Linux Audio

Check our new training course

Loading...
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
 
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/pgalloc.h>
  30#include <linux/uaccess.h>
 
  31#include <asm/unistd.h>
  32#include <asm/switch_to.h>
  33#include <asm/runtime_instr.h>
  34#include <asm/facility.h>
  35
  36#include "entry.h"
  37
  38#ifdef CONFIG_COMPAT
  39#include "compat_ptrace.h"
  40#endif
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/syscalls.h>
  44
  45void update_cr_regs(struct task_struct *task)
 
 
 
 
 
 
 
  46{
 
 
 
 
 
  47	struct pt_regs *regs = task_pt_regs(task);
  48	struct thread_struct *thread = &task->thread;
  49	struct per_regs old, new;
  50	union ctlreg0 cr0_old, cr0_new;
  51	union ctlreg2 cr2_old, cr2_new;
  52	int cr0_changed, cr2_changed;
  53
  54	__ctl_store(cr0_old.val, 0, 0);
  55	__ctl_store(cr2_old.val, 2, 2);
  56	cr0_new = cr0_old;
  57	cr2_new = cr2_old;
  58	/* Take care of the enable/disable of transactional execution. */
  59	if (MACHINE_HAS_TE) {
  60		/* Set or clear transaction execution TXC bit 8. */
  61		cr0_new.tcx = 1;
  62		if (task->thread.per_flags & PER_FLAG_NO_TE)
  63			cr0_new.tcx = 0;
  64		/* Set or clear transaction execution TDC bits 62 and 63. */
  65		cr2_new.tdc = 0;
  66		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  67			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  68				cr2_new.tdc = 1;
  69			else
  70				cr2_new.tdc = 2;
  71		}
  72	}
  73	/* Take care of enable/disable of guarded storage. */
  74	if (MACHINE_HAS_GS) {
  75		cr2_new.gse = 0;
  76		if (task->thread.gs_cb)
  77			cr2_new.gse = 1;
  78	}
  79	/* Load control register 0/2 iff changed */
  80	cr0_changed = cr0_new.val != cr0_old.val;
  81	cr2_changed = cr2_new.val != cr2_old.val;
  82	if (cr0_changed)
  83		__ctl_load(cr0_new.val, 0, 0);
  84	if (cr2_changed)
  85		__ctl_load(cr2_new.val, 2, 2);
  86	/* Copy user specified PER registers */
  87	new.control = thread->per_user.control;
  88	new.start = thread->per_user.start;
  89	new.end = thread->per_user.end;
  90
  91	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  92	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  93	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  94		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  95			new.control |= PER_EVENT_BRANCH;
  96		else
  97			new.control |= PER_EVENT_IFETCH;
  98		new.control |= PER_CONTROL_SUSPENSION;
  99		new.control |= PER_EVENT_TRANSACTION_END;
 100		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 101			new.control |= PER_EVENT_IFETCH;
 102		new.start = 0;
 103		new.end = -1UL;
 104	}
 105
 106	/* Take care of the PER enablement bit in the PSW. */
 107	if (!(new.control & PER_EVENT_MASK)) {
 108		regs->psw.mask &= ~PSW_MASK_PER;
 109		return;
 110	}
 111	regs->psw.mask |= PSW_MASK_PER;
 112	__ctl_store(old, 9, 11);
 113	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 114		__ctl_load(new, 9, 11);
 115}
 116
 117void user_enable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 
 
 121}
 122
 123void user_disable_single_step(struct task_struct *task)
 124{
 125	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 126	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 127}
 128
 129void user_enable_block_step(struct task_struct *task)
 130{
 131	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 132	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 133}
 134
 135/*
 136 * Called by kernel/ptrace.c when detaching..
 137 *
 138 * Clear all debugging related fields.
 139 */
 140void ptrace_disable(struct task_struct *task)
 141{
 142	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 143	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 144	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 145	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 146	task->thread.per_flags = 0;
 147}
 148
 149#define __ADDR_MASK 7
 
 
 
