Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *		Probes initial implementation ( includes contributions from
  22 *		Rusty Russell).
  23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *		interface to access function arguments.
  25 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  26 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  27 * 2005-Mar	Roland McGrath <roland@redhat.com>
  28 *		Fixed to handle %rip-relative addressing mode correctly.
  29 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  30 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  31 *		<prasanna@in.ibm.com> added function-return probes.
  32 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  33 * 		Added function return probes functionality
  34 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  35 * 		kprobe-booster and kretprobe-booster for i386.
  36 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  37 * 		and kretprobe-booster for x86-64
  38 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  39 * 		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  40 * 		unified x86 kprobes code.
  41 */
  42
  43#include <linux/kprobes.h>
  44#include <linux/ptrace.h>
  45#include <linux/string.h>
  46#include <linux/slab.h>
  47#include <linux/hardirq.h>
  48#include <linux/preempt.h>
  49#include <linux/module.h>
  50#include <linux/kdebug.h>
  51#include <linux/kallsyms.h>
  52#include <linux/ftrace.h>
  53
  54#include <asm/cacheflush.h>
  55#include <asm/desc.h>
  56#include <asm/pgtable.h>
  57#include <asm/uaccess.h>
  58#include <asm/alternative.h>
  59#include <asm/insn.h>
  60#include <asm/debugreg.h>
  61
  62void jprobe_return_end(void);
  63
  64DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  65DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  66
  67#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
  68
  69#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  70	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  71	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  72	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  73	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  74	 << (row % 32))
  75	/*
  76	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  77	 * Groups, and some special opcodes can not boost.
  78	 */
  79static const u32 twobyte_is_boostable[256 / 32] = {
  80	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  81	/*      ----------------------------------------------          */
  82	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  83	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
  84	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  85	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  86	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  87	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  88	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  89	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  90	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  91	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  92	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  93	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  94	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  95	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  96	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  97	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  98	/*      -----------------------------------------------         */
  99	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 100};
 101#undef W
 102
 103struct kretprobe_blackpoint kretprobe_blacklist[] = {
 104	{"__switch_to", }, /* This function switches only current task, but
 105			      doesn't switch kernel stack.*/
 106	{NULL, NULL}	/* Terminator */
 107};
 108const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 109
 110static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
 111{
 112	struct __arch_relative_insn {
 113		u8 op;
 114		s32 raddr;
 115	} __attribute__((packed)) *insn;
 116
 117	insn = (struct __arch_relative_insn *)from;
 118	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 119	insn->op = op;
 120}
 121
 122/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 123static void __kprobes synthesize_reljump(void *from, void *to)
 124{
 125	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
 126}
 127
 128/*
 129 * Skip the prefixes of the instruction.
 130 */
 131static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
 132{
 133	insn_attr_t attr;
 134
 135	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 136	while (inat_is_legacy_prefix(attr)) {
 137		insn++;
 138		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 139	}
 140#ifdef CONFIG_X86_64
 141	if (inat_is_rex_prefix(attr))
 142		insn++;
 143#endif
 144	return insn;
 145}
 146
 147/*
 148 * Returns non-zero if opcode is boostable.
 149 * RIP relative instructions are adjusted at copying time in 64 bits mode
 150 */
 151static int __kprobes can_boost(kprobe_opcode_t *opcodes)
 152{
 153	kprobe_opcode_t opcode;
 154	kprobe_opcode_t *orig_opcodes = opcodes;
 155
 156	if (search_exception_tables((unsigned long)opcodes))
 157		return 0;	/* Page fault may occur on this address. */
 158
 159retry:
 160	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 161		return 0;
 162	opcode = *(opcodes++);
 163
 164	/* 2nd-byte opcode */
 165	if (opcode == 0x0f) {
 166		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 167			return 0;
 168		return test_bit(*opcodes,
 169				(unsigned long *)twobyte_is_boostable);
 170	}
 171
 172	switch (opcode & 0xf0) {
 173#ifdef CONFIG_X86_64
 174	case 0x40:
 175		goto retry; /* REX prefix is boostable */
 176#endif
 177	case 0x60:
 178		if (0x63 < opcode && opcode < 0x67)
 179			goto retry; /* prefixes */
 180		/* can't boost Address-size override and bound */
 181		return (opcode != 0x62 && opcode != 0x67);
 182	case 0x70:
 183		return 0; /* can't boost conditional jump */
 184	case 0xc0:
 185		/* can't boost software-interruptions */
 186		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 187	case 0xd0:
 188		/* can boost AA* and XLAT */
 189		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 190	case 0xe0:
 191		/* can boost in/out and absolute jmps */
 192		return ((opcode & 0x04) || opcode == 0xea);
 193	case 0xf0:
 194		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
 195			goto retry; /* lock/rep(ne) prefix */
 196		/* clear and set flags are boostable */
 197		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 198	default:
 199		/* segment override prefixes are boostable */
 200		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
 201			goto retry; /* prefixes */
 202		/* CS override prefix and call are not boostable */
 203		return (opcode != 0x2e && opcode != 0x9a);
 204	}
 205}
 206
 207/* Recover the probed instruction at addr for further analysis. */
 208static int recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 209{
 210	struct kprobe *kp;
 211	kp = get_kprobe((void *)addr);
 212	if (!kp)
 213		return -EINVAL;
 214
 215	/*
 216	 *  Basically, kp->ainsn.insn has an original instruction.
 217	 *  However, RIP-relative instruction can not do single-stepping
 218	 *  at different place, __copy_instruction() tweaks the displacement of
 219	 *  that instruction. In that case, we can't recover the instruction
 220	 *  from the kp->ainsn.insn.
 221	 *
 222	 *  On the other hand, kp->opcode has a copy of the first byte of
 223	 *  the probed instruction, which is overwritten by int3. And
 224	 *  the instruction at kp->addr is not modified by kprobes except
 225	 *  for the first byte, we can recover the original instruction
 226	 *  from it and kp->opcode.
 227	 */
 228	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 229	buf[0] = kp->opcode;
 230	return 0;
 231}
 232
 233/* Check if paddr is at an instruction boundary */
 234static int __kprobes can_probe(unsigned long paddr)
 235{
 236	int ret;
 237	unsigned long addr, offset = 0;
 238	struct insn insn;
 239	kprobe_opcode_t buf[MAX_INSN_SIZE];
 240
 241	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 242		return 0;
 243
 244	/* Decode instructions */
 245	addr = paddr - offset;
 246	while (addr < paddr) {
 247		kernel_insn_init(&insn, (void *)addr);
 248		insn_get_opcode(&insn);
 249
 250		/*
 251		 * Check if the instruction has been modified by another
 252		 * kprobe, in which case we replace the breakpoint by the
 253		 * original instruction in our buffer.
