Linux Audio

Check our new training course

Loading...
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
  3 *    Time of day based timer functions.
  4 *
  5 *  S390 version
  6 *    Copyright IBM Corp. 1999, 2008
  7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
  8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
  9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
 10 *
 11 *  Derived from "arch/i386/kernel/time.c"
 12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
 13 */
 14
 15#define KMSG_COMPONENT "time"
 16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
 17
 18#include <linux/kernel_stat.h>
 19#include <linux/errno.h>
 20#include <linux/export.h>
 21#include <linux/sched.h>
 22#include <linux/sched/clock.h>
 23#include <linux/kernel.h>
 24#include <linux/param.h>
 25#include <linux/string.h>
 26#include <linux/mm.h>
 27#include <linux/interrupt.h>
 28#include <linux/cpu.h>
 29#include <linux/stop_machine.h>
 30#include <linux/time.h>
 31#include <linux/device.h>
 32#include <linux/delay.h>
 33#include <linux/init.h>
 34#include <linux/smp.h>
 35#include <linux/types.h>
 36#include <linux/profile.h>
 37#include <linux/timex.h>
 38#include <linux/notifier.h>
 39#include <linux/timekeeper_internal.h>
 40#include <linux/clockchips.h>
 41#include <linux/gfp.h>
 42#include <linux/kprobes.h>
 43#include <linux/uaccess.h>
 44#include <asm/facility.h>
 45#include <asm/delay.h>
 46#include <asm/div64.h>
 47#include <asm/vdso.h>
 48#include <asm/irq.h>
 49#include <asm/irq_regs.h>
 50#include <asm/vtimer.h>
 51#include <asm/stp.h>
 52#include <asm/cio.h>
 53#include "entry.h"
 54
 55unsigned char tod_clock_base[16] __aligned(8) = {
 56	/* Force to data section. */
 57	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 58	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
 59};
 60EXPORT_SYMBOL_GPL(tod_clock_base);
 61
 62u64 clock_comparator_max = -1ULL;
 63EXPORT_SYMBOL_GPL(clock_comparator_max);
 64
 65static DEFINE_PER_CPU(struct clock_event_device, comparators);
 66
 67ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
 68EXPORT_SYMBOL(s390_epoch_delta_notifier);
 69
 70unsigned char ptff_function_mask[16];
 71
 72static unsigned long long lpar_offset;
 73static unsigned long long initial_leap_seconds;
 74static unsigned long long tod_steering_end;
 75static long long tod_steering_delta;
 76
 77/*
 78 * Get time offsets with PTFF
 79 */
 80void __init time_early_init(void)
 81{
 82	struct ptff_qto qto;
 83	struct ptff_qui qui;
 84
 85	/* Initialize TOD steering parameters */
 86	tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
 87	vdso_data->ts_end = tod_steering_end;
 88
 89	if (!test_facility(28))
 90		return;
 91
 92	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
 93
 94	/* get LPAR offset */
 95	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
 96		lpar_offset = qto.tod_epoch_difference;
 97
 98	/* get initial leap seconds */
 99	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100		initial_leap_seconds = (unsigned long long)
101			((long) qui.old_leap * 4096000000L);
102}
103
104/*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107unsigned long long notrace sched_clock(void)
108{
109	return tod_to_ns(get_tod_clock_monotonic());
110}
111NOKPROBE_SYMBOL(sched_clock);
112
113/*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116unsigned long long monotonic_clock(void)
117{
118	return sched_clock();
119}
120EXPORT_SYMBOL(monotonic_clock);
121
122static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123{
124	unsigned long long high, low, rem, sec, nsec;
125
126	/* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127	high = (*(unsigned long long *) clk) >> 4;
128	low = (*(unsigned long long *)&clk[7]) << 4;
129	/* Calculate seconds and nano-seconds */
130	sec = high;
131	rem = do_div(sec, 1000000);
132	nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
 
 
134	xt->tv_sec = sec;
135	xt->tv_nsec = nsec;
 
136}
 
137
138void clock_comparator_work(void)
139{
140	struct clock_event_device *cd;
141
142	S390_lowcore.clock_comparator = clock_comparator_max;
143	cd = this_cpu_ptr(&comparators);
 
144	cd->event_handler(cd);
145}
146
 
 
 
 
 
 
 
 
 
 
 
 
147static int s390_next_event(unsigned long delta,
148			   struct clock_event_device *evt)
149{
150	S390_lowcore.clock_comparator = get_tod_clock() + delta;
151	set_clock_comparator(S390_lowcore.clock_comparator);
152	return 0;
153}
154
 
 
 
 
 
155/*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159void init_cpu_timer(void)
160{
161	struct clock_event_device *cd;
162	int cpu;
163
164	S390_lowcore.clock_comparator = clock_comparator_max;
165	set_clock_comparator(S390_lowcore.clock_comparator);
166
167	cpu = smp_processor_id();
168	cd = &per_cpu(comparators, cpu);
169	cd->name		= "comparator";
170	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
171	cd->mult		= 16777;
172	cd->shift		= 12;
173	cd->min_delta_ns	= 1;
174	cd->min_delta_ticks	= 1;
175	cd->max_delta_ns	= LONG_MAX;
176	cd->max_delta_ticks	= ULONG_MAX;
177	cd->rating		= 400;
178	cd->cpumask		= cpumask_of(cpu);
179	cd->set_next_event	= s390_next_event;
 
180
181	clockevents_register_device(cd);
182
183	/* Enable clock comparator timer interrupt. */
184	__ctl_set_bit(0,11);
185
186	/* Always allow the timing alert external interrupt. */
187	__ctl_set_bit(0, 4);
188}
189
190static void clock_comparator_interrupt(struct ext_code ext_code,
191				       unsigned int param32,
192				       unsigned long param64)
193{
194	inc_irq_stat(IRQEXT_CLK);
195	if (S390_lowcore.clock_comparator == clock_comparator_max)
196		set_clock_comparator(S390_lowcore.clock_comparator);
197}
198
 
199static void stp_timing_alert(struct stp_irq_parm *);
200
201static void timing_alert_interrupt(struct ext_code ext_code,
202				   unsigned int param32, unsigned long param64)
203{
204	inc_irq_stat(IRQEXT_TLA);
 
 
205	if (param32 & 0x00038000)
206		stp_timing_alert((struct stp_irq_parm *) &param32);
207}
208
 
209static void stp_reset(void);
210
211void read_persistent_clock64(struct timespec64 *ts)
212{
213	unsigned char clk[STORE_CLOCK_EXT_SIZE];
214	__u64 delta;
215
216	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217	get_tod_clock_ext(clk);
218	*(__u64 *) &clk[1] -= delta;
219	if (*(__u64 *) &clk[1] > delta)
220		clk[0]--;
221	ext_to_timespec64(clk, ts);
222}
223
224void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
225						 struct timespec64 *boot_offset)
226{
227	unsigned char clk[STORE_CLOCK_EXT_SIZE];
228	struct timespec64 boot_time;
229	__u64 delta;
230
231	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
232	memcpy(clk, tod_clock_base, STORE_CLOCK_EXT_SIZE);
233	*(__u64 *)&clk[1] -= delta;
234	if (*(__u64 *)&clk[1] > delta)
235		clk[0]--;
236	ext_to_timespec64(clk, &boot_time);
237
238	read_persistent_clock64(wall_time);
239	*boot_offset = timespec64_sub(*wall_time, boot_time);
240}
241
242static u64 read_tod_clock(struct clocksource *cs)
243{
244	unsigned long long now, adj;
245
246	preempt_disable(); /* protect from changes to steering parameters */
247	now = get_tod_clock();
248	adj = tod_steering_end - now;
249	if (unlikely((s64) adj >= 0))
250		/*
251		 * manually steer by 1 cycle every 2^16 cycles. This
252		 * corresponds to shifting the tod delta by 15. 1s is
253		 * therefore steered in ~9h. The adjust will decrease
254		 * over time, until it finally reaches 0.
255		 */
256		now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
257	preempt_enable();
258	return now;
259}
260
261static struct clocksource clocksource_tod = {
262	.name		= "tod",
263	.rating		= 400,
264	.read		= read_tod_clock,
265	.mask		= -1ULL,
266	.mult		= 1000,
267	.shift		= 12,
268	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
269};
270
271struct clocksource * __init clocksource_default_clock(void)
272{
273	return &clocksource_tod;
274}
275
276void update_vsyscall(struct timekeeper *tk)
 
277{
278	u64 nsecps;
279
280	if (tk->tkr_mono.clock != &clocksource_tod)
281		return;
282
283	/* Make userspace gettimeofday spin until we're done. */
284	++vdso_data->tb_update_count;
285	smp_wmb();
286	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
287	vdso_data->xtime_clock_sec = tk->xtime_sec;
288	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
289	vdso_data->wtom_clock_sec =
290		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
291	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
292		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
293	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
294	while (vdso_data->wtom_clock_nsec >= nsecps) {
295		vdso_data->wtom_clock_nsec -= nsecps;
296		vdso_data->wtom_clock_sec++;
297	}
298
299	vdso_data->xtime_coarse_sec = tk->xtime_sec;
300	vdso_data->xtime_coarse_nsec =
301		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
302	vdso_data->wtom_coarse_sec =
303		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
304	vdso_data->wtom_coarse_nsec =
305		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
306	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
307		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
308		vdso_data->wtom_coarse_sec++;
309	}
310
311	vdso_data->tk_mult = tk->tkr_mono.mult;
312	vdso_data->tk_shift = tk->tkr_mono.shift;
313	smp_wmb();
314	++vdso_data->tb_update_count;
315}
316
317extern struct timezone sys_tz;
318
319void update_vsyscall_tz(void)
320{
 
 
 
321	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
322	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 
 
323}
324
325/*
326 * Initialize the TOD clock and the CPU timer of
327 * the boot cpu.
328 */
329void __init time_init(void)
330{
331	/* Reset time synchronization interfaces. */
 
332	stp_reset();
333
334	/* request the clock comparator external interrupt */
335	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
336		panic("Couldn't request external interrupt 0x1004");
337
338	/* request the timing alert external interrupt */
339	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
340		panic("Couldn't request external interrupt 0x1406");
341
342	if (__clocksource_register(&clocksource_tod) != 0)
343		panic("Could not register TOD clock source");
344
345	/* Enable TOD clock interrupts on the boot cpu. */
346	init_cpu_timer();
347
348	/* Enable cpu timer interrupts on the boot cpu. */
349	vtime_init();
350}
351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
352static DEFINE_PER_CPU(atomic_t, clock_sync_word);
353static DEFINE_MUTEX(clock_sync_mutex);
354static unsigned long clock_sync_flags;
355
356#define CLOCK_SYNC_HAS_STP	0
357#define CLOCK_SYNC_STP		1
 
