_status) {
 176		ifx_dev->power_status &= ~val;
 177		if (!ifx_dev->power_status)
 178			pm_runtime_put(&ifx_dev->spi_dev->dev);
 179	}
 180
 181	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
 182}
 183
 184/**
 185 *	swap_buf_8
 186 *	@buf: our buffer
 187 *	@len : number of bytes (not words) in the buffer
 188 *	@end: end of buffer
 189 *
 190 *	Swap the contents of a buffer into big endian format
 191 */
 192static inline void swap_buf_8(unsigned char *buf, int len, void *end)
 193{
 194	/* don't swap buffer if SPI word width is 8 bits */
 195	return;
 196}
 197
 198/**
 199 *	swap_buf_16
 200 *	@buf: our buffer
 201 *	@len : number of bytes (not words) in the buffer
 202 *	@end: end of buffer
 203 *
 204 *	Swap the contents of a buffer into big endian format
 205 */
 206static inline void swap_buf_16(unsigned char *buf, int len, void *end)
 207{
 208	int n;
 209
 210	u16 *buf_16 = (u16 *)buf;
 211	len = ((len + 1) >> 1);
 212	if ((void *)&buf_16[len] > end) {
 213		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
 214		       &buf_16[len], end);
 215		return;
 216	}
 217	for (n = 0; n < len; n++) {
 218		*buf_16 = cpu_to_be16(*buf_16);
 219		buf_16++;
 220	}
 221}
 222
 223/**
 224 *	swap_buf_32
 225 *	@buf: our buffer
 226 *	@len : number of bytes (not words) in the buffer
 227 *	@end: end of buffer
 228 *
 229 *	Swap the contents of a buffer into big endian format
 230 */
 231static inline void swap_buf_32(unsigned char *buf, int len, void *end)
 232{
 233	int n;
 234
 235	u32 *buf_32 = (u32 *)buf;
 236	len = (len + 3) >> 2;
 237
 238	if ((void *)&buf_32[len] > end) {
 239		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
 240		       &buf_32[len], end);
 241		return;
 242	}
 243	for (n = 0; n < len; n++) {
 244		*buf_32 = cpu_to_be32(*buf_32);
 245		buf_32++;
 246	}
 247}
 248
 249/**
 250 *	mrdy_assert		-	assert MRDY line
 251 *	@ifx_dev: our SPI device
 252 *
 253 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
 254 *	now.
 255 *
 256 *	FIXME: Can SRDY even go high as we are running this code ?
 257 */
 258static void mrdy_assert(struct ifx_spi_device *ifx_dev)
 259{
 260	int val = gpio_get_value(ifx_dev->gpio.srdy);
 261	if (!val) {
 262		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
 263				      &ifx_dev->flags)) {
 264			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
 265
 266		}
 267	}
 268	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
 269	mrdy_set_high(ifx_dev);
 270}
 271
 272/**
 273 *	ifx_spi_timeout		-	SPI timeout
 274 *	@arg: our SPI device
 275 *
 276 *	The SPI has timed out: hang up the tty. Users will then see a hangup
 277 *	and error events.
 278 */
 279static void ifx_spi_timeout(unsigned long arg)
 280{
 281	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
 282
 283	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
 284	tty_port_tty_hangup(&ifx_dev->tty_port, false);
 285	mrdy_set_low(ifx_dev);
 286	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 287}
 288
 289/* char/tty operations */
 290
 291/**
 292 *	ifx_spi_tiocmget	-	get modem lines
 293 *	@tty: our tty device
 294 *	@filp: file handle issuing the request
 295 *
 296 *	Map the signal state into Linux modem flags and report the value
 297 *	in Linux terms
 298 */
 299static int ifx_spi_tiocmget(struct tty_struct *tty)
 300{
 301	unsigned int value;
 302	struct ifx_spi_device *ifx_dev = tty->driver_data;
 303
 304	value =
 305	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
 306	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
 307	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
 308	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
 309	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
 310	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
 311	return value;
 312}
 313
 314/**
 315 *	ifx_spi_tiocmset	-	set modem bits
 316 *	@tty: the tty structure
 317 *	@set: bits to set
 318 *	@clear: bits to clear
 319 *
 320 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
 321 *	and flag that an update to the modem is needed.
 322 *
 323 *	FIXME: do we need to kick the tranfers when we do this ?
 324 */
 325static int ifx_spi_tiocmset(struct tty_struct *tty,
 326			    unsigned int set, unsigned int clear)
 327{
 328	struct ifx_spi_device *ifx_dev = tty->driver_data;
 329
 330	if (set & TIOCM_RTS)
 331		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 332	if (set & TIOCM_DTR)
 333		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 334	if (clear & TIOCM_RTS)
 335		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
 336	if (clear & TIOCM_DTR)
 337		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
 338
 339	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
 340	return 0;
 341}
 342
 343/**
 344 *	ifx_spi_open	-	called on tty open
 345 *	@tty: our tty device
 346 *	@filp: file handle being associated with the tty
 347 *
 348 *	Open the tty interface. We let the tty_port layer do all the work
 349 *	for us.
