Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  HID support for Linux
   4 *
   5 *  Copyright (c) 1999 Andreas Gal
   6 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   7 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   8 *  Copyright (c) 2006-2012 Jiri Kosina
   9 */
  10
  11/*
 
 
 
 
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/kernel.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/spinlock.h>
  23#include <asm/unaligned.h>
  24#include <asm/byteorder.h>
  25#include <linux/input.h>
  26#include <linux/wait.h>
  27#include <linux/vmalloc.h>
  28#include <linux/sched.h>
  29#include <linux/semaphore.h>
  30
  31#include <linux/hid.h>
  32#include <linux/hiddev.h>
  33#include <linux/hid-debug.h>
  34#include <linux/hidraw.h>
  35
  36#include "hid-ids.h"
  37
  38/*
  39 * Version Information
  40 */
  41
  42#define DRIVER_DESC "HID core driver"
 
  43
  44int hid_debug = 0;
  45module_param_named(debug, hid_debug, int, 0600);
  46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  47EXPORT_SYMBOL_GPL(hid_debug);
  48
  49static int hid_ignore_special_drivers = 0;
  50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
  51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
  52
  53/*
  54 * Register a new report for a device.
  55 */
  56
  57struct hid_report *hid_register_report(struct hid_device *device,
  58				       unsigned int type, unsigned int id,
  59				       unsigned int application)
  60{
  61	struct hid_report_enum *report_enum = device->report_enum + type;
  62	struct hid_report *report;
  63
  64	if (id >= HID_MAX_IDS)
  65		return NULL;
  66	if (report_enum->report_id_hash[id])
  67		return report_enum->report_id_hash[id];
  68
  69	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  70	if (!report)
  71		return NULL;
  72
  73	if (id != 0)
  74		report_enum->numbered = 1;
  75
  76	report->id = id;
  77	report->type = type;
  78	report->size = 0;
  79	report->device = device;
  80	report->application = application;
  81	report_enum->report_id_hash[id] = report;
  82
  83	list_add_tail(&report->list, &report_enum->report_list);
  84
  85	return report;
  86}
  87EXPORT_SYMBOL_GPL(hid_register_report);
  88
  89/*
  90 * Register a new field for this report.
  91 */
  92
  93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  94{
  95	struct hid_field *field;
  96
  97	if (report->maxfield == HID_MAX_FIELDS) {
  98		hid_err(report->device, "too many fields in report\n");
  99		return NULL;
 100	}
 101
 102	field = kzalloc((sizeof(struct hid_field) +
 103			 usages * sizeof(struct hid_usage) +
 104			 values * sizeof(unsigned)), GFP_KERNEL);
 105	if (!field)
 106		return NULL;
 107
 108	field->index = report->maxfield++;
 109	report->field[field->index] = field;
 110	field->usage = (struct hid_usage *)(field + 1);
 111	field->value = (s32 *)(field->usage + usages);
 112	field->report = report;
 113
 114	return field;
 115}
 116
 117/*
 118 * Open a collection. The type/usage is pushed on the stack.
 119 */
 120
 121static int open_collection(struct hid_parser *parser, unsigned type)
 122{
 123	struct hid_collection *collection;
 124	unsigned usage;
 125	int collection_index;
 126
 127	usage = parser->local.usage[0];
 128
 129	if (parser->collection_stack_ptr == parser->collection_stack_size) {
 130		unsigned int *collection_stack;
 131		unsigned int new_size = parser->collection_stack_size +
 132					HID_COLLECTION_STACK_SIZE;
 133
 134		collection_stack = krealloc(parser->collection_stack,
 135					    new_size * sizeof(unsigned int),
 136					    GFP_KERNEL);
 137		if (!collection_stack)
 138			return -ENOMEM;
 139
 140		parser->collection_stack = collection_stack;
 141		parser->collection_stack_size = new_size;
 142	}
 143
 144	if (parser->device->maxcollection == parser->device->collection_size) {
 145		collection = kmalloc(
 146				array3_size(sizeof(struct hid_collection),
 147					    parser->device->collection_size,
 148					    2),
 149				GFP_KERNEL);
 150		if (collection == NULL) {
 151			hid_err(parser->device, "failed to reallocate collection array\n");
 152			return -ENOMEM;
 153		}
 154		memcpy(collection, parser->device->collection,
 155			sizeof(struct hid_collection) *
 156			parser->device->collection_size);
 157		memset(collection + parser->device->collection_size, 0,
 158			sizeof(struct hid_collection) *
 159			parser->device->collection_size);
 160		kfree(parser->device->collection);
 161		parser->device->collection = collection;
 162		parser->device->collection_size *= 2;
 163	}
 164
 165	parser->collection_stack[parser->collection_stack_ptr++] =
 166		parser->device->maxcollection;
 167
 168	collection_index = parser->device->maxcollection++;
 169	collection = parser->device->collection + collection_index;
 170	collection->type = type;
 171	collection->usage = usage;
 172	collection->level = parser->collection_stack_ptr - 1;
 173	collection->parent_idx = (collection->level == 0) ? -1 :
 174		parser->collection_stack[collection->level - 1];
 175
 176	if (type == HID_COLLECTION_APPLICATION)
 177		parser->device->maxapplication++;
 178
 179	return 0;
 180}
 181
 182/*
 183 * Close a collection.
 184 */
 185
 186static int close_collection(struct hid_parser *parser)
 187{
 188	if (!parser->collection_stack_ptr) {
 189		hid_err(parser->device, "collection stack underflow\n");
 190		return -EINVAL;
 191	}
 192	parser->collection_stack_ptr--;
 193	return 0;
 194}
 195
 196/*
 197 * Climb up the stack, search for the specified collection type
 198 * and return the usage.
 199 */
 200
 201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 202{
 203	struct hid_collection *collection = parser->device->collection;
 204	int n;
 205
 206	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 207		unsigned index = parser->collection_stack[n];
 208		if (collection[index].type == type)
 209			return collection[index].usage;
 210	}
 211	return 0; /* we know nothing about this usage type */
 212}
 213
 214/*
 215 * Add a usage to the temporary parser table.
 216 */
 217
 218static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
 219{
 220	if (parser->local.usage_index >= HID_MAX_USAGES) {
 221		hid_err(parser->device, "usage index exceeded\n");
 222		return -1;
 223	}
 224	parser->local.usage[parser->local.usage_index] = usage;
 225	parser->local.usage_size[parser->local.usage_index] = size;
 226	parser->local.collection_index[parser->local.usage_index] =
 227		parser->collection_stack_ptr ?
 228		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 229	parser->local.usage_index++;
 230	return 0;
 231}
 232
 233/*
 234 * Register a new field for this report.
 235 */
 236
 237static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 238{
 239	struct hid_report *report;
 240	struct hid_field *field;
 241	unsigned int usages;
 242	unsigned int offset;
 243	unsigned int i;
 244	unsigned int application;
 245
 246	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 247
 248	report = hid_register_report(parser->device, report_type,
 249				     parser->global.report_id, application);
 250	if (!report) {
 251		hid_err(parser->device, "hid_register_report failed\n");
 252		return -1;
 253	}
 254
 255	/* Handle both signed and unsigned cases properly */
 256	if ((parser->global.logical_minimum < 0 &&
 257		parser->global.logical_maximum <
 258		parser->global.logical_minimum) ||
 259		(parser->global.logical_minimum >= 0 &&
 260		(__u32)parser->global.logical_maximum <
 261		(__u32)parser->global.logical_minimum)) {
 262		dbg_hid("logical range invalid 0x%x 0x%x\n",
 263			parser->global.logical_minimum,
 264			parser->global.logical_maximum);
 265		return -1;
 266	}
 267
 268	offset = report->size;
 269	report->size += parser->global.report_size * parser->global.report_count;
 270
 271	if (!parser->local.usage_index) /* Ignore padding fields */
 272		return 0;
 273
 274	usages = max_t(unsigned, parser->local.usage_index,
 275				 parser->global.report_count);
 276
 277	field = hid_register_field(report, usages, parser->global.report_count);
 278	if (!field)
 279		return 0;
 280
 281	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 282	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 283	field->application = application;
 284
 285	for (i = 0; i < usages; i++) {
 286		unsigned j = i;
 287		/* Duplicate the last usage we parsed if we have excess values */
 288		if (i >= parser->local.usage_index)
 289			j = parser->local.usage_index - 1;
 290		field->usage[i].hid = parser->local.usage[j];
 291		field->usage[i].collection_index =
 292			parser->local.collection_index[j];
 293		field->usage[i].usage_index = i;
 294		field->usage[i].resolution_multiplier = 1;
 295	}
 296
 297	field->maxusage = usages;
 298	field->flags = flags;
 299	field->report_offset = offset;
 300	field->report_type = report_type;
 301	field->report_size = parser->global.report_size;
 302	field->report_count = parser->global.report_count;
 303	field->logical_minimum = parser->global.logical_minimum;
 304	field->logical_maximum = parser->global.logical_maximum;
 305	field->physical_minimum = parser->global.physical_minimum;
 306	field->physical_maximum = parser->global.physical_maximum;
 307	field->unit_exponent = parser->global.unit_exponent;
 308	field->unit = parser->global.unit;
 309
 310	return 0;
 311}
 312
 313/*
 314 * Read data value from item.
 315 */
 316
 317static u32 item_udata(struct hid_item *item)
 318{
 319	switch (item->size) {
 320	case 1: return item->data.u8;
 321	case 2: return item->data.u16;
 322	case 4: return item->data.u32;
 323	}
 324	return 0;
 325}
 326
 327static s32 item_sdata(struct hid_item *item)
 328{
 329	switch (item->size) {
 330	case 1: return item->data.s8;
 331	case 2: return item->data.s16;
 332	case 4: return item->data.s32;
 333	}
 334	return 0;
 335}
 336
 337/*
 338 * Process a global item.
 339 */
 340
 341static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 342{
 343	__s32 raw_value;
 344	switch (item->tag) {
 345	case HID_GLOBAL_ITEM_TAG_PUSH:
 346
 347		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 348			hid_err(parser->device, "global environment stack overflow\n");
 349			return -1;
 350		}
 351
 352		memcpy(parser->global_stack + parser->global_stack_ptr++,
 353			&parser->global, sizeof(struct hid_global));
 354		return 0;
 355
 356	case HID_GLOBAL_ITEM_TAG_POP:
 357
 358		if (!parser->global_stack_ptr) {
 359			hid_err(parser->device, "global environment stack underflow\n");
 360			return -1;
 361		}
 362
 363		memcpy(&parser->global, parser->global_stack +
 364			--parser->global_stack_ptr, sizeof(struct hid_global));
 365		return 0;
 366
 367	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 368		parser->global.usage_page = item_udata(item);
 369		return 0;
 370
 371	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 372		parser->global.logical_minimum = item_sdata(item);
 373		return 0;
 374
 375	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 376		if (parser->global.logical_minimum < 0)
 377			parser->global.logical_maximum = item_sdata(item);
 378		else
 379			parser->global.logical_maximum = item_udata(item);
 380		return 0;
 381
 382	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 383		parser->global.physical_minimum = item_sdata(item);
 384		return 0;
 385
 386	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 387		if (parser->global.physical_minimum < 0)
 388			parser->global.physical_maximum = item_sdata(item);
 389		else
 390			parser->global.physical_maximum = item_udata(item);
 391		return 0;
 392
 393	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 394		/* Many devices provide unit exponent as a two's complement
 395		 * nibble due to the common misunderstanding of HID
 396		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
 397		 * both this and the standard encoding. */
 398		raw_value = item_sdata(item);
 399		if (!(raw_value & 0xfffffff0))
 400			parser->global.unit_exponent = hid_snto32(raw_value, 4);
 401		else
 402			parser->global.unit_exponent = raw_value;
 403		return 0;
 404
 405	case HID_GLOBAL_ITEM_TAG_UNIT:
 406		parser->global.unit = item_udata(item);
 407		return 0;
 408
 409	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 410		parser->global.report_size = item_udata(item);
 411		if (parser->global.report_size > 256) {
 412			hid_err(parser->device, "invalid report_size %d\n",
 413					parser->global.report_size);
 414			return -1;
 415		}
 416		return 0;
 417
 418	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 419		parser->global.report_count = item_udata(item);
 420		if (parser->global.report_count > HID_MAX_USAGES) {
 421			hid_err(parser->device, "invalid report_count %d\n",
 422					parser->global.report_count);
 423			return -1;
 424		}
 425		return 0;
 426
 427	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 428		parser->global.report_id = item_udata(item);
 429		if (parser->global.report_id == 0 ||
 430		    parser->global.report_id >= HID_MAX_IDS) {
 431			hid_err(parser->device, "report_id %u is invalid\n",
 432				parser->global.report_id);
 433			return -1;
 434		}
 435		return 0;
 436
 437	default:
 438		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
 439		return -1;
 440	}
 441}
 442
 443/*
 444 * Process a local item.
 445 */
 446
 447static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 448{
 449	__u32 data;
 450	unsigned n;
 451	__u32 count;
 452
 453	data = item_udata(item);
 454
 455	switch (item->tag) {
 456	case HID_LOCAL_ITEM_TAG_DELIMITER:
 457
 458		if (data) {
 459			/*
 460			 * We treat items before the first delimiter
 461			 * as global to all usage sets (branch 0).
 462			 * In the moment we process only these global
 463			 * items and the first delimiter set.
 464			 */
 465			if (parser->local.delimiter_depth != 0) {
 466				hid_err(parser->device, "nested delimiters\n");
 467				return -1;
 468			}
 469			parser->local.delimiter_depth++;
 470			parser->local.delimiter_branch++;
 471		} else {
 472			if (parser->local.delimiter_depth < 1) {
 473				hid_err(parser->device, "bogus close delimiter\n");
 474				return -1;
 475			}
 476			parser->local.delimiter_depth--;
 477		}
 478		return 0;
 479
 480	case HID_LOCAL_ITEM_TAG_USAGE:
 481
 482		if (parser->local.delimiter_branch > 1) {
 483			dbg_hid("alternative usage ignored\n");
 484			return 0;
 485		}
 486
 487		return hid_add_usage(parser, data, item->size);
 
 
 
 488
 489	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 490
 491		if (parser->local.delimiter_branch > 1) {
 492			dbg_hid("alternative usage ignored\n");
 493			return 0;
 494		}
 495
 
 
 