 
358
359/*
360 * The get_clock function for the physical clock. It will get the current
361 * TOD clock, subtract the LPAR offset and write the result to *clock.
362 * The function returns 0 if the clock is in sync with the external time
363 * source. If the clock mode is local it will return -EOPNOTSUPP and
364 * -EAGAIN if the clock is not in sync with the external reference.
365 */
366int get_phys_clock(unsigned long *clock)
367{
368	atomic_t *sw_ptr;
369	unsigned int sw0, sw1;
370
371	sw_ptr = &get_cpu_var(clock_sync_word);
372	sw0 = atomic_read(sw_ptr);
373	*clock = get_tod_clock() - lpar_offset;
374	sw1 = atomic_read(sw_ptr);
375	put_cpu_var(clock_sync_word);
376	if (sw0 == sw1 && (sw0 & 0x80000000U))
377		/* Success: time is in sync. */
378		return 0;
379	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
380		return -EOPNOTSUPP;
381	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 
 
382		return -EACCES;
383	return -EAGAIN;
384}
385EXPORT_SYMBOL(get_phys_clock);
386
387/*
388 * Make get_phys_clock() return -EAGAIN.
389 */
390static void disable_sync_clock(void *dummy)
391{
392	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
393	/*
394	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
395	 * fail until the sync bit is turned back on. In addition
396	 * increase the "sequence" counter to avoid the race of an
397	 * stp event and the complete recovery against get_phys_clock.
398	 */
399	atomic_andnot(0x80000000, sw_ptr);
400	atomic_inc(sw_ptr);
401}
402
403/*
404 * Make get_phys_clock() return 0 again.
405 * Needs to be called from a context disabled for preemption.
406 */
407static void enable_sync_clock(void)
408{
409	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
410	atomic_or(0x80000000, sw_ptr);
411}
412
413/*
414 * Function to check if the clock is in sync.
415 */
416static inline int check_sync_clock(void)
417{
418	atomic_t *sw_ptr;
419	int rc;
420
421	sw_ptr = &get_cpu_var(clock_sync_word);
422	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
423	put_cpu_var(clock_sync_word);
424	return rc;
425}
426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427/*
428 * Apply clock delta to the global data structures.
429 * This is called once on the CPU that performed the clock sync.
430 */
431static void clock_sync_global(unsigned long long delta)
432{
433	unsigned long now, adj;
434	struct ptff_qto qto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
435
436	/* Fixup the monotonic sched clock. */
437	*(unsigned long long *) &tod_clock_base[1] += delta;
438	if (*(unsigned long long *) &tod_clock_base[1] < delta)
439		/* Epoch overflow */
440		tod_clock_base[0]++;
441	/* Adjust TOD steering parameters. */
442	vdso_data->tb_update_count++;
443	now = get_tod_clock();
444	adj = tod_steering_end - now;
445	if (unlikely((s64) adj >= 0))
446		/* Calculate how much of the old adjustment is left. */
447		tod_steering_delta = (tod_steering_delta < 0) ?
448			-(adj >> 15) : (adj >> 15);
449	tod_steering_delta += delta;
450	if ((abs(tod_steering_delta) >> 48) != 0)
451		panic("TOD clock sync offset %lli is too large to drift\n",
452		      tod_steering_delta);
453	tod_steering_end = now + (abs(tod_steering_delta) << 15);
454	vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
455	vdso_data->ts_end = tod_steering_end;
456	vdso_data->tb_update_count++;
457	/* Update LPAR offset. */
458	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
459		lpar_offset = qto.tod_epoch_difference;
460	/* Call the TOD clock change notifier. */
461	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
462}
463
 
 
464/*
465 * Apply clock delta to the per-CPU data structures of this CPU.
466 * This is called for each online CPU after the call to clock_sync_global.
467 */
468static void clock_sync_local(unsigned long long delta)
469{
470	/* Add the delta to the clock comparator. */
471	if (S390_lowcore.clock_comparator != clock_comparator_max) {
472		S390_lowcore.clock_comparator += delta;
473		set_clock_comparator(S390_lowcore.clock_comparator);
 
 
 
 
 
 
 
 
 
 
 
 
474	}
475	/* Adjust the last_update_clock time-stamp. */
476	S390_lowcore.last_update_clock += delta;
477}
478
479/* Single threaded workqueue used for stp sync events */
480static struct workqueue_struct *time_sync_wq;
481
482static void __init time_init_wq(void)
 
 
 
483{
484	if (time_sync_wq)
485		return;
486	time_sync_wq = create_singlethread_workqueue("timesync");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487}
488
489struct clock_sync_data {
490	atomic_t cpus;
491	int in_sync;
492	unsigned long long clock_delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493};
494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495/*
496 * Server Time Protocol (STP) code.
497 */
498static bool stp_online;
499static struct stp_sstpi stp_info;
500static void *stp_page;
501
502static void stp_work_fn(struct work_struct *work);
503static DEFINE_MUTEX(stp_work_mutex);
504static DECLARE_WORK(stp_work, stp_work_fn);
505static struct timer_list stp_timer;
506
507static int __init early_parse_stp(char *p)
508{
509	return kstrtobool(p, &stp_online);
 
 
 
 
510}
511early_param("stp", early_parse_stp);
512
513/*
514 * Reset STP attachment.
515 */
516static void __init stp_reset(void)
517{
518	int rc;
519
520	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
521	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
522	if (rc == 0)
523		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
524	else if (stp_online) {
525		pr_warn("The real or virtual hardware system does not provide an STP interface\n");
 
526		free_page((unsigned long) stp_page);
527		stp_page = NULL;
528		stp_online = false;
529	}
530}
531
532static void stp_timeout(struct timer_list *unused)
533{
534	queue_work(time_sync_wq, &stp_work);
535}
536
537static int __init stp_init(void)
538{
539	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
540		return 0;
541	timer_setup(&stp_timer, stp_timeout, 0);
542	time_init_wq();
543	if (!stp_online)
544		return 0;
545	queue_work(time_sync_wq, &stp_work);
546	return 0;
547}
548
549arch_initcall(stp_init);
550
551/*
552 * STP timing alert. There are three causes:
553 * 1) timing status change
554 * 2) link availability change
555 * 3) time control parameter change
556 * In all three cases we are only interested in the clock source state.
557 * If a STP clock source is now available use it.
558 */
559static void stp_timing_alert(struct stp_irq_parm *intparm)
560{
561	if (intparm->tsc || intparm->lac || intparm->tcpc)
562		queue_work(time_sync_wq, &stp_work);
563}
564
565/*
566 * STP sync check machine check. This is called when the timing state
567 * changes from the synchronized state to the unsynchronized state.
568 * After a STP sync check the clock is not in sync. The machine check
569 * is broadcasted to all cpus at the same time.
570 */
571int stp_sync_check(void)
572{
573	disable_sync_clock(NULL);
574	return 1;
575}
576
577/*
578 * STP island condition machine check. This is called when an attached
579 * server  attempts to communicate over an STP link and the servers
580 * have matching CTN ids and have a valid stratum-1 configuration
581 * but the configurations do not match.
582 */
583int stp_island_check(void)
584{
585	disable_sync_clock(NULL);
586	return 1;
587}
588
589void stp_queue_work(void)
590{
591	queue_work(time_sync_wq, &stp_work);
592}
593
 
594static int stp_sync_clock(void *data)
595{
596	struct clock_sync_data *sync = data;
597	unsigned long long clock_delta;
598	static int first;
 
 
599	int rc;
600
 
 
 
 
 
 
 
 
 
 
 
 
601	enable_sync_clock();
602	if (xchg(&first, 1) == 0) {
603		/* Wait until all other cpus entered the sync function. */
604		while (atomic_read(&sync->cpus) != 0)
605			cpu_relax();
606		rc = 0;
607		if (stp_info.todoff[0] || stp_info.todoff[1] ||
608		    stp_info.todoff[2] || stp_info.todoff[3] ||
609		    stp_info.tmd != 2) {
610			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
611					&clock_delta);
612			if (rc == 0) {
613				sync->clock_delta = clock_delta;
614				clock_sync_global(clock_delta);
615				rc = chsc_sstpi(stp_page, &stp_info,
616						sizeof(struct stp_sstpi));
617				if (rc == 0 && stp_info.tmd != 2)
618					rc = -EAGAIN;
619			}
620		}
621		sync->in_sync = rc ? -EAGAIN : 1;
622		xchg(&first, 0);
623	} else {
624		/* Slave */
625		atomic_dec(&sync->cpus);
626		/* Wait for in_sync to be set. */
627		while (READ_ONCE(sync->in_sync) == 0)
628			__udelay(1);
629	}
630	if (sync->in_sync != 1)
631		/* Didn't work. Clear per-cpu in sync bit again. */
632		disable_sync_clock(NULL);
633	/* Apply clock delta to per-CPU fields of this CPU. */
634	clock_sync_local(sync->clock_delta);
635
 
