Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11/*
12 */
13
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/mm.h>
22#include <linux/spinlock.h>
23#include <asm/unaligned.h>
24#include <asm/byteorder.h>
25#include <linux/input.h>
26#include <linux/wait.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <linux/semaphore.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_DESC "HID core driver"
43
44int hid_debug = 0;
45module_param_named(debug, hid_debug, int, 0600);
46MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47EXPORT_SYMBOL_GPL(hid_debug);
48
49static int hid_ignore_special_drivers = 0;
50module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52
53/*
54 * Register a new report for a device.
55 */
56
57struct hid_report *hid_register_report(struct hid_device *device,
58 unsigned int type, unsigned int id,
59 unsigned int application)
60{
61 struct hid_report_enum *report_enum = device->report_enum + type;
62 struct hid_report *report;
63
64 if (id >= HID_MAX_IDS)
65 return NULL;
66 if (report_enum->report_id_hash[id])
67 return report_enum->report_id_hash[id];
68
69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 if (!report)
71 return NULL;
72
73 if (id != 0)
74 report_enum->numbered = 1;
75
76 report->id = id;
77 report->type = type;
78 report->size = 0;
79 report->device = device;
80 report->application = application;
81 report_enum->report_id_hash[id] = report;
82
83 list_add_tail(&report->list, &report_enum->report_list);
84
85 return report;
86}
87EXPORT_SYMBOL_GPL(hid_register_report);
88
89/*
90 * Register a new field for this report.
91 */
92
93static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94{
95 struct hid_field *field;
96
97 if (report->maxfield == HID_MAX_FIELDS) {
98 hid_err(report->device, "too many fields in report\n");
99 return NULL;
100 }
101
102 field = kzalloc((sizeof(struct hid_field) +
103 usages * sizeof(struct hid_usage) +
104 values * sizeof(unsigned)), GFP_KERNEL);
105 if (!field)
106 return NULL;
107
108 field->index = report->maxfield++;
109 report->field[field->index] = field;
110 field->usage = (struct hid_usage *)(field + 1);
111 field->value = (s32 *)(field->usage + usages);
112 field->report = report;
113
114 return field;
115}
116
117/*
118 * Open a collection. The type/usage is pushed on the stack.
119 */
120
121static int open_collection(struct hid_parser *parser, unsigned type)
122{
123 struct hid_collection *collection;
124 unsigned usage;
125 int collection_index;
126
127 usage = parser->local.usage[0];
128
129 if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 unsigned int *collection_stack;
131 unsigned int new_size = parser->collection_stack_size +
132 HID_COLLECTION_STACK_SIZE;
133
134 collection_stack = krealloc(parser->collection_stack,
135 new_size * sizeof(unsigned int),
136 GFP_KERNEL);
137 if (!collection_stack)
138 return -ENOMEM;
139
140 parser->collection_stack = collection_stack;
141 parser->collection_stack_size = new_size;
142 }
143
144 if (parser->device->maxcollection == parser->device->collection_size) {
145 collection = kmalloc(
146 array3_size(sizeof(struct hid_collection),
147 parser->device->collection_size,
148 2),
149 GFP_KERNEL);
150 if (collection == NULL) {
151 hid_err(parser->device, "failed to reallocate collection array\n");
152 return -ENOMEM;
153 }
154 memcpy(collection, parser->device->collection,
155 sizeof(struct hid_collection) *
156 parser->device->collection_size);
157 memset(collection + parser->device->collection_size, 0,
158 sizeof(struct hid_collection) *
159 parser->device->collection_size);
160 kfree(parser->device->collection);
161 parser->device->collection = collection;
162 parser->device->collection_size *= 2;
163 }
164
165 parser->collection_stack[parser->collection_stack_ptr++] =
166 parser->device->maxcollection;
167
168 collection_index = parser->device->maxcollection++;
169 collection = parser->device->collection + collection_index;
170 collection->type = type;
171 collection->usage = usage;
172 collection->level = parser->collection_stack_ptr - 1;
173 collection->parent_idx = (collection->level == 0) ? -1 :
174 parser->collection_stack[collection->level - 1];
175
176 if (type == HID_COLLECTION_APPLICATION)
177 parser->device->maxapplication++;
178
179 return 0;
180}
181
182/*
183 * Close a collection.
184 */
185
186static int close_collection(struct hid_parser *parser)
187{
188 if (!parser->collection_stack_ptr) {
189 hid_err(parser->device, "collection stack underflow\n");
190 return -EINVAL;
191 }
192 parser->collection_stack_ptr--;
193 return 0;
194}
195
196/*
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
199 */
200
201static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202{
203 struct hid_collection *collection = parser->device->collection;
204 int n;
205
206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 unsigned index = parser->collection_stack[n];
208 if (collection[index].type == type)
209 return collection[index].usage;
210 }
211 return 0; /* we know nothing about this usage type */
212}
213
214/*
215 * Add a usage to the temporary parser table.
216 */
217
218static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
219{
220 if (parser->local.usage_index >= HID_MAX_USAGES) {
221 hid_err(parser->device, "usage index exceeded\n");
222 return -1;
223 }
224 parser->local.usage[parser->local.usage_index] = usage;
225 parser->local.usage_size[parser->local.usage_index] = size;
226 parser->local.collection_index[parser->local.usage_index] =
227 parser->collection_stack_ptr ?
228 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
229 parser->local.usage_index++;
230 return 0;
231}
232
233/*
234 * Register a new field for this report.
235 */
236
237static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
238{
239 struct hid_report *report;
240 struct hid_field *field;
241 unsigned int usages;
242 unsigned int offset;
243 unsigned int i;
244 unsigned int application;
245
246 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
247
248 report = hid_register_report(parser->device, report_type,
249 parser->global.report_id, application);
250 if (!report) {
251 hid_err(parser->device, "hid_register_report failed\n");
252 return -1;
253 }
254
255 /* Handle both signed and unsigned cases properly */
256 if ((parser->global.logical_minimum < 0 &&
257 parser->global.logical_maximum <
258 parser->global.logical_minimum) ||
259 (parser->global.logical_minimum >= 0 &&
260 (__u32)parser->global.logical_maximum <
261 (__u32)parser->global.logical_minimum)) {
262 dbg_hid("logical range invalid 0x%x 0x%x\n",
263 parser->global.logical_minimum,
264 parser->global.logical_maximum);
265 return -1;
266 }
267
268 offset = report->size;
269 report->size += parser->global.report_size * parser->global.report_count;
270
271 if (!parser->local.usage_index) /* Ignore padding fields */
272 return 0;
273
274 usages = max_t(unsigned, parser->local.usage_index,
275 parser->global.report_count);
276
277 field = hid_register_field(report, usages, parser->global.report_count);
278 if (!field)
279 return 0;
280
281 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
282 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
283 field->application = application;
284
285 for (i = 0; i < usages; i++) {
286 unsigned j = i;
287 /* Duplicate the last usage we parsed if we have excess values */
288 if (i >= parser->local.usage_index)
289 j = parser->local.usage_index - 1;
290 field->usage[i].hid = parser->local.usage[j];
291 field->usage[i].collection_index =
292 parser->local.collection_index[j];
293 field->usage[i].usage_index = i;
294 field->usage[i].resolution_multiplier = 1;
295 }
296
297 field->maxusage = usages;
298 field->flags = flags;
299 field->report_offset = offset;
300 field->report_type = report_type;
301 field->report_size = parser->global.report_size;
302 field->report_count = parser->global.report_count;
303 field->logical_minimum = parser->global.logical_minimum;
304 field->logical_maximum = parser->global.logical_maximum;
305 field->physical_minimum = parser->global.physical_minimum;
306 field->physical_maximum = parser->global.physical_maximum;
307 field->unit_exponent = parser->global.unit_exponent;
308 field->unit = parser->global.unit;
309
310 return 0;
311}
312
313/*
314 * Read data value from item.
315 */
316
317static u32 item_udata(struct hid_item *item)
318{
319 switch (item->size) {
320 case 1: return item->data.u8;
321 case 2: return item->data.u16;
322 case 4: return item->data.u32;
323 }
324 return 0;
325}
326
327static s32 item_sdata(struct hid_item *item)
328{
329 switch (item->size) {
330 case 1: return item->data.s8;
331 case 2: return item->data.s16;
332 case 4: return item->data.s32;
333 }
334 return 0;
335}
336
337/*
338 * Process a global item.
339 */
340
341static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
342{
343 __s32 raw_value;
344 switch (item->tag) {
345 case HID_GLOBAL_ITEM_TAG_PUSH:
346
347 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
348 hid_err(parser->device, "global environment stack overflow\n");
349 return -1;
350 }
351
352 memcpy(parser->global_stack + parser->global_stack_ptr++,
353 &parser->global, sizeof(struct hid_global));
354 return 0;
355
356 case HID_GLOBAL_ITEM_TAG_POP:
357
358 if (!parser->global_stack_ptr) {
359 hid_err(parser->device, "global environment stack underflow\n");
360 return -1;
361 }
362
363 memcpy(&parser->global, parser->global_stack +
364 --parser->global_stack_ptr, sizeof(struct hid_global));
365 return 0;
366
367 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
368 parser->global.usage_page = item_udata(item);
369 return 0;
370
371 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
372 parser->global.logical_minimum = item_sdata(item);
373 return 0;
374
375 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
376 if (parser->global.logical_minimum < 0)
377 parser->global.logical_maximum = item_sdata(item);
378 else
379 parser->global.logical_maximum = item_udata(item);
380 return 0;
381
382 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
383 parser->global.physical_minimum = item_sdata(item);
384 return 0;
385
386 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
387 if (parser->global.physical_minimum < 0)
388 parser->global.physical_maximum = item_sdata(item);
389 else
390 parser->global.physical_maximum = item_udata(item);
391 return 0;
392
393 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
394 /* Many devices provide unit exponent as a two's complement
395 * nibble due to the common misunderstanding of HID
396 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
397 * both this and the standard encoding. */
398 raw_value = item_sdata(item);
399 if (!(raw_value & 0xfffffff0))
400 parser->global.unit_exponent = hid_snto32(raw_value, 4);
401 else
402 parser->global.unit_exponent = raw_value;
403 return 0;
404
405 case HID_GLOBAL_ITEM_TAG_UNIT:
406 parser->global.unit = item_udata(item);
407 return 0;
408
409 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
410 parser->global.report_size = item_udata(item);
411 if (parser->global.report_size > 256) {
412 hid_err(parser->device, "invalid report_size %d\n",
413 parser->global.report_size);
414 return -1;
415 }
416 return 0;
417
418 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
419 parser->global.report_count = item_udata(item);
420 if (parser->global.report_count > HID_MAX_USAGES) {
421 hid_err(parser->device, "invalid report_count %d\n",
422 parser->global.report_count);
423 return -1;
424 }
425 return 0;
426
427 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
428 parser->global.report_id = item_udata(item);
429 if (parser->global.report_id == 0 ||
430 parser->global.report_id >= HID_MAX_IDS) {
431 hid_err(parser->device, "report_id %u is invalid\n",
432 parser->global.report_id);
433 return -1;
434 }
435 return 0;
436
437 default:
438 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
439 return -1;
440 }
441}
442
443/*
444 * Process a local item.
445 */
446
447static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
448{
449 __u32 data;
450 unsigned n;
451 __u32 count;
452
453 data = item_udata(item);
454
455 switch (item->tag) {
456 case HID_LOCAL_ITEM_TAG_DELIMITER:
457
458 if (data) {
459 /*
460 * We treat items before the first delimiter
461 * as global to all usage sets (branch 0).
462 * In the moment we process only these global
463 * items and the first delimiter set.
464 */
465 if (parser->local.delimiter_depth != 0) {
466 hid_err(parser->device, "nested delimiters\n");
467 return -1;
468 }
469 parser->local.delimiter_depth++;
470 parser->local.delimiter_branch++;
471 } else {
472 if (parser->local.delimiter_depth < 1) {
473 hid_err(parser->device, "bogus close delimiter\n");
474 return -1;
475 }
476 parser->local.delimiter_depth--;
477 }
478 return 0;
479
480 case HID_LOCAL_ITEM_TAG_USAGE:
481
482 if (parser->local.delimiter_branch > 1) {
483 dbg_hid("alternative usage ignored\n");
484 return 0;
485 }
486
487 return hid_add_usage(parser, data, item->size);
488
489 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
490
491 if (parser->local.delimiter_branch > 1) {
492 dbg_hid("alternative usage ignored\n");
493 return 0;
494 }
495
496 parser->local.usage_minimum = data;
497 return 0;
498
499 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
500
501 if (parser->local.delimiter_branch > 1) {
502 dbg_hid("alternative usage ignored\n");
503 return 0;
504 }
505
506 count = data - parser->local.usage_minimum;
507 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
508 /*
509 * We do not warn if the name is not set, we are
510 * actually pre-scanning the device.
511 */
512 if (dev_name(&parser->device->dev))
513 hid_warn(parser->device,
514 "ignoring exceeding usage max\n");
515 data = HID_MAX_USAGES - parser->local.usage_index +
516 parser->local.usage_minimum - 1;
517 if (data <= 0) {
518 hid_err(parser->device,
519 "no more usage index available\n");
520 return -1;
521 }
522 }
523
524 for (n = parser->local.usage_minimum; n <= data; n++)
525 if (hid_add_usage(parser, n, item->size)) {
526 dbg_hid("hid_add_usage failed\n");
527 return -1;
528 }
529 return 0;
530
531 default:
532
533 dbg_hid("unknown local item tag 0x%x\n", item->tag);
534 return 0;
535 }
536 return 0;
537}
538
539/*
540 * Concatenate Usage Pages into Usages where relevant:
541 * As per specification, 6.2.2.8: "When the parser encounters a main item it
542 * concatenates the last declared Usage Page with a Usage to form a complete
543 * usage value."
544 */
545
546static void hid_concatenate_usage_page(struct hid_parser *parser)
547{
548 int i;
549
550 for (i = 0; i < parser->local.usage_index; i++)
551 if (parser->local.usage_size[i] <= 2)
552 parser->local.usage[i] += parser->global.usage_page << 16;
553}
554
555/*
556 * Process a main item.
557 */
558
559static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
560{
561 __u32 data;
562 int ret;
563
564 hid_concatenate_usage_page(parser);
565
566 data = item_udata(item);
567
568 switch (item->tag) {
569 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
570 ret = open_collection(parser, data & 0xff);
571 break;
572 case HID_MAIN_ITEM_TAG_END_COLLECTION:
573 ret = close_collection(parser);
574 break;
575 case HID_MAIN_ITEM_TAG_INPUT:
576 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
577 break;
578 case HID_MAIN_ITEM_TAG_OUTPUT:
579 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
580 break;
581 case HID_MAIN_ITEM_TAG_FEATURE:
582 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
583 break;
584 default:
585 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
586 ret = 0;
587 }
588
589 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
590
591 return ret;
592}
593
594/*
595 * Process a reserved item.
596 */
597
598static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
599{
600 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
601 return 0;
602}
603
604/*
605 * Free a report and all registered fields. The field->usage and
606 * field->value table's are allocated behind the field, so we need
607 * only to free(field) itself.
608 */
609
610static void hid_free_report(struct hid_report *report)
611{
612 unsigned n;
613
614 for (n = 0; n < report->maxfield; n++)
615 kfree(report->field[n]);
616 kfree(report);
617}
618
619/*
620 * Close report. This function returns the device
621 * state to the point prior to hid_open_report().
622 */
623static void hid_close_report(struct hid_device *device)
624{
625 unsigned i, j;
626
627 for (i = 0; i < HID_REPORT_TYPES; i++) {
628 struct hid_report_enum *report_enum = device->report_enum + i;
629
630 for (j = 0; j < HID_MAX_IDS; j++) {
631 struct hid_report *report = report_enum->report_id_hash[j];
632 if (report)
633 hid_free_report(report);
634 }
635 memset(report_enum, 0, sizeof(*report_enum));
636 INIT_LIST_HEAD(&report_enum->report_list);
637 }
638
639 kfree(device->rdesc);
640 device->rdesc = NULL;
641 device->rsize = 0;
642
643 kfree(device->collection);
644 device->collection = NULL;
645 device->collection_size = 0;
646 device->maxcollection = 0;
647 device->maxapplication = 0;
648
649 device->status &= ~HID_STAT_PARSED;
650}
651
652/*
653 * Free a device structure, all reports, and all fields.
654 */
655
656static void hid_device_release(struct device *dev)
657{
658 struct hid_device *hid = to_hid_device(dev);
659
660 hid_close_report(hid);
661 kfree(hid->dev_rdesc);
662 kfree(hid);
663}
664
665/*
666 * Fetch a report description item from the data stream. We support long
667 * items, though they are not used yet.
