Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
  3
  4#include "i40e.h"
  5#include <linux/ptp_classify.h>
  6
  7/* The XL710 timesync is very much like Intel's 82599 design when it comes to
  8 * the fundamental clock design. However, the clock operations are much simpler
  9 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 10 * Because the field is so wide, we can forgo the cycle counter and just
 11 * operate with the nanosecond field directly without fear of overflow.
 12 *
 13 * Much like the 82599, the update period is dependent upon the link speed:
 14 * At 40Gb link or no link, the period is 1.6ns.
 15 * At 10Gb link, the period is multiplied by 2. (3.2ns)
 16 * At 1Gb link, the period is multiplied by 20. (32ns)
 17 * 1588 functionality is not supported at 100Mbps.
 18 */
 19#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
 20#define I40E_PTP_10GB_INCVAL_MULT	2
 21#define I40E_PTP_1GB_INCVAL_MULT	20
 22
 23#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 24#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
 25					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 26
 27/**
 28 * i40e_ptp_read - Read the PHC time from the device
 29 * @pf: Board private structure
 30 * @ts: timespec structure to hold the current time value
 31 * @sts: structure to hold the system time before and after reading the PHC
 32 *
 33 * This function reads the PRTTSYN_TIME registers and stores them in a
 34 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 35 * convert the result to a timespec before we can return.
 36 **/
 37static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
 38			  struct ptp_system_timestamp *sts)
 39{
 40	struct i40e_hw *hw = &pf->hw;
 41	u32 hi, lo;
 42	u64 ns;
 43
 44	/* The timer latches on the lowest register read. */
 45	ptp_read_system_prets(sts);
 46	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 47	ptp_read_system_postts(sts);
 48	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 49
 50	ns = (((u64)hi) << 32) | lo;
 51
 52	*ts = ns_to_timespec64(ns);
 53}
 54
 55/**
 56 * i40e_ptp_write - Write the PHC time to the device
 57 * @pf: Board private structure
 58 * @ts: timespec structure that holds the new time value
 59 *
 60 * This function writes the PRTTSYN_TIME registers with the user value. Since
 61 * we receive a timespec from the stack, we must convert that timespec into
 62 * nanoseconds before programming the registers.
 63 **/
 64static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 65{
 66	struct i40e_hw *hw = &pf->hw;
 67	u64 ns = timespec64_to_ns(ts);
 68
 69	/* The timer will not update until the high register is written, so
 70	 * write the low register first.
 71	 */
 72	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 73	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 74}
 75
 76/**
 77 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 78 * @hwtstamps: Timestamp structure to update
 79 * @timestamp: Timestamp from the hardware
 80 *
 81 * We need to convert the NIC clock value into a hwtstamp which can be used by
 82 * the upper level timestamping functions. Since the timestamp is simply a 64-
 83 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 84 **/
 85static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
 86					 u64 timestamp)
 87{
 88	memset(hwtstamps, 0, sizeof(*hwtstamps));
 89
 90	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
 91}
 92
 93/**
 94 * i40e_ptp_adjfreq - Adjust the PHC frequency
 95 * @ptp: The PTP clock structure
 96 * @ppb: Parts per billion adjustment from the base
 97 *
 98 * Adjust the frequency of the PHC by the indicated parts per billion from the
 99 * base frequency.
100 **/
101static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
102{
103	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
104	struct i40e_hw *hw = &pf->hw;
105	u64 adj, freq, diff;
106	int neg_adj = 0;
107
108	if (ppb < 0) {
109		neg_adj = 1;
110		ppb = -ppb;
111	}
112
113	freq = I40E_PTP_40GB_INCVAL;
114	freq *= ppb;
115	diff = div_u64(freq, 1000000000ULL);
116
117	if (neg_adj)
118		adj = I40E_PTP_40GB_INCVAL - diff;
119	else
120		adj = I40E_PTP_40GB_INCVAL + diff;
121
122	/* At some link speeds, the base incval is so large that directly
123	 * multiplying by ppb would result in arithmetic overflow even when
124	 * using a u64. Avoid this by instead calculating the new incval
125	 * always in terms of the 40GbE clock rate and then multiplying by the
126	 * link speed factor afterwards. This does result in slightly lower
127	 * precision at lower link speeds, but it is fairly minor.