636	return 0;
637}
638
639/*
640 * STP work. Check for the STP state and take over the clock
641 * synchronization if the STP clock source is usable.
642 */
643static void stp_work_fn(struct work_struct *work)
644{
645	struct clock_sync_data stp_sync;
646	int rc;
647
648	/* prevent multiple execution. */
649	mutex_lock(&stp_work_mutex);
650
651	if (!stp_online) {
652		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
653		del_timer_sync(&stp_timer);
654		goto out_unlock;
655	}
656
657	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
658	if (rc)
659		goto out_unlock;
660
661	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
662	if (rc || stp_info.c == 0)
663		goto out_unlock;
664
665	/* Skip synchronization if the clock is already in sync. */
666	if (check_sync_clock())
667		goto out_unlock;
668
669	memset(&stp_sync, 0, sizeof(stp_sync));
670	cpus_read_lock();
671	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
672	stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
673	cpus_read_unlock();
674
675	if (!check_sync_clock())
676		/*
677		 * There is a usable clock but the synchonization failed.
678		 * Retry after a second.
679		 */
680		mod_timer(&stp_timer, jiffies + HZ);
681
682out_unlock:
683	mutex_unlock(&stp_work_mutex);
684}
685
686/*
687 * STP subsys sysfs interface functions
688 */
689static struct bus_type stp_subsys = {
690	.name		= "stp",
691	.dev_name	= "stp",
692};
693
694static ssize_t stp_ctn_id_show(struct device *dev,
695				struct device_attribute *attr,
696				char *buf)
697{
698	if (!stp_online)
699		return -ENODATA;
700	return sprintf(buf, "%016llx\n",
701		       *(unsigned long long *) stp_info.ctnid);
702}
703
704static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
705
706static ssize_t stp_ctn_type_show(struct device *dev,
707				struct device_attribute *attr,
708				char *buf)
709{
710	if (!stp_online)
711		return -ENODATA;
712	return sprintf(buf, "%i\n", stp_info.ctn);
713}
714
715static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
716
717static ssize_t stp_dst_offset_show(struct device *dev,
718				   struct device_attribute *attr,
719				   char *buf)
720{
721	if (!stp_online || !(stp_info.vbits & 0x2000))
722		return -ENODATA;
723	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
724}
725
726static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
727
728static ssize_t stp_leap_seconds_show(struct device *dev,
729					struct device_attribute *attr,
730					char *buf)
731{
732	if (!stp_online || !(stp_info.vbits & 0x8000))
733		return -ENODATA;
734	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
735}
736
737static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
738
739static ssize_t stp_stratum_show(struct device *dev,
740				struct device_attribute *attr,
741				char *buf)
742{
743	if (!stp_online)
744		return -ENODATA;
745	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
746}
747
748static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
749
750static ssize_t stp_time_offset_show(struct device *dev,
751				struct device_attribute *attr,
752				char *buf)
753{
754	if (!stp_online || !(stp_info.vbits & 0x0800))
755		return -ENODATA;
756	return sprintf(buf, "%i\n", (int) stp_info.tto);
757}
758
759static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
760
761static ssize_t stp_time_zone_offset_show(struct device *dev,
762				struct device_attribute *attr,
763				char *buf)
764{
765	if (!stp_online || !(stp_info.vbits & 0x4000))
766		return -ENODATA;
767	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
768}
769
770static DEVICE_ATTR(time_zone_offset, 0400,
771			 stp_time_zone_offset_show, NULL);
772
773static ssize_t stp_timing_mode_show(struct device *dev,
774				struct device_attribute *attr,
775				char *buf)
776{
777	if (!stp_online)
778		return -ENODATA;
779	return sprintf(buf, "%i\n", stp_info.tmd);
780}
781
782static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
783
784static ssize_t stp_timing_state_show(struct device *dev,
785				struct device_attribute *attr,
786				char *buf)
787{
788	if (!stp_online)
789		return -ENODATA;
790	return sprintf(buf, "%i\n", stp_info.tst);
791}
792
793static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
794
795static ssize_t stp_online_show(struct device *dev,
796				struct device_attribute *attr,
797				char *buf)
798{
799	return sprintf(buf, "%i\n", stp_online);
800}
801
802static ssize_t stp_online_store(struct device *dev,
803				struct device_attribute *attr,
804				const char *buf, size_t count)
805{
806	unsigned int value;
807
808	value = simple_strtoul(buf, NULL, 0);
809	if (value != 0 && value != 1)
810		return -EINVAL;
811	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
812		return -EOPNOTSUPP;
813	mutex_lock(&clock_sync_mutex);
814	stp_online = value;
815	if (stp_online)
816		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
817	else
818		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
819	queue_work(time_sync_wq, &stp_work);
820	mutex_unlock(&clock_sync_mutex);
821	return count;
822}
823
824/*
825 * Can't use DEVICE_ATTR because the attribute should be named
826 * stp/online but dev_attr_online already exists in this file ..
827 */
828static struct device_attribute dev_attr_stp_online = {
829	.attr = { .name = "online", .mode = 0600 },
830	.show	= stp_online_show,
831	.store	= stp_online_store,
832};
833
834static struct device_attribute *stp_attributes[] = {
835	&dev_attr_ctn_id,
836	&dev_attr_ctn_type,
837	&dev_attr_dst_offset,
838	&dev_attr_leap_seconds,
839	&dev_attr_stp_online,
840	&dev_attr_stratum,
841	&dev_attr_time_offset,
842	&dev_attr_time_zone_offset,
843	&dev_attr_timing_mode,
844	&dev_attr_timing_state,
845	NULL
846};
847
848static int __init stp_init_sysfs(void)
849{
850	struct device_attribute **attr;
851	int rc;
852
853	rc = subsys_system_register(&stp_subsys, NULL);
854	if (rc)
855		goto out;
856	for (attr = stp_attributes; *attr; attr++) {
857		rc = device_create_file(stp_subsys.dev_root, *attr);
858		if (rc)
859			goto out_unreg;
860	}
861	return 0;
862out_unreg:
863	for (; attr >= stp_attributes; attr--)
864		device_remove_file(stp_subsys.dev_root, *attr);
865	bus_unregister(&stp_subsys);
866out:
867	return rc;
868}
869
870device_initcall(stp_init_sysfs);
v3.1
 
   1/*
   2 *  arch/s390/kernel/time.c
   3 *    Time of day based timer functions.
   4 *
   5 *  S390 version
   6 *    Copyright IBM Corp. 1999, 2008
   7 *    Author(s): Hartmut Penner (hp@de.ibm.com),
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
   9 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
  10 *
  11 *  Derived from "arch/i386/kernel/time.c"
  12 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
  13 */
  14
  15#define KMSG_COMPONENT "time"
  16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  17
  18#include <linux/kernel_stat.h>
  19#include <linux/errno.h>
  20#include <linux/module.h>
  21#include <linux/sched.h>
 
  22#include <linux/kernel.h>
  23#include <linux/param.h>
  24#include <linux/string.h>
  25#include <linux/mm.h>
  26#include <linux/interrupt.h>
  27#include <linux/cpu.h>
  28#include <linux/stop_machine.h>
  29#include <linux/time.h>
  30#include <linux/sysdev.h>
  31#include <linux/delay.h>
  32#include <linux/init.h>
  33#include <linux/smp.h>
  34#include <linux/types.h>
  35#include <linux/profile.h>
  36#include <linux/timex.h>
  37#include <linux/notifier.h>
  38#include <linux/clocksource.h>
  39#include <linux/clockchips.h>
  40#include <linux/gfp.h>
  41#include <linux/kprobes.h>
  42#include <asm/uaccess.h>
 
  43#include <asm/delay.h>
  44#include <asm/div64.h>
  45#include <asm/vdso.h>
  46#include <asm/irq.h>
  47#include <asm/irq_regs.h>
  48#include <asm/timer.h>
  49#include <asm/etr.h>
  50#include <asm/cio.h>
 
  51
  52/* change this if you have some constant time drift */
  53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
  54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
 
 
 
  55
  56u64 sched_clock_base_cc = -1;	/* Force to data section. */
  57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
  58
  59static DEFINE_PER_CPU(struct clock_event_device, comparators);
  60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61/*
  62 * Scheduler clock - returns current time in nanosec units.
  63 */
  64unsigned long long notrace __kprobes sched_clock(void)
  65{
  66	return (get_clock_monotonic() * 125) >> 9;
  67}
 
  68
  69/*
  70 * Monotonic_clock - returns # of nanoseconds passed since time_init()
  71 */
  72unsigned long long monotonic_clock(void)
  73{
  74	return sched_clock();
  75}
  76EXPORT_SYMBOL(monotonic_clock);
  77
  78void tod_to_timeval(__u64 todval, struct timespec *xt)
  79{
  80	unsigned long long sec;
 
 
 
 
 
 
 
 
  81
  82	sec = todval >> 12;
  83	do_div(sec, 1000000);
  84	xt->tv_sec = sec;
  85	todval -= (sec * 1000000) << 12;
  86	xt->tv_nsec = ((todval * 1000) >> 12);
  87}
  88EXPORT_SYMBOL(tod_to_timeval);
  89
  90void clock_comparator_work(void)
  91{
  92	struct clock_event_device *cd;
  93
  94	S390_lowcore.clock_comparator = -1ULL;
  95	set_clock_comparator(S390_lowcore.clock_comparator);
  96	cd = &__get_cpu_var(comparators);
  97	cd->event_handler(cd);
  98}
  99
 100/*
 101 * Fixup the clock comparator.
 102 */
 103static void fixup_clock_comparator(unsigned long long delta)
 104{
 105	/* If nobody is waiting there's nothing to fix. */
 106	if (S390_lowcore.clock_comparator == -1ULL)
 107		return;
 108	S390_lowcore.clock_comparator += delta;
 109	set_clock_comparator(S390_lowcore.clock_comparator);
 110}
 111
 112static int s390_next_event(unsigned long delta,
 113			   struct clock_event_device *evt)
 114{
 115	S390_lowcore.clock_comparator = get_clock() + delta;
 116	set_clock_comparator(S390_lowcore.clock_comparator);
 117	return 0;
 118}
 119
 120static void s390_set_mode(enum clock_event_mode mode,
 121			  struct clock_event_device *evt)
 122{
 123}
 124
 125/*
 126 * Set up lowcore and control register of the current cpu to
 127 * enable TOD clock and clock comparator interrupts.
 128 */
 129void init_cpu_timer(void)
 130{
 131	struct clock_event_device *cd;
 132	int cpu;
 133
 134	S390_lowcore.clock_comparator = -1ULL;
 135	set_clock_comparator(S390_lowcore.clock_comparator);
 136
 137	cpu = smp_processor_id();
 138	cd = &per_cpu(comparators, cpu);
 139	cd->name		= "comparator";
 140	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
 141	cd->mult		= 16777;
 142	cd->shift		= 12;
 143	cd->min_delta_ns	= 1;
 
 144	cd->max_delta_ns	= LONG_MAX;
 
 145	cd->rating		= 400;
 146	cd->cpumask		= cpumask_of(cpu);
 147	cd->set_next_event	= s390_next_event;
 148	cd->set_mode		= s390_set_mode;
 149
 150	clockevents_register_device(cd);
 151
 152	/* Enable clock comparator timer interrupt. */
 153	__ctl_set_bit(0,11);
 154
 155	/* Always allow the timing alert external interrupt. */
 156	__ctl_set_bit(0, 4);
 157}
 158
 159static void clock_comparator_interrupt(unsigned int ext_int_code,
 160				       unsigned int param32,
 161				       unsigned long param64)
 162{
 163	kstat_cpu(smp_processor_id()).irqs[EXTINT_CLK]++;
 164	if (S390_lowcore.clock_comparator == -1ULL)
 165		set_clock_comparator(S390_lowcore.clock_comparator);
 166}
 167
 168static void etr_timing_alert(struct etr_irq_parm *);
 169static void stp_timing_alert(struct stp_irq_parm *);
 170
 171static void timing_alert_interrupt(unsigned int ext_int_code,
 172				   unsigned int param32, unsigned long param64)
 173{
 174	kstat_cpu(smp_processor_id()).irqs[EXTINT_TLA]++;
 175	if (param32 & 0x00c40000)
 176		etr_timing_alert((struct etr_irq_parm *) &param32);
 177	if (param32 & 0x00038000)
 178		stp_timing_alert((struct stp_irq_parm *) &param32);
 179}
 180
 181static void etr_reset(void);
 182static void stp_reset(void);
 183
 184void read_persistent_clock(struct timespec *ts)
 185{
 186	tod_to_timeval(get_clock() - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 187}
 188
 189void read_boot_clock(struct timespec *ts)
 