668 */
669
670static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
671{
672 u8 b;
673
674 if ((end - start) <= 0)
675 return NULL;
676
677 b = *start++;
678
679 item->type = (b >> 2) & 3;
680 item->tag = (b >> 4) & 15;
681
682 if (item->tag == HID_ITEM_TAG_LONG) {
683
684 item->format = HID_ITEM_FORMAT_LONG;
685
686 if ((end - start) < 2)
687 return NULL;
688
689 item->size = *start++;
690 item->tag = *start++;
691
692 if ((end - start) < item->size)
693 return NULL;
694
695 item->data.longdata = start;
696 start += item->size;
697 return start;
698 }
699
700 item->format = HID_ITEM_FORMAT_SHORT;
701 item->size = b & 3;
702
703 switch (item->size) {
704 case 0:
705 return start;
706
707 case 1:
708 if ((end - start) < 1)
709 return NULL;
710 item->data.u8 = *start++;
711 return start;
712
713 case 2:
714 if ((end - start) < 2)
715 return NULL;
716 item->data.u16 = get_unaligned_le16(start);
717 start = (__u8 *)((__le16 *)start + 1);
718 return start;
719
720 case 3:
721 item->size++;
722 if ((end - start) < 4)
723 return NULL;
724 item->data.u32 = get_unaligned_le32(start);
725 start = (__u8 *)((__le32 *)start + 1);
726 return start;
727 }
728
729 return NULL;
730}
731
732static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
733{
734 struct hid_device *hid = parser->device;
735
736 if (usage == HID_DG_CONTACTID)
737 hid->group = HID_GROUP_MULTITOUCH;
738}
739
740static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
741{
742 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
743 parser->global.report_size == 8)
744 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
745}
746
747static void hid_scan_collection(struct hid_parser *parser, unsigned type)
748{
749 struct hid_device *hid = parser->device;
750 int i;
751
752 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
753 type == HID_COLLECTION_PHYSICAL)
754 hid->group = HID_GROUP_SENSOR_HUB;
755
756 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
757 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
758 hid->group == HID_GROUP_MULTITOUCH)
759 hid->group = HID_GROUP_GENERIC;
760
761 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
762 for (i = 0; i < parser->local.usage_index; i++)
763 if (parser->local.usage[i] == HID_GD_POINTER)
764 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
765
766 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
767 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
768}
769
770static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
771{
772 __u32 data;
773 int i;
774
775 hid_concatenate_usage_page(parser);
776
777 data = item_udata(item);
778
779 switch (item->tag) {
780 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
781 hid_scan_collection(parser, data & 0xff);
782 break;
783 case HID_MAIN_ITEM_TAG_END_COLLECTION:
784 break;
785 case HID_MAIN_ITEM_TAG_INPUT:
786 /* ignore constant inputs, they will be ignored by hid-input */
787 if (data & HID_MAIN_ITEM_CONSTANT)
788 break;
789 for (i = 0; i < parser->local.usage_index; i++)
790 hid_scan_input_usage(parser, parser->local.usage[i]);
791 break;
792 case HID_MAIN_ITEM_TAG_OUTPUT:
793 break;
794 case HID_MAIN_ITEM_TAG_FEATURE:
795 for (i = 0; i < parser->local.usage_index; i++)
796 hid_scan_feature_usage(parser, parser->local.usage[i]);
797 break;
798 }
799
800 /* Reset the local parser environment */
801 memset(&parser->local, 0, sizeof(parser->local));
802
803 return 0;
804}
805
806/*
807 * Scan a report descriptor before the device is added to the bus.
808 * Sets device groups and other properties that determine what driver
809 * to load.
810 */
811static int hid_scan_report(struct hid_device *hid)
812{
813 struct hid_parser *parser;
814 struct hid_item item;
815 __u8 *start = hid->dev_rdesc;
816 __u8 *end = start + hid->dev_rsize;
817 static int (*dispatch_type[])(struct hid_parser *parser,
818 struct hid_item *item) = {
819 hid_scan_main,
820 hid_parser_global,
821 hid_parser_local,
822 hid_parser_reserved
823 };
824
825 parser = vzalloc(sizeof(struct hid_parser));
826 if (!parser)
827 return -ENOMEM;
828
829 parser->device = hid;
830 hid->group = HID_GROUP_GENERIC;
831
832 /*
833 * The parsing is simpler than the one in hid_open_report() as we should
834 * be robust against hid errors. Those errors will be raised by
835 * hid_open_report() anyway.
836 */
837 while ((start = fetch_item(start, end, &item)) != NULL)
838 dispatch_type[item.type](parser, &item);
839
840 /*
841 * Handle special flags set during scanning.
842 */
843 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
844 (hid->group == HID_GROUP_MULTITOUCH))
845 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
846
847 /*
848 * Vendor specific handlings
849 */
850 switch (hid->vendor) {
851 case USB_VENDOR_ID_WACOM:
852 hid->group = HID_GROUP_WACOM;
853 break;
854 case USB_VENDOR_ID_SYNAPTICS:
855 if (hid->group == HID_GROUP_GENERIC)
856 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
857 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
858 /*
859 * hid-rmi should take care of them,
860 * not hid-generic
861 */
862 hid->group = HID_GROUP_RMI;
863 break;
864 }
865
866 kfree(parser->collection_stack);
867 vfree(parser);
868 return 0;
869}
870
871/**
872 * hid_parse_report - parse device report
873 *
874 * @device: hid device
875 * @start: report start
876 * @size: report size
877 *
878 * Allocate the device report as read by the bus driver. This function should
879 * only be called from parse() in ll drivers.
880 */
881int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
882{
883 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
884 if (!hid->dev_rdesc)
885 return -ENOMEM;
886 hid->dev_rsize = size;
887 return 0;
888}
889EXPORT_SYMBOL_GPL(hid_parse_report);
890
891static const char * const hid_report_names[] = {
892 "HID_INPUT_REPORT",
893 "HID_OUTPUT_REPORT",
894 "HID_FEATURE_REPORT",
895};
896/**
897 * hid_validate_values - validate existing device report's value indexes
898 *
899 * @device: hid device
900 * @type: which report type to examine
901 * @id: which report ID to examine (0 for first)
902 * @field_index: which report field to examine
903 * @report_counts: expected number of values
904 *
905 * Validate the number of values in a given field of a given report, after
906 * parsing.
907 */
908struct hid_report *hid_validate_values(struct hid_device *hid,
909 unsigned int type, unsigned int id,
910 unsigned int field_index,
911 unsigned int report_counts)
912{
913 struct hid_report *report;
914
915 if (type > HID_FEATURE_REPORT) {
916 hid_err(hid, "invalid HID report type %u\n", type);
917 return NULL;
918 }
919
920 if (id >= HID_MAX_IDS) {
921 hid_err(hid, "invalid HID report id %u\n", id);
922 return NULL;
923 }
924
925 /*
926 * Explicitly not using hid_get_report() here since it depends on
927 * ->numbered being checked, which may not always be the case when
928 * drivers go to access report values.
929 */
930 if (id == 0) {
931 /*
932 * Validating on id 0 means we should examine the first
933 * report in the list.
934 */
935 report = list_entry(
936 hid->report_enum[type].report_list.next,
937 struct hid_report, list);
938 } else {
939 report = hid->report_enum[type].report_id_hash[id];
940 }
941 if (!report) {
942 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
943 return NULL;
944 }
945 if (report->maxfield <= field_index) {
946 hid_err(hid, "not enough fields in %s %u\n",
947 hid_report_names[type], id);
948 return NULL;
949 }
950 if (report->field[field_index]->report_count < report_counts) {
951 hid_err(hid, "not enough values in %s %u field %u\n",
952 hid_report_names[type], id, field_index);
953 return NULL;
954 }
955 return report;
956}
957EXPORT_SYMBOL_GPL(hid_validate_values);
958
959static int hid_calculate_multiplier(struct hid_device *hid,
960 struct hid_field *multiplier)
961{
962 int m;
963 __s32 v = *multiplier->value;
964 __s32 lmin = multiplier->logical_minimum;
965 __s32 lmax = multiplier->logical_maximum;
966 __s32 pmin = multiplier->physical_minimum;
967 __s32 pmax = multiplier->physical_maximum;
968
969 /*
970 * "Because OS implementations will generally divide the control's
971 * reported count by the Effective Resolution Multiplier, designers
972 * should take care not to establish a potential Effective
973 * Resolution Multiplier of zero."
974 * HID Usage Table, v1.12, Section 4.3.1, p31
975 */
976 if (lmax - lmin == 0)
977 return 1;
978 /*
979 * Handling the unit exponent is left as an exercise to whoever
980 * finds a device where that exponent is not 0.
981 */
982 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
983 if (unlikely(multiplier->unit_exponent != 0)) {
984 hid_warn(hid,
985 "unsupported Resolution Multiplier unit exponent %d\n",
986 multiplier->unit_exponent);
987 }
988
989 /* There are no devices with an effective multiplier > 255 */
990 if (unlikely(m == 0 || m > 255 || m < -255)) {
991 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
992 m = 1;
993 }
994
995 return m;
996}
997
998static void hid_apply_multiplier_to_field(struct hid_device *hid,
999 struct hid_field *field,
1000 struct hid_collection *multiplier_collection,
1001 int effective_multiplier)
1002{
1003 struct hid_collection *collection;
1004 struct hid_usage *usage;
1005 int i;
1006
1007 /*
1008 * If multiplier_collection is NULL, the multiplier applies
1009 * to all fields in the report.
1010 * Otherwise, it is the Logical Collection the multiplier applies to
1011 * but our field may be in a subcollection of that collection.
1012 */
1013 for (i = 0; i < field->maxusage; i++) {
1014 usage = &field->usage[i];
1015
1016 collection = &hid->collection[usage->collection_index];
1017 while (collection->parent_idx != -1 &&
1018 collection != multiplier_collection)
1019 collection = &hid->collection[collection->parent_idx];
1020
1021 if (collection->parent_idx != -1 ||
1022 multiplier_collection == NULL)
1023 usage->resolution_multiplier = effective_multiplier;
1024
1025 }
1026}
1027
1028static void hid_apply_multiplier(struct hid_device *hid,
1029 struct hid_field *multiplier)
1030{
1031 struct hid_report_enum *rep_enum;
1032 struct hid_report *rep;
1033 struct hid_field *field;
1034 struct hid_collection *multiplier_collection;
1035 int effective_multiplier;
1036 int i;
1037
1038 /*
1039 * "The Resolution Multiplier control must be contained in the same
1040 * Logical Collection as the control(s) to which it is to be applied.
1041 * If no Resolution Multiplier is defined, then the Resolution
1042 * Multiplier defaults to 1. If more than one control exists in a
1043 * Logical Collection, the Resolution Multiplier is associated with
1044 * all controls in the collection. If no Logical Collection is
1045 * defined, the Resolution Multiplier is associated with all
1046 * controls in the report."
1047 * HID Usage Table, v1.12, Section 4.3.1, p30
1048 *
1049 * Thus, search from the current collection upwards until we find a
1050 * logical collection. Then search all fields for that same parent
1051 * collection. Those are the fields the multiplier applies to.
1052 *
1053 * If we have more than one multiplier, it will overwrite the
1054 * applicable fields later.
1055 */
1056 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1057 while (multiplier_collection->parent_idx != -1 &&
1058 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1059 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1060
1061 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1062
1063 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1064 list_for_each_entry(rep, &rep_enum->report_list, list) {
1065 for (i = 0; i < rep->maxfield; i++) {
1066 field = rep->field[i];
1067 hid_apply_multiplier_to_field(hid, field,
1068 multiplier_collection,
1069 effective_multiplier);
1070 }
1071 }
1072}
1073
1074/*
1075 * hid_setup_resolution_multiplier - set up all resolution multipliers
1076 *
1077 * @device: hid device
1078 *
1079 * Search for all Resolution Multiplier Feature Reports and apply their
1080 * value to all matching Input items. This only updates the internal struct
1081 * fields.
1082 *
1083 * The Resolution Multiplier is applied by the hardware. If the multiplier
1084 * is anything other than 1, the hardware will send pre-multiplied events
1085 * so that the same physical interaction generates an accumulated
1086 * accumulated_value = value * * multiplier
1087 * This may be achieved by sending
1088 * - "value * multiplier" for each event, or
1089 * - "value" but "multiplier" times as frequently, or
1090 * - a combination of the above
1091 * The only guarantee is that the same physical interaction always generates
1092 * an accumulated 'value * multiplier'.
1093 *
1094 * This function must be called before any event processing and after
1095 * any SetRequest to the Resolution Multiplier.
1096 */
1097void hid_setup_resolution_multiplier(struct hid_device *hid)
1098{
1099 struct hid_report_enum *rep_enum;
1100 struct hid_report *rep;
1101 struct hid_usage *usage;
1102 int i, j;
1103
1104 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1105 list_for_each_entry(rep, &rep_enum->report_list, list) {
1106 for (i = 0; i < rep->maxfield; i++) {
1107 /* Ignore if report count is out of bounds. */
1108 if (rep->field[i]->report_count < 1)
1109 continue;
1110
1111 for (j = 0; j < rep->field[i]->maxusage; j++) {
1112 usage = &rep->field[i]->usage[j];
1113 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1114 hid_apply_multiplier(hid,
1115 rep->field[i]);
1116 }
1117 }
1118 }
1119}
1120EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1121
1122/**
1123 * hid_open_report - open a driver-specific device report
1124 *
1125 * @device: hid device
1126 *
1127 * Parse a report description into a hid_device structure. Reports are
1128 * enumerated, fields are attached to these reports.
1129 * 0 returned on success, otherwise nonzero error value.
1130 *
1131 * This function (or the equivalent hid_parse() macro) should only be
1132 * called from probe() in drivers, before starting the device.
1133 */
1134int hid_open_report(struct hid_device *device)
1135{
1136 struct hid_parser *parser;
1137 struct hid_item item;
1138 unsigned int size;
1139 __u8 *start;
1140 __u8 *buf;
1141 __u8 *end;
1142 __u8 *next;
1143 int ret;
1144 static int (*dispatch_type[])(struct hid_parser *parser,
1145 struct hid_item *item) = {
1146 hid_parser_main,
1147 hid_parser_global,
1148 hid_parser_local,
1149 hid_parser_reserved
1150 };
1151
1152 if (WARN_ON(device->status & HID_STAT_PARSED))
1153 return -EBUSY;
1154
1155 start = device->dev_rdesc;
1156 if (WARN_ON(!start))
1157 return -ENODEV;
1158 size = device->dev_rsize;
1159
1160 buf = kmemdup(start, size, GFP_KERNEL);
1161 if (buf == NULL)
1162 return -ENOMEM;
1163
1164 if (device->driver->report_fixup)
1165 start = device->driver->report_fixup(device, buf, &size);
1166 else
1167 start = buf;
1168
1169 start = kmemdup(start, size, GFP_KERNEL);
1170 kfree(buf);
1171 if (start == NULL)
1172 return -ENOMEM;
1173
1174 device->rdesc = start;
1175 device->rsize = size;
1176
1177 parser = vzalloc(sizeof(struct hid_parser));
1178 if (!parser) {
1179 ret = -ENOMEM;
1180 goto alloc_err;
1181 }
1182
1183 parser->device = device;
1184
1185 end = start + size;
1186
1187 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1188 sizeof(struct hid_collection), GFP_KERNEL);
1189 if (!device->collection) {
1190 ret = -ENOMEM;
1191 goto err;
1192 }
1193 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1194
1195 ret = -EINVAL;
1196 while ((next = fetch_item(start, end, &item)) != NULL) {
1197 start = next;
1198
1199 if (item.format != HID_ITEM_FORMAT_SHORT) {
1200 hid_err(device, "unexpected long global item\n");
1201 goto err;
1202 }
1203
1204 if (dispatch_type[item.type](parser, &item)) {
1205 hid_err(device, "item %u %u %u %u parsing failed\n",
1206 item.format, (unsigned)item.size,
1207 (unsigned)item.type, (unsigned)item.tag);
1208 goto err;
1209 }
1210
1211 if (start == end) {
1212 if (parser->collection_stack_ptr) {
1213 hid_err(device, "unbalanced collection at end of report description\n");
1214 goto err;
1215 }
1216 if (parser->local.delimiter_depth) {
1217 hid_err(device, "unbalanced delimiter at end of report description\n");
1218 goto err;
1219 }
1220
1221 /*
1222 * fetch initial values in case the device's
1223 * default multiplier isn't the recommended 1
1224 */
1225 hid_setup_resolution_multiplier(device);
1226
1227 kfree(parser->collection_stack);
1228 vfree(parser);
1229 device->status |= HID_STAT_PARSED;
1230
1231 return 0;
1232 }
1233 }
1234
1235 hid_err(device, "item fetching failed at offset %u/%u\n",
1236 size - (unsigned int)(end - start), size);
1237err:
1238 kfree(parser->collection_stack);
1239alloc_err:
1240 vfree(parser);
1241 hid_close_report(device);
1242 return ret;
1243}
1244EXPORT_SYMBOL_GPL(hid_open_report);
1245
1246/*
1247 * Convert a signed n-bit integer to signed 32-bit integer. Common
1248 * cases are done through the compiler, the screwed things has to be
1249 * done by hand.
