Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/mutex.h>
   7#include <linux/list.h>
   8#include <linux/stringify.h>
 
   9#include <linux/mm.h>
  10#include <linux/vmalloc.h>
  11#include <linux/memory.h>
  12#include <linux/stop_machine.h>
  13#include <linux/slab.h>
  14#include <linux/kdebug.h>
  15#include <linux/kprobes.h>
  16#include <linux/mmu_context.h>
  17#include <linux/bsearch.h>
  18#include <asm/text-patching.h>
  19#include <asm/alternative.h>
  20#include <asm/sections.h>
  21#include <asm/pgtable.h>
  22#include <asm/mce.h>
  23#include <asm/nmi.h>
  24#include <asm/cacheflush.h>
  25#include <asm/tlbflush.h>
  26#include <asm/io.h>
  27#include <asm/fixmap.h>
  28
  29int __read_mostly alternatives_patched;
  30
  31EXPORT_SYMBOL_GPL(alternatives_patched);
  32
  33#define MAX_PATCH_LEN (255-1)
  34
  35static int __initdata_or_module debug_alternative;
  36
  37static int __init debug_alt(char *str)
  38{
  39	debug_alternative = 1;
  40	return 1;
  41}
  42__setup("debug-alternative", debug_alt);
  43
  44static int noreplace_smp;
  45
  46static int __init setup_noreplace_smp(char *str)
  47{
  48	noreplace_smp = 1;
  49	return 1;
  50}
  51__setup("noreplace-smp", setup_noreplace_smp);
  52
  53#define DPRINTK(fmt, args...)						\
  54do {									\
  55	if (debug_alternative)						\
  56		printk(KERN_DEBUG "%s: " fmt "\n", __func__, ##args);	\
  57} while (0)
 
 
 
 
 
  58
  59#define DUMP_BYTES(buf, len, fmt, args...)				\
  60do {									\
  61	if (unlikely(debug_alternative)) {				\
  62		int j;							\
  63									\
  64		if (!(len))						\
  65			break;						\
  66									\
  67		printk(KERN_DEBUG fmt, ##args);				\
  68		for (j = 0; j < (len) - 1; j++)				\
  69			printk(KERN_CONT "%02hhx ", buf[j]);		\
  70		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  71	}								\
  72} while (0)
  73
  74/*
  75 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
  76 * that correspond to that nop. Getting from one nop to the next, we
  77 * add to the array the offset that is equal to the sum of all sizes of
  78 * nops preceding the one we are after.
  79 *
  80 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
  81 * nice symmetry of sizes of the previous nops.
  82 */
  83#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
  84static const unsigned char intelnops[] =
  85{
  86	GENERIC_NOP1,
  87	GENERIC_NOP2,
  88	GENERIC_NOP3,
  89	GENERIC_NOP4,
  90	GENERIC_NOP5,
  91	GENERIC_NOP6,
  92	GENERIC_NOP7,
  93	GENERIC_NOP8,
  94	GENERIC_NOP5_ATOMIC
  95};
  96static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
  97{
  98	NULL,
  99	intelnops,
 100	intelnops + 1,
 101	intelnops + 1 + 2,
 102	intelnops + 1 + 2 + 3,
 103	intelnops + 1 + 2 + 3 + 4,
 104	intelnops + 1 + 2 + 3 + 4 + 5,
 105	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
 106	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 107	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 108};
 109#endif
 110
 111#ifdef K8_NOP1
 112static const unsigned char k8nops[] =
 113{
 114	K8_NOP1,
 115	K8_NOP2,
 116	K8_NOP3,
 117	K8_NOP4,
 118	K8_NOP5,
 119	K8_NOP6,
 120	K8_NOP7,
 121	K8_NOP8,
 122	K8_NOP5_ATOMIC
 123};
 124static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
 125{
 126	NULL,
 127	k8nops,
 128	k8nops + 1,
 129	k8nops + 1 + 2,
 130	k8nops + 1 + 2 + 3,
 131	k8nops + 1 + 2 + 3 + 4,
 132	k8nops + 1 + 2 + 3 + 4 + 5,
 133	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
 134	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 135	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 136};
 137#endif
 138
 139#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
 140static const unsigned char k7nops[] =
 141{
 142	K7_NOP1,
 143	K7_NOP2,
 144	K7_NOP3,
 145	K7_NOP4,
 146	K7_NOP5,
 147	K7_NOP6,
 148	K7_NOP7,
 149	K7_NOP8,
 150	K7_NOP5_ATOMIC
 151};
 152static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
 153{
 154	NULL,
 155	k7nops,
 156	k7nops + 1,
 157	k7nops + 1 + 2,
 158	k7nops + 1 + 2 + 3,
 159	k7nops + 1 + 2 + 3 + 4,
 160	k7nops + 1 + 2 + 3 + 4 + 5,
 161	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
 162	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 163	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 164};
 165#endif
 166
 167#ifdef P6_NOP1
 168static const unsigned char p6nops[] =
 169{
 170	P6_NOP1,
 171	P6_NOP2,
 172	P6_NOP3,
 173	P6_NOP4,
 174	P6_NOP5,
 175	P6_NOP6,
 176	P6_NOP7,
 177	P6_NOP8,
 178	P6_NOP5_ATOMIC
 179};
 180static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
 181{
 182	NULL,
 183	p6nops,
 184	p6nops + 1,
 185	p6nops + 1 + 2,
 186	p6nops + 1 + 2 + 3,
 187	p6nops + 1 + 2 + 3 + 4,
 188	p6nops + 1 + 2 + 3 + 4 + 5,
 189	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
 190	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 191	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 192};
 193#endif
 194
 195/* Initialize these to a safe default */
 196#ifdef CONFIG_X86_64
 197const unsigned char * const *ideal_nops = p6_nops;
 198#else
 199const unsigned char * const *ideal_nops = intel_nops;
 200#endif
 201
 202void __init arch_init_ideal_nops(void)
 203{
 204	switch (boot_cpu_data.x86_vendor) {
 205	case X86_VENDOR_INTEL:
 206		/*
 207		 * Due to a decoder implementation quirk, some
 208		 * specific Intel CPUs actually perform better with
 209		 * the "k8_nops" than with the SDM-recommended NOPs.
 210		 */
 211		if (boot_cpu_data.x86 == 6 &&
 212		    boot_cpu_data.x86_model >= 0x0f &&
 213		    boot_cpu_data.x86_model != 0x1c &&
 214		    boot_cpu_data.x86_model != 0x26 &&
 215		    boot_cpu_data.x86_model != 0x27 &&
 216		    boot_cpu_data.x86_model < 0x30) {
 217			ideal_nops = k8_nops;
 218		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
 219			   ideal_nops = p6_nops;
 220		} else {
 221#ifdef CONFIG_X86_64
 222			ideal_nops = k8_nops;
 223#else
 224			ideal_nops = intel_nops;
 225#endif
 226		}
 227		break;
 228
 229	case X86_VENDOR_HYGON:
 230		ideal_nops = p6_nops;
 231		return;
 232
 233	case X86_VENDOR_AMD:
 234		if (boot_cpu_data.x86 > 0xf) {
 235			ideal_nops = p6_nops;
 236			return;
 237		}
 238
 239		/* fall through */
 240
 241	default:
 242#ifdef CONFIG_X86_64
 243		ideal_nops = k8_nops;
 244#else
 245		if (boot_cpu_has(X86_FEATURE_K8))
 246			ideal_nops = k8_nops;
 247		else if (boot_cpu_has(X86_FEATURE_K7))
 248			ideal_nops = k7_nops;
 249		else
 250			ideal_nops = intel_nops;
 251#endif
 252	}
 253}
 254
 255/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 256static void __init_or_module add_nops(void *insns, unsigned int len)
 257{
 258	while (len > 0) {
 259		unsigned int noplen = len;
 260		if (noplen > ASM_NOP_MAX)
 261			noplen = ASM_NOP_MAX;
 262		memcpy(insns, ideal_nops[noplen], noplen);
 263		insns += noplen;
 264		len -= noplen;
 265	}
 266}
 267
 268extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 269extern s32 __smp_locks[], __smp_locks_end[];
 270void text_poke_early(void *addr, const void *opcode, size_t len);
 271
 272/*
 273 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 274 */
 275static inline bool is_jmp(const u8 opcode)
 276{
 277	return opcode == 0xeb || opcode == 0xe9;
 278}
 279
 280static void __init_or_module
 281recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 282{
 283	u8 *next_rip, *tgt_rip;
 284	s32 n_dspl, o_dspl;
 285	int repl_len;
 286
 287	if (a->replacementlen != 5)
 288		return;
 289
 290	o_dspl = *(s32 *)(insn_buff + 1);
 291
 292	/* next_rip of the replacement JMP */
 293	next_rip = repl_insn + a->replacementlen;
 294	/* target rip of the replacement JMP */
 295	tgt_rip  = next_rip + o_dspl;
 296	n_dspl = tgt_rip - orig_insn;
 297
 298	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 299
 300	if (tgt_rip - orig_insn >= 0) {
 301		if (n_dspl - 2 <= 127)
 302			goto two_byte_jmp;
 303		else
 304			goto five_byte_jmp;
 305	/* negative offset */
 306	} else {
 307		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 308			goto two_byte_jmp;
 309		else
 310			goto five_byte_jmp;
 311	}
 312
 313two_byte_jmp:
 314	n_dspl -= 2;
 315
 316	insn_buff[0] = 0xeb;
 317	insn_buff[1] = (s8)n_dspl;
 318	add_nops(insn_buff + 2, 3);
 319
 320	repl_len = 2;
 321	goto done;
 322
 323five_byte_jmp:
 324	n_dspl -= 5;
 325
 326	insn_buff[0] = 0xe9;
 327	*(s32 *)&insn_buff[1] = n_dspl;
 328
 329	repl_len = 5;
 330
 331done:
 332
 333	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 334		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 335}
 336
 337/*
 338 * "noinline" to cause control flow change and thus invalidate I$ and
 339 * cause refetch after modification.
 340 */
 341static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
 342{
 343	unsigned long flags;
 344	int i;
 345
 346	for (i = 0; i < a->padlen; i++) {
 347		if (instr[i] != 0x90)
 348			return;
 349	}
 350
 351	local_irq_save(flags);
 352	add_nops(instr + (a->instrlen - a->padlen), a->padlen);
 353	local_irq_restore(flags);
 354
 355	DUMP_BYTES(instr, a->instrlen, "%px: [%d:%d) optimized NOPs: ",
 356		   instr, a->instrlen - a->padlen, a->padlen);
 357}
 358
 359/*
 360 * Replace instructions with better alternatives for this CPU type. This runs
 361 * before SMP is initialized to avoid SMP problems with self modifying code.
 362 * This implies that asymmetric systems where APs have less capabilities than
 363 * the boot processor are not handled. Tough. Make sure you disable such
 364 * features by hand.
 365 *
 366 * Marked "noinline" to cause control flow change and thus insn cache
 367 * to refetch changed I$ lines.
 368 */
 369void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 370						  struct alt_instr *end)
 371{
 372	struct alt_instr *a;
 373	u8 *instr, *replacement;
 374	u8 insn_buff[MAX_PATCH_LEN];
 375
 376	DPRINTK("alt table %px, -> %px", start, end);
 377	/*
 378	 * The scan order should be from start to end. A later scanned
 379	 * alternative code can overwrite previously scanned alternative code.
 380	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 381	 * patch code.
 382	 *
 383	 * So be careful if you want to change the scan order to any other
 384	 * order.
 385	 */
 386	for (a = start; a < end; a++) {
 387		int insn_buff_sz = 0;
 388
 389		instr = (u8 *)&a->instr_offset + a->instr_offset;
 390		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 391		BUG_ON(a->instrlen > sizeof(insn_buff));
 