 350 *
 351 *	FIXME: Remove single device assumption and saved_ifx_dev
 352 */
 353static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
 354{
 355	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
 356}
 357
 358/**
 359 *	ifx_spi_close	-	called when our tty closes
 360 *	@tty: the tty being closed
 361 *	@filp: the file handle being closed
 362 *
 363 *	Perform the close of the tty. We use the tty_port layer to do all
 364 *	our hard work.
 365 */
 366static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
 367{
 368	struct ifx_spi_device *ifx_dev = tty->driver_data;
 369	tty_port_close(&ifx_dev->tty_port, tty, filp);
 370	/* FIXME: should we do an ifx_spi_reset here ? */
 371}
 372
 373/**
 374 *	ifx_decode_spi_header	-	decode received header
 375 *	@buffer: the received data
 376 *	@length: decoded length
 377 *	@more: decoded more flag
 378 *	@received_cts: status of cts we received
 379 *
 380 *	Note how received_cts is handled -- if header is all F it is left
 381 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
 382 *	taken from the incoming header.
 383 *
 384 *	FIXME: endianness
 385 */
 386static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
 387			unsigned char *more, unsigned char *received_cts)
 388{
 389	u16 h1;
 390	u16 h2;
 391	u16 *in_buffer = (u16 *)buffer;
 392
 393	h1 = *in_buffer;
 394	h2 = *(in_buffer+1);
 395
 396	if (h1 == 0 && h2 == 0) {
 397		*received_cts = 0;
 
 398		return IFX_SPI_HEADER_0;
 399	} else if (h1 == 0xffff && h2 == 0xffff) {
 
 400		/* spi_slave_cts remains as it was */
 401		return IFX_SPI_HEADER_F;
 402	}
 403
 404	*length = h1 & 0xfff;	/* upper bits of byte are flags */
 405	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
 406	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
 407	return 0;
 408}
 409
 410/**
 411 *	ifx_setup_spi_header	-	set header fields
 412 *	@txbuffer: pointer to start of SPI buffer
 413 *	@tx_count: bytes
 414 *	@more: indicate if more to follow
 415 *
 416 *	Format up an SPI header for a transfer
 417 *
 418 *	FIXME: endianness?
 419 */
 420static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
 421					unsigned char more)
 422{
 423	*(u16 *)(txbuffer) = tx_count;
 424	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
 425	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
 426}
 427
 428/**
 429 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
 430 *	@ifx_dev: our SPI device
 431 *
 432 *	The transmit buffr needs a header and various other bits of
 433 *	information followed by as much data as we can pull from the FIFO
 434 *	and transfer. This function formats up a suitable buffer in the
 435 *	ifx_dev->tx_buffer
 436 *
 437 *	FIXME: performance - should we wake the tty when the queue is half
 438 *			     empty ?
 439 */
 440static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
 441{
 442	int temp_count;
 443	int queue_length;
 444	int tx_count;
 445	unsigned char *tx_buffer;
 446
 447	tx_buffer = ifx_dev->tx_buffer;
 448
 449	/* make room for required SPI header */
 450	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
 451	tx_count = IFX_SPI_HEADER_OVERHEAD;
 452
 453	/* clear to signal no more data if this turns out to be the
 454	 * last buffer sent in a sequence */
 455	ifx_dev->spi_more = 0;
 456
 457	/* if modem cts is set, just send empty buffer */
 458	if (!ifx_dev->spi_slave_cts) {
 459		/* see if there's tx data */
 460		queue_length = kfifo_len(&ifx_dev->tx_fifo);
 461		if (queue_length != 0) {
 462			/* data to mux -- see if there's room for it */
 463			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
 464			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
 465					tx_buffer, temp_count,
 466					&ifx_dev->fifo_lock);
 467
 468			/* update buffer pointer and data count in message */
 469			tx_buffer += temp_count;
 470			tx_count += temp_count;
 471			if (temp_count == queue_length)
 472				/* poke port to get more data */
 473				tty_port_tty_wakeup(&ifx_dev->tty_port);
 474			else /* more data in port, use next SPI message */
 475				ifx_dev->spi_more = 1;
 476		}
 477	}
 478	/* have data and info for header -- set up SPI header in buffer */
 479	/* spi header needs payload size, not entire buffer size */
 480	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
 481					tx_count-IFX_SPI_HEADER_OVERHEAD,
 482					ifx_dev->spi_more);
 483	/* swap actual data in the buffer */
 484	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
 485		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
 486	return tx_count;
 487}
 488
 489/**
 490 *	ifx_spi_write		-	line discipline write
 491 *	@tty: our tty device
 492 *	@buf: pointer to buffer to write (kernel space)
 493 *	@count: size of buffer
 494 *
 495 *	Write the characters we have been given into the FIFO. If the device
 496 *	is not active then activate it, when the SRDY line is asserted back
 497 *	this will commence I/O
 498 */
 499static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
 500			 int count)
 501{
 502	struct ifx_spi_device *ifx_dev = tty->driver_data;
 503	unsigned char *tmp_buf = (unsigned char *)buf;
 504	unsigned long flags;
 505	bool is_fifo_empty;
 506	int tx_count;
 507
 508	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
 509	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
 510	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
 511	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
 512	if (is_fifo_empty)
 513		mrdy_assert(ifx_dev);
 514
 515	return tx_count;
 516}
 517
 518/**
 519 *	ifx_spi_chars_in_buffer	-	line discipline helper
 520 *	@tty: our tty device
 521 *
 522 *	Report how much data we can accept before we drop bytes. As we use
 523 *	a simple FIFO this is nice and easy.