 496		parser->local.usage_minimum = data;
 497		return 0;
 498
 499	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 500
 501		if (parser->local.delimiter_branch > 1) {
 502			dbg_hid("alternative usage ignored\n");
 503			return 0;
 504		}
 505
 506		count = data - parser->local.usage_minimum;
 507		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
 508			/*
 509			 * We do not warn if the name is not set, we are
 510			 * actually pre-scanning the device.
 511			 */
 512			if (dev_name(&parser->device->dev))
 513				hid_warn(parser->device,
 514					 "ignoring exceeding usage max\n");
 515			data = HID_MAX_USAGES - parser->local.usage_index +
 516				parser->local.usage_minimum - 1;
 517			if (data <= 0) {
 518				hid_err(parser->device,
 519					"no more usage index available\n");
 520				return -1;
 521			}
 522		}
 523
 524		for (n = parser->local.usage_minimum; n <= data; n++)
 525			if (hid_add_usage(parser, n, item->size)) {
 526				dbg_hid("hid_add_usage failed\n");
 527				return -1;
 528			}
 529		return 0;
 530
 531	default:
 532
 533		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 534		return 0;
 535	}
 536	return 0;
 537}
 538
 539/*
 540 * Concatenate Usage Pages into Usages where relevant:
 541 * As per specification, 6.2.2.8: "When the parser encounters a main item it
 542 * concatenates the last declared Usage Page with a Usage to form a complete
 543 * usage value."
 544 */
 545
 546static void hid_concatenate_usage_page(struct hid_parser *parser)
 547{
 548	int i;
 549
 550	for (i = 0; i < parser->local.usage_index; i++)
 551		if (parser->local.usage_size[i] <= 2)
 552			parser->local.usage[i] += parser->global.usage_page << 16;
 553}
 554
 555/*
 556 * Process a main item.
 557 */
 558
 559static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 560{
 561	__u32 data;
 562	int ret;
 563
 564	hid_concatenate_usage_page(parser);
 565
 566	data = item_udata(item);
 567
 568	switch (item->tag) {
 569	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 570		ret = open_collection(parser, data & 0xff);
 571		break;
 572	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 573		ret = close_collection(parser);
 574		break;
 575	case HID_MAIN_ITEM_TAG_INPUT:
 576		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 577		break;
 578	case HID_MAIN_ITEM_TAG_OUTPUT:
 579		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 580		break;
 581	case HID_MAIN_ITEM_TAG_FEATURE:
 582		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 583		break;
 584	default:
 585		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
 586		ret = 0;
 587	}
 588
 589	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 590
 591	return ret;
 592}
 593
 594/*
 595 * Process a reserved item.
 596 */
 597
 598static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 599{
 600	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 601	return 0;
 602}
 603
 604/*
 605 * Free a report and all registered fields. The field->usage and
 606 * field->value table's are allocated behind the field, so we need
 607 * only to free(field) itself.
 608 */
 609
 610static void hid_free_report(struct hid_report *report)
 611{
 612	unsigned n;
 613
 614	for (n = 0; n < report->maxfield; n++)
 615		kfree(report->field[n]);
 616	kfree(report);
 617}
 618
 619/*
 620 * Close report. This function returns the device
 621 * state to the point prior to hid_open_report().
 622 */
 623static void hid_close_report(struct hid_device *device)
 
 624{
 
 625	unsigned i, j;
 626
 627	for (i = 0; i < HID_REPORT_TYPES; i++) {
 628		struct hid_report_enum *report_enum = device->report_enum + i;
 629
 630		for (j = 0; j < HID_MAX_IDS; j++) {
 631			struct hid_report *report = report_enum->report_id_hash[j];
 632			if (report)
 633				hid_free_report(report);
 634		}
 635		memset(report_enum, 0, sizeof(*report_enum));
 636		INIT_LIST_HEAD(&report_enum->report_list);
 637	}
 638
 639	kfree(device->rdesc);
 640	device->rdesc = NULL;
 641	device->rsize = 0;
 642
 643	kfree(device->collection);
 644	device->collection = NULL;
 645	device->collection_size = 0;
 646	device->maxcollection = 0;
 647	device->maxapplication = 0;
 648
 649	device->status &= ~HID_STAT_PARSED;
 650}
 651
 652/*
 653 * Free a device structure, all reports, and all fields.
 654 */
 655
 656static void hid_device_release(struct device *dev)
 657{
 658	struct hid_device *hid = to_hid_device(dev);
 659
 660	hid_close_report(hid);
 661	kfree(hid->dev_rdesc);
 662	kfree(hid);
 663}
 664
 665/*
 666 * Fetch a report description item from the data stream. We support long
 667 * items, though they are not used yet.
 668 */
 669
 670static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 671{
 672	u8 b;
 673
 674	if ((end - start) <= 0)
 675		return NULL;
 676
 677	b = *start++;
 678
 679	item->type = (b >> 2) & 3;
 680	item->tag  = (b >> 4) & 15;
 681
 682	if (item->tag == HID_ITEM_TAG_LONG) {
 683
 684		item->format = HID_ITEM_FORMAT_LONG;
 685
 686		if ((end - start) < 2)
 687			return NULL;
 688
 689		item->size = *start++;
 690		item->tag  = *start++;
 691
 692		if ((end - start) < item->size)
 693			return NULL;
 694
 695		item->data.longdata = start;
 696		start += item->size;
 697		return start;
 698	}
 699
 700	item->format = HID_ITEM_FORMAT_SHORT;
 701	item->size = b & 3;
 702
 703	switch (item->size) {
 704	case 0:
 705		return start;
 706
 707	case 1:
 708		if ((end - start) < 1)
 709			return NULL;
 710		item->data.u8 = *start++;
 711		return start;
 712
 713	case 2:
 714		if ((end - start) < 2)
 715			return NULL;
 716		item->data.u16 = get_unaligned_le16(start);
 717		start = (__u8 *)((__le16 *)start + 1);
 718		return start;
 719
 720	case 3:
 721		item->size++;
 722		if ((end - start) < 4)
 723			return NULL;
 724		item->data.u32 = get_unaligned_le32(start);
 725		start = (__u8 *)((__le32 *)start + 1);
 726		return start;
 727	}
 728
 729	return NULL;
 730}
 731
 732static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
 733{
 734	struct hid_device *hid = parser->device;
 735
 736	if (usage == HID_DG_CONTACTID)
 737		hid->group = HID_GROUP_MULTITOUCH;
 738}
 739
 740static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
 741{
 742	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
 743	    parser->global.report_size == 8)
 744		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
 745}
 746
 747static void hid_scan_collection(struct hid_parser *parser, unsigned type)
 748{
 749	struct hid_device *hid = parser->device;
 750	int i;
 751
 752	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
 753	    type == HID_COLLECTION_PHYSICAL)
 754		hid->group = HID_GROUP_SENSOR_HUB;
 755
 756	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
 757	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
 758	    hid->group == HID_GROUP_MULTITOUCH)
 759		hid->group = HID_GROUP_GENERIC;
 760
 761	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
 762		for (i = 0; i < parser->local.usage_index; i++)
 763			if (parser->local.usage[i] == HID_GD_POINTER)
 764				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
 765
 766	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
 767		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
 768}
 769
 770static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
 771{
 772	__u32 data;
 773	int i;
 774
 775	hid_concatenate_usage_page(parser);
 776
 777	data = item_udata(item);
 778
 779	switch (item->tag) {
 780	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 781		hid_scan_collection(parser, data & 0xff);
 782		break;
 783	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 784		break;
 785	case HID_MAIN_ITEM_TAG_INPUT:
 786		/* ignore constant inputs, they will be ignored by hid-input */
 787		if (data & HID_MAIN_ITEM_CONSTANT)
 788			break;
 789		for (i = 0; i < parser->local.usage_index; i++)
 790			hid_scan_input_usage(parser, parser->local.usage[i]);
 791		break;
 792	case HID_MAIN_ITEM_TAG_OUTPUT:
 793		break;
 794	case HID_MAIN_ITEM_TAG_FEATURE:
 795		for (i = 0; i < parser->local.usage_index; i++)
 796			hid_scan_feature_usage(parser, parser->local.usage[i]);
 797		break;
 798	}
 799
 800	/* Reset the local parser environment */
 801	memset(&parser->local, 0, sizeof(parser->local));
 802
 803	return 0;
 804}
 805
 806/*
 807 * Scan a report descriptor before the device is added to the bus.
 808 * Sets device groups and other properties that determine what driver
 809 * to load.
 810 */
 811static int hid_scan_report(struct hid_device *hid)
 812{
 813	struct hid_parser *parser;
 814	struct hid_item item;
 815	__u8 *start = hid->dev_rdesc;
 816	__u8 *end = start + hid->dev_rsize;
 817	static int (*dispatch_type[])(struct hid_parser *parser,
 818				      struct hid_item *item) = {
 819		hid_scan_main,
 820		hid_parser_global,
 821		hid_parser_local,
 822		hid_parser_reserved
 823	};
 824
 825	parser = vzalloc(sizeof(struct hid_parser));
 826	if (!parser)
 827		return -ENOMEM;
 828
 829	parser->device = hid;
 830	hid->group = HID_GROUP_GENERIC;
 831
 832	/*
 833	 * The parsing is simpler than the one in hid_open_report() as we should
 834	 * be robust against hid errors. Those errors will be raised by
 835	 * hid_open_report() anyway.
 836	 */
 837	while ((start = fetch_item(start, end, &item)) != NULL)
 838		dispatch_type[item.type](parser, &item);
 839
 840	/*
 841	 * Handle special flags set during scanning.
 842	 */
 843	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
 844	    (hid->group == HID_GROUP_MULTITOUCH))
 845		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
 846
 847	/*
 848	 * Vendor specific handlings
 849	 */
 850	switch (hid->vendor) {
 851	case USB_VENDOR_ID_WACOM:
 852		hid->group = HID_GROUP_WACOM;
 853		break;
 854	case USB_VENDOR_ID_SYNAPTICS:
 855		if (hid->group == HID_GROUP_GENERIC)
 856			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
 857			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
 858				/*
 859				 * hid-rmi should take care of them,
 860				 * not hid-generic
 861				 */
 862				hid->group = HID_GROUP_RMI;
 863		break;
 864	}
 865
 866	kfree(parser->collection_stack);
 867	vfree(parser);
 868	return 0;
 869}
 870
 871/**
 872 * hid_parse_report - parse device report
 873 *
 874 * @device: hid device
 875 * @start: report start
 876 * @size: report size
 877 *
 878 * Allocate the device report as read by the bus driver. This function should
 879 * only be called from parse() in ll drivers.
 880 */
 881int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
 882{
 883	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
 884	if (!hid->dev_rdesc)
 885		return -ENOMEM;
 886	hid->dev_rsize = size;
 887	return 0;
 888}
 889EXPORT_SYMBOL_GPL(hid_parse_report);
 890
 891static const char * const hid_report_names[] = {
 892	"HID_INPUT_REPORT",
 893	"HID_OUTPUT_REPORT",
 894	"HID_FEATURE_REPORT",
 895};
 896/**
 897 * hid_validate_values - validate existing device report's value indexes
 898 *
 899 * @device: hid device
 900 * @type: which report type to examine
 901 * @id: which report ID to examine (0 for first)
 902 * @field_index: which report field to examine
 903 * @report_counts: expected number of values
 904 *
 905 * Validate the number of values in a given field of a given report, after
 906 * parsing.
 907 */
 908struct hid_report *hid_validate_values(struct hid_device *hid,
 909				       unsigned int type, unsigned int id,
 910				       unsigned int field_index,
 911				       unsigned int report_counts)
 912{
 913	struct hid_report *report;
 914
 915	if (type > HID_FEATURE_REPORT) {
 916		hid_err(hid, "invalid HID report type %u\n", type);
 917		return NULL;
 918	}
 919
 920	if (id >= HID_MAX_IDS) {
 921		hid_err(hid, "invalid HID report id %u\n", id);
 922		return NULL;
 923	}
 924
 925	/*
 926	 * Explicitly not using hid_get_report() here since it depends on
 927	 * ->numbered being checked, which may not always be the case when
 928	 * drivers go to access report values.
 929	 */
 930	if (id == 0) {
 931		/*
 932		 * Validating on id 0 means we should examine the first
 933		 * report in the list.
 934		 */
 935		report = list_entry(
 936				hid->report_enum[type].report_list.next,
 937				struct hid_report, list);
 938	} else {
 939		report = hid->report_enum[type].report_id_hash[id];
 940	}
 941	if (!report) {
 942		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
 943		return NULL;
 944	}
 945	if (report->maxfield <= field_index) {
 946		hid_err(hid, "not enough fields in %s %u\n",
 947			hid_report_names[type], id);
 948		return NULL;
 949	}
 950	if (report->field[field_index]->report_count < report_counts) {
 951		hid_err(hid, "not enough values in %s %u field %u\n",
 952			hid_report_names[type], id, field_index);
 953		return NULL;
 954	}
 955	return report;
 956}
 957EXPORT_SYMBOL_GPL(hid_validate_values);
 958
 959static int hid_calculate_multiplier(struct hid_device *hid,
 960				     struct hid_field *multiplier)
 961{
 962	int m;
 963	__s32 v = *multiplier->value;
 964	__s32 lmin = multiplier->logical_minimum;
 965	__s32 lmax = multiplier->logical_maximum;
 966	__s32 pmin = multiplier->physical_minimum;
 967	__s32 pmax = multiplier->physical_maximum;
 968
 969	/*
 970	 * "Because OS implementations will generally divide the control's
 971	 * reported count by the Effective Resolution Multiplier, designers
 972	 * should take care not to establish a potential Effective
 973	 * Resolution Multiplier of zero."
 974	 * HID Usage Table, v1.12, Section 4.3.1, p31
 975	 */
 976	if (lmax - lmin == 0)
 977		return 1;
 978	/*
 979	 * Handling the unit exponent is left as an exercise to whoever
 980	 * finds a device where that exponent is not 0.
 981	 */
 982	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
 983	if (unlikely(multiplier->unit_exponent != 0)) {
 984		hid_warn(hid,
 985			 "unsupported Resolution Multiplier unit exponent %d\n",
 986			 multiplier->unit_exponent);
 987	}
 988
 989	/* There are no devices with an effective multiplier > 255 */
 990	if (unlikely(m == 0 || m > 255 || m < -255)) {
 991		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
 992		m = 1;
 993	}
 994
 995	return m;
 996}
 997
 998static void hid_apply_multiplier_to_field(struct hid_device *hid,
 999					  struct hid_field *field,
1000					  struct hid_collection *multiplier_collection,
1001					  int effective_multiplier)
1002{
1003	struct hid_collection *collection;
1004	struct hid_usage *usage;
1005	int i;
1006
1007	/*
1008	 * If multiplier_collection is NULL, the multiplier applies
1009	 * to all fields in the report.
1010	 * Otherwise, it is the Logical Collection the multiplier applies to
1011	 * but our field may be in a subcollection of that collection.
1012	 */
1013	for (i = 0; i < field->maxusage; i++) {
1014		usage = &field->usage[i];
1015
1016		collection = &hid->collection[usage->collection_index];
1017		while (collection->parent_idx != -1 &&
1018		       collection != multiplier_collection)
1019			collection = &hid->collection[collection->parent_idx];
1020
1021		if (collection->parent_idx != -1 ||
1022		    multiplier_collection == NULL)
1023			usage->resolution_multiplier = effective_multiplier;
1024
1025	}
1026}
1027
1028static void hid_apply_multiplier(struct hid_device *hid,
1029				 struct hid_field *multiplier)
1030{
1031	struct hid_report_enum *rep_enum;
1032	struct hid_report *rep;
1033	struct hid_field *field;
1034	struct hid_collection *multiplier_collection;
1035	int effective_multiplier;
1036	int i;
1037
1038	/*
1039	 * "The Resolution Multiplier control must be contained in the same
1040	 * Logical Collection as the control(s) to which it is to be applied.
1041	 * If no Resolution Multiplier is defined, then the Resolution
1042	 * Multiplier defaults to 1.  If more than one control exists in a
1043	 * Logical Collection, the Resolution Multiplier is associated with
1044	 * all controls in the collection. If no Logical Collection is
1045	 * defined, the Resolution Multiplier is associated with all
1046	 * controls in the report."
1047	 * HID Usage Table, v1.12, Section 4.3.1, p30
1048	 *
1049	 * Thus, search from the current collection upwards until we find a
1050	 * logical collection. Then search all fields for that same parent
1051	 * collection. Those are the fields the multiplier applies to.
1052	 *
1053	 * If we have more than one multiplier, it will overwrite the
1054	 * applicable fields later.
1055	 */
1056	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057	while (multiplier_collection->parent_idx != -1 &&
1058	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1060
1061	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1062
1063	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064	list_for_each_entry(rep, &rep_enum->report_list, list) {
1065		for (i = 0; i < rep->maxfield; i++) {
1066			field = rep->field[i];
1067			hid_apply_multiplier_to_field(hid, field,
1068						      multiplier_collection,
1069						      effective_multiplier);
1070		}
1071	}
1072}
1073
1074/*
1075 * hid_setup_resolution_multiplier - set up all resolution multipliers
1076 *
1077 * @device: hid device
1078 *
1079 * Search for all Resolution Multiplier Feature Reports and apply their
1080 * value to all matching Input items. This only updates the internal struct
1081 * fields.
1082 *
1083 * The Resolution Multiplier is applied by the hardware. If the multiplier
1084 * is anything other than 1, the hardware will send pre-multiplied events
1085 * so that the same physical interaction generates an accumulated
1086 *	accumulated_value = value * * multiplier
1087 * This may be achieved by sending
1088 * - "value * multiplier" for each event, or
1089 * - "value" but "multiplier" times as frequently, or
1090 * - a combination of the above
1091 * The only guarantee is that the same physical interaction always generates
1092 * an accumulated 'value * multiplier'.
1093 *
1094 * This function must be called before any event processing and after
1095 * any SetRequest to the Resolution Multiplier.
1096 */
1097void hid_setup_resolution_multiplier(struct hid_device *hid)
1098{
1099	struct hid_report_enum *rep_enum;
1100	struct hid_report *rep;
1101	struct hid_usage *usage;
1102	int i, j;
1103
1104	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105	list_for_each_entry(rep, &rep_enum->report_list, list) {
1106		for (i = 0; i < rep->maxfield; i++) {
1107			/* Ignore if report count is out of bounds. */
1108			if (rep->field[i]->report_count < 1)
1109				continue;
1110
1111			for (j = 0; j < rep->field[i]->maxusage; j++) {
1112				usage = &rep->field[i]->usage[j];
1113				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114					hid_apply_multiplier(hid,
1115							     rep->field[i]);
1116			}
1117		}
1118	}
1119}
1120EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1121
1122/**
1123 * hid_open_report - open a driver-specific device report
1124 *
1125 * @device: hid device
1126 *
1127 * Parse a report description into a hid_device structure. Reports are
1128 * enumerated, fields are attached to these reports.
1129 * 0 returned on success, otherwise nonzero error value.
1130 *
1131 * This function (or the equivalent hid_parse() macro) should only be
1132 * called from probe() in drivers, before starting the device.
1133 */
1134int hid_open_report(struct hid_device *device)
 