 392		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
 393		if (!boot_cpu_has(a->cpuid)) {
 394			if (a->padlen > 1)
 395				optimize_nops(a, instr);
 396
 397			continue;
 398		}
 399
 400		DPRINTK("feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d), pad: %d",
 401			a->cpuid >> 5,
 402			a->cpuid & 0x1f,
 403			instr, instr, a->instrlen,
 404			replacement, a->replacementlen, a->padlen);
 405
 406		DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
 407		DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
 408
 409		memcpy(insn_buff, replacement, a->replacementlen);
 410		insn_buff_sz = a->replacementlen;
 411
 412		/*
 413		 * 0xe8 is a relative jump; fix the offset.
 414		 *
 415		 * Instruction length is checked before the opcode to avoid
 416		 * accessing uninitialized bytes for zero-length replacements.
 417		 */
 418		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 419			*(s32 *)(insn_buff + 1) += replacement - instr;
 420			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 421				*(s32 *)(insn_buff + 1),
 422				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 423		}
 424
 425		if (a->replacementlen && is_jmp(replacement[0]))
 426			recompute_jump(a, instr, replacement, insn_buff);
 
 427
 428		if (a->instrlen > a->replacementlen) {
 429			add_nops(insn_buff + a->replacementlen,
 430				 a->instrlen - a->replacementlen);
 431			insn_buff_sz += a->instrlen - a->replacementlen;
 432		}
 433		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 434
 435		text_poke_early(instr, insn_buff, insn_buff_sz);
 436	}
 437}
 438
 439#ifdef CONFIG_SMP
 
 440static void alternatives_smp_lock(const s32 *start, const s32 *end,
 441				  u8 *text, u8 *text_end)
 442{
 443	const s32 *poff;
 444
 
 445	for (poff = start; poff < end; poff++) {
 446		u8 *ptr = (u8 *)poff + *poff;
 447
 448		if (!*poff || ptr < text || ptr >= text_end)
 449			continue;
 450		/* turn DS segment override prefix into lock prefix */
 451		if (*ptr == 0x3e)
 452			text_poke(ptr, ((unsigned char []){0xf0}), 1);
 453	}
 
 454}
 455
 456static void alternatives_smp_unlock(const s32 *start, const s32 *end,
 457				    u8 *text, u8 *text_end)
 458{
 459	const s32 *poff;
 460
 
 461	for (poff = start; poff < end; poff++) {
 462		u8 *ptr = (u8 *)poff + *poff;
 463
 464		if (!*poff || ptr < text || ptr >= text_end)
 465			continue;
 466		/* turn lock prefix into DS segment override prefix */
 467		if (*ptr == 0xf0)
 468			text_poke(ptr, ((unsigned char []){0x3E}), 1);
 469	}
 
 470}
 471
 472struct smp_alt_module {
 473	/* what is this ??? */
 474	struct module	*mod;
 475	char		*name;
 476
 477	/* ptrs to lock prefixes */
 478	const s32	*locks;
 479	const s32	*locks_end;
 480
 481	/* .text segment, needed to avoid patching init code ;) */
 482	u8		*text;
 483	u8		*text_end;
 484
 485	struct list_head next;
 486};
 487static LIST_HEAD(smp_alt_modules);
 488static bool uniproc_patched = false;	/* protected by text_mutex */
 