 254		 */
 255		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
 256			ret = recover_probed_instruction(buf, addr);
 257			if (ret)
 258				/*
 259				 * Another debugging subsystem might insert
 260				 * this breakpoint. In that case, we can't
 261				 * recover it.
 262				 */
 263				return 0;
 264			kernel_insn_init(&insn, buf);
 265		}
 266		insn_get_length(&insn);
 267		addr += insn.length;
 268	}
 269
 270	return (addr == paddr);
 271}
 272
 273/*
 274 * Returns non-zero if opcode modifies the interrupt flag.
 275 */
 276static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
 277{
 278	/* Skip prefixes */
 279	insn = skip_prefixes(insn);
 280
 281	switch (*insn) {
 282	case 0xfa:		/* cli */
 283	case 0xfb:		/* sti */
 284	case 0xcf:		/* iret/iretd */
 285	case 0x9d:		/* popf/popfd */
 286		return 1;
 287	}
 288
 289	return 0;
 290}
 291
 292/*
 293 * Copy an instruction and adjust the displacement if the instruction
 294 * uses the %rip-relative addressing mode.
 295 * If it does, Return the address of the 32-bit displacement word.
 296 * If not, return null.
 297 * Only applicable to 64-bit x86.
 298 */
 299static int __kprobes __copy_instruction(u8 *dest, u8 *src, int recover)
 300{
 301	struct insn insn;
 302	int ret;
 303	kprobe_opcode_t buf[MAX_INSN_SIZE];
 304
 305	kernel_insn_init(&insn, src);
 306	if (recover) {
 307		insn_get_opcode(&insn);
 308		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
 309			ret = recover_probed_instruction(buf,
 310							 (unsigned long)src);
 311			if (ret)
 312				return 0;
 313			kernel_insn_init(&insn, buf);
 314		}
 315	}
 316	insn_get_length(&insn);
 317	memcpy(dest, insn.kaddr, insn.length);
 318
 319#ifdef CONFIG_X86_64
 320	if (insn_rip_relative(&insn)) {
 321		s64 newdisp;
 322		u8 *disp;
 323		kernel_insn_init(&insn, dest);
 324		insn_get_displacement(&insn);
 325		/*
 326		 * The copied instruction uses the %rip-relative addressing
 327		 * mode.  Adjust the displacement for the difference between
 328		 * the original location of this instruction and the location
 329		 * of the copy that will actually be run.  The tricky bit here
 330		 * is making sure that the sign extension happens correctly in
 331		 * this calculation, since we need a signed 32-bit result to
 332		 * be sign-extended to 64 bits when it's added to the %rip
 333		 * value and yield the same 64-bit result that the sign-
 334		 * extension of the original signed 32-bit displacement would
 335		 * have given.
 336		 */
 337		newdisp = (u8 *) src + (s64) insn.displacement.value -
 338			  (u8 *) dest;
 339		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
 340		disp = (u8 *) dest + insn_offset_displacement(&insn);
 341		*(s32 *) disp = (s32) newdisp;
 342	}
 343#endif
 344	return insn.length;
 345}
 346
 347static void __kprobes arch_copy_kprobe(struct kprobe *p)
 348{
 349	/*
 350	 * Copy an instruction without recovering int3, because it will be
 351	 * put by another subsystem.
 352	 */
 353	__copy_instruction(p->ainsn.insn, p->addr, 0);
 354
 355	if (can_boost(p->addr))
 356		p->ainsn.boostable = 0;
 357	else
 358		p->ainsn.boostable = -1;
 359
 360	p->opcode = *p->addr;
 361}
 362
 363int __kprobes arch_prepare_kprobe(struct kprobe *p)
 364{
 365	if (alternatives_text_reserved(p->addr, p->addr))
 366		return -EINVAL;
 367
 368	if (!can_probe((unsigned long)p->addr))
 369		return -EILSEQ;
 370	/* insn: must be on special executable page on x86. */
 371	p->ainsn.insn = get_insn_slot();
 372	if (!p->ainsn.insn)
 373		return -ENOMEM;
 374	arch_copy_kprobe(p);
 375	return 0;
 376}
 377
 378void __kprobes arch_arm_kprobe(struct kprobe *p)
 379{
 380	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 381}
 382
 383void __kprobes arch_disarm_kprobe(struct kprobe *p)
 384{
 385	text_poke(p->addr, &p->opcode, 1);
 386}
 387
 388void __kprobes arch_remove_kprobe(struct kprobe *p)
 389{
 390	if (p->ainsn.insn) {
 391		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
 392		p->ainsn.insn = NULL;
 393	}
 394}
 395
 396static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 397{
 398	kcb->prev_kprobe.kp = kprobe_running();
 399	kcb->prev_kprobe.status = kcb->kprobe_status;
 400	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 401	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 402}
 403
 404static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 405{
 406	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 407	kcb->kprobe_status = kcb->prev_kprobe.status;
 408	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 409	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 410}
 411
 412static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 413				struct kprobe_ctlblk *kcb)
 414{
 415	__this_cpu_write(current_kprobe, p);
 416	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 417		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 418	if (is_IF_modifier(p->ainsn.insn))
 419		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 420}
 421
 422static void __kprobes clear_btf(void)
 423{
 424	if (test_thread_flag(TIF_BLOCKSTEP)) {
 425		unsigned long debugctl = get_debugctlmsr();
 426
 427		debugctl &= ~DEBUGCTLMSR_BTF;
 428		update_debugctlmsr(debugctl);
 429	}
 430}
 431
 432static void __kprobes restore_btf(void)
 433{
 434	if (test_thread_flag(TIF_BLOCKSTEP)) {
 435		unsigned long debugctl = get_debugctlmsr();
 436
 437		debugctl |= DEBUGCTLMSR_BTF;
 438		update_debugctlmsr(debugctl);
 439	}
 440}
 441
 442void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 443				      struct pt_regs *regs)
 444{
 445	unsigned long *sara = stack_addr(regs);
 446
 447	ri->ret_addr = (kprobe_opcode_t *) *sara;
 448
 449	/* Replace the return addr with trampoline addr */
 450	*sara = (unsigned long) &kretprobe_trampoline;
 451}
 452
 453#ifdef CONFIG_OPTPROBES
 454static int  __kprobes setup_detour_execution(struct kprobe *p,
 455					     struct pt_regs *regs,
 456					     int reenter);
 457#else
 458#define setup_detour_execution(p, regs, reenter) (0)
 459#endif
 460
 461static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 462				       struct kprobe_ctlblk *kcb, int reenter)
 463{
 464	if (setup_detour_execution(p, regs, reenter))
 465		return;
 466
 467#if !defined(CONFIG_PREEMPT)
 468	if (p->ainsn.boostable == 1 && !p->post_handler) {
 469		/* Boost up -- we can execute copied instructions directly */
 470		if (!reenter)
 471			reset_current_kprobe();
 472		/*
 473		 * Reentering boosted probe doesn't reset current_kprobe,
 474		 * nor set current_kprobe, because it doesn't use single
 475		 * stepping.