 190{
 191	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194static cycle_t read_tod_clock(struct clocksource *cs)
 195{
 196	return get_clock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197}
 198
 199static struct clocksource clocksource_tod = {
 200	.name		= "tod",
 201	.rating		= 400,
 202	.read		= read_tod_clock,
 203	.mask		= -1ULL,
 204	.mult		= 1000,
 205	.shift		= 12,
 206	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 207};
 208
 209struct clocksource * __init clocksource_default_clock(void)
 210{
 211	return &clocksource_tod;
 212}
 213
 214void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
 215			struct clocksource *clock, u32 mult)
 216{
 217	if (clock != &clocksource_tod)
 
 
 218		return;
 219
 220	/* Make userspace gettimeofday spin until we're done. */
 221	++vdso_data->tb_update_count;
 222	smp_wmb();
 223	vdso_data->xtime_tod_stamp = clock->cycle_last;
 224	vdso_data->xtime_clock_sec = wall_time->tv_sec;
 225	vdso_data->xtime_clock_nsec = wall_time->tv_nsec;
 226	vdso_data->wtom_clock_sec = wtm->tv_sec;
 227	vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 228	vdso_data->ntp_mult = mult;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	smp_wmb();
 230	++vdso_data->tb_update_count;
 231}
 232
 233extern struct timezone sys_tz;
 234
 235void update_vsyscall_tz(void)
 236{
 237	/* Make userspace gettimeofday spin until we're done. */
 238	++vdso_data->tb_update_count;
 239	smp_wmb();
 240	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 241	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 242	smp_wmb();
 243	++vdso_data->tb_update_count;
 244}
 245
 246/*
 247 * Initialize the TOD clock and the CPU timer of
 248 * the boot cpu.
 249 */
 250void __init time_init(void)
 251{
 252	/* Reset time synchronization interfaces. */
 253	etr_reset();
 254	stp_reset();
 255
 256	/* request the clock comparator external interrupt */
 257	if (register_external_interrupt(0x1004, clock_comparator_interrupt))
 258                panic("Couldn't request external interrupt 0x1004");
 259
 260	/* request the timing alert external interrupt */
 261	if (register_external_interrupt(0x1406, timing_alert_interrupt))
 262		panic("Couldn't request external interrupt 0x1406");
 263
 264	if (clocksource_register(&clocksource_tod) != 0)
 265		panic("Could not register TOD clock source");
 266
 267	/* Enable TOD clock interrupts on the boot cpu. */
 268	init_cpu_timer();
 269
 270	/* Enable cpu timer interrupts on the boot cpu. */
 271	vtime_init();
 272}
 273
 274/*
 275 * The time is "clock". old is what we think the time is.
 276 * Adjust the value by a multiple of jiffies and add the delta to ntp.
 277 * "delay" is an approximation how long the synchronization took. If
 278 * the time correction is positive, then "delay" is subtracted from
 279 * the time difference and only the remaining part is passed to ntp.
 280 */
 281static unsigned long long adjust_time(unsigned long long old,
 282				      unsigned long long clock,
 283				      unsigned long long delay)
 284{
 285	unsigned long long delta, ticks;
 286	struct timex adjust;
 287
 288	if (clock > old) {
 289		/* It is later than we thought. */
 290		delta = ticks = clock - old;
 291		delta = ticks = (delta < delay) ? 0 : delta - delay;
 292		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 293		adjust.offset = ticks * (1000000 / HZ);
 294	} else {
 295		/* It is earlier than we thought. */
 296		delta = ticks = old - clock;
 297		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
 298		delta = -delta;
 299		adjust.offset = -ticks * (1000000 / HZ);
 300	}
 301	sched_clock_base_cc += delta;
 302	if (adjust.offset != 0) {
 303		pr_notice("The ETR interface has adjusted the clock "
 304			  "by %li microseconds\n", adjust.offset);
 305		adjust.modes = ADJ_OFFSET_SINGLESHOT;
 306		do_adjtimex(&adjust);
 307	}
 308	return delta;
 309}
 310
 311static DEFINE_PER_CPU(atomic_t, clock_sync_word);
 312static DEFINE_MUTEX(clock_sync_mutex);
 313static unsigned long clock_sync_flags;
 314
 315#define CLOCK_SYNC_HAS_ETR	0
 316#define CLOCK_SYNC_HAS_STP	1
 317#define CLOCK_SYNC_ETR		2
 318#define CLOCK_SYNC_STP		3
 319
 320/*
 321 * The synchronous get_clock function. It will write the current clock
 322 * value to the clock pointer and return 0 if the clock is in sync with
 323 * the external time source. If the clock mode is local it will return
 324 * -ENOSYS and -EAGAIN if the clock is not in sync with the external
 325 * reference.
 326 */
 327int get_sync_clock(unsigned long long *clock)
 328{
 329	atomic_t *sw_ptr;
 330	unsigned int sw0, sw1;
 331
 332	sw_ptr = &get_cpu_var(clock_sync_word);
 333	sw0 = atomic_read(sw_ptr);
 334	*clock = get_clock();
 335	sw1 = atomic_read(sw_ptr);
 336	put_cpu_var(clock_sync_word);
 337	if (sw0 == sw1 && (sw0 & 0x80000000U))
 338		/* Success: time is in sync. */
 339		return 0;
 340	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
 341	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
 342		return -ENOSYS;
 343	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
 344	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
 345		return -EACCES;
 346	return -EAGAIN;
 347}
 348EXPORT_SYMBOL(get_sync_clock);
 349
 350/*
 351 * Make get_sync_clock return -EAGAIN.
 352 */
 353static void disable_sync_clock(void *dummy)
 354{
 355	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 356	/*
 357	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
 358	 * fail until the sync bit is turned back on. In addition
 359	 * increase the "sequence" counter to avoid the race of an
 360	 * etr event and the complete recovery against get_sync_clock.
 361	 */
 362	atomic_clear_mask(0x80000000, sw_ptr);
 363	atomic_inc(sw_ptr);
 364}
 365
 366/*
 367 * Make get_sync_clock return 0 again.
 368 * Needs to be called from a context disabled for preemption.
 369 */
 370static void enable_sync_clock(void)
 371{
 372	atomic_t *sw_ptr = &__get_cpu_var(clock_sync_word);
 373	atomic_set_mask(0x80000000, sw_ptr);
 374}
 375
 376/*
 377 * Function to check if the clock is in sync.
 378 */
 379static inline int check_sync_clock(void)
 380{
 381	atomic_t *sw_ptr;
 382	int rc;
 383
 384	sw_ptr = &get_cpu_var(clock_sync_word);
 385	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
 386	put_cpu_var(clock_sync_word);
 387	return rc;
 388}
 389
 390/* Single threaded workqueue used for etr and stp sync events */
 391static struct workqueue_struct *time_sync_wq;
 392
 393static void __init time_init_wq(void)
 394{
 395	if (time_sync_wq)
 396		return;
 397	time_sync_wq = create_singlethread_workqueue("timesync");
 398}
 399
 400/*
 401 * External Time Reference (ETR) code.
 402 */
 403static int etr_port0_online;
 404static int etr_port1_online;
 405static int etr_steai_available;
 406
 407static int __init early_parse_etr(char *p)
 408{
 409	if (strncmp(p, "off", 3) == 0)
 410		etr_port0_online = etr_port1_online = 0;
 411	else if (strncmp(p, "port0", 5) == 0)
 412		etr_port0_online = 1;
 413	else if (strncmp(p, "port1", 5) == 0)
 414		etr_port1_online = 1;
 415	else if (strncmp(p, "on", 2) == 0)
 416		etr_port0_online = etr_port1_online = 1;
 417	return 0;
 418}
 419early_param("etr", early_parse_etr);
 420
 421enum etr_event {
 422	ETR_EVENT_PORT0_CHANGE,
 423	ETR_EVENT_PORT1_CHANGE,
 424	ETR_EVENT_PORT_ALERT,
 425	ETR_EVENT_SYNC_CHECK,
 426	ETR_EVENT_SWITCH_LOCAL,
 427	ETR_EVENT_UPDATE,
 428};
 429
 430/*
 431 * Valid bit combinations of the eacr register are (x = don't care):
 432 * e0 e1 dp p0 p1 ea es sl
 433 *  0  0  x  0	0  0  0  0  initial, disabled state
 434 *  0  0  x  0	1  1  0  0  port 1 online
 435 *  0  0  x  1	0  1  0  0  port 0 online
 436 *  0  0  x  1	1  1  0  0  both ports online
 437 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
 438 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
 439 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
 440 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
 441 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
 442 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
 443 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
 444 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
 445 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
 446 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
 447 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
 448 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
 449 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
 450 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
 451 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
 452 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
 453 */
 454static struct etr_eacr etr_eacr;
 455static u64 etr_tolec;			/* time of last eacr update */
 456static struct etr_aib etr_port0;
 457static int etr_port0_uptodate;
 458static struct etr_aib etr_port1;
 459static int etr_port1_uptodate;
 460static unsigned long etr_events;
 461static struct timer_list etr_timer;
 462
 463static void etr_timeout(unsigned long dummy);
 464static void etr_work_fn(struct work_struct *work);
 465static DEFINE_MUTEX(etr_work_mutex);
 466static DECLARE_WORK(etr_work, etr_work_fn);
 467
 468/*
 469 * Reset ETR attachment.
 