 524 */
 525static int ifx_spi_write_room(struct tty_struct *tty)
 526{
 527	struct ifx_spi_device *ifx_dev = tty->driver_data;
 528	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
 529}
 530
 531/**
 532 *	ifx_spi_chars_in_buffer	-	line discipline helper
 533 *	@tty: our tty device
 534 *
 535 *	Report how many characters we have buffered. In our case this is the
 536 *	number of bytes sitting in our transmit FIFO.
 537 */
 538static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
 539{
 540	struct ifx_spi_device *ifx_dev = tty->driver_data;
 541	return kfifo_len(&ifx_dev->tx_fifo);
 542}
 543
 544/**
 545 *	ifx_port_hangup
 546 *	@port: our tty port
 547 *
 548 *	tty port hang up. Called when tty_hangup processing is invoked either
 549 *	by loss of carrier, or by software (eg vhangup). Serialized against
 550 *	activate/shutdown by the tty layer.
 551 */
 552static void ifx_spi_hangup(struct tty_struct *tty)
 553{
 554	struct ifx_spi_device *ifx_dev = tty->driver_data;
 555	tty_port_hangup(&ifx_dev->tty_port);
 556}
 557
 558/**
 559 *	ifx_port_activate
 560 *	@port: our tty port
 561 *
 562 *	tty port activate method - called for first open. Serialized
 563 *	with hangup and shutdown by the tty layer.
 564 */
 565static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
 566{
 567	struct ifx_spi_device *ifx_dev =
 568		container_of(port, struct ifx_spi_device, tty_port);
 569
 570	/* clear any old data; can't do this in 'close' */
 571	kfifo_reset(&ifx_dev->tx_fifo);
 572
 573	/* clear any flag which may be set in port shutdown procedure */
 574	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
 575	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 576
 577	/* put port data into this tty */
 578	tty->driver_data = ifx_dev;
 579
 580	/* allows flip string push from int context */
 581	port->low_latency = 1;
 582
 583	/* set flag to allows data transfer */
 584	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 585
 586	return 0;
 587}
 588
 589/**
 590 *	ifx_port_shutdown
 591 *	@port: our tty port
 592 *
 593 *	tty port shutdown method - called for last port close. Serialized
 594 *	with hangup and activate by the tty layer.
 595 */
 596static void ifx_port_shutdown(struct tty_port *port)
 597{
 598	struct ifx_spi_device *ifx_dev =
 599		container_of(port, struct ifx_spi_device, tty_port);
 600
 601	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
 602	mrdy_set_low(ifx_dev);
 603	del_timer(&ifx_dev->spi_timer);
 604	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 605	tasklet_kill(&ifx_dev->io_work_tasklet);
 606}
 607
 608static const struct tty_port_operations ifx_tty_port_ops = {
 609	.activate = ifx_port_activate,
 610	.shutdown = ifx_port_shutdown,
 611};
 612
 613static const struct tty_operations ifx_spi_serial_ops = {
 614	.open = ifx_spi_open,
 615	.close = ifx_spi_close,
 616	.write = ifx_spi_write,
 617	.hangup = ifx_spi_hangup,
 618	.write_room = ifx_spi_write_room,
 619	.chars_in_buffer = ifx_spi_chars_in_buffer,
 620	.tiocmget = ifx_spi_tiocmget,
 621	.tiocmset = ifx_spi_tiocmset,
 622};
 623
 624/**
 625 *	ifx_spi_insert_fip_string	-	queue received data
 626 *	@ifx_ser: our SPI device
 627 *	@chars: buffer we have received
 628 *	@size: number of chars reeived
 629 *
 630 *	Queue bytes to the tty assuming the tty side is currently open. If
 631 *	not the discard the data.
 632 */
 633static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
 634				    unsigned char *chars, size_t size)
 635{
 636	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
 637	tty_flip_buffer_push(&ifx_dev->tty_port);
 638}
 639
 640/**
 641 *	ifx_spi_complete	-	SPI transfer completed
 642 *	@ctx: our SPI device
 643 *
 644 *	An SPI transfer has completed. Process any received data and kick off
 645 *	any further transmits we can commence.