1135{
1136	struct hid_parser *parser;
1137	struct hid_item item;
1138	unsigned int size;
1139	__u8 *start;
1140	__u8 *buf;
1141	__u8 *end;
1142	__u8 *next;
1143	int ret;
1144	static int (*dispatch_type[])(struct hid_parser *parser,
1145				      struct hid_item *item) = {
1146		hid_parser_main,
1147		hid_parser_global,
1148		hid_parser_local,
1149		hid_parser_reserved
1150	};
1151
1152	if (WARN_ON(device->status & HID_STAT_PARSED))
1153		return -EBUSY;
1154
1155	start = device->dev_rdesc;
1156	if (WARN_ON(!start))
1157		return -ENODEV;
1158	size = device->dev_rsize;
1159
1160	buf = kmemdup(start, size, GFP_KERNEL);
1161	if (buf == NULL)
1162		return -ENOMEM;
1163
1164	if (device->driver->report_fixup)
1165		start = device->driver->report_fixup(device, buf, &size);
1166	else
1167		start = buf;
1168
1169	start = kmemdup(start, size, GFP_KERNEL);
1170	kfree(buf);
1171	if (start == NULL)
1172		return -ENOMEM;
1173
1174	device->rdesc = start;
1175	device->rsize = size;
1176
1177	parser = vzalloc(sizeof(struct hid_parser));
1178	if (!parser) {
1179		ret = -ENOMEM;
1180		goto alloc_err;
1181	}
1182
1183	parser->device = device;
1184
1185	end = start + size;
1186
1187	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1188				     sizeof(struct hid_collection), GFP_KERNEL);
1189	if (!device->collection) {
1190		ret = -ENOMEM;
1191		goto err;
1192	}
1193	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1194
1195	ret = -EINVAL;
1196	while ((next = fetch_item(start, end, &item)) != NULL) {
1197		start = next;
1198
1199		if (item.format != HID_ITEM_FORMAT_SHORT) {
1200			hid_err(device, "unexpected long global item\n");
1201			goto err;
1202		}
1203
1204		if (dispatch_type[item.type](parser, &item)) {
1205			hid_err(device, "item %u %u %u %u parsing failed\n",
1206				item.format, (unsigned)item.size,
1207				(unsigned)item.type, (unsigned)item.tag);
1208			goto err;
1209		}
1210
1211		if (start == end) {
1212			if (parser->collection_stack_ptr) {
1213				hid_err(device, "unbalanced collection at end of report description\n");
1214				goto err;
1215			}
1216			if (parser->local.delimiter_depth) {
1217				hid_err(device, "unbalanced delimiter at end of report description\n");
1218				goto err;
1219			}
1220
1221			/*
1222			 * fetch initial values in case the device's
1223			 * default multiplier isn't the recommended 1
1224			 */
1225			hid_setup_resolution_multiplier(device);
1226
1227			kfree(parser->collection_stack);
1228			vfree(parser);
1229			device->status |= HID_STAT_PARSED;
1230
1231			return 0;
1232		}
1233	}
1234
1235	hid_err(device, "item fetching failed at offset %u/%u\n",
1236		size - (unsigned int)(end - start), size);
1237err:
1238	kfree(parser->collection_stack);
1239alloc_err:
1240	vfree(parser);
1241	hid_close_report(device);
1242	return ret;
1243}
1244EXPORT_SYMBOL_GPL(hid_open_report);
1245
1246/*
1247 * Convert a signed n-bit integer to signed 32-bit integer. Common
1248 * cases are done through the compiler, the screwed things has to be
1249 * done by hand.
1250 */
1251
1252static s32 snto32(__u32 value, unsigned n)
1253{
1254	switch (n) {
1255	case 8:  return ((__s8)value);
1256	case 16: return ((__s16)value);
1257	case 32: return ((__s32)value);
1258	}
1259	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1260}
1261
1262s32 hid_snto32(__u32 value, unsigned n)
1263{
1264	return snto32(value, n);
1265}
1266EXPORT_SYMBOL_GPL(hid_snto32);
1267
1268/*
1269 * Convert a signed 32-bit integer to a signed n-bit integer.
1270 */
1271
1272static u32 s32ton(__s32 value, unsigned n)
1273{
1274	s32 a = value >> (n - 1);
1275	if (a && a != -1)
1276		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1277	return value & ((1 << n) - 1);
1278}
1279
1280/*
1281 * Extract/implement a data field from/to a little endian report (bit array).
1282 *
1283 * Code sort-of follows HID spec:
1284 *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1285 *
1286 * While the USB HID spec allows unlimited length bit fields in "report
1287 * descriptors", most devices never use more than 16 bits.
1288 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1289 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1290 */
1291
1292static u32 __extract(u8 *report, unsigned offset, int n)
 
1293{
1294	unsigned int idx = offset / 8;
1295	unsigned int bit_nr = 0;
1296	unsigned int bit_shift = offset % 8;
1297	int bits_to_copy = 8 - bit_shift;
1298	u32 value = 0;
1299	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1300
1301	while (n > 0) {
1302		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1303		n -= bits_to_copy;
1304		bit_nr += bits_to_copy;
1305		bits_to_copy = 8;
1306		bit_shift = 0;
1307		idx++;
1308	}
1309
1310	return value & mask;
 
 
 
 
 
 
 