 476		 */
 477		regs->ip = (unsigned long)p->ainsn.insn;
 478		preempt_enable_no_resched();
 479		return;
 480	}
 481#endif
 482	if (reenter) {
 483		save_previous_kprobe(kcb);
 484		set_current_kprobe(p, regs, kcb);
 485		kcb->kprobe_status = KPROBE_REENTER;
 486	} else
 487		kcb->kprobe_status = KPROBE_HIT_SS;
 488	/* Prepare real single stepping */
 489	clear_btf();
 490	regs->flags |= X86_EFLAGS_TF;
 491	regs->flags &= ~X86_EFLAGS_IF;
 492	/* single step inline if the instruction is an int3 */
 493	if (p->opcode == BREAKPOINT_INSTRUCTION)
 494		regs->ip = (unsigned long)p->addr;
 495	else
 496		regs->ip = (unsigned long)p->ainsn.insn;
 497}
 498
 499/*
 500 * We have reentered the kprobe_handler(), since another probe was hit while
 501 * within the handler. We save the original kprobes variables and just single
 502 * step on the instruction of the new probe without calling any user handlers.
 503 */
 504static int __kprobes reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 505				    struct kprobe_ctlblk *kcb)
 506{
 507	switch (kcb->kprobe_status) {
 508	case KPROBE_HIT_SSDONE:
 509	case KPROBE_HIT_ACTIVE:
 510		kprobes_inc_nmissed_count(p);
 511		setup_singlestep(p, regs, kcb, 1);
 512		break;
 513	case KPROBE_HIT_SS:
 514		/* A probe has been hit in the codepath leading up to, or just
 515		 * after, single-stepping of a probed instruction. This entire
 516		 * codepath should strictly reside in .kprobes.text section.
 517		 * Raise a BUG or we'll continue in an endless reentering loop
 518		 * and eventually a stack overflow.
 519		 */
 520		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
 521		       p->addr);
 522		dump_kprobe(p);
 523		BUG();
 524	default:
 525		/* impossible cases */
 526		WARN_ON(1);
 527		return 0;
 528	}
 529
 530	return 1;
 531}
 532
 533/*
 534 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 535 * remain disabled throughout this function.
 536 */
 537static int __kprobes kprobe_handler(struct pt_regs *regs)
 538{
 539	kprobe_opcode_t *addr;
 540	struct kprobe *p;
 541	struct kprobe_ctlblk *kcb;
 542
 543	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 544	/*
 545	 * We don't want to be preempted for the entire
 546	 * duration of kprobe processing. We conditionally
 547	 * re-enable preemption at the end of this function,
 548	 * and also in reenter_kprobe() and setup_singlestep().
 549	 */
 550	preempt_disable();
 551
 552	kcb = get_kprobe_ctlblk();
 553	p = get_kprobe(addr);
 554
 555	if (p) {
 556		if (kprobe_running()) {
 557			if (reenter_kprobe(p, regs, kcb))
 558				return 1;
 559		} else {
 560			set_current_kprobe(p, regs, kcb);
 561			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 562
 563			/*
 564			 * If we have no pre-handler or it returned 0, we
 565			 * continue with normal processing.  If we have a
 566			 * pre-handler and it returned non-zero, it prepped
 567			 * for calling the break_handler below on re-entry
 568			 * for jprobe processing, so get out doing nothing
 569			 * more here.
 570			 */
 571			if (!p->pre_handler || !p->pre_handler(p, regs))
 572				setup_singlestep(p, regs, kcb, 0);
 573			return 1;
 574		}
 575	} else if (*addr != BREAKPOINT_INSTRUCTION) {
 576		/*
 577		 * The breakpoint instruction was removed right
 578		 * after we hit it.  Another cpu has removed
 579		 * either a probepoint or a debugger breakpoint
 580		 * at this address.  In either case, no further
 581		 * handling of this interrupt is appropriate.
 582		 * Back up over the (now missing) int3 and run
 583		 * the original instruction.
 584		 */
 585		regs->ip = (unsigned long)addr;
 586		preempt_enable_no_resched();
 587		return 1;
 588	} else if (kprobe_running()) {
 589		p = __this_cpu_read(current_kprobe);
 590		if (p->break_handler && p->break_handler(p, regs)) {
 591			setup_singlestep(p, regs, kcb, 0);
 592			return 1;
 593		}
 594	} /* else: not a kprobe fault; let the kernel handle it */
 595
 596	preempt_enable_no_resched();
 597	return 0;
 598}
 599
 600#ifdef CONFIG_X86_64
 601#define SAVE_REGS_STRING		\
 602	/* Skip cs, ip, orig_ax. */	\
 603	"	subq $24, %rsp\n"	\
 604	"	pushq %rdi\n"		\
 605	"	pushq %rsi\n"		\
 606	"	pushq %rdx\n"		\
 607	"	pushq %rcx\n"		\
 608	"	pushq %rax\n"		\
 609	"	pushq %r8\n"		\
 610	"	pushq %r9\n"		\
 611	"	pushq %r10\n"		\
 612	"	pushq %r11\n"		\
 613	"	pushq %rbx\n"		\
 614	"	pushq %rbp\n"		\
 615	"	pushq %r12\n"		\
 616	"	pushq %r13\n"		\
 617	"	pushq %r14\n"		\
 618	"	pushq %r15\n"
 619#define RESTORE_REGS_STRING		\
 620	"	popq %r15\n"		\
 621	"	popq %r14\n"		\
 622	"	popq %r13\n"		\
 623	"	popq %r12\n"		\
 624	"	popq %rbp\n"		\
 625	"	popq %rbx\n"		\
 626	"	popq %r11\n"		\
 627	"	popq %r10\n"		\
 628	"	popq %r9\n"		\
 629	"	popq %r8\n"		\
 630	"	popq %rax\n"		\
 631	"	popq %rcx\n"		\
 632	"	popq %rdx\n"		\
 633	"	popq %rsi\n"		\
 634	"	popq %rdi\n"		\
 635	/* Skip orig_ax, ip, cs */	\
 636	"	addq $24, %rsp\n"
 637#else
 638#define SAVE_REGS_STRING		\
 639	/* Skip cs, ip, orig_ax and gs. */	\
 640	"	subl $16, %esp\n"	\
 641	"	pushl %fs\n"		\
 642	"	pushl %es\n"		\
 643	"	pushl %ds\n"		\
 644	"	pushl %eax\n"		\
 645	"	pushl %ebp\n"		\
 646	"	pushl %edi\n"		\
 647	"	pushl %esi\n"		\
 648	"	pushl %edx\n"		\
 649	"	pushl %ecx\n"		\
 650	"	pushl %ebx\n"
 651#define RESTORE_REGS_STRING		\
 652	"	popl %ebx\n"		\
 653	"	popl %ecx\n"		\
 654	"	popl %edx\n"		\
 655	"	popl %esi\n"		\
 656	"	popl %edi\n"		\
 657	"	popl %ebp\n"		\
 658	"	popl %eax\n"		\