 489
 490void __init_or_module alternatives_smp_module_add(struct module *mod,
 491						  char *name,
 492						  void *locks, void *locks_end,
 493						  void *text,  void *text_end)
 494{
 495	struct smp_alt_module *smp;
 496
 497	mutex_lock(&text_mutex);
 498	if (!uniproc_patched)
 499		goto unlock;
 500
 501	if (num_possible_cpus() == 1)
 502		/* Don't bother remembering, we'll never have to undo it. */
 503		goto smp_unlock;
 504
 505	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
 506	if (NULL == smp)
 507		/* we'll run the (safe but slow) SMP code then ... */
 508		goto unlock;
 509
 510	smp->mod	= mod;
 511	smp->name	= name;
 512	smp->locks	= locks;
 513	smp->locks_end	= locks_end;
 514	smp->text	= text;
 515	smp->text_end	= text_end;
 516	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
 517		smp->locks, smp->locks_end,
 518		smp->text, smp->text_end, smp->name);
 519
 520	list_add_tail(&smp->next, &smp_alt_modules);
 521smp_unlock:
 522	alternatives_smp_unlock(locks, locks_end, text, text_end);
 523unlock:
 524	mutex_unlock(&text_mutex);
 525}
 526
 527void __init_or_module alternatives_smp_module_del(struct module *mod)
 528{
 529	struct smp_alt_module *item;
 530
 531	mutex_lock(&text_mutex);
 532	list_for_each_entry(item, &smp_alt_modules, next) {
 533		if (mod != item->mod)
 534			continue;
 535		list_del(&item->next);
 536		kfree(item);
 537		break;
 538	}
 539	mutex_unlock(&text_mutex);
 540}
 541
 542void alternatives_enable_smp(void)
 543{
 544	struct smp_alt_module *mod;
 545
 546	/* Why bother if there are no other CPUs? */
 547	BUG_ON(num_possible_cpus() == 1);
 548
 549	mutex_lock(&text_mutex);
 550
 551	if (uniproc_patched) {
 552		pr_info("switching to SMP code\n");
 553		BUG_ON(num_online_cpus() != 1);
 554		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
 555		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
 556		list_for_each_entry(mod, &smp_alt_modules, next)
 557			alternatives_smp_lock(mod->locks, mod->locks_end,
 558					      mod->text, mod->text_end);
 559		uniproc_patched = false;
 560	}
 561	mutex_unlock(&text_mutex);
 562}
 563
 564/*
 565 * Return 1 if the address range is reserved for SMP-alternatives.
 566 * Must hold text_mutex.
 567 */
 568int alternatives_text_reserved(void *start, void *end)
 569{
 570	struct smp_alt_module *mod;
 571	const s32 *poff;
 572	u8 *text_start = start;
 573	u8 *text_end = end;
 574
 575	lockdep_assert_held(&text_mutex);
 576
 577	list_for_each_entry(mod, &smp_alt_modules, next) {
 578		if (mod->text > text_end || mod->text_end < text_start)
 579			continue;
 580		for (poff = mod->locks; poff < mod->locks_end; poff++) {
 581			const u8 *ptr = (const u8 *)poff + *poff;
 582
 583			if (text_start <= ptr && text_end > ptr)
 584				return 1;
 585		}
 586	}
 587
 588	return 0;
 589}
 590#endif /* CONFIG_SMP */
 591
 592#ifdef CONFIG_PARAVIRT
 593void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
 594				     struct paravirt_patch_site *end)
 595{
 596	struct paravirt_patch_site *p;
 597	char insn_buff[MAX_PATCH_LEN];
 
 
 
 598
 599	for (p = start; p < end; p++) {
 600		unsigned int used;
 601
 602		BUG_ON(p->len > MAX_PATCH_LEN);
 603		/* prep the buffer with the original instructions */
 604		memcpy(insn_buff, p->instr, p->len);
 605		used = pv_ops.init.patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
 
