Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1/*
   2 *  Kernel Probes (KProbes)
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17 *
  18 * Copyright (C) IBM Corporation, 2002, 2004
  19 *
  20 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  21 *		Probes initial implementation ( includes contributions from
  22 *		Rusty Russell).
  23 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  24 *		interface to access function arguments.
  25 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  26 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  27 * 2005-Mar	Roland McGrath <roland@redhat.com>
  28 *		Fixed to handle %rip-relative addressing mode correctly.
  29 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  30 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  31 *		<prasanna@in.ibm.com> added function-return probes.
  32 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  33 *		Added function return probes functionality
  34 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  35 *		kprobe-booster and kretprobe-booster for i386.
  36 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  37 *		and kretprobe-booster for x86-64
  38 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  39 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  40 *		unified x86 kprobes code.
  41 */
  42#include <linux/kprobes.h>
  43#include <linux/ptrace.h>
  44#include <linux/string.h>
  45#include <linux/slab.h>
  46#include <linux/hardirq.h>
  47#include <linux/preempt.h>
  48#include <linux/module.h>
  49#include <linux/kdebug.h>
  50#include <linux/kallsyms.h>
  51#include <linux/ftrace.h>
  52
  53#include <asm/cacheflush.h>
  54#include <asm/desc.h>
  55#include <asm/pgtable.h>
  56#include <asm/uaccess.h>
  57#include <asm/alternative.h>
  58#include <asm/insn.h>
  59#include <asm/debugreg.h>
  60
  61#include "kprobes-common.h"
  62
  63void jprobe_return_end(void);
  64
  65DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  66DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  67
  68#define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
  69
  70#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  71	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  72	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  73	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  74	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  75	 << (row % 32))
  76	/*
  77	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  78	 * Groups, and some special opcodes can not boost.
  79	 * This is non-const and volatile to keep gcc from statically
  80	 * optimizing it out, as variable_test_bit makes gcc think only
  81	 * *(unsigned long*) is used. 
  82	 */
  83static volatile u32 twobyte_is_boostable[256 / 32] = {
  84	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  85	/*      ----------------------------------------------          */
  86	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  87	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */
  88	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  89	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  90	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  91	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  92	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  93	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  94	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  95	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  96	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  97	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  98	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  99	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
 100	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
 101	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
 102	/*      -----------------------------------------------         */
 103	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
 104};
 105#undef W
 106
 107struct kretprobe_blackpoint kretprobe_blacklist[] = {
 108	{"__switch_to", }, /* This function switches only current task, but
 109			      doesn't switch kernel stack.*/
 110	{NULL, NULL}	/* Terminator */
 111};
 112
 113const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 114
 115static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op)
 116{
 117	struct __arch_relative_insn {
 118		u8 op;
 119		s32 raddr;
 120	} __attribute__((packed)) *insn;
 121
 122	insn = (struct __arch_relative_insn *)from;
 123	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 124	insn->op = op;
 125}
 126
 127/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 128void __kprobes synthesize_reljump(void *from, void *to)
 129{
 130	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
 131}
 132
 133/* Insert a call instruction at address 'from', which calls address 'to'.*/
 134void __kprobes synthesize_relcall(void *from, void *to)
 135{
 136	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
 137}
 138
 139/*
 140 * Skip the prefixes of the instruction.
 141 */
 142static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn)
 143{
 144	insn_attr_t attr;
 145
 146	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 147	while (inat_is_legacy_prefix(attr)) {
 148		insn++;
 149		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 150	}
 151#ifdef CONFIG_X86_64
 152	if (inat_is_rex_prefix(attr))
 153		insn++;
 154#endif
 155	return insn;
 156}
 157
 158/*
 159 * Returns non-zero if opcode is boostable.
