Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/mutex.h>
   7#include <linux/list.h>
   8#include <linux/stringify.h>
 
   9#include <linux/mm.h>
  10#include <linux/vmalloc.h>
  11#include <linux/memory.h>
  12#include <linux/stop_machine.h>
  13#include <linux/slab.h>
  14#include <linux/kdebug.h>
  15#include <linux/kprobes.h>
  16#include <linux/mmu_context.h>
  17#include <linux/bsearch.h>
  18#include <asm/text-patching.h>
  19#include <asm/alternative.h>
  20#include <asm/sections.h>
  21#include <asm/pgtable.h>
  22#include <asm/mce.h>
  23#include <asm/nmi.h>
  24#include <asm/cacheflush.h>
  25#include <asm/tlbflush.h>
  26#include <asm/io.h>
  27#include <asm/fixmap.h>
  28
  29int __read_mostly alternatives_patched;
  30
  31EXPORT_SYMBOL_GPL(alternatives_patched);
 
  32
  33#define MAX_PATCH_LEN (255-1)
 
 
 
 
 
 
 
 
  34
  35static int __initdata_or_module debug_alternative;
  36
  37static int __init debug_alt(char *str)
  38{
  39	debug_alternative = 1;
  40	return 1;
  41}
  42__setup("debug-alternative", debug_alt);
  43
  44static int noreplace_smp;
  45
  46static int __init setup_noreplace_smp(char *str)
  47{
  48	noreplace_smp = 1;
  49	return 1;
  50}
  51__setup("noreplace-smp", setup_noreplace_smp);
  52
  53#define DPRINTK(fmt, args...)						\
  54do {									\
  55	if (debug_alternative)						\
  56		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
  57} while (0)
  58
  59#define DUMP_BYTES(buf, len, fmt, args...)				\
  60do {									\
  61	if (unlikely(debug_alternative)) {				\
  62		int j;							\
  63									\
  64		if (!(len))						\
  65			break;						\
  66									\
  67		printk(KERN_DEBUG fmt, ##args);				\
  68		for (j = 0; j < (len) - 1; j++)				\
  69			printk(KERN_CONT "%02hhx ", buf[j]);		\
  70		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  71	}								\
  72} while (0)
  73
  74/*
  75 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
  76 * that correspond to that nop. Getting from one nop to the next, we
  77 * add to the array the offset that is equal to the sum of all sizes of
  78 * nops preceding the one we are after.
  79 *
  80 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
  81 * nice symmetry of sizes of the previous nops.
  82 */
  83#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
  84static const unsigned char intelnops[] =
  85{
  86	GENERIC_NOP1,
  87	GENERIC_NOP2,
  88	GENERIC_NOP3,
  89	GENERIC_NOP4,
  90	GENERIC_NOP5,
  91	GENERIC_NOP6,
  92	GENERIC_NOP7,
  93	GENERIC_NOP8,
  94	GENERIC_NOP5_ATOMIC
  95};
  96static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
  97{
  98	NULL,
  99	intelnops,
 100	intelnops + 1,
 101	intelnops + 1 + 2,
 102	intelnops + 1 + 2 + 3,
 103	intelnops + 1 + 2 + 3 + 4,
 104	intelnops + 1 + 2 + 3 + 4 + 5,
 105	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
 106	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 107	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 108};
 109#endif
 110
 111#ifdef K8_NOP1
 112static const unsigned char k8nops[] =
 113{
 114	K8_NOP1,
 115	K8_NOP2,
 116	K8_NOP3,
 117	K8_NOP4,
 118	K8_NOP5,
 119	K8_NOP6,
 120	K8_NOP7,
 121	K8_NOP8,
 122	K8_NOP5_ATOMIC
 123};
 124static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
 125{
 126	NULL,
 127	k8nops,
 128	k8nops + 1,
 129	k8nops + 1 + 2,
 130	k8nops + 1 + 2 + 3,
 131	k8nops + 1 + 2 + 3 + 4,
 132	k8nops + 1 + 2 + 3 + 4 + 5,
 133	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
 134	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 135	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 136};
 137#endif
 138
 139#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
 140static const unsigned char k7nops[] =
 141{
 142	K7_NOP1,
 143	K7_NOP2,
 144	K7_NOP3,
 145	K7_NOP4,
 146	K7_NOP5,
 147	K7_NOP6,
 148	K7_NOP7,
 149	K7_NOP8,
 150	K7_NOP5_ATOMIC
 151};
 152static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
 153{
 154	NULL,
 155	k7nops,
 156	k7nops + 1,
 157	k7nops + 1 + 2,
 158	k7nops + 1 + 2 + 3,
 159	k7nops + 1 + 2 + 3 + 4,
 160	k7nops + 1 + 2 + 3 + 4 + 5,
 161	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
 162	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 163	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 164};
 165#endif
 166
 167#ifdef P6_NOP1
 168static const unsigned char p6nops[] =
 169{
 170	P6_NOP1,
 171	P6_NOP2,
 172	P6_NOP3,
 173	P6_NOP4,
 174	P6_NOP5,
 175	P6_NOP6,
 176	P6_NOP7,
 177	P6_NOP8,
 178	P6_NOP5_ATOMIC
 179};
 180static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
 181{
 182	NULL,
 183	p6nops,
 184	p6nops + 1,
 185	p6nops + 1 + 2,
 186	p6nops + 1 + 2 + 3,
 187	p6nops + 1 + 2 + 3 + 4,
 188	p6nops + 1 + 2 + 3 + 4 + 5,
 189	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
 190	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 191	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 192};
 193#endif
 194
 195/* Initialize these to a safe default */
 196#ifdef CONFIG_X86_64
 197const unsigned char * const *ideal_nops = p6_nops;
 198#else
 199const unsigned char * const *ideal_nops = intel_nops;
 200#endif
 201
 202void __init arch_init_ideal_nops(void)
 203{
 204	switch (boot_cpu_data.x86_vendor) {
 205	case X86_VENDOR_INTEL:
 206		/*
 207		 * Due to a decoder implementation quirk, some
 208		 * specific Intel CPUs actually perform better with
 209		 * the "k8_nops" than with the SDM-recommended NOPs.
 210		 */
 211		if (boot_cpu_data.x86 == 6 &&
 212		    boot_cpu_data.x86_model >= 0x0f &&
 213		    boot_cpu_data.x86_model != 0x1c &&
 214		    boot_cpu_data.x86_model != 0x26 &&
 215		    boot_cpu_data.x86_model != 0x27 &&
 216		    boot_cpu_data.x86_model < 0x30) {
 217			ideal_nops = k8_nops;
 218		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
 219			   ideal_nops = p6_nops;
 220		} else {
 221#ifdef CONFIG_X86_64
 222			ideal_nops = k8_nops;
 223#else
 224			ideal_nops = intel_nops;
 225#endif
 226		}
 227		break;
 228
 229	case X86_VENDOR_HYGON:
 230		ideal_nops = p6_nops;
 231		return;
 232
 233	case X86_VENDOR_AMD:
 234		if (boot_cpu_data.x86 > 0xf) {
 235			ideal_nops = p6_nops;
 236			return;
 237		}
 238
 239		/* fall through */
 240
 241	default:
 242#ifdef CONFIG_X86_64
 243		ideal_nops = k8_nops;
 244#else
 245		if (boot_cpu_has(X86_FEATURE_K8))
 246			ideal_nops = k8_nops;
 247		else if (boot_cpu_has(X86_FEATURE_K7))
 248			ideal_nops = k7_nops;
 249		else
 250			ideal_nops = intel_nops;
 251#endif
 252	}
 253}
 254
 255/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 256static void __init_or_module add_nops(void *insns, unsigned int len)
 257{
 258	while (len > 0) {
 259		unsigned int noplen = len;
 260		if (noplen > ASM_NOP_MAX)
 261			noplen = ASM_NOP_MAX;
 262		memcpy(insns, ideal_nops[noplen], noplen);
 263		insns += noplen;
 264		len -= noplen;
 265	}
 266}
 267
 268extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 269extern s32 __smp_locks[], __smp_locks_end[];
 270void text_poke_early(void *addr, const void *opcode, size_t len);
 271
 272/*
 273 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 274 */
 275static inline bool is_jmp(const u8 opcode)
 276{
 277	return opcode == 0xeb || opcode == 0xe9;
 278}
 279
 280static void __init_or_module
 281recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 282{
 283	u8 *next_rip, *tgt_rip;
 284	s32 n_dspl, o_dspl;
 285	int repl_len;
 286
 287	if (a->replacementlen != 5)
 288		return;
 289
 290	o_dspl = *(s32 *)(insn_buff + 1);
 291
 292	/* next_rip of the replacement JMP */
 293	next_rip = repl_insn + a->replacementlen;
 294	/* target rip of the replacement JMP */
 295	tgt_rip  = next_rip + o_dspl;
 296	n_dspl = tgt_rip - orig_insn;
 297
 298	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 299
 300	if (tgt_rip - orig_insn >= 0) {
 301		if (n_dspl - 2 <= 127)
 302			goto two_byte_jmp;
 303		else
 304			goto five_byte_jmp;
 305	/* negative offset */
 306	} else {
 307		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 308			goto two_byte_jmp;
 309		else
 310			goto five_byte_jmp;
 311	}
 312
 313two_byte_jmp:
 314	n_dspl -= 2;
 315
 316	insn_buff[0] = 0xeb;
 317	insn_buff[1] = (s8)n_dspl;
 318	add_nops(insn_buff + 2, 3);
 319
 320	repl_len = 2;
 321	goto done;
 322
 323five_byte_jmp:
 324	n_dspl -= 5;
 325
 326	insn_buff[0] = 0xe9;
 327	*(s32 *)&insn_buff[1] = n_dspl;
 328
 329	repl_len = 5;
 330
 331done:
 332
 333	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 334		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 335}
 336
 337/*
 338 * "noinline" to cause control flow change and thus invalidate I$ and
 339 * cause refetch after modification.
 340 */
 341static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 342{
 343	unsigned long flags;
 344	int i;
 345
 346	for (i = 0; i < a->padlen; i++) {
 347		if (instr[i] != 0x90)
 348			return;
 349	}
 350
 351	local_irq_save(flags);
 352	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
 353	local_irq_restore(flags);
 354
 355	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
 356		   instr, a->instrlen - a->padlen, a->padlen);
 357}
 358
 359/*
 360 * Replace instructions with better alternatives for this CPU type. This runs
 361 * before SMP is initialized to avoid SMP problems with self modifying code.
 362 * This implies that asymmetric systems where APs have less capabilities than
 363 * the boot processor are not handled. Tough. Make sure you disable such
 364 * features by hand.
 365 *
 366 * Marked "noinline" to cause control flow change and thus insn cache
 367 * to refetch changed I$ lines.
 368 */
 369void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 370						  struct alt_instr *end)
 371{
 372	struct alt_instr *a;
 373	u8 *instr, *replacement;
 374	u8 insn_buff[MAX_PATCH_LEN];
 375
 376	DPRINTK("alt table %px, -> %px", start, end);
 377	/*
 378	 * The scan order should be from start to end. A later scanned
 379	 * alternative code can overwrite previously scanned alternative code.
 380	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 381	 * patch code.
 382	 *
 383	 * So be careful if you want to change the scan order to any other
 384	 * order.
 385	 */
 386	for (a = start; a < end; a++) {
 387		int insn_buff_sz = 0;
 388
 389		instr = (u8 *)&a->instr_offset + a->instr_offset;
 390		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 391		BUG_ON(a->instrlen > sizeof(insn_buff));
 392		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
 393		if (!boot_cpu_has(a->cpuid)) {
 394			if (a->padlen > 1)
 395				optimize_nops(a, instr);
 396
 397			continue;
 398		}
 399
 400		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
 401			a->cpuid >> 5,
 402			a->cpuid & 0x1f,
 403			instr, instr, a->instrlen,
 404			replacement, a->replacementlen, a->padlen);
 405
 406		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
 407		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
 408
 409		memcpy(insn_buff, replacement, a->replacementlen);
 410		insn_buff_sz = a->replacementlen;
 411
 412		/*
 413		 * 0xe8 is a relative jump; fix the offset.
 414		 *
 415		 * Instruction length is checked before the opcode to avoid
 416		 * accessing uninitialized bytes for zero-length replacements.
 417		 */
 418		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 419			*(s32 *)(insn_buff + 1) += replacement - instr;
 420			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 421				*(s32 *)(insn_buff + 1),
 422				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 423		}
 424
 425		if (a->replacementlen && is_jmp(replacement[0]))
 426			recompute_jump(a, instr, replacement, insn_buff);
 427
 428		if (a->instrlen > a->replacementlen) {
 429			add_nops(insn_buff + a->replacementlen,
 430				 a->instrlen - a->replacementlen);
 431			insn_buff_sz += a->instrlen - a->replacementlen;
 432		}
 433		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 434
 435		text_poke_early(instr, insn_buff, insn_buff_sz);
 436	}
 437}
 438
 439#ifdef CONFIG_SMP
 