 
 150
 151static inline unsigned long __peek_user_per(struct task_struct *child,
 152					    addr_t addr)
 153{
 154	struct per_struct_kernel *dummy = NULL;
 155
 156	if (addr == (addr_t) &dummy->cr9)
 157		/* Control bits of the active per set. */
 158		return test_thread_flag(TIF_SINGLE_STEP) ?
 159			PER_EVENT_IFETCH : child->thread.per_user.control;
 160	else if (addr == (addr_t) &dummy->cr10)
 161		/* Start address of the active per set. */
 162		return test_thread_flag(TIF_SINGLE_STEP) ?
 163			0 : child->thread.per_user.start;
 164	else if (addr == (addr_t) &dummy->cr11)
 165		/* End address of the active per set. */
 166		return test_thread_flag(TIF_SINGLE_STEP) ?
 167			-1UL : child->thread.per_user.end;
 168	else if (addr == (addr_t) &dummy->bits)
 169		/* Single-step bit. */
 170		return test_thread_flag(TIF_SINGLE_STEP) ?
 171			(1UL << (BITS_PER_LONG - 1)) : 0;
 172	else if (addr == (addr_t) &dummy->starting_addr)
 173		/* Start address of the user specified per set. */
 174		return child->thread.per_user.start;
 175	else if (addr == (addr_t) &dummy->ending_addr)
 176		/* End address of the user specified per set. */
 177		return child->thread.per_user.end;
 178	else if (addr == (addr_t) &dummy->perc_atmid)
 179		/* PER code, ATMID and AI of the last PER trap */
 180		return (unsigned long)
 181			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 182	else if (addr == (addr_t) &dummy->address)
 183		/* Address of the last PER trap */
 184		return child->thread.per_event.address;
 185	else if (addr == (addr_t) &dummy->access_id)
 186		/* Access id of the last PER trap */
 187		return (unsigned long)
 188			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 189	return 0;
 190}
 191
 192/*
 193 * Read the word at offset addr from the user area of a process. The
 194 * trouble here is that the information is littered over different
 195 * locations. The process registers are found on the kernel stack,
 196 * the floating point stuff and the trace settings are stored in
 197 * the task structure. In addition the different structures in
 198 * struct user contain pad bytes that should be read as zeroes.
 199 * Lovely...
 200 */
 201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 202{
 203	struct user *dummy = NULL;
 204	addr_t offset, tmp;
 205
 206	if (addr < (addr_t) &dummy->regs.acrs) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == (addr_t) &dummy->regs.psw.mask) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - (addr_t) &dummy->regs.acrs;
 
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == (addr_t) &dummy->regs.acrs[15])
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 251
 252	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 258		if (MACHINE_HAS_VX)
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= (addr_t) &dummy->regs.per_info;
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 
 288	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 289	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 290		mask = 3;
 
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 301	struct per_struct_kernel *dummy = NULL;
 302
 303	/*
 304	 * There are only three fields in the per_info struct that the
 305	 * debugger user can write to.
 306	 * 1) cr9: the debugger wants to set a new PER event mask
 307	 * 2) starting_addr: the debugger wants to set a new starting
 308	 *    address to use with the PER event mask.
 309	 * 3) ending_addr: the debugger wants to set a new ending
 310	 *    address to use with the PER event mask.
 311	 * The user specified PER event mask and the start and end
 312	 * addresses are used only if single stepping is not in effect.
 313	 * Writes to any other field in per_info are ignored.
 314	 */
 315	if (addr == (addr_t) &dummy->cr9)
 316		/* PER event mask of the user specified per set. */
 317		child->thread.per_user.control =
 318			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 319	else if (addr == (addr_t) &dummy->starting_addr)
 320		/* Starting address of the user specified per set. */
 321		child->thread.per_user.start = data;
 322	else if (addr == (addr_t) &dummy->ending_addr)
 323		/* Ending address of the user specified per set. */
 324		child->thread.per_user.end = data;
 325}
 326
 327/*
 328 * Write a word to the user area of a process at location addr. This
 329 * operation does have an additional problem compared to peek_user.
 330 * Stores to the program status word and on the floating point
 331 * control register needs to get checked for validity.
 332 */
 333static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 334{
 335	struct user *dummy = NULL;
 336	addr_t offset;
 337
 338	if (addr < (addr_t) &dummy->regs.acrs) {
 339		/*
 340		 * psw and gprs are stored on the stack
 341		 */
 342		if (addr == (addr_t) &dummy->regs.psw.mask) {
 343			unsigned long mask = PSW_MASK_USER;
 344
 345			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 346			if ((data ^ PSW_USER_BITS) & ~mask)
 347				/* Invalid psw mask. */
 348				return -EINVAL;
 349			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 350				/* Invalid address-space-control bits */
 351				return -EINVAL;
 352			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 353				/* Invalid addressing mode bits */
 354				return -EINVAL;
 355		}
 356		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 357
 358	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 359		/*
 360		 * access registers are stored in the thread structure
 361		 */
 362		offset = addr - (addr_t) &dummy->regs.acrs;
 