 160 * RIP relative instructions are adjusted at copying time in 64 bits mode
 161 */
 162int __kprobes can_boost(kprobe_opcode_t *opcodes)
 163{
 164	kprobe_opcode_t opcode;
 165	kprobe_opcode_t *orig_opcodes = opcodes;
 166
 167	if (search_exception_tables((unsigned long)opcodes))
 168		return 0;	/* Page fault may occur on this address. */
 169
 170retry:
 171	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 172		return 0;
 173	opcode = *(opcodes++);
 174
 175	/* 2nd-byte opcode */
 176	if (opcode == 0x0f) {
 177		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
 178			return 0;
 179		return test_bit(*opcodes,
 180				(unsigned long *)twobyte_is_boostable);
 181	}
 182
 183	switch (opcode & 0xf0) {
 184#ifdef CONFIG_X86_64
 185	case 0x40:
 186		goto retry; /* REX prefix is boostable */
 187#endif
 188	case 0x60:
 189		if (0x63 < opcode && opcode < 0x67)
 190			goto retry; /* prefixes */
 191		/* can't boost Address-size override and bound */
 192		return (opcode != 0x62 && opcode != 0x67);
 193	case 0x70:
 194		return 0; /* can't boost conditional jump */
 195	case 0xc0:
 196		/* can't boost software-interruptions */
 197		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 198	case 0xd0:
 199		/* can boost AA* and XLAT */
 200		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 201	case 0xe0:
 202		/* can boost in/out and absolute jmps */
 203		return ((opcode & 0x04) || opcode == 0xea);
 204	case 0xf0:
 205		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
 206			goto retry; /* lock/rep(ne) prefix */
 207		/* clear and set flags are boostable */
 208		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 209	default:
 210		/* segment override prefixes are boostable */
 211		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
 212			goto retry; /* prefixes */
 213		/* CS override prefix and call are not boostable */
 214		return (opcode != 0x2e && opcode != 0x9a);
 215	}
 216}
 217
 218static unsigned long
 219__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 220{
 221	struct kprobe *kp;
 222
 223	kp = get_kprobe((void *)addr);
 224	/* There is no probe, return original address */
 225	if (!kp)
 226		return addr;
 227
 228	/*
 229	 *  Basically, kp->ainsn.insn has an original instruction.
 230	 *  However, RIP-relative instruction can not do single-stepping
 231	 *  at different place, __copy_instruction() tweaks the displacement of
 232	 *  that instruction. In that case, we can't recover the instruction
 233	 *  from the kp->ainsn.insn.
 234	 *
 235	 *  On the other hand, kp->opcode has a copy of the first byte of
 236	 *  the probed instruction, which is overwritten by int3. And
 237	 *  the instruction at kp->addr is not modified by kprobes except
 238	 *  for the first byte, we can recover the original instruction
 239	 *  from it and kp->opcode.
 240	 */
 241	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 242	buf[0] = kp->opcode;
 243	return (unsigned long)buf;
 244}
 245
 246/*
 247 * Recover the probed instruction at addr for further analysis.
 248 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 249 * for preventing to release referencing kprobes.
 250 */
 251unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 252{
 253	unsigned long __addr;
 254
 255	__addr = __recover_optprobed_insn(buf, addr);
 256	if (__addr != addr)
 257		return __addr;
 258
 259	return __recover_probed_insn(buf, addr);
 260}
 261
 262/* Check if paddr is at an instruction boundary */
 263static int __kprobes can_probe(unsigned long paddr)
 264{
 265	unsigned long addr, __addr, offset = 0;
 266	struct insn insn;
 267	kprobe_opcode_t buf[MAX_INSN_SIZE];
 268
 269	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 270		return 0;
 271
 272	/* Decode instructions */
 273	addr = paddr - offset;
 274	while (addr < paddr) {
 275		/*
 276		 * Check if the instruction has been modified by another
 277		 * kprobe, in which case we replace the breakpoint by the
 278		 * original instruction in our buffer.
 279		 * Also, jump optimization will change the breakpoint to
 280		 * relative-jump. Since the relative-jump itself is
 281		 * normally used, we just go through if there is no kprobe.
 282		 */
 283		__addr = recover_probed_instruction(buf, addr);
 284		kernel_insn_init(&insn, (void *)__addr);
 285		insn_get_length(&insn);
 286
 287		/*
 288		 * Another debugging subsystem might insert this breakpoint.
 289		 * In that case, we can't recover it.
 290		 */
 291		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 292			return 0;
 293		addr += insn.length;
 294	}
 295
 296	return (addr == paddr);
 297}
 298
 299/*
 300 * Returns non-zero if opcode modifies the interrupt flag.