 
1311}
1312
1313u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1314			unsigned offset, unsigned n)
1315{
1316	if (n > 32) {
1317		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1318			      __func__, n, current->comm);
1319		n = 32;
1320	}
1321
1322	return __extract(report, offset, n);
1323}
1324EXPORT_SYMBOL_GPL(hid_field_extract);
1325
1326/*
1327 * "implement" : set bits in a little endian bit stream.
1328 * Same concepts as "extract" (see comments above).
1329 * The data mangled in the bit stream remains in little endian
1330 * order the whole time. It make more sense to talk about
1331 * endianness of register values by considering a register
1332 * a "cached" copy of the little endian bit stream.
1333 */
1334
1335static void __implement(u8 *report, unsigned offset, int n, u32 value)
1336{
1337	unsigned int idx = offset / 8;
1338	unsigned int bit_shift = offset % 8;
1339	int bits_to_set = 8 - bit_shift;
1340
1341	while (n - bits_to_set >= 0) {
1342		report[idx] &= ~(0xff << bit_shift);
1343		report[idx] |= value << bit_shift;
1344		value >>= bits_to_set;
1345		n -= bits_to_set;
1346		bits_to_set = 8;
1347		bit_shift = 0;
1348		idx++;
1349	}
1350
1351	/* last nibble */
1352	if (n) {
1353		u8 bit_mask = ((1U << n) - 1);
1354		report[idx] &= ~(bit_mask << bit_shift);
1355		report[idx] |= value << bit_shift;
1356	}
1357}
1358
1359static void implement(const struct hid_device *hid, u8 *report,
1360		      unsigned offset, unsigned n, u32 value)
1361{
1362	if (unlikely(n > 32)) {
1363		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1364			 __func__, n, current->comm);
1365		n = 32;
1366	} else if (n < 32) {
1367		u32 m = (1U << n) - 1;
1368
1369		if (unlikely(value > m)) {
1370			hid_warn(hid,
1371				 "%s() called with too large value %d (n: %d)! (%s)\n",
1372				 __func__, value, n, current->comm);
1373			WARN_ON(1);
1374			value &= m;
1375		}
1376	}
1377
1378	__implement(report, offset, n, value);
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381/*
1382 * Search an array for a value.
1383 */
1384
1385static int search(__s32 *array, __s32 value, unsigned n)
1386{
1387	while (n--) {
1388		if (*array++ == value)
1389			return 0;
1390	}
1391	return -1;
1392}
1393
1394/**
1395 * hid_match_report - check if driver's raw_event should be called
1396 *
1397 * @hid: hid device
1398 * @report_type: type to match against
1399 *
1400 * compare hid->driver->report_table->report_type to report->type
1401 */
1402static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1403{
1404	const struct hid_report_id *id = hid->driver->report_table;
1405
1406	if (!id) /* NULL means all */
1407		return 1;
1408
1409	for (; id->report_type != HID_TERMINATOR; id++)
1410		if (id->report_type == HID_ANY_ID ||
1411				id->report_type == report->type)
1412			return 1;
1413	return 0;
1414}
1415
1416/**
1417 * hid_match_usage - check if driver's event should be called
1418 *
1419 * @hid: hid device
1420 * @usage: usage to match against
1421 *
1422 * compare hid->driver->usage_table->usage_{type,code} to
1423 * usage->usage_{type,code}
1424 */
1425static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1426{
1427	const struct hid_usage_id *id = hid->driver->usage_table;
1428
1429	if (!id) /* NULL means all */
1430		return 1;
1431
1432	for (; id->usage_type != HID_ANY_ID - 1; id++)
1433		if ((id->usage_hid == HID_ANY_ID ||
1434				id->usage_hid == usage->hid) &&
1435				(id->usage_type == HID_ANY_ID ||
1436				id->usage_type == usage->type) &&
1437				(id->usage_code == HID_ANY_ID ||
1438				 id->usage_code == usage->code))
1439			return 1;
1440	return 0;
1441}
1442
1443static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1444		struct hid_usage *usage, __s32 value, int interrupt)
1445{
1446	struct hid_driver *hdrv = hid->driver;
1447	int ret;
1448
1449	if (!list_empty(&hid->debug_list))
1450		hid_dump_input(hid, usage, value);
1451
1452	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1453		ret = hdrv->event(hid, field, usage, value);
1454		if (ret != 0) {
1455			if (ret < 0)
1456				hid_err(hid, "%s's event failed with %d\n",
1457						hdrv->name, ret);
1458			return;
1459		}
1460	}
1461
1462	if (hid->claimed & HID_CLAIMED_INPUT)
1463		hidinput_hid_event(hid, field, usage, value);
1464	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1465		hid->hiddev_hid_event(hid, field, usage, value);
1466}
1467
1468/*
1469 * Analyse a received field, and fetch the data from it. The field
1470 * content is stored for next report processing (we do differential
1471 * reporting to the layer).
1472 */
1473
1474static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1475			    __u8 *data, int interrupt)
1476{
1477	unsigned n;
1478	unsigned count = field->report_count;
1479	unsigned offset = field->report_offset;
1480	unsigned size = field->report_size;
1481	__s32 min = field->logical_minimum;
1482	__s32 max = field->logical_maximum;
1483	__s32 *value;
1484
1485	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1486	if (!value)
1487		return;
1488
1489	for (n = 0; n < count; n++) {
1490
1491		value[n] = min < 0 ?
1492			snto32(hid_field_extract(hid, data, offset + n * size,
1493			       size), size) :
1494			hid_field_extract(hid, data, offset + n * size, size);
1495
1496		/* Ignore report if ErrorRollOver */
1497		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1498		    value[n] >= min && value[n] <= max &&
1499		    value[n] - min < field->maxusage &&
1500		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1501			goto exit;
1502	}
1503
1504	for (n = 0; n < count; n++) {
1505
1506		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1507			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1508			continue;
1509		}
1510
1511		if (field->value[n] >= min && field->value[n] <= max
1512			&& field->value[n] - min < field->maxusage
1513			&& field->usage[field->value[n] - min].hid
1514			&& search(value, field->value[n], count))
1515				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1516
1517		if (value[n] >= min && value[n] <= max
1518			&& value[n] - min < field->maxusage
1519			&& field->usage[value[n] - min].hid
1520			&& search(field->value, value[n], count))
1521				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1522	}
1523
1524	memcpy(field->value, value, count * sizeof(__s32));
1525exit:
1526	kfree(value);
1527}
1528
1529/*
1530 * Output the field into the report.
1531 */
1532
1533static void hid_output_field(const struct hid_device *hid,
1534			     struct hid_field *field, __u8 *data)
1535{
1536	unsigned count = field->report_count;
1537	unsigned offset = field->report_offset;
1538	unsigned size = field->report_size;
1539	unsigned n;
1540
1541	for (n = 0; n < count; n++) {
1542		if (field->logical_minimum < 0)	/* signed values */
1543			implement(hid, data, offset + n * size, size,
1544				  s32ton(field->value[n], size));
1545		else				/* unsigned values */
1546			implement(hid, data, offset + n * size, size,
1547				  field->value[n]);
1548	}
1549}
1550
1551/*
1552 * Create a report. 'data' has to be allocated using
1553 * hid_alloc_report_buf() so that it has proper size.
1554 */
1555
1556void hid_output_report(struct hid_report *report, __u8 *data)
1557{
1558	unsigned n;
1559
1560	if (report->id > 0)
1561		*data++ = report->id;
1562
1563	memset(data, 0, ((report->size - 1) >> 3) + 1);
1564	for (n = 0; n < report->maxfield; n++)
1565		hid_output_field(report->device, report->field[n], data);
1566}
1567EXPORT_SYMBOL_GPL(hid_output_report);
1568
1569/*
1570 * Allocator for buffer that is going to be passed to hid_output_report()
1571 */
1572u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1573{
1574	/*
1575	 * 7 extra bytes are necessary to achieve proper functionality
1576	 * of implement() working on 8 byte chunks
1577	 */
1578
1579	u32 len = hid_report_len(report) + 7;
1580
1581	return kmalloc(len, flags);
1582}
1583EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1584
1585/*
1586 * Set a field value. The report this field belongs to has to be
1587 * created and transferred to the device, to set this value in the
1588 * device.
1589 */
1590
1591int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1592{
1593	unsigned size;
1594
1595	if (!field)
1596		return -1;
1597
1598	size = field->report_size;
1599
1600	hid_dump_input(field->report->device, field->usage + offset, value);
1601
1602	if (offset >= field->report_count) {
1603		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1604				offset, field->report_count);
1605		return -1;
1606	}
1607	if (field->logical_minimum < 0) {
1608		if (value != snto32(s32ton(value, size), size)) {
1609			hid_err(field->report->device, "value %d is out of range\n", value);
1610			return -1;
1611		}
1612	}
1613	field->value[offset] = value;
1614	return 0;
1615}
1616EXPORT_SYMBOL_GPL(hid_set_field);
1617
1618static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1619		const u8 *data)
1620{
1621	struct hid_report *report;
1622	unsigned int n = 0;	/* Normally report number is 0 */
1623
1624	/* Device uses numbered reports, data[0] is report number */
1625	if (report_enum->numbered)
1626		n = *data;
1627
1628	report = report_enum->report_id_hash[n];
1629	if (report == NULL)
1630		dbg_hid("undefined report_id %u received\n", n);
1631
1632	return report;
1633}
1634
1635/*
1636 * Implement a generic .request() callback, using .raw_request()
1637 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1638 */
1639int __hid_request(struct hid_device *hid, struct hid_report *report,
1640		int reqtype)
1641{
1642	char *buf;
1643	int ret;
1644	u32 len;
1645
1646	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1647	if (!buf)
1648		return -ENOMEM;
1649
1650	len = hid_report_len(report);
1651
1652	if (reqtype == HID_REQ_SET_REPORT)
1653		hid_output_report(report, buf);
1654
1655	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1656					  report->type, reqtype);
1657	if (ret < 0) {
1658		dbg_hid("unable to complete request: %d\n", ret);
1659		goto out;
1660	}
1661
1662	if (reqtype == HID_REQ_GET_REPORT)
1663		hid_input_report(hid, report->type, buf, ret, 0);
1664
1665	ret = 0;
1666
1667out:
1668	kfree(buf);
1669	return ret;
1670}
1671EXPORT_SYMBOL_GPL(__hid_request);
1672
1673int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1674		int interrupt)
1675{
1676	struct hid_report_enum *report_enum = hid->report_enum + type;
1677	struct hid_report *report;
1678	struct hid_driver *hdrv;
1679	unsigned int a;
1680	u32 rsize, csize = size;
1681	u8 *cdata = data;
1682	int ret = 0;
1683
1684	report = hid_get_report(report_enum, data);
1685	if (!report)
1686		goto out;
1687
1688	if (report_enum->numbered) {
1689		cdata++;
1690		csize--;
1691	}
1692
1693	rsize = ((report->size - 1) >> 3) + 1;
1694
1695	if (rsize > HID_MAX_BUFFER_SIZE)
1696		rsize = HID_MAX_BUFFER_SIZE;
1697
1698	if (csize < rsize) {
1699		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1700				csize, rsize);
1701		memset(cdata + csize, 0, rsize - csize);
1702	}
1703
1704	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1705		hid->hiddev_report_event(hid, report);
1706	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1707		ret = hidraw_report_event(hid, data, size);
1708		if (ret)
1709			goto out;
1710	}
1711
1712	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1713		for (a = 0; a < report->maxfield; a++)
1714			hid_input_field(hid, report->field[a], cdata, interrupt);
1715		hdrv = hid->driver;
1716		if (hdrv && hdrv->report)
1717			hdrv->report(hid, report);
1718	}
1719
1720	if (hid->claimed & HID_CLAIMED_INPUT)
1721		hidinput_report_event(hid, report);
1722out:
1723	return ret;
1724}
1725EXPORT_SYMBOL_GPL(hid_report_raw_event);
1726
1727/**
1728 * hid_input_report - report data from lower layer (usb, bt...)
1729 *
1730 * @hid: hid device
1731 * @type: HID report type (HID_*_REPORT)
1732 * @data: report contents
1733 * @size: size of data parameter
1734 * @interrupt: distinguish between interrupt and control transfers
1735 *
1736 * This is data entry for lower layers.
1737 */
1738int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1739{
1740	struct hid_report_enum *report_enum;
1741	struct hid_driver *hdrv;
1742	struct hid_report *report;
1743	int ret = 0;
 
 
1744
1745	if (!hid)
1746		return -ENODEV;
1747
1748	if (down_trylock(&hid->driver_input_lock))
1749		return -EBUSY;
1750
1751	if (!hid->driver) {
1752		ret = -ENODEV;
1753		goto unlock;
1754	}
1755	report_enum = hid->report_enum + type;
1756	hdrv = hid->driver;
1757
1758	if (!size) {
1759		dbg_hid("empty report\n");
1760		ret = -1;
1761		goto unlock;
1762	}
1763
1764	/* Avoid unnecessary overhead if debugfs is disabled */
1765	if (!list_empty(&hid->debug_list))
1766		hid_dump_report(hid, type, data, size);
1767
1768	report = hid_get_report(report_enum, data);
 
1769
1770	if (!report) {
1771		ret = -1;
1772		goto unlock;
 
 
 
 
 
 
1773	}
 
 
 
 
 
 
 
 
1774
1775	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1776		ret = hdrv->raw_event(hid, report, data, size);
1777		if (ret < 0)
1778			goto unlock;
1779	}
1780
1781	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1782
1783unlock:
1784	up(&hid->driver_input_lock);
1785	return ret;
1786}
1787EXPORT_SYMBOL_GPL(hid_input_report);
1788
1789bool hid_match_one_id(const struct hid_device *hdev,
1790		      const struct hid_device_id *id)
1791{
1792	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1793		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1794		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1795		(id->product == HID_ANY_ID || id->product == hdev->product);
1796}
1797
1798const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1799		const struct hid_device_id *id)
1800{
1801	for (; id->bus; id++)
1802		if (hid_match_one_id(hdev, id))
1803			return id;
1804
1805	return NULL;
1806}
1807
1808static const struct hid_device_id hid_hiddev_list[] = {
1809	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1810	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1811	{ }
1812};
1813
1814static bool hid_hiddev(struct hid_device *hdev)
1815{
1816	return !!hid_match_id(hdev, hid_hiddev_list);
1817}
1818
1819
1820static ssize_t
1821read_report_descriptor(struct file *filp, struct kobject *kobj,
1822		struct bin_attribute *attr,
1823		char *buf, loff_t off, size_t count)
1824{
1825	struct device *dev = kobj_to_dev(kobj);
1826	struct hid_device *hdev = to_hid_device(dev);
1827
1828	if (off >= hdev->rsize)
1829		return 0;
1830
1831	if (off + count > hdev->rsize)
1832		count = hdev->rsize - off;
1833
1834	memcpy(buf, hdev->rdesc + off, count);
1835
1836	return count;
1837}
1838
1839static ssize_t
1840show_country(struct device *dev, struct device_attribute *attr,
1841		char *buf)
1842{
1843	struct hid_device *hdev = to_hid_device(dev);
1844
1845	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1846}
1847
1848static struct bin_attribute dev_bin_attr_report_desc = {
1849	.attr = { .name = "report_descriptor", .mode = 0444 },
1850	.read = read_report_descriptor,
1851	.size = HID_MAX_DESCRIPTOR_SIZE,
1852};
1853
1854static const struct device_attribute dev_attr_country = {
1855	.attr = { .name = "country", .mode = 0444 },
1856	.show = show_country,
1857};
1858
1859int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1860{
1861	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1862		"Joystick", "Gamepad", "Keyboard", "Keypad",
1863		"Multi-Axis Controller"
1864	};
1865	const char *type, *bus;
1866	char buf[64] = "";
1867	unsigned int i;
1868	int len;
1869	int ret;
1870
1871	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1872		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1873	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1874		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1875	if (hdev->bus != BUS_USB)
1876		connect_mask &= ~HID_CONNECT_HIDDEV;
1877	if (hid_hiddev(hdev))
1878		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1879
1880	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1881				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1882		hdev->claimed |= HID_CLAIMED_INPUT;
1883
1884	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1885			!hdev->hiddev_connect(hdev,
1886				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1887		hdev->claimed |= HID_CLAIMED_HIDDEV;
1888	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1889		hdev->claimed |= HID_CLAIMED_HIDRAW;
1890
1891	if (connect_mask & HID_CONNECT_DRIVER)
1892		hdev->claimed |= HID_CLAIMED_DRIVER;
1893
1894	/* Drivers with the ->raw_event callback set are not required to connect
1895	 * to any other listener. */
1896	if (!hdev->claimed && !hdev->driver->raw_event) {
1897		hid_err(hdev, "device has no listeners, quitting\n");
1898		return -ENODEV;
1899	}
1900
1901	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1902			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1903		hdev->ff_init(hdev);
1904
1905	len = 0;
1906	if (hdev->claimed & HID_CLAIMED_INPUT)
1907		len += sprintf(buf + len, "input");
1908	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1909		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1910				((struct hiddev *)hdev->hiddev)->minor);
1911	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1912		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1913				((struct hidraw *)hdev->hidraw)->minor);
1914
1915	type = "Device";
1916	for (i = 0; i < hdev->maxcollection; i++) {
1917		struct hid_collection *col = &hdev->collection[i];
1918		if (col->type == HID_COLLECTION_APPLICATION &&
1919		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1920		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1921			type = types[col->usage & 0xffff];
1922			break;
1923		}
1924	}
1925
1926	switch (hdev->bus) {
1927	case BUS_USB:
1928		bus = "USB";
1929		break;
1930	case BUS_BLUETOOTH:
1931		bus = "BLUETOOTH";
1932		break;
1933	case BUS_I2C:
1934		bus = "I2C";
1935		break;
1936	default:
1937		bus = "<UNKNOWN>";
1938	}
1939
1940	ret = device_create_file(&hdev->dev, &dev_attr_country);
1941	if (ret)
1942		hid_warn(hdev,
1943			 "can't create sysfs country code attribute err: %d\n", ret);
1944
1945	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1946		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1947		 type, hdev->name, hdev->phys);
1948
1949	return 0;
1950}
1951EXPORT_SYMBOL_GPL(hid_connect);
1952
1953void hid_disconnect(struct hid_device *hdev)
1954{
1955	device_remove_file(&hdev->dev, &dev_attr_country);
1956	if (hdev->claimed & HID_CLAIMED_INPUT)
1957		hidinput_disconnect(hdev);
1958	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1959		hdev->hiddev_disconnect(hdev);
1960	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1961		hidraw_disconnect(hdev);
1962	hdev->claimed = 0;
1963}
1964EXPORT_SYMBOL_GPL(hid_disconnect);
1965
1966/**
1967 * hid_hw_start - start underlying HW
1968 * @hdev: hid device
1969 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1970 *
1971 * Call this in probe function *after* hid_parse. This will setup HW
1972 * buffers and start the device (if not defeirred to device open).
1973 * hid_hw_stop must be called if this was successful.
1974 */
1975int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1976{
1977	int error;
1978
1979	error = hdev->ll_driver->start(hdev);
1980	if (error)
1981		return error;
1982
1983	if (connect_mask) {
1984		error = hid_connect(hdev, connect_mask);
1985		if (error) {
1986			hdev->ll_driver->stop(hdev);
1987			return error;
1988		}
1989	}
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL_GPL(hid_hw_start);
1994
1995/**
1996 * hid_hw_stop - stop underlying HW
1997 * @hdev: hid device
1998 *
1999 * This is usually called from remove function or from probe when something
2000 * failed and hid_hw_start was called already.
2001 */
2002void hid_hw_stop(struct hid_device *hdev)
2003{
2004	hid_disconnect(hdev);
2005	hdev->ll_driver->stop(hdev);
2006}
2007EXPORT_SYMBOL_GPL(hid_hw_stop);
2008
2009/**
2010 * hid_hw_open - signal underlying HW to start delivering events
2011 * @hdev: hid device
2012 *
2013 * Tell underlying HW to start delivering events from the device.
2014 * This function should be called sometime after successful call
2015 * to hid_hw_start().
2016 */
2017int hid_hw_open(struct hid_device *hdev)
2018{
2019	int ret;
2020
2021	ret = mutex_lock_killable(&hdev->ll_open_lock);
2022	if (ret)
2023		return ret;
2024
2025	if (!hdev->ll_open_count++) {
2026		ret = hdev->ll_driver->open(hdev);
2027		if (ret)
2028			hdev->ll_open_count--;
2029	}
2030
2031	mutex_unlock(&hdev->ll_open_lock);
2032	return ret;
2033}
2034EXPORT_SYMBOL_GPL(hid_hw_open);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2035
2036/**
2037 * hid_hw_close - signal underlaying HW to stop delivering events
2038 *
2039 * @hdev: hid device
2040 *
2041 * This function indicates that we are not interested in the events
2042 * from this device anymore. Delivery of events may or may not stop,
2043 * depending on the number of users still outstanding.
2044 */
2045void hid_hw_close(struct hid_device *hdev)
2046{
2047	mutex_lock(&hdev->ll_open_lock);
2048	if (!--hdev->ll_open_count)
2049		hdev->ll_driver->close(hdev);
2050	mutex_unlock(&hdev->ll_open_lock);
2051}
2052EXPORT_SYMBOL_GPL(hid_hw_close);
2053
2054struct hid_dynid {
2055	struct list_head list;
2056	struct hid_device_id id;
2057};
2058
2059/**
2060 * store_new_id - add a new HID device ID to this driver and re-probe devices
2061 * @driver: target device driver
2062 * @buf: buffer for scanning device ID data
2063 * @count: input size
2064 *
2065 * Adds a new dynamic hid device ID to this driver,
2066 * and causes the driver to probe for all devices again.
2067 */
2068static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2069		size_t count)
2070{
2071	struct hid_driver *hdrv = to_hid_driver(drv);
2072	struct hid_dynid *dynid;
2073	__u32 bus, vendor, product;
2074	unsigned long driver_data = 0;
2075	int ret;
2076
2077	ret = sscanf(buf, "%x %x %x %lx",
2078			&bus, &vendor, &product, &driver_data);
2079	if (ret < 3)
2080		return -EINVAL;
2081
2082	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2083	if (!dynid)
2084		return -ENOMEM;
2085
2086	dynid->id.bus = bus;
2087	dynid->id.group = HID_GROUP_ANY;
2088	dynid->id.vendor = vendor;
2089	dynid->id.product = product;
2090	dynid->id.driver_data = driver_data;
2091
2092	spin_lock(&hdrv->dyn_lock);
2093	list_add_tail(&dynid->list, &hdrv->dyn_list);
2094	spin_unlock(&hdrv->dyn_lock);
2095
2096	ret = driver_attach(&hdrv->driver);
 