1250 */
1251
1252static s32 snto32(__u32 value, unsigned n)
1253{
1254 switch (n) {
1255 case 8: return ((__s8)value);
1256 case 16: return ((__s16)value);
1257 case 32: return ((__s32)value);
1258 }
1259 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1260}
1261
1262s32 hid_snto32(__u32 value, unsigned n)
1263{
1264 return snto32(value, n);
1265}
1266EXPORT_SYMBOL_GPL(hid_snto32);
1267
1268/*
1269 * Convert a signed 32-bit integer to a signed n-bit integer.
1270 */
1271
1272static u32 s32ton(__s32 value, unsigned n)
1273{
1274 s32 a = value >> (n - 1);
1275 if (a && a != -1)
1276 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1277 return value & ((1 << n) - 1);
1278}
1279
1280/*
1281 * Extract/implement a data field from/to a little endian report (bit array).
1282 *
1283 * Code sort-of follows HID spec:
1284 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1285 *
1286 * While the USB HID spec allows unlimited length bit fields in "report
1287 * descriptors", most devices never use more than 16 bits.
1288 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1289 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1290 */
1291
1292static u32 __extract(u8 *report, unsigned offset, int n)
1293{
1294 unsigned int idx = offset / 8;
1295 unsigned int bit_nr = 0;
1296 unsigned int bit_shift = offset % 8;
1297 int bits_to_copy = 8 - bit_shift;
1298 u32 value = 0;
1299 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1300
1301 while (n > 0) {
1302 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1303 n -= bits_to_copy;
1304 bit_nr += bits_to_copy;
1305 bits_to_copy = 8;
1306 bit_shift = 0;
1307 idx++;
1308 }
1309
1310 return value & mask;
1311}
1312
1313u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1314 unsigned offset, unsigned n)
1315{
1316 if (n > 32) {
1317 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1318 __func__, n, current->comm);
1319 n = 32;
1320 }
1321
1322 return __extract(report, offset, n);
1323}
1324EXPORT_SYMBOL_GPL(hid_field_extract);
1325
1326/*
1327 * "implement" : set bits in a little endian bit stream.
1328 * Same concepts as "extract" (see comments above).
1329 * The data mangled in the bit stream remains in little endian
1330 * order the whole time. It make more sense to talk about
1331 * endianness of register values by considering a register
1332 * a "cached" copy of the little endian bit stream.
1333 */
1334
1335static void __implement(u8 *report, unsigned offset, int n, u32 value)
1336{
1337 unsigned int idx = offset / 8;
1338 unsigned int bit_shift = offset % 8;
1339 int bits_to_set = 8 - bit_shift;
1340
1341 while (n - bits_to_set >= 0) {
1342 report[idx] &= ~(0xff << bit_shift);
1343 report[idx] |= value << bit_shift;
1344 value >>= bits_to_set;
1345 n -= bits_to_set;
1346 bits_to_set = 8;
1347 bit_shift = 0;
1348 idx++;
1349 }
1350
1351 /* last nibble */
1352 if (n) {
1353 u8 bit_mask = ((1U << n) - 1);
1354 report[idx] &= ~(bit_mask << bit_shift);
1355 report[idx] |= value << bit_shift;
1356 }
1357}
1358
1359static void implement(const struct hid_device *hid, u8 *report,
1360 unsigned offset, unsigned n, u32 value)
1361{
1362 if (unlikely(n > 32)) {
1363 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1364 __func__, n, current->comm);
1365 n = 32;
1366 } else if (n < 32) {
1367 u32 m = (1U << n) - 1;
1368
1369 if (unlikely(value > m)) {
1370 hid_warn(hid,
1371 "%s() called with too large value %d (n: %d)! (%s)\n",
1372 __func__, value, n, current->comm);
1373 WARN_ON(1);
1374 value &= m;
1375 }
1376 }
1377
1378 __implement(report, offset, n, value);
1379}
1380
1381/*
1382 * Search an array for a value.
1383 */
1384
1385static int search(__s32 *array, __s32 value, unsigned n)
1386{
1387 while (n--) {
1388 if (*array++ == value)
1389 return 0;
1390 }
1391 return -1;
1392}
1393
1394/**
1395 * hid_match_report - check if driver's raw_event should be called
1396 *
1397 * @hid: hid device
1398 * @report_type: type to match against
1399 *
1400 * compare hid->driver->report_table->report_type to report->type
1401 */
1402static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1403{
1404 const struct hid_report_id *id = hid->driver->report_table;
1405
1406 if (!id) /* NULL means all */
1407 return 1;
1408
1409 for (; id->report_type != HID_TERMINATOR; id++)
1410 if (id->report_type == HID_ANY_ID ||
1411 id->report_type == report->type)
1412 return 1;
1413 return 0;
1414}
1415
1416/**
1417 * hid_match_usage - check if driver's event should be called
1418 *
1419 * @hid: hid device
1420 * @usage: usage to match against
1421 *
1422 * compare hid->driver->usage_table->usage_{type,code} to
1423 * usage->usage_{type,code}
1424 */
1425static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1426{
1427 const struct hid_usage_id *id = hid->driver->usage_table;
1428
1429 if (!id) /* NULL means all */
1430 return 1;
1431
1432 for (; id->usage_type != HID_ANY_ID - 1; id++)
1433 if ((id->usage_hid == HID_ANY_ID ||
1434 id->usage_hid == usage->hid) &&
1435 (id->usage_type == HID_ANY_ID ||
1436 id->usage_type == usage->type) &&
1437 (id->usage_code == HID_ANY_ID ||
1438 id->usage_code == usage->code))
1439 return 1;
1440 return 0;
1441}
1442
1443static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1444 struct hid_usage *usage, __s32 value, int interrupt)
1445{
1446 struct hid_driver *hdrv = hid->driver;
1447 int ret;
1448
1449 if (!list_empty(&hid->debug_list))
1450 hid_dump_input(hid, usage, value);
1451
1452 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1453 ret = hdrv->event(hid, field, usage, value);
1454 if (ret != 0) {
1455 if (ret < 0)
1456 hid_err(hid, "%s's event failed with %d\n",
1457 hdrv->name, ret);
1458 return;
1459 }
1460 }
1461
1462 if (hid->claimed & HID_CLAIMED_INPUT)
1463 hidinput_hid_event(hid, field, usage, value);
1464 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1465 hid->hiddev_hid_event(hid, field, usage, value);
1466}
1467
1468/*
1469 * Analyse a received field, and fetch the data from it. The field
1470 * content is stored for next report processing (we do differential
1471 * reporting to the layer).
1472 */
1473
1474static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1475 __u8 *data, int interrupt)
1476{
1477 unsigned n;
1478 unsigned count = field->report_count;
1479 unsigned offset = field->report_offset;
1480 unsigned size = field->report_size;
1481 __s32 min = field->logical_minimum;
1482 __s32 max = field->logical_maximum;
1483 __s32 *value;
1484
1485 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1486 if (!value)
1487 return;
1488
1489 for (n = 0; n < count; n++) {
1490
1491 value[n] = min < 0 ?
1492 snto32(hid_field_extract(hid, data, offset + n * size,
1493 size), size) :
1494 hid_field_extract(hid, data, offset + n * size, size);
1495
1496 /* Ignore report if ErrorRollOver */
1497 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1498 value[n] >= min && value[n] <= max &&
1499 value[n] - min < field->maxusage &&
1500 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1501 goto exit;
1502 }
1503
1504 for (n = 0; n < count; n++) {
1505
1506 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1507 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1508 continue;
1509 }
1510
1511 if (field->value[n] >= min && field->value[n] <= max
1512 && field->value[n] - min < field->maxusage
1513 && field->usage[field->value[n] - min].hid
1514 && search(value, field->value[n], count))
1515 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1516
1517 if (value[n] >= min && value[n] <= max
1518 && value[n] - min < field->maxusage
1519 && field->usage[value[n] - min].hid
1520 && search(field->value, value[n], count))
1521 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1522 }
1523
1524 memcpy(field->value, value, count * sizeof(__s32));
1525exit:
1526 kfree(value);
1527}
1528
1529/*
1530 * Output the field into the report.
1531 */
1532
1533static void hid_output_field(const struct hid_device *hid,
1534 struct hid_field *field, __u8 *data)
1535{
1536 unsigned count = field->report_count;
1537 unsigned offset = field->report_offset;
1538 unsigned size = field->report_size;
1539 unsigned n;
1540
1541 for (n = 0; n < count; n++) {
1542 if (field->logical_minimum < 0) /* signed values */
1543 implement(hid, data, offset + n * size, size,
1544 s32ton(field->value[n], size));
1545 else /* unsigned values */
1546 implement(hid, data, offset + n * size, size,
1547 field->value[n]);
1548 }
1549}
1550
1551/*
1552 * Create a report. 'data' has to be allocated using
1553 * hid_alloc_report_buf() so that it has proper size.
1554 */
1555
1556void hid_output_report(struct hid_report *report, __u8 *data)
1557{
1558 unsigned n;
1559
1560 if (report->id > 0)
1561 *data++ = report->id;
1562
1563 memset(data, 0, ((report->size - 1) >> 3) + 1);
1564 for (n = 0; n < report->maxfield; n++)
1565 hid_output_field(report->device, report->field[n], data);
1566}
1567EXPORT_SYMBOL_GPL(hid_output_report);
1568
1569/*
1570 * Allocator for buffer that is going to be passed to hid_output_report()
1571 */
1572u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1573{
1574 /*
1575 * 7 extra bytes are necessary to achieve proper functionality
1576 * of implement() working on 8 byte chunks
1577 */
1578
1579 u32 len = hid_report_len(report) + 7;
1580
1581 return kmalloc(len, flags);
1582}
1583EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1584
1585/*
1586 * Set a field value. The report this field belongs to has to be
1587 * created and transferred to the device, to set this value in the
1588 * device.
1589 */
1590
1591int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1592{
1593 unsigned size;
1594
1595 if (!field)
1596 return -1;
1597
1598 size = field->report_size;
1599
1600 hid_dump_input(field->report->device, field->usage + offset, value);
1601
1602 if (offset >= field->report_count) {
1603 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1604 offset, field->report_count);
1605 return -1;
1606 }
1607 if (field->logical_minimum < 0) {
1608 if (value != snto32(s32ton(value, size), size)) {
1609 hid_err(field->report->device, "value %d is out of range\n", value);
1610 return -1;
1611 }
1612 }
1613 field->value[offset] = value;
1614 return 0;
1615}
1616EXPORT_SYMBOL_GPL(hid_set_field);
1617
1618static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1619 const u8 *data)
1620{
1621 struct hid_report *report;
1622 unsigned int n = 0; /* Normally report number is 0 */
1623
1624 /* Device uses numbered reports, data[0] is report number */
1625 if (report_enum->numbered)
1626 n = *data;
1627
1628 report = report_enum->report_id_hash[n];
1629 if (report == NULL)
1630 dbg_hid("undefined report_id %u received\n", n);
1631
1632 return report;
1633}
1634
1635/*
1636 * Implement a generic .request() callback, using .raw_request()
1637 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1638 */
1639int __hid_request(struct hid_device *hid, struct hid_report *report,
1640 int reqtype)
1641{
1642 char *buf;
1643 int ret;
1644 u32 len;
1645
1646 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1647 if (!buf)
1648 return -ENOMEM;
1649
1650 len = hid_report_len(report);
1651
1652 if (reqtype == HID_REQ_SET_REPORT)
1653 hid_output_report(report, buf);
1654
1655 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1656 report->type, reqtype);
1657 if (ret < 0) {
1658 dbg_hid("unable to complete request: %d\n", ret);
1659 goto out;
1660 }
1661
1662 if (reqtype == HID_REQ_GET_REPORT)
1663 hid_input_report(hid, report->type, buf, ret, 0);
1664
1665 ret = 0;
1666
1667out:
1668 kfree(buf);
1669 return ret;
1670}
1671EXPORT_SYMBOL_GPL(__hid_request);
1672
1673int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1674 int interrupt)
1675{
1676 struct hid_report_enum *report_enum = hid->report_enum + type;
1677 struct hid_report *report;
1678 struct hid_driver *hdrv;
1679 unsigned int a;
1680 u32 rsize, csize = size;
1681 u8 *cdata = data;
1682 int ret = 0;
1683
1684 report = hid_get_report(report_enum, data);
1685 if (!report)
1686 goto out;
1687
1688 if (report_enum->numbered) {
1689 cdata++;
1690 csize--;
1691 }
1692
1693 rsize = ((report->size - 1) >> 3) + 1;
1694
1695 if (rsize > HID_MAX_BUFFER_SIZE)
1696 rsize = HID_MAX_BUFFER_SIZE;
1697
1698 if (csize < rsize) {
1699 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1700 csize, rsize);
1701 memset(cdata + csize, 0, rsize - csize);
1702 }
1703
1704 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1705 hid->hiddev_report_event(hid, report);
1706 if (hid->claimed & HID_CLAIMED_HIDRAW) {
1707 ret = hidraw_report_event(hid, data, size);
1708 if (ret)
1709 goto out;
1710 }
1711
1712 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1713 for (a = 0; a < report->maxfield; a++)
1714 hid_input_field(hid, report->field[a], cdata, interrupt);
1715 hdrv = hid->driver;
1716 if (hdrv && hdrv->report)
1717 hdrv->report(hid, report);
1718 }
1719
1720 if (hid->claimed & HID_CLAIMED_INPUT)
1721 hidinput_report_event(hid, report);
1722out:
1723 return ret;
1724}
1725EXPORT_SYMBOL_GPL(hid_report_raw_event);
1726
1727/**
1728 * hid_input_report - report data from lower layer (usb, bt...)
1729 *
1730 * @hid: hid device
1731 * @type: HID report type (HID_*_REPORT)
1732 * @data: report contents
1733 * @size: size of data parameter
1734 * @interrupt: distinguish between interrupt and control transfers
1735 *
1736 * This is data entry for lower layers.