 301 */
 302static int __kprobes is_IF_modifier(kprobe_opcode_t *insn)
 303{
 304	/* Skip prefixes */
 305	insn = skip_prefixes(insn);
 306
 307	switch (*insn) {
 308	case 0xfa:		/* cli */
 309	case 0xfb:		/* sti */
 310	case 0xcf:		/* iret/iretd */
 311	case 0x9d:		/* popf/popfd */
 312		return 1;
 313	}
 314
 315	return 0;
 316}
 317
 318/*
 319 * Copy an instruction and adjust the displacement if the instruction
 320 * uses the %rip-relative addressing mode.
 321 * If it does, Return the address of the 32-bit displacement word.
 322 * If not, return null.
 323 * Only applicable to 64-bit x86.
 324 */
 325int __kprobes __copy_instruction(u8 *dest, u8 *src)
 326{
 327	struct insn insn;
 328	kprobe_opcode_t buf[MAX_INSN_SIZE];
 329
 330	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src));
 331	insn_get_length(&insn);
 332	/* Another subsystem puts a breakpoint, failed to recover */
 333	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
 334		return 0;
 335	memcpy(dest, insn.kaddr, insn.length);
 336
 337#ifdef CONFIG_X86_64
 338	if (insn_rip_relative(&insn)) {
 339		s64 newdisp;
 340		u8 *disp;
 341		kernel_insn_init(&insn, dest);
 342		insn_get_displacement(&insn);
 343		/*
 344		 * The copied instruction uses the %rip-relative addressing
 345		 * mode.  Adjust the displacement for the difference between
 346		 * the original location of this instruction and the location
 347		 * of the copy that will actually be run.  The tricky bit here
 348		 * is making sure that the sign extension happens correctly in
 349		 * this calculation, since we need a signed 32-bit result to
 350		 * be sign-extended to 64 bits when it's added to the %rip
 351		 * value and yield the same 64-bit result that the sign-
 352		 * extension of the original signed 32-bit displacement would
 353		 * have given.
 354		 */
 355		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
 356		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */
 357		disp = (u8 *) dest + insn_offset_displacement(&insn);
 358		*(s32 *) disp = (s32) newdisp;
 359	}
 360#endif
 361	return insn.length;
 362}
 363
 364static void __kprobes arch_copy_kprobe(struct kprobe *p)
 365{
 366	/* Copy an instruction with recovering if other optprobe modifies it.*/
 367	__copy_instruction(p->ainsn.insn, p->addr);
 368
 369	/*
 370	 * __copy_instruction can modify the displacement of the instruction,
 371	 * but it doesn't affect boostable check.
 372	 */
 373	if (can_boost(p->ainsn.insn))
 374		p->ainsn.boostable = 0;
 375	else
 376		p->ainsn.boostable = -1;
 377
 378	/* Also, displacement change doesn't affect the first byte */
 379	p->opcode = p->ainsn.insn[0];
 380}
 381
 382int __kprobes arch_prepare_kprobe(struct kprobe *p)
 383{
 384	if (alternatives_text_reserved(p->addr, p->addr))
 385		return -EINVAL;
 386
 387	if (!can_probe((unsigned long)p->addr))
 388		return -EILSEQ;
 389	/* insn: must be on special executable page on x86. */
 390	p->ainsn.insn = get_insn_slot();
 391	if (!p->ainsn.insn)
 392		return -ENOMEM;
 393	arch_copy_kprobe(p);
 394	return 0;
 395}
 396
 397void __kprobes arch_arm_kprobe(struct kprobe *p)
 398{
 399	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
 400}
 401
 402void __kprobes arch_disarm_kprobe(struct kprobe *p)
 403{
 404	text_poke(p->addr, &p->opcode, 1);
 405}
 406
 407void __kprobes arch_remove_kprobe(struct kprobe *p)
 408{
 409	if (p->ainsn.insn) {
 410		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
 411		p->ainsn.insn = NULL;
 412	}
 413}
 414
 415static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 416{
 417	kcb->prev_kprobe.kp = kprobe_running();
 418	kcb->prev_kprobe.status = kcb->kprobe_status;
 419	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 420	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 421}
 422
 423static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 424{
 425	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 426	kcb->kprobe_status = kcb->prev_kprobe.status;
 427	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 428	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 429}