 363		/*
 364		 * Very special case: old & broken 64 bit gdb writing
 365		 * to acrs[15] with a 64 bit value. Ignore the lower
 366		 * half of the value and write the upper 32 bit to
 367		 * acrs[15]. Sick...
 368		 */
 369		if (addr == (addr_t) &dummy->regs.acrs[15])
 370			child->thread.acrs[15] = (unsigned int) (data >> 32);
 371		else
 372			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 
 373
 374	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 375		/*
 376		 * orig_gpr2 is stored on the kernel stack
 377		 */
 378		task_pt_regs(child)->orig_gpr2 = data;
 379
 380	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 381		/*
 382		 * prevent writes of padding hole between
 383		 * orig_gpr2 and fp_regs on s390.
 384		 */
 385		return 0;
 386
 387	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 388		/*
 389		 * floating point control reg. is in the thread structure
 390		 */
 391		if ((unsigned int) data != 0 ||
 392		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 393			return -EINVAL;
 394		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 395
 396	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 397		/*
 398		 * floating point regs. are either in child->thread.fpu
 399		 * or the child->thread.fpu.vxrs array
 400		 */
 401		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 402		if (MACHINE_HAS_VX)
 403			*(addr_t *)((addr_t)
 404				child->thread.fpu.vxrs + 2*offset) = data;
 405		else
 406			*(addr_t *)((addr_t)
 407				child->thread.fpu.fprs + offset) = data;
 408
 409	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 410		/*
 411		 * Handle access to the per_info structure.
 412		 */
 413		addr -= (addr_t) &dummy->regs.per_info;
 414		__poke_user_per(child, addr, data);
 415
 416	}
 417
 418	return 0;
 419}
 420
 421static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 422{
 423	addr_t mask;
 424
 425	/*
 426	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 427	 * an alignment of 4. Programmers from hell indeed...
 428	 */
 429	mask = __ADDR_MASK;
 
 430	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 431	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 432		mask = 3;
 
 433	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 434		return -EIO;
 435
 436	return __poke_user(child, addr, data);
 437}
 438
 439long arch_ptrace(struct task_struct *child, long request,
 440		 unsigned long addr, unsigned long data)
 441{
 442	ptrace_area parea; 
 443	int copied, ret;
 444
 445	switch (request) {
 446	case PTRACE_PEEKUSR:
 447		/* read the word at location addr in the USER area. */
 448		return peek_user(child, addr, data);
 449
 450	case PTRACE_POKEUSR:
 451		/* write the word at location addr in the USER area */
 452		return poke_user(child, addr, data);
 453
 454	case PTRACE_PEEKUSR_AREA:
 455	case PTRACE_POKEUSR_AREA:
 456		if (copy_from_user(&parea, (void __force __user *) addr,
 457							sizeof(parea)))
 458			return -EFAULT;
 459		addr = parea.kernel_addr;
 460		data = parea.process_addr;
 461		copied = 0;
 462		while (copied < parea.len) {
 463			if (request == PTRACE_PEEKUSR_AREA)
 464				ret = peek_user(child, addr, data);
 465			else {
 466				addr_t utmp;
 467				if (get_user(utmp,
 468					     (addr_t __force __user *) data))
 469					return -EFAULT;
 470				ret = poke_user(child, addr, utmp);
 471			}
 472			if (ret)
 473				return ret;
 474			addr += sizeof(unsigned long);
 475			data += sizeof(unsigned long);
 476			copied += sizeof(unsigned long);
 477		}
 478		return 0;
 479	case PTRACE_GET_LAST_BREAK:
 480		put_user(child->thread.last_break,
 481			 (unsigned long __user *) data);
 482		return 0;
 483	case PTRACE_ENABLE_TE:
 484		if (!MACHINE_HAS_TE)
 485			return -EIO;
 486		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 487		return 0;
 488	case PTRACE_DISABLE_TE:
 489		if (!MACHINE_HAS_TE)
 490			return -EIO;
 491		child->thread.per_flags |= PER_FLAG_NO_TE;
 492		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 493		return 0;
 494	case PTRACE_TE_ABORT_RAND:
 495		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 496			return -EIO;
 497		switch (data) {
 498		case 0UL:
 499			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 500			break;
 501		case 1UL:
 502			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 504			break;
 505		case 2UL:
 506			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 507			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 508			break;
 509		default:
 510			return -EINVAL;
 511		}
 512		return 0;
 513	default:
 