 646 */
 647static void ifx_spi_complete(void *ctx)
 648{
 649	struct ifx_spi_device *ifx_dev = ctx;
 650	int length;
 651	int actual_length;
 652	unsigned char more;
 653	unsigned char cts;
 654	int local_write_pending = 0;
 655	int queue_length;
 656	int srdy;
 657	int decode_result;
 658
 659	mrdy_set_low(ifx_dev);
 660
 661	if (!ifx_dev->spi_msg.status) {
 662		/* check header validity, get comm flags */
 663		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
 664			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
 665		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
 666				&length, &more, &cts);
 667		if (decode_result == IFX_SPI_HEADER_0) {
 668			dev_dbg(&ifx_dev->spi_dev->dev,
 669				"ignore input: invalid header 0");
 670			ifx_dev->spi_slave_cts = 0;
 671			goto complete_exit;
 672		} else if (decode_result == IFX_SPI_HEADER_F) {
 673			dev_dbg(&ifx_dev->spi_dev->dev,
 674				"ignore input: invalid header F");
 675			goto complete_exit;
 676		}
 677
 678		ifx_dev->spi_slave_cts = cts;
 679
 680		actual_length = min((unsigned int)length,
 681					ifx_dev->spi_msg.actual_length);
 682		ifx_dev->swap_buf(
 683			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
 684			 actual_length,
 685			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
 686		ifx_spi_insert_flip_string(
 687			ifx_dev,
 688			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
 689			(size_t)actual_length);
 690	} else {
 
 691		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
 692		       ifx_dev->spi_msg.status);
 693	}
 694
 695complete_exit:
 696	if (ifx_dev->write_pending) {
 697		ifx_dev->write_pending = 0;
 698		local_write_pending = 1;
 699	}
 700
 701	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
 702
 703	queue_length = kfifo_len(&ifx_dev->tx_fifo);
 704	srdy = gpio_get_value(ifx_dev->gpio.srdy);
 705	if (!srdy)
 706		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
 707
 708	/* schedule output if there is more to do */
 709	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
 710		tasklet_schedule(&ifx_dev->io_work_tasklet);
 711	else {
 712		if (more || ifx_dev->spi_more || queue_length > 0 ||
 713			local_write_pending) {
 714			if (ifx_dev->spi_slave_cts) {
 715				if (more)
 716					mrdy_assert(ifx_dev);
 717			} else
 718				mrdy_assert(ifx_dev);
 719		} else {
 720			/*
 721			 * poke line discipline driver if any for more data
 722			 * may or may not get more data to write
 723			 * for now, say not busy
 724			 */
 725			ifx_spi_power_state_clear(ifx_dev,
 726						  IFX_SPI_POWER_DATA_PENDING);
 727			tty_port_tty_wakeup(&ifx_dev->tty_port);
 728		}
 729	}
 730}
 731
 732/**
 733 *	ifx_spio_io		-	I/O tasklet
 734 *	@data: our SPI device
 735 *
 736 *	Queue data for transmission if possible and then kick off the
 737 *	transfer.
 738 */
 739static void ifx_spi_io(unsigned long data)
 740{
 741	int retval;
 742	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
 743
 744	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
 745		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
 746		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
 747			ifx_dev->gpio.unack_srdy_int_nb--;
 748
 749		ifx_spi_prepare_tx_buffer(ifx_dev);
 750
 751		spi_message_init(&ifx_dev->spi_msg);
 752		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
 753
 754		ifx_dev->spi_msg.context = ifx_dev;
 755		ifx_dev->spi_msg.complete = ifx_spi_complete;
 756
 757		/* set up our spi transfer */
 758		/* note len is BYTES, not transfers */
 759		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
 760		ifx_dev->spi_xfer.cs_change = 0;
 761		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
 762		/* ifx_dev->spi_xfer.speed_hz = 390625; */
 763		ifx_dev->spi_xfer.bits_per_word =
 764			ifx_dev->spi_dev->bits_per_word;
 765
 766		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
 767		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
 768
 769		/*
 770		 * setup dma pointers
 771		 */
 772		if (ifx_dev->use_dma) {
 773			ifx_dev->spi_msg.is_dma_mapped = 1;
 774			ifx_dev->tx_dma = ifx_dev->tx_bus;
 775			ifx_dev->rx_dma = ifx_dev->rx_bus;
 776			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
 777			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
 778		} else {
 779			ifx_dev->spi_msg.is_dma_mapped = 0;
 780			ifx_dev->tx_dma = (dma_addr_t)0;
 781			ifx_dev->rx_dma = (dma_addr_t)0;
 782			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
 783			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
 784		}
 785
 786		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
 787
 788		/* Assert MRDY. This may have already been done by the write
 789		 * routine.
 790		 */
 791		mrdy_assert(ifx_dev);
 792
 793		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
 794		if (retval) {
 795			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
 796				  &ifx_dev->flags);
 797			tasklet_schedule(&ifx_dev->io_work_tasklet);
 798			return;
 799		}
 800	} else
 801		ifx_dev->write_pending = 1;
 802}
 803
 804/**
 805 *	ifx_spi_free_port	-	free up the tty side
 806 *	@ifx_dev: IFX device going away
 807 *
 808 *	Unregister and free up a port when the device goes away
 809 */
 810static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
 811{
 812	if (ifx_dev->tty_dev)
 813		tty_unregister_device(tty_drv, ifx_dev->minor);
 814	tty_port_destroy(&ifx_dev->tty_port);
 815	kfifo_free(&ifx_dev->tx_fifo);
 816}
 817
 818/**
 819 *	ifx_spi_create_port	-	create a new port
 820 *	@ifx_dev: our spi device
 821 *
 822 *	Allocate and initialise the tty port that goes with this interface
 823 *	and add it to the tty layer so that it can be opened.