 430
 431static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 432				struct kprobe_ctlblk *kcb)
 433{
 434	__this_cpu_write(current_kprobe, p);
 435	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 436		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 437	if (is_IF_modifier(p->ainsn.insn))
 438		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 439}
 440
 441static void __kprobes clear_btf(void)
 442{
 443	if (test_thread_flag(TIF_BLOCKSTEP)) {
 444		unsigned long debugctl = get_debugctlmsr();
 445
 446		debugctl &= ~DEBUGCTLMSR_BTF;
 447		update_debugctlmsr(debugctl);
 448	}
 449}
 450
 451static void __kprobes restore_btf(void)
 452{
 453	if (test_thread_flag(TIF_BLOCKSTEP)) {
 454		unsigned long debugctl = get_debugctlmsr();
 455
 456		debugctl |= DEBUGCTLMSR_BTF;
 457		update_debugctlmsr(debugctl);
 458	}
 459}
 460
 461void __kprobes
 462arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 463{
 464	unsigned long *sara = stack_addr(regs);
 465
 466	ri->ret_addr = (kprobe_opcode_t *) *sara;
 467
 468	/* Replace the return addr with trampoline addr */
 469	*sara = (unsigned long) &kretprobe_trampoline;
 470}
 471
 472static void __kprobes
 473setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter)
 474{
 475	if (setup_detour_execution(p, regs, reenter))
 476		return;
 477
 478#if !defined(CONFIG_PREEMPT)
 479	if (p->ainsn.boostable == 1 && !p->post_handler) {
 480		/* Boost up -- we can execute copied instructions directly */
 481		if (!reenter)
 482			reset_current_kprobe();
 483		/*
 484		 * Reentering boosted probe doesn't reset current_kprobe,
 485		 * nor set current_kprobe, because it doesn't use single
 486		 * stepping.
 487		 */
 488		regs->ip = (unsigned long)p->ainsn.insn;
 489		preempt_enable_no_resched();
 490		return;
 491	}
 492#endif
 493	if (reenter) {
 494		save_previous_kprobe(kcb);
 495		set_current_kprobe(p, regs, kcb);
 496		kcb->kprobe_status = KPROBE_REENTER;
 497	} else
 498		kcb->kprobe_status = KPROBE_HIT_SS;
 499	/* Prepare real single stepping */
 500	clear_btf();
 501	regs->flags |= X86_EFLAGS_TF;
 502	regs->flags &= ~X86_EFLAGS_IF;
 503	/* single step inline if the instruction is an int3 */
 504	if (p->opcode == BREAKPOINT_INSTRUCTION)
 505		regs->ip = (unsigned long)p->addr;
 506	else
 507		regs->ip = (unsigned long)p->ainsn.insn;
 508}
 509
 510/*
 511 * We have reentered the kprobe_handler(), since another probe was hit while
 512 * within the handler. We save the original kprobes variables and just single
 513 * step on the instruction of the new probe without calling any user handlers.
 514 */
 515static int __kprobes
 516reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 517{
 518	switch (kcb->kprobe_status) {
 519	case KPROBE_HIT_SSDONE:
 520	case KPROBE_HIT_ACTIVE:
 521		kprobes_inc_nmissed_count(p);
 522		setup_singlestep(p, regs, kcb, 1);
 523		break;
 524	case KPROBE_HIT_SS:
 525		/* A probe has been hit in the codepath leading up to, or just
 526		 * after, single-stepping of a probed instruction. This entire
 527		 * codepath should strictly reside in .kprobes.text section.
 528		 * Raise a BUG or we'll continue in an endless reentering loop
 529		 * and eventually a stack overflow.
 530		 */
 531		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
 532		       p->addr);
 533		dump_kprobe(p);
 534		BUG();
 535	default:
 536		/* impossible cases */
 537		WARN_ON(1);
 538		return 0;
 539	}
 540
 541	return 1;
 542}
 543
 544/*
 545 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 546 * remain disabled throughout this function.
 547 */
 548static int __kprobes kprobe_handler(struct pt_regs *regs)
 549{
 550	kprobe_opcode_t *addr;
 551	struct kprobe *p;
 552	struct kprobe_ctlblk *kcb;
 553
 554	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 555	/*
 556	 * We don't want to be preempted for the entire
 557	 * duration of kprobe processing. We conditionally
 558	 * re-enable preemption at the end of this function,
 559	 * and also in reenter_kprobe() and setup_singlestep().