 
 
 
2097
2098	return ret ? : count;
2099}
2100static DRIVER_ATTR_WO(new_id);
2101
2102static struct attribute *hid_drv_attrs[] = {
2103	&driver_attr_new_id.attr,
2104	NULL,
2105};
2106ATTRIBUTE_GROUPS(hid_drv);
2107
2108static void hid_free_dynids(struct hid_driver *hdrv)
2109{
2110	struct hid_dynid *dynid, *n;
2111
2112	spin_lock(&hdrv->dyn_lock);
2113	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2114		list_del(&dynid->list);
2115		kfree(dynid);
2116	}
2117	spin_unlock(&hdrv->dyn_lock);
2118}
2119
2120const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2121					     struct hid_driver *hdrv)
2122{
2123	struct hid_dynid *dynid;
2124
2125	spin_lock(&hdrv->dyn_lock);
2126	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2127		if (hid_match_one_id(hdev, &dynid->id)) {
2128			spin_unlock(&hdrv->dyn_lock);
2129			return &dynid->id;
2130		}
2131	}
2132	spin_unlock(&hdrv->dyn_lock);
2133
2134	return hid_match_id(hdev, hdrv->id_table);
2135}
2136EXPORT_SYMBOL_GPL(hid_match_device);
2137
2138static int hid_bus_match(struct device *dev, struct device_driver *drv)
2139{
2140	struct hid_driver *hdrv = to_hid_driver(drv);
2141	struct hid_device *hdev = to_hid_device(dev);
2142
2143	return hid_match_device(hdev, hdrv) != NULL;
2144}
2145
2146/**
2147 * hid_compare_device_paths - check if both devices share the same path
2148 * @hdev_a: hid device
2149 * @hdev_b: hid device
2150 * @separator: char to use as separator
2151 *
2152 * Check if two devices share the same path up to the last occurrence of
2153 * the separator char. Both paths must exist (i.e., zero-length paths
2154 * don't match).
2155 */
2156bool hid_compare_device_paths(struct hid_device *hdev_a,
2157			      struct hid_device *hdev_b, char separator)
2158{
2159	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2160	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2161
2162	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2163		return false;
 
2164
2165	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2166}
2167EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2168
2169static int hid_device_probe(struct device *dev)
2170{
2171	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2172	struct hid_device *hdev = to_hid_device(dev);
 
2173	const struct hid_device_id *id;
2174	int ret = 0;
2175
2176	if (down_interruptible(&hdev->driver_input_lock)) {
2177		ret = -EINTR;
2178		goto end;
2179	}
2180	hdev->io_started = false;
2181
2182	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2183
2184	if (!hdev->driver) {
2185		id = hid_match_device(hdev, hdrv);
2186		if (id == NULL) {
2187			ret = -ENODEV;
2188			goto unlock;
2189		}
2190
2191		if (hdrv->match) {
2192			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2193				ret = -ENODEV;
2194				goto unlock;
2195			}
2196		} else {
2197			/*
2198			 * hid-generic implements .match(), so if
2199			 * hid_ignore_special_drivers is set, we can safely
2200			 * return.
2201			 */
2202			if (hid_ignore_special_drivers) {
2203				ret = -ENODEV;
2204				goto unlock;
2205			}
2206		}
2207
2208		/* reset the quirks that has been previously set */
2209		hdev->quirks = hid_lookup_quirk(hdev);
2210		hdev->driver = hdrv;
2211		if (hdrv->probe) {
2212			ret = hdrv->probe(hdev, id);
2213		} else { /* default probe */
2214			ret = hid_open_report(hdev);
2215			if (!ret)
2216				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2217		}
2218		if (ret) {
2219			hid_close_report(hdev);
2220			hdev->driver = NULL;
2221		}
2222	}
2223unlock:
2224	if (!hdev->io_started)
2225		up(&hdev->driver_input_lock);
2226end:
2227	return ret;
2228}
2229
2230static int hid_device_remove(struct device *dev)
2231{
2232	struct hid_device *hdev = to_hid_device(dev);
2233	struct hid_driver *hdrv;
2234	int ret = 0;
2235
2236	if (down_interruptible(&hdev->driver_input_lock)) {
2237		ret = -EINTR;
2238		goto end;
2239	}
2240	hdev->io_started = false;
2241
2242	hdrv = hdev->driver;
2243	if (hdrv) {
2244		if (hdrv->remove)
2245			hdrv->remove(hdev);
2246		else /* default remove */
2247			hid_hw_stop(hdev);
2248		hid_close_report(hdev);
2249		hdev->driver = NULL;
2250	}
2251
2252	if (!hdev->io_started)
2253		up(&hdev->driver_input_lock);
2254end:
2255	return ret;
2256}
2257
2258static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2259			     char *buf)
2260{
2261	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2262
2263	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2264			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2265}
2266static DEVICE_ATTR_RO(modalias);
2267
2268static struct attribute *hid_dev_attrs[] = {
2269	&dev_attr_modalias.attr,
2270	NULL,
2271};
2272static struct bin_attribute *hid_dev_bin_attrs[] = {
2273	&dev_bin_attr_report_desc,
2274	NULL
2275};
2276static const struct attribute_group hid_dev_group = {
2277	.attrs = hid_dev_attrs,
2278	.bin_attrs = hid_dev_bin_attrs,
2279};
2280__ATTRIBUTE_GROUPS(hid_dev);
2281
2282static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2283{
2284	struct hid_device *hdev = to_hid_device(dev);
2285
2286	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2287			hdev->bus, hdev->vendor, hdev->product))
2288		return -ENOMEM;
2289
2290	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2291		return -ENOMEM;
2292
2293	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2294		return -ENOMEM;
2295
2296	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2297		return -ENOMEM;
2298
2299	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2300			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2301		return -ENOMEM;
2302
2303	return 0;
2304}
2305
2306struct bus_type hid_bus_type = {
2307	.name		= "hid",
2308	.dev_groups	= hid_dev_groups,
2309	.drv_groups	= hid_drv_groups,
2310	.match		= hid_bus_match,
2311	.probe		= hid_device_probe,
2312	.remove		= hid_device_remove,
2313	.uevent		= hid_uevent,
2314};
2315EXPORT_SYMBOL(hid_bus_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316
2317int hid_add_device(struct hid_device *hdev)
2318{
2319	static atomic_t id = ATOMIC_INIT(0);
2320	int ret;
2321
2322	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2323		return -EBUSY;
2324
2325	hdev->quirks = hid_lookup_quirk(hdev);
2326
2327	/* we need to kill them here, otherwise they will stay allocated to
2328	 * wait for coming driver */
2329	if (hid_ignore(hdev))
 
2330		return -ENODEV;
2331
2332	/*
2333	 * Check for the mandatory transport channel.
2334	 */
2335	 if (!hdev->ll_driver->raw_request) {
2336		hid_err(hdev, "transport driver missing .raw_request()\n");
2337		return -EINVAL;
2338	 }
2339
2340	/*
2341	 * Read the device report descriptor once and use as template
2342	 * for the driver-specific modifications.
2343	 */
2344	ret = hdev->ll_driver->parse(hdev);
2345	if (ret)
2346		return ret;
2347	if (!hdev->dev_rdesc)
2348		return -ENODEV;
2349
2350	/*
2351	 * Scan generic devices for group information
2352	 */
2353	if (hid_ignore_special_drivers) {
2354		hdev->group = HID_GROUP_GENERIC;
2355	} else if (!hdev->group &&
2356		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2357		ret = hid_scan_report(hdev);
2358		if (ret)
2359			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2360	}
2361
2362	/* XXX hack, any other cleaner solution after the driver core
2363	 * is converted to allow more than 20 bytes as the device name? */
2364	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2365		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2366
2367	hid_debug_register(hdev, dev_name(&hdev->dev));
2368	ret = device_add(&hdev->dev);
2369	if (!ret)
2370		hdev->status |= HID_STAT_ADDED;
2371	else
2372		hid_debug_unregister(hdev);
2373
2374	return ret;
2375}
2376EXPORT_SYMBOL_GPL(hid_add_device);
2377
2378/**
2379 * hid_allocate_device - allocate new hid device descriptor
2380 *
2381 * Allocate and initialize hid device, so that hid_destroy_device might be
2382 * used to free it.
2383 *
2384 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2385 * error value.
2386 */
2387struct hid_device *hid_allocate_device(void)
2388{
2389	struct hid_device *hdev;
 
2390	int ret = -ENOMEM;
2391
2392	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2393	if (hdev == NULL)
2394		return ERR_PTR(ret);
2395
2396	device_initialize(&hdev->dev);
2397	hdev->dev.release = hid_device_release;
2398	hdev->dev.bus = &hid_bus_type;
2399	device_enable_async_suspend(&hdev->dev);
2400
2401	hid_close_report(hdev);
 
 
 
 
 
 
 
2402
2403	init_waitqueue_head(&hdev->debug_wait);
2404	INIT_LIST_HEAD(&hdev->debug_list);
2405	spin_lock_init(&hdev->debug_list_lock);
2406	sema_init(&hdev->driver_input_lock, 1);
2407	mutex_init(&hdev->ll_open_lock);
2408
2409	return hdev;
 
 
 
2410}
2411EXPORT_SYMBOL_GPL(hid_allocate_device);
2412
2413static void hid_remove_device(struct hid_device *hdev)
2414{
2415	if (hdev->status & HID_STAT_ADDED) {
2416		device_del(&hdev->dev);
2417		hid_debug_unregister(hdev);
2418		hdev->status &= ~HID_STAT_ADDED;
2419	}
2420	kfree(hdev->dev_rdesc);
2421	hdev->dev_rdesc = NULL;
2422	hdev->dev_rsize = 0;
2423}
2424
2425/**
2426 * hid_destroy_device - free previously allocated device
2427 *
2428 * @hdev: hid device
2429 *
2430 * If you allocate hid_device through hid_allocate_device, you should ever
2431 * free by this function.
2432 */
2433void hid_destroy_device(struct hid_device *hdev)
2434{
2435	hid_remove_device(hdev);
2436	put_device(&hdev->dev);
2437}
2438EXPORT_SYMBOL_GPL(hid_destroy_device);
2439
2440
2441static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2442{
2443	struct hid_driver *hdrv = data;
2444	struct hid_device *hdev = to_hid_device(dev);
2445
2446	if (hdev->driver == hdrv &&
2447	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2448	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2449		return device_reprobe(dev);
2450
2451	return 0;
2452}
2453
2454static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2455{
2456	struct hid_driver *hdrv = to_hid_driver(drv);
2457
2458	if (hdrv->match) {
2459		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2460				 __hid_bus_reprobe_drivers);
2461	}
2462
2463	return 0;
2464}
2465
2466static int __bus_removed_driver(struct device_driver *drv, void *data)
2467{
2468	return bus_rescan_devices(&hid_bus_type);
2469}
2470
2471int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2472		const char *mod_name)
2473{
2474	int ret;
2475
2476	hdrv->driver.name = hdrv->name;
2477	hdrv->driver.bus = &hid_bus_type;
2478	hdrv->driver.owner = owner;
2479	hdrv->driver.mod_name = mod_name;
2480
2481	INIT_LIST_HEAD(&hdrv->dyn_list);
2482	spin_lock_init(&hdrv->dyn_lock);
2483
2484	ret = driver_register(&hdrv->driver);
 
 
2485
2486	if (ret == 0)
2487		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2488				 __hid_bus_driver_added);
2489
2490	return ret;
2491}
2492EXPORT_SYMBOL_GPL(__hid_register_driver);
2493
2494void hid_unregister_driver(struct hid_driver *hdrv)
2495{
 