 824 */
 825static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
 826{
 827	int ret = 0;
 828	struct tty_port *pport = &ifx_dev->tty_port;
 829
 830	spin_lock_init(&ifx_dev->fifo_lock);
 831	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
 832		&ifx_spi_key, 0);
 833
 834	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
 835		ret = -ENOMEM;
 836		goto error_ret;
 837	}
 838
 839	tty_port_init(pport);
 840	pport->ops = &ifx_tty_port_ops;
 841	ifx_dev->minor = IFX_SPI_TTY_ID;
 842	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
 843			ifx_dev->minor, &ifx_dev->spi_dev->dev);
 844	if (IS_ERR(ifx_dev->tty_dev)) {
 845		dev_dbg(&ifx_dev->spi_dev->dev,
 846			"%s: registering tty device failed", __func__);
 847		ret = PTR_ERR(ifx_dev->tty_dev);
 848		goto error_port;
 849	}
 850	return 0;
 851
 852error_port:
 853	tty_port_destroy(pport);
 854error_ret:
 855	ifx_spi_free_port(ifx_dev);
 856	return ret;
 857}
 858
 859/**
 860 *	ifx_spi_handle_srdy		-	handle SRDY
 861 *	@ifx_dev: device asserting SRDY
 862 *
 863 *	Check our device state and see what we need to kick off when SRDY
 864 *	is asserted. This usually means killing the timer and firing off the
 865 *	I/O processing.
 866 */
 867static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
 868{
 869	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
 870		del_timer(&ifx_dev->spi_timer);
 871		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
 872	}
 873
 874	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
 875
 876	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
 877		tasklet_schedule(&ifx_dev->io_work_tasklet);
 878	else
 879		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
 880}
 881
 882/**
 883 *	ifx_spi_srdy_interrupt	-	SRDY asserted
 884 *	@irq: our IRQ number
 885 *	@dev: our ifx device
 886 *
 887 *	The modem asserted SRDY. Handle the srdy event
 888 */
 889static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
 890{
 891	struct ifx_spi_device *ifx_dev = dev;
 892	ifx_dev->gpio.unack_srdy_int_nb++;
 893	ifx_spi_handle_srdy(ifx_dev);
 894	return IRQ_HANDLED;
 895}
 896
 897/**
 898 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
 899 *	@irq: interrupt number
 900 *	@dev: our device pointer
 901 *
 902 *	The modem has either entered or left reset state. Check the GPIO
 903 *	line to see which.
 904 *
 905 *	FIXME: review locking on MR_INPROGRESS versus
 906 *	parallel unsolicited reset/solicited reset
 907 */
 908static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
 909{
 910	struct ifx_spi_device *ifx_dev = dev;
 911	int val = gpio_get_value(ifx_dev->gpio.reset_out);
 912	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
 913
 914	if (val == 0) {
 915		/* entered reset */
 916		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 917		if (!solreset) {
 918			/* unsolicited reset  */
 919			tty_port_tty_hangup(&ifx_dev->tty_port, false);
 920		}
 921	} else {
 922		/* exited reset */
 923		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
 924		if (solreset) {
 925			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
 926			wake_up(&ifx_dev->mdm_reset_wait);
 927		}
 928	}
 929	return IRQ_HANDLED;
 930}
 931
 932/**
 933 *	ifx_spi_free_device - free device
 934 *	@ifx_dev: device to free
 935 *
 936 *	Free the IFX device
 937 */
 938static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
 939{
 940	ifx_spi_free_port(ifx_dev);
 941	dma_free_coherent(&ifx_dev->spi_dev->dev,
 942				IFX_SPI_TRANSFER_SIZE,
 943				ifx_dev->tx_buffer,
 944				ifx_dev->tx_bus);
 945	dma_free_coherent(&ifx_dev->spi_dev->dev,
 946				IFX_SPI_TRANSFER_SIZE,
 947				ifx_dev->rx_buffer,
 948				ifx_dev->rx_bus);
 949}
 950
 951/**
 952 *	ifx_spi_reset	-	reset modem
 953 *	@ifx_dev: modem to reset
 954 *
 955 *	Perform a reset on the modem
 956 */
 957static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
 958{
 959	int ret;
 960	/*
 961	 * set up modem power, reset
 962	 *
 963	 * delays are required on some platforms for the modem
 964	 * to reset properly
 965	 */
 966	set_bit(MR_START, &ifx_dev->mdm_reset_state);
 967	gpio_set_value(ifx_dev->gpio.po, 0);
 968	gpio_set_value(ifx_dev->gpio.reset, 0);
 969	msleep(25);
 970	gpio_set_value(ifx_dev->gpio.reset, 1);
 971	msleep(1);
 972	gpio_set_value(ifx_dev->gpio.po, 1);
 973	msleep(1);
 974	gpio_set_value(ifx_dev->gpio.po, 0);
 975	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
 976				 test_bit(MR_COMPLETE,
 977					  &ifx_dev->mdm_reset_state),
 978				 IFX_RESET_TIMEOUT);
 979	if (!ret)
 980		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
 981			 ifx_dev->mdm_reset_state);
 982
 983	ifx_dev->mdm_reset_state = 0;
 984	return ret;
 985}
 986
 987/**
 988 *	ifx_spi_spi_probe	-	probe callback
 989 *	@spi: our possible matching SPI device
 990 *
 991 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
 992 *	GPIO setup.