 440static void alternatives_smp_lock(const s32 *start, const s32 *end,
 441				  u8 *text, u8 *text_end)
 442{
 443	const s32 *poff;
 444
 
 445	for (poff = start; poff < end; poff++) {
 446		u8 *ptr = (u8 *)poff + *poff;
 447
 448		if (!*poff || ptr < text || ptr >= text_end)
 449			continue;
 450		/* turn DS segment override prefix into lock prefix */
 451		if (*ptr == 0x3e)
 452			text_poke(ptr, ((unsigned char []){0xf0}), 1);
 453	}
 
 454}
 455
 456static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 457				    u8 *text, u8 *text_end)
 458{
 459	const s32 *poff;
 460
 
 
 
 
 461	for (poff = start; poff < end; poff++) {
 462		u8 *ptr = (u8 *)poff + *poff;
 463
 464		if (!*poff || ptr < text || ptr >= text_end)
 465			continue;
 466		/* turn lock prefix into DS segment override prefix */
 467		if (*ptr == 0xf0)
 468			text_poke(ptr, ((unsigned char []){0x3E}), 1);
 469	}
 
 470}
 471
 472struct smp_alt_module {
 473	/* what is this ??? */
 474	struct module	*mod;
 475	char		*name;
 476
 477	/* ptrs to lock prefixes */
 478	const s32	*locks;
 479	const s32	*locks_end;
 480
 481	/* .text segment, needed to avoid patching init code ;) */
 482	u8		*text;
 483	u8		*text_end;
 484
 485	struct list_head next;
 486};
 487static LIST_HEAD(smp_alt_modules);
 488static bool uniproc_patched = false;	/* protected by text_mutex */
 
 489
 490void __init_or_module alternatives_smp_module_add(struct module *mod,
 491						  char *name,
 492						  void *locks, void *locks_end,
 493						  void *text,  void *text_end)
 494{
 495	struct smp_alt_module *smp;
 496
 497	mutex_lock(&text_mutex);
 498	if (!uniproc_patched)
 499		goto unlock;
 500
 501	if (num_possible_cpus() == 1)
 502		/* Don't bother remembering, we'll never have to undo it. */
 503		goto smp_unlock;
 