 
 514		return ptrace_request(child, request, addr, data);
 515	}
 516}
 517
 518#ifdef CONFIG_COMPAT
 519/*
 520 * Now the fun part starts... a 31 bit program running in the
 521 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 522 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 523 * to handle, the difference to the 64 bit versions of the requests
 524 * is that the access is done in multiples of 4 byte instead of
 525 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 526 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 527 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 528 * is a 31 bit program too, the content of struct user can be
 529 * emulated. A 31 bit program peeking into the struct user of
 530 * a 64 bit program is a no-no.
 531 */
 532
 533/*
 534 * Same as peek_user_per but for a 31 bit program.
 535 */
 536static inline __u32 __peek_user_per_compat(struct task_struct *child,
 537					   addr_t addr)
 538{
 539	struct compat_per_struct_kernel *dummy32 = NULL;
 540
 541	if (addr == (addr_t) &dummy32->cr9)
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == (addr_t) &dummy32->cr10)
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == (addr_t) &dummy32->cr11)
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == (addr_t) &dummy32->bits)
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == (addr_t) &dummy32->starting_addr)
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == (addr_t) &dummy32->ending_addr)
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == (addr_t) &dummy32->perc_atmid)
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == (addr_t) &dummy32->address)
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == (addr_t) &dummy32->access_id)
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 580	struct compat_user *dummy32 = NULL;
 581	addr_t offset;
 582	__u32 tmp;
 583
 584	if (addr < (addr_t) &dummy32->regs.acrs) {
 585		struct pt_regs *regs = task_pt_regs(child);
 586		/*
 587		 * psw and gprs are stored on the stack
 588		 */
 589		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 590			/* Fake a 31 bit psw mask. */
 591			tmp = (__u32)(regs->psw.mask >> 32);
 592			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 593			tmp |= PSW32_USER_BITS;
 594		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 595			/* Fake a 31 bit psw address. */
 596			tmp = (__u32) regs->psw.addr |
 597				(__u32)(regs->psw.mask & PSW_MASK_BA);
 598		} else {
 599			/* gpr 0-15 */
 600			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 
 601		}
 602	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 603		/*
 604		 * access registers are stored in the thread structure
 605		 */
 606		offset = addr - (addr_t) &dummy32->regs.acrs;
 607		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 608
 609	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 610		/*
 611		 * orig_gpr2 is stored on the kernel stack
 612		 */
 613		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 614
 615	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 616		/*
 617		 * prevent reads of padding hole between
 618		 * orig_gpr2 and fp_regs on s390.
 619		 */
 620		tmp = 0;
 621
 622	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 623		/*
 624		 * floating point control reg. is in the thread structure
 625		 */
 626		tmp = child->thread.fpu.fpc;
 627
 628	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 629		/*
 630		 * floating point regs. are either in child->thread.fpu
 631		 * or the child->thread.fpu.vxrs array
 632		 */
 633		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 634		if (MACHINE_HAS_VX)
 635			tmp = *(__u32 *)
 636			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 637		else
 638			tmp = *(__u32 *)
 639			       ((addr_t) child->thread.fpu.fprs + offset);
 640
 641	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 642		/*
 643		 * Handle access to the per_info structure.
 644		 */
 645		addr -= (addr_t) &dummy32->regs.per_info;