 659	/* Skip ds, es, fs, gs, orig_ax, and ip. Note: don't pop cs here*/\
 660	"	addl $24, %esp\n"
 661#endif
 662
 663/*
 664 * When a retprobed function returns, this code saves registers and
 665 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 666 */
 667static void __used __kprobes kretprobe_trampoline_holder(void)
 668{
 669	asm volatile (
 670			".global kretprobe_trampoline\n"
 671			"kretprobe_trampoline: \n"
 672#ifdef CONFIG_X86_64
 673			/* We don't bother saving the ss register */
 674			"	pushq %rsp\n"
 675			"	pushfq\n"
 676			SAVE_REGS_STRING
 677			"	movq %rsp, %rdi\n"
 678			"	call trampoline_handler\n"
 679			/* Replace saved sp with true return address. */
 680			"	movq %rax, 152(%rsp)\n"
 681			RESTORE_REGS_STRING
 682			"	popfq\n"
 683#else
 684			"	pushf\n"
 685			SAVE_REGS_STRING
 686			"	movl %esp, %eax\n"
 687			"	call trampoline_handler\n"
 688			/* Move flags to cs */
 689			"	movl 56(%esp), %edx\n"
 690			"	movl %edx, 52(%esp)\n"
 691			/* Replace saved flags with true return address. */
 692			"	movl %eax, 56(%esp)\n"
 693			RESTORE_REGS_STRING
 694			"	popf\n"
 695#endif
 696			"	ret\n");
 697}
 698
 699/*
 700 * Called from kretprobe_trampoline
 701 */
 702static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 703{
 704	struct kretprobe_instance *ri = NULL;
 705	struct hlist_head *head, empty_rp;
 706	struct hlist_node *node, *tmp;
 707	unsigned long flags, orig_ret_address = 0;
 708	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 709	kprobe_opcode_t *correct_ret_addr = NULL;
 710
 711	INIT_HLIST_HEAD(&empty_rp);
 712	kretprobe_hash_lock(current, &head, &flags);
 713	/* fixup registers */
 714#ifdef CONFIG_X86_64
 715	regs->cs = __KERNEL_CS;
 716#else
 717	regs->cs = __KERNEL_CS | get_kernel_rpl();
 718	regs->gs = 0;
 719#endif
 720	regs->ip = trampoline_address;
 721	regs->orig_ax = ~0UL;
 722
 723	/*
 724	 * It is possible to have multiple instances associated with a given
 725	 * task either because multiple functions in the call path have
 726	 * return probes installed on them, and/or more than one
 727	 * return probe was registered for a target function.
 728	 *
 729	 * We can handle this because:
 730	 *     - instances are always pushed into the head of the list
 731	 *     - when multiple return probes are registered for the same
 732	 *	 function, the (chronologically) first instance's ret_addr
 733	 *	 will be the real return address, and all the rest will
 734	 *	 point to kretprobe_trampoline.
 735	 */
 736	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 737		if (ri->task != current)
 738			/* another task is sharing our hash bucket */
 739			continue;
 740
 741		orig_ret_address = (unsigned long)ri->ret_addr;
 742
 743		if (orig_ret_address != trampoline_address)
 744			/*
 745			 * This is the real return address. Any other
 746			 * instances associated with this task are for
 747			 * other calls deeper on the call stack
 748			 */
 749			break;
 750	}
 751
 752	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 753
 754	correct_ret_addr = ri->ret_addr;
 755	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 756		if (ri->task != current)
 757			/* another task is sharing our hash bucket */
 758			continue;
 759
 760		orig_ret_address = (unsigned long)ri->ret_addr;
 761		if (ri->rp && ri->rp->handler) {
 762			__this_cpu_write(current_kprobe, &ri->rp->kp);
 763			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 764			ri->ret_addr = correct_ret_addr;
 765			ri->rp->handler(ri, regs);
 766			__this_cpu_write(current_kprobe, NULL);
 767		}
 768
 769		recycle_rp_inst(ri, &empty_rp);
 770
 771		if (orig_ret_address != trampoline_address)
 772			/*
 773			 * This is the real return address. Any other
 774			 * instances associated with this task are for
 775			 * other calls deeper on the call stack
 776			 */
 777			break;
 778	}
 779
 780	kretprobe_hash_unlock(current, &flags);
 781
 782	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 783		hlist_del(&ri->hlist);
 784		kfree(ri);
 785	}
 786	return (void *)orig_ret_address;
 787}
 788
 789/*
 790 * Called after single-stepping.  p->addr is the address of the
 791 * instruction whose first byte has been replaced by the "int 3"
 792 * instruction.  To avoid the SMP problems that can occur when we
 793 * temporarily put back the original opcode to single-step, we
 794 * single-stepped a copy of the instruction.  The address of this
 795 * copy is p->ainsn.insn.
 796 *
 797 * This function prepares to return from the post-single-step
 798 * interrupt.  We have to fix up the stack as follows:
 799 *
 800 * 0) Except in the case of absolute or indirect jump or call instructions,
 801 * the new ip is relative to the copied instruction.  We need to make
 802 * it relative to the original instruction.
 803 *
 804 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 805 * flags are set in the just-pushed flags, and may need to be cleared.
 806 *
 807 * 2) If the single-stepped instruction was a call, the return address
 808 * that is atop the stack is the address following the copied instruction.
 809 * We need to make it the address following the original instruction.
 810 *
 811 * If this is the first time we've single-stepped the instruction at
 812 * this probepoint, and the instruction is boostable, boost it: add a
 813 * jump instruction after the copied instruction, that jumps to the next
 814 * instruction after the probepoint.