 
 
 504
 505	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 506	if (NULL == smp)
 507		/* we'll run the (safe but slow) SMP code then ... */
 508		goto unlock;
 509
 510	smp->mod	= mod;
 511	smp->name	= name;
 512	smp->locks	= locks;
 513	smp->locks_end	= locks_end;
 514	smp->text	= text;
 515	smp->text_end	= text_end;
 516	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 517		smp->locks, smp->locks_end,
 518		smp->text, smp->text_end, smp->name);
 519
 
 520	list_add_tail(&smp->next, &smp_alt_modules);
 521smp_unlock:
 522	alternatives_smp_unlock(locks, locks_end, text, text_end);
 523unlock:
 524	mutex_unlock(&text_mutex);
 525}
 526
 527void __init_or_module alternatives_smp_module_del(struct module *mod)
 528{
 529	struct smp_alt_module *item;
 530
 531	mutex_lock(&text_mutex);
 
 
 
 532	list_for_each_entry(item, &smp_alt_modules, next) {
 533		if (mod != item->mod)
 534			continue;
 535		list_del(&item->next);
 
 
 536		kfree(item);
 537		break;
 538	}
 539	mutex_unlock(&text_mutex);
 540}
 541
 542void alternatives_enable_smp(void)
 
 543{
 544	struct smp_alt_module *mod;
 545
 546	/* Why bother if there are no other CPUs? */
 547	BUG_ON(num_possible_cpus() == 1);
 
 
 
 
 
 
 
 
 548
 549	mutex_lock(&text_mutex);
 
 
 
 
 550
 551	if (uniproc_patched) {
 552		pr_info("switching to SMP code\n");
 553		BUG_ON(num_online_cpus() != 1);
 
 
 
 
 
 554		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 555		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 556		list_for_each_entry(mod, &smp_alt_modules, next)
 557			alternatives_smp_lock(mod->locks, mod->locks_end,
 558					      mod->text, mod->text_end);
 559		uniproc_patched = false;
 
 
 
 
 
 
 560	}
 561	mutex_unlock(&text_mutex);
 
 562}
 563
 564/*
 565 * Return 1 if the address range is reserved for SMP-alternatives.
 566 * Must hold text_mutex.
 567 */
 568int alternatives_text_reserved(void *start, void *end)
 569{
 570	struct smp_alt_module *mod;
 571	const s32 *poff;
 572	u8 *text_start = start;
 573	u8 *text_end = end;
 574
 575	lockdep_assert_held(&text_mutex);
 576
 577	list_for_each_entry(mod, &smp_alt_modules, next) {
 578		if (mod->text > text_end || mod->text_end < text_start)
 579			continue;
 580		for (poff = mod->locks; poff < mod->locks_end; poff++) {
 581			const u8 *ptr = (const u8 *)poff + *poff;
 582
 583			if (text_start <= ptr && text_end > ptr)
 584				return 1;
 585		}
 586	}
 587
 588	return 0;
 589}
 590#endif /* CONFIG_SMP */
 591
 592#ifdef CONFIG_PARAVIRT
 593void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 594				     struct paravirt_patch_site *end)
 595{
 596	struct paravirt_patch_site *p;
 597	char insn_buff[MAX_PATCH_LEN];
 
 
 
 598
 599	for (p = start; p < end; p++) {
 600		unsigned int used;
 601
 602		BUG_ON(p->len > MAX_PATCH_LEN);
 603		/* prep the buffer with the original instructions */
 604		memcpy(insn_buff, p->instr, p->len);
 605		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
 
 606
 607		BUG_ON(used > p->len);
 608
 609		/* Pad the rest with nops */
 610		add_nops(insn_buff + used, p->len - used);
 611		text_poke_early(p->instr, insn_buff, p->len);
 612	}
 613}
 614extern struct paravirt_patch_site __start_parainstructions[],
 615	__stop_parainstructions[];
 616#endif	/* CONFIG_PARAVIRT */
 617
 618/*
 619 * Self-test for the INT3 based CALL emulation code.
 620 *
 621 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
 622 * properly and that there is a stack gap between the INT3 frame and the
 623 * previous context. Without this gap doing a virtual PUSH on the interrupted
 624 * stack would corrupt the INT3 IRET frame.
 625 *
 626 * See entry_{32,64}.S for more details.
 627 */
 628
 629/*
 630 * We define the int3_magic() function in assembly to control the calling
 631 * convention such that we can 'call' it from assembly.
 632 */
 633
 634extern void int3_magic(unsigned int *ptr); /* defined in asm */
 635
 636asm (
 637"	.pushsection	.init.text, \"ax\", @progbits\n"
 638"	.type		int3_magic, @function\n"
 639"int3_magic:\n"
 640"	movl	$1, (%" _ASM_ARG1 ")\n"
 641"	ret\n"
 642"	.size		int3_magic, .-int3_magic\n"
 643"	.popsection\n"
 644);
 645
 646extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
 647
 648static int __init
 649int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 650{
 651	struct die_args *args = data;
 652	struct pt_regs *regs = args->regs;
 653
 654	if (!regs || user_mode(regs))
 655		return NOTIFY_DONE;
 656
 657	if (val != DIE_INT3)
 658		return NOTIFY_DONE;
 659
 660	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
 661		return NOTIFY_DONE;
 662
 663	int3_emulate_call(regs, (unsigned long)&int3_magic);
 664	return NOTIFY_STOP;
 665}
 666
 667static void __init int3_selftest(void)
 668{
 669	static __initdata struct notifier_block int3_exception_nb = {
 670		.notifier_call	= int3_exception_notify,
 671		.priority	= INT_MAX-1, /* last */
 672	};
 673	unsigned int val = 0;
 674
 675	BUG_ON(register_die_notifier(&int3_exception_nb));
 676
 677	/*
 678	 * Basically: int3_magic(&val); but really complicated :-)
 679	 *
 680	 * Stick the address of the INT3 instruction into int3_selftest_ip,
 681	 * then trigger the INT3, padded with NOPs to match a CALL instruction
 682	 * length.
 683	 */
 684	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
 685		      ".pushsection .init.data,\"aw\"\n\t"
 686		      ".align " __ASM_SEL(4, 8) "\n\t"
 687		      ".type int3_selftest_ip, @object\n\t"
 688		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
 689		      "int3_selftest_ip:\n\t"
 690		      __ASM_SEL(.long, .quad) " 1b\n\t"
 691		      ".popsection\n\t"
 692		      : ASM_CALL_CONSTRAINT
 693		      : __ASM_SEL_RAW(a, D) (&val)
 694		      : "memory");
 695
 696	BUG_ON(val != 1);
 697
 698	unregister_die_notifier(&int3_exception_nb);
 699}
 700
 701void __init alternative_instructions(void)
 702{
 703	int3_selftest();
 704
 705	/*
 706	 * The patching is not fully atomic, so try to avoid local
 707	 * interruptions that might execute the to be patched code.
 708	 * Other CPUs are not running.
 709	 */
 710	stop_nmi();
 711
 712	/*
 713	 * Don't stop machine check exceptions while patching.
 714	 * MCEs only happen when something got corrupted and in this
 715	 * case we must do something about the corruption.
 716	 * Ignoring it is worse than an unlikely patching race.
 717	 * Also machine checks tend to be broadcast and if one CPU
 718	 * goes into machine check the others follow quickly, so we don't
 719	 * expect a machine check to cause undue problems during to code
 720	 * patching.
 721	 */
 722
 723	apply_alternatives(__alt_instructions, __alt_instructions_end);
 724
 