 646		tmp = __peek_user_per_compat(child, addr);
 647
 648	} else
 649		tmp = 0;
 650
 651	return tmp;
 652}
 653
 654static int peek_user_compat(struct task_struct *child,
 655			    addr_t addr, addr_t data)
 656{
 657	__u32 tmp;
 658
 659	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 660		return -EIO;
 661
 662	tmp = __peek_user_compat(child, addr);
 663	return put_user(tmp, (__u32 __user *) data);
 664}
 665
 666/*
 667 * Same as poke_user_per but for a 31 bit program.
 668 */
 669static inline void __poke_user_per_compat(struct task_struct *child,
 670					  addr_t addr, __u32 data)
 671{
 672	struct compat_per_struct_kernel *dummy32 = NULL;
 673
 674	if (addr == (addr_t) &dummy32->cr9)
 675		/* PER event mask of the user specified per set. */
 676		child->thread.per_user.control =
 677			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 678	else if (addr == (addr_t) &dummy32->starting_addr)
 679		/* Starting address of the user specified per set. */
 680		child->thread.per_user.start = data;
 681	else if (addr == (addr_t) &dummy32->ending_addr)
 682		/* Ending address of the user specified per set. */
 683		child->thread.per_user.end = data;
 684}
 685
 686/*
 687 * Same as poke_user but for a 31 bit program.
 688 */
 689static int __poke_user_compat(struct task_struct *child,
 690			      addr_t addr, addr_t data)
 691{
 692	struct compat_user *dummy32 = NULL;
 693	__u32 tmp = (__u32) data;
 694	addr_t offset;
 695
 696	if (addr < (addr_t) &dummy32->regs.acrs) {
 697		struct pt_regs *regs = task_pt_regs(child);
 698		/*
 699		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 700		 */
 701		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 702			__u32 mask = PSW32_MASK_USER;
 703
 704			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 705			/* Build a 64 bit psw mask from 31 bit mask. */
 706			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 707				/* Invalid psw mask. */
 708				return -EINVAL;
 709			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 710				/* Invalid address-space-control bits */
 711				return -EINVAL;
 712			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 713				(regs->psw.mask & PSW_MASK_BA) |
 714				(__u64)(tmp & mask) << 32;
 715		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 716			/* Build a 64 bit psw address from 31 bit address. */
 717			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 718			/* Transfer 31 bit amode bit to psw mask. */
 719			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 720				(__u64)(tmp & PSW32_ADDR_AMODE);
 721		} else {
 722			/* gpr 0-15 */
 723			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 
 724		}
 725	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 726		/*
 727		 * access registers are stored in the thread structure
 728		 */
 729		offset = addr - (addr_t) &dummy32->regs.acrs;
 730		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 731
 732	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 733		/*
 734		 * orig_gpr2 is stored on the kernel stack
 735		 */
 736		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 737
 738	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 739		/*
 740		 * prevent writess of padding hole between
 741		 * orig_gpr2 and fp_regs on s390.
 742		 */
 743		return 0;
 744
 745	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 746		/*
 747		 * floating point control reg. is in the thread structure
 748		 */
 749		if (test_fp_ctl(tmp))
 750			return -EINVAL;
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 759		if (MACHINE_HAS_VX)
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= (addr_t) &dummy32->regs.per_info;
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		put_user(child->thread.last_break,
 831			 (unsigned int __user *) data);
 832		return 0;
 833	}
 834	return compat_ptrace_request(child, request, addr, data);
 835}
 836#endif
 837
 838asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 839{
 840	unsigned long mask = -1UL;
 