1737 */
1738int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1739{
1740 struct hid_report_enum *report_enum;
1741 struct hid_driver *hdrv;
1742 struct hid_report *report;
1743 int ret = 0;
1744
1745 if (!hid)
1746 return -ENODEV;
1747
1748 if (down_trylock(&hid->driver_input_lock))
1749 return -EBUSY;
1750
1751 if (!hid->driver) {
1752 ret = -ENODEV;
1753 goto unlock;
1754 }
1755 report_enum = hid->report_enum + type;
1756 hdrv = hid->driver;
1757
1758 if (!size) {
1759 dbg_hid("empty report\n");
1760 ret = -1;
1761 goto unlock;
1762 }
1763
1764 /* Avoid unnecessary overhead if debugfs is disabled */
1765 if (!list_empty(&hid->debug_list))
1766 hid_dump_report(hid, type, data, size);
1767
1768 report = hid_get_report(report_enum, data);
1769
1770 if (!report) {
1771 ret = -1;
1772 goto unlock;
1773 }
1774
1775 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1776 ret = hdrv->raw_event(hid, report, data, size);
1777 if (ret < 0)
1778 goto unlock;
1779 }
1780
1781 ret = hid_report_raw_event(hid, type, data, size, interrupt);
1782
1783unlock:
1784 up(&hid->driver_input_lock);
1785 return ret;
1786}
1787EXPORT_SYMBOL_GPL(hid_input_report);
1788
1789bool hid_match_one_id(const struct hid_device *hdev,
1790 const struct hid_device_id *id)
1791{
1792 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1793 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1794 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1795 (id->product == HID_ANY_ID || id->product == hdev->product);
1796}
1797
1798const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1799 const struct hid_device_id *id)
1800{
1801 for (; id->bus; id++)
1802 if (hid_match_one_id(hdev, id))
1803 return id;
1804
1805 return NULL;
1806}
1807
1808static const struct hid_device_id hid_hiddev_list[] = {
1809 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1811 { }
1812};
1813
1814static bool hid_hiddev(struct hid_device *hdev)
1815{
1816 return !!hid_match_id(hdev, hid_hiddev_list);
1817}
1818
1819
1820static ssize_t
1821read_report_descriptor(struct file *filp, struct kobject *kobj,
1822 struct bin_attribute *attr,
1823 char *buf, loff_t off, size_t count)
1824{
1825 struct device *dev = kobj_to_dev(kobj);
1826 struct hid_device *hdev = to_hid_device(dev);
1827
1828 if (off >= hdev->rsize)
1829 return 0;
1830
1831 if (off + count > hdev->rsize)
1832 count = hdev->rsize - off;
1833
1834 memcpy(buf, hdev->rdesc + off, count);
1835
1836 return count;
1837}
1838
1839static ssize_t
1840show_country(struct device *dev, struct device_attribute *attr,
1841 char *buf)
1842{
1843 struct hid_device *hdev = to_hid_device(dev);
1844
1845 return sprintf(buf, "%02x\n", hdev->country & 0xff);
1846}
1847
1848static struct bin_attribute dev_bin_attr_report_desc = {
1849 .attr = { .name = "report_descriptor", .mode = 0444 },
1850 .read = read_report_descriptor,
1851 .size = HID_MAX_DESCRIPTOR_SIZE,
1852};
1853
1854static const struct device_attribute dev_attr_country = {
1855 .attr = { .name = "country", .mode = 0444 },
1856 .show = show_country,
1857};
1858
1859int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1860{
1861 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1862 "Joystick", "Gamepad", "Keyboard", "Keypad",
1863 "Multi-Axis Controller"
1864 };
1865 const char *type, *bus;
1866 char buf[64] = "";
1867 unsigned int i;
1868 int len;
1869 int ret;
1870
1871 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1872 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1873 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1874 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1875 if (hdev->bus != BUS_USB)
1876 connect_mask &= ~HID_CONNECT_HIDDEV;
1877 if (hid_hiddev(hdev))
1878 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1879
1880 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1881 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1882 hdev->claimed |= HID_CLAIMED_INPUT;
1883
1884 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1885 !hdev->hiddev_connect(hdev,
1886 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1887 hdev->claimed |= HID_CLAIMED_HIDDEV;
1888 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1889 hdev->claimed |= HID_CLAIMED_HIDRAW;
1890
1891 if (connect_mask & HID_CONNECT_DRIVER)
1892 hdev->claimed |= HID_CLAIMED_DRIVER;
1893
1894 /* Drivers with the ->raw_event callback set are not required to connect
1895 * to any other listener. */
1896 if (!hdev->claimed && !hdev->driver->raw_event) {
1897 hid_err(hdev, "device has no listeners, quitting\n");
1898 return -ENODEV;
1899 }
1900
1901 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1902 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1903 hdev->ff_init(hdev);
1904
1905 len = 0;
1906 if (hdev->claimed & HID_CLAIMED_INPUT)
1907 len += sprintf(buf + len, "input");
1908 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1909 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1910 ((struct hiddev *)hdev->hiddev)->minor);
1911 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1912 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1913 ((struct hidraw *)hdev->hidraw)->minor);
1914
1915 type = "Device";
1916 for (i = 0; i < hdev->maxcollection; i++) {
1917 struct hid_collection *col = &hdev->collection[i];
1918 if (col->type == HID_COLLECTION_APPLICATION &&
1919 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1920 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1921 type = types[col->usage & 0xffff];
1922 break;
1923 }
1924 }
1925
1926 switch (hdev->bus) {
1927 case BUS_USB:
1928 bus = "USB";
1929 break;
1930 case BUS_BLUETOOTH:
1931 bus = "BLUETOOTH";
1932 break;
1933 case BUS_I2C:
1934 bus = "I2C";
1935 break;
1936 default:
1937 bus = "<UNKNOWN>";
1938 }
1939
1940 ret = device_create_file(&hdev->dev, &dev_attr_country);
1941 if (ret)
1942 hid_warn(hdev,
1943 "can't create sysfs country code attribute err: %d\n", ret);
1944
1945 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1946 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1947 type, hdev->name, hdev->phys);
1948
1949 return 0;
1950}
1951EXPORT_SYMBOL_GPL(hid_connect);
1952
1953void hid_disconnect(struct hid_device *hdev)
1954{
1955 device_remove_file(&hdev->dev, &dev_attr_country);
1956 if (hdev->claimed & HID_CLAIMED_INPUT)
1957 hidinput_disconnect(hdev);
1958 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1959 hdev->hiddev_disconnect(hdev);
1960 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1961 hidraw_disconnect(hdev);
1962 hdev->claimed = 0;
1963}
1964EXPORT_SYMBOL_GPL(hid_disconnect);
1965
1966/**
1967 * hid_hw_start - start underlying HW
1968 * @hdev: hid device
1969 * @connect_mask: which outputs to connect, see HID_CONNECT_*
1970 *
1971 * Call this in probe function *after* hid_parse. This will setup HW
1972 * buffers and start the device (if not defeirred to device open).
1973 * hid_hw_stop must be called if this was successful.
1974 */
1975int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
1976{
1977 int error;
1978
1979 error = hdev->ll_driver->start(hdev);
1980 if (error)
1981 return error;
1982
1983 if (connect_mask) {
1984 error = hid_connect(hdev, connect_mask);
1985 if (error) {
1986 hdev->ll_driver->stop(hdev);
1987 return error;
1988 }
1989 }
1990
1991 return 0;
1992}
1993EXPORT_SYMBOL_GPL(hid_hw_start);
1994
1995/**
1996 * hid_hw_stop - stop underlying HW
1997 * @hdev: hid device
1998 *
1999 * This is usually called from remove function or from probe when something
2000 * failed and hid_hw_start was called already.
2001 */
2002void hid_hw_stop(struct hid_device *hdev)
2003{
2004 hid_disconnect(hdev);
2005 hdev->ll_driver->stop(hdev);
2006}
2007EXPORT_SYMBOL_GPL(hid_hw_stop);
2008
2009/**
2010 * hid_hw_open - signal underlying HW to start delivering events
2011 * @hdev: hid device
2012 *
2013 * Tell underlying HW to start delivering events from the device.
2014 * This function should be called sometime after successful call
2015 * to hid_hw_start().
2016 */
2017int hid_hw_open(struct hid_device *hdev)
2018{
2019 int ret;
2020
2021 ret = mutex_lock_killable(&hdev->ll_open_lock);
2022 if (ret)
2023 return ret;
2024
2025 if (!hdev->ll_open_count++) {
2026 ret = hdev->ll_driver->open(hdev);
2027 if (ret)
2028 hdev->ll_open_count--;
2029 }
2030
2031 mutex_unlock(&hdev->ll_open_lock);
2032 return ret;
2033}
2034EXPORT_SYMBOL_GPL(hid_hw_open);
2035
2036/**
2037 * hid_hw_close - signal underlaying HW to stop delivering events
2038 *
2039 * @hdev: hid device
2040 *
2041 * This function indicates that we are not interested in the events
2042 * from this device anymore. Delivery of events may or may not stop,
2043 * depending on the number of users still outstanding.
2044 */
2045void hid_hw_close(struct hid_device *hdev)
2046{
2047 mutex_lock(&hdev->ll_open_lock);
2048 if (!--hdev->ll_open_count)
2049 hdev->ll_driver->close(hdev);
2050 mutex_unlock(&hdev->ll_open_lock);
2051}
2052EXPORT_SYMBOL_GPL(hid_hw_close);
2053
2054struct hid_dynid {
2055 struct list_head list;
2056 struct hid_device_id id;
2057};
2058
2059/**
2060 * store_new_id - add a new HID device ID to this driver and re-probe devices
2061 * @driver: target device driver
2062 * @buf: buffer for scanning device ID data
2063 * @count: input size
2064 *
2065 * Adds a new dynamic hid device ID to this driver,
2066 * and causes the driver to probe for all devices again.
2067 */
2068static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2069 size_t count)
2070{
2071 struct hid_driver *hdrv = to_hid_driver(drv);
2072 struct hid_dynid *dynid;
2073 __u32 bus, vendor, product;
2074 unsigned long driver_data = 0;
2075 int ret;
2076
2077 ret = sscanf(buf, "%x %x %x %lx",
2078 &bus, &vendor, &product, &driver_data);
2079 if (ret < 3)
2080 return -EINVAL;
2081
2082 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2083 if (!dynid)
2084 return -ENOMEM;
2085
2086 dynid->id.bus = bus;
2087 dynid->id.group = HID_GROUP_ANY;
2088 dynid->id.vendor = vendor;
2089 dynid->id.product = product;
2090 dynid->id.driver_data = driver_data;
2091
2092 spin_lock(&hdrv->dyn_lock);
2093 list_add_tail(&dynid->list, &hdrv->dyn_list);
2094 spin_unlock(&hdrv->dyn_lock);
2095
2096 ret = driver_attach(&hdrv->driver);
2097
2098 return ret ? : count;
2099}
2100static DRIVER_ATTR_WO(new_id);
2101
2102static struct attribute *hid_drv_attrs[] = {
2103 &driver_attr_new_id.attr,
2104 NULL,
2105};
2106ATTRIBUTE_GROUPS(hid_drv);
2107
2108static void hid_free_dynids(struct hid_driver *hdrv)
2109{
2110 struct hid_dynid *dynid, *n;
2111
2112 spin_lock(&hdrv->dyn_lock);
2113 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2114 list_del(&dynid->list);
2115 kfree(dynid);
2116 }
2117 spin_unlock(&hdrv->dyn_lock);
2118}
2119
2120const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2121 struct hid_driver *hdrv)
2122{
2123 struct hid_dynid *dynid;
2124
2125 spin_lock(&hdrv->dyn_lock);
2126 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2127 if (hid_match_one_id(hdev, &dynid->id)) {
2128 spin_unlock(&hdrv->dyn_lock);
2129 return &dynid->id;
2130 }
2131 }
2132 spin_unlock(&hdrv->dyn_lock);
2133
2134 return hid_match_id(hdev, hdrv->id_table);
2135}
2136EXPORT_SYMBOL_GPL(hid_match_device);
2137
2138static int hid_bus_match(struct device *dev, struct device_driver *drv)
2139{
2140 struct hid_driver *hdrv = to_hid_driver(drv);
2141 struct hid_device *hdev = to_hid_device(dev);
2142
2143 return hid_match_device(hdev, hdrv) != NULL;
2144}
2145
2146/**
2147 * hid_compare_device_paths - check if both devices share the same path
2148 * @hdev_a: hid device
2149 * @hdev_b: hid device
2150 * @separator: char to use as separator
2151 *
2152 * Check if two devices share the same path up to the last occurrence of
2153 * the separator char. Both paths must exist (i.e., zero-length paths
2154 * don't match).
2155 */
2156bool hid_compare_device_paths(struct hid_device *hdev_a,
2157 struct hid_device *hdev_b, char separator)
2158{
2159 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2160 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2161
2162 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2163 return false;
2164
2165 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2166}
2167EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2168
2169static int hid_device_probe(struct device *dev)
2170{
2171 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2172 struct hid_device *hdev = to_hid_device(dev);
2173 const struct hid_device_id *id;
2174 int ret = 0;
2175
2176 if (down_interruptible(&hdev->driver_input_lock)) {
2177 ret = -EINTR;
2178 goto end;
2179 }
2180 hdev->io_started = false;
2181
2182 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2183
2184 if (!hdev->driver) {
2185 id = hid_match_device(hdev, hdrv);
2186 if (id == NULL) {
2187 ret = -ENODEV;
2188 goto unlock;
2189 }
2190
2191 if (hdrv->match) {
2192 if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2193 ret = -ENODEV;
2194 goto unlock;
2195 }
2196 } else {
2197 /*
2198 * hid-generic implements .match(), so if
2199 * hid_ignore_special_drivers is set, we can safely
2200 * return.
2201 */
2202 if (hid_ignore_special_drivers) {
2203 ret = -ENODEV;
2204 goto unlock;
2205 }
2206 }
2207
2208 /* reset the quirks that has been previously set */
2209 hdev->quirks = hid_lookup_quirk(hdev);
2210 hdev->driver = hdrv;
2211 if (hdrv->probe) {
2212 ret = hdrv->probe(hdev, id);
2213 } else { /* default probe */
2214 ret = hid_open_report(hdev);
2215 if (!ret)
2216 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2217 }
2218 if (ret) {
2219 hid_close_report(hdev);
2220 hdev->driver = NULL;
2221 }
2222 }
2223unlock:
2224 if (!hdev->io_started)
2225 up(&hdev->driver_input_lock);
2226end:
2227 return ret;
2228}
2229
2230static int hid_device_remove(struct device *dev)
2231{
2232 struct hid_device *hdev = to_hid_device(dev);
2233 struct hid_driver *hdrv;
2234 int ret = 0;
2235
2236 if (down_interruptible(&hdev->driver_input_lock)) {
2237 ret = -EINTR;
2238 goto end;
2239 }
2240 hdev->io_started = false;
2241
2242 hdrv = hdev->driver;
2243 if (hdrv) {
2244 if (hdrv->remove)
2245 hdrv->remove(hdev);
2246 else /* default remove */
2247 hid_hw_stop(hdev);
2248 hid_close_report(hdev);
2249 hdev->driver = NULL;
2250 }
2251
2252 if (!hdev->io_started)
2253 up(&hdev->driver_input_lock);
2254end:
2255 return ret;
2256}
2257
2258static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2259 char *buf)
2260{
2261 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2262
2263 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2264 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2265}
2266static DEVICE_ATTR_RO(modalias);
2267
2268static struct attribute *hid_dev_attrs[] = {
2269 &dev_attr_modalias.attr,
2270 NULL,
2271};
2272static struct bin_attribute *hid_dev_bin_attrs[] = {
2273 &dev_bin_attr_report_desc,
2274 NULL
2275};
2276static const struct attribute_group hid_dev_group = {
2277 .attrs = hid_dev_attrs,
2278 .bin_attrs = hid_dev_bin_attrs,
2279};
2280__ATTRIBUTE_GROUPS(hid_dev);
2281
2282static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2283{
2284 struct hid_device *hdev = to_hid_device(dev);
2285
2286 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2287 hdev->bus, hdev->vendor, hdev->product))
2288 return -ENOMEM;
2289
2290 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2291 return -ENOMEM;
2292
2293 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2294 return -ENOMEM;
2295
2296 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2297 return -ENOMEM;
2298
2299 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2300 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2301 return -ENOMEM;
2302
2303 return 0;
2304}
2305
2306struct bus_type hid_bus_type = {
2307 .name = "hid",
2308 .dev_groups = hid_dev_groups,
2309 .drv_groups = hid_drv_groups,
2310 .match = hid_bus_match,
2311 .probe = hid_device_probe,
2312 .remove = hid_device_remove,
2313 .uevent = hid_uevent,
2314};
2315EXPORT_SYMBOL(hid_bus_type);
2316
2317int hid_add_device(struct hid_device *hdev)
2318{
2319 static atomic_t id = ATOMIC_INIT(0);
2320 int ret;
2321
2322 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2323 return -EBUSY;
2324
2325 hdev->quirks = hid_lookup_quirk(hdev);
2326
2327 /* we need to kill them here, otherwise they will stay allocated to
2328 * wait for coming driver */
2329 if (hid_ignore(hdev))
2330 return -ENODEV;
2331
2332 /*
2333 * Check for the mandatory transport channel.
2334 */
2335 if (!hdev->ll_driver->raw_request) {
2336 hid_err(hdev, "transport driver missing .raw_request()\n");
2337 return -EINVAL;
2338 }
2339
2340 /*
2341 * Read the device report descriptor once and use as template
2342 * for the driver-specific modifications.
2343 */
2344 ret = hdev->ll_driver->parse(hdev);
2345 if (ret)
2346 return ret;
2347 if (!hdev->dev_rdesc)
2348 return -ENODEV;
2349
2350 /*
2351 * Scan generic devices for group information
2352 */
2353 if (hid_ignore_special_drivers) {
2354 hdev->group = HID_GROUP_GENERIC;
2355 } else if (!hdev->group &&
2356 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2357 ret = hid_scan_report(hdev);
2358 if (ret)
2359 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2360 }
2361
2362 /* XXX hack, any other cleaner solution after the driver core
2363 * is converted to allow more than 20 bytes as the device name? */
2364 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2365 hdev->vendor, hdev->product, atomic_inc_return(&id));
2366
2367 hid_debug_register(hdev, dev_name(&hdev->dev));
2368 ret = device_add(&hdev->dev);
2369 if (!ret)
2370 hdev->status |= HID_STAT_ADDED;
2371 else
2372 hid_debug_unregister(hdev);
2373
2374 return ret;
2375}
2376EXPORT_SYMBOL_GPL(hid_add_device);
2377
2378/**
2379 * hid_allocate_device - allocate new hid device descriptor
2380 *
2381 * Allocate and initialize hid device, so that hid_destroy_device might be
2382 * used to free it.
2383 *
2384 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2385 * error value.