 
 
 
 
 
 
 
 725#ifdef CONFIG_SMP
 726	/* Patch to UP if other cpus not imminent. */
 727	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 728		uniproc_patched = true;
 
 
 
 
 
 
 
 729		alternatives_smp_module_add(NULL, "core kernel",
 730					    __smp_locks, __smp_locks_end,
 731					    _text, _etext);
 
 
 
 
 732	}
 
 
 733
 734	if (!uniproc_patched || num_possible_cpus() == 1) {
 735		free_init_pages("SMP alternatives",
 736				(unsigned long)__smp_locks,
 737				(unsigned long)__smp_locks_end);
 738	}
 739#endif
 740
 741	apply_paravirt(__parainstructions, __parainstructions_end);
 742
 743	restart_nmi();
 744	alternatives_patched = 1;
 745}
 746
 747/**
 748 * text_poke_early - Update instructions on a live kernel at boot time
 749 * @addr: address to modify
 750 * @opcode: source of the copy
 751 * @len: length to copy
 752 *
 753 * When you use this code to patch more than one byte of an instruction
 754 * you need to make sure that other CPUs cannot execute this code in parallel.
 755 * Also no thread must be currently preempted in the middle of these
 756 * instructions. And on the local CPU you need to be protected against NMI or
 757 * MCE handlers seeing an inconsistent instruction while you patch.
 758 */
 759void __init_or_module text_poke_early(void *addr, const void *opcode,
 760				      size_t len)
 761{
 762	unsigned long flags;
 763
 764	if (boot_cpu_has(X86_FEATURE_NX) &&
 765	    is_module_text_address((unsigned long)addr)) {
 766		/*
 767		 * Modules text is marked initially as non-executable, so the
 768		 * code cannot be running and speculative code-fetches are
 769		 * prevented. Just change the code.
 770		 */
 771		memcpy(addr, opcode, len);
 772	} else {
 773		local_irq_save(flags);
 774		memcpy(addr, opcode, len);
 775		local_irq_restore(flags);
 776		sync_core();
 777
 778		/*
 779		 * Could also do a CLFLUSH here to speed up CPU recovery; but
 780		 * that causes hangs on some VIA CPUs.
 781		 */
 782	}
 783}
 784
 785__ro_after_init struct mm_struct *poking_mm;
 786__ro_after_init unsigned long poking_addr;
 787
 788static void *__text_poke(void *addr, const void *opcode, size_t len)
 789{
 790	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
 791	struct page *pages[2] = {NULL};
 792	temp_mm_state_t prev;
 793	unsigned long flags;
 794	pte_t pte, *ptep;
 795	spinlock_t *ptl;
 796	pgprot_t pgprot;
 797
 798	/*
 799	 * While boot memory allocator is running we cannot use struct pages as
 800	 * they are not yet initialized. There is no way to recover.
 801	 */
 802	BUG_ON(!after_bootmem);
 803
 804	if (!core_kernel_text((unsigned long)addr)) {
 805		pages[0] = vmalloc_to_page(addr);
 806		if (cross_page_boundary)
 807			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 808	} else {
 809		pages[0] = virt_to_page(addr);
 810		WARN_ON(!PageReserved(pages[0]));
 811		if (cross_page_boundary)
 812			pages[1] = virt_to_page(addr + PAGE_SIZE);
 813	}
 814	/*
 815	 * If something went wrong, crash and burn since recovery paths are not
 816	 * implemented.
 817	 */
 818	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
 819
 820	local_irq_save(flags);
 821
 822	/*
 823	 * Map the page without the global bit, as TLB flushing is done with
 824	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
 825	 */
 826	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
 827
 828	/*
 829	 * The lock is not really needed, but this allows to avoid open-coding.
 830	 */
 831	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 832
 833	/*
 834	 * This must not fail; preallocated in poking_init().
 835	 */
 836	VM_BUG_ON(!ptep);
 837
 838	pte = mk_pte(pages[0], pgprot);
 839	set_pte_at(poking_mm, poking_addr, ptep, pte);
 840
 841	if (cross_page_boundary) {
 842		pte = mk_pte(pages[1], pgprot);
 843		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
 844	}
 845
 846	/*
 847	 * Loading the temporary mm behaves as a compiler barrier, which
 848	 * guarantees that the PTE will be set at the time memcpy() is done.
 849	 */
 850	prev = use_temporary_mm(poking_mm);
 851
 852	kasan_disable_current();
 853	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
 854	kasan_enable_current();
 855
 856	/*
 857	 * Ensure that the PTE is only cleared after the instructions of memcpy
 858	 * were issued by using a compiler barrier.
 859	 */
 860	barrier();
 861
 862	pte_clear(poking_mm, poking_addr, ptep);
 863	if (cross_page_boundary)
 864		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
 865
 866	/*
 867	 * Loading the previous page-table hierarchy requires a serializing
 868	 * instruction that already allows the core to see the updated version.
 869	 * Xen-PV is assumed to serialize execution in a similar manner.
 870	 */
 871	unuse_temporary_mm(prev);
 872
 873	/*
 874	 * Flushing the TLB might involve IPIs, which would require enabled
 875	 * IRQs, but not if the mm is not used, as it is in this point.
 876	 */
 877	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
 878			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
 879			   PAGE_SHIFT, false);
 880
 881	/*
 882	 * If the text does not match what we just wrote then something is
 883	 * fundamentally screwy; there's nothing we can really do about that.
 884	 */
 885	BUG_ON(memcmp(addr, opcode, len));
 886
 887	pte_unmap_unlock(ptep, ptl);
 888	local_irq_restore(flags);
 