 470 */
 471static void etr_reset(void)
 472{
 473	etr_eacr =  (struct etr_eacr) {
 474		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
 475		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
 476		.es = 0, .sl = 0 };
 477	if (etr_setr(&etr_eacr) == 0) {
 478		etr_tolec = get_clock();
 479		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
 480		if (etr_port0_online && etr_port1_online)
 481			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
 482	} else if (etr_port0_online || etr_port1_online) {
 483		pr_warning("The real or virtual hardware system does "
 484			   "not provide an ETR interface\n");
 485		etr_port0_online = etr_port1_online = 0;
 486	}
 487}
 488
 489static int __init etr_init(void)
 490{
 491	struct etr_aib aib;
 492
 493	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
 494		return 0;
 495	time_init_wq();
 496	/* Check if this machine has the steai instruction. */
 497	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
 498		etr_steai_available = 1;
 499	setup_timer(&etr_timer, etr_timeout, 0UL);
 500	if (etr_port0_online) {
 501		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 502		queue_work(time_sync_wq, &etr_work);
 503	}
 504	if (etr_port1_online) {
 505		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 506		queue_work(time_sync_wq, &etr_work);
 507	}
 508	return 0;
 
 
 
 
 
 
 
 
 
 
 509}
 510
 511arch_initcall(etr_init);
 512
 513/*
 514 * Two sorts of ETR machine checks. The architecture reads:
 515 * "When a machine-check niterruption occurs and if a switch-to-local or
 516 *  ETR-sync-check interrupt request is pending but disabled, this pending
 517 *  disabled interruption request is indicated and is cleared".
 518 * Which means that we can get etr_switch_to_local events from the machine
 519 * check handler although the interruption condition is disabled. Lovely..
 520 */
 521
 522/*
 523 * Switch to local machine check. This is called when the last usable
 524 * ETR port goes inactive. After switch to local the clock is not in sync.
 525 */
 526void etr_switch_to_local(void)
 527{
 528	if (!etr_eacr.sl)
 529		return;
 530	disable_sync_clock(NULL);
 531	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
 532		etr_eacr.es = etr_eacr.sl = 0;
 533		etr_setr(&etr_eacr);
 534		queue_work(time_sync_wq, &etr_work);
 535	}
 