 560	 */
 561	preempt_disable();
 562
 563	kcb = get_kprobe_ctlblk();
 564	p = get_kprobe(addr);
 565
 566	if (p) {
 567		if (kprobe_running()) {
 568			if (reenter_kprobe(p, regs, kcb))
 569				return 1;
 570		} else {
 571			set_current_kprobe(p, regs, kcb);
 572			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 573
 574			/*
 575			 * If we have no pre-handler or it returned 0, we
 576			 * continue with normal processing.  If we have a
 577			 * pre-handler and it returned non-zero, it prepped
 578			 * for calling the break_handler below on re-entry
 579			 * for jprobe processing, so get out doing nothing
 580			 * more here.
 581			 */
 582			if (!p->pre_handler || !p->pre_handler(p, regs))
 583				setup_singlestep(p, regs, kcb, 0);
 584			return 1;
 585		}
 586	} else if (*addr != BREAKPOINT_INSTRUCTION) {
 587		/*
 588		 * The breakpoint instruction was removed right
 589		 * after we hit it.  Another cpu has removed
 590		 * either a probepoint or a debugger breakpoint
 591		 * at this address.  In either case, no further
 592		 * handling of this interrupt is appropriate.
 593		 * Back up over the (now missing) int3 and run
 594		 * the original instruction.
 595		 */
 596		regs->ip = (unsigned long)addr;
 597		preempt_enable_no_resched();
 598		return 1;
 599	} else if (kprobe_running()) {
 600		p = __this_cpu_read(current_kprobe);
 601		if (p->break_handler && p->break_handler(p, regs)) {
 602			setup_singlestep(p, regs, kcb, 0);
 603			return 1;
 604		}
 605	} /* else: not a kprobe fault; let the kernel handle it */
 606
 607	preempt_enable_no_resched();
 608	return 0;
 609}
 610
 611/*
 612 * When a retprobed function returns, this code saves registers and
 613 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 614 */
 615static void __used __kprobes kretprobe_trampoline_holder(void)
 616{
 617	asm volatile (
 618			".global kretprobe_trampoline\n"
 619			"kretprobe_trampoline: \n"
 620#ifdef CONFIG_X86_64
 621			/* We don't bother saving the ss register */
 622			"	pushq %rsp\n"
 623			"	pushfq\n"
 624			SAVE_REGS_STRING
 625			"	movq %rsp, %rdi\n"
 626			"	call trampoline_handler\n"
 627			/* Replace saved sp with true return address. */
 628			"	movq %rax, 152(%rsp)\n"
 629			RESTORE_REGS_STRING
 630			"	popfq\n"
 631#else
 632			"	pushf\n"
 633			SAVE_REGS_STRING
 634			"	movl %esp, %eax\n"
 635			"	call trampoline_handler\n"
 636			/* Move flags to cs */
 637			"	movl 56(%esp), %edx\n"
 638			"	movl %edx, 52(%esp)\n"
 639			/* Replace saved flags with true return address. */
 640			"	movl %eax, 56(%esp)\n"
 641			RESTORE_REGS_STRING
 642			"	popf\n"
 643#endif
 644			"	ret\n");
 645}
 646
 647/*
 648 * Called from kretprobe_trampoline
 649 */
 650static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 651{
 652	struct kretprobe_instance *ri = NULL;
 653	struct hlist_head *head, empty_rp;
 654	struct hlist_node *node, *tmp;
 655	unsigned long flags, orig_ret_address = 0;
 656	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 657	kprobe_opcode_t *correct_ret_addr = NULL;
 658
 659	INIT_HLIST_HEAD(&empty_rp);
 660	kretprobe_hash_lock(current, &head, &flags);
 661	/* fixup registers */
 662#ifdef CONFIG_X86_64
 663	regs->cs = __KERNEL_CS;
 664#else
 665	regs->cs = __KERNEL_CS | get_kernel_rpl();
 666	regs->gs = 0;
 667#endif
 668	regs->ip = trampoline_address;
 669	regs->orig_ax = ~0UL;
 670
 671	/*
 672	 * It is possible to have multiple instances associated with a given
 673	 * task either because multiple functions in the call path have
 674	 * return probes installed on them, and/or more than one
 675	 * return probe was registered for a target function.