 993 *
 994 *	FIXME:
 995 *	-	Support for multiple devices
 996 *	-	Split out MID specific GPIO handling eventually
 997 */
 998
 999static int ifx_spi_spi_probe(struct spi_device *spi)
1000{
1001	int ret;
1002	int srdy;
1003	struct ifx_modem_platform_data *pl_data;
1004	struct ifx_spi_device *ifx_dev;
1005
1006	if (saved_ifx_dev) {
1007		dev_dbg(&spi->dev, "ignoring subsequent detection");
1008		return -ENODEV;
1009	}
1010
1011	pl_data = dev_get_platdata(&spi->dev);
1012	if (!pl_data) {
1013		dev_err(&spi->dev, "missing platform data!");
1014		return -ENODEV;
1015	}
1016
1017	/* initialize structure to hold our device variables */
1018	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1019	if (!ifx_dev) {
1020		dev_err(&spi->dev, "spi device allocation failed");
1021		return -ENOMEM;
1022	}
1023	saved_ifx_dev = ifx_dev;
1024	ifx_dev->spi_dev = spi;
1025	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1026	spin_lock_init(&ifx_dev->write_lock);
1027	spin_lock_init(&ifx_dev->power_lock);
1028	ifx_dev->power_status = 0;
1029	init_timer(&ifx_dev->spi_timer);
1030	ifx_dev->spi_timer.function = ifx_spi_timeout;
1031	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1032	ifx_dev->modem = pl_data->modem_type;
1033	ifx_dev->use_dma = pl_data->use_dma;
1034	ifx_dev->max_hz = pl_data->max_hz;
1035	/* initialize spi mode, etc */
1036	spi->max_speed_hz = ifx_dev->max_hz;
1037	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1038	spi->bits_per_word = spi_bpw;
1039	ret = spi_setup(spi);
1040	if (ret) {
1041		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
 
1042		return -ENODEV;
1043	}
1044
1045	/* init swap_buf function according to word width configuration */
1046	if (spi->bits_per_word == 32)
1047		ifx_dev->swap_buf = swap_buf_32;
1048	else if (spi->bits_per_word == 16)
1049		ifx_dev->swap_buf = swap_buf_16;
1050	else
1051		ifx_dev->swap_buf = swap_buf_8;
1052
1053	/* ensure SPI protocol flags are initialized to enable transfer */
1054	ifx_dev->spi_more = 0;
1055	ifx_dev->spi_slave_cts = 0;
1056
1057	/*initialize transfer and dma buffers */
1058	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1059				IFX_SPI_TRANSFER_SIZE,
1060				&ifx_dev->tx_bus,
1061				GFP_KERNEL);
1062	if (!ifx_dev->tx_buffer) {
1063		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1064		ret = -ENOMEM;
1065		goto error_ret;
1066	}
1067	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1068				IFX_SPI_TRANSFER_SIZE,
1069				&ifx_dev->rx_bus,
1070				GFP_KERNEL);
1071	if (!ifx_dev->rx_buffer) {
1072		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1073		ret = -ENOMEM;
1074		goto error_ret;
1075	}
1076
1077	/* initialize waitq for modem reset */
1078	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1079
1080	spi_set_drvdata(spi, ifx_dev);
1081	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1082						(unsigned long)ifx_dev);
1083
1084	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1085
1086	/* create our tty port */
1087	ret = ifx_spi_create_port(ifx_dev);
1088	if (ret != 0) {
1089		dev_err(&spi->dev, "create default tty port failed");
1090		goto error_ret;
1091	}
1092
1093	ifx_dev->gpio.reset = pl_data->rst_pmu;
1094	ifx_dev->gpio.po = pl_data->pwr_on;
1095	ifx_dev->gpio.mrdy = pl_data->mrdy;
1096	ifx_dev->gpio.srdy = pl_data->srdy;
1097	ifx_dev->gpio.reset_out = pl_data->rst_out;
1098
1099	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1100		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1101		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1102
1103	/* Configure gpios */
1104	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1105	if (ret < 0) {
1106		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1107			ifx_dev->gpio.reset);
1108		goto error_ret;
1109	}
1110	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1111	ret += gpio_export(ifx_dev->gpio.reset, 1);
1112	if (ret) {
1113		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1114			ifx_dev->gpio.reset);
1115		ret = -EBUSY;
1116		goto error_ret2;
1117	}
1118
1119	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1120	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1121	ret += gpio_export(ifx_dev->gpio.po, 1);
1122	if (ret) {
1123		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1124			ifx_dev->gpio.po);
1125		ret = -EBUSY;
1126		goto error_ret3;
1127	}
1128
1129	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1130	if (ret < 0) {
1131		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1132			ifx_dev->gpio.mrdy);