 
 536}
 537
 538/*
 539 * ETR sync check machine check. This is called when the ETR OTE and the
 540 * local clock OTE are farther apart than the ETR sync check tolerance.
 541 * After a ETR sync check the clock is not in sync. The machine check
 542 * is broadcasted to all cpus at the same time.
 543 */
 544void etr_sync_check(void)
 545{
 546	if (!etr_eacr.es)
 547		return;
 548	disable_sync_clock(NULL);
 549	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
 550		etr_eacr.es = 0;
 551		etr_setr(&etr_eacr);
 552		queue_work(time_sync_wq, &etr_work);
 553	}
 554}
 555
 556/*
 557 * ETR timing alert. There are two causes:
 558 * 1) port state change, check the usability of the port
 559 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
 560 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
 561 *    or ETR-data word 4 (edf4) has changed.
 562 */
 563static void etr_timing_alert(struct etr_irq_parm *intparm)
 564{
 565	if (intparm->pc0)
 566		/* ETR port 0 state change. */
 567		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
 568	if (intparm->pc1)
 569		/* ETR port 1 state change. */
 570		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
 571	if (intparm->eai)
 572		/*
 573		 * ETR port alert on either port 0, 1 or both.
 574		 * Both ports are not up-to-date now.
 575		 */
 576		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
 577	queue_work(time_sync_wq, &etr_work);
 578}
 579
 580static void etr_timeout(unsigned long dummy)
 581{
 582	set_bit(ETR_EVENT_UPDATE, &etr_events);
 583	queue_work(time_sync_wq, &etr_work);
 584}
 585
 586/*
 587 * Check if the etr mode is pss.
 588 */
 589static inline int etr_mode_is_pps(struct etr_eacr eacr)
 590{
 591	return eacr.es && !eacr.sl;
 592}
 593
 594/*
 595 * Check if the etr mode is etr.
 596 */
 597static inline int etr_mode_is_etr(struct etr_eacr eacr)
 598{
 599	return eacr.es && eacr.sl;
 600}
 601
 602/*
 603 * Check if the port can be used for TOD synchronization.
 604 * For PPS mode the port has to receive OTEs. For ETR mode
 605 * the port has to receive OTEs, the ETR stepping bit has to
 606 * be zero and the validity bits for data frame 1, 2, and 3
 607 * have to be 1.
 608 */
 609static int etr_port_valid(struct etr_aib *aib, int port)
 610{
 611	unsigned int psc;
 612
 613	/* Check that this port is receiving OTEs. */
 614	if (aib->tsp == 0)
 615		return 0;
 616
 617	psc = port ? aib->esw.psc1 : aib->esw.psc0;
 618	if (psc == etr_lpsc_pps_mode)
 619		return 1;
 620	if (psc == etr_lpsc_operational_step)
 621		return !aib->esw.y && aib->slsw.v1 &&
 622			aib->slsw.v2 && aib->slsw.v3;
 623	return 0;
 624}
 625
 626/*
 627 * Check if two ports are on the same network.
 628 */
 629static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
 630{
 631	// FIXME: any other fields we have to compare?
 632	return aib1->edf1.net_id == aib2->edf1.net_id;
 633}
 634
 635/*
 636 * Wrapper for etr_stei that converts physical port states
 637 * to logical port states to be consistent with the output
 638 * of stetr (see etr_psc vs. etr_lpsc).
 639 */
 640static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
 641{
 642	BUG_ON(etr_steai(aib, func) != 0);
 643	/* Convert port state to logical port state. */
 644	if (aib->esw.psc0 == 1)
 645		aib->esw.psc0 = 2;
 646	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
 647		aib->esw.psc0 = 1;
 648	if (aib->esw.psc1 == 1)
 649		aib->esw.psc1 = 2;
 650	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
 651		aib->esw.psc1 = 1;
 652}
 653
 654/*
 655 * Check if the aib a2 is still connected to the same attachment as
 656 * aib a1, the etv values differ by one and a2 is valid.
 657 */
 658static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
 659{
 660	int state_a1, state_a2;
 661
 662	/* Paranoia check: e0/e1 should better be the same. */
 663	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
 664	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
 665		return 0;
 666
 667	/* Still connected to the same etr ? */
 668	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
 669	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
 670	if (state_a1 == etr_lpsc_operational_step) {
 671		if (state_a2 != etr_lpsc_operational_step ||
 672		    a1->edf1.net_id != a2->edf1.net_id ||
 673		    a1->edf1.etr_id != a2->edf1.etr_id ||
 674		    a1->edf1.etr_pn != a2->edf1.etr_pn)
 675			return 0;
 676	} else if (state_a2 != etr_lpsc_pps_mode)
 677		return 0;
 678
 679	/* The ETV value of a2 needs to be ETV of a1 + 1. */
 680	if (a1->edf2.etv + 1 != a2->edf2.etv)
 681		return 0;
 682
 683	if (!etr_port_valid(a2, p))
 684		return 0;
 685
 686	return 1;
 687}
 688
 689struct clock_sync_data {
 690	atomic_t cpus;
 691	int in_sync;
 692	unsigned long long fixup_cc;
 693	int etr_port;
 694	struct etr_aib *etr_aib;
 695};
 696
 697static void clock_sync_cpu(struct clock_sync_data *sync)
 698{
 699	atomic_dec(&sync->cpus);
 700	enable_sync_clock();
 701	/*
 702	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
 703	 * is called on all other cpus while the TOD clocks is stopped.
 704	 * __udelay will stop the cpu on an enabled wait psw until the
 705	 * TOD is running again.
 706	 */
 707	while (sync->in_sync == 0) {
 708		__udelay(1);
 709		/*
 710		 * A different cpu changes *in_sync. Therefore use
 711		 * barrier() to force memory access.
 712		 */
 713		barrier();
 714	}
 715	if (sync->in_sync != 1)
 716		/* Didn't work. Clear per-cpu in sync bit again. */
 717		disable_sync_clock(NULL);
 718	/*
 719	 * This round of TOD syncing is done. Set the clock comparator
 720	 * to the next tick and let the processor continue.
 721	 */
 722	fixup_clock_comparator(sync->fixup_cc);
 723}
 724
 725/*
 726 * Sync the TOD clock using the port referred to by aibp. This port
 727 * has to be enabled and the other port has to be disabled. The
 728 * last eacr update has to be more than 1.6 seconds in the past.
 729 */
 730static int etr_sync_clock(void *data)
 731{
 732	static int first;
 733	unsigned long long clock, old_clock, delay, delta;
 734	struct clock_sync_data *etr_sync;
 735	struct etr_aib *sync_port, *aib;
 736	int port;
 737	int rc;
 738
 739	etr_sync = data;
 740
 741	if (xchg(&first, 1) == 1) {
 742		/* Slave */
 743		clock_sync_cpu(etr_sync);
 744		return 0;
 745	}
 746
 747	/* Wait until all other cpus entered the sync function. */
 748	while (atomic_read(&etr_sync->cpus) != 0)
 749		cpu_relax();
 750
 751	port = etr_sync->etr_port;
 752	aib = etr_sync->etr_aib;
 753	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 754	enable_sync_clock();
 755
 756	/* Set clock to next OTE. */
 757	__ctl_set_bit(14, 21);
 758	__ctl_set_bit(0, 29);
 759	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
 760	old_clock = get_clock();
 761	if (set_clock(clock) == 0) {
 762		__udelay(1);	/* Wait for the clock to start. */
 763		__ctl_clear_bit(0, 29);
 764		__ctl_clear_bit(14, 21);
 765		etr_stetr(aib);
 766		/* Adjust Linux timing variables. */
 767		delay = (unsigned long long)
 768			(aib->edf2.etv - sync_port->edf2.etv) << 32;
 769		delta = adjust_time(old_clock, clock, delay);
 770		etr_sync->fixup_cc = delta;
 771		fixup_clock_comparator(delta);
 772		/* Verify that the clock is properly set. */
 773		if (!etr_aib_follows(sync_port, aib, port)) {
 774			/* Didn't work. */
 775			disable_sync_clock(NULL);
 776			etr_sync->in_sync = -EAGAIN;
 777			rc = -EAGAIN;
 778		} else {
 779			etr_sync->in_sync = 1;
 780			rc = 0;
 781		}
 782	} else {
 783		/* Could not set the clock ?!? */
 784		__ctl_clear_bit(0, 29);
 785		__ctl_clear_bit(14, 21);
 786		disable_sync_clock(NULL);
 787		etr_sync->in_sync = -EAGAIN;
 788		rc = -EAGAIN;
 789	}
 790	xchg(&first, 0);
 791	return rc;
 792}
 793
 794static int etr_sync_clock_stop(struct etr_aib *aib, int port)
 795{
 796	struct clock_sync_data etr_sync;
 797	struct etr_aib *sync_port;
 798	int follows;
 799	int rc;
 800
 801	/* Check if the current aib is adjacent to the sync port aib. */
 802	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
 803	follows = etr_aib_follows(sync_port, aib, port);
 804	memcpy(sync_port, aib, sizeof(*aib));
 805	if (!follows)
 806		return -EAGAIN;
 807	memset(&etr_sync, 0, sizeof(etr_sync));
 808	etr_sync.etr_aib = aib;
 809	etr_sync.etr_port = port;
 810	get_online_cpus();
 811	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
 812	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
 813	put_online_cpus();
 814	return rc;
 815}
 816
 817/*
 818 * Handle the immediate effects of the different events.
 819 * The port change event is used for online/offline changes.
 820 */
 821static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
 822{
 823	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
 824		eacr.es = 0;
 825	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
 826		eacr.es = eacr.sl = 0;
 827	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
 828		etr_port0_uptodate = etr_port1_uptodate = 0;
 829
 830	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
 831		if (eacr.e0)
 832			/*
 833			 * Port change of an enabled port. We have to
 834			 * assume that this can have caused an stepping
 835			 * port switch.
 836			 */
 837			etr_tolec = get_clock();
 838		eacr.p0 = etr_port0_online;
 839		if (!eacr.p0)
 840			eacr.e0 = 0;
 841		etr_port0_uptodate = 0;
 842	}
 843	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
 844		if (eacr.e1)
 845			/*
 846			 * Port change of an enabled port. We have to
 847			 * assume that this can have caused an stepping
 848			 * port switch.
 849			 */
 850			etr_tolec = get_clock();
 851		eacr.p1 = etr_port1_online;
 852		if (!eacr.p1)
 853			eacr.e1 = 0;
 854		etr_port1_uptodate = 0;
 855	}
 856	clear_bit(ETR_EVENT_UPDATE, &etr_events);
 857	return eacr;
 858}
 859
 860/*
 861 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
 862 * one of the ports needs an update.
 863 */
 864static void etr_set_tolec_timeout(unsigned long long now)
 865{
 866	unsigned long micros;
 867
 868	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
 869	    (!etr_eacr.p1 || etr_port1_uptodate))
 870		return;
 871	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
 872	micros = (micros > 1600000) ? 0 : 1600000 - micros;
 873	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
 874}
 875
 876/*
 877 * Set up a time that expires after 1/2 second.
 878 */
 879static void etr_set_sync_timeout(void)
 880{
 881	mod_timer(&etr_timer, jiffies + HZ/2);
 882}
 883
 884/*
 885 * Update the aib information for one or both ports.
 886 */
 887static struct etr_eacr etr_handle_update(struct etr_aib *aib,
 888					 struct etr_eacr eacr)
 889{
 890	/* With both ports disabled the aib information is useless. */
 891	if (!eacr.e0 && !eacr.e1)
 892		return eacr;
 893
 894	/* Update port0 or port1 with aib stored in etr_work_fn. */
 895	if (aib->esw.q == 0) {
 896		/* Information for port 0 stored. */
 897		if (eacr.p0 && !etr_port0_uptodate) {
 898			etr_port0 = *aib;
 899			if (etr_port0_online)
 900				etr_port0_uptodate = 1;
 901		}
 902	} else {
 903		/* Information for port 1 stored. */
 904		if (eacr.p1 && !etr_port1_uptodate) {
 905			etr_port1 = *aib;
 906			if (etr_port0_online)
 907				etr_port1_uptodate = 1;
 908		}
 909	}
 910
 911	/*
 912	 * Do not try to get the alternate port aib if the clock
 913	 * is not in sync yet.
 914	 */
 915	if (!eacr.es || !check_sync_clock())
 916		return eacr;
 917
 918	/*
 919	 * If steai is available we can get the information about
 920	 * the other port immediately. If only stetr is available the
 921	 * data-port bit toggle has to be used.
 922	 */
 923	if (etr_steai_available) {
 924		if (eacr.p0 && !etr_port0_uptodate) {
 925			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
 926			etr_port0_uptodate = 1;
 927		}
 928		if (eacr.p1 && !etr_port1_uptodate) {
 929			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
 930			etr_port1_uptodate = 1;
 931		}
 932	} else {
 933		/*
 934		 * One port was updated above, if the other
 935		 * port is not uptodate toggle dp bit.
 936		 */
 937		if ((eacr.p0 && !etr_port0_uptodate) ||
 938		    (eacr.p1 && !etr_port1_uptodate))
 939			eacr.dp ^= 1;
 940		else
 941			eacr.dp = 0;
 942	}
 943	return eacr;
 944}
 945
 946/*
 947 * Write new etr control register if it differs from the current one.
 948 * Return 1 if etr_tolec has been updated as well.
 949 */
 950static void etr_update_eacr(struct etr_eacr eacr)
 951{
 952	int dp_changed;
 953
 954	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
 955		/* No change, return. */
 956		return;
 957	/*
 958	 * The disable of an active port of the change of the data port
 959	 * bit can/will cause a change in the data port.
 960	 */
 961	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
 962		(etr_eacr.dp ^ eacr.dp) != 0;
 963	etr_eacr = eacr;
 964	etr_setr(&etr_eacr);
 965	if (dp_changed)
 966		etr_tolec = get_clock();
 967}
 968
 969/*
 970 * ETR work. In this function you'll find the main logic. In
 971 * particular this is the only function that calls etr_update_eacr(),
 972 * it "controls" the etr control register.
 973 */
 974static void etr_work_fn(struct work_struct *work)
 975{
 976	unsigned long long now;
 977	struct etr_eacr eacr;
 978	struct etr_aib aib;
 979	int sync_port;
 980
 981	/* prevent multiple execution. */
 982	mutex_lock(&etr_work_mutex);
 983
 984	/* Create working copy of etr_eacr. */
 985	eacr = etr_eacr;
 986
 987	/* Check for the different events and their immediate effects. */
 988	eacr = etr_handle_events(eacr);
 989
 990	/* Check if ETR is supposed to be active. */
 991	eacr.ea = eacr.p0 || eacr.p1;
 992	if (!eacr.ea) {
 993		/* Both ports offline. Reset everything. */
 994		eacr.dp = eacr.es = eacr.sl = 0;
 995		on_each_cpu(disable_sync_clock, NULL, 1);
 996		del_timer_sync(&etr_timer);
 997		etr_update_eacr(eacr);
 998		goto out_unlock;
 999	}
1000
1001	/* Store aib to get the current ETR status word. */
1002	BUG_ON(etr_stetr(&aib) != 0);
1003	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1004	now = get_clock();
1005
1006	/*
1007	 * Update the port information if the last stepping port change
1008	 * or data port change is older than 1.6 seconds.
1009	 */
1010	if (now >= etr_tolec + (1600000 << 12))
1011		eacr = etr_handle_update(&aib, eacr);
1012
1013	/*
1014	 * Select ports to enable. The preferred synchronization mode is PPS.
1015	 * If a port can be enabled depends on a number of things:
1016	 * 1) The port needs to be online and uptodate. A port is not
1017	 *    disabled just because it is not uptodate, but it is only
1018	 *    enabled if it is uptodate.
1019	 * 2) The port needs to have the same mode (pps / etr).
1020	 * 3) The port needs to be usable -> etr_port_valid() == 1
1021	 * 4) To enable the second port the clock needs to be in sync.
1022	 * 5) If both ports are useable and are ETR ports, the network id
1023	 *    has to be the same.
1024	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1025	 */
1026	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1027		eacr.sl = 0;
1028		eacr.e0 = 1;
1029		if (!etr_mode_is_pps(etr_eacr))
1030			eacr.es = 0;
1031		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1032			eacr.e1 = 0;
1033		// FIXME: uptodate checks ?
1034		else if (etr_port0_uptodate && etr_port1_uptodate)
1035			eacr.e1 = 1;
1036		sync_port = (etr_port0_uptodate &&
1037			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1038	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1039		eacr.sl = 0;
1040		eacr.e0 = 0;
1041		eacr.e1 = 1;
1042		if (!etr_mode_is_pps(etr_eacr))
1043			eacr.es = 0;
1044		sync_port = (etr_port1_uptodate &&
1045			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1046	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1047		eacr.sl = 1;
1048		eacr.e0 = 1;
1049		if (!etr_mode_is_etr(etr_eacr))
1050			eacr.es = 0;
1051		if (!eacr.es || !eacr.p1 ||
1052		    aib.esw.psc1 != etr_lpsc_operational_alt)
1053			eacr.e1 = 0;
1054		else if (etr_port0_uptodate && etr_port1_uptodate &&
1055			 etr_compare_network(&etr_port0, &etr_port1))
1056			eacr.e1 = 1;
1057		sync_port = (etr_port0_uptodate &&
1058			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1059	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1060		eacr.sl = 1;
1061		eacr.e0 = 0;
1062		eacr.e1 = 1;
1063		if (!etr_mode_is_etr(etr_eacr))
1064			eacr.es = 0;
1065		sync_port = (etr_port1_uptodate &&
1066			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1067	} else {
1068		/* Both ports not usable. */
1069		eacr.es = eacr.sl = 0;
1070		sync_port = -1;
1071	}
1072
1073	/*
1074	 * If the clock is in sync just update the eacr and return.
1075	 * If there is no valid sync port wait for a port update.
1076	 */
1077	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1078		etr_update_eacr(eacr);
1079		etr_set_tolec_timeout(now);
1080		goto out_unlock;
1081	}
1082
1083	/*
1084	 * Prepare control register for clock syncing
1085	 * (reset data port bit, set sync check control.
1086	 */
1087	eacr.dp = 0;
1088	eacr.es = 1;
1089
1090	/*
1091	 * Update eacr and try to synchronize the clock. If the update
1092	 * of eacr caused a stepping port switch (or if we have to
1093	 * assume that a stepping port switch has occurred) or the
1094	 * clock syncing failed, reset the sync check control bit
1095	 * and set up a timer to try again after 0.5 seconds
1096	 */
1097	etr_update_eacr(eacr);
1098	if (now < etr_tolec + (1600000 << 12) ||
1099	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1100		/* Sync failed. Try again in 1/2 second. */
1101		eacr.es = 0;
1102		etr_update_eacr(eacr);
1103		etr_set_sync_timeout();
1104	} else
1105		etr_set_tolec_timeout(now);
1106out_unlock:
1107	mutex_unlock(&etr_work_mutex);
1108}
1109
1110/*
1111 * Sysfs interface functions
1112 */
1113static struct sysdev_class etr_sysclass = {
1114	.name	= "etr",
1115};
1116
1117static struct sys_device etr_port0_dev = {
1118	.id	= 0,
1119	.cls	= &etr_sysclass,
1120};
1121
1122static struct sys_device etr_port1_dev = {
1123	.id	= 1,
1124	.cls	= &etr_sysclass,
1125};
1126
1127/*
1128 * ETR class attributes
1129 */
1130static ssize_t etr_stepping_port_show(struct sysdev_class *class,
1131					struct sysdev_class_attribute *attr,
1132					char *buf)
1133{
1134	return sprintf(buf, "%i\n", etr_port0.esw.p);
1135}
1136
1137static SYSDEV_CLASS_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1138
1139static ssize_t etr_stepping_mode_show(struct sysdev_class *class,
1140				      	struct sysdev_class_attribute *attr,
1141					char *buf)
1142{
1143	char *mode_str;
1144
1145	if (etr_mode_is_pps(etr_eacr))
1146		mode_str = "pps";
1147	else if (etr_mode_is_etr(etr_eacr))
1148		mode_str = "etr";
1149	else
1150		mode_str = "local";
1151	return sprintf(buf, "%s\n", mode_str);
1152}
1153
1154static SYSDEV_CLASS_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1155
1156/*
1157 * ETR port attributes
1158 */
1159static inline struct etr_aib *etr_aib_from_dev(struct sys_device *dev)
1160{
1161	if (dev == &etr_port0_dev)
1162		return etr_port0_online ? &etr_port0 : NULL;
1163	else
1164		return etr_port1_online ? &etr_port1 : NULL;
1165}
1166
1167static ssize_t etr_online_show(struct sys_device *dev,
1168				struct sysdev_attribute *attr,
1169				char *buf)
1170{
1171	unsigned int online;
1172
1173	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1174	return sprintf(buf, "%i\n", online);
1175}
1176
1177static ssize_t etr_online_store(struct sys_device *dev,
1178				struct sysdev_attribute *attr,
1179				const char *buf, size_t count)
1180{
1181	unsigned int value;
1182
1183	value = simple_strtoul(buf, NULL, 0);
1184	if (value != 0 && value != 1)
1185		return -EINVAL;
1186	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1187		return -EOPNOTSUPP;
1188	mutex_lock(&clock_sync_mutex);
1189	if (dev == &etr_port0_dev) {
1190		if (etr_port0_online == value)
1191			goto out;	/* Nothing to do. */
1192		etr_port0_online = value;
1193		if (etr_port0_online && etr_port1_online)
1194			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1195		else
1196			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1197		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1198		queue_work(time_sync_wq, &etr_work);
1199	} else {
1200		if (etr_port1_online == value)
1201			goto out;	/* Nothing to do. */
1202		etr_port1_online = value;
1203		if (etr_port0_online && etr_port1_online)
1204			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1205		else
1206			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1207		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1208		queue_work(time_sync_wq, &etr_work);
1209	}
1210out:
1211	mutex_unlock(&clock_sync_mutex);
1212	return count;
1213}
1214
1215static SYSDEV_ATTR(online, 0600, etr_online_show, etr_online_store);
1216
1217static ssize_t etr_stepping_control_show(struct sys_device *dev,
1218					struct sysdev_attribute *attr,
1219					char *buf)
1220{
1221	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1222		       etr_eacr.e0 : etr_eacr.e1);
1223}
1224
1225static SYSDEV_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1226
1227static ssize_t etr_mode_code_show(struct sys_device *dev,
1228				struct sysdev_attribute *attr, char *buf)
1229{
1230	if (!etr_port0_online && !etr_port1_online)
1231		/* Status word is not uptodate if both ports are offline. */
1232		return -ENODATA;
1233	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1234		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1235}
1236
1237static SYSDEV_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1238
1239static ssize_t etr_untuned_show(struct sys_device *dev,
1240				struct sysdev_attribute *attr, char *buf)
1241{
1242	struct etr_aib *aib = etr_aib_from_dev(dev);
1243
1244	if (!aib || !aib->slsw.v1)
1245		return -ENODATA;
1246	return sprintf(buf, "%i\n", aib->edf1.u);
1247}
1248
1249static SYSDEV_ATTR(untuned, 0400, etr_untuned_show, NULL);
1250
1251static ssize_t etr_network_id_show(struct sys_device *dev,
1252				struct sysdev_attribute *attr, char *buf)
1253{
1254	struct etr_aib *aib = etr_aib_from_dev(dev);
1255
1256	if (!aib || !aib->slsw.v1)
1257		return -ENODATA;
1258	return sprintf(buf, "%i\n", aib->edf1.net_id);
1259}
1260
1261static SYSDEV_ATTR(network, 0400, etr_network_id_show, NULL);
1262
1263static ssize_t etr_id_show(struct sys_device *dev,
1264			struct sysdev_attribute *attr, char *buf)
1265{
1266	struct etr_aib *aib = etr_aib_from_dev(dev);
1267
1268	if (!aib || !aib->slsw.v1)
1269		return -ENODATA;
1270	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1271}
1272
1273static SYSDEV_ATTR(id, 0400, etr_id_show, NULL);
1274
1275static ssize_t etr_port_number_show(struct sys_device *dev,
1276			struct sysdev_attribute *attr, char *buf)
1277{
1278	struct etr_aib *aib = etr_aib_from_dev(dev);
1279
1280	if (!aib || !aib->slsw.v1)
1281		return -ENODATA;
1282	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1283}
1284
1285static SYSDEV_ATTR(port, 0400, etr_port_number_show, NULL);
1286
1287static ssize_t etr_coupled_show(struct sys_device *dev,
1288			struct sysdev_attribute *attr, char *buf)
1289{
1290	struct etr_aib *aib = etr_aib_from_dev(dev);
1291
1292	if (!aib || !aib->slsw.v3)
1293		return -ENODATA;
1294	return sprintf(buf, "%i\n", aib->edf3.c);
1295}
1296
1297static SYSDEV_ATTR(coupled, 0400, etr_coupled_show, NULL);
1298
1299static ssize_t etr_local_time_show(struct sys_device *dev,
1300			struct sysdev_attribute *attr, char *buf)
1301{
1302	struct etr_aib *aib = etr_aib_from_dev(dev);
1303
1304	if (!aib || !aib->slsw.v3)
1305		return -ENODATA;
1306	return sprintf(buf, "%i\n", aib->edf3.blto);
1307}
1308
1309static SYSDEV_ATTR(local_time, 0400, etr_local_time_show, NULL);
1310
1311static ssize_t etr_utc_offset_show(struct sys_device *dev,
1312			struct sysdev_attribute *attr, char *buf)
1313{
1314	struct etr_aib *aib = etr_aib_from_dev(dev);
1315
1316	if (!aib || !aib->slsw.v3)
1317		return -ENODATA;
1318	return sprintf(buf, "%i\n", aib->edf3.buo);
1319}
1320
1321static SYSDEV_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1322
1323static struct sysdev_attribute *etr_port_attributes[] = {
1324	&attr_online,
1325	&attr_stepping_control,
1326	&attr_state_code,
1327	&attr_untuned,
1328	&attr_network,
1329	&attr_id,
1330	&attr_port,
1331	&attr_coupled,
1332	&attr_local_time,
1333	&attr_utc_offset,
1334	NULL
1335};
1336
1337static int __init etr_register_port(struct sys_device *dev)
1338{
1339	struct sysdev_attribute **attr;
1340	int rc;
1341
1342	rc = sysdev_register(dev);
1343	if (rc)
1344		goto out;
1345	for (attr = etr_port_attributes; *attr; attr++) {
1346		rc = sysdev_create_file(dev, *attr);
1347		if (rc)
1348			goto out_unreg;
1349	}
1350	return 0;
1351out_unreg:
1352	for (; attr >= etr_port_attributes; attr--)
1353		sysdev_remove_file(dev, *attr);
1354	sysdev_unregister(dev);
1355out:
1356	return rc;
1357}
1358
1359static void __init etr_unregister_port(struct sys_device *dev)
1360{
1361	struct sysdev_attribute **attr;
1362
1363	for (attr = etr_port_attributes; *attr; attr++)
1364		sysdev_remove_file(dev, *attr);
1365	sysdev_unregister(dev);
1366}
1367
1368static int __init etr_init_sysfs(void)
1369{
1370	int rc;
1371
1372	rc = sysdev_class_register(&etr_sysclass);
1373	if (rc)
1374		goto out;
1375	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_port);
1376	if (rc)
1377		goto out_unreg_class;
1378	rc = sysdev_class_create_file(&etr_sysclass, &attr_stepping_mode);
1379	if (rc)
1380		goto out_remove_stepping_port;
1381	rc = etr_register_port(&etr_port0_dev);
1382	if (rc)
1383		goto out_remove_stepping_mode;
1384	rc = etr_register_port(&etr_port1_dev);
1385	if (rc)
1386		goto out_remove_port0;
1387	return 0;
1388
1389out_remove_port0:
1390	etr_unregister_port(&etr_port0_dev);
1391out_remove_stepping_mode:
1392	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_mode);
1393out_remove_stepping_port:
1394	sysdev_class_remove_file(&etr_sysclass, &attr_stepping_port);
1395out_unreg_class:
1396	sysdev_class_unregister(&etr_sysclass);
1397out:
1398	return rc;
1399}
1400
1401device_initcall(etr_init_sysfs);
1402
1403/*
1404 * Server Time Protocol (STP) code.
1405 */
1406static int stp_online;
1407static struct stp_sstpi stp_info;
1408static void *stp_page;
1409
1410static void stp_work_fn(struct work_struct *work);
1411static DEFINE_MUTEX(stp_work_mutex);
1412static DECLARE_WORK(stp_work, stp_work_fn);
1413static struct timer_list stp_timer;
1414
1415static int __init early_parse_stp(char *p)
1416{
1417	if (strncmp(p, "off", 3) == 0)
1418		stp_online = 0;
1419	else if (strncmp(p, "on", 2) == 0)
1420		stp_online = 1;
1421	return 0;
1422}
1423early_param("stp", early_parse_stp);
1424
1425/*
1426 * Reset STP attachment.
1427 */
1428static void __init stp_reset(void)
1429{
1430	int rc;
1431
1432	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1433	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1434	if (rc == 0)
1435		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1436	else if (stp_online) {
1437		pr_warning("The real or virtual hardware system does "
1438			   "not provide an STP interface\n");
1439		free_page((unsigned long) stp_page);
1440		stp_page = NULL;
1441		stp_online = 0;
1442	}
1443}
1444
1445static void stp_timeout(unsigned long dummy)
1446{
1447	queue_work(time_sync_wq, &stp_work);
1448}
1449
1450static int __init stp_init(void)
1451{
1452	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1453		return 0;
1454	setup_timer(&stp_timer, stp_timeout, 0UL);
1455	time_init_wq();
1456	if (!stp_online)
1457		return 0;
1458	queue_work(time_sync_wq, &stp_work);
1459	return 0;
1460}
1461
1462arch_initcall(stp_init);
1463
1464/*
1465 * STP timing alert. There are three causes:
1466 * 1) timing status change
1467 * 2) link availability change
1468 * 3) time control parameter change
1469 * In all three cases we are only interested in the clock source state.
1470 * If a STP clock source is now available use it.
1471 */
1472static void stp_timing_alert(struct stp_irq_parm *intparm)
1473{
1474	if (intparm->tsc || intparm->lac || intparm->tcpc)
1475		queue_work(time_sync_wq, &stp_work);
1476}
1477
1478/*
1479 * STP sync check machine check. This is called when the timing state
1480 * changes from the synchronized state to the unsynchronized state.
1481 * After a STP sync check the clock is not in sync. The machine check
1482 * is broadcasted to all cpus at the same time.
1483 */
1484void stp_sync_check(void)
1485{
1486	disable_sync_clock(NULL);
1487	queue_work(time_sync_wq, &stp_work);
1488}
1489
1490/*
1491 * STP island condition machine check. This is called when an attached
1492 * server  attempts to communicate over an STP link and the servers
1493 * have matching CTN ids and have a valid stratum-1 configuration
1494 * but the configurations do not match.
1495 */
1496void stp_island_check(void)
1497{
1498	disable_sync_clock(NULL);
 