2496	driver_unregister(&hdrv->driver);
2497	hid_free_dynids(hdrv);
2498
2499	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2500}
2501EXPORT_SYMBOL_GPL(hid_unregister_driver);
2502
2503int hid_check_keys_pressed(struct hid_device *hid)
2504{
2505	struct hid_input *hidinput;
2506	int i;
2507
2508	if (!(hid->claimed & HID_CLAIMED_INPUT))
2509		return 0;
2510
2511	list_for_each_entry(hidinput, &hid->inputs, list) {
2512		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2513			if (hidinput->input->key[i])
2514				return 1;
2515	}
2516
2517	return 0;
2518}
2519
2520EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2521
2522static int __init hid_init(void)
2523{
2524	int ret;
2525
2526	if (hid_debug)
2527		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2528			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2529
2530	ret = bus_register(&hid_bus_type);
2531	if (ret) {
2532		pr_err("can't register hid bus\n");
2533		goto err;
2534	}
2535
2536	ret = hidraw_init();
2537	if (ret)
2538		goto err_bus;
2539
2540	hid_debug_init();
2541
2542	return 0;
2543err_bus:
2544	bus_unregister(&hid_bus_type);
2545err:
2546	return ret;
2547}
2548
2549static void __exit hid_exit(void)
2550{
2551	hid_debug_exit();
2552	hidraw_exit();
2553	bus_unregister(&hid_bus_type);
2554	hid_quirks_exit(HID_BUS_ANY);
2555}
2556
2557module_init(hid_init);
2558module_exit(hid_exit);
2559
2560MODULE_AUTHOR("Andreas Gal");
2561MODULE_AUTHOR("Vojtech Pavlik");
2562MODULE_AUTHOR("Jiri Kosina");
2563MODULE_LICENSE("GPL");
 
v3.1
 
   1/*
   2 *  HID support for Linux
   3 *
   4 *  Copyright (c) 1999 Andreas Gal
   5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
   6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
   7 *  Copyright (c) 2006-2010 Jiri Kosina
   8 */
   9
  10/*
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the Free
  13 * Software Foundation; either version 2 of the License, or (at your option)
  14 * any later version.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/list.h>
  24#include <linux/mm.h>
  25#include <linux/spinlock.h>
  26#include <asm/unaligned.h>
  27#include <asm/byteorder.h>
  28#include <linux/input.h>
  29#include <linux/wait.h>
  30#include <linux/vmalloc.h>
  31#include <linux/sched.h>
 
  32
  33#include <linux/hid.h>
  34#include <linux/hiddev.h>
  35#include <linux/hid-debug.h>
  36#include <linux/hidraw.h>
  37
  38#include "hid-ids.h"
  39
  40/*
  41 * Version Information
  42 */
  43
  44#define DRIVER_DESC "HID core driver"
  45#define DRIVER_LICENSE "GPL"
  46
  47int hid_debug = 0;
  48module_param_named(debug, hid_debug, int, 0600);
  49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
  50EXPORT_SYMBOL_GPL(hid_debug);
  51
 
 
 
 
  52/*
  53 * Register a new report for a device.
  54 */
  55
  56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
 
 
  57{
  58	struct hid_report_enum *report_enum = device->report_enum + type;
  59	struct hid_report *report;
  60
 
 
  61	if (report_enum->report_id_hash[id])
  62		return report_enum->report_id_hash[id];
  63
  64	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
  65	if (!report)
  66		return NULL;
  67
  68	if (id != 0)
  69		report_enum->numbered = 1;
  70
  71	report->id = id;
  72	report->type = type;
  73	report->size = 0;
  74	report->device = device;
 
  75	report_enum->report_id_hash[id] = report;
  76
  77	list_add_tail(&report->list, &report_enum->report_list);
  78
  79	return report;
  80}
  81EXPORT_SYMBOL_GPL(hid_register_report);
  82
  83/*
  84 * Register a new field for this report.
  85 */
  86
  87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
  88{
  89	struct hid_field *field;
  90
  91	if (report->maxfield == HID_MAX_FIELDS) {
  92		dbg_hid("too many fields in report\n");
  93		return NULL;
  94	}
  95
  96	field = kzalloc((sizeof(struct hid_field) +
  97			 usages * sizeof(struct hid_usage) +
  98			 values * sizeof(unsigned)), GFP_KERNEL);
  99	if (!field)
 100		return NULL;
 101
 102	field->index = report->maxfield++;
 103	report->field[field->index] = field;
 104	field->usage = (struct hid_usage *)(field + 1);
 105	field->value = (s32 *)(field->usage + usages);
 106	field->report = report;
 107
 108	return field;
 109}
 110
 111/*
 112 * Open a collection. The type/usage is pushed on the stack.
 113 */
 114
 115static int open_collection(struct hid_parser *parser, unsigned type)
 116{
 117	struct hid_collection *collection;
 118	unsigned usage;
 
 119
 120	usage = parser->local.usage[0];
 121
 122	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
 123		dbg_hid("collection stack overflow\n");
 124		return -1;
 
 
 
 
 
 
 
 
 
 
 125	}
 126
 127	if (parser->device->maxcollection == parser->device->collection_size) {
 128		collection = kmalloc(sizeof(struct hid_collection) *
 129				parser->device->collection_size * 2, GFP_KERNEL);
 
 
 
 130		if (collection == NULL) {
 131			dbg_hid("failed to reallocate collection array\n");
 132			return -1;
 133		}
 134		memcpy(collection, parser->device->collection,
 135			sizeof(struct hid_collection) *
 136			parser->device->collection_size);
 137		memset(collection + parser->device->collection_size, 0,
 138			sizeof(struct hid_collection) *
 139			parser->device->collection_size);
 140		kfree(parser->device->collection);
 141		parser->device->collection = collection;
 142		parser->device->collection_size *= 2;
 143	}
 144
 145	parser->collection_stack[parser->collection_stack_ptr++] =
 146		parser->device->maxcollection;
 147
 148	collection = parser->device->collection +
 149		parser->device->maxcollection++;
 150	collection->type = type;
 151	collection->usage = usage;
 152	collection->level = parser->collection_stack_ptr - 1;
 
 
 153
 154	if (type == HID_COLLECTION_APPLICATION)
 155		parser->device->maxapplication++;
 156
 157	return 0;
 158}
 159
 160/*
 161 * Close a collection.
 162 */
 163
 164static int close_collection(struct hid_parser *parser)
 165{
 166	if (!parser->collection_stack_ptr) {
 167		dbg_hid("collection stack underflow\n");
 168		return -1;
 169	}
 170	parser->collection_stack_ptr--;
 171	return 0;
 172}
 173
 174/*
 175 * Climb up the stack, search for the specified collection type
 176 * and return the usage.
 177 */
 178
 179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
 180{
 181	struct hid_collection *collection = parser->device->collection;
 182	int n;
 183
 184	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
 185		unsigned index = parser->collection_stack[n];
 186		if (collection[index].type == type)
 187			return collection[index].usage;
 188	}
 189	return 0; /* we know nothing about this usage type */
 190}
 191
 192/*
 193 * Add a usage to the temporary parser table.
 194 */
 195
 196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
 197{
 198	if (parser->local.usage_index >= HID_MAX_USAGES) {
 199		dbg_hid("usage index exceeded\n");
 200		return -1;
 201	}
 202	parser->local.usage[parser->local.usage_index] = usage;
 
 203	parser->local.collection_index[parser->local.usage_index] =
 204		parser->collection_stack_ptr ?
 205		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
 206	parser->local.usage_index++;
 207	return 0;
 208}
 209
 210/*
 211 * Register a new field for this report.
 212 */
 213
 214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
 215{
 216	struct hid_report *report;
 217	struct hid_field *field;
 218	int usages;
 219	unsigned offset;
 220	int i;
 
 
 
 221
 222	report = hid_register_report(parser->device, report_type, parser->global.report_id);
 
 223	if (!report) {
 224		dbg_hid("hid_register_report failed\n");
 225		return -1;
 226	}
 227
 228	if (parser->global.logical_maximum < parser->global.logical_minimum) {
 229		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
 
 
 
 
 
 
 
 
 230		return -1;
 231	}
 232
 233	offset = report->size;
 234	report->size += parser->global.report_size * parser->global.report_count;
 235
 236	if (!parser->local.usage_index) /* Ignore padding fields */
 237		return 0;
 238
 239	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
 
 240
 241	field = hid_register_field(report, usages, parser->global.report_count);
 242	if (!field)
 243		return 0;
 244
 245	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
 246	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
 247	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
 248
 249	for (i = 0; i < usages; i++) {
 250		int j = i;
 251		/* Duplicate the last usage we parsed if we have excess values */
 252		if (i >= parser->local.usage_index)
 253			j = parser->local.usage_index - 1;
 254		field->usage[i].hid = parser->local.usage[j];
 255		field->usage[i].collection_index =
 256			parser->local.collection_index[j];
 
 
 257	}
 258
 259	field->maxusage = usages;
 260	field->flags = flags;
 261	field->report_offset = offset;
 262	field->report_type = report_type;
 263	field->report_size = parser->global.report_size;
 264	field->report_count = parser->global.report_count;
 265	field->logical_minimum = parser->global.logical_minimum;
 266	field->logical_maximum = parser->global.logical_maximum;
 267	field->physical_minimum = parser->global.physical_minimum;
 268	field->physical_maximum = parser->global.physical_maximum;
 269	field->unit_exponent = parser->global.unit_exponent;
 270	field->unit = parser->global.unit;
 271
 272	return 0;
 273}
 274
 275/*
 276 * Read data value from item.
 277 */
 278
 279static u32 item_udata(struct hid_item *item)
 280{
 281	switch (item->size) {
 282	case 1: return item->data.u8;
 283	case 2: return item->data.u16;
 284	case 4: return item->data.u32;
 285	}
 286	return 0;
 287}
 288
 289static s32 item_sdata(struct hid_item *item)
 290{
 291	switch (item->size) {
 292	case 1: return item->data.s8;
 293	case 2: return item->data.s16;
 294	case 4: return item->data.s32;
 295	}
 296	return 0;
 297}
 298
 299/*
 300 * Process a global item.
 301 */
 302
 303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
 304{
 
 305	switch (item->tag) {
 306	case HID_GLOBAL_ITEM_TAG_PUSH:
 307
 308		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
 309			dbg_hid("global environment stack overflow\n");
 310			return -1;
 311		}
 312
 313		memcpy(parser->global_stack + parser->global_stack_ptr++,
 314			&parser->global, sizeof(struct hid_global));
 315		return 0;
 316
 317	case HID_GLOBAL_ITEM_TAG_POP:
 318
 319		if (!parser->global_stack_ptr) {
 320			dbg_hid("global environment stack underflow\n");
 321			return -1;
 322		}
 323
 324		memcpy(&parser->global, parser->global_stack +
 325			--parser->global_stack_ptr, sizeof(struct hid_global));
 326		return 0;
 327
 328	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
 329		parser->global.usage_page = item_udata(item);
 330		return 0;
 331
 332	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
 333		parser->global.logical_minimum = item_sdata(item);
 334		return 0;
 335
 336	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
 337		if (parser->global.logical_minimum < 0)
 338			parser->global.logical_maximum = item_sdata(item);
 339		else
 340			parser->global.logical_maximum = item_udata(item);
 341		return 0;
 342
 343	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
 344		parser->global.physical_minimum = item_sdata(item);
 345		return 0;
 346
 347	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
 348		if (parser->global.physical_minimum < 0)
 349			parser->global.physical_maximum = item_sdata(item);
 350		else
 351			parser->global.physical_maximum = item_udata(item);
 352		return 0;
 353
 354	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
 355		parser->global.unit_exponent = item_sdata(item);
 
 
 
 
 
 
 
 
 356		return 0;
 357
 358	case HID_GLOBAL_ITEM_TAG_UNIT:
 359		parser->global.unit = item_udata(item);
 360		return 0;
 361
 362	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
 363		parser->global.report_size = item_udata(item);
 364		if (parser->global.report_size > 32) {
 365			dbg_hid("invalid report_size %d\n",
 366					parser->global.report_size);
 367			return -1;
 368		}
 369		return 0;
 370
 371	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
 372		parser->global.report_count = item_udata(item);
 373		if (parser->global.report_count > HID_MAX_USAGES) {
 374			dbg_hid("invalid report_count %d\n",
 375					parser->global.report_count);
 376			return -1;
 377		}
 378		return 0;
 379
 380	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
 381		parser->global.report_id = item_udata(item);
 382		if (parser->global.report_id == 0) {
 383			dbg_hid("report_id 0 is invalid\n");
 
 
 384			return -1;
 385		}
 386		return 0;
 387
 388	default:
 389		dbg_hid("unknown global tag 0x%x\n", item->tag);
 390		return -1;
 391	}
 392}
 393
 394/*
 395 * Process a local item.
 396 */
 397
 398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
 399{
 400	__u32 data;
 401	unsigned n;
 
 402
 403	data = item_udata(item);
 404
 405	switch (item->tag) {
 406	case HID_LOCAL_ITEM_TAG_DELIMITER:
 407
 408		if (data) {
 409			/*
 410			 * We treat items before the first delimiter
 411			 * as global to all usage sets (branch 0).
 412			 * In the moment we process only these global
 413			 * items and the first delimiter set.
 414			 */
 415			if (parser->local.delimiter_depth != 0) {
 416				dbg_hid("nested delimiters\n");
 417				return -1;
 418			}
 419			parser->local.delimiter_depth++;
 420			parser->local.delimiter_branch++;
 421		} else {
 422			if (parser->local.delimiter_depth < 1) {
 423				dbg_hid("bogus close delimiter\n");
 424				return -1;
 425			}
 426			parser->local.delimiter_depth--;
 427		}
 428		return 1;
 429
 430	case HID_LOCAL_ITEM_TAG_USAGE:
 431
 432		if (parser->local.delimiter_branch > 1) {
 433			dbg_hid("alternative usage ignored\n");
 434			return 0;
 435		}
 436
 437		if (item->size <= 2)
 438			data = (parser->global.usage_page << 16) + data;
 439
 440		return hid_add_usage(parser, data);
 441
 442	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
 443
 444		if (parser->local.delimiter_branch > 1) {
 445			dbg_hid("alternative usage ignored\n");
 446			return 0;
 447		}
 448
 449		if (item->size <= 2)
 450			data = (parser->global.usage_page << 16) + data;
 451
 452		parser->local.usage_minimum = data;
 453		return 0;
 454
 455	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
 456
 457		if (parser->local.delimiter_branch > 1) {
 458			dbg_hid("alternative usage ignored\n");
 459			return 0;
 460		}
 461
 462		if (item->size <= 2)
 463			data = (parser->global.usage_page << 16) + data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465		for (n = parser->local.usage_minimum; n <= data; n++)
 466			if (hid_add_usage(parser, n)) {
 467				dbg_hid("hid_add_usage failed\n");
 468				return -1;
 469			}
 470		return 0;
 471
 472	default:
 473
 474		dbg_hid("unknown local item tag 0x%x\n", item->tag);
 475		return 0;
 476	}
 477	return 0;
 478}
 479
 480/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481 * Process a main item.
 482 */
 483
 484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
 485{
 486	__u32 data;
 487	int ret;
 488
 
 
 489	data = item_udata(item);
 490
 491	switch (item->tag) {
 492	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
 493		ret = open_collection(parser, data & 0xff);
 494		break;
 495	case HID_MAIN_ITEM_TAG_END_COLLECTION:
 496		ret = close_collection(parser);
 497		break;
 498	case HID_MAIN_ITEM_TAG_INPUT:
 499		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
 500		break;
 501	case HID_MAIN_ITEM_TAG_OUTPUT:
 502		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
 503		break;
 504	case HID_MAIN_ITEM_TAG_FEATURE:
 505		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
 506		break;
 507	default:
 508		dbg_hid("unknown main item tag 0x%x\n", item->tag);
 509		ret = 0;
 510	}
 511
 512	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
 513
 514	return ret;
 515}
 516
 517/*
 518 * Process a reserved item.
 519 */
 520
 521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
 522{
 523	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
 524	return 0;
 525}
 526
 527/*
 528 * Free a report and all registered fields. The field->usage and
 529 * field->value table's are allocated behind the field, so we need
 530 * only to free(field) itself.
 531 */
 532
 533static void hid_free_report(struct hid_report *report)
 534{
 535	unsigned n;
 536
 537	for (n = 0; n < report->maxfield; n++)
 538		kfree(report->field[n]);
 539	kfree(report);
 540}
 541
 542/*
 543 * Free a device structure, all reports, and all fields.
 