 815 */
 816static void __kprobes resume_execution(struct kprobe *p,
 817		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 818{
 819	unsigned long *tos = stack_addr(regs);
 820	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 821	unsigned long orig_ip = (unsigned long)p->addr;
 822	kprobe_opcode_t *insn = p->ainsn.insn;
 823
 824	/* Skip prefixes */
 825	insn = skip_prefixes(insn);
 826
 827	regs->flags &= ~X86_EFLAGS_TF;
 828	switch (*insn) {
 829	case 0x9c:	/* pushfl */
 830		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 831		*tos |= kcb->kprobe_old_flags;
 832		break;
 833	case 0xc2:	/* iret/ret/lret */
 834	case 0xc3:
 835	case 0xca:
 836	case 0xcb:
 837	case 0xcf:
 838	case 0xea:	/* jmp absolute -- ip is correct */
 839		/* ip is already adjusted, no more changes required */
 840		p->ainsn.boostable = 1;
 841		goto no_change;
 842	case 0xe8:	/* call relative - Fix return addr */
 843		*tos = orig_ip + (*tos - copy_ip);
 844		break;
 845#ifdef CONFIG_X86_32
 846	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 847		*tos = orig_ip + (*tos - copy_ip);
 848		goto no_change;
 849#endif
 850	case 0xff:
 851		if ((insn[1] & 0x30) == 0x10) {
 852			/*
 853			 * call absolute, indirect
 854			 * Fix return addr; ip is correct.
 855			 * But this is not boostable
 856			 */
 857			*tos = orig_ip + (*tos - copy_ip);
 858			goto no_change;
 859		} else if (((insn[1] & 0x31) == 0x20) ||
 860			   ((insn[1] & 0x31) == 0x21)) {
 861			/*
 862			 * jmp near and far, absolute indirect
 863			 * ip is correct. And this is boostable
 864			 */
 865			p->ainsn.boostable = 1;
 866			goto no_change;
 867		}
 868	default:
 869		break;
 870	}
 871
 872	if (p->ainsn.boostable == 0) {
 873		if ((regs->ip > copy_ip) &&
 874		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
 875			/*
 876			 * These instructions can be executed directly if it
 877			 * jumps back to correct address.
 878			 */
 879			synthesize_reljump((void *)regs->ip,
 880				(void *)orig_ip + (regs->ip - copy_ip));
 881			p->ainsn.boostable = 1;
 882		} else {
 883			p->ainsn.boostable = -1;
 884		}
 885	}
 886
 887	regs->ip += orig_ip - copy_ip;
 888
 889no_change:
 890	restore_btf();
 891}
 892
 893/*
 894 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 895 * remain disabled throughout this function.
 896 */
 897static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 898{
 899	struct kprobe *cur = kprobe_running();
 900	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 901
 902	if (!cur)
 903		return 0;
 904
 905	resume_execution(cur, regs, kcb);
 906	regs->flags |= kcb->kprobe_saved_flags;
 907
 908	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 909		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 910		cur->post_handler(cur, regs, 0);
 911	}
 912
 913	/* Restore back the original saved kprobes variables and continue. */
 914	if (kcb->kprobe_status == KPROBE_REENTER) {
 915		restore_previous_kprobe(kcb);
 916		goto out;
 917	}
 918	reset_current_kprobe();
 919out:
 920	preempt_enable_no_resched();
 921
 922	/*
 923	 * if somebody else is singlestepping across a probe point, flags
 924	 * will have TF set, in which case, continue the remaining processing
 925	 * of do_debug, as if this is not a probe hit.
 926	 */
 927	if (regs->flags & X86_EFLAGS_TF)
 928		return 0;
 929
 930	return 1;
 931}
 932
 933int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 934{
 935	struct kprobe *cur = kprobe_running();
 936	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 937
 938	switch (kcb->kprobe_status) {
 939	case KPROBE_HIT_SS:
 940	case KPROBE_REENTER:
 941		/*
 942		 * We are here because the instruction being single
 943		 * stepped caused a page fault. We reset the current
 944		 * kprobe and the ip points back to the probe address
 945		 * and allow the page fault handler to continue as a
 946		 * normal page fault.
 947		 */
 948		regs->ip = (unsigned long)cur->addr;
 949		regs->flags |= kcb->kprobe_old_flags;
 950		if (kcb->kprobe_status == KPROBE_REENTER)
 951			restore_previous_kprobe(kcb);
 952		else
 953			reset_current_kprobe();
 954		preempt_enable_no_resched();
 955		break;
 956	case KPROBE_HIT_ACTIVE:
 957	case KPROBE_HIT_SSDONE:
 958		/*
 959		 * We increment the nmissed count for accounting,
 960		 * we can also use npre/npostfault count for accounting
 961		 * these specific fault cases.
 962		 */
 963		kprobes_inc_nmissed_count(cur);
 964
 965		/*
 966		 * We come here because instructions in the pre/post
 967		 * handler caused the page_fault, this could happen
 968		 * if handler tries to access user space by
 969		 * copy_from_user(), get_user() etc. Let the
 970		 * user-specified handler try to fix it first.
 971		 */
 972		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 973			return 1;
 974
 975		/*
 976		 * In case the user-specified fault handler returned
 977		 * zero, try to fix up.
 978		 */
 979		if (fixup_exception(regs))
 980			return 1;
 981
 982		/*
 983		 * fixup routine could not handle it,
 984		 * Let do_page_fault() fix it.
 985		 */
 986		break;
 987	default:
 988		break;
 989	}
 990	return 0;
 991}
 992
 993/*
 994 * Wrapper routine for handling exceptions.
 995 */
 996int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 997				       unsigned long val, void *data)
 998{
 999	struct die_args *args = data;
1000	int ret = NOTIFY_DONE;
1001
1002	if (args->regs && user_mode_vm(args->regs))
1003		return ret;
1004
1005	switch (val) {
1006	case DIE_INT3:
1007		if (kprobe_handler(args->regs))
1008			ret = NOTIFY_STOP;
1009		break;
1010	case DIE_DEBUG:
1011		if (post_kprobe_handler(args->regs)) {
1012			/*
1013			 * Reset the BS bit in dr6 (pointed by args->err) to
1014			 * denote completion of processing
1015			 */
1016			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
1017			ret = NOTIFY_STOP;
1018		}
1019		break;
1020	case DIE_GPF:
1021		/*
1022		 * To be potentially processing a kprobe fault and to
1023		 * trust the result from kprobe_running(), we have
1024		 * be non-preemptible.