2386 */
2387struct hid_device *hid_allocate_device(void)
2388{
2389 struct hid_device *hdev;
2390 int ret = -ENOMEM;
2391
2392 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2393 if (hdev == NULL)
2394 return ERR_PTR(ret);
2395
2396 device_initialize(&hdev->dev);
2397 hdev->dev.release = hid_device_release;
2398 hdev->dev.bus = &hid_bus_type;
2399 device_enable_async_suspend(&hdev->dev);
2400
2401 hid_close_report(hdev);
2402
2403 init_waitqueue_head(&hdev->debug_wait);
2404 INIT_LIST_HEAD(&hdev->debug_list);
2405 spin_lock_init(&hdev->debug_list_lock);
2406 sema_init(&hdev->driver_input_lock, 1);
2407 mutex_init(&hdev->ll_open_lock);
2408
2409 return hdev;
2410}
2411EXPORT_SYMBOL_GPL(hid_allocate_device);
2412
2413static void hid_remove_device(struct hid_device *hdev)
2414{
2415 if (hdev->status & HID_STAT_ADDED) {
2416 device_del(&hdev->dev);
2417 hid_debug_unregister(hdev);
2418 hdev->status &= ~HID_STAT_ADDED;
2419 }
2420 kfree(hdev->dev_rdesc);
2421 hdev->dev_rdesc = NULL;
2422 hdev->dev_rsize = 0;
2423}
2424
2425/**
2426 * hid_destroy_device - free previously allocated device
2427 *
2428 * @hdev: hid device
2429 *
2430 * If you allocate hid_device through hid_allocate_device, you should ever
2431 * free by this function.
2432 */
2433void hid_destroy_device(struct hid_device *hdev)
2434{
2435 hid_remove_device(hdev);
2436 put_device(&hdev->dev);
2437}
2438EXPORT_SYMBOL_GPL(hid_destroy_device);
2439
2440
2441static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2442{
2443 struct hid_driver *hdrv = data;
2444 struct hid_device *hdev = to_hid_device(dev);
2445
2446 if (hdev->driver == hdrv &&
2447 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2448 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2449 return device_reprobe(dev);
2450
2451 return 0;
2452}
2453
2454static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2455{
2456 struct hid_driver *hdrv = to_hid_driver(drv);
2457
2458 if (hdrv->match) {
2459 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2460 __hid_bus_reprobe_drivers);
2461 }
2462
2463 return 0;
2464}
2465
2466static int __bus_removed_driver(struct device_driver *drv, void *data)
2467{
2468 return bus_rescan_devices(&hid_bus_type);
2469}
2470
2471int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2472 const char *mod_name)
2473{
2474 int ret;
2475
2476 hdrv->driver.name = hdrv->name;
2477 hdrv->driver.bus = &hid_bus_type;
2478 hdrv->driver.owner = owner;
2479 hdrv->driver.mod_name = mod_name;
2480
2481 INIT_LIST_HEAD(&hdrv->dyn_list);
2482 spin_lock_init(&hdrv->dyn_lock);
2483
2484 ret = driver_register(&hdrv->driver);
2485
2486 if (ret == 0)
2487 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2488 __hid_bus_driver_added);
2489
2490 return ret;
2491}
2492EXPORT_SYMBOL_GPL(__hid_register_driver);
2493
2494void hid_unregister_driver(struct hid_driver *hdrv)
2495{
2496 driver_unregister(&hdrv->driver);
2497 hid_free_dynids(hdrv);
2498
2499 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2500}
2501EXPORT_SYMBOL_GPL(hid_unregister_driver);
2502
2503int hid_check_keys_pressed(struct hid_device *hid)
2504{
2505 struct hid_input *hidinput;
2506 int i;
2507
2508 if (!(hid->claimed & HID_CLAIMED_INPUT))
2509 return 0;
2510
2511 list_for_each_entry(hidinput, &hid->inputs, list) {
2512 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2513 if (hidinput->input->key[i])
2514 return 1;
2515 }
2516
2517 return 0;
2518}
2519
2520EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2521
2522static int __init hid_init(void)
2523{
2524 int ret;
2525
2526 if (hid_debug)
2527 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2528 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2529
2530 ret = bus_register(&hid_bus_type);
2531 if (ret) {
2532 pr_err("can't register hid bus\n");
2533 goto err;
2534 }
2535
2536 ret = hidraw_init();
2537 if (ret)
2538 goto err_bus;
2539
2540 hid_debug_init();
2541
2542 return 0;
2543err_bus:
2544 bus_unregister(&hid_bus_type);
2545err:
2546 return ret;
2547}
2548
2549static void __exit hid_exit(void)
2550{
2551 hid_debug_exit();
2552 hidraw_exit();
2553 bus_unregister(&hid_bus_type);
2554 hid_quirks_exit(HID_BUS_ANY);
2555}
2556
2557module_init(hid_init);
2558module_exit(hid_exit);
2559
2560MODULE_AUTHOR("Andreas Gal");
2561MODULE_AUTHOR("Vojtech Pavlik");
2562MODULE_AUTHOR("Jiri Kosina");
2563MODULE_LICENSE("GPL");
1/*
2 * HID support for Linux
3 *
4 * Copyright (c) 1999 Andreas Gal
5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 * Copyright (c) 2006-2010 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/list.h>
24#include <linux/mm.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30#include <linux/vmalloc.h>
31#include <linux/sched.h>
32
33#include <linux/hid.h>
34#include <linux/hiddev.h>
35#include <linux/hid-debug.h>
36#include <linux/hidraw.h>
37
38#include "hid-ids.h"
39
40/*
41 * Version Information
42 */
43
44#define DRIVER_DESC "HID core driver"
45#define DRIVER_LICENSE "GPL"
46
47int hid_debug = 0;
48module_param_named(debug, hid_debug, int, 0600);
49MODULE_PARM_DESC(debug, "toggle HID debugging messages");
50EXPORT_SYMBOL_GPL(hid_debug);
51
52/*
53 * Register a new report for a device.
54 */
55
56struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57{
58 struct hid_report_enum *report_enum = device->report_enum + type;
59 struct hid_report *report;
60
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
63
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
67
68 if (id != 0)
69 report_enum->numbered = 1;
70
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report_enum->report_id_hash[id] = report;
76
77 list_add_tail(&report->list, &report_enum->report_list);
78
79 return report;
80}
81EXPORT_SYMBOL_GPL(hid_register_report);
82
83/*
84 * Register a new field for this report.
85 */
86
87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
88{
89 struct hid_field *field;
90
91 if (report->maxfield == HID_MAX_FIELDS) {
92 dbg_hid("too many fields in report\n");
93 return NULL;
94 }
95
96 field = kzalloc((sizeof(struct hid_field) +
97 usages * sizeof(struct hid_usage) +
98 values * sizeof(unsigned)), GFP_KERNEL);
99 if (!field)
100 return NULL;
101
102 field->index = report->maxfield++;
103 report->field[field->index] = field;
104 field->usage = (struct hid_usage *)(field + 1);
105 field->value = (s32 *)(field->usage + usages);
106 field->report = report;
107
108 return field;
109}
110
111/*
112 * Open a collection. The type/usage is pushed on the stack.
113 */
114
115static int open_collection(struct hid_parser *parser, unsigned type)
116{
117 struct hid_collection *collection;
118 unsigned usage;
119
120 usage = parser->local.usage[0];
121
122 if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
123 dbg_hid("collection stack overflow\n");
124 return -1;
125 }
126
127 if (parser->device->maxcollection == parser->device->collection_size) {
128 collection = kmalloc(sizeof(struct hid_collection) *
129 parser->device->collection_size * 2, GFP_KERNEL);
130 if (collection == NULL) {
131 dbg_hid("failed to reallocate collection array\n");
132 return -1;
133 }
134 memcpy(collection, parser->device->collection,
135 sizeof(struct hid_collection) *
136 parser->device->collection_size);
137 memset(collection + parser->device->collection_size, 0,
138 sizeof(struct hid_collection) *
139 parser->device->collection_size);
140 kfree(parser->device->collection);
141 parser->device->collection = collection;
142 parser->device->collection_size *= 2;
143 }
144
145 parser->collection_stack[parser->collection_stack_ptr++] =
146 parser->device->maxcollection;
147
148 collection = parser->device->collection +
149 parser->device->maxcollection++;
150 collection->type = type;
151 collection->usage = usage;
152 collection->level = parser->collection_stack_ptr - 1;
153
154 if (type == HID_COLLECTION_APPLICATION)
155 parser->device->maxapplication++;
156
157 return 0;
158}
159
160/*
161 * Close a collection.
162 */
163
164static int close_collection(struct hid_parser *parser)
165{
166 if (!parser->collection_stack_ptr) {
167 dbg_hid("collection stack underflow\n");
168 return -1;
169 }
170 parser->collection_stack_ptr--;
171 return 0;
172}
173
174/*
175 * Climb up the stack, search for the specified collection type
176 * and return the usage.
177 */
178
179static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
180{
181 struct hid_collection *collection = parser->device->collection;
182 int n;
183
184 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
185 unsigned index = parser->collection_stack[n];
186 if (collection[index].type == type)
187 return collection[index].usage;
188 }
189 return 0; /* we know nothing about this usage type */
190}
191
192/*
193 * Add a usage to the temporary parser table.
194 */
195
196static int hid_add_usage(struct hid_parser *parser, unsigned usage)
197{
198 if (parser->local.usage_index >= HID_MAX_USAGES) {
199 dbg_hid("usage index exceeded\n");
200 return -1;
201 }
202 parser->local.usage[parser->local.usage_index] = usage;
203 parser->local.collection_index[parser->local.usage_index] =
204 parser->collection_stack_ptr ?
205 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
206 parser->local.usage_index++;
207 return 0;
208}
209
210/*
211 * Register a new field for this report.
212 */
213
214static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
215{
216 struct hid_report *report;
217 struct hid_field *field;
218 int usages;
219 unsigned offset;
220 int i;
221
222 report = hid_register_report(parser->device, report_type, parser->global.report_id);
223 if (!report) {
224 dbg_hid("hid_register_report failed\n");
225 return -1;
226 }
227
228 if (parser->global.logical_maximum < parser->global.logical_minimum) {
229 dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
230 return -1;
231 }
232
233 offset = report->size;
234 report->size += parser->global.report_size * parser->global.report_count;
235
236 if (!parser->local.usage_index) /* Ignore padding fields */
237 return 0;
238
239 usages = max_t(int, parser->local.usage_index, parser->global.report_count);
240
241 field = hid_register_field(report, usages, parser->global.report_count);
242 if (!field)
243 return 0;
244
245 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
246 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
247 field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
248
249 for (i = 0; i < usages; i++) {
250 int j = i;
251 /* Duplicate the last usage we parsed if we have excess values */
252 if (i >= parser->local.usage_index)
253 j = parser->local.usage_index - 1;
254 field->usage[i].hid = parser->local.usage[j];
255 field->usage[i].collection_index =
256 parser->local.collection_index[j];
257 }
258
259 field->maxusage = usages;
260 field->flags = flags;
261 field->report_offset = offset;
262 field->report_type = report_type;
263 field->report_size = parser->global.report_size;
264 field->report_count = parser->global.report_count;
265 field->logical_minimum = parser->global.logical_minimum;
266 field->logical_maximum = parser->global.logical_maximum;
267 field->physical_minimum = parser->global.physical_minimum;
268 field->physical_maximum = parser->global.physical_maximum;
269 field->unit_exponent = parser->global.unit_exponent;
270 field->unit = parser->global.unit;
271
272 return 0;
273}
274
275/*
276 * Read data value from item.
277 */
278
279static u32 item_udata(struct hid_item *item)
280{
281 switch (item->size) {
282 case 1: return item->data.u8;
283 case 2: return item->data.u16;
284 case 4: return item->data.u32;
285 }
286 return 0;
287}
288
289static s32 item_sdata(struct hid_item *item)
290{
291 switch (item->size) {
292 case 1: return item->data.s8;
293 case 2: return item->data.s16;
294 case 4: return item->data.s32;
295 }
296 return 0;
297}
298
299/*
300 * Process a global item.
301 */
302
303static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
304{
305 switch (item->tag) {
306 case HID_GLOBAL_ITEM_TAG_PUSH:
307
308 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
309 dbg_hid("global environment stack overflow\n");
310 return -1;
311 }
312
313 memcpy(parser->global_stack + parser->global_stack_ptr++,
314 &parser->global, sizeof(struct hid_global));
315 return 0;
316
317 case HID_GLOBAL_ITEM_TAG_POP:
318
319 if (!parser->global_stack_ptr) {
320 dbg_hid("global environment stack underflow\n");
321 return -1;
322 }
323
324 memcpy(&parser->global, parser->global_stack +
325 --parser->global_stack_ptr, sizeof(struct hid_global));
326 return 0;
327
328 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
329 parser->global.usage_page = item_udata(item);
330 return 0;
331
332 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
333 parser->global.logical_minimum = item_sdata(item);
334 return 0;
335
336 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
337 if (parser->global.logical_minimum < 0)
338 parser->global.logical_maximum = item_sdata(item);
339 else
340 parser->global.logical_maximum = item_udata(item);
341 return 0;
342
343 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
344 parser->global.physical_minimum = item_sdata(item);
345 return 0;
346
347 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
348 if (parser->global.physical_minimum < 0)
349 parser->global.physical_maximum = item_sdata(item);
350 else
351 parser->global.physical_maximum = item_udata(item);
352 return 0;
353
354 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
355 parser->global.unit_exponent = item_sdata(item);
356 return 0;
357
358 case HID_GLOBAL_ITEM_TAG_UNIT:
359 parser->global.unit = item_udata(item);
360 return 0;
361
362 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
363 parser->global.report_size = item_udata(item);
364 if (parser->global.report_size > 32) {
365 dbg_hid("invalid report_size %d\n",
366 parser->global.report_size);
367 return -1;
368 }
369 return 0;
370
371 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
372 parser->global.report_count = item_udata(item);
373 if (parser->global.report_count > HID_MAX_USAGES) {
374 dbg_hid("invalid report_count %d\n",
375 parser->global.report_count);
376 return -1;
377 }
378 return 0;
379
380 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
381 parser->global.report_id = item_udata(item);
382 if (parser->global.report_id == 0) {
383 dbg_hid("report_id 0 is invalid\n");
384 return -1;
385 }
386 return 0;
387
388 default:
389 dbg_hid("unknown global tag 0x%x\n", item->tag);
390 return -1;
391 }
392}
393
394/*
395 * Process a local item.
396 */
397
398static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
399{
400 __u32 data;
401 unsigned n;
402
403 data = item_udata(item);
404
405 switch (item->tag) {
406 case HID_LOCAL_ITEM_TAG_DELIMITER:
407
408 if (data) {
409 /*
410 * We treat items before the first delimiter
411 * as global to all usage sets (branch 0).
412 * In the moment we process only these global
413 * items and the first delimiter set.
414 */
415 if (parser->local.delimiter_depth != 0) {
416 dbg_hid("nested delimiters\n");
417 return -1;
418 }
419 parser->local.delimiter_depth++;
420 parser->local.delimiter_branch++;
421 } else {
422 if (parser->local.delimiter_depth < 1) {
423 dbg_hid("bogus close delimiter\n");
424 return -1;
425 }
426 parser->local.delimiter_depth--;
427 }
428 return 1;
429
430 case HID_LOCAL_ITEM_TAG_USAGE:
431
432 if (parser->local.delimiter_branch > 1) {
433 dbg_hid("alternative usage ignored\n");
434 return 0;
435 }
436
437 if (item->size <= 2)
438 data = (parser->global.usage_page << 16) + data;
439
440 return hid_add_usage(parser, data);
441
442 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
443
444 if (parser->local.delimiter_branch > 1) {
445 dbg_hid("alternative usage ignored\n");
446 return 0;
447 }
448
449 if (item->size <= 2)
450 data = (parser->global.usage_page << 16) + data;
451
452 parser->local.usage_minimum = data;
453 return 0;
454
455 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
456
457 if (parser->local.delimiter_branch > 1) {
458 dbg_hid("alternative usage ignored\n");
459 return 0;
460 }
461
462 if (item->size <= 2)
463 data = (parser->global.usage_page << 16) + data;
464
465 for (n = parser->local.usage_minimum; n <= data; n++)
466 if (hid_add_usage(parser, n)) {
467 dbg_hid("hid_add_usage failed\n");
468 return -1;
469 }
470 return 0;
471
472 default:
473
474 dbg_hid("unknown local item tag 0x%x\n", item->tag);
475 return 0;
476 }
477 return 0;
478}
479
480/*
481 * Process a main item.
482 */
483
484static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
485{
486 __u32 data;
487 int ret;
488
489 data = item_udata(item);
490
491 switch (item->tag) {
492 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
493 ret = open_collection(parser, data & 0xff);
494 break;
495 case HID_MAIN_ITEM_TAG_END_COLLECTION:
496 ret = close_collection(parser);
497 break;
498 case HID_MAIN_ITEM_TAG_INPUT:
499 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
500 break;
501 case HID_MAIN_ITEM_TAG_OUTPUT:
502 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
503 break;
504 case HID_MAIN_ITEM_TAG_FEATURE:
505 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
506 break;
507 default:
508 dbg_hid("unknown main item tag 0x%x\n", item->tag);
509 ret = 0;
510 }
511
512 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
513
514 return ret;
515}
516
517/*
518 * Process a reserved item.