1133		goto error_ret3;
1134	}
1135	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1136	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1137	if (ret) {
1138		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1139			ifx_dev->gpio.mrdy);
1140		ret = -EBUSY;
1141		goto error_ret4;
1142	}
1143
1144	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1145	if (ret < 0) {
1146		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1147			ifx_dev->gpio.srdy);
1148		ret = -EBUSY;
1149		goto error_ret4;
1150	}
1151	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1152	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1153	if (ret) {
1154		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1155			ifx_dev->gpio.srdy);
1156		ret = -EBUSY;
1157		goto error_ret5;
1158	}
1159
1160	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1161	if (ret < 0) {
1162		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1163			ifx_dev->gpio.reset_out);
1164		goto error_ret5;
1165	}
1166	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1167	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1168	if (ret) {
1169		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1170			ifx_dev->gpio.reset_out);
1171		ret = -EBUSY;
1172		goto error_ret6;
1173	}
1174
1175	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1176			  ifx_spi_reset_interrupt,
1177			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1178		(void *)ifx_dev);
1179	if (ret) {
1180		dev_err(&spi->dev, "Unable to get irq %x\n",
1181			gpio_to_irq(ifx_dev->gpio.reset_out));
1182		goto error_ret6;
1183	}
1184
1185	ret = ifx_spi_reset(ifx_dev);
1186
1187	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1188			  ifx_spi_srdy_interrupt,
1189			  IRQF_TRIGGER_RISING, DRVNAME,
1190			  (void *)ifx_dev);
1191	if (ret) {
1192		dev_err(&spi->dev, "Unable to get irq %x",
1193			gpio_to_irq(ifx_dev->gpio.srdy));
1194		goto error_ret7;
1195	}
1196
1197	/* set pm runtime power state and register with power system */
1198	pm_runtime_set_active(&spi->dev);
1199	pm_runtime_enable(&spi->dev);
1200
1201	/* handle case that modem is already signaling SRDY */
1202	/* no outgoing tty open at this point, this just satisfies the
1203	 * modem's read and should reset communication properly
1204	 */
1205	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1206
1207	if (srdy) {
1208		mrdy_assert(ifx_dev);
1209		ifx_spi_handle_srdy(ifx_dev);
1210	} else
1211		mrdy_set_low(ifx_dev);
1212	return 0;
1213
1214error_ret7:
1215	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1216error_ret6:
1217	gpio_free(ifx_dev->gpio.srdy);
1218error_ret5:
1219	gpio_free(ifx_dev->gpio.mrdy);
1220error_ret4:
1221	gpio_free(ifx_dev->gpio.reset);
1222error_ret3:
1223	gpio_free(ifx_dev->gpio.po);
1224error_ret2:
1225	gpio_free(ifx_dev->gpio.reset_out);
1226error_ret:
1227	ifx_spi_free_device(ifx_dev);
1228	saved_ifx_dev = NULL;
1229	return ret;
1230}
1231
1232/**
1233 *	ifx_spi_spi_remove	-	SPI device was removed
1234 *	@spi: SPI device
1235 *
1236 *	FIXME: We should be shutting the device down here not in
1237 *	the module unload path.
1238 */
1239
1240static int ifx_spi_spi_remove(struct spi_device *spi)
1241{
1242	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1243	/* stop activity */
1244	tasklet_kill(&ifx_dev->io_work_tasklet);
1245	/* free irq */
1246	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1247	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1248
1249	gpio_free(ifx_dev->gpio.srdy);
1250	gpio_free(ifx_dev->gpio.mrdy);
1251	gpio_free(ifx_dev->gpio.reset);
1252	gpio_free(ifx_dev->gpio.po);
1253	gpio_free(ifx_dev->gpio.reset_out);
1254
1255	/* free allocations */
1256	ifx_spi_free_device(ifx_dev);
1257
1258	saved_ifx_dev = NULL;
1259	return 0;
1260}
1261
1262/**
1263 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1264 *	@spi: SPI device
1265 *
1266 *	No action needs to be taken here
1267 */
1268
1269static void ifx_spi_spi_shutdown(struct spi_device *spi)
1270{
1271	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1272
1273	ifx_modem_power_off(ifx_dev);
1274}
1275
1276/*
1277 * various suspends and resumes have nothing to do
1278 * no hardware to save state for
1279 */
1280
1281/**
1282 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1283 *	@dev: device being suspended
1284 *
1285 *	Suspend the modem. No action needed on Intel MID platforms, may
1286 *	need extending for other systems.