 676	 *
 677	 * We can handle this because:
 678	 *     - instances are always pushed into the head of the list
 679	 *     - when multiple return probes are registered for the same
 680	 *	 function, the (chronologically) first instance's ret_addr
 681	 *	 will be the real return address, and all the rest will
 682	 *	 point to kretprobe_trampoline.
 683	 */
 684	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 685		if (ri->task != current)
 686			/* another task is sharing our hash bucket */
 687			continue;
 688
 689		orig_ret_address = (unsigned long)ri->ret_addr;
 690
 691		if (orig_ret_address != trampoline_address)
 692			/*
 693			 * This is the real return address. Any other
 694			 * instances associated with this task are for
 695			 * other calls deeper on the call stack
 696			 */
 697			break;
 698	}
 699
 700	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 701
 702	correct_ret_addr = ri->ret_addr;
 703	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 704		if (ri->task != current)
 705			/* another task is sharing our hash bucket */
 706			continue;
 707
 708		orig_ret_address = (unsigned long)ri->ret_addr;
 709		if (ri->rp && ri->rp->handler) {
 710			__this_cpu_write(current_kprobe, &ri->rp->kp);
 711			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 712			ri->ret_addr = correct_ret_addr;
 713			ri->rp->handler(ri, regs);
 714			__this_cpu_write(current_kprobe, NULL);
 715		}
 716
 717		recycle_rp_inst(ri, &empty_rp);
 718
 719		if (orig_ret_address != trampoline_address)
 720			/*
 721			 * This is the real return address. Any other
 722			 * instances associated with this task are for
 723			 * other calls deeper on the call stack
 724			 */
 725			break;
 726	}
 727
 728	kretprobe_hash_unlock(current, &flags);
 729
 730	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 731		hlist_del(&ri->hlist);
 732		kfree(ri);
 733	}
 734	return (void *)orig_ret_address;
 735}
 736
 737/*
 738 * Called after single-stepping.  p->addr is the address of the
 739 * instruction whose first byte has been replaced by the "int 3"
 740 * instruction.  To avoid the SMP problems that can occur when we
 741 * temporarily put back the original opcode to single-step, we
 742 * single-stepped a copy of the instruction.  The address of this
 743 * copy is p->ainsn.insn.
 744 *
 745 * This function prepares to return from the post-single-step
 746 * interrupt.  We have to fix up the stack as follows:
 747 *
 748 * 0) Except in the case of absolute or indirect jump or call instructions,
 749 * the new ip is relative to the copied instruction.  We need to make
 750 * it relative to the original instruction.
 751 *
 752 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 753 * flags are set in the just-pushed flags, and may need to be cleared.
 754 *
 755 * 2) If the single-stepped instruction was a call, the return address
 756 * that is atop the stack is the address following the copied instruction.
 757 * We need to make it the address following the original instruction.
 758 *
 759 * If this is the first time we've single-stepped the instruction at
 760 * this probepoint, and the instruction is boostable, boost it: add a
 761 * jump instruction after the copied instruction, that jumps to the next
 762 * instruction after the probepoint.
 763 */
 764static void __kprobes
 765resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 766{
 767	unsigned long *tos = stack_addr(regs);
 768	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 769	unsigned long orig_ip = (unsigned long)p->addr;
 770	kprobe_opcode_t *insn = p->ainsn.insn;
 771
 772	/* Skip prefixes */
 773	insn = skip_prefixes(insn);
 774
 775	regs->flags &= ~X86_EFLAGS_TF;
 776	switch (*insn) {
 777	case 0x9c:	/* pushfl */
 778		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 779		*tos |= kcb->kprobe_old_flags;
 780		break;
 781	case 0xc2:	/* iret/ret/lret */
 782	case 0xc3:
 783	case 0xca:
 784	case 0xcb:
 785	case 0xcf:
 786	case 0xea:	/* jmp absolute -- ip is correct */
 787		/* ip is already adjusted, no more changes required */
 788		p->ainsn.boostable = 1;
 789		goto no_change;
 790	case 0xe8:	/* call relative - Fix return addr */
 791		*tos = orig_ip + (*tos - copy_ip);
 792		break;
 793#ifdef CONFIG_X86_32
 794	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 795		*tos = orig_ip + (*tos - copy_ip);
 796		goto no_change;
 797#endif
 798	case 0xff:
 799		if ((insn[1] & 0x30) == 0x10) {
 800			/*
 801			 * call absolute, indirect
 802			 * Fix return addr; ip is correct.