519 */
520
521static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
522{
523 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
524 return 0;
525}
526
527/*
528 * Free a report and all registered fields. The field->usage and
529 * field->value table's are allocated behind the field, so we need
530 * only to free(field) itself.
531 */
532
533static void hid_free_report(struct hid_report *report)
534{
535 unsigned n;
536
537 for (n = 0; n < report->maxfield; n++)
538 kfree(report->field[n]);
539 kfree(report);
540}
541
542/*
543 * Free a device structure, all reports, and all fields.
544 */
545
546static void hid_device_release(struct device *dev)
547{
548 struct hid_device *device = container_of(dev, struct hid_device, dev);
549 unsigned i, j;
550
551 for (i = 0; i < HID_REPORT_TYPES; i++) {
552 struct hid_report_enum *report_enum = device->report_enum + i;
553
554 for (j = 0; j < 256; j++) {
555 struct hid_report *report = report_enum->report_id_hash[j];
556 if (report)
557 hid_free_report(report);
558 }
559 }
560
561 kfree(device->rdesc);
562 kfree(device->collection);
563 kfree(device);
564}
565
566/*
567 * Fetch a report description item from the data stream. We support long
568 * items, though they are not used yet.
569 */
570
571static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
572{
573 u8 b;
574
575 if ((end - start) <= 0)
576 return NULL;
577
578 b = *start++;
579
580 item->type = (b >> 2) & 3;
581 item->tag = (b >> 4) & 15;
582
583 if (item->tag == HID_ITEM_TAG_LONG) {
584
585 item->format = HID_ITEM_FORMAT_LONG;
586
587 if ((end - start) < 2)
588 return NULL;
589
590 item->size = *start++;
591 item->tag = *start++;
592
593 if ((end - start) < item->size)
594 return NULL;
595
596 item->data.longdata = start;
597 start += item->size;
598 return start;
599 }
600
601 item->format = HID_ITEM_FORMAT_SHORT;
602 item->size = b & 3;
603
604 switch (item->size) {
605 case 0:
606 return start;
607
608 case 1:
609 if ((end - start) < 1)
610 return NULL;
611 item->data.u8 = *start++;
612 return start;
613
614 case 2:
615 if ((end - start) < 2)
616 return NULL;
617 item->data.u16 = get_unaligned_le16(start);
618 start = (__u8 *)((__le16 *)start + 1);
619 return start;
620
621 case 3:
622 item->size++;
623 if ((end - start) < 4)
624 return NULL;
625 item->data.u32 = get_unaligned_le32(start);
626 start = (__u8 *)((__le32 *)start + 1);
627 return start;
628 }
629
630 return NULL;
631}
632
633/**
634 * hid_parse_report - parse device report
635 *
636 * @device: hid device
637 * @start: report start
638 * @size: report size
639 *
640 * Parse a report description into a hid_device structure. Reports are
641 * enumerated, fields are attached to these reports.
642 * 0 returned on success, otherwise nonzero error value.
643 */
644int hid_parse_report(struct hid_device *device, __u8 *start,
645 unsigned size)
646{
647 struct hid_parser *parser;
648 struct hid_item item;
649 __u8 *end;
650 int ret;
651 static int (*dispatch_type[])(struct hid_parser *parser,
652 struct hid_item *item) = {
653 hid_parser_main,
654 hid_parser_global,
655 hid_parser_local,
656 hid_parser_reserved
657 };
658
659 if (device->driver->report_fixup)
660 start = device->driver->report_fixup(device, start, &size);
661
662 device->rdesc = kmemdup(start, size, GFP_KERNEL);
663 if (device->rdesc == NULL)
664 return -ENOMEM;
665 device->rsize = size;
666
667 parser = vzalloc(sizeof(struct hid_parser));
668 if (!parser) {
669 ret = -ENOMEM;
670 goto err;
671 }
672
673 parser->device = device;
674
675 end = start + size;
676 ret = -EINVAL;
677 while ((start = fetch_item(start, end, &item)) != NULL) {
678
679 if (item.format != HID_ITEM_FORMAT_SHORT) {
680 dbg_hid("unexpected long global item\n");
681 goto err;
682 }
683
684 if (dispatch_type[item.type](parser, &item)) {
685 dbg_hid("item %u %u %u %u parsing failed\n",
686 item.format, (unsigned)item.size,
687 (unsigned)item.type, (unsigned)item.tag);
688 goto err;
689 }
690
691 if (start == end) {
692 if (parser->collection_stack_ptr) {
693 dbg_hid("unbalanced collection at end of report description\n");
694 goto err;
695 }
696 if (parser->local.delimiter_depth) {
697 dbg_hid("unbalanced delimiter at end of report description\n");
698 goto err;
699 }
700 vfree(parser);
701 return 0;
702 }
703 }
704
705 dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
706err:
707 vfree(parser);
708 return ret;
709}
710EXPORT_SYMBOL_GPL(hid_parse_report);
711
712/*
713 * Convert a signed n-bit integer to signed 32-bit integer. Common
714 * cases are done through the compiler, the screwed things has to be
715 * done by hand.
716 */
717
718static s32 snto32(__u32 value, unsigned n)
719{
720 switch (n) {
721 case 8: return ((__s8)value);
722 case 16: return ((__s16)value);
723 case 32: return ((__s32)value);
724 }
725 return value & (1 << (n - 1)) ? value | (-1 << n) : value;
726}
727
728/*
729 * Convert a signed 32-bit integer to a signed n-bit integer.
730 */
731
732static u32 s32ton(__s32 value, unsigned n)
733{
734 s32 a = value >> (n - 1);
735 if (a && a != -1)
736 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
737 return value & ((1 << n) - 1);
738}
739
740/*
741 * Extract/implement a data field from/to a little endian report (bit array).
742 *
743 * Code sort-of follows HID spec:
744 * http://www.usb.org/developers/devclass_docs/HID1_11.pdf
745 *
746 * While the USB HID spec allows unlimited length bit fields in "report
747 * descriptors", most devices never use more than 16 bits.
748 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
749 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
750 */
751
752static __u32 extract(const struct hid_device *hid, __u8 *report,
753 unsigned offset, unsigned n)
754{
755 u64 x;
756
757 if (n > 32)
758 hid_warn(hid, "extract() called with n (%d) > 32! (%s)\n",
759 n, current->comm);
760
761 report += offset >> 3; /* adjust byte index */
762 offset &= 7; /* now only need bit offset into one byte */
763 x = get_unaligned_le64(report);
764 x = (x >> offset) & ((1ULL << n) - 1); /* extract bit field */
765 return (u32) x;
766}
767
768/*
769 * "implement" : set bits in a little endian bit stream.
770 * Same concepts as "extract" (see comments above).
771 * The data mangled in the bit stream remains in little endian
772 * order the whole time. It make more sense to talk about
773 * endianness of register values by considering a register
774 * a "cached" copy of the little endiad bit stream.
775 */
776static void implement(const struct hid_device *hid, __u8 *report,
777 unsigned offset, unsigned n, __u32 value)
778{
779 u64 x;
780 u64 m = (1ULL << n) - 1;
781
782 if (n > 32)
783 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
784 __func__, n, current->comm);
785
786 if (value > m)
787 hid_warn(hid, "%s() called with too large value %d! (%s)\n",
788 __func__, value, current->comm);
789 WARN_ON(value > m);
790 value &= m;
791
792 report += offset >> 3;
793 offset &= 7;
794
795 x = get_unaligned_le64(report);
796 x &= ~(m << offset);
797 x |= ((u64)value) << offset;
798 put_unaligned_le64(x, report);
799}
800
801/*
802 * Search an array for a value.
803 */
804
805static int search(__s32 *array, __s32 value, unsigned n)
806{
807 while (n--) {
808 if (*array++ == value)
809 return 0;
810 }
811 return -1;
812}
813
814/**
815 * hid_match_report - check if driver's raw_event should be called
816 *
817 * @hid: hid device
818 * @report_type: type to match against
819 *
820 * compare hid->driver->report_table->report_type to report->type
821 */
822static int hid_match_report(struct hid_device *hid, struct hid_report *report)
823{
824 const struct hid_report_id *id = hid->driver->report_table;
825
826 if (!id) /* NULL means all */
827 return 1;
828
829 for (; id->report_type != HID_TERMINATOR; id++)
830 if (id->report_type == HID_ANY_ID ||
831 id->report_type == report->type)
832 return 1;
833 return 0;
834}
835
836/**
837 * hid_match_usage - check if driver's event should be called
838 *
839 * @hid: hid device
840 * @usage: usage to match against
841 *
842 * compare hid->driver->usage_table->usage_{type,code} to
843 * usage->usage_{type,code}
844 */
845static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
846{
847 const struct hid_usage_id *id = hid->driver->usage_table;
848
849 if (!id) /* NULL means all */
850 return 1;
851
852 for (; id->usage_type != HID_ANY_ID - 1; id++)
853 if ((id->usage_hid == HID_ANY_ID ||
854 id->usage_hid == usage->hid) &&
855 (id->usage_type == HID_ANY_ID ||
856 id->usage_type == usage->type) &&
857 (id->usage_code == HID_ANY_ID ||
858 id->usage_code == usage->code))
859 return 1;
860 return 0;
861}
862
863static void hid_process_event(struct hid_device *hid, struct hid_field *field,
864 struct hid_usage *usage, __s32 value, int interrupt)
865{
866 struct hid_driver *hdrv = hid->driver;
867 int ret;
868
869 hid_dump_input(hid, usage, value);
870
871 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
872 ret = hdrv->event(hid, field, usage, value);
873 if (ret != 0) {
874 if (ret < 0)
875 dbg_hid("%s's event failed with %d\n",
876 hdrv->name, ret);
877 return;
878 }
879 }
880
881 if (hid->claimed & HID_CLAIMED_INPUT)
882 hidinput_hid_event(hid, field, usage, value);
883 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
884 hid->hiddev_hid_event(hid, field, usage, value);
885}
886
887/*
888 * Analyse a received field, and fetch the data from it. The field
889 * content is stored for next report processing (we do differential
890 * reporting to the layer).
891 */
892
893static void hid_input_field(struct hid_device *hid, struct hid_field *field,
894 __u8 *data, int interrupt)
895{
896 unsigned n;
897 unsigned count = field->report_count;
898 unsigned offset = field->report_offset;
899 unsigned size = field->report_size;
900 __s32 min = field->logical_minimum;
901 __s32 max = field->logical_maximum;
902 __s32 *value;
903
904 value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC);
905 if (!value)
906 return;
907
908 for (n = 0; n < count; n++) {
909
910 value[n] = min < 0 ?
911 snto32(extract(hid, data, offset + n * size, size),
912 size) :
913 extract(hid, data, offset + n * size, size);
914
915 /* Ignore report if ErrorRollOver */
916 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
917 value[n] >= min && value[n] <= max &&
918 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
919 goto exit;
920 }
921
922 for (n = 0; n < count; n++) {
923
924 if (HID_MAIN_ITEM_VARIABLE & field->flags) {
925 hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
926 continue;
927 }
928
929 if (field->value[n] >= min && field->value[n] <= max
930 && field->usage[field->value[n] - min].hid
931 && search(value, field->value[n], count))
932 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
933
934 if (value[n] >= min && value[n] <= max
935 && field->usage[value[n] - min].hid
936 && search(field->value, value[n], count))
937 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
938 }
939
940 memcpy(field->value, value, count * sizeof(__s32));
941exit:
942 kfree(value);
943}
944
945/*
946 * Output the field into the report.
947 */
948
949static void hid_output_field(const struct hid_device *hid,
950 struct hid_field *field, __u8 *data)
951{
952 unsigned count = field->report_count;
953 unsigned offset = field->report_offset;
954 unsigned size = field->report_size;
955 unsigned n;
956
957 for (n = 0; n < count; n++) {
958 if (field->logical_minimum < 0) /* signed values */
959 implement(hid, data, offset + n * size, size,
960 s32ton(field->value[n], size));
961 else /* unsigned values */
962 implement(hid, data, offset + n * size, size,
963 field->value[n]);
964 }
965}
966
967/*
968 * Create a report.
969 */
970
971void hid_output_report(struct hid_report *report, __u8 *data)
972{
973 unsigned n;
974
975 if (report->id > 0)
976 *data++ = report->id;
977
978 memset(data, 0, ((report->size - 1) >> 3) + 1);
979 for (n = 0; n < report->maxfield; n++)
980 hid_output_field(report->device, report->field[n], data);
981}
982EXPORT_SYMBOL_GPL(hid_output_report);
983
984/*
985 * Set a field value. The report this field belongs to has to be
986 * created and transferred to the device, to set this value in the
987 * device.
988 */
989
990int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
991{
992 unsigned size = field->report_size;
993
994 hid_dump_input(field->report->device, field->usage + offset, value);
995
996 if (offset >= field->report_count) {
997 dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
998 return -1;
999 }
1000 if (field->logical_minimum < 0) {
1001 if (value != snto32(s32ton(value, size), size)) {
1002 dbg_hid("value %d is out of range\n", value);
1003 return -1;
1004 }
1005 }
1006 field->value[offset] = value;
1007 return 0;
1008}
1009EXPORT_SYMBOL_GPL(hid_set_field);
1010
1011static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1012 const u8 *data)
1013{
1014 struct hid_report *report;
1015 unsigned int n = 0; /* Normally report number is 0 */
1016
1017 /* Device uses numbered reports, data[0] is report number */
1018 if (report_enum->numbered)
1019 n = *data;
1020
1021 report = report_enum->report_id_hash[n];
1022 if (report == NULL)
1023 dbg_hid("undefined report_id %u received\n", n);
1024
1025 return report;
1026}
1027
1028void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1029 int interrupt)
1030{
1031 struct hid_report_enum *report_enum = hid->report_enum + type;
1032 struct hid_report *report;
1033 unsigned int a;
1034 int rsize, csize = size;
1035 u8 *cdata = data;
1036
1037 report = hid_get_report(report_enum, data);
1038 if (!report)
1039 return;
1040
1041 if (report_enum->numbered) {
1042 cdata++;
1043 csize--;
1044 }
1045
1046 rsize = ((report->size - 1) >> 3) + 1;
1047
1048 if (rsize > HID_MAX_BUFFER_SIZE)
1049 rsize = HID_MAX_BUFFER_SIZE;
1050
1051 if (csize < rsize) {
1052 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1053 csize, rsize);
1054 memset(cdata + csize, 0, rsize - csize);
1055 }
1056
1057 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1058 hid->hiddev_report_event(hid, report);
1059 if (hid->claimed & HID_CLAIMED_HIDRAW)
1060 hidraw_report_event(hid, data, size);
1061
1062 for (a = 0; a < report->maxfield; a++)
1063 hid_input_field(hid, report->field[a], cdata, interrupt);
1064
1065 if (hid->claimed & HID_CLAIMED_INPUT)
1066 hidinput_report_event(hid, report);
1067}
1068EXPORT_SYMBOL_GPL(hid_report_raw_event);
1069
1070/**
1071 * hid_input_report - report data from lower layer (usb, bt...)
1072 *
1073 * @hid: hid device
1074 * @type: HID report type (HID_*_REPORT)
1075 * @data: report contents
1076 * @size: size of data parameter
1077 * @interrupt: distinguish between interrupt and control transfers
1078 *
1079 * This is data entry for lower layers.