128	 */
129	smp_mb(); /* Force any pending update before accessing. */
130	adj *= READ_ONCE(pf->ptp_adj_mult);
131
132	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
133	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
134
135	return 0;
136}
137
138/**
139 * i40e_ptp_adjtime - Adjust the PHC time
140 * @ptp: The PTP clock structure
141 * @delta: Offset in nanoseconds to adjust the PHC time by
142 *
143 * Adjust the current clock time by a delta specified in nanoseconds.
144 **/
145static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
146{
147	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
148	struct timespec64 now, then;
149
150	then = ns_to_timespec64(delta);
151	mutex_lock(&pf->tmreg_lock);
152
153	i40e_ptp_read(pf, &now, NULL);
154	now = timespec64_add(now, then);
155	i40e_ptp_write(pf, (const struct timespec64 *)&now);
156
157	mutex_unlock(&pf->tmreg_lock);
158
159	return 0;
160}
161
162/**
163 * i40e_ptp_gettimex - Get the time of the PHC
164 * @ptp: The PTP clock structure
165 * @ts: timespec structure to hold the current time value
166 * @sts: structure to hold the system time before and after reading the PHC
167 *
168 * Read the device clock and return the correct value on ns, after converting it
169 * into a timespec struct.
170 **/
171static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
172			     struct ptp_system_timestamp *sts)
173{
174	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
175
176	mutex_lock(&pf->tmreg_lock);
177	i40e_ptp_read(pf, ts, sts);
178	mutex_unlock(&pf->tmreg_lock);
179
180	return 0;
181}
182
183/**
184 * i40e_ptp_settime - Set the time of the PHC
185 * @ptp: The PTP clock structure
186 * @ts: timespec structure that holds the new time value
187 *
188 * Set the device clock to the user input value. The conversion from timespec
189 * to ns happens in the write function.
190 **/
191static int i40e_ptp_settime(struct ptp_clock_info *ptp,
192			    const struct timespec64 *ts)
193{
194	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
195
196	mutex_lock(&pf->tmreg_lock);
197	i40e_ptp_write(pf, ts);
198	mutex_unlock(&pf->tmreg_lock);
199
200	return 0;
201}
202
203/**
204 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
205 * @ptp: The PTP clock structure
206 * @rq: The requested feature to change
207 * @on: Enable/disable flag
208 *
209 * The XL710 does not support any of the ancillary features of the PHC
210 * subsystem, so this function may just return.
211 **/
212static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
213				   struct ptp_clock_request *rq, int on)
214{
215	return -EOPNOTSUPP;
216}
217
218/**
219 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
220 * @pf: the PF data structure
221 *
222 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
223 * for noticed latch events. This allows the driver to keep track of the first
224 * time a latch event was noticed which will be used to help clear out Rx
225 * timestamps for packets that got dropped or lost.
226 *
227 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
228 * expected to be called only while under the ptp_rx_lock.
229 **/
230static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
231{
232	struct i40e_hw *hw = &pf->hw;
233	u32 prttsyn_stat, new_latch_events;
234	int  i;
235
236	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
237	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
238
239	/* Update the jiffies time for any newly latched timestamp. This
240	 * ensures that we store the time that we first discovered a timestamp
241	 * was latched by the hardware. The service task will later determine
242	 * if we should free the latch and drop that timestamp should too much
243	 * time pass. This flow ensures that we only update jiffies for new
244	 * events latched since the last time we checked, and not all events
245	 * currently latched, so that the service task accounting remains
246	 * accurate.
247	 */
248	for (i = 0; i < 4; i++) {
249		if (new_latch_events & BIT(i))
250			pf->latch_events[i] = jiffies;
251	}
252
253	/* Finally, we store the current status of the Rx timestamp latches */
254	pf->latch_event_flags = prttsyn_stat;
255
256	return prttsyn_stat;
257}
258
259/**
260 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
261 * @pf: The PF private data structure
262 * @vsi: The VSI with the rings relevant to 1588
263 *
264 * This watchdog task is scheduled to detect error case where hardware has
265 * dropped an Rx packet that was timestamped when the ring is full. The
266 * particular error is rare but leaves the device in a state unable to timestamp
267 * any future packets.
268 **/
269void i40e_ptp_rx_hang(struct i40e_pf *pf)
270{
271	struct i40e_hw *hw = &pf->hw;
272	unsigned int i, cleared = 0;
273
274	/* Since we cannot turn off the Rx timestamp logic if the device is
275	 * configured for Tx timestamping, we check if Rx timestamping is
276	 * configured. We don't want to spuriously warn about Rx timestamp
277	 * hangs if we don't care about the timestamps.