 
 889	return addr;
 890}
 891
 892/**
 893 * text_poke - Update instructions on a live kernel
 894 * @addr: address to modify
 895 * @opcode: source of the copy
 896 * @len: length to copy
 897 *
 898 * Only atomic text poke/set should be allowed when not doing early patching.
 899 * It means the size must be writable atomically and the address must be aligned
 900 * in a way that permits an atomic write. It also makes sure we fit on a single
 901 * page.
 902 *
 903 * Note that the caller must ensure that if the modified code is part of a
 904 * module, the module would not be removed during poking. This can be achieved
 905 * by registering a module notifier, and ordering module removal and patching
 906 * trough a mutex.
 907 */
 908void *text_poke(void *addr, const void *opcode, size_t len)
 909{
 910	lockdep_assert_held(&text_mutex);
 911
 912	return __text_poke(addr, opcode, len);
 913}
 914
 915/**
 916 * text_poke_kgdb - Update instructions on a live kernel by kgdb
 917 * @addr: address to modify
 918 * @opcode: source of the copy
 919 * @len: length to copy
 920 *
 921 * Only atomic text poke/set should be allowed when not doing early patching.
 922 * It means the size must be writable atomically and the address must be aligned
 923 * in a way that permits an atomic write. It also makes sure we fit on a single
 924 * page.
 925 *
 926 * Context: should only be used by kgdb, which ensures no other core is running,
 927 *	    despite the fact it does not hold the text_mutex.
 928 */
 929void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
 930{
 931	return __text_poke(addr, opcode, len);
 932}
 933
 934static void do_sync_core(void *info)
 935{
 936	sync_core();
 937}
 938
 939static struct bp_patching_desc {
 940	struct text_poke_loc *vec;
 941	int nr_entries;
 942} bp_patching;
 943
 944static int patch_cmp(const void *key, const void *elt)
 945{
 946	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
 947
 948	if (key < tp->addr)
 949		return -1;
 950	if (key > tp->addr)
 951		return 1;
 952	return 0;
 953}
 954NOKPROBE_SYMBOL(patch_cmp);
 955
 956int poke_int3_handler(struct pt_regs *regs)
 957{
 958	struct text_poke_loc *tp;
 959	unsigned char int3 = 0xcc;
 960	void *ip;
 961
 962	/*
 963	 * Having observed our INT3 instruction, we now must observe
 964	 * bp_patching.nr_entries.
 965	 *
 966	 * 	nr_entries != 0			INT3
 967	 * 	WMB				RMB
 968	 * 	write INT3			if (nr_entries)
 969	 *
 970	 * Idem for other elements in bp_patching.
 971	 */
 972	smp_rmb();
 973
 974	if (likely(!bp_patching.nr_entries))
 975		return 0;
 976
 977	if (user_mode(regs))
 978		return 0;
 979
 980	/*
 981	 * Discount the sizeof(int3). See text_poke_bp_batch().
 982	 */
 983	ip = (void *) regs->ip - sizeof(int3);
 984
 985	/*
 986	 * Skip the binary search if there is a single member in the vector.
 987	 */
 988	if (unlikely(bp_patching.nr_entries > 1)) {
 989		tp = bsearch(ip, bp_patching.vec, bp_patching.nr_entries,
 990			     sizeof(struct text_poke_loc),
 991			     patch_cmp);
 992		if (!tp)
 993			return 0;
 994	} else {
 995		tp = bp_patching.vec;
 996		if (tp->addr != ip)
 997			return 0;
 998	}
 999
1000	/* set up the specified breakpoint detour */
1001	regs->ip = (unsigned long) tp->detour;
1002
1003	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1004}
1005NOKPROBE_SYMBOL(poke_int3_handler);
1006
1007/**
1008 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1009 * @tp:			vector of instructions to patch
1010 * @nr_entries:		number of entries in the vector
1011 *
1012 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1013 * We completely avoid stop_machine() here, and achieve the
1014 * synchronization using int3 breakpoint.
1015 *
1016 * The way it is done:
1017 * 	- For each entry in the vector:
1018 *		- add a int3 trap to the address that will be patched
1019 *	- sync cores
1020 *	- For each entry in the vector:
1021 *		- update all but the first byte of the patched range
1022 *	- sync cores
1023 *	- For each entry in the vector:
1024 *		- replace the first byte (int3) by the first byte of
1025 *		  replacing opcode
1026 *	- sync cores
1027 */
1028void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1029{
1030	int patched_all_but_first = 0;
1031	unsigned char int3 = 0xcc;
1032	unsigned int i;
1033
1034	lockdep_assert_held(&text_mutex);
1035
1036	bp_patching.vec = tp;
1037	bp_patching.nr_entries = nr_entries;
1038
1039	/*
1040	 * Corresponding read barrier in int3 notifier for making sure the
1041	 * nr_entries and handler are correctly ordered wrt. patching.
1042	 */
1043	smp_wmb();
1044
1045	/*
1046	 * First step: add a int3 trap to the address that will be patched.
1047	 */
1048	for (i = 0; i < nr_entries; i++)
1049		text_poke(tp[i].addr, &int3, sizeof(int3));
1050
1051	on_each_cpu(do_sync_core, NULL, 1);
 
 
 
 
1052
1053	/*
1054	 * Second step: update all but the first byte of the patched range.
1055	 */
1056	for (i = 0; i < nr_entries; i++) {
1057		if (tp[i].len - sizeof(int3) > 0) {
1058			text_poke((char *)tp[i].addr + sizeof(int3),
1059				  (const char *)tp[i].opcode + sizeof(int3),
1060				  tp[i].len - sizeof(int3));
1061			patched_all_but_first++;
1062		}
 
 
 
 
 
 
1063	}
1064
1065	if (patched_all_but_first) {
1066		/*
1067		 * According to Intel, this core syncing is very likely
1068		 * not necessary and we'd be safe even without it. But
1069		 * better safe than sorry (plus there's not only Intel).
1070		 */
1071		on_each_cpu(do_sync_core, NULL, 1);
1072	}
1073
1074	/*
1075	 * Third step: replace the first byte (int3) by the first byte of
1076	 * replacing opcode.
 
1077	 */
1078	for (i = 0; i < nr_entries; i++)
1079		text_poke(tp[i].addr, tp[i].opcode, sizeof(int3));
 
1080
1081	on_each_cpu(do_sync_core, NULL, 1);
1082	/*
1083	 * sync_core() implies an smp_mb() and orders this store against
1084	 * the writing of the new instruction.
1085	 */
1086	bp_patching.vec = NULL;
1087	bp_patching.nr_entries = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1088}
1089
1090/**
1091 * text_poke_bp() -- update instructions on live kernel on SMP
1092 * @addr:	address to patch
1093 * @opcode:	opcode of new instruction
1094 * @len:	length to copy
1095 * @handler:	address to jump to when the temporary breakpoint is hit
1096 *
1097 * Update a single instruction with the vector in the stack, avoiding
1098 * dynamically allocated memory. This function should be used when it is
1099 * not possible to allocate memory.
 
 
1100 */
1101void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
1102{
1103	struct text_poke_loc tp = {
1104		.detour = handler,
1105		.addr = addr,
1106		.len = len,
1107	};
1108
1109	if (len > POKE_MAX_OPCODE_SIZE) {
1110		WARN_ONCE(1, "len is larger than %d\n", POKE_MAX_OPCODE_SIZE);
1111		return;
1112	}
1113
1114	memcpy((void *)tp.opcode, opcode, len);
1115
1116	text_poke_bp_batch(&tp, 1);
 
 
1117}
v3.1
 
 
 
  1#include <linux/module.h>
  2#include <linux/sched.h>
  3#include <linux/mutex.h>
  4#include <linux/list.h>
  5#include <linux/stringify.h>
  6#include <linux/kprobes.h>
  7#include <linux/mm.h>
  8#include <linux/vmalloc.h>
  9#include <linux/memory.h>
 10#include <linux/stop_machine.h>
 11#include <linux/slab.h>
 
 
 
 
 
 12#include <asm/alternative.h>
 13#include <asm/sections.h>
 14#include <asm/pgtable.h>
 15#include <asm/mce.h>
 16#include <asm/nmi.h>
 17#include <asm/cacheflush.h>
 18#include <asm/tlbflush.h>
 19#include <asm/io.h>
 20#include <asm/fixmap.h>
 21
 22#define MAX_PATCH_LEN (255-1)
 23
 24#ifdef CONFIG_HOTPLUG_CPU
 25static int smp_alt_once;
 26
 27static int __init bootonly(char *str)
 28{
 29	smp_alt_once = 1;
 30	return 1;
 31}
 32__setup("smp-alt-boot", bootonly);
 33#else
 34#define smp_alt_once 1
 35#endif
 36
 37static int __initdata_or_module debug_alternative;
 38
 39static int __init debug_alt(char *str)
 40{
 41	debug_alternative = 1;
 42	return 1;
 43}
 44__setup("debug-alternative", debug_alt);
 45
 46static int noreplace_smp;
 47
 48static int __init setup_noreplace_smp(char *str)
 49{
 50	noreplace_smp = 1;
 51	return 1;
 52}
 53__setup("noreplace-smp", setup_noreplace_smp);
 54
 55#ifdef CONFIG_PARAVIRT
 56static int __initdata_or_module noreplace_paravirt = 0;
 57
 58static int __init setup_noreplace_paravirt(char *str)
 59{
 60	noreplace_paravirt = 1;
 61	return 1;
 62}
 63__setup("noreplace-paravirt", setup_noreplace_paravirt);
 64#endif
 65
 66#define DPRINTK(fmt, args...) if (debug_alternative) \
 67	printk(KERN_DEBUG fmt, args)
 