 606
 607		BUG_ON(used > p->len);
 608
 609		/* Pad the rest with nops */
 610		add_nops(insn_buff + used, p->len - used);
 611		text_poke_early(p->instr, insn_buff, p->len);
 612	}
 613}
 614extern struct paravirt_patch_site __start_parainstructions[],
 615	__stop_parainstructions[];
 616#endif	/* CONFIG_PARAVIRT */
 617
 618/*
 619 * Self-test for the INT3 based CALL emulation code.
 620 *
 621 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
 622 * properly and that there is a stack gap between the INT3 frame and the
 623 * previous context. Without this gap doing a virtual PUSH on the interrupted
 624 * stack would corrupt the INT3 IRET frame.
 625 *
 626 * See entry_{32,64}.S for more details.
 627 */
 628
 629/*
 630 * We define the int3_magic() function in assembly to control the calling
 631 * convention such that we can 'call' it from assembly.
 632 */
 633
 634extern void int3_magic(unsigned int *ptr); /* defined in asm */
 635
 636asm (
 637"	.pushsection	.init.text, \"ax\", @progbits\n"
 638"	.type		int3_magic, @function\n"
 639"int3_magic:\n"
 640"	movl	$1, (%" _ASM_ARG1 ")\n"
 641"	ret\n"
 642"	.size		int3_magic, .-int3_magic\n"
 643"	.popsection\n"
 644);
 645
 646extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
 647
 648static int __init
 649int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
 650{
 651	struct die_args *args = data;
 652	struct pt_regs *regs = args->regs;
 653
 654	if (!regs || user_mode(regs))
 655		return NOTIFY_DONE;
 656
 657	if (val != DIE_INT3)
 658		return NOTIFY_DONE;
 659
 660	if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
 661		return NOTIFY_DONE;
 662
 663	int3_emulate_call(regs, (unsigned long)&int3_magic);
 664	return NOTIFY_STOP;
 665}
 666
 667static void __init int3_selftest(void)
 668{
 669	static __initdata struct notifier_block int3_exception_nb = {
 670		.notifier_call	= int3_exception_notify,
 671		.priority	= INT_MAX-1, /* last */
 672	};
 673	unsigned int val = 0;
 674
 675	BUG_ON(register_die_notifier(&int3_exception_nb));
 676
 677	/*
 678	 * Basically: int3_magic(&val); but really complicated :-)
 679	 *
 680	 * Stick the address of the INT3 instruction into int3_selftest_ip,
 681	 * then trigger the INT3, padded with NOPs to match a CALL instruction
 682	 * length.
 683	 */
 684	asm volatile ("1: int3; nop; nop; nop; nop\n\t"
 685		      ".pushsection .init.data,\"aw\"\n\t"
 686		      ".align " __ASM_SEL(4, 8) "\n\t"
 687		      ".type int3_selftest_ip, @object\n\t"
 688		      ".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
 689		      "int3_selftest_ip:\n\t"
 690		      __ASM_SEL(.long, .quad) " 1b\n\t"
 691		      ".popsection\n\t"
 692		      : ASM_CALL_CONSTRAINT
 693		      : __ASM_SEL_RAW(a, D) (&val)
 694		      : "memory");
 695
 696	BUG_ON(val != 1);
 697
 698	unregister_die_notifier(&int3_exception_nb);
 699}
 700
 701void __init alternative_instructions(void)
 702{
 703	int3_selftest();
 704
 705	/*
 706	 * The patching is not fully atomic, so try to avoid local
 707	 * interruptions that might execute the to be patched code.
 708	 * Other CPUs are not running.
 709	 */
 710	stop_nmi();
 711
 712	/*
 713	 * Don't stop machine check exceptions while patching.
 714	 * MCEs only happen when something got corrupted and in this
 715	 * case we must do something about the corruption.
 716	 * Ignoring it is worse than an unlikely patching race.
 717	 * Also machine checks tend to be broadcast and if one CPU
 718	 * goes into machine check the others follow quickly, so we don't
 719	 * expect a machine check to cause undue problems during to code
 720	 * patching.
 721	 */
 722
 723	apply_alternatives(__alt_instructions, __alt_instructions_end);
 724
 725#ifdef CONFIG_SMP
 726	/* Patch to UP if other cpus not imminent. */
 727	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
 728		uniproc_patched = true;
 729		alternatives_smp_module_add(NULL, "core kernel",
 730					    __smp_locks, __smp_locks_end,
 731					    _text, _etext);
 732	}
 733
 734	if (!uniproc_patched || num_possible_cpus() == 1) {
 735		free_init_pages("SMP alternatives",
 736				(unsigned long)__smp_locks,
 737				(unsigned long)__smp_locks_end);
 738	}
 739#endif
 740
 741	apply_paravirt(__parainstructions, __parainstructions_end);
 742
 743	restart_nmi();
 744	alternatives_patched = 1;
 745}
 746
 747/**
 748 * text_poke_early - Update instructions on a live kernel at boot time
 749 * @addr: address to modify
 750 * @opcode: source of the copy
 751 * @len: length to copy
 752 *
 753 * When you use this code to patch more than one byte of an instruction
 754 * you need to make sure that other CPUs cannot execute this code in parallel.
 755 * Also no thread must be currently preempted in the middle of these
 756 * instructions. And on the local CPU you need to be protected against NMI or
 757 * MCE handlers seeing an inconsistent instruction while you patch.
 758 */
 759void __init_or_module text_poke_early(void *addr, const void *opcode,
 760				      size_t len)
 761{
 762	unsigned long flags;
 763
 764	if (boot_cpu_has(X86_FEATURE_NX) &&
 765	    is_module_text_address((unsigned long)addr)) {
 766		/*
 767		 * Modules text is marked initially as non-executable, so the
 768		 * code cannot be running and speculative code-fetches are
 769		 * prevented. Just change the code.
 770		 */
 771		memcpy(addr, opcode, len);
 772	} else {
 773		local_irq_save(flags);
 774		memcpy(addr, opcode, len);
 775		local_irq_restore(flags);
 776		sync_core();
 777
 778		/*
 779		 * Could also do a CLFLUSH here to speed up CPU recovery; but
 780		 * that causes hangs on some VIA CPUs.
 781		 */
 782	}
 783}
 784
 785__ro_after_init struct mm_struct *poking_mm;
 786__ro_after_init unsigned long poking_addr;
 787
 788static void *__text_poke(void *addr, const void *opcode, size_t len)
 789{
 790	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
 791	struct page *pages[2] = {NULL};
 792	temp_mm_state_t prev;
 793	unsigned long flags;
 794	pte_t pte, *ptep;
 795	spinlock_t *ptl;
 796	pgprot_t pgprot;
 797
 798	/*
 799	 * While boot memory allocator is running we cannot use struct pages as
 800	 * they are not yet initialized. There is no way to recover.
 801	 */
 802	BUG_ON(!after_bootmem);
 803
 804	if (!core_kernel_text((unsigned long)addr)) {
 805		pages[0] = vmalloc_to_page(addr);
 806		if (cross_page_boundary)
 807			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
 808	} else {
 809		pages[0] = virt_to_page(addr);
 810		WARN_ON(!PageReserved(pages[0]));
 811		if (cross_page_boundary)
 812			pages[1] = virt_to_page(addr + PAGE_SIZE);
 813	}
 814	/*
 815	 * If something went wrong, crash and burn since recovery paths are not
 816	 * implemented.
 817	 */
 818	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
 819
 820	local_irq_save(flags);
 821
 822	/*
 823	 * Map the page without the global bit, as TLB flushing is done with
 824	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
 825	 */
 826	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
 827
 828	/*
 829	 * The lock is not really needed, but this allows to avoid open-coding.
 830	 */
 831	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 832
 833	/*
 834	 * This must not fail; preallocated in poking_init().
 835	 */
 836	VM_BUG_ON(!ptep);
 837
 838	pte = mk_pte(pages[0], pgprot);
 839	set_pte_at(poking_mm, poking_addr, ptep, pte);
 840
 841	if (cross_page_boundary) {
 842		pte = mk_pte(pages[1], pgprot);
 843		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
 844	}
 845
 846	/*
 847	 * Loading the temporary mm behaves as a compiler barrier, which
 848	 * guarantees that the PTE will be set at the time memcpy() is done.
 849	 */
 850	prev = use_temporary_mm(poking_mm);
 851
 852	kasan_disable_current();
 853	memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
 854	kasan_enable_current();
 855
 856	/*
 857	 * Ensure that the PTE is only cleared after the instructions of memcpy
 858	 * were issued by using a compiler barrier.
 859	 */
 860	barrier();
 861
 862	pte_clear(poking_mm, poking_addr, ptep);
 863	if (cross_page_boundary)
 864		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
 865
 866	/*
 867	 * Loading the previous page-table hierarchy requires a serializing
 868	 * instruction that already allows the core to see the updated version.
 869	 * Xen-PV is assumed to serialize execution in a similar manner.
 870	 */
 871	unuse_temporary_mm(prev);
 872
 873	/*
 874	 * Flushing the TLB might involve IPIs, which would require enabled
 875	 * IRQs, but not if the mm is not used, as it is in this point.
 876	 */
 877	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
 878			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
 879			   PAGE_SHIFT, false);
 880
 881	/*
 882	 * If the text does not match what we just wrote then something is
 883	 * fundamentally screwy; there's nothing we can really do about that.
 884	 */
 885	BUG_ON(memcmp(addr, opcode, len));
 886
 887	pte_unmap_unlock(ptep, ptl);
 888	local_irq_restore(flags);
 
 
 889	return addr;
 890}
 891
 892/**
 893 * text_poke - Update instructions on a live kernel
 894 * @addr: address to modify
 895 * @opcode: source of the copy
 896 * @len: length to copy
 897 *
 898 * Only atomic text poke/set should be allowed when not doing early patching.
 899 * It means the size must be writable atomically and the address must be aligned
 900 * in a way that permits an atomic write. It also makes sure we fit on a single
 901 * page.
 902 *
 903 * Note that the caller must ensure that if the modified code is part of a
 904 * module, the module would not be removed during poking. This can be achieved
 905 * by registering a module notifier, and ordering module removal and patching
 906 * trough a mutex.
 907 */
 908void *text_poke(void *addr, const void *opcode, size_t len)
 909{
 910	lockdep_assert_held(&text_mutex);
 911
 912	return __text_poke(addr, opcode, len);
 913}
 914
 915/**
 916 * text_poke_kgdb - Update instructions on a live kernel by kgdb
 917 * @addr: address to modify
 918 * @opcode: source of the copy
 919 * @len: length to copy
 920 *
 921 * Only atomic text poke/set should be allowed when not doing early patching.
 922 * It means the size must be writable atomically and the address must be aligned
 923 * in a way that permits an atomic write. It also makes sure we fit on a single
 924 * page.
 925 *
 926 * Context: should only be used by kgdb, which ensures no other core is running,
 927 *	    despite the fact it does not hold the text_mutex.
 928 */
 929void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
 930{
 931	return __text_poke(addr, opcode, len);
 