 
 
 841
 842	/*
 843	 * The sysc_tracesys code in entry.S stored the system
 844	 * call number to gprs[2].
 845	 */
 846	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 847	    (tracehook_report_syscall_entry(regs) ||
 848	     regs->gprs[2] >= NR_syscalls)) {
 849		/*
 850		 * Tracing decided this syscall should not happen or the
 851		 * debugger stored an invalid system call number. Skip
 852		 * the system call and the system call restart handling.
 853		 */
 854		clear_pt_regs_flag(regs, PIF_SYSCALL);
 855		return -1;
 856	}
 857
 858	/* Do the secure computing check after ptrace. */
 859	if (secure_computing(NULL)) {
 860		/* seccomp failures shouldn't expose any additional code. */
 861		return -1;
 862	}
 863
 864	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 865		trace_sys_enter(regs, regs->gprs[2]);
 866
 867	if (is_compat_task())
 868		mask = 0xffffffff;
 869
 870	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 871			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 872			    regs->gprs[5] &mask);
 873
 874	return regs->gprs[2];
 875}
 876
 877asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 878{
 879	audit_syscall_exit(regs);
 
 
 880
 881	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 882		trace_sys_exit(regs, regs->gprs[2]);
 883
 884	if (test_thread_flag(TIF_SYSCALL_TRACE))
 885		tracehook_report_syscall_exit(regs, 0);
 886}
 887
 888/*
 889 * user_regset definitions.
 890 */
 891
 892static int s390_regs_get(struct task_struct *target,
 893			 const struct user_regset *regset,
 894			 unsigned int pos, unsigned int count,
 895			 void *kbuf, void __user *ubuf)
 896{
 897	if (target == current)
 898		save_access_regs(target->thread.acrs);
 899
 900	if (kbuf) {
 901		unsigned long *k = kbuf;
 902		while (count > 0) {
 903			*k++ = __peek_user(target, pos);
 904			count -= sizeof(*k);
 905			pos += sizeof(*k);
 906		}
 907	} else {
 908		unsigned long __user *u = ubuf;
 909		while (count > 0) {
 910			if (__put_user(__peek_user(target, pos), u++))
 911				return -EFAULT;
 912			count -= sizeof(*u);
 913			pos += sizeof(*u);
 914		}
 915	}
 916	return 0;
 917}
 918
 919static int s390_regs_set(struct task_struct *target,
 920			 const struct user_regset *regset,
 921			 unsigned int pos, unsigned int count,
 922			 const void *kbuf, const void __user *ubuf)
 923{
 924	int rc = 0;
 925
 926	if (target == current)
 927		save_access_regs(target->thread.acrs);
 928
 929	if (kbuf) {
 930		const unsigned long *k = kbuf;
 931		while (count > 0 && !rc) {
 932			rc = __poke_user(target, pos, *k++);
 933			count -= sizeof(*k);
 934			pos += sizeof(*k);
 935		}
 936	} else {
 937		const unsigned long  __user *u = ubuf;
 938		while (count > 0 && !rc) {
 939			unsigned long word;
 940			rc = __get_user(word, u++);
 941			if (rc)
 942				break;
 943			rc = __poke_user(target, pos, word);
 944			count -= sizeof(*u);
 945			pos += sizeof(*u);
 946		}
 947	}
 948
 949	if (rc == 0 && target == current)
 950		restore_access_regs(target->thread.acrs);
 951
 952	return rc;
 953}
 954
 955static int s390_fpregs_get(struct task_struct *target,
 956			   const struct user_regset *regset, unsigned int pos,
 957			   unsigned int count, void *kbuf, void __user *ubuf)
 958{
 959	_s390_fp_regs fp_regs;
 960
 961	if (target == current)
 962		save_fpu_regs();
 963
 964	fp_regs.fpc = target->thread.fpu.fpc;
 965	fpregs_store(&fp_regs, &target->thread.fpu);
 966
 967	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 968				   &fp_regs, 0, -1);
 969}
 970
 971static int s390_fpregs_set(struct task_struct *target,
 972			   const struct user_regset *regset, unsigned int pos,
 973			   unsigned int count, const void *kbuf,
 974			   const void __user *ubuf)
 975{
 976	int rc = 0;
 977	freg_t fprs[__NUM_FPRS];
 978
 979	if (target == current)
 980		save_fpu_regs();
 981
 982	if (MACHINE_HAS_VX)
 983		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 984	else
 985		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 986
 987	/* If setting FPC, must validate it first. */
 988	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 989		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 990		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 991					0, offsetof(s390_fp_regs, fprs));
 992		if (rc)
 993			return rc;
 994		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 995			return -EINVAL;
 996		target->thread.fpu.fpc = ufpc[0];
 997	}
 998
 999	if (rc == 0 && count > 0)
1000		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001					fprs, offsetof(s390_fp_regs, fprs), -1);
1002	if (rc)
1003		return rc;
1004
1005	if (MACHINE_HAS_VX)
1006		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007	else
1008		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009
1010	return rc;
1011}
1012
 