 803			 * But this is not boostable
 804			 */
 805			*tos = orig_ip + (*tos - copy_ip);
 806			goto no_change;
 807		} else if (((insn[1] & 0x31) == 0x20) ||
 808			   ((insn[1] & 0x31) == 0x21)) {
 809			/*
 810			 * jmp near and far, absolute indirect
 811			 * ip is correct. And this is boostable
 812			 */
 813			p->ainsn.boostable = 1;
 814			goto no_change;
 815		}
 816	default:
 817		break;
 818	}
 819
 820	if (p->ainsn.boostable == 0) {
 821		if ((regs->ip > copy_ip) &&
 822		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
 823			/*
 824			 * These instructions can be executed directly if it
 825			 * jumps back to correct address.
 826			 */
 827			synthesize_reljump((void *)regs->ip,
 828				(void *)orig_ip + (regs->ip - copy_ip));
 829			p->ainsn.boostable = 1;
 830		} else {
 831			p->ainsn.boostable = -1;
 832		}
 833	}
 834
 835	regs->ip += orig_ip - copy_ip;
 836
 837no_change:
 838	restore_btf();
 839}
 840
 841/*
 842 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 843 * remain disabled throughout this function.
 844 */
 845static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 846{
 847	struct kprobe *cur = kprobe_running();
 848	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 849
 850	if (!cur)
 851		return 0;
 852
 853	resume_execution(cur, regs, kcb);
 854	regs->flags |= kcb->kprobe_saved_flags;
 855
 856	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 857		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 858		cur->post_handler(cur, regs, 0);
 859	}
 860
 861	/* Restore back the original saved kprobes variables and continue. */
 862	if (kcb->kprobe_status == KPROBE_REENTER) {
 863		restore_previous_kprobe(kcb);
 864		goto out;
 865	}
 866	reset_current_kprobe();
 867out:
 868	preempt_enable_no_resched();
 869
 870	/*
 871	 * if somebody else is singlestepping across a probe point, flags
 872	 * will have TF set, in which case, continue the remaining processing
 873	 * of do_debug, as if this is not a probe hit.
 874	 */
 875	if (regs->flags & X86_EFLAGS_TF)
 876		return 0;
 877
 878	return 1;
 879}
 880
 881int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 882{
 883	struct kprobe *cur = kprobe_running();
 884	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 885
 886	switch (kcb->kprobe_status) {
 887	case KPROBE_HIT_SS:
 888	case KPROBE_REENTER:
 889		/*
 890		 * We are here because the instruction being single
 891		 * stepped caused a page fault. We reset the current
 892		 * kprobe and the ip points back to the probe address
 893		 * and allow the page fault handler to continue as a
 894		 * normal page fault.
 895		 */
 896		regs->ip = (unsigned long)cur->addr;
 897		regs->flags |= kcb->kprobe_old_flags;
 898		if (kcb->kprobe_status == KPROBE_REENTER)
 899			restore_previous_kprobe(kcb);
 900		else
 901			reset_current_kprobe();
 902		preempt_enable_no_resched();
 903		break;
 904	case KPROBE_HIT_ACTIVE:
 905	case KPROBE_HIT_SSDONE:
 906		/*
 907		 * We increment the nmissed count for accounting,
 908		 * we can also use npre/npostfault count for accounting
 909		 * these specific fault cases.
 910		 */
 911		kprobes_inc_nmissed_count(cur);
 912
 913		/*
 914		 * We come here because instructions in the pre/post
 915		 * handler caused the page_fault, this could happen
 916		 * if handler tries to access user space by
 917		 * copy_from_user(), get_user() etc. Let the
 918		 * user-specified handler try to fix it first.
 919		 */
 920		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 921			return 1;
 922
 923		/*
 924		 * In case the user-specified fault handler returned
 925		 * zero, try to fix up.