1080 */
1081int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1082{
1083 struct hid_report_enum *report_enum;
1084 struct hid_driver *hdrv;
1085 struct hid_report *report;
1086 char *buf;
1087 unsigned int i;
1088 int ret;
1089
1090 if (!hid || !hid->driver)
1091 return -ENODEV;
1092 report_enum = hid->report_enum + type;
1093 hdrv = hid->driver;
1094
1095 if (!size) {
1096 dbg_hid("empty report\n");
1097 return -1;
1098 }
1099
1100 buf = kmalloc(sizeof(char) * HID_DEBUG_BUFSIZE, GFP_ATOMIC);
1101
1102 if (!buf)
1103 goto nomem;
1104
1105 /* dump the report */
1106 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1107 "\nreport (size %u) (%snumbered) = ", size, report_enum->numbered ? "" : "un");
1108 hid_debug_event(hid, buf);
1109
1110 for (i = 0; i < size; i++) {
1111 snprintf(buf, HID_DEBUG_BUFSIZE - 1,
1112 " %02x", data[i]);
1113 hid_debug_event(hid, buf);
1114 }
1115 hid_debug_event(hid, "\n");
1116 kfree(buf);
1117
1118nomem:
1119 report = hid_get_report(report_enum, data);
1120
1121 if (!report)
1122 return -1;
1123
1124 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1125 ret = hdrv->raw_event(hid, report, data, size);
1126 if (ret != 0)
1127 return ret < 0 ? ret : 0;
1128 }
1129
1130 hid_report_raw_event(hid, type, data, size, interrupt);
1131
1132 return 0;
1133}
1134EXPORT_SYMBOL_GPL(hid_input_report);
1135
1136static bool hid_match_one_id(struct hid_device *hdev,
1137 const struct hid_device_id *id)
1138{
1139 return id->bus == hdev->bus &&
1140 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1141 (id->product == HID_ANY_ID || id->product == hdev->product);
1142}
1143
1144static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1145 const struct hid_device_id *id)
1146{
1147 for (; id->bus; id++)
1148 if (hid_match_one_id(hdev, id))
1149 return id;
1150
1151 return NULL;
1152}
1153
1154static const struct hid_device_id hid_hiddev_list[] = {
1155 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1156 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1157 { }
1158};
1159
1160static bool hid_hiddev(struct hid_device *hdev)
1161{
1162 return !!hid_match_id(hdev, hid_hiddev_list);
1163}
1164
1165
1166static ssize_t
1167read_report_descriptor(struct file *filp, struct kobject *kobj,
1168 struct bin_attribute *attr,
1169 char *buf, loff_t off, size_t count)
1170{
1171 struct device *dev = container_of(kobj, struct device, kobj);
1172 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1173
1174 if (off >= hdev->rsize)
1175 return 0;
1176
1177 if (off + count > hdev->rsize)
1178 count = hdev->rsize - off;
1179
1180 memcpy(buf, hdev->rdesc + off, count);
1181
1182 return count;
1183}
1184
1185static struct bin_attribute dev_bin_attr_report_desc = {
1186 .attr = { .name = "report_descriptor", .mode = 0444 },
1187 .read = read_report_descriptor,
1188 .size = HID_MAX_DESCRIPTOR_SIZE,
1189};
1190
1191int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1192{
1193 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1194 "Joystick", "Gamepad", "Keyboard", "Keypad",
1195 "Multi-Axis Controller"
1196 };
1197 const char *type, *bus;
1198 char buf[64];
1199 unsigned int i;
1200 int len;
1201 int ret;
1202
1203 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1204 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1205 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1206 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1207 if (hdev->bus != BUS_USB)
1208 connect_mask &= ~HID_CONNECT_HIDDEV;
1209 if (hid_hiddev(hdev))
1210 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1211
1212 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1213 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1214 hdev->claimed |= HID_CLAIMED_INPUT;
1215 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1216 !hdev->hiddev_connect(hdev,
1217 connect_mask & HID_CONNECT_HIDDEV_FORCE))
1218 hdev->claimed |= HID_CLAIMED_HIDDEV;
1219 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1220 hdev->claimed |= HID_CLAIMED_HIDRAW;
1221
1222 if (!hdev->claimed) {
1223 hid_err(hdev, "claimed by neither input, hiddev nor hidraw\n");
1224 return -ENODEV;
1225 }
1226
1227 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1228 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1229 hdev->ff_init(hdev);
1230
1231 len = 0;
1232 if (hdev->claimed & HID_CLAIMED_INPUT)
1233 len += sprintf(buf + len, "input");
1234 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1235 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1236 hdev->minor);
1237 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1238 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1239 ((struct hidraw *)hdev->hidraw)->minor);
1240
1241 type = "Device";
1242 for (i = 0; i < hdev->maxcollection; i++) {
1243 struct hid_collection *col = &hdev->collection[i];
1244 if (col->type == HID_COLLECTION_APPLICATION &&
1245 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1246 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1247 type = types[col->usage & 0xffff];
1248 break;
1249 }
1250 }
1251
1252 switch (hdev->bus) {
1253 case BUS_USB:
1254 bus = "USB";
1255 break;
1256 case BUS_BLUETOOTH:
1257 bus = "BLUETOOTH";
1258 break;
1259 default:
1260 bus = "<UNKNOWN>";
1261 }
1262
1263 ret = device_create_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1264 if (ret)
1265 hid_warn(hdev,
1266 "can't create sysfs report descriptor attribute err: %d\n", ret);
1267
1268 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1269 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1270 type, hdev->name, hdev->phys);
1271
1272 return 0;
1273}
1274EXPORT_SYMBOL_GPL(hid_connect);
1275
1276void hid_disconnect(struct hid_device *hdev)
1277{
1278 device_remove_bin_file(&hdev->dev, &dev_bin_attr_report_desc);
1279 if (hdev->claimed & HID_CLAIMED_INPUT)
1280 hidinput_disconnect(hdev);
1281 if (hdev->claimed & HID_CLAIMED_HIDDEV)
1282 hdev->hiddev_disconnect(hdev);
1283 if (hdev->claimed & HID_CLAIMED_HIDRAW)
1284 hidraw_disconnect(hdev);
1285}
1286EXPORT_SYMBOL_GPL(hid_disconnect);
1287
1288/* a list of devices for which there is a specialized driver on HID bus */
1289static const struct hid_device_id hid_have_special_driver[] = {
1290 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M1968) },
1291 { HID_USB_DEVICE(USB_VENDOR_ID_3M, USB_DEVICE_ID_3M2256) },
1292 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_WCP32PU) },
1293 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_X5_005D) },
1294 { HID_USB_DEVICE(USB_VENDOR_ID_A4TECH, USB_DEVICE_ID_A4TECH_RP_649) },
1295 { HID_USB_DEVICE(USB_VENDOR_ID_ACRUX, 0x0802) },
1296 { HID_USB_DEVICE(USB_VENDOR_ID_ACTIONSTAR, USB_DEVICE_ID_ACTIONSTAR_1011) },
1297 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ATV_IRCONTROL) },
1298 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1299 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1300 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICMOUSE) },
1301 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MAGICTRACKPAD) },
1302 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1303 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1304 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1305 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1306 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1307 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1308 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1309 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1310 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1311 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1312 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1313 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ANSI) },
1314 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_ISO) },
1315 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_MINI_JIS) },
1316 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1317 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1318 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1319 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1320 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1321 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1322 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1323 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1324 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1325 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1326 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1327 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1328 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1329 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1330 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1331 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1332 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1333 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1334 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1335 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1336 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1337 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1338 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1339 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1340 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1341 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1342 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1343 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ANSI) },
1344 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_ISO) },
1345 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_REVB_JIS) },
1346 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ANSI) },
1347 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_ISO) },
1348 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_2009_JIS) },
1349 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1350 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1351 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_T91MT) },
1352 { HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUSTEK_MULTITOUCH_YFO) },
1353 { HID_USB_DEVICE(USB_VENDOR_ID_BELKIN, USB_DEVICE_ID_FLIP_KVM) },
1354 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE) },
1355 { HID_USB_DEVICE(USB_VENDOR_ID_BTC, USB_DEVICE_ID_BTC_EMPREX_REMOTE_2) },
1356 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_PIXCIR_MULTI_TOUCH) },
1357 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH) },
1358 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_10_1) },
1359 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_11_6) },
1360 { HID_USB_DEVICE(USB_VENDOR_ID_CANDO, USB_DEVICE_ID_CANDO_MULTI_TOUCH_15_6) },
1361 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION) },
1362 { HID_USB_DEVICE(USB_VENDOR_ID_CHERRY, USB_DEVICE_ID_CHERRY_CYMOTION_SOLAR) },
1363 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_TACTICAL_PAD) },
1364 { HID_USB_DEVICE(USB_VENDOR_ID_CHICONY, USB_DEVICE_ID_CHICONY_WIRELESS) },
1365 { HID_USB_DEVICE(USB_VENDOR_ID_CHUNGHWAT, USB_DEVICE_ID_CHUNGHWAT_MULTITOUCH) },
1366 { HID_USB_DEVICE(USB_VENDOR_ID_CREATIVELABS, USB_DEVICE_ID_PRODIKEYS_PCMIDI) },
1367 { HID_USB_DEVICE(USB_VENDOR_ID_CVTOUCH, USB_DEVICE_ID_CVTOUCH_SCREEN) },
1368 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1369 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1370 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_3) },
1371 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1372 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_TRUETOUCH) },
1373 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0006) },
1374 { HID_USB_DEVICE(USB_VENDOR_ID_DRAGONRISE, 0x0011) },
1375 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH) },
1376 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH1) },
1377 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH2) },
1378 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH3) },
1379 { HID_USB_DEVICE(USB_VENDOR_ID_DWAV, USB_DEVICE_ID_DWAV_EGALAX_MULTITOUCH4) },
1380 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_ELECOM, USB_DEVICE_ID_ELECOM_BM084) },
1381 { HID_USB_DEVICE(USB_VENDOR_ID_ELO, USB_DEVICE_ID_ELO_TS2515) },
1382 { HID_USB_DEVICE(USB_VENDOR_ID_EMS, USB_DEVICE_ID_EMS_TRIO_LINKER_PLUS_II) },
1383 { HID_USB_DEVICE(USB_VENDOR_ID_EZKEY, USB_DEVICE_ID_BTC_8193) },
1384 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PSX_ADAPTOR) },
1385 { HID_USB_DEVICE(USB_VENDOR_ID_GAMERON, USB_DEVICE_ID_GAMERON_DUAL_PCS_ADAPTOR) },
1386 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, USB_DEVICE_ID_GENERAL_TOUCH_WIN7_TWOFINGERS) },
1387 { HID_USB_DEVICE(USB_VENDOR_ID_GOODTOUCH, USB_DEVICE_ID_GOODTOUCH_000f) },
1388 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0003) },
1389 { HID_USB_DEVICE(USB_VENDOR_ID_GREENASIA, 0x0012) },
1390 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE) },
1391 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_2) },
1392 { HID_USB_DEVICE(USB_VENDOR_ID_GYRATION, USB_DEVICE_ID_GYRATION_REMOTE_3) },
1393 { HID_USB_DEVICE(USB_VENDOR_ID_HANVON, USB_DEVICE_ID_HANVON_MULTITOUCH) },
1394 { HID_USB_DEVICE(USB_VENDOR_ID_HOLTEK, USB_DEVICE_ID_HOLTEK_ON_LINE_GRIP) },
1395 { HID_USB_DEVICE(USB_VENDOR_ID_ILITEK, USB_DEVICE_ID_ILITEK_MULTITOUCH) },
1396 { HID_USB_DEVICE(USB_VENDOR_ID_IRTOUCHSYSTEMS, USB_DEVICE_ID_IRTOUCH_INFRARED_USB) },
1397 { HID_USB_DEVICE(USB_VENDOR_ID_KENSINGTON, USB_DEVICE_ID_KS_SLIMBLADE) },
1398 { HID_USB_DEVICE(USB_VENDOR_ID_KEYTOUCH, USB_DEVICE_ID_KEYTOUCH_IEC) },
1399 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_ERGO_525V) },
1400 { HID_USB_DEVICE(USB_VENDOR_ID_LABTEC, USB_DEVICE_ID_LABTEC_WIRELESS_KEYBOARD) },
1401 { HID_USB_DEVICE(USB_VENDOR_ID_LCPOWER, USB_DEVICE_ID_LCPOWER_LC1000 ) },
1402 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1403 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1404 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1405 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1406 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1407 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1408 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1409 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1410 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1411 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1412 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1413 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD_CORD) },
1414 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD) },
1415 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2_2) },
1416 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_F3D) },
1417 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WINGMAN_FFG ) },
1418 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FORCE3D_PRO) },
1419 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_FLIGHT_SYSTEM_G940) },
1420 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL) },
1421 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_MOMO_WHEEL2) },
1422 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_DFP_WHEEL) },
1423 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G25_WHEEL) },
1424 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G27_WHEEL) },
1425 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WII_WHEEL) },
1426 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RUMBLEPAD2) },
1427 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACETRAVELLER) },
1428 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_SPACENAVIGATOR) },
1429 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH) },
1430 { HID_USB_DEVICE(USB_VENDOR_ID_LUMIO, USB_DEVICE_ID_CRYSTALTOUCH_DUAL) },
1431 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD) },
1432 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICOLCD_BOOTLOADER) },
1433 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_COMFORT_MOUSE_4500) },
1434 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1435 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1436 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1437 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1438 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_DIGITAL_MEDIA_3K) },
1439 { HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1440 { HID_USB_DEVICE(USB_VENDOR_ID_MONTEREY, USB_DEVICE_ID_GENIUS_KB29E) },
1441 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN) },
1442 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_1) },
1443 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_2) },
1444 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_3) },
1445 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_4) },
1446 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_5) },
1447 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_6) },
1448 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_7) },
1449 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_8) },
1450 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_9) },
1451 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_10) },
1452 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_11) },
1453 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_12) },
1454 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_13) },
1455 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_14) },
1456 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_15) },
1457 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_16) },
1458 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_17) },
1459 { HID_USB_DEVICE(USB_VENDOR_ID_NTRIG, USB_DEVICE_ID_NTRIG_TOUCH_SCREEN_18) },
1460 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_PKB1700) },
1461 { HID_USB_DEVICE(USB_VENDOR_ID_ORTEK, USB_DEVICE_ID_ORTEK_WKB2000) },
1462 { HID_USB_DEVICE(USB_VENDOR_ID_PENMOUNT, USB_DEVICE_ID_PENMOUNT_PCI) },
1463 { HID_USB_DEVICE(USB_VENDOR_ID_PETALYNX, USB_DEVICE_ID_PETALYNX_MAXTER_REMOTE) },
1464 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_QUANTA_OPTICAL_TOUCH) },
1465 { HID_USB_DEVICE(USB_VENDOR_ID_QUANTA, USB_DEVICE_ID_PIXART_IMAGING_INC_OPTICAL_TOUCH_SCREEN) },
1466 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONE) },
1467 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_ARVO) },
1468 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KONEPLUS) },
1469 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_KOVAPLUS) },
1470 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRED) },
1471 { HID_USB_DEVICE(USB_VENDOR_ID_ROCCAT, USB_DEVICE_ID_ROCCAT_PYRA_WIRELESS) },
1472 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_IR_REMOTE) },
1473 { HID_USB_DEVICE(USB_VENDOR_ID_SAMSUNG, USB_DEVICE_ID_SAMSUNG_WIRELESS_KBD_MOUSE) },
1474 { HID_USB_DEVICE(USB_VENDOR_ID_SKYCABLE, USB_DEVICE_ID_SKYCABLE_WIRELESS_PRESENTER) },
1475 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1476 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_NAVIGATION_CONTROLLER) },
1477 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS3_CONTROLLER) },
1478 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_VAIO_VGX_MOUSE) },
1479 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM, USB_DEVICE_ID_MTP) },
1480 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_STM, USB_DEVICE_ID_MTP_STM) },
1481 { HID_USB_DEVICE(USB_VENDOR_ID_STANTUM_SITRONIX, USB_DEVICE_ID_MTP_SITRONIX) },
1482 { HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1483 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb300) },
1484 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb304) },
1485 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb323) },
1486 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb324) },
1487 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb651) },
1488 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb653) },
1489 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb654) },
1490 { HID_USB_DEVICE(USB_VENDOR_ID_THRUSTMASTER, 0xb65a) },
1491 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED, USB_DEVICE_ID_TOPSEED_CYBERLINK) },
1492 { HID_USB_DEVICE(USB_VENDOR_ID_TOPSEED2, USB_DEVICE_ID_TOPSEED2_RF_COMBO) },
1493 { HID_USB_DEVICE(USB_VENDOR_ID_TOUCH_INTL, USB_DEVICE_ID_TOUCH_INTL_MULTI_TOUCH) },
1494 { HID_USB_DEVICE(USB_VENDOR_ID_TWINHAN, USB_DEVICE_ID_TWINHAN_IR_REMOTE) },
1495 { HID_USB_DEVICE(USB_VENDOR_ID_TURBOX, USB_DEVICE_ID_TURBOX_TOUCHSCREEN_MOSART) },
1496 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_PF1209) },
1497 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP4030U) },
1498 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP5540U) },
1499 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP8060U) },
1500 { HID_USB_DEVICE(USB_VENDOR_ID_UCLOGIC, USB_DEVICE_ID_UCLOGIC_TABLET_WP1062) },
1501 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0709) },
1502 { HID_USB_DEVICE(USB_VENDOR_ID_UNITEC, USB_DEVICE_ID_UNITEC_USB_TOUCH_0A19) },
1503 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_SMARTJOY_PLUS) },
1504 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_WACOM, USB_DEVICE_ID_WACOM_GRAPHIRE_BLUETOOTH) },
1505 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_5_8_INCH) },
1506 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_SLIM_TABLET_12_1_INCH) },
1507 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_10_6_INCH) },
1508 { HID_USB_DEVICE(USB_VENDOR_ID_WALTOP, USB_DEVICE_ID_WALTOP_MEDIA_TABLET_14_1_INCH) },
1509 { HID_USB_DEVICE(USB_VENDOR_ID_XAT, USB_DEVICE_ID_XAT_CSR) },
1510 { HID_USB_DEVICE(USB_VENDOR_ID_X_TENSIONS, USB_DEVICE_ID_SPEEDLINK_VAD_CEZANNE) },
1511 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0005) },
1512 { HID_USB_DEVICE(USB_VENDOR_ID_ZEROPLUS, 0x0030) },
1513 { HID_USB_DEVICE(USB_VENDOR_ID_ZYDACRON, USB_DEVICE_ID_ZYDACRON_REMOTE_CONTROL) },
1514
1515 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1516 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_NINTENDO, USB_DEVICE_ID_NINTENDO_WIIMOTE) },
1517 { }
1518};
1519
1520struct hid_dynid {
1521 struct list_head list;
1522 struct hid_device_id id;
1523};
1524
1525/**
1526 * store_new_id - add a new HID device ID to this driver and re-probe devices
1527 * @driver: target device driver
1528 * @buf: buffer for scanning device ID data
1529 * @count: input size
1530 *
1531 * Adds a new dynamic hid device ID to this driver,
1532 * and causes the driver to probe for all devices again.