 
 
 
 
 
 
 68
 69/*
 70 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
 71 * that correspond to that nop. Getting from one nop to the next, we
 72 * add to the array the offset that is equal to the sum of all sizes of
 73 * nops preceding the one we are after.
 74 *
 75 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
 76 * nice symmetry of sizes of the previous nops.
 77 */
 78#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
 79static const unsigned char intelnops[] =
 80{
 81	GENERIC_NOP1,
 82	GENERIC_NOP2,
 83	GENERIC_NOP3,
 84	GENERIC_NOP4,
 85	GENERIC_NOP5,
 86	GENERIC_NOP6,
 87	GENERIC_NOP7,
 88	GENERIC_NOP8,
 89	GENERIC_NOP5_ATOMIC
 90};
 91static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 92{
 93	NULL,
 94	intelnops,
 95	intelnops + 1,
 96	intelnops + 1 + 2,
 97	intelnops + 1 + 2 + 3,
 98	intelnops + 1 + 2 + 3 + 4,
 99	intelnops + 1 + 2 + 3 + 4 + 5,
100	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
101	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
102	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103};
104#endif
105
106#ifdef K8_NOP1
107static const unsigned char k8nops[] =
108{
109	K8_NOP1,
110	K8_NOP2,
111	K8_NOP3,
112	K8_NOP4,
113	K8_NOP5,
114	K8_NOP6,
115	K8_NOP7,
116	K8_NOP8,
117	K8_NOP5_ATOMIC
118};
119static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
120{
121	NULL,
122	k8nops,
123	k8nops + 1,
124	k8nops + 1 + 2,
125	k8nops + 1 + 2 + 3,
126	k8nops + 1 + 2 + 3 + 4,
127	k8nops + 1 + 2 + 3 + 4 + 5,
128	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
129	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
130	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
131};
132#endif
133
134#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
135static const unsigned char k7nops[] =
136{
137	K7_NOP1,
138	K7_NOP2,
139	K7_NOP3,
140	K7_NOP4,
141	K7_NOP5,
142	K7_NOP6,
143	K7_NOP7,
144	K7_NOP8,
145	K7_NOP5_ATOMIC
146};
147static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
148{
149	NULL,
150	k7nops,
151	k7nops + 1,
152	k7nops + 1 + 2,
153	k7nops + 1 + 2 + 3,
154	k7nops + 1 + 2 + 3 + 4,
155	k7nops + 1 + 2 + 3 + 4 + 5,
156	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
157	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
158	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
159};
160#endif
161
162#ifdef P6_NOP1
163static const unsigned char  __initconst_or_module p6nops[] =
164{
165	P6_NOP1,
166	P6_NOP2,
167	P6_NOP3,
168	P6_NOP4,
169	P6_NOP5,
170	P6_NOP6,
171	P6_NOP7,
172	P6_NOP8,
173	P6_NOP5_ATOMIC
174};
175static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
176{
177	NULL,
178	p6nops,
179	p6nops + 1,
180	p6nops + 1 + 2,
181	p6nops + 1 + 2 + 3,
182	p6nops + 1 + 2 + 3 + 4,
183	p6nops + 1 + 2 + 3 + 4 + 5,
184	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
185	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
186	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
187};
188#endif
189
190/* Initialize these to a safe default */
191#ifdef CONFIG_X86_64
192const unsigned char * const *ideal_nops = p6_nops;
193#else
194const unsigned char * const *ideal_nops = intel_nops;
195#endif
196
197void __init arch_init_ideal_nops(void)
198{
199	switch (boot_cpu_data.x86_vendor) {
200	case X86_VENDOR_INTEL:
201		/*
202		 * Due to a decoder implementation quirk, some
203		 * specific Intel CPUs actually perform better with
204		 * the "k8_nops" than with the SDM-recommended NOPs.
205		 */
206		if (boot_cpu_data.x86 == 6 &&
207		    boot_cpu_data.x86_model >= 0x0f &&
208		    boot_cpu_data.x86_model != 0x1c &&
209		    boot_cpu_data.x86_model != 0x26 &&
210		    boot_cpu_data.x86_model != 0x27 &&
211		    boot_cpu_data.x86_model < 0x30) {
212			ideal_nops = k8_nops;
213		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
214			   ideal_nops = p6_nops;
215		} else {
216#ifdef CONFIG_X86_64
217			ideal_nops = k8_nops;
218#else
219			ideal_nops = intel_nops;
220#endif
221		}
 
 
 
 
 
 
 
 
 
 
 
 
 
222
223	default:
224#ifdef CONFIG_X86_64
225		ideal_nops = k8_nops;
226#else
227		if (boot_cpu_has(X86_FEATURE_K8))
228			ideal_nops = k8_nops;
229		else if (boot_cpu_has(X86_FEATURE_K7))
230			ideal_nops = k7_nops;
231		else
232			ideal_nops = intel_nops;
233#endif
234	}
235}
236
237/* Use this to add nops to a buffer, then text_poke the whole buffer. */
238static void __init_or_module add_nops(void *insns, unsigned int len)
239{
240	while (len > 0) {
241		unsigned int noplen = len;
242		if (noplen > ASM_NOP_MAX)
243			noplen = ASM_NOP_MAX;
244		memcpy(insns, ideal_nops[noplen], noplen);
245		insns += noplen;
246		len -= noplen;
247	}
248}
249
250extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
251extern s32 __smp_locks[], __smp_locks_end[];
252void *text_poke_early(void *addr, const void *opcode, size_t len);
253
254/* Replace instructions with better alternatives for this CPU type.
255   This runs before SMP is initialized to avoid SMP problems with
256   self modifying code. This implies that asymmetric systems where
257   APs have less capabilities than the boot processor are not handled.
258   Tough. Make sure you disable such features by hand. */
 
 
259
260void __init_or_module apply_alternatives(struct alt_instr *start,
261					 struct alt_instr *end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262{
263	struct alt_instr *a;
264	u8 *instr, *replacement;
265	u8 insnbuf[MAX_PATCH_LEN];
266
267	DPRINTK("%s: alt table %p -> %p\n", __func__, start, end);
268	/*
269	 * The scan order should be from start to end. A later scanned
270	 * alternative code can overwrite a previous scanned alternative code.
271	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
272	 * patch code.
273	 *
274	 * So be careful if you want to change the scan order to any other
275	 * order.
276	 */
277	for (a = start; a < end; a++) {
 
 
278		instr = (u8 *)&a->instr_offset + a->instr_offset;
279		replacement = (u8 *)&a->repl_offset + a->repl_offset;
280		BUG_ON(a->replacementlen > a->instrlen);
281		BUG_ON(a->instrlen > sizeof(insnbuf));
282		BUG_ON(a->cpuid >= NCAPINTS*32);
283		if (!boot_cpu_has(a->cpuid))
 
 
284			continue;
 
 
 
 
 
 
 
 
 
 
285
286		memcpy(insnbuf, replacement, a->replacementlen);
 
287
288		/* 0xe8 is a relative jump; fix the offset. */
289		if (*insnbuf == 0xe8 && a->replacementlen == 5)
290		    *(s32 *)(insnbuf + 1) += replacement - instr;
 
 
 
 
 
 
 
 
 
291
292		add_nops(insnbuf + a->replacementlen,
293			 a->instrlen - a->replacementlen);
 