 
 
 
 
 
 
 
 
 932}
 933
 934static void do_sync_core(void *info)
 935{
 936	sync_core();
 937}
 938
 939static struct bp_patching_desc {
 940	struct text_poke_loc *vec;
 941	int nr_entries;
 942} bp_patching;
 943
 944static int patch_cmp(const void *key, const void *elt)
 945{
 946	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
 947
 948	if (key < tp->addr)
 949		return -1;
 950	if (key > tp->addr)
 951		return 1;
 952	return 0;
 953}
 954NOKPROBE_SYMBOL(patch_cmp);
 955
 956int poke_int3_handler(struct pt_regs *regs)
 957{
 958	struct text_poke_loc *tp;
 959	unsigned char int3 = 0xcc;
 960	void *ip;
 961
 962	/*
 963	 * Having observed our INT3 instruction, we now must observe
 964	 * bp_patching.nr_entries.
 965	 *
 966	 * 	nr_entries != 0			INT3
 967	 * 	WMB				RMB
 968	 * 	write INT3			if (nr_entries)
 969	 *
 970	 * Idem for other elements in bp_patching.
 971	 */
 972	smp_rmb();
 973
 974	if (likely(!bp_patching.nr_entries))
 975		return 0;
 976
 977	if (user_mode(regs))
 978		return 0;
 979
 980	/*
 981	 * Discount the sizeof(int3). See text_poke_bp_batch().
 982	 */
 983	ip = (void *) regs->ip - sizeof(int3);
 984
 985	/*
 986	 * Skip the binary search if there is a single member in the vector.
 987	 */
 988	if (unlikely(bp_patching.nr_entries > 1)) {
 989		tp = bsearch(ip, bp_patching.vec, bp_patching.nr_entries,
 990			     sizeof(struct text_poke_loc),
 991			     patch_cmp);
 992		if (!tp)
 993			return 0;
 994	} else {
 995		tp = bp_patching.vec;
 996		if (tp->addr != ip)
 997			return 0;
 998	}
 999
1000	/* set up the specified breakpoint detour */
1001	regs->ip = (unsigned long) tp->detour;
1002
1003	return 1;
 
1004}
1005NOKPROBE_SYMBOL(poke_int3_handler);
1006
1007/**
1008 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1009 * @tp:			vector of instructions to patch
1010 * @nr_entries:		number of entries in the vector
 
 
1011 *
1012 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1013 * We completely avoid stop_machine() here, and achieve the
1014 * synchronization using int3 breakpoint.
1015 *
1016 * The way it is done:
1017 * 	- For each entry in the vector:
1018 *		- add a int3 trap to the address that will be patched
1019 *	- sync cores
1020 *	- For each entry in the vector:
1021 *		- update all but the first byte of the patched range
1022 *	- sync cores
1023 *	- For each entry in the vector:
1024 *		- replace the first byte (int3) by the first byte of
1025 *		  replacing opcode
1026 *	- sync cores
 
 
1027 */
1028void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1029{
1030	int patched_all_but_first = 0;
1031	unsigned char int3 = 0xcc;
1032	unsigned int i;
1033
1034	lockdep_assert_held(&text_mutex);
1035
1036	bp_patching.vec = tp;
1037	bp_patching.nr_entries = nr_entries;
1038
1039	/*
1040	 * Corresponding read barrier in int3 notifier for making sure the
1041	 * nr_entries and handler are correctly ordered wrt. patching.
1042	 */
1043	smp_wmb();
1044
1045	/*
1046	 * First step: add a int3 trap to the address that will be patched.
1047	 */
1048	for (i = 0; i < nr_entries; i++)
1049		text_poke(tp[i].addr, &int3, sizeof(int3));
1050
1051	on_each_cpu(do_sync_core, NULL, 1);
1052
1053	/*
1054	 * Second step: update all but the first byte of the patched range.
1055	 */
1056	for (i = 0; i < nr_entries; i++) {
1057		if (tp[i].len - sizeof(int3) > 0) {
1058			text_poke((char *)tp[i].addr + sizeof(int3),
1059				  (const char *)tp[i].opcode + sizeof(int3),
1060				  tp[i].len - sizeof(int3));
1061			patched_all_but_first++;
1062		}
1063	}
1064
1065	if (patched_all_but_first) {
1066		/*
1067		 * According to Intel, this core syncing is very likely
1068		 * not necessary and we'd be safe even without it. But
1069		 * better safe than sorry (plus there's not only Intel).
1070		 */
1071		on_each_cpu(do_sync_core, NULL, 1);
1072	}
1073
1074	/*
1075	 * Third step: replace the first byte (int3) by the first byte of
1076	 * replacing opcode.
1077	 */
1078	for (i = 0; i < nr_entries; i++)
1079		text_poke(tp[i].addr, tp[i].opcode, sizeof(int3));
1080
1081	on_each_cpu(do_sync_core, NULL, 1);
1082	/*
1083	 * sync_core() implies an smp_mb() and orders this store against
1084	 * the writing of the new instruction.
1085	 */
1086	bp_patching.vec = NULL;
1087	bp_patching.nr_entries = 0;
1088}
1089
1090/**
1091 * text_poke_bp() -- update instructions on live kernel on SMP
1092 * @addr:	address to patch
1093 * @opcode:	opcode of new instruction
1094 * @len:	length to copy
1095 * @handler:	address to jump to when the temporary breakpoint is hit
1096 *
1097 * Update a single instruction with the vector in the stack, avoiding
1098 * dynamically allocated memory. This function should be used when it is
1099 * not possible to allocate memory.
1100 */
1101void text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
1102{
1103	struct text_poke_loc tp = {
1104		.detour = handler,
1105		.addr = addr,
1106		.len = len,
1107	};
1108
1109	if (len > POKE_MAX_OPCODE_SIZE) {
1110		WARN_ONCE(1, "len is larger than %d\n", POKE_MAX_OPCODE_SIZE);
1111		return;
1112	}
1113
1114	memcpy((void *)tp.opcode, opcode, len);
1115
1116	text_poke_bp_batch(&tp, 1);
1117}
v3.15
 
  1#define pr_fmt(fmt) "SMP alternatives: " fmt
  2
  3#include <linux/module.h>
  4#include <linux/sched.h>
  5#include <linux/mutex.h>
  6#include <linux/list.h>
  7#include <linux/stringify.h>
  8#include <linux/kprobes.h>
  9#include <linux/mm.h>
 10#include <linux/vmalloc.h>
 11#include <linux/memory.h>
 12#include <linux/stop_machine.h>
 13#include <linux/slab.h>
 14#include <linux/kdebug.h>
 
 
 
 
 15#include <asm/alternative.h>
 16#include <asm/sections.h>
 17#include <asm/pgtable.h>
 18#include <asm/mce.h>
 19#include <asm/nmi.h>
 20#include <asm/cacheflush.h>
 21#include <asm/tlbflush.h>
 22#include <asm/io.h>
 23#include <asm/fixmap.h>
 24
 
 
 