278	 */
279	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
280		return;
281
282	spin_lock_bh(&pf->ptp_rx_lock);
283
284	/* Update current latch times for Rx events */
285	i40e_ptp_get_rx_events(pf);
286
287	/* Check all the currently latched Rx events and see whether they have
288	 * been latched for over a second. It is assumed that any timestamp
289	 * should have been cleared within this time, or else it was captured
290	 * for a dropped frame that the driver never received. Thus, we will
291	 * clear any timestamp that has been latched for over 1 second.
292	 */
293	for (i = 0; i < 4; i++) {
294		if ((pf->latch_event_flags & BIT(i)) &&
295		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
296			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
297			pf->latch_event_flags &= ~BIT(i);
298			cleared++;
299		}
300	}
301
302	spin_unlock_bh(&pf->ptp_rx_lock);
303
304	/* Log a warning if more than 2 timestamps got dropped in the same
305	 * check. We don't want to warn about all drops because it can occur
306	 * in normal scenarios such as PTP frames on multicast addresses we
307	 * aren't listening to. However, administrator should know if this is
308	 * the reason packets aren't receiving timestamps.
309	 */
310	if (cleared > 2)
311		dev_dbg(&pf->pdev->dev,
312			"Dropped %d missed RXTIME timestamp events\n",
313			cleared);
314
315	/* Finally, update the rx_hwtstamp_cleared counter */
316	pf->rx_hwtstamp_cleared += cleared;
317}
318
319/**
320 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
321 * @pf: The PF private data structure
322 *
323 * This watchdog task is run periodically to make sure that we clear the Tx
324 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
325 * time. It is unexpected in the normal case but if it occurs it results in
326 * permanently preventing timestamps of future packets.
327 **/
328void i40e_ptp_tx_hang(struct i40e_pf *pf)
329{
330	struct sk_buff *skb;
331
332	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
333		return;
334
335	/* Nothing to do if we're not already waiting for a timestamp */
336	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
337		return;
338
339	/* We already have a handler routine which is run when we are notified
340	 * of a Tx timestamp in the hardware. If we don't get an interrupt
341	 * within a second it is reasonable to assume that we never will.
342	 */
343	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
344		skb = pf->ptp_tx_skb;
345		pf->ptp_tx_skb = NULL;
346		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
347
348		/* Free the skb after we clear the bitlock */
349		dev_kfree_skb_any(skb);
350		pf->tx_hwtstamp_timeouts++;
351	}
352}
353
354/**
355 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
356 * @pf: Board private structure
357 *
358 * Read the value of the Tx timestamp from the registers, convert it into a
359 * value consumable by the stack, and store that result into the shhwtstamps
360 * struct before returning it up the stack.
361 **/
362void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
363{
364	struct skb_shared_hwtstamps shhwtstamps;
365	struct sk_buff *skb = pf->ptp_tx_skb;
366	struct i40e_hw *hw = &pf->hw;
367	u32 hi, lo;
368	u64 ns;
369
370	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
371		return;
372
373	/* don't attempt to timestamp if we don't have an skb */
374	if (!pf->ptp_tx_skb)
375		return;
376
377	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
378	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
379
380	ns = (((u64)hi) << 32) | lo;
381	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
382
383	/* Clear the bit lock as soon as possible after reading the register,
384	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
385	 * applications might wake up and attempt to request another transmit
386	 * timestamp prior to the bit lock being cleared.
387	 */
388	pf->ptp_tx_skb = NULL;
389	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
390
391	/* Notify the stack and free the skb after we've unlocked */
392	skb_tstamp_tx(skb, &shhwtstamps);
393	dev_kfree_skb_any(skb);
394}
395
396/**
397 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
398 * @pf: Board private structure
399 * @skb: Particular skb to send timestamp with
400 * @index: Index into the receive timestamp registers for the timestamp
401 *
402 * The XL710 receives a notification in the receive descriptor with an offset
403 * into the set of RXTIME registers where the timestamp is for that skb. This
404 * function goes and fetches the receive timestamp from that offset, if a valid
405 * one exists. The RXTIME registers are in ns, so we must convert the result
406 * first.
407 **/
408void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
409{
410	u32 prttsyn_stat, hi, lo;
411	struct i40e_hw *hw;
412	u64 ns;
413
414	/* Since we cannot turn off the Rx timestamp logic if the device is
415	 * doing Tx timestamping, check if Rx timestamping is configured.