1533 */
1534static ssize_t store_new_id(struct device_driver *drv, const char *buf,
1535 size_t count)
1536{
1537 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1538 struct hid_dynid *dynid;
1539 __u32 bus, vendor, product;
1540 unsigned long driver_data = 0;
1541 int ret;
1542
1543 ret = sscanf(buf, "%x %x %x %lx",
1544 &bus, &vendor, &product, &driver_data);
1545 if (ret < 3)
1546 return -EINVAL;
1547
1548 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
1549 if (!dynid)
1550 return -ENOMEM;
1551
1552 dynid->id.bus = bus;
1553 dynid->id.vendor = vendor;
1554 dynid->id.product = product;
1555 dynid->id.driver_data = driver_data;
1556
1557 spin_lock(&hdrv->dyn_lock);
1558 list_add_tail(&dynid->list, &hdrv->dyn_list);
1559 spin_unlock(&hdrv->dyn_lock);
1560
1561 ret = 0;
1562 if (get_driver(&hdrv->driver)) {
1563 ret = driver_attach(&hdrv->driver);
1564 put_driver(&hdrv->driver);
1565 }
1566
1567 return ret ? : count;
1568}
1569static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
1570
1571static void hid_free_dynids(struct hid_driver *hdrv)
1572{
1573 struct hid_dynid *dynid, *n;
1574
1575 spin_lock(&hdrv->dyn_lock);
1576 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
1577 list_del(&dynid->list);
1578 kfree(dynid);
1579 }
1580 spin_unlock(&hdrv->dyn_lock);
1581}
1582
1583static const struct hid_device_id *hid_match_device(struct hid_device *hdev,
1584 struct hid_driver *hdrv)
1585{
1586 struct hid_dynid *dynid;
1587
1588 spin_lock(&hdrv->dyn_lock);
1589 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
1590 if (hid_match_one_id(hdev, &dynid->id)) {
1591 spin_unlock(&hdrv->dyn_lock);
1592 return &dynid->id;
1593 }
1594 }
1595 spin_unlock(&hdrv->dyn_lock);
1596
1597 return hid_match_id(hdev, hdrv->id_table);
1598}
1599
1600static int hid_bus_match(struct device *dev, struct device_driver *drv)
1601{
1602 struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1603 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1604
1605 if (!hid_match_device(hdev, hdrv))
1606 return 0;
1607
1608 /* generic wants all that don't have specialized driver */
1609 if (!strncmp(hdrv->name, "generic-", 8))
1610 return !hid_match_id(hdev, hid_have_special_driver);
1611
1612 return 1;
1613}
1614
1615static int hid_device_probe(struct device *dev)
1616{
1617 struct hid_driver *hdrv = container_of(dev->driver,
1618 struct hid_driver, driver);
1619 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1620 const struct hid_device_id *id;
1621 int ret = 0;
1622
1623 if (!hdev->driver) {
1624 id = hid_match_device(hdev, hdrv);
1625 if (id == NULL)
1626 return -ENODEV;
1627
1628 hdev->driver = hdrv;
1629 if (hdrv->probe) {
1630 ret = hdrv->probe(hdev, id);
1631 } else { /* default probe */
1632 ret = hid_parse(hdev);
1633 if (!ret)
1634 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1635 }
1636 if (ret)
1637 hdev->driver = NULL;
1638 }
1639 return ret;
1640}
1641
1642static int hid_device_remove(struct device *dev)
1643{
1644 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1645 struct hid_driver *hdrv = hdev->driver;
1646
1647 if (hdrv) {
1648 if (hdrv->remove)
1649 hdrv->remove(hdev);
1650 else /* default remove */
1651 hid_hw_stop(hdev);
1652 hdev->driver = NULL;
1653 }
1654
1655 return 0;
1656}
1657
1658static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1659{
1660 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1661
1662 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1663 hdev->bus, hdev->vendor, hdev->product))
1664 return -ENOMEM;
1665
1666 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1667 return -ENOMEM;
1668
1669 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1670 return -ENOMEM;
1671
1672 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1673 return -ENOMEM;
1674
1675 if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1676 hdev->bus, hdev->vendor, hdev->product))
1677 return -ENOMEM;
1678
1679 return 0;
1680}
1681
1682static struct bus_type hid_bus_type = {
1683 .name = "hid",
1684 .match = hid_bus_match,
1685 .probe = hid_device_probe,
1686 .remove = hid_device_remove,
1687 .uevent = hid_uevent,
1688};
1689
1690/* a list of devices that shouldn't be handled by HID core at all */
1691static const struct hid_device_id hid_ignore_list[] = {
1692 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1693 { HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1694 { HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1695 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1696 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1697 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1698 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1699 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1700 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1701 { HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1702 { HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1703 { HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1704 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM)},
1705 { HID_USB_DEVICE(USB_VENDOR_ID_ASUSTEK, USB_DEVICE_ID_ASUSTEK_LCM2)},
1706 { HID_USB_DEVICE(USB_VENDOR_ID_AVERMEDIA, USB_DEVICE_ID_AVER_FM_MR800) },
1707 { HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1708 { HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1709 { HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1710 { HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1711 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1712 { HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1713 { HID_USB_DEVICE(USB_VENDOR_ID_DEALEXTREAME, USB_DEVICE_ID_DEALEXTREAME_RADIO_SI4701) },
1714 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1715 { HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1716 { HID_USB_DEVICE(USB_VENDOR_ID_DREAM_CHEEKY, 0x0004) },
1717 { HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1718 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC5UH) },
1719 { HID_USB_DEVICE(USB_VENDOR_ID_ETT, USB_DEVICE_ID_TC4UM) },
1720 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1721 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1722 { HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1723 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1724 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1725 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1726 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1727 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1728 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1729 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1730 { HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1731 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1732 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1733 { HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1734 { HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1735 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1736 { HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1737 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1738 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1739 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1740 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1741 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1742 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1743 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1744 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1745 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1746 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1747 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1748 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1749 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1750 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1751 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1752 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1753 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1754 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1755 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1756 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1757 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1758 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1759 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1760 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1761 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1762 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1763 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1764 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1765 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1766 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1767 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1768 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1769 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1770 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1771 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1772 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1773 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1774 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1775 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1776 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1777 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1778 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1779 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1780 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1781 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1782 { HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1783 { HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1784 { HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1785 { HID_USB_DEVICE(USB_VENDOR_ID_KWORLD, USB_DEVICE_ID_KWORLD_RADIO_FM700) },
1786 { HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1787 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_KYE, 0x0058) },
1788 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1789 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY2) },
1790 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1791 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY2) },
1792 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1793 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY2) },
1794 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYVOLTAGE) },
1795 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYCURRENT) },
1796 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTIME) },
1797 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYTEMPERATURE) },
1798 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MICROCASSYPH) },
1799 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1800 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1801 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1802 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIC) },
1803 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIB) },
1804 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY) },
1805 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1806 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1807 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOTOR) },
1808 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1809 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1810 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1811 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1812 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1813 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER) },
1814 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOSTANALYSER2) },
1815 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_ABSESP) },
1816 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_AUTODATABUS) },
1817 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MCT) },
1818 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HYBRID) },
1819 { HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_HEATCONTROL) },
1820 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1821 { HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1822 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1823 { HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1824 { HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1825 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1826 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1827 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1828 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1829 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1830 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1831 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1832 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1833 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1834 { HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1835 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1836 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1837 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1838 { HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1839 { HID_USB_DEVICE(USB_VENDOR_ID_PHILIPS, USB_DEVICE_ID_PHILIPS_IEEE802154_DONGLE) },
1840 { HID_USB_DEVICE(USB_VENDOR_ID_POWERCOM, USB_DEVICE_ID_POWERCOM_UPS) },
1841 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1842 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1843 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1844 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1845 { HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1846 { HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1847 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1848 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1849 { HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1850 { HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1851 { }
1852};
1853
1854/**
1855 * hid_mouse_ignore_list - mouse devices which should not be handled by the hid layer
1856 *
1857 * There are composite devices for which we want to ignore only a certain
1858 * interface. This is a list of devices for which only the mouse interface will
1859 * be ignored. This allows a dedicated driver to take care of the interface.
1860 */
1861static const struct hid_device_id hid_mouse_ignore_list[] = {
1862 /* appletouch driver */
1863 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1864 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1865 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1866 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1867 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1868 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1869 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1870 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1871 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1873 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1874 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1875 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1876 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1877 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1878 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1879 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1880 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1881 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1882 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1883 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ANSI) },
1884 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_ISO) },
1885 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING3_JIS) },
1886 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ANSI) },
1887 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_ISO) },
1888 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4_JIS) },
1889 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ANSI) },
1890 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_ISO) },
1891 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING4A_JIS) },
1892 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ANSI) },
1893 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_ISO) },
1894 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING5_JIS) },
1895 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1896 { HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1897 { }
1898};
1899
1900static bool hid_ignore(struct hid_device *hdev)
1901{
1902 switch (hdev->vendor) {
1903 case USB_VENDOR_ID_CODEMERCS:
1904 /* ignore all Code Mercenaries IOWarrior devices */
1905 if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1906 hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1907 return true;
1908 break;
1909 case USB_VENDOR_ID_LOGITECH:
1910 if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1911 hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1912 return true;
1913 break;
1914 case USB_VENDOR_ID_SOUNDGRAPH:
1915 if (hdev->product >= USB_DEVICE_ID_SOUNDGRAPH_IMON_FIRST &&
1916 hdev->product <= USB_DEVICE_ID_SOUNDGRAPH_IMON_LAST)
1917 return true;
1918 break;
1919 case USB_VENDOR_ID_HANWANG:
1920 if (hdev->product >= USB_DEVICE_ID_HANWANG_TABLET_FIRST &&
1921 hdev->product <= USB_DEVICE_ID_HANWANG_TABLET_LAST)
1922 return true;
1923 break;
1924 case USB_VENDOR_ID_JESS:
1925 if (hdev->product == USB_DEVICE_ID_JESS_YUREX &&
1926 hdev->type == HID_TYPE_USBNONE)
1927 return true;
1928 break;
1929 }
1930
1931 if (hdev->type == HID_TYPE_USBMOUSE &&
1932 hid_match_id(hdev, hid_mouse_ignore_list))
1933 return true;
1934
1935 return !!hid_match_id(hdev, hid_ignore_list);
1936}
1937
1938int hid_add_device(struct hid_device *hdev)
1939{
1940 static atomic_t id = ATOMIC_INIT(0);
1941 int ret;
1942
1943 if (WARN_ON(hdev->status & HID_STAT_ADDED))
1944 return -EBUSY;
1945
1946 /* we need to kill them here, otherwise they will stay allocated to
1947 * wait for coming driver */
1948 if (!(hdev->quirks & HID_QUIRK_NO_IGNORE)
1949 && (hid_ignore(hdev) || (hdev->quirks & HID_QUIRK_IGNORE)))
1950 return -ENODEV;
1951
1952 /* XXX hack, any other cleaner solution after the driver core
1953 * is converted to allow more than 20 bytes as the device name? */
1954 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
1955 hdev->vendor, hdev->product, atomic_inc_return(&id));
1956
1957 hid_debug_register(hdev, dev_name(&hdev->dev));
1958 ret = device_add(&hdev->dev);
1959 if (!ret)
1960 hdev->status |= HID_STAT_ADDED;
1961 else
1962 hid_debug_unregister(hdev);
1963
1964 return ret;
1965}
1966EXPORT_SYMBOL_GPL(hid_add_device);
1967
1968/**
1969 * hid_allocate_device - allocate new hid device descriptor
1970 *
1971 * Allocate and initialize hid device, so that hid_destroy_device might be
1972 * used to free it.
1973 *
1974 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1975 * error value.
1976 */
1977struct hid_device *hid_allocate_device(void)
1978{
1979 struct hid_device *hdev;
1980 unsigned int i;
1981 int ret = -ENOMEM;
1982
1983 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1984 if (hdev == NULL)
1985 return ERR_PTR(ret);
1986
1987 device_initialize(&hdev->dev);
1988 hdev->dev.release = hid_device_release;
1989 hdev->dev.bus = &hid_bus_type;
1990
1991 hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1992 sizeof(struct hid_collection), GFP_KERNEL);
1993 if (hdev->collection == NULL)
1994 goto err;
1995 hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1996
1997 for (i = 0; i < HID_REPORT_TYPES; i++)
1998 INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1999
2000 init_waitqueue_head(&hdev->debug_wait);
2001 INIT_LIST_HEAD(&hdev->debug_list);
2002
2003 return hdev;
2004err:
2005 put_device(&hdev->dev);
2006 return ERR_PTR(ret);
2007}
2008EXPORT_SYMBOL_GPL(hid_allocate_device);
2009
2010static void hid_remove_device(struct hid_device *hdev)
2011{
2012 if (hdev->status & HID_STAT_ADDED) {
2013 device_del(&hdev->dev);
2014 hid_debug_unregister(hdev);
2015 hdev->status &= ~HID_STAT_ADDED;
2016 }
2017}
2018
2019/**
2020 * hid_destroy_device - free previously allocated device
2021 *
2022 * @hdev: hid device
2023 *
2024 * If you allocate hid_device through hid_allocate_device, you should ever
2025 * free by this function.
2026 */
2027void hid_destroy_device(struct hid_device *hdev)
2028{
2029 hid_remove_device(hdev);
2030 put_device(&hdev->dev);
2031}
2032EXPORT_SYMBOL_GPL(hid_destroy_device);
2033
2034int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2035 const char *mod_name)
2036{
2037 int ret;
2038
2039 hdrv->driver.name = hdrv->name;
2040 hdrv->driver.bus = &hid_bus_type;
2041 hdrv->driver.owner = owner;
2042 hdrv->driver.mod_name = mod_name;
2043
2044 INIT_LIST_HEAD(&hdrv->dyn_list);
2045 spin_lock_init(&hdrv->dyn_lock);
2046
2047 ret = driver_register(&hdrv->driver);
2048 if (ret)
2049 return ret;
2050
2051 ret = driver_create_file(&hdrv->driver, &driver_attr_new_id);
2052 if (ret)
2053 driver_unregister(&hdrv->driver);
2054
2055 return ret;
2056}
2057EXPORT_SYMBOL_GPL(__hid_register_driver);
2058
2059void hid_unregister_driver(struct hid_driver *hdrv)
2060{
2061 driver_remove_file(&hdrv->driver, &driver_attr_new_id);
2062 driver_unregister(&hdrv->driver);
2063 hid_free_dynids(hdrv);
2064}
2065EXPORT_SYMBOL_GPL(hid_unregister_driver);
2066
2067int hid_check_keys_pressed(struct hid_device *hid)
2068{
2069 struct hid_input *hidinput;
2070 int i;
2071
2072 if (!(hid->claimed & HID_CLAIMED_INPUT))
2073 return 0;
2074
2075 list_for_each_entry(hidinput, &hid->inputs, list) {
2076 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2077 if (hidinput->input->key[i])
2078 return 1;
2079 }
2080
2081 return 0;
2082}
2083
2084EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2085
2086static int __init hid_init(void)
2087{
2088 int ret;
2089
2090 if (hid_debug)
2091 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2092 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2093
2094 ret = bus_register(&hid_bus_type);
2095 if (ret) {
2096 pr_err("can't register hid bus\n");
2097 goto err;
2098 }
2099
2100 ret = hidraw_init();
2101 if (ret)
2102 goto err_bus;
2103
2104 hid_debug_init();
2105
2106 return 0;
2107err_bus:
2108 bus_unregister(&hid_bus_type);
2109err:
2110 return ret;
2111}
2112
2113static void __exit hid_exit(void)
2114{
2115 hid_debug_exit();
2116 hidraw_exit();
2117 bus_unregister(&hid_bus_type);
2118}
2119
2120module_init(hid_init);
2121module_exit(hid_exit);
2122
2123MODULE_AUTHOR("Andreas Gal");
2124MODULE_AUTHOR("Vojtech Pavlik");
2125MODULE_AUTHOR("Jiri Kosina");
2126MODULE_LICENSE(DRIVER_LICENSE);
2127