 
 25#define MAX_PATCH_LEN (255-1)
 26
 27static int __initdata_or_module debug_alternative;
 28
 29static int __init debug_alt(char *str)
 30{
 31	debug_alternative = 1;
 32	return 1;
 33}
 34__setup("debug-alternative", debug_alt);
 35
 36static int noreplace_smp;
 37
 38static int __init setup_noreplace_smp(char *str)
 39{
 40	noreplace_smp = 1;
 41	return 1;
 42}
 43__setup("noreplace-smp", setup_noreplace_smp);
 44
 45#ifdef CONFIG_PARAVIRT
 46static int __initdata_or_module noreplace_paravirt = 0;
 47
 48static int __init setup_noreplace_paravirt(char *str)
 49{
 50	noreplace_paravirt = 1;
 51	return 1;
 52}
 53__setup("noreplace-paravirt", setup_noreplace_paravirt);
 54#endif
 55
 56#define DPRINTK(fmt, ...)				\
 57do {							\
 58	if (debug_alternative)				\
 59		printk(KERN_DEBUG fmt, ##__VA_ARGS__);	\
 
 
 
 
 
 
 
 
 
 60} while (0)
 61
 62/*
 63 * Each GENERIC_NOPX is of X bytes, and defined as an array of bytes
 64 * that correspond to that nop. Getting from one nop to the next, we
 65 * add to the array the offset that is equal to the sum of all sizes of
 66 * nops preceding the one we are after.
 67 *
 68 * Note: The GENERIC_NOP5_ATOMIC is at the end, as it breaks the
 69 * nice symmetry of sizes of the previous nops.
 70 */
 71#if defined(GENERIC_NOP1) && !defined(CONFIG_X86_64)
 72static const unsigned char intelnops[] =
 73{
 74	GENERIC_NOP1,
 75	GENERIC_NOP2,
 76	GENERIC_NOP3,
 77	GENERIC_NOP4,
 78	GENERIC_NOP5,
 79	GENERIC_NOP6,
 80	GENERIC_NOP7,
 81	GENERIC_NOP8,
 82	GENERIC_NOP5_ATOMIC
 83};
 84static const unsigned char * const intel_nops[ASM_NOP_MAX+2] =
 85{
 86	NULL,
 87	intelnops,
 88	intelnops + 1,
 89	intelnops + 1 + 2,
 90	intelnops + 1 + 2 + 3,
 91	intelnops + 1 + 2 + 3 + 4,
 92	intelnops + 1 + 2 + 3 + 4 + 5,
 93	intelnops + 1 + 2 + 3 + 4 + 5 + 6,
 94	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 95	intelnops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 96};
 97#endif
 98
 99#ifdef K8_NOP1
100static const unsigned char k8nops[] =
101{
102	K8_NOP1,
103	K8_NOP2,
104	K8_NOP3,
105	K8_NOP4,
106	K8_NOP5,
107	K8_NOP6,
108	K8_NOP7,
109	K8_NOP8,
110	K8_NOP5_ATOMIC
111};
112static const unsigned char * const k8_nops[ASM_NOP_MAX+2] =
113{
114	NULL,
115	k8nops,
116	k8nops + 1,
117	k8nops + 1 + 2,
118	k8nops + 1 + 2 + 3,
119	k8nops + 1 + 2 + 3 + 4,
120	k8nops + 1 + 2 + 3 + 4 + 5,
121	k8nops + 1 + 2 + 3 + 4 + 5 + 6,
122	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
123	k8nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
124};
125#endif
126
127#if defined(K7_NOP1) && !defined(CONFIG_X86_64)
128static const unsigned char k7nops[] =
129{
130	K7_NOP1,
131	K7_NOP2,
132	K7_NOP3,
133	K7_NOP4,
134	K7_NOP5,
135	K7_NOP6,
136	K7_NOP7,
137	K7_NOP8,
138	K7_NOP5_ATOMIC
139};
140static const unsigned char * const k7_nops[ASM_NOP_MAX+2] =
141{
142	NULL,
143	k7nops,
144	k7nops + 1,
145	k7nops + 1 + 2,
146	k7nops + 1 + 2 + 3,
147	k7nops + 1 + 2 + 3 + 4,
148	k7nops + 1 + 2 + 3 + 4 + 5,
149	k7nops + 1 + 2 + 3 + 4 + 5 + 6,
150	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
151	k7nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
152};
153#endif
154
155#ifdef P6_NOP1
156static const unsigned char p6nops[] =
157{
158	P6_NOP1,
159	P6_NOP2,
160	P6_NOP3,
161	P6_NOP4,
162	P6_NOP5,
163	P6_NOP6,
164	P6_NOP7,
165	P6_NOP8,
166	P6_NOP5_ATOMIC
167};
168static const unsigned char * const p6_nops[ASM_NOP_MAX+2] =
169{
170	NULL,
171	p6nops,
172	p6nops + 1,
173	p6nops + 1 + 2,
174	p6nops + 1 + 2 + 3,
175	p6nops + 1 + 2 + 3 + 4,
176	p6nops + 1 + 2 + 3 + 4 + 5,
177	p6nops + 1 + 2 + 3 + 4 + 5 + 6,
178	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
179	p6nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
180};
181#endif
182
183/* Initialize these to a safe default */
184#ifdef CONFIG_X86_64
185const unsigned char * const *ideal_nops = p6_nops;
186#else
187const unsigned char * const *ideal_nops = intel_nops;
188#endif
189
190void __init arch_init_ideal_nops(void)
191{
192	switch (boot_cpu_data.x86_vendor) {
193	case X86_VENDOR_INTEL:
194		/*
195		 * Due to a decoder implementation quirk, some
196		 * specific Intel CPUs actually perform better with
197		 * the "k8_nops" than with the SDM-recommended NOPs.
198		 */
199		if (boot_cpu_data.x86 == 6 &&
200		    boot_cpu_data.x86_model >= 0x0f &&
201		    boot_cpu_data.x86_model != 0x1c &&
202		    boot_cpu_data.x86_model != 0x26 &&
203		    boot_cpu_data.x86_model != 0x27 &&
204		    boot_cpu_data.x86_model < 0x30) {
205			ideal_nops = k8_nops;
206		} else if (boot_cpu_has(X86_FEATURE_NOPL)) {
207			   ideal_nops = p6_nops;
208		} else {
209#ifdef CONFIG_X86_64
210			ideal_nops = k8_nops;
211#else
212			ideal_nops = intel_nops;
213#endif
214		}
215		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
216	default:
217#ifdef CONFIG_X86_64
218		ideal_nops = k8_nops;
219#else
220		if (boot_cpu_has(X86_FEATURE_K8))
221			ideal_nops = k8_nops;
222		else if (boot_cpu_has(X86_FEATURE_K7))
223			ideal_nops = k7_nops;
224		else
225			ideal_nops = intel_nops;
226#endif
227	}
228}
229
230/* Use this to add nops to a buffer, then text_poke the whole buffer. */
231static void __init_or_module add_nops(void *insns, unsigned int len)
232{
233	while (len > 0) {
234		unsigned int noplen = len;
235		if (noplen > ASM_NOP_MAX)
236			noplen = ASM_NOP_MAX;
237		memcpy(insns, ideal_nops[noplen], noplen);
238		insns += noplen;
239		len -= noplen;
240	}
241}
242
243extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
244extern s32 __smp_locks[], __smp_locks_end[];
245void *text_poke_early(void *addr, const void *opcode, size_t len);
246
247/* Replace instructions with better alternatives for this CPU type.
248   This runs before SMP is initialized to avoid SMP problems with
249   self modifying code. This implies that asymmetric systems where
250   APs have less capabilities than the boot processor are not handled.
251   Tough. Make sure you disable such features by hand. */
 