416	 */
417	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
418		return;
419
420	hw = &pf->hw;
421
422	spin_lock_bh(&pf->ptp_rx_lock);
423
424	/* Get current Rx events and update latch times */
425	prttsyn_stat = i40e_ptp_get_rx_events(pf);
426
427	/* TODO: Should we warn about missing Rx timestamp event? */
428	if (!(prttsyn_stat & BIT(index))) {
429		spin_unlock_bh(&pf->ptp_rx_lock);
430		return;
431	}
432
433	/* Clear the latched event since we're about to read its register */
434	pf->latch_event_flags &= ~BIT(index);
435
436	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
437	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
438
439	spin_unlock_bh(&pf->ptp_rx_lock);
440
441	ns = (((u64)hi) << 32) | lo;
442
443	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
444}
445
446/**
447 * i40e_ptp_set_increment - Utility function to update clock increment rate
448 * @pf: Board private structure
449 *
450 * During a link change, the DMA frequency that drives the 1588 logic will
451 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
452 * we must update the increment value per clock tick.
453 **/
454void i40e_ptp_set_increment(struct i40e_pf *pf)
455{
456	struct i40e_link_status *hw_link_info;
457	struct i40e_hw *hw = &pf->hw;
458	u64 incval;
459	u32 mult;
460
461	hw_link_info = &hw->phy.link_info;
462
463	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
464
465	switch (hw_link_info->link_speed) {
466	case I40E_LINK_SPEED_10GB:
467		mult = I40E_PTP_10GB_INCVAL_MULT;
468		break;
469	case I40E_LINK_SPEED_1GB:
470		mult = I40E_PTP_1GB_INCVAL_MULT;
471		break;
472	case I40E_LINK_SPEED_100MB:
473	{
474		static int warn_once;
475
476		if (!warn_once) {
477			dev_warn(&pf->pdev->dev,
478				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
479			warn_once++;
480		}
481		mult = 0;
482		break;
483	}
484	case I40E_LINK_SPEED_40GB:
485	default:
486		mult = 1;
487		break;
488	}
489
490	/* The increment value is calculated by taking the base 40GbE incvalue
491	 * and multiplying it by a factor based on the link speed.
492	 */
493	incval = I40E_PTP_40GB_INCVAL * mult;
494
495	/* Write the new increment value into the increment register. The
496	 * hardware will not update the clock until both registers have been
497	 * written.
498	 */
499	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
500	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
501
502	/* Update the base adjustement value. */
503	WRITE_ONCE(pf->ptp_adj_mult, mult);
504	smp_mb(); /* Force the above update. */
505}
506
507/**
508 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
509 * @pf: Board private structure
510 * @ifr: ioctl data
511 *
512 * Obtain the current hardware timestamping settigs as requested. To do this,
513 * keep a shadow copy of the timestamp settings rather than attempting to
514 * deconstruct it from the registers.
515 **/
516int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
517{
518	struct hwtstamp_config *config = &pf->tstamp_config;
519
520	if (!(pf->flags & I40E_FLAG_PTP))
521		return -EOPNOTSUPP;
522
523	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
524		-EFAULT : 0;
525}
526
527/**
528 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
529 * @pf: Board private structure
530 * @config: hwtstamp settings requested or saved
531 *
532 * Control hardware registers to enter the specific mode requested by the
533 * user. Also used during reset path to ensure that timestamp settings are
534 * maintained.
535 *
536 * Note: modifies config in place, and may update the requested mode to be
537 * more broad if the specific filter is not directly supported.
538 **/
539static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
540				       struct hwtstamp_config *config)
541{
542	struct i40e_hw *hw = &pf->hw;
543	u32 tsyntype, regval;
544
545	/* Reserved for future extensions. */
546	if (config->flags)
547		return -EINVAL;
548
549	switch (config->tx_type) {
550	case HWTSTAMP_TX_OFF:
551		pf->ptp_tx = false;
552		break;
553	case HWTSTAMP_TX_ON:
554		pf->ptp_tx = true;
555		break;
556	default:
557		return -ERANGE;
558	}
559
560	switch (config->rx_filter) {
561	case HWTSTAMP_FILTER_NONE:
562		pf->ptp_rx = false;
563		/* We set the type to V1, but do not enable UDP packet
564		 * recognition. In this way, we should be as close to
565		 * disabling PTP Rx timestamps as possible since V1 packets
566		 * are always UDP, since L2 packets are a V2 feature.