 
1013static int s390_last_break_get(struct task_struct *target,
1014			       const struct user_regset *regset,
1015			       unsigned int pos, unsigned int count,
1016			       void *kbuf, void __user *ubuf)
1017{
1018	if (count > 0) {
1019		if (kbuf) {
1020			unsigned long *k = kbuf;
1021			*k = target->thread.last_break;
1022		} else {
1023			unsigned long  __user *u = ubuf;
1024			if (__put_user(target->thread.last_break, u))
1025				return -EFAULT;
1026		}
1027	}
1028	return 0;
1029}
1030
1031static int s390_last_break_set(struct task_struct *target,
1032			       const struct user_regset *regset,
1033			       unsigned int pos, unsigned int count,
1034			       const void *kbuf, const void __user *ubuf)
1035{
1036	return 0;
1037}
1038
1039static int s390_tdb_get(struct task_struct *target,
1040			const struct user_regset *regset,
1041			unsigned int pos, unsigned int count,
1042			void *kbuf, void __user *ubuf)
1043{
1044	struct pt_regs *regs = task_pt_regs(target);
1045	unsigned char *data;
1046
1047	if (!(regs->int_code & 0x200))
1048		return -ENODATA;
1049	data = target->thread.trap_tdb;
1050	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051}
1052
1053static int s390_tdb_set(struct task_struct *target,
1054			const struct user_regset *regset,
1055			unsigned int pos, unsigned int count,
1056			const void *kbuf, const void __user *ubuf)
1057{
1058	return 0;
1059}
1060
1061static int s390_vxrs_low_get(struct task_struct *target,
1062			     const struct user_regset *regset,
1063			     unsigned int pos, unsigned int count,
1064			     void *kbuf, void __user *ubuf)
1065{
1066	__u64 vxrs[__NUM_VXRS_LOW];
1067	int i;
1068
1069	if (!MACHINE_HAS_VX)
1070		return -ENODEV;
1071	if (target == current)
1072		save_fpu_regs();
1073	for (i = 0; i < __NUM_VXRS_LOW; i++)
1074		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076}
1077
1078static int s390_vxrs_low_set(struct task_struct *target,
1079			     const struct user_regset *regset,
1080			     unsigned int pos, unsigned int count,
1081			     const void *kbuf, const void __user *ubuf)
1082{
1083	__u64 vxrs[__NUM_VXRS_LOW];
1084	int i, rc;
1085
1086	if (!MACHINE_HAS_VX)
1087		return -ENODEV;
1088	if (target == current)
1089		save_fpu_regs();
1090
1091	for (i = 0; i < __NUM_VXRS_LOW; i++)
1092		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093
1094	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095	if (rc == 0)
1096		for (i = 0; i < __NUM_VXRS_LOW; i++)
1097			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098
1099	return rc;
1100}
1101
1102static int s390_vxrs_high_get(struct task_struct *target,
1103			      const struct user_regset *regset,
1104			      unsigned int pos, unsigned int count,
1105			      void *kbuf, void __user *ubuf)
1106{
1107	__vector128 vxrs[__NUM_VXRS_HIGH];
1108
1109	if (!MACHINE_HAS_VX)
1110		return -ENODEV;
1111	if (target == current)
1112		save_fpu_regs();
1113	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114
1115	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116}
1117
1118static int s390_vxrs_high_set(struct task_struct *target,
1119			      const struct user_regset *regset,
1120			      unsigned int pos, unsigned int count,
1121			      const void *kbuf, const void __user *ubuf)
1122{
1123	int rc;
1124
1125	if (!MACHINE_HAS_VX)
1126		return -ENODEV;
1127	if (target == current)
1128		save_fpu_regs();
1129
1130	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132	return rc;
1133}
1134
1135static int s390_system_call_get(struct task_struct *target,
1136				const struct user_regset *regset,
1137				unsigned int pos, unsigned int count,
1138				void *kbuf, void __user *ubuf)
1139{
1140	unsigned int *data = &target->thread.system_call;
1141	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142				   data, 0, sizeof(unsigned int));
1143}
1144
1145static int s390_system_call_set(struct task_struct *target,
1146				const struct user_regset *regset,
1147				unsigned int pos, unsigned int count,
1148				const void *kbuf, const void __user *ubuf)
1149{
1150	unsigned int *data = &target->thread.system_call;
1151	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152				  data, 0, sizeof(unsigned int));
1153}
1154
1155static int s390_gs_cb_get(struct task_struct *target,
1156			  const struct user_regset *regset,
1157			  unsigned int pos, unsigned int count,
1158			  void *kbuf, void __user *ubuf)
1159{
1160	struct gs_cb *data = target->thread.gs_cb;
1161
1162	if (!MACHINE_HAS_GS)
1163		return -ENODEV;
1164	if (!data)
1165		return -ENODATA;
1166	if (target == current)
1167		save_gs_cb(data);