 
 
 
 
1499	queue_work(time_sync_wq, &stp_work);
1500}
1501
1502
1503static int stp_sync_clock(void *data)
1504{
 
 
1505	static int first;
1506	unsigned long long old_clock, delta;
1507	struct clock_sync_data *stp_sync;
1508	int rc;
1509
1510	stp_sync = data;
1511
1512	if (xchg(&first, 1) == 1) {
1513		/* Slave */
1514		clock_sync_cpu(stp_sync);
1515		return 0;
1516	}
1517
1518	/* Wait until all other cpus entered the sync function. */
1519	while (atomic_read(&stp_sync->cpus) != 0)
1520		cpu_relax();
1521
1522	enable_sync_clock();
1523
1524	rc = 0;
1525	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1526	    stp_info.todoff[2] || stp_info.todoff[3] ||
1527	    stp_info.tmd != 2) {
1528		old_clock = get_clock();
1529		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1530		if (rc == 0) {
1531			delta = adjust_time(old_clock, get_clock(), 0);
1532			fixup_clock_comparator(delta);
1533			rc = chsc_sstpi(stp_page, &stp_info,
1534					sizeof(struct stp_sstpi));
1535			if (rc == 0 && stp_info.tmd != 2)
1536				rc = -EAGAIN;
 
 
 
 
1537		}
 
 
 
 
 
 
 
 
1538	}
1539	if (rc) {
 
1540		disable_sync_clock(NULL);
1541		stp_sync->in_sync = -EAGAIN;
1542	} else
1543		stp_sync->in_sync = 1;
1544	xchg(&first, 0);
1545	return 0;
1546}
1547
1548/*
1549 * STP work. Check for the STP state and take over the clock
1550 * synchronization if the STP clock source is usable.
1551 */
1552static void stp_work_fn(struct work_struct *work)
1553{
1554	struct clock_sync_data stp_sync;
1555	int rc;
1556
1557	/* prevent multiple execution. */
1558	mutex_lock(&stp_work_mutex);
1559
1560	if (!stp_online) {
1561		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1562		del_timer_sync(&stp_timer);
1563		goto out_unlock;
1564	}
1565
1566	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1567	if (rc)
1568		goto out_unlock;
1569
1570	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1571	if (rc || stp_info.c == 0)
1572		goto out_unlock;
1573
1574	/* Skip synchronization if the clock is already in sync. */
1575	if (check_sync_clock())
1576		goto out_unlock;
1577
1578	memset(&stp_sync, 0, sizeof(stp_sync));
1579	get_online_cpus();
1580	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1581	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1582	put_online_cpus();
1583
1584	if (!check_sync_clock())
1585		/*
1586		 * There is a usable clock but the synchonization failed.
1587		 * Retry after a second.
1588		 */
1589		mod_timer(&stp_timer, jiffies + HZ);
1590
1591out_unlock:
1592	mutex_unlock(&stp_work_mutex);
1593}
1594
1595/*
1596 * STP class sysfs interface functions
1597 */
1598static struct sysdev_class stp_sysclass = {
1599	.name	= "stp",
 
1600};
1601
1602static ssize_t stp_ctn_id_show(struct sysdev_class *class,
1603				struct sysdev_class_attribute *attr,
1604				char *buf)
1605{
1606	if (!stp_online)
1607		return -ENODATA;
1608	return sprintf(buf, "%016llx\n",
1609		       *(unsigned long long *) stp_info.ctnid);
1610}
1611
1612static SYSDEV_CLASS_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1613
1614static ssize_t stp_ctn_type_show(struct sysdev_class *class,
1615				struct sysdev_class_attribute *attr,
1616				char *buf)
1617{
1618	if (!stp_online)
1619		return -ENODATA;
1620	return sprintf(buf, "%i\n", stp_info.ctn);
1621}
1622
1623static SYSDEV_CLASS_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1624
1625static ssize_t stp_dst_offset_show(struct sysdev_class *class,
1626				   struct sysdev_class_attribute *attr,
1627				   char *buf)
1628{
1629	if (!stp_online || !(stp_info.vbits & 0x2000))
1630		return -ENODATA;
1631	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1632}
1633
1634static SYSDEV_CLASS_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1635
1636static ssize_t stp_leap_seconds_show(struct sysdev_class *class,
1637					struct sysdev_class_attribute *attr,
1638					char *buf)
1639{
1640	if (!stp_online || !(stp_info.vbits & 0x8000))
1641		return -ENODATA;
1642	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1643}
1644
1645static SYSDEV_CLASS_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1646
1647static ssize_t stp_stratum_show(struct sysdev_class *class,
1648				struct sysdev_class_attribute *attr,
1649				char *buf)
1650{
1651	if (!stp_online)
1652		return -ENODATA;
1653	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1654}
1655
1656static SYSDEV_CLASS_ATTR(stratum, 0400, stp_stratum_show, NULL);
1657
1658static ssize_t stp_time_offset_show(struct sysdev_class *class,
1659				struct sysdev_class_attribute *attr,
1660				char *buf)
1661{
1662	if (!stp_online || !(stp_info.vbits & 0x0800))
1663		return -ENODATA;
1664	return sprintf(buf, "%i\n", (int) stp_info.tto);
1665}
1666
1667static SYSDEV_CLASS_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1668
1669static ssize_t stp_time_zone_offset_show(struct sysdev_class *class,
1670				struct sysdev_class_attribute *attr,
1671				char *buf)
1672{
1673	if (!stp_online || !(stp_info.vbits & 0x4000))
1674		return -ENODATA;
1675	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1676}
1677
1678static SYSDEV_CLASS_ATTR(time_zone_offset, 0400,
1679			 stp_time_zone_offset_show, NULL);
1680
1681static ssize_t stp_timing_mode_show(struct sysdev_class *class,
1682				struct sysdev_class_attribute *attr,
1683				char *buf)
1684{
1685	if (!stp_online)
1686		return -ENODATA;
1687	return sprintf(buf, "%i\n", stp_info.tmd);
1688}
1689
1690static SYSDEV_CLASS_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1691
1692static ssize_t stp_timing_state_show(struct sysdev_class *class,
1693				struct sysdev_class_attribute *attr,
1694				char *buf)
1695{
1696	if (!stp_online)
1697		return -ENODATA;
1698	return sprintf(buf, "%i\n", stp_info.tst);
1699}
1700
1701static SYSDEV_CLASS_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1702
1703static ssize_t stp_online_show(struct sysdev_class *class,
1704				struct sysdev_class_attribute *attr,
1705				char *buf)
1706{
1707	return sprintf(buf, "%i\n", stp_online);
1708}
1709
1710static ssize_t stp_online_store(struct sysdev_class *class,
1711				struct sysdev_class_attribute *attr,
1712				const char *buf, size_t count)
1713{
1714	unsigned int value;
1715
1716	value = simple_strtoul(buf, NULL, 0);
1717	if (value != 0 && value != 1)
1718		return -EINVAL;
1719	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1720		return -EOPNOTSUPP;
1721	mutex_lock(&clock_sync_mutex);
1722	stp_online = value;
1723	if (stp_online)
1724		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1725	else
1726		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1727	queue_work(time_sync_wq, &stp_work);
1728	mutex_unlock(&clock_sync_mutex);
1729	return count;
1730}
1731
1732/*
1733 * Can't use SYSDEV_CLASS_ATTR because the attribute should be named
1734 * stp/online but attr_online already exists in this file ..
1735 */
1736static struct sysdev_class_attribute attr_stp_online = {
1737	.attr = { .name = "online", .mode = 0600 },
1738	.show	= stp_online_show,
1739	.store	= stp_online_store,
1740};
1741
1742static struct sysdev_class_attribute *stp_attributes[] = {
1743	&attr_ctn_id,
1744	&attr_ctn_type,
1745	&attr_dst_offset,
1746	&attr_leap_seconds,
1747	&attr_stp_online,
1748	&attr_stratum,
1749	&attr_time_offset,
1750	&attr_time_zone_offset,
1751	&attr_timing_mode,
1752	&attr_timing_state,
1753	NULL
1754};
1755
1756static int __init stp_init_sysfs(void)
1757{
1758	struct sysdev_class_attribute **attr;
1759	int rc;
1760
1761	rc = sysdev_class_register(&stp_sysclass);
1762	if (rc)
1763		goto out;
1764	for (attr = stp_attributes; *attr; attr++) {
1765		rc = sysdev_class_create_file(&stp_sysclass, *attr);
1766		if (rc)
1767			goto out_unreg;
1768	}
1769	return 0;
1770out_unreg:
1771	for (; attr >= stp_attributes; attr--)
1772		sysdev_class_remove_file(&stp_sysclass, *attr);
1773	sysdev_class_unregister(&stp_sysclass);
1774out:
1775	return rc;
1776}
1777
1778device_initcall(stp_init_sysfs);