 544 */
 545
 546static void hid_device_release(struct device *dev)
 547{
 548	struct hid_device *device = container_of(dev, struct hid_device, dev);
 549	unsigned i, j;
 550
 551	for (i = 0; i < HID_REPORT_TYPES; i++) {
 552		struct hid_report_enum *report_enum = device->report_enum + i;
 553
 554		for (j = 0; j < 256; j++) {
 555			struct hid_report *report = report_enum->report_id_hash[j];
 556			if (report)
 557				hid_free_report(report);
 558		}
 
 
 559	}
 560
 561	kfree(device->rdesc);
 
 
 
 562	kfree(device->collection);
 563	kfree(device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564}
 565
 566/*
 567 * Fetch a report description item from the data stream. We support long
 568 * items, though they are not used yet.
 569 */
 570
 571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
 572{
 573	u8 b;
 574
 575	if ((end - start) <= 0)
 576		return NULL;
 577
 578	b = *start++;
 579
 580	item->type = (b >> 2) & 3;
 581	item->tag  = (b >> 4) & 15;
 582
 583	if (item->tag == HID_ITEM_TAG_LONG) {
 584
 585		item->format = HID_ITEM_FORMAT_LONG;
 586
 587		if ((end - start) < 2)
 588			return NULL;
 589
 590		item->size = *start++;
 591		item->tag  = *start++;
 592
 593		if ((end - start) < item->size)
 594			return NULL;
 595
 596		item->data.longdata = start;
 597		start += item->size;
 598		return start;
 599	}
 600
 601	item->format = HID_ITEM_FORMAT_SHORT;
 602	item->size = b & 3;
 603
 604	switch (item->size) {
 605	case 0:
 606		return start;
 607
 608	case 1:
 609		if ((end - start) < 1)
 610			return NULL;
 611		item->data.u8 = *start++;
 612		return start;
 613
 614	case 2:
 615		if ((end - start) < 2)
 616			return NULL;
 617		item->data.u16 = get_unaligned_le16(start);
 618		start = (__u8 *)((__le16 *)start + 1);
 619		return start;
 620
 621	case 3:
 622		item->size++;
 623		if ((end - start) < 4)
 624			return NULL;
 625		item->data.u32 = get_unaligned_le32(start);
 626		start = (__u8 *)((__le32 *)start + 1);
 627		return start;
 628	}
 629
 630	return NULL;
 631}
 632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633/**
 634 * hid_parse_report - parse device report
 635 *
 636 * @device: hid device
 637 * @start: report start
 638 * @size: report size
 639 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 640 * Parse a report description into a hid_device structure. Reports are
 641 * enumerated, fields are attached to these reports.
 642 * 0 returned on success, otherwise nonzero error value.
 
 
 
 643 */
 644int hid_parse_report(struct hid_device *device, __u8 *start,
 645		unsigned size)
 646{
 647	struct hid_parser *parser;
 648	struct hid_item item;
 
 
 
 649	__u8 *end;
 
 650	int ret;
 651	static int (*dispatch_type[])(struct hid_parser *parser,
 652				      struct hid_item *item) = {
 653		hid_parser_main,
 654		hid_parser_global,
 655		hid_parser_local,
 656		hid_parser_reserved
 657	};
 658
 
 
 
 
 
 
 
 
 
 
 
 
 659	if (device->driver->report_fixup)
 660		start = device->driver->report_fixup(device, start, &size);
 
 
 661
 662	device->rdesc = kmemdup(start, size, GFP_KERNEL);
 663	if (device->rdesc == NULL)
 
 664		return -ENOMEM;
 
 
 665	device->rsize = size;
 666
 667	parser = vzalloc(sizeof(struct hid_parser));
 668	if (!parser) {
 669		ret = -ENOMEM;
 670		goto err;
 671	}
 672
 673	parser->device = device;
 674
 675	end = start + size;
 
 
 
 
 
 
 
 
 
 676	ret = -EINVAL;
 677	while ((start = fetch_item(start, end, &item)) != NULL) {
 
 678
 679		if (item.format != HID_ITEM_FORMAT_SHORT) {
 680			dbg_hid("unexpected long global item\n");
 681			goto err;
 682		}
 683
 684		if (dispatch_type[item.type](parser, &item)) {
 685			dbg_hid("item %u %u %u %u parsing failed\n",
 686				item.format, (unsigned)item.size,
 687				(unsigned)item.type, (unsigned)item.tag);
 688			goto err;
 689		}
 690
 691		if (start == end) {
 692			if (parser->collection_stack_ptr) {
 693				dbg_hid("unbalanced collection at end of report description\n");
 694				goto err;
 695			}
 696			if (parser->local.delimiter_depth) {
 697				dbg_hid("unbalanced delimiter at end of report description\n");
 698				goto err;
 699			}
 
 
 
 
 
 
 
 
 700			vfree(parser);
 
 
 701			return 0;
 702		}
 703	}
 704
 705	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
 
 706err:
 
 
 707	vfree(parser);
 
 708	return ret;
 709}
 710EXPORT_SYMBOL_GPL(hid_parse_report);
 711
 712/*
 713 * Convert a signed n-bit integer to signed 32-bit integer. Common
 714 * cases are done through the compiler, the screwed things has to be
 715 * done by hand.
 716 */
 717
 718static s32 snto32(__u32 value, unsigned n)
 719{
 720	switch (n) {
 721	case 8:  return ((__s8)value);
 722	case 16: return ((__s16)value);
 723	case 32: return ((__s32)value);
 724	}
 725	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
 
 
 
 
 
 726}
 
 727
 728/*
 729 * Convert a signed 32-bit integer to a signed n-bit integer.
 730 */
 731
 732static u32 s32ton(__s32 value, unsigned n)
 733{
 734	s32 a = value >> (n - 1);
 735	if (a && a != -1)
 736		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
 737	return value & ((1 << n) - 1);
 738}
 739
 740/*
 741 * Extract/implement a data field from/to a little endian report (bit array).
 742 *
 743 * Code sort-of follows HID spec:
 744 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
 745 *
 746 * While the USB HID spec allows unlimited length bit fields in "report
 747 * descriptors", most devices never use more than 16 bits.
 748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
 749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
 750 */
 751
 752static __u32 extract(const struct hid_device *hid, __u8 *report,
 753		     unsigned offset, unsigned n)
 754{
 755	u64 x;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756
 757	if (n > 32)
 758		hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
 759			 n, current->comm);
 760
 761	report += offset >> 3;  /* adjust byte index */
 762	offset &= 7;            /* now only need bit offset into one byte */
 763	x = get_unaligned_le64(report);
 764	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
 765	return (u32) x;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 768/*
 769 * "implement" : set bits in a little endian bit stream.
 770 * Same concepts as "extract" (see comments above).
 771 * The data mangled in the bit stream remains in little endian
 772 * order the whole time. It make more sense to talk about
 773 * endianness of register values by considering a register
 774 * a "cached" copy of the little endiad bit stream.
 775 */
 776static void implement(const struct hid_device *hid, __u8 *report,
 777		      unsigned offset, unsigned n, __u32 value)
 778{
 779	u64 x;
 780	u64 m = (1ULL << n) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782	if (n > 32)
 
 
 
 783		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
 784			 __func__, n, current->comm);
 
 
 
 
 
 
 
 
 
 
 
 
 785
 786	if (value > m)
 787		hid_warn(hid, "%s() called with too large value %d! (%s)\n",
 788			 __func__, value, current->comm);
 789	WARN_ON(value > m);
 790	value &= m;
 791
 792	report += offset >> 3;
 793	offset &= 7;
 794
 795	x = get_unaligned_le64(report);
 796	x &= ~(m << offset);
 797	x |= ((u64)value) << offset;
 798	put_unaligned_le64(x, report);
 799}
 800
 801/*
 802 * Search an array for a value.
 803 */
 804
 805static int search(__s32 *array, __s32 value, unsigned n)
 806{
 807	while (n--) {
 808		if (*array++ == value)
 809			return 0;
 810	}
 811	return -1;
 812}
 813
 814/**
 815 * hid_match_report - check if driver's raw_event should be called
 816 *
 817 * @hid: hid device
 818 * @report_type: type to match against
 819 *
 820 * compare hid->driver->report_table->report_type to report->type
 821 */
 822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
 823{
 824	const struct hid_report_id *id = hid->driver->report_table;
 825
 826	if (!id) /* NULL means all */
 827		return 1;
 828
 829	for (; id->report_type != HID_TERMINATOR; id++)
 830		if (id->report_type == HID_ANY_ID ||
 831				id->report_type == report->type)
 832			return 1;
 833	return 0;
 834}
 835
 836/**
 837 * hid_match_usage - check if driver's event should be called
 838 *
 839 * @hid: hid device
 840 * @usage: usage to match against
 841 *
 842 * compare hid->driver->usage_table->usage_{type,code} to
 843 * usage->usage_{type,code}
 844 */
 845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
 846{
 847	const struct hid_usage_id *id = hid->driver->usage_table;
 848
 849	if (!id) /* NULL means all */
 850		return 1;
 851
 852	for (; id->usage_type != HID_ANY_ID - 1; id++)
 853		if ((id->usage_hid == HID_ANY_ID ||
 854				id->usage_hid == usage->hid) &&
 855				(id->usage_type == HID_ANY_ID ||
 856				id->usage_type == usage->type) &&
 857				(id->usage_code == HID_ANY_ID ||
 858				 id->usage_code == usage->code))
 859			return 1;
 860	return 0;
 861}
 862
 863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
 864		struct hid_usage *usage, __s32 value, int interrupt)
 865{
 866	struct hid_driver *hdrv = hid->driver;
 867	int ret;
 868
 869	hid_dump_input(hid, usage, value);
 
 870
 871	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
 872		ret = hdrv->event(hid, field, usage, value);
 873		if (ret != 0) {
 874			if (ret < 0)
 875				dbg_hid("%s's event failed with %d\n",
 876						hdrv->name, ret);
 877			return;
 878		}
 879	}
 880
 881	if (hid->claimed & HID_CLAIMED_INPUT)
 882		hidinput_hid_event(hid, field, usage, value);
 883	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
 884		hid->hiddev_hid_event(hid, field, usage, value);
 885}
 886
 887/*
 888 * Analyse a received field, and fetch the data from it. The field
 889 * content is stored for next report processing (we do differential
 890 * reporting to the layer).
 891 */
 892
 893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
 894			    __u8 *data, int interrupt)
 895{
 896	unsigned n;
 897	unsigned count = field->report_count;
 898	unsigned offset = field->report_offset;
 899	unsigned size = field->report_size;
 900	__s32 min = field->logical_minimum;
 901	__s32 max = field->logical_maximum;
 902	__s32 *value;
 903
 904	value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
 905	if (!value)
 906		return;
 907
 908	for (n = 0; n < count; n++) {
 909
 910		value[n] = min < 0 ?
 911			snto32(extract(hid, data, offset + n * size, size),
 912			       size) :
 913			extract(hid, data, offset + n * size, size);
 914
 915		/* Ignore report if ErrorRollOver */
 916		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
 917		    value[n] >= min && value[n] <= max &&
 
 918		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
 919			goto exit;
 920	}
 921
 922	for (n = 0; n < count; n++) {
 923
 924		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
 925			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
 926			continue;
 927		}
 928
 929		if (field->value[n] >= min && field->value[n] <= max
 
 930			&& field->usage[field->value[n] - min].hid
 931			&& search(value, field->value[n], count))
 932				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
 933
 934		if (value[n] >= min && value[n] <= max
 
 935			&& field->usage[value[n] - min].hid
 936			&& search(field->value, value[n], count))
 937				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
 938	}
 939
 940	memcpy(field->value, value, count * sizeof(__s32));
 941exit:
 942	kfree(value);
 943}
 944
 945/*
 946 * Output the field into the report.
 947 */
 948
 949static void hid_output_field(const struct hid_device *hid,
 950			     struct hid_field *field, __u8 *data)
 951{
 952	unsigned count = field->report_count;
 953	unsigned offset = field->report_offset;
 954	unsigned size = field->report_size;
 955	unsigned n;
 956
 957	for (n = 0; n < count; n++) {
 958		if (field->logical_minimum < 0)	/* signed values */
 959			implement(hid, data, offset + n * size, size,
 960				  s32ton(field->value[n], size));
 961		else				/* unsigned values */
 962			implement(hid, data, offset + n * size, size,
 963				  field->value[n]);
 964	}
 965}
 966
 967/*
 968 * Create a report.
 