 926		 */
 927		if (fixup_exception(regs))
 928			return 1;
 929
 930		/*
 931		 * fixup routine could not handle it,
 932		 * Let do_page_fault() fix it.
 933		 */
 934		break;
 935	default:
 936		break;
 937	}
 938	return 0;
 939}
 940
 941/*
 942 * Wrapper routine for handling exceptions.
 943 */
 944int __kprobes
 945kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data)
 946{
 947	struct die_args *args = data;
 948	int ret = NOTIFY_DONE;
 949
 950	if (args->regs && user_mode_vm(args->regs))
 951		return ret;
 952
 953	switch (val) {
 954	case DIE_INT3:
 955		if (kprobe_handler(args->regs))
 956			ret = NOTIFY_STOP;
 957		break;
 958	case DIE_DEBUG:
 959		if (post_kprobe_handler(args->regs)) {
 960			/*
 961			 * Reset the BS bit in dr6 (pointed by args->err) to
 962			 * denote completion of processing
 963			 */
 964			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP;
 965			ret = NOTIFY_STOP;
 966		}
 967		break;
 968	case DIE_GPF:
 969		/*
 970		 * To be potentially processing a kprobe fault and to
 971		 * trust the result from kprobe_running(), we have
 972		 * be non-preemptible.
 973		 */
 974		if (!preemptible() && kprobe_running() &&
 975		    kprobe_fault_handler(args->regs, args->trapnr))
 976			ret = NOTIFY_STOP;
 977		break;
 978	default:
 979		break;
 980	}
 981	return ret;
 982}
 983
 984int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 985{
 986	struct jprobe *jp = container_of(p, struct jprobe, kp);
 987	unsigned long addr;
 988	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 989
 990	kcb->jprobe_saved_regs = *regs;
 991	kcb->jprobe_saved_sp = stack_addr(regs);
 992	addr = (unsigned long)(kcb->jprobe_saved_sp);
 993
 994	/*
 995	 * As Linus pointed out, gcc assumes that the callee
 996	 * owns the argument space and could overwrite it, e.g.
 997	 * tailcall optimization. So, to be absolutely safe
 998	 * we also save and restore enough stack bytes to cover
 999	 * the argument area.
1000	 */
1001	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1002	       MIN_STACK_SIZE(addr));
1003	regs->flags &= ~X86_EFLAGS_IF;
1004	trace_hardirqs_off();
1005	regs->ip = (unsigned long)(jp->entry);
1006	return 1;
1007}
1008
1009void __kprobes jprobe_return(void)
1010{
1011	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1012
1013	asm volatile (
1014#ifdef CONFIG_X86_64
1015			"       xchg   %%rbx,%%rsp	\n"
1016#else
1017			"       xchgl   %%ebx,%%esp	\n"
1018#endif
1019			"       int3			\n"
1020			"       .globl jprobe_return_end\n"
1021			"       jprobe_return_end:	\n"
1022			"       nop			\n"::"b"
1023			(kcb->jprobe_saved_sp):"memory");
1024}
1025
1026int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1027{
1028	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1029	u8 *addr = (u8 *) (regs->ip - 1);
1030	struct jprobe *jp = container_of(p, struct jprobe, kp);
1031
1032	if ((addr > (u8 *) jprobe_return) &&
1033	    (addr < (u8 *) jprobe_return_end)) {
1034		if (stack_addr(regs) != kcb->jprobe_saved_sp) {
1035			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1036			printk(KERN_ERR
1037			       "current sp %p does not match saved sp %p\n",
1038			       stack_addr(regs), kcb->jprobe_saved_sp);
1039			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1040			show_regs(saved_regs);
1041			printk(KERN_ERR "Current registers\n");
1042			show_regs(regs);
1043			BUG();
1044		}
1045		*regs = kcb->jprobe_saved_regs;
1046		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp),
1047		       kcb->jprobes_stack,
1048		       MIN_STACK_SIZE(kcb->jprobe_saved_sp));
1049		preempt_enable_no_resched();
1050		return 1;
1051	}
1052	return 0;
1053}
1054
1055int __init arch_init_kprobes(void)
1056{
1057	return arch_init_optprobes();
1058}
1059
1060int __kprobes arch_trampoline_kprobe(struct kprobe *p)
1061{
1062	return 0;
1063}