1025		 */
1026		if (!preemptible() && kprobe_running() &&
1027		    kprobe_fault_handler(args->regs, args->trapnr))
1028			ret = NOTIFY_STOP;
1029		break;
1030	default:
1031		break;
1032	}
1033	return ret;
1034}
1035
1036int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1037{
1038	struct jprobe *jp = container_of(p, struct jprobe, kp);
1039	unsigned long addr;
1040	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1041
1042	kcb->jprobe_saved_regs = *regs;
1043	kcb->jprobe_saved_sp = stack_addr(regs);
1044	addr = (unsigned long)(kcb->jprobe_saved_sp);
1045
1046	/*
1047	 * As Linus pointed out, gcc assumes that the callee
1048	 * owns the argument space and could overwrite it, e.g.
1049	 * tailcall optimization. So, to be absolutely safe
1050	 * we also save and restore enough stack bytes to cover
1051	 * the argument area.
1052	 */
1053	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1054	       MIN_STACK_SIZE(addr));
1055	regs->flags &= ~X86_EFLAGS_IF;
1056	trace_hardirqs_off();
1057	regs->ip = (unsigned long)(jp->entry);
1058	return 1;
1059}
1060
1061void __kprobes jprobe_return(void)
1062{
1063	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1064
1065	asm volatile (
1066#ifdef CONFIG_X86_64
1067			"       xchg   %%rbx,%%rsp	\n"
1068#else
1069			"       xchgl   %%ebx,%%esp	\n"
1070#endif
1071			"       int3			\n"
1072			"       .globl jprobe_return_end\n"
1073			"       jprobe_return_end:	\n"
1074			"       nop			\n"::"b"
1075			(kcb->jprobe_saved_sp):"memory");
1076}
1077
1078int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1079{
1080	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1081	u8 *addr = (u8 *) (regs->ip - 1);
1082	struct jprobe *jp = container_of(p, struct jprobe, kp);
1083
1084	if ((addr > (u8 *) jprobe_return) &&
1085	    (addr < (u8 *) jprobe_return_end)) {
1086		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1087			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1088			printk(KERN_ERR
1089			       "current sp %p does not match saved sp %p\n",
1090			       stack_addr(regs), kcb->jprobe_saved_sp);
1091			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1092			show_registers(saved_regs);
1093			printk(KERN_ERR "Current registers\n");
1094			show_registers(regs);
1095			BUG();
1096		}
1097		*regs = kcb->jprobe_saved_regs;
1098		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1099		       kcb->jprobes_stack,
1100		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1101		preempt_enable_no_resched();
1102		return 1;
1103	}
1104	return 0;
1105}
1106
1107
1108#ifdef CONFIG_OPTPROBES
1109
1110/* Insert a call instruction at address 'from', which calls address 'to'.*/
1111static void __kprobes synthesize_relcall(void *from, void *to)
1112{
1113	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
1114}
1115
1116/* Insert a move instruction which sets a pointer to eax/rdi (1st arg). */
1117static void __kprobes synthesize_set_arg1(kprobe_opcode_t *addr,
1118					  unsigned long val)
1119{
1120#ifdef CONFIG_X86_64
1121	*addr++ = 0x48;
1122	*addr++ = 0xbf;
1123#else
1124	*addr++ = 0xb8;
1125#endif
1126	*(unsigned long *)addr = val;
1127}
1128
1129static void __used __kprobes kprobes_optinsn_template_holder(void)
1130{
1131	asm volatile (
1132			".global optprobe_template_entry\n"
1133			"optprobe_template_entry: \n"
1134#ifdef CONFIG_X86_64
1135			/* We don't bother saving the ss register */
1136			"	pushq %rsp\n"
1137			"	pushfq\n"
1138			SAVE_REGS_STRING
1139			"	movq %rsp, %rsi\n"
1140			".global optprobe_template_val\n"
1141			"optprobe_template_val: \n"
1142			ASM_NOP5
1143			ASM_NOP5
1144			".global optprobe_template_call\n"
1145			"optprobe_template_call: \n"
1146			ASM_NOP5
1147			/* Move flags to rsp */
1148			"	movq 144(%rsp), %rdx\n"
1149			"	movq %rdx, 152(%rsp)\n"
1150			RESTORE_REGS_STRING
1151			/* Skip flags entry */
1152			"	addq $8, %rsp\n"
1153			"	popfq\n"
1154#else /* CONFIG_X86_32 */
1155			"	pushf\n"
1156			SAVE_REGS_STRING
1157			"	movl %esp, %edx\n"
1158			".global optprobe_template_val\n"
1159			"optprobe_template_val: \n"
1160			ASM_NOP5
1161			".global optprobe_template_call\n"
1162			"optprobe_template_call: \n"
1163			ASM_NOP5
1164			RESTORE_REGS_STRING
1165			"	addl $4, %esp\n"	/* skip cs */
1166			"	popf\n"
1167#endif
1168			".global optprobe_template_end\n"
1169			"optprobe_template_end: \n");
1170}
1171
1172#define TMPL_MOVE_IDX \
1173	((long)&optprobe_template_val - (long)&optprobe_template_entry)
1174#define TMPL_CALL_IDX \
1175	((long)&optprobe_template_call - (long)&optprobe_template_entry)
1176#define TMPL_END_IDX \
1177	((long)&optprobe_template_end - (long)&optprobe_template_entry)
1178
1179#define INT3_SIZE sizeof(kprobe_opcode_t)
1180
1181/* Optimized kprobe call back function: called from optinsn */
1182static void __kprobes optimized_callback(struct optimized_kprobe *op,
1183					 struct pt_regs *regs)
1184{
1185	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1186	unsigned long flags;
1187
1188	/* This is possible if op is under delayed unoptimizing */
1189	if (kprobe_disabled(&op->kp))
1190		return;
1191
1192	local_irq_save(flags);
1193	if (kprobe_running()) {
1194		kprobes_inc_nmissed_count(&op->kp);
1195	} else {
1196		/* Save skipped registers */
1197#ifdef CONFIG_X86_64
1198		regs->cs = __KERNEL_CS;
1199#else
1200		regs->cs = __KERNEL_CS | get_kernel_rpl();
1201		regs->gs = 0;
1202#endif