567		 */
568		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
569		break;
570	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
571	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
572	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
573		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
574			return -ERANGE;
575		pf->ptp_rx = true;
576		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
577			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
578			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
579		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
580		break;
581	case HWTSTAMP_FILTER_PTP_V2_EVENT:
582	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
583	case HWTSTAMP_FILTER_PTP_V2_SYNC:
584	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
585	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
586	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
587		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
588			return -ERANGE;
589		/* fall through */
590	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
591	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
592	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
593		pf->ptp_rx = true;
594		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
595			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
596		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
597			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
598			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
599		} else {
600			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
601		}
602		break;
603	case HWTSTAMP_FILTER_NTP_ALL:
604	case HWTSTAMP_FILTER_ALL:
605	default:
606		return -ERANGE;
607	}
608
609	/* Clear out all 1588-related registers to clear and unlatch them. */
610	spin_lock_bh(&pf->ptp_rx_lock);
611	rd32(hw, I40E_PRTTSYN_STAT_0);
612	rd32(hw, I40E_PRTTSYN_TXTIME_H);
613	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
614	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
615	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
616	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
617	pf->latch_event_flags = 0;
618	spin_unlock_bh(&pf->ptp_rx_lock);
619
620	/* Enable/disable the Tx timestamp interrupt based on user input. */
621	regval = rd32(hw, I40E_PRTTSYN_CTL0);
622	if (pf->ptp_tx)
623		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
624	else
625		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
626	wr32(hw, I40E_PRTTSYN_CTL0, regval);
627
628	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
629	if (pf->ptp_tx)
630		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
631	else
632		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
633	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
634
635	/* Although there is no simple on/off switch for Rx, we "disable" Rx
636	 * timestamps by setting to V1 only mode and clear the UDP
637	 * recognition. This ought to disable all PTP Rx timestamps as V1
638	 * packets are always over UDP. Note that software is configured to
639	 * ignore Rx timestamps via the pf->ptp_rx flag.
640	 */
641	regval = rd32(hw, I40E_PRTTSYN_CTL1);
642	/* clear everything but the enable bit */
643	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
644	/* now enable bits for desired Rx timestamps */
645	regval |= tsyntype;
646	wr32(hw, I40E_PRTTSYN_CTL1, regval);
647
648	return 0;
649}
650
651/**
652 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
653 * @pf: Board private structure
654 * @ifr: ioctl data
655 *
656 * Respond to the user filter requests and make the appropriate hardware
657 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
658 * logic, so keep track in software of whether to indicate these timestamps
659 * or not.
660 *
661 * It is permissible to "upgrade" the user request to a broader filter, as long
662 * as the user receives the timestamps they care about and the user is notified
663 * the filter has been broadened.
664 **/
665int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
666{
667	struct hwtstamp_config config;
668	int err;
669
670	if (!(pf->flags & I40E_FLAG_PTP))
671		return -EOPNOTSUPP;
672
673	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
674		return -EFAULT;
675
676	err = i40e_ptp_set_timestamp_mode(pf, &config);
677	if (err)
678		return err;
679
680	/* save these settings for future reference */
681	pf->tstamp_config = config;
682
683	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
684		-EFAULT : 0;
685}
686
687/**
688 * i40e_ptp_create_clock - Create PTP clock device for userspace
689 * @pf: Board private structure
690 *
691 * This function creates a new PTP clock device. It only creates one if we
692 * don't already have one, so it is safe to call. Will return error if it
693 * can't create one, but success if we already have a device. Should be used
694 * by i40e_ptp_init to create clock initially, and prevent global resets from
695 * creating new clock devices.
696 **/
697static long i40e_ptp_create_clock(struct i40e_pf *pf)
698{
699	/* no need to create a clock device if we already have one */
700	if (!IS_ERR_OR_NULL(pf->ptp_clock))
701		return 0;
702
703	strlcpy(pf->ptp_caps.name, i40e_driver_name,
704		sizeof(pf->ptp_caps.name) - 1);
705	pf->ptp_caps.owner = THIS_MODULE;
706	pf->ptp_caps.max_adj = 999999999;
707	pf->ptp_caps.n_ext_ts = 0;
708	pf->ptp_caps.pps = 0;
709	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
710	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
711	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
712	pf->ptp_caps.settime64 = i40e_ptp_settime;
713	pf->ptp_caps.enable = i40e_ptp_feature_enable;
714
715	/* Attempt to register the clock before enabling the hardware. */
716	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
717	if (IS_ERR(pf->ptp_clock))
718		return PTR_ERR(pf->ptp_clock);
719
720	/* clear the hwtstamp settings here during clock create, instead of
721	 * during regular init, so that we can maintain settings across a
722	 * reset or suspend.