 
 
 
 
 
 
294
295		text_poke_early(instr, insnbuf, a->instrlen);
296	}
297}
298
299#ifdef CONFIG_SMP
300
301static void alternatives_smp_lock(const s32 *start, const s32 *end,
302				  u8 *text, u8 *text_end)
303{
304	const s32 *poff;
305
306	mutex_lock(&text_mutex);
307	for (poff = start; poff < end; poff++) {
308		u8 *ptr = (u8 *)poff + *poff;
309
310		if (!*poff || ptr < text || ptr >= text_end)
311			continue;
312		/* turn DS segment override prefix into lock prefix */
313		if (*ptr == 0x3e)
314			text_poke(ptr, ((unsigned char []){0xf0}), 1);
315	};
316	mutex_unlock(&text_mutex);
317}
318
319static void alternatives_smp_unlock(const s32 *start, const s32 *end,
320				    u8 *text, u8 *text_end)
321{
322	const s32 *poff;
323
324	if (noreplace_smp)
325		return;
326
327	mutex_lock(&text_mutex);
328	for (poff = start; poff < end; poff++) {
329		u8 *ptr = (u8 *)poff + *poff;
330
331		if (!*poff || ptr < text || ptr >= text_end)
332			continue;
333		/* turn lock prefix into DS segment override prefix */
334		if (*ptr == 0xf0)
335			text_poke(ptr, ((unsigned char []){0x3E}), 1);
336	};
337	mutex_unlock(&text_mutex);
338}
339
340struct smp_alt_module {
341	/* what is this ??? */
342	struct module	*mod;
343	char		*name;
344
345	/* ptrs to lock prefixes */
346	const s32	*locks;
347	const s32	*locks_end;
348
349	/* .text segment, needed to avoid patching init code ;) */
350	u8		*text;
351	u8		*text_end;
352
353	struct list_head next;
354};
355static LIST_HEAD(smp_alt_modules);
356static DEFINE_MUTEX(smp_alt);
357static int smp_mode = 1;	/* protected by smp_alt */
358
359void __init_or_module alternatives_smp_module_add(struct module *mod,
360						  char *name,
361						  void *locks, void *locks_end,
362						  void *text,  void *text_end)
363{
364	struct smp_alt_module *smp;
365
366	if (noreplace_smp)
367		return;
 
368
369	if (smp_alt_once) {
370		if (boot_cpu_has(X86_FEATURE_UP))
371			alternatives_smp_unlock(locks, locks_end,
372						text, text_end);
373		return;
374	}
375
376	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
377	if (NULL == smp)
378		return; /* we'll run the (safe but slow) SMP code then ... */
 
379
380	smp->mod	= mod;
381	smp->name	= name;
382	smp->locks	= locks;
383	smp->locks_end	= locks_end;
384	smp->text	= text;
385	smp->text_end	= text_end;
386	DPRINTK("%s: locks %p -> %p, text %p -> %p, name %s\n",
387		__func__, smp->locks, smp->locks_end,
388		smp->text, smp->text_end, smp->name);
389
390	mutex_lock(&smp_alt);
391	list_add_tail(&smp->next, &smp_alt_modules);
392	if (boot_cpu_has(X86_FEATURE_UP))
393		alternatives_smp_unlock(smp->locks, smp->locks_end,
394					smp->text, smp->text_end);
395	mutex_unlock(&smp_alt);
396}
397
398void __init_or_module alternatives_smp_module_del(struct module *mod)
399{
400	struct smp_alt_module *item;
401
402	if (smp_alt_once || noreplace_smp)
403		return;
404
405	mutex_lock(&smp_alt);
406	list_for_each_entry(item, &smp_alt_modules, next) {
407		if (mod != item->mod)
408			continue;
409		list_del(&item->next);
410		mutex_unlock(&smp_alt);
411		DPRINTK("%s: %s\n", __func__, item->name);
412		kfree(item);
413		return;
414	}
415	mutex_unlock(&smp_alt);
416}
417
418bool skip_smp_alternatives;
419void alternatives_smp_switch(int smp)
420{
421	struct smp_alt_module *mod;
422
423#ifdef CONFIG_LOCKDEP
424	/*
425	 * Older binutils section handling bug prevented
426	 * alternatives-replacement from working reliably.
427	 *
428	 * If this still occurs then you should see a hang
429	 * or crash shortly after this line:
430	 */
431	printk("lockdep: fixing up alternatives.\n");
432#endif
433
434	if (noreplace_smp || smp_alt_once || skip_smp_alternatives)
435		return;
436	BUG_ON(!smp && (num_online_cpus() > 1));
437
438	mutex_lock(&smp_alt);
439
440	/*
441	 * Avoid unnecessary switches because it forces JIT based VMs to
442	 * throw away all cached translations, which can be quite costly.
443	 */
444	if (smp == smp_mode) {
445		/* nothing */
446	} else if (smp) {
447		printk(KERN_INFO "SMP alternatives: switching to SMP code\n");
448		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
449		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
450		list_for_each_entry(mod, &smp_alt_modules, next)
451			alternatives_smp_lock(mod->locks, mod->locks_end,
452					      mod->text, mod->text_end);
453	} else {
454		printk(KERN_INFO "SMP alternatives: switching to UP code\n");
455		set_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
456		set_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
457		list_for_each_entry(mod, &smp_alt_modules, next)
458			alternatives_smp_unlock(mod->locks, mod->locks_end,
459						mod->text, mod->text_end);
460	}
461	smp_mode = smp;
462	mutex_unlock(&smp_alt);
463}
464
465/* Return 1 if the address range is reserved for smp-alternatives */
 
 
 
466int alternatives_text_reserved(void *start, void *end)
467{
468	struct smp_alt_module *mod;
469	const s32 *poff;
470	u8 *text_start = start;
471	u8 *text_end = end;
472
 
 
473	list_for_each_entry(mod, &smp_alt_modules, next) {
474		if (mod->text > text_end || mod->text_end < text_start)
475			continue;
476		for (poff = mod->locks; poff < mod->locks_end; poff++) {
477			const u8 *ptr = (const u8 *)poff + *poff;
478
479			if (text_start <= ptr && text_end > ptr)
480				return 1;
481		}
482	}
483
484	return 0;
485}
486#endif
487
488#ifdef CONFIG_PARAVIRT
489void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
490				     struct paravirt_patch_site *end)
491{
492	struct paravirt_patch_site *p;
493	char insnbuf[MAX_PATCH_LEN];
494
495	if (noreplace_paravirt)
496		return;
497
498	for (p = start; p < end; p++) {
499		unsigned int used;
500
501		BUG_ON(p->len > MAX_PATCH_LEN);
502		/* prep the buffer with the original instructions */
503		memcpy(insnbuf, p->instr, p->len);
504		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
505					 (unsigned long)p->instr, p->len);
506
507		BUG_ON(used > p->len);
508
509		/* Pad the rest with nops */
510		add_nops(insnbuf + used, p->len - used);
511		text_poke_early(p->instr, insnbuf, p->len);
512	}
513}
514extern struct paravirt_patch_site __start_parainstructions[],
515	__stop_parainstructions[];
516#endif	/* CONFIG_PARAVIRT */
517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518void __init alternative_instructions(void)
519{
520	/* The patching is not fully atomic, so try to avoid local interruptions
521	   that might execute the to be patched code.
522	   Other CPUs are not running. */
 
 
 