1203		regs->ip = (unsigned long)op->kp.addr + INT3_SIZE;
1204		regs->orig_ax = ~0UL;
1205
1206		__this_cpu_write(current_kprobe, &op->kp);
1207		kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1208		opt_pre_handler(&op->kp, regs);
1209		__this_cpu_write(current_kprobe, NULL);
1210	}
1211	local_irq_restore(flags);
1212}
1213
1214static int __kprobes copy_optimized_instructions(u8 *dest, u8 *src)
1215{
1216	int len = 0, ret;
1217
1218	while (len < RELATIVEJUMP_SIZE) {
1219		ret = __copy_instruction(dest + len, src + len, 1);
1220		if (!ret || !can_boost(dest + len))
1221			return -EINVAL;
1222		len += ret;
1223	}
1224	/* Check whether the address range is reserved */
1225	if (ftrace_text_reserved(src, src + len - 1) ||
1226	    alternatives_text_reserved(src, src + len - 1) ||
1227	    jump_label_text_reserved(src, src + len - 1))
1228		return -EBUSY;
1229
1230	return len;
1231}
1232
1233/* Check whether insn is indirect jump */
1234static int __kprobes insn_is_indirect_jump(struct insn *insn)
1235{
1236	return ((insn->opcode.bytes[0] == 0xff &&
1237		(X86_MODRM_REG(insn->modrm.value) & 6) == 4) || /* Jump */
1238		insn->opcode.bytes[0] == 0xea);	/* Segment based jump */
1239}
1240
1241/* Check whether insn jumps into specified address range */
1242static int insn_jump_into_range(struct insn *insn, unsigned long start, int len)
1243{
1244	unsigned long target = 0;
1245
1246	switch (insn->opcode.bytes[0]) {
1247	case 0xe0:	/* loopne */
1248	case 0xe1:	/* loope */
1249	case 0xe2:	/* loop */
1250	case 0xe3:	/* jcxz */
1251	case 0xe9:	/* near relative jump */
1252	case 0xeb:	/* short relative jump */
1253		break;
1254	case 0x0f:
1255		if ((insn->opcode.bytes[1] & 0xf0) == 0x80) /* jcc near */
1256			break;
1257		return 0;
1258	default:
1259		if ((insn->opcode.bytes[0] & 0xf0) == 0x70) /* jcc short */
1260			break;
1261		return 0;
1262	}
1263	target = (unsigned long)insn->next_byte + insn->immediate.value;
1264
1265	return (start <= target && target <= start + len);
1266}
1267
1268/* Decode whole function to ensure any instructions don't jump into target */
1269static int __kprobes can_optimize(unsigned long paddr)
1270{
1271	int ret;
1272	unsigned long addr, size = 0, offset = 0;
1273	struct insn insn;
1274	kprobe_opcode_t buf[MAX_INSN_SIZE];
1275
1276	/* Lookup symbol including addr */
1277	if (!kallsyms_lookup_size_offset(paddr, &size, &offset))
1278		return 0;
1279
1280	/*
1281	 * Do not optimize in the entry code due to the unstable
1282	 * stack handling.
1283	 */
1284	if ((paddr >= (unsigned long )__entry_text_start) &&
1285	    (paddr <  (unsigned long )__entry_text_end))
1286		return 0;
1287
1288	/* Check there is enough space for a relative jump. */
1289	if (size - offset < RELATIVEJUMP_SIZE)
1290		return 0;
1291
1292	/* Decode instructions */
1293	addr = paddr - offset;
1294	while (addr < paddr - offset + size) { /* Decode until function end */
1295		if (search_exception_tables(addr))
1296			/*
1297			 * Since some fixup code will jumps into this function,
1298			 * we can't optimize kprobe in this function.
1299			 */
1300			return 0;
1301		kernel_insn_init(&insn, (void *)addr);
1302		insn_get_opcode(&insn);
1303		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) {
1304			ret = recover_probed_instruction(buf, addr);
1305			if (ret)
1306				return 0;
1307			kernel_insn_init(&insn, buf);
1308		}
1309		insn_get_length(&insn);
1310		/* Recover address */
1311		insn.kaddr = (void *)addr;
1312		insn.next_byte = (void *)(addr + insn.length);
1313		/* Check any instructions don't jump into target */
1314		if (insn_is_indirect_jump(&insn) ||
1315		    insn_jump_into_range(&insn, paddr + INT3_SIZE,
1316					 RELATIVE_ADDR_SIZE))
1317			return 0;
1318		addr += insn.length;
1319	}
1320
1321	return 1;
1322}
1323
1324/* Check optimized_kprobe can actually be optimized. */
1325int __kprobes arch_check_optimized_kprobe(struct optimized_kprobe *op)
1326{
1327	int i;
1328	struct kprobe *p;
1329
1330	for (i = 1; i < op->optinsn.size; i++) {
1331		p = get_kprobe(op->kp.addr + i);
1332		if (p && !kprobe_disabled(p))
1333			return -EEXIST;
1334	}
1335
1336	return 0;
1337}
1338
1339/* Check the addr is within the optimized instructions. */
1340int __kprobes arch_within_optimized_kprobe(struct optimized_kprobe *op,
1341					   unsigned long addr)
1342{
1343	return ((unsigned long)op->kp.addr <= addr &&
1344		(unsigned long)op->kp.addr + op->optinsn.size > addr);
1345}
1346
1347/* Free optimized instruction slot */
1348static __kprobes
1349void __arch_remove_optimized_kprobe(struct optimized_kprobe *op, int dirty)
1350{
1351	if (op->optinsn.insn) {
1352		free_optinsn_slot(op->optinsn.insn, dirty);
1353		op->optinsn.insn = NULL;
1354		op->optinsn.size = 0;
1355	}
1356}
1357
1358void __kprobes arch_remove_optimized_kprobe(struct optimized_kprobe *op)
1359{
1360	__arch_remove_optimized_kprobe(op, 1);
1361}
1362
1363/*
1364 * Copy replacing target instructions
1365 * Target instructions MUST be relocatable (checked inside)
1366 */
1367int __kprobes arch_prepare_optimized_kprobe(struct optimized_kprobe *op)
1368{
1369	u8 *buf;
1370	int ret;
1371	long rel;
1372
1373	if (!can_optimize((unsigned long)op->kp.addr))
1374		return -EILSEQ;
1375
1376	op->optinsn.insn = get_optinsn_slot();
1377	if (!op->optinsn.insn)
1378		return -ENOMEM;
1379
1380	/*
1381	 * Verify if the address gap is in 2GB range, because this uses
1382	 * a relative jump.