 969 */
 970
 971void hid_output_report(struct hid_report *report, __u8 *data)
 972{
 973	unsigned n;
 974
 975	if (report->id > 0)
 976		*data++ = report->id;
 977
 978	memset(data, 0, ((report->size - 1) >> 3) + 1);
 979	for (n = 0; n < report->maxfield; n++)
 980		hid_output_field(report->device, report->field[n], data);
 981}
 982EXPORT_SYMBOL_GPL(hid_output_report);
 983
 984/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985 * Set a field value. The report this field belongs to has to be
 986 * created and transferred to the device, to set this value in the
 987 * device.
 988 */
 989
 990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
 991{
 992	unsigned size = field->report_size;
 
 
 
 
 
 993
 994	hid_dump_input(field->report->device, field->usage + offset, value);
 995
 996	if (offset >= field->report_count) {
 997		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
 
 998		return -1;
 999	}
1000	if (field->logical_minimum < 0) {
1001		if (value != snto32(s32ton(value, size), size)) {
1002			dbg_hid("value %d is out of range\n", value);
1003			return -1;
1004		}
1005	}
1006	field->value[offset] = value;
1007	return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012		const u8 *data)
1013{
1014	struct hid_report *report;
1015	unsigned int n = 0;	/* Normally report number is 0 */
1016
1017	/* Device uses numbered reports, data[0] is report number */
1018	if (report_enum->numbered)
1019		n = *data;
1020
1021	report = report_enum->report_id_hash[n];
1022	if (report == NULL)
1023		dbg_hid("undefined report_id %u received\n", n);
1024
1025	return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029		int interrupt)
1030{
1031	struct hid_report_enum *report_enum = hid->report_enum + type;
1032	struct hid_report *report;
 
1033	unsigned int a;
1034	int rsize, csize = size;
1035	u8 *cdata = data;
 
1036
1037	report = hid_get_report(report_enum, data);
1038	if (!report)
1039		return;
1040
1041	if (report_enum->numbered) {
1042		cdata++;
1043		csize--;
1044	}
1045
1046	rsize = ((report->size - 1) >> 3) + 1;
1047
1048	if (rsize > HID_MAX_BUFFER_SIZE)
1049		rsize = HID_MAX_BUFFER_SIZE;
1050
1051	if (csize < rsize) {
1052		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053				csize, rsize);
1054		memset(cdata + csize, 0, rsize - csize);
1055	}
1056
1057	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058		hid->hiddev_report_event(hid, report);
1059	if (hid->claimed & HID_CLAIMED_HIDRAW)
1060		hidraw_report_event(hid, data, size);
 
 
 
1061
1062	for (a = 0; a < report->maxfield; a++)
1063		hid_input_field(hid, report->field[a], cdata, interrupt);
 
 
 
 
 
1064
1065	if (hid->claimed & HID_CLAIMED_INPUT)
1066		hidinput_report_event(hid, report);
 
 
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1082{
1083	struct hid_report_enum *report_enum;
1084	struct hid_driver *hdrv;
1085	struct hid_report *report;
1086	char *buf;
1087	unsigned int i;
1088	int ret;
1089
1090	if (!hid || !hid->driver)
1091		return -ENODEV;
 
 
 
 
 
 
 
 
1092	report_enum = hid->report_enum + type;
1093	hdrv = hid->driver;
1094
1095	if (!size) {
1096		dbg_hid("empty report\n");
1097		return -1;
 
1098	}
1099
1100	buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
 
 
1101
1102	if (!buf)
1103		goto nomem;
1104
1105	/* dump the report */
1106	snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107			"\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108	hid_debug_event(hid, buf);
1109
1110	for (i = 0; i < size; i++) {
1111		snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112				" %02x", data[i]);
1113		hid_debug_event(hid, buf);
1114	}
1115	hid_debug_event(hid, "\n");
1116	kfree(buf);
1117
1118nomem:
1119	report = hid_get_report(report_enum, data);
1120
1121	if (!report)
1122		return -1;
1123
1124	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125		ret = hdrv->raw_event(hid, report, data, size);
1126		if (ret != 0)
1127			return ret < 0 ? ret : 0;
1128	}
1129
1130	hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132	return 0;
 
 
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137		const struct hid_device_id *id)
1138{
1139	return id->bus == hdev->bus &&
 
1140		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141		(id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145		const struct hid_device_id *id)
1146{
1147	for (; id->bus; id++)
1148		if (hid_match_one_id(hdev, id))
1149			return id;
1150
1151	return NULL;
1152}
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157	{ }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162	return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168		struct bin_attribute *attr,
1169		char *buf, loff_t off, size_t count)
1170{
1171	struct device *dev = container_of(kobj, struct device, kobj);
1172	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174	if (off >= hdev->rsize)
1175		return 0;
1176
1177	if (off + count > hdev->rsize)
1178		count = hdev->rsize - off;
1179
1180	memcpy(buf, hdev->rdesc + off, count);
1181
1182	return count;
1183}
1184
 
 
 
 
 
 
 
 
 
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186	.attr = { .name = "report_descriptor", .mode = 0444 },
1187	.read = read_report_descriptor,
1188	.size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
 
 
 
 
 
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194		"Joystick", "Gamepad", "Keyboard", "Keypad",
1195		"Multi-Axis Controller"
1196	};
1197	const char *type, *bus;
1198	char buf[64];
1199	unsigned int i;
1200	int len;
1201	int ret;
1202
1203	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207	if (hdev->bus != BUS_USB)
1208		connect_mask &= ~HID_CONNECT_HIDDEV;
1209	if (hid_hiddev(hdev))
1210		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214		hdev->claimed |= HID_CLAIMED_INPUT;
 
1215	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216			!hdev->hiddev_connect(hdev,
1217				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218		hdev->claimed |= HID_CLAIMED_HIDDEV;
1219	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220		hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222	if (!hdev->claimed) {
1223		hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
 
 
 
 
 
1224		return -ENODEV;
1225	}
1226
1227	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229		hdev->ff_init(hdev);
1230
1231	len = 0;
1232	if (hdev->claimed & HID_CLAIMED_INPUT)
1233		len += sprintf(buf + len, "input");
1234	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236				hdev->minor);
1237	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239				((struct hidraw *)hdev->hidraw)->minor);
1240
1241	type = "Device";
1242	for (i = 0; i < hdev->maxcollection; i++) {
1243		struct hid_collection *col = &hdev->collection[i];
1244		if (col->type == HID_COLLECTION_APPLICATION &&
1245		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247			type = types[col->usage & 0xffff];
1248			break;
1249		}
1250	}
1251
1252	switch (hdev->bus) {
1253	case BUS_USB:
1254		bus = "USB";
1255		break;
1256	case BUS_BLUETOOTH:
1257		bus = "BLUETOOTH";
1258		break;
 
 
 
1259	default:
1260		bus = "<UNKNOWN>";
1261	}
1262
1263	ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264	if (ret)
1265		hid_warn(hdev,
1266			 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270		 type, hdev->name, hdev->phys);
1271
1272	return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278	device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279	if (hdev->claimed & HID_CLAIMED_INPUT)
1280		hidinput_disconnect(hdev);
1281	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282		hdev->hiddev_disconnect(hdev);
1283	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284		hidraw_disconnect(hdev);
 
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291	{ HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294	{ HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295	{ HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296	{ HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353	{ HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355	{ HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360	{ HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362	{ HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364	{ HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365	{ HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366	{ HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367	{ HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374	{ HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379	{ HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381	{ HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382	{ HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383	{ HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385	{ HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387	{ HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389	{ HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392	{ HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393	{ HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394	{ HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395	{ HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396	{ HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397	{ HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398	{ HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400	{ HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401	{ HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430	{ HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440	{ HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459	{ HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461	{ HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462	{ HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463	{ HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465	{ HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471	{ HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473	{ HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474	{ HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481	{ HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482	{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490	{ HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492	{ HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493	{ HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494	{ HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495	{ HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500	{ HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502	{ HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508	{ HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509	{ HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510	{ HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512	{ HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513	{ HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517	{ }
1518};
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520struct hid_dynid {
1521	struct list_head list;
1522	struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535		size_t count)
1536{
1537	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538	struct hid_dynid *dynid;
1539	__u32 bus, vendor, product;
1540	unsigned long driver_data = 0;
1541	int ret;
1542
1543	ret = sscanf(buf, "%x %x %x %lx",
1544			&bus, &vendor, &product, &driver_data);
1545	if (ret < 3)
1546		return -EINVAL;
1547
1548	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549	if (!dynid)
1550		return -ENOMEM;
1551
1552	dynid->id.bus = bus;
 
1553	dynid->id.vendor = vendor;
1554	dynid->id.product = product;
1555	dynid->id.driver_data = driver_data;
1556
1557	spin_lock(&hdrv->dyn_lock);
1558	list_add_tail(&dynid->list, &hdrv->dyn_list);
1559	spin_unlock(&hdrv->dyn_lock);
1560
1561	ret = 0;
1562	if (get_driver(&hdrv->driver)) {
1563		ret = driver_attach(&hdrv->driver);
1564		put_driver(&hdrv->driver);
1565	}
1566
1567	return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
 
 
 
 
 
 
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573	struct hid_dynid *dynid, *n;
1574
1575	spin_lock(&hdrv->dyn_lock);
1576	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577		list_del(&dynid->list);
1578		kfree(dynid);
1579	}
1580	spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584		struct hid_driver *hdrv)
1585{
1586	struct hid_dynid *dynid;
1587
1588	spin_lock(&hdrv->dyn_lock);
1589	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590		if (hid_match_one_id(hdev, &dynid->id)) {
1591			spin_unlock(&hdrv->dyn_lock);
1592			return &dynid->id;
1593		}
1594	}
1595	spin_unlock(&hdrv->dyn_lock);
1596
1597	return hid_match_id(hdev, hdrv->id_table);
1598}
 
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
 
 
 
1604
1605	if (!hid_match_device(hdev, hdrv))
1606		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608	/* generic wants all that don't have specialized driver */
1609	if (!strncmp(hdrv->name, "generic-", 8))
1610		return !hid_match_id(hdev, hid_have_special_driver);
1611
1612	return 1;
1613}
 
1614
1615static int hid_device_probe(struct device *dev)
1616{
1617	struct hid_driver *hdrv = container_of(dev->driver,
1618			struct hid_driver, driver);
1619	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620	const struct hid_device_id *id;
1621	int ret = 0;
1622
 
 
 
 
 
 
 
 
1623	if (!hdev->driver) {
1624		id = hid_match_device(hdev, hdrv);
1625		if (id == NULL)
1626			return -ENODEV;
 
 
1627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1628		hdev->driver = hdrv;
1629		if (hdrv->probe) {
1630			ret = hdrv->probe(hdev, id);
1631		} else { /* default probe */
1632			ret = hid_parse(hdev);
1633			if (!ret)
1634				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635		}
1636		if (ret)
 
1637			hdev->driver = NULL;
 
1638	}
 
 
 
 
1639	return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645	struct hid_driver *hdrv = hdev->driver;
 
 
 
 
 
 
 
1646
 
1647	if (hdrv) {
1648		if (hdrv->remove)
1649			hdrv->remove(hdev);
1650		else /* default remove */
1651			hid_hw_stop(hdev);
 
1652		hdev->driver = NULL;
1653	}
1654
1655	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1656}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1659{
1660	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
1662	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663			hdev->bus, hdev->vendor, hdev->product))
1664		return -ENOMEM;
1665
1666	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667		return -ENOMEM;
1668
1669	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670		return -ENOMEM;
1671
1672	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673		return -ENOMEM;
1674
1675	if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676			hdev->bus, hdev->vendor, hdev->product))
1677		return -ENOMEM;
1678
1679	return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683	.name		= "hid",
 
 
1684	.match		= hid_bus_match,
1685	.probe		= hid_device_probe,
1686	.remove		= hid_device_remove,
1687	.uevent		= hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694	{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702	{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703	{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706	{ HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707	{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708	{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710	{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713	{ HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716	{ HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717	{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719	{ HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734	{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783	{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784	{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785	{ HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824	{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839	{ HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840	{ HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846	{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850	{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851	{ }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862	/* appletouch driver */
1863	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897	{ }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902	switch (hdev->vendor) {
1903	case USB_VENDOR_ID_CODEMERCS:
1904		/* ignore all Code Mercenaries IOWarrior devices */
1905		if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906				hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907			return true;
1908		break;
1909	case USB_VENDOR_ID_LOGITECH:
1910		if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911				hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912			return true;
1913		break;
1914	case USB_VENDOR_ID_SOUNDGRAPH:
1915		if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916		    hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917			return true;
1918		break;
1919	case USB_VENDOR_ID_HANWANG:
1920		if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921		    hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922			return true;
1923		break;
1924	case USB_VENDOR_ID_JESS:
1925		if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926				hdev->type == HID_TYPE_USBNONE)
1927			return true;
1928	break;
1929	}
1930
1931	if (hdev->type == HID_TYPE_USBMOUSE &&
1932			hid_match_id(hdev, hid_mouse_ignore_list))
1933		return true;
1934
1935	return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940	static atomic_t id = ATOMIC_INIT(0);
1941	int ret;
1942
1943	if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944		return -EBUSY;
1945
 
 
1946	/* we need to kill them here, otherwise they will stay allocated to
1947	 * wait for coming driver */
1948	if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949            && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
1950		return -ENODEV;
1951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1952	/* XXX hack, any other cleaner solution after the driver core
1953	 * is converted to allow more than 20 bytes as the device name? */
1954	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955		     hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957	hid_debug_register(hdev, dev_name(&hdev->dev));
1958	ret = device_add(&hdev->dev);
1959	if (!ret)
1960		hdev->status |= HID_STAT_ADDED;
1961	else
1962		hid_debug_unregister(hdev);
1963
1964	return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979	struct hid_device *hdev;
1980	unsigned int i;
1981	int ret = -ENOMEM;
1982
1983	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984	if (hdev == NULL)
1985		return ERR_PTR(ret);
1986
1987	device_initialize(&hdev->dev);
1988	hdev->dev.release = hid_device_release;
1989	hdev->dev.bus = &hid_bus_type;
 
1990
1991	hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992			sizeof(struct hid_collection), GFP_KERNEL);
1993	if (hdev->collection == NULL)
1994		goto err;
1995	hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997	for (i = 0; i < HID_REPORT_TYPES; i++)
1998		INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000	init_waitqueue_head(&hdev->debug_wait);
2001	INIT_LIST_HEAD(&hdev->debug_list);
 
 
 
2002
2003	return hdev;
2004err:
2005	put_device(&hdev->dev);
2006	return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012	if (hdev->status & HID_STAT_ADDED) {
2013		device_del(&hdev->dev);
2014		hid_debug_unregister(hdev);
2015		hdev->status &= ~HID_STAT_ADDED;
2016	}
 
 
 
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
2029	hid_remove_device(hdev);
2030	put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035		const char *mod_name)
2036{
2037	int ret;
2038
2039	hdrv->driver.name = hdrv->name;
2040	hdrv->driver.bus = &hid_bus_type;
2041	hdrv->driver.owner = owner;
2042	hdrv->driver.mod_name = mod_name;
2043
2044	INIT_LIST_HEAD(&hdrv->dyn_list);
2045	spin_lock_init(&hdrv->dyn_lock);
2046
2047	ret = driver_register(&hdrv->driver);
2048	if (ret)
2049		return ret;
2050
2051	ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052	if (ret)
2053		driver_unregister(&hdrv->driver);
2054
2055	return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061	driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062	driver_unregister(&hdrv->driver);
2063	hid_free_dynids(hdrv);
 
 
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069	struct hid_input *hidinput;
2070	int i;
2071
2072	if (!(hid->claimed & HID_CLAIMED_INPUT))
2073		return 0;
2074
2075	list_for_each_entry(hidinput, &hid->inputs, list) {
2076		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077			if (hidinput->input->key[i])
2078				return 1;
2079	}
2080
2081	return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
2086static int __init hid_init(void)
2087{
2088	int ret;
2089
2090	if (hid_debug)
2091		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094	ret = bus_register(&hid_bus_type);
2095	if (ret) {
2096		pr_err("can't register hid bus\n");
2097		goto err;
2098	}
2099
2100	ret = hidraw_init();
2101	if (ret)
2102		goto err_bus;
2103
2104	hid_debug_init();
2105
2106	return 0;
2107err_bus:
2108	bus_unregister(&hid_bus_type);
2109err:
2110	return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
2115	hid_debug_exit();
2116	hidraw_exit();
2117	bus_unregister(&hid_bus_type);
 
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127