 
523	stop_nmi();
524
525	/*
526	 * Don't stop machine check exceptions while patching.
527	 * MCEs only happen when something got corrupted and in this
528	 * case we must do something about the corruption.
529	 * Ignoring it is worse than a unlikely patching race.
530	 * Also machine checks tend to be broadcast and if one CPU
531	 * goes into machine check the others follow quickly, so we don't
532	 * expect a machine check to cause undue problems during to code
533	 * patching.
534	 */
535
536	apply_alternatives(__alt_instructions, __alt_instructions_end);
537
538	/* switch to patch-once-at-boottime-only mode and free the
539	 * tables in case we know the number of CPUs will never ever
540	 * change */
541#ifdef CONFIG_HOTPLUG_CPU
542	if (num_possible_cpus() < 2)
543		smp_alt_once = 1;
544#endif
545
546#ifdef CONFIG_SMP
547	if (smp_alt_once) {
548		if (1 == num_possible_cpus()) {
549			printk(KERN_INFO "SMP alternatives: switching to UP code\n");
550			set_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
551			set_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
552
553			alternatives_smp_unlock(__smp_locks, __smp_locks_end,
554						_text, _etext);
555		}
556	} else {
557		alternatives_smp_module_add(NULL, "core kernel",
558					    __smp_locks, __smp_locks_end,
559					    _text, _etext);
560
561		/* Only switch to UP mode if we don't immediately boot others */
562		if (num_present_cpus() == 1 || setup_max_cpus <= 1)
563			alternatives_smp_switch(0);
564	}
565#endif
566 	apply_paravirt(__parainstructions, __parainstructions_end);
567
568	if (smp_alt_once)
569		free_init_pages("SMP alternatives",
570				(unsigned long)__smp_locks,
571				(unsigned long)__smp_locks_end);
 
 
 
 
572
573	restart_nmi();
 
574}
575
576/**
577 * text_poke_early - Update instructions on a live kernel at boot time
578 * @addr: address to modify
579 * @opcode: source of the copy
580 * @len: length to copy
581 *
582 * When you use this code to patch more than one byte of an instruction
583 * you need to make sure that other CPUs cannot execute this code in parallel.
584 * Also no thread must be currently preempted in the middle of these
585 * instructions. And on the local CPU you need to be protected again NMI or MCE
586 * handlers seeing an inconsistent instruction while you patch.
587 */
588void *__init_or_module text_poke_early(void *addr, const void *opcode,
589					      size_t len)
590{
591	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592	local_irq_save(flags);
593	memcpy(addr, opcode, len);
594	sync_core();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595	local_irq_restore(flags);
596	/* Could also do a CLFLUSH here to speed up CPU recovery; but
597	   that causes hangs on some VIA CPUs. */
598	return addr;
599}
600
601/**
602 * text_poke - Update instructions on a live kernel
603 * @addr: address to modify
604 * @opcode: source of the copy
605 * @len: length to copy
606 *
607 * Only atomic text poke/set should be allowed when not doing early patching.
608 * It means the size must be writable atomically and the address must be aligned
609 * in a way that permits an atomic write. It also makes sure we fit on a single
610 * page.
611 *
612 * Note: Must be called under text_mutex.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613 */
614void *__kprobes text_poke(void *addr, const void *opcode, size_t len)
615{
616	unsigned long flags;
617	char *vaddr;
618	struct page *pages[2];
619	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620
621	if (!core_kernel_text((unsigned long)addr)) {
622		pages[0] = vmalloc_to_page(addr);
623		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 
 
 
 
 
 
624	} else {
625		pages[0] = virt_to_page(addr);
626		WARN_ON(!PageReserved(pages[0]));
627		pages[1] = virt_to_page(addr + PAGE_SIZE);
628	}
629	BUG_ON(!pages[0]);
630	local_irq_save(flags);
631	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
632	if (pages[1])
633		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
634	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
635	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
636	clear_fixmap(FIX_TEXT_POKE0);
637	if (pages[1])
638		clear_fixmap(FIX_TEXT_POKE1);
639	local_flush_tlb();
640	sync_core();
641	/* Could also do a CLFLUSH here to speed up CPU recovery; but
642	   that causes hangs on some VIA CPUs. */
643	for (i = 0; i < len; i++)
644		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
645	local_irq_restore(flags);
646	return addr;
647}
 
648
649/*
650 * Cross-modifying kernel text with stop_machine().
651 * This code originally comes from immediate value.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652 */
653static atomic_t stop_machine_first;
654static int wrote_text;
 
 
 
 
 
655
656struct text_poke_params {
657	struct text_poke_param *params;
658	int nparams;
659};
 
 
 
 
 
 
 
 
 
 
660
661static int __kprobes stop_machine_text_poke(void *data)
662{
663	struct text_poke_params *tpp = data;
664	struct text_poke_param *p;
665	int i;
666
667	if (atomic_dec_and_test(&stop_machine_first)) {
668		for (i = 0; i < tpp->nparams; i++) {
669			p = &tpp->params[i];
670			text_poke(p->addr, p->opcode, p->len);
 
 
 
 
 
671		}
672		smp_wmb();	/* Make sure other cpus see that this has run */
673		wrote_text = 1;
674	} else {
675		while (!wrote_text)
676			cpu_relax();
677		smp_mb();	/* Load wrote_text before following execution */
678	}
679
680	for (i = 0; i < tpp->nparams; i++) {
681		p = &tpp->params[i];
682		flush_icache_range((unsigned long)p->addr,
683				   (unsigned long)p->addr + p->len);
 
 
 
684	}
 
685	/*
686	 * Intel Archiecture Software Developer's Manual section 7.1.3 specifies
687	 * that a core serializing instruction such as "cpuid" should be
688	 * executed on _each_ core before the new instruction is made visible.
689	 */
690	sync_core();
691	return 0;
692}
693
694/**
695 * text_poke_smp - Update instructions on a live kernel on SMP
696 * @addr: address to modify
697 * @opcode: source of the copy
698 * @len: length to copy
699 *
700 * Modify multi-byte instruction by using stop_machine() on SMP. This allows
701 * user to poke/set multi-byte text on SMP. Only non-NMI/MCE code modifying
702 * should be allowed, since stop_machine() does _not_ protect code against
703 * NMI and MCE.
704 *
705 * Note: Must be called under get_online_cpus() and text_mutex.
706 */
707void *__kprobes text_poke_smp(void *addr, const void *opcode, size_t len)
708{
709	struct text_poke_params tpp;
710	struct text_poke_param p;
711
712	p.addr = addr;
713	p.opcode = opcode;
714	p.len = len;
715	tpp.params = &p;
716	tpp.nparams = 1;
717	atomic_set(&stop_machine_first, 1);
718	wrote_text = 0;
719	/* Use __stop_machine() because the caller already got online_cpus. */
720	__stop_machine(stop_machine_text_poke, (void *)&tpp, cpu_online_mask);
721	return addr;
722}
723
724/**
725 * text_poke_smp_batch - Update instructions on a live kernel on SMP
726 * @params: an array of text_poke parameters
727 * @n: the number of elements in params.
 
 
728 *
729 * Modify multi-byte instruction by using stop_machine() on SMP. Since the
730 * stop_machine() is heavy task, it is better to aggregate text_poke requests
731 * and do it once if possible.
732 *
733 * Note: Must be called under get_online_cpus() and text_mutex.
734 */
735void __kprobes text_poke_smp_batch(struct text_poke_param *params, int n)
736{
737	struct text_poke_params tpp = {.params = params, .nparams = n};
 
 
 
 
 
 
 
 
 
 
 
738
739	atomic_set(&stop_machine_first, 1);
740	wrote_text = 0;
741	__stop_machine(stop_machine_text_poke, (void *)&tpp, NULL);
742}