 
252
253void __init_or_module apply_alternatives(struct alt_instr *start,
254					 struct alt_instr *end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255{
256	struct alt_instr *a;
257	u8 *instr, *replacement;
258	u8 insnbuf[MAX_PATCH_LEN];
259
260	DPRINTK("%s: alt table %p -> %p\n", __func__, start, end);
261	/*
262	 * The scan order should be from start to end. A later scanned
263	 * alternative code can overwrite a previous scanned alternative code.
264	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
265	 * patch code.
266	 *
267	 * So be careful if you want to change the scan order to any other
268	 * order.
269	 */
270	for (a = start; a < end; a++) {
 
 
271		instr = (u8 *)&a->instr_offset + a->instr_offset;
272		replacement = (u8 *)&a->repl_offset + a->repl_offset;
273		BUG_ON(a->replacementlen > a->instrlen);
274		BUG_ON(a->instrlen > sizeof(insnbuf));
275		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
276		if (!boot_cpu_has(a->cpuid))
 
 
 
277			continue;
 
 
 
 
 
 
 
278
279		memcpy(insnbuf, replacement, a->replacementlen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
281		/* 0xe8 is a relative jump; fix the offset. */
282		if (*insnbuf == 0xe8 && a->replacementlen == 5)
283		    *(s32 *)(insnbuf + 1) += replacement - instr;
284
285		add_nops(insnbuf + a->replacementlen,
286			 a->instrlen - a->replacementlen);
 
 
 
 
287
288		text_poke_early(instr, insnbuf, a->instrlen);
289	}
290}
291
292#ifdef CONFIG_SMP
293
294static void alternatives_smp_lock(const s32 *start, const s32 *end,
295				  u8 *text, u8 *text_end)
296{
297	const s32 *poff;
298
299	mutex_lock(&text_mutex);
300	for (poff = start; poff < end; poff++) {
301		u8 *ptr = (u8 *)poff + *poff;
302
303		if (!*poff || ptr < text || ptr >= text_end)
304			continue;
305		/* turn DS segment override prefix into lock prefix */
306		if (*ptr == 0x3e)
307			text_poke(ptr, ((unsigned char []){0xf0}), 1);
308	}
309	mutex_unlock(&text_mutex);
310}
311
312static void alternatives_smp_unlock(const s32 *start, const s32 *end,
313				    u8 *text, u8 *text_end)
314{
315	const s32 *poff;
316
317	mutex_lock(&text_mutex);
318	for (poff = start; poff < end; poff++) {
319		u8 *ptr = (u8 *)poff + *poff;
320
321		if (!*poff || ptr < text || ptr >= text_end)
322			continue;
323		/* turn lock prefix into DS segment override prefix */
324		if (*ptr == 0xf0)
325			text_poke(ptr, ((unsigned char []){0x3E}), 1);
326	}
327	mutex_unlock(&text_mutex);
328}
329
330struct smp_alt_module {
331	/* what is this ??? */
332	struct module	*mod;
333	char		*name;
334
335	/* ptrs to lock prefixes */
336	const s32	*locks;
337	const s32	*locks_end;
338
339	/* .text segment, needed to avoid patching init code ;) */
340	u8		*text;
341	u8		*text_end;
342
343	struct list_head next;
344};
345static LIST_HEAD(smp_alt_modules);
346static DEFINE_MUTEX(smp_alt);
347static bool uniproc_patched = false;	/* protected by smp_alt */
348
349void __init_or_module alternatives_smp_module_add(struct module *mod,
350						  char *name,
351						  void *locks, void *locks_end,
352						  void *text,  void *text_end)
353{
354	struct smp_alt_module *smp;
355
356	mutex_lock(&smp_alt);
357	if (!uniproc_patched)
358		goto unlock;
359
360	if (num_possible_cpus() == 1)
361		/* Don't bother remembering, we'll never have to undo it. */
362		goto smp_unlock;
363
364	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
365	if (NULL == smp)
366		/* we'll run the (safe but slow) SMP code then ... */
367		goto unlock;
368
369	smp->mod	= mod;
370	smp->name	= name;
371	smp->locks	= locks;
372	smp->locks_end	= locks_end;
373	smp->text	= text;
374	smp->text_end	= text_end;
375	DPRINTK("%s: locks %p -> %p, text %p -> %p, name %s\n",
376		__func__, smp->locks, smp->locks_end,
377		smp->text, smp->text_end, smp->name);
378
379	list_add_tail(&smp->next, &smp_alt_modules);
380smp_unlock:
381	alternatives_smp_unlock(locks, locks_end, text, text_end);
382unlock:
383	mutex_unlock(&smp_alt);
384}
385
386void __init_or_module alternatives_smp_module_del(struct module *mod)
387{
388	struct smp_alt_module *item;
389
390	mutex_lock(&smp_alt);
391	list_for_each_entry(item, &smp_alt_modules, next) {
392		if (mod != item->mod)
393			continue;
394		list_del(&item->next);
395		kfree(item);
396		break;
397	}
398	mutex_unlock(&smp_alt);
399}
400
401void alternatives_enable_smp(void)
402{
403	struct smp_alt_module *mod;
404
405	/* Why bother if there are no other CPUs? */
406	BUG_ON(num_possible_cpus() == 1);
407
408	mutex_lock(&smp_alt);
409
410	if (uniproc_patched) {
411		pr_info("switching to SMP code\n");
412		BUG_ON(num_online_cpus() != 1);
413		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
414		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
415		list_for_each_entry(mod, &smp_alt_modules, next)
416			alternatives_smp_lock(mod->locks, mod->locks_end,
417					      mod->text, mod->text_end);
418		uniproc_patched = false;
419	}
420	mutex_unlock(&smp_alt);
421}
422
423/* Return 1 if the address range is reserved for smp-alternatives */
 
 
 
424int alternatives_text_reserved(void *start, void *end)
425{
426	struct smp_alt_module *mod;
427	const s32 *poff;
428	u8 *text_start = start;
429	u8 *text_end = end;
430
 
 
431	list_for_each_entry(mod, &smp_alt_modules, next) {
432		if (mod->text > text_end || mod->text_end < text_start)
433			continue;
434		for (poff = mod->locks; poff < mod->locks_end; poff++) {
435			const u8 *ptr = (const u8 *)poff + *poff;
436
437			if (text_start <= ptr && text_end > ptr)
438				return 1;
439		}
440	}
441
442	return 0;
443}
444#endif
445
446#ifdef CONFIG_PARAVIRT
447void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
448				     struct paravirt_patch_site *end)
449{
450	struct paravirt_patch_site *p;
451	char insnbuf[MAX_PATCH_LEN];
452
453	if (noreplace_paravirt)
454		return;
455
456	for (p = start; p < end; p++) {
457		unsigned int used;
458
459		BUG_ON(p->len > MAX_PATCH_LEN);
460		/* prep the buffer with the original instructions */
461		memcpy(insnbuf, p->instr, p->len);
462		used = pv_init_ops.patch(p->instrtype, p->clobbers, insnbuf,
463					 (unsigned long)p->instr, p->len);
464
465		BUG_ON(used > p->len);
466
467		/* Pad the rest with nops */
468		add_nops(insnbuf + used, p->len - used);
469		text_poke_early(p->instr, insnbuf, p->len);
470	}
471}
472extern struct paravirt_patch_site __start_parainstructions[],
473	__stop_parainstructions[];
474#endif	/* CONFIG_PARAVIRT */
475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476void __init alternative_instructions(void)
477{
478	/* The patching is not fully atomic, so try to avoid local interruptions
479	   that might execute the to be patched code.
480	   Other CPUs are not running. */
 