1383	 */
1384	rel = (long)op->optinsn.insn - (long)op->kp.addr + RELATIVEJUMP_SIZE;
1385	if (abs(rel) > 0x7fffffff)
1386		return -ERANGE;
1387
1388	buf = (u8 *)op->optinsn.insn;
1389
1390	/* Copy instructions into the out-of-line buffer */
1391	ret = copy_optimized_instructions(buf + TMPL_END_IDX, op->kp.addr);
1392	if (ret < 0) {
1393		__arch_remove_optimized_kprobe(op, 0);
1394		return ret;
1395	}
1396	op->optinsn.size = ret;
1397
1398	/* Copy arch-dep-instance from template */
1399	memcpy(buf, &optprobe_template_entry, TMPL_END_IDX);
1400
1401	/* Set probe information */
1402	synthesize_set_arg1(buf + TMPL_MOVE_IDX, (unsigned long)op);
1403
1404	/* Set probe function call */
1405	synthesize_relcall(buf + TMPL_CALL_IDX, optimized_callback);
1406
1407	/* Set returning jmp instruction at the tail of out-of-line buffer */
1408	synthesize_reljump(buf + TMPL_END_IDX + op->optinsn.size,
1409			   (u8 *)op->kp.addr + op->optinsn.size);
1410
1411	flush_icache_range((unsigned long) buf,
1412			   (unsigned long) buf + TMPL_END_IDX +
1413			   op->optinsn.size + RELATIVEJUMP_SIZE);
1414	return 0;
1415}
1416
1417#define MAX_OPTIMIZE_PROBES 256
1418static struct text_poke_param *jump_poke_params;
1419static struct jump_poke_buffer {
1420	u8 buf[RELATIVEJUMP_SIZE];
1421} *jump_poke_bufs;
1422
1423static void __kprobes setup_optimize_kprobe(struct text_poke_param *tprm,
1424					    u8 *insn_buf,
1425					    struct optimized_kprobe *op)
1426{
1427	s32 rel = (s32)((long)op->optinsn.insn -
1428			((long)op->kp.addr + RELATIVEJUMP_SIZE));
1429
1430	/* Backup instructions which will be replaced by jump address */
1431	memcpy(op->optinsn.copied_insn, op->kp.addr + INT3_SIZE,
1432	       RELATIVE_ADDR_SIZE);
1433
1434	insn_buf[0] = RELATIVEJUMP_OPCODE;
1435	*(s32 *)(&insn_buf[1]) = rel;
1436
1437	tprm->addr = op->kp.addr;
1438	tprm->opcode = insn_buf;
1439	tprm->len = RELATIVEJUMP_SIZE;
1440}
1441
1442/*
1443 * Replace breakpoints (int3) with relative jumps.
1444 * Caller must call with locking kprobe_mutex and text_mutex.
1445 */
1446void __kprobes arch_optimize_kprobes(struct list_head *oplist)
1447{
1448	struct optimized_kprobe *op, *tmp;
1449	int c = 0;
1450
1451	list_for_each_entry_safe(op, tmp, oplist, list) {
1452		WARN_ON(kprobe_disabled(&op->kp));
1453		/* Setup param */
1454		setup_optimize_kprobe(&jump_poke_params[c],
1455				      jump_poke_bufs[c].buf, op);
1456		list_del_init(&op->list);
1457		if (++c >= MAX_OPTIMIZE_PROBES)
1458			break;
1459	}
1460
1461	/*
1462	 * text_poke_smp doesn't support NMI/MCE code modifying.
1463	 * However, since kprobes itself also doesn't support NMI/MCE
1464	 * code probing, it's not a problem.
1465	 */
1466	text_poke_smp_batch(jump_poke_params, c);
1467}
1468
1469static void __kprobes setup_unoptimize_kprobe(struct text_poke_param *tprm,
1470					      u8 *insn_buf,
1471					      struct optimized_kprobe *op)
1472{
1473	/* Set int3 to first byte for kprobes */
1474	insn_buf[0] = BREAKPOINT_INSTRUCTION;
1475	memcpy(insn_buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1476
1477	tprm->addr = op->kp.addr;
1478	tprm->opcode = insn_buf;
1479	tprm->len = RELATIVEJUMP_SIZE;
1480}
1481
1482/*
1483 * Recover original instructions and breakpoints from relative jumps.
1484 * Caller must call with locking kprobe_mutex.
1485 */
1486extern void arch_unoptimize_kprobes(struct list_head *oplist,
1487				    struct list_head *done_list)
1488{
1489	struct optimized_kprobe *op, *tmp;
1490	int c = 0;
1491
1492	list_for_each_entry_safe(op, tmp, oplist, list) {
1493		/* Setup param */
1494		setup_unoptimize_kprobe(&jump_poke_params[c],
1495					jump_poke_bufs[c].buf, op);
1496		list_move(&op->list, done_list);
1497		if (++c >= MAX_OPTIMIZE_PROBES)
1498			break;
1499	}
1500
1501	/*
1502	 * text_poke_smp doesn't support NMI/MCE code modifying.
1503	 * However, since kprobes itself also doesn't support NMI/MCE
1504	 * code probing, it's not a problem.
1505	 */
1506	text_poke_smp_batch(jump_poke_params, c);
1507}
1508
1509/* Replace a relative jump with a breakpoint (int3).  */
1510void __kprobes arch_unoptimize_kprobe(struct optimized_kprobe *op)
1511{
1512	u8 buf[RELATIVEJUMP_SIZE];
1513
1514	/* Set int3 to first byte for kprobes */
1515	buf[0] = BREAKPOINT_INSTRUCTION;
1516	memcpy(buf + 1, op->optinsn.copied_insn, RELATIVE_ADDR_SIZE);
1517	text_poke_smp(op->kp.addr, buf, RELATIVEJUMP_SIZE);
1518}
1519
1520static int  __kprobes setup_detour_execution(struct kprobe *p,
1521					     struct pt_regs *regs,
1522					     int reenter)
1523{
1524	struct optimized_kprobe *op;
1525
1526	if (p->flags & KPROBE_FLAG_OPTIMIZED) {
1527		/* This kprobe is really able to run optimized path. */
1528		op = container_of(p, struct optimized_kprobe, kp);
1529		/* Detour through copied instructions */
1530		regs->ip = (unsigned long)op->optinsn.insn + TMPL_END_IDX;
1531		if (!reenter)
1532			reset_current_kprobe();
1533		preempt_enable_no_resched();
1534		return 1;
1535	}
1536	return 0;
1537}
1538
1539static int __kprobes init_poke_params(void)
1540{
1541	/* Allocate code buffer and parameter array */
1542	jump_poke_bufs = kmalloc(sizeof(struct jump_poke_buffer) *
1543				 MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1544	if (!jump_poke_bufs)
1545		return -ENOMEM;
1546
1547	jump_poke_params = kmalloc(sizeof(struct text_poke_param) *
1548				   MAX_OPTIMIZE_PROBES, GFP_KERNEL);
1549	if (!jump_poke_params) {
1550		kfree(jump_poke_bufs);
1551		jump_poke_bufs = NULL;
1552		return -ENOMEM;
1553	}
1554
1555	return 0;
1556}
1557#else	/* !CONFIG_OPTPROBES */
1558static int __kprobes init_poke_params(void)
1559{
1560	return 0;
1561}
1562#endif
1563
1564int __init arch_init_kprobes(void)
1565{
1566	return init_poke_params();
1567}
1568
1569int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1570{
1571	return 0;
1572}