723	 */
724	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
725	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
726
727	/* Set the previous "reset" time to the current Kernel clock time */
728	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
729	pf->ptp_reset_start = ktime_get();
730
731	return 0;
732}
733
734/**
735 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
736 * @pf: Board private structure
737 *
738 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
739 * be called at the end of preparing to reset, just before hardware reset
740 * occurs, in order to preserve the PTP time as close as possible across
741 * resets.
742 */
743void i40e_ptp_save_hw_time(struct i40e_pf *pf)
744{
745	/* don't try to access the PTP clock if it's not enabled */
746	if (!(pf->flags & I40E_FLAG_PTP))
747		return;
748
749	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
750	/* Get a monotonic starting time for this reset */
751	pf->ptp_reset_start = ktime_get();
752}
753
754/**
755 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
756 * @pf: Board private structure
757 *
758 * Restore the PTP hardware clock registers. We previously cached the PTP
759 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
760 * update this value based on the time delta since the time was saved, using
761 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
762 *
763 * This ensures that the hardware clock is restored to nearly what it should
764 * have been if a reset had not occurred.
765 */
766void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
767{
768	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
769
770	/* Update the previous HW time with the ktime delta */
771	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
772
773	/* Restore the hardware clock registers */
774	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
775}
776
777/**
778 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
779 * @pf: Board private structure
780 *
781 * This function sets device up for 1588 support. The first time it is run, it
782 * will create a PHC clock device. It does not create a clock device if one
783 * already exists. It also reconfigures the device after a reset.
784 *
785 * The first time a clock is created, i40e_ptp_create_clock will set
786 * pf->ptp_prev_hw_time to the current system time. During resets, it is
787 * expected that this timespec will be set to the last known PTP clock time,
788 * in order to preserve the clock time as close as possible across a reset.
789 **/
790void i40e_ptp_init(struct i40e_pf *pf)
791{
792	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
793	struct i40e_hw *hw = &pf->hw;
794	u32 pf_id;
795	long err;
796
797	/* Only one PF is assigned to control 1588 logic per port. Do not
798	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
799	 */
800	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
801		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
802	if (hw->pf_id != pf_id) {
803		pf->flags &= ~I40E_FLAG_PTP;
804		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
805			 __func__,
806			 netdev->name);
807		return;
808	}
809
810	mutex_init(&pf->tmreg_lock);
811	spin_lock_init(&pf->ptp_rx_lock);
812
813	/* ensure we have a clock device */
814	err = i40e_ptp_create_clock(pf);
815	if (err) {
816		pf->ptp_clock = NULL;
817		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
818			__func__);
819	} else if (pf->ptp_clock) {
820		u32 regval;
821
822		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
823			dev_info(&pf->pdev->dev, "PHC enabled\n");
824		pf->flags |= I40E_FLAG_PTP;
825
826		/* Ensure the clocks are running. */
827		regval = rd32(hw, I40E_PRTTSYN_CTL0);
828		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
829		wr32(hw, I40E_PRTTSYN_CTL0, regval);
830		regval = rd32(hw, I40E_PRTTSYN_CTL1);
831		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
832		wr32(hw, I40E_PRTTSYN_CTL1, regval);
833
834		/* Set the increment value per clock tick. */
835		i40e_ptp_set_increment(pf);
836
837		/* reset timestamping mode */
838		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
839
840		/* Restore the clock time based on last known value */
841		i40e_ptp_restore_hw_time(pf);
842	}
843}
844
845/**
846 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
847 * @pf: Board private structure
848 *
849 * This function handles the cleanup work required from the initialization by
850 * clearing out the important information and unregistering the PHC.
851 **/
852void i40e_ptp_stop(struct i40e_pf *pf)
853{
854	pf->flags &= ~I40E_FLAG_PTP;
855	pf->ptp_tx = false;
856	pf->ptp_rx = false;
857
858	if (pf->ptp_tx_skb) {
859		struct sk_buff *skb = pf->ptp_tx_skb;
860
861		pf->ptp_tx_skb = NULL;
862		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
863		dev_kfree_skb_any(skb);
864	}
865
866	if (pf->ptp_clock) {
867		ptp_clock_unregister(pf->ptp_clock);
868		pf->ptp_clock = NULL;
869		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
870			 pf->vsi[pf->lan_vsi]->netdev->name);
871	}
872}