1287 */
1288static int ifx_spi_pm_suspend(struct device *dev)
1289{
1290	return 0;
1291}
1292
1293/**
1294 *	ifx_spi_pm_resume	-	resume modem on system resume
1295 *	@dev: device being suspended
1296 *
1297 *	Allow the modem to resume. No action needed.
1298 *
1299 *	FIXME: do we need to reset anything here ?
1300 */
1301static int ifx_spi_pm_resume(struct device *dev)
1302{
1303	return 0;
1304}
1305
1306/**
1307 *	ifx_spi_pm_runtime_resume	-	suspend modem
1308 *	@dev: device being suspended
1309 *
1310 *	Allow the modem to resume. No action needed.
1311 */
1312static int ifx_spi_pm_runtime_resume(struct device *dev)
1313{
1314	return 0;
1315}
1316
1317/**
1318 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1319 *	@dev: device being suspended
1320 *
1321 *	Allow the modem to suspend and thus suspend to continue up the
1322 *	device tree.
1323 */
1324static int ifx_spi_pm_runtime_suspend(struct device *dev)
1325{
1326	return 0;
1327}
1328
1329/**
1330 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1331 *	@dev: our device
1332 *
1333 *	Check conditions and queue runtime suspend if idle.
1334 */
1335static int ifx_spi_pm_runtime_idle(struct device *dev)
1336{
1337	struct spi_device *spi = to_spi_device(dev);
1338	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1339
1340	if (!ifx_dev->power_status)
1341		pm_runtime_suspend(dev);
1342
1343	return 0;
1344}
1345
1346static const struct dev_pm_ops ifx_spi_pm = {
1347	.resume = ifx_spi_pm_resume,
1348	.suspend = ifx_spi_pm_suspend,
1349	.runtime_resume = ifx_spi_pm_runtime_resume,
1350	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1351	.runtime_idle = ifx_spi_pm_runtime_idle
1352};
1353
1354static const struct spi_device_id ifx_id_table[] = {
1355	{"ifx6160", 0},
1356	{"ifx6260", 0},
1357	{ }
1358};
1359MODULE_DEVICE_TABLE(spi, ifx_id_table);
1360
1361/* spi operations */
1362static struct spi_driver ifx_spi_driver = {
1363	.driver = {
1364		.name = DRVNAME,
1365		.pm = &ifx_spi_pm,
1366		.owner = THIS_MODULE},
1367	.probe = ifx_spi_spi_probe,
1368	.shutdown = ifx_spi_spi_shutdown,
1369	.remove = ifx_spi_spi_remove,
1370	.id_table = ifx_id_table
1371};
1372
1373/**
1374 *	ifx_spi_exit	-	module exit
1375 *
1376 *	Unload the module.
1377 */
1378
1379static void __exit ifx_spi_exit(void)
1380{
1381	/* unregister */
 
1382	tty_unregister_driver(tty_drv);
1383	put_tty_driver(tty_drv);
1384	spi_unregister_driver((void *)&ifx_spi_driver);
1385	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1386}
1387
1388/**
1389 *	ifx_spi_init		-	module entry point
1390 *
1391 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1392 *	We need to initialize upper-edge spi driver after the tty
1393 *	driver because otherwise the spi probe will race
1394 */
1395
1396static int __init ifx_spi_init(void)
1397{
1398	int result;
1399
1400	tty_drv = alloc_tty_driver(1);
1401	if (!tty_drv) {
1402		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1403		return -ENOMEM;
1404	}
1405
1406	tty_drv->driver_name = DRVNAME;
1407	tty_drv->name = TTYNAME;
1408	tty_drv->minor_start = IFX_SPI_TTY_ID;
1409	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1410	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1411	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1412	tty_drv->init_termios = tty_std_termios;
1413
1414	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1415
1416	result = tty_register_driver(tty_drv);
1417	if (result) {
1418		pr_err("%s: tty_register_driver failed(%d)",
1419			DRVNAME, result);
1420		goto err_free_tty;
1421	}
1422
1423	result = spi_register_driver((void *)&ifx_spi_driver);
1424	if (result) {
1425		pr_err("%s: spi_register_driver failed(%d)",
1426			DRVNAME, result);
1427		goto err_unreg_tty;
1428	}
1429
1430	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1431	if (result) {
1432		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1433			DRVNAME, result);
1434		goto err_unreg_spi;
1435	}
1436
1437	return 0;
1438err_unreg_spi:
1439	spi_unregister_driver((void *)&ifx_spi_driver);
1440err_unreg_tty:
1441	tty_unregister_driver(tty_drv);
1442err_free_tty:
1443	put_tty_driver(tty_drv);
1444
1445	return result;
1446}
1447
1448module_init(ifx_spi_init);
1449module_exit(ifx_spi_exit);
1450
1451MODULE_AUTHOR("Intel");
1452MODULE_DESCRIPTION("IFX6x60 spi driver");
1453MODULE_LICENSE("GPL");
1454MODULE_INFO(Version, "0.1-IFX6x60");