 
 
 
481	stop_nmi();
482
483	/*
484	 * Don't stop machine check exceptions while patching.
485	 * MCEs only happen when something got corrupted and in this
486	 * case we must do something about the corruption.
487	 * Ignoring it is worse than a unlikely patching race.
488	 * Also machine checks tend to be broadcast and if one CPU
489	 * goes into machine check the others follow quickly, so we don't
490	 * expect a machine check to cause undue problems during to code
491	 * patching.
492	 */
493
494	apply_alternatives(__alt_instructions, __alt_instructions_end);
495
496#ifdef CONFIG_SMP
497	/* Patch to UP if other cpus not imminent. */
498	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
499		uniproc_patched = true;
500		alternatives_smp_module_add(NULL, "core kernel",
501					    __smp_locks, __smp_locks_end,
502					    _text, _etext);
503	}
504
505	if (!uniproc_patched || num_possible_cpus() == 1)
506		free_init_pages("SMP alternatives",
507				(unsigned long)__smp_locks,
508				(unsigned long)__smp_locks_end);
 
509#endif
510
511	apply_paravirt(__parainstructions, __parainstructions_end);
512
513	restart_nmi();
 
514}
515
516/**
517 * text_poke_early - Update instructions on a live kernel at boot time
518 * @addr: address to modify
519 * @opcode: source of the copy
520 * @len: length to copy
521 *
522 * When you use this code to patch more than one byte of an instruction
523 * you need to make sure that other CPUs cannot execute this code in parallel.
524 * Also no thread must be currently preempted in the middle of these
525 * instructions. And on the local CPU you need to be protected again NMI or MCE
526 * handlers seeing an inconsistent instruction while you patch.
527 */
528void *__init_or_module text_poke_early(void *addr, const void *opcode,
529					      size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530{
 
 
 
531	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
532	local_irq_save(flags);
533	memcpy(addr, opcode, len);
534	sync_core();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535	local_irq_restore(flags);
536	/* Could also do a CLFLUSH here to speed up CPU recovery; but
537	   that causes hangs on some VIA CPUs. */
538	return addr;
539}
540
541/**
542 * text_poke - Update instructions on a live kernel
543 * @addr: address to modify
544 * @opcode: source of the copy
545 * @len: length to copy
546 *
547 * Only atomic text poke/set should be allowed when not doing early patching.
548 * It means the size must be writable atomically and the address must be aligned
549 * in a way that permits an atomic write. It also makes sure we fit on a single
550 * page.
551 *
552 * Note: Must be called under text_mutex.
 
 
 
553 */
554void *__kprobes text_poke(void *addr, const void *opcode, size_t len)
555{
556	unsigned long flags;
557	char *vaddr;
558	struct page *pages[2];
559	int i;
560
561	if (!core_kernel_text((unsigned long)addr)) {
562		pages[0] = vmalloc_to_page(addr);
563		pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
564	} else {
565		pages[0] = virt_to_page(addr);
566		WARN_ON(!PageReserved(pages[0]));
567		pages[1] = virt_to_page(addr + PAGE_SIZE);
568	}
569	BUG_ON(!pages[0]);
570	local_irq_save(flags);
571	set_fixmap(FIX_TEXT_POKE0, page_to_phys(pages[0]));
572	if (pages[1])
573		set_fixmap(FIX_TEXT_POKE1, page_to_phys(pages[1]));
574	vaddr = (char *)fix_to_virt(FIX_TEXT_POKE0);
575	memcpy(&vaddr[(unsigned long)addr & ~PAGE_MASK], opcode, len);
576	clear_fixmap(FIX_TEXT_POKE0);
577	if (pages[1])
578		clear_fixmap(FIX_TEXT_POKE1);
579	local_flush_tlb();
580	sync_core();
581	/* Could also do a CLFLUSH here to speed up CPU recovery; but
582	   that causes hangs on some VIA CPUs. */
583	for (i = 0; i < len; i++)
584		BUG_ON(((char *)addr)[i] != ((char *)opcode)[i]);
585	local_irq_restore(flags);
586	return addr;
587}
588
589static void do_sync_core(void *info)
590{
591	sync_core();
592}
593
594static bool bp_patching_in_progress;
595static void *bp_int3_handler, *bp_int3_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596
597int poke_int3_handler(struct pt_regs *regs)
598{
599	/* bp_patching_in_progress */
 
 
 
 
 
 
 
 
 
 
 
 
 
600	smp_rmb();
601
602	if (likely(!bp_patching_in_progress))
603		return 0;
604
605	if (user_mode_vm(regs) || regs->ip != (unsigned long)bp_int3_addr)
606		return 0;
607
608	/* set up the specified breakpoint handler */
609	regs->ip = (unsigned long) bp_int3_handler;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610
611	return 1;
612
613}
 
614
615/**
616 * text_poke_bp() -- update instructions on live kernel on SMP
617 * @addr:	address to patch
618 * @opcode:	opcode of new instruction
619 * @len:	length to copy
620 * @handler:	address to jump to when the temporary breakpoint is hit
621 *
622 * Modify multi-byte instruction by using int3 breakpoint on SMP.
623 * We completely avoid stop_machine() here, and achieve the
624 * synchronization using int3 breakpoint.
625 *
626 * The way it is done:
627 *	- add a int3 trap to the address that will be patched
 
628 *	- sync cores
629 *	- update all but the first byte of the patched range
 
630 *	- sync cores
631 *	- replace the first byte (int3) by the first byte of
632 *	  replacing opcode
 
633 *	- sync cores
634 *
635 * Note: must be called under text_mutex.
636 */
637void *text_poke_bp(void *addr, const void *opcode, size_t len, void *handler)
638{
 
639	unsigned char int3 = 0xcc;
 
640
641	bp_int3_handler = handler;
642	bp_int3_addr = (u8 *)addr + sizeof(int3);
643	bp_patching_in_progress = true;
644	/*
645	 * Corresponding read barrier in int3 notifier for
646	 * making sure the in_progress flags is correctly ordered wrt.
647	 * patching
 
648	 */
649	smp_wmb();
650
651	text_poke(addr, &int3, sizeof(int3));
 
 
 
 
652
653	on_each_cpu(do_sync_core, NULL, 1);
654
655	if (len - sizeof(int3) > 0) {
656		/* patch all but the first byte */
657		text_poke((char *)addr + sizeof(int3),
658			  (const char *) opcode + sizeof(int3),
659			  len - sizeof(int3));
 
 
 
 
 
 
 
 
660		/*
661		 * According to Intel, this core syncing is very likely
662		 * not necessary and we'd be safe even without it. But
663		 * better safe than sorry (plus there's not only Intel).
664		 */
665		on_each_cpu(do_sync_core, NULL, 1);
666	}
667
668	/* patch the first byte */
669	text_poke(addr, opcode, sizeof(int3));
 
 
 
 
670
671	on_each_cpu(do_sync_core, NULL, 1);
 
 
 
 
 
 
 
672
673	bp_patching_in_progress = false;
674	smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
675
676	return addr;
677}
678