1168	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169				   data, 0, sizeof(struct gs_cb));
1170}
1171
1172static int s390_gs_cb_set(struct task_struct *target,
1173			  const struct user_regset *regset,
1174			  unsigned int pos, unsigned int count,
1175			  const void *kbuf, const void __user *ubuf)
1176{
1177	struct gs_cb gs_cb = { }, *data = NULL;
1178	int rc;
1179
1180	if (!MACHINE_HAS_GS)
1181		return -ENODEV;
1182	if (!target->thread.gs_cb) {
1183		data = kzalloc(sizeof(*data), GFP_KERNEL);
1184		if (!data)
1185			return -ENOMEM;
1186	}
1187	if (!target->thread.gs_cb)
1188		gs_cb.gsd = 25;
1189	else if (target == current)
1190		save_gs_cb(&gs_cb);
1191	else
1192		gs_cb = *target->thread.gs_cb;
1193	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194				&gs_cb, 0, sizeof(gs_cb));
1195	if (rc) {
1196		kfree(data);
1197		return -EFAULT;
1198	}
1199	preempt_disable();
1200	if (!target->thread.gs_cb)
1201		target->thread.gs_cb = data;
1202	*target->thread.gs_cb = gs_cb;
1203	if (target == current) {
1204		__ctl_set_bit(2, 4);
1205		restore_gs_cb(target->thread.gs_cb);
1206	}
1207	preempt_enable();
1208	return rc;
1209}
1210
1211static int s390_gs_bc_get(struct task_struct *target,
1212			  const struct user_regset *regset,
1213			  unsigned int pos, unsigned int count,
1214			  void *kbuf, void __user *ubuf)
1215{
1216	struct gs_cb *data = target->thread.gs_bc_cb;
1217
1218	if (!MACHINE_HAS_GS)
1219		return -ENODEV;
1220	if (!data)
1221		return -ENODATA;
1222	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223				   data, 0, sizeof(struct gs_cb));
1224}
1225
1226static int s390_gs_bc_set(struct task_struct *target,
1227			  const struct user_regset *regset,
1228			  unsigned int pos, unsigned int count,
1229			  const void *kbuf, const void __user *ubuf)
1230{
1231	struct gs_cb *data = target->thread.gs_bc_cb;
1232
1233	if (!MACHINE_HAS_GS)
1234		return -ENODEV;
1235	if (!data) {
1236		data = kzalloc(sizeof(*data), GFP_KERNEL);
1237		if (!data)
1238			return -ENOMEM;
1239		target->thread.gs_bc_cb = data;
1240	}
1241	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242				  data, 0, sizeof(struct gs_cb));
1243}
1244
1245static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246{
1247	return (cb->rca & 0x1f) == 0 &&
1248		(cb->roa & 0xfff) == 0 &&
1249		(cb->rla & 0xfff) == 0xfff &&
1250		cb->s == 1 &&
1251		cb->k == 1 &&
1252		cb->h == 0 &&
1253		cb->reserved1 == 0 &&
1254		cb->ps == 1 &&
1255		cb->qs == 0 &&
1256		cb->pc == 1 &&
1257		cb->qc == 0 &&
1258		cb->reserved2 == 0 &&
1259		cb->key == PAGE_DEFAULT_KEY &&
1260		cb->reserved3 == 0 &&
1261		cb->reserved4 == 0 &&
1262		cb->reserved5 == 0 &&
1263		cb->reserved6 == 0 &&
1264		cb->reserved7 == 0 &&
1265		cb->reserved8 == 0 &&
1266		cb->rla >= cb->roa &&
1267		cb->rca >= cb->roa &&
1268		cb->rca <= cb->rla+1 &&
1269		cb->m < 3;
1270}
1271
1272static int s390_runtime_instr_get(struct task_struct *target,
1273				const struct user_regset *regset,
1274				unsigned int pos, unsigned int count,
1275				void *kbuf, void __user *ubuf)
1276{
1277	struct runtime_instr_cb *data = target->thread.ri_cb;
1278
1279	if (!test_facility(64))
1280		return -ENODEV;
1281	if (!data)
1282		return -ENODATA;
1283
1284	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285				   data, 0, sizeof(struct runtime_instr_cb));
1286}
1287
1288static int s390_runtime_instr_set(struct task_struct *target,
1289				  const struct user_regset *regset,
1290				  unsigned int pos, unsigned int count,
1291				  const void *kbuf, const void __user *ubuf)
1292{
1293	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294	int rc;
1295
1296	if (!test_facility(64))
1297		return -ENODEV;
1298
1299	if (!target->thread.ri_cb) {
1300		data = kzalloc(sizeof(*data), GFP_KERNEL);
1301		if (!data)
1302			return -ENOMEM;
1303	}
1304
1305	if (target->thread.ri_cb) {
1306		if (target == current)
1307			store_runtime_instr_cb(&ri_cb);
1308		else
1309			ri_cb = *target->thread.ri_cb;
1310	}
1311
1312	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1314	if (rc) {
1315		kfree(data);
1316		return -EFAULT;
1317	}
1318
1319	if (!is_ri_cb_valid(&ri_cb)) {
1320		kfree(data);
1321		return -EINVAL;
1322	}
1323
1324	preempt_disable();
1325	if (!target->thread.ri_cb)
1326		target->thread.ri_cb = data;
1327	*target->thread.ri_cb = ri_cb;
1328	if (target == current)
1329		load_runtime_instr_cb(target->thread.ri_cb);
1330	preempt_enable();
1331
1332	return 0;
1333}
1334
1335static const struct user_regset s390_regsets[] = {
1336	{
1337		.core_note_type = NT_PRSTATUS,
1338		.n = sizeof(s390_regs) / sizeof(long),
1339		.size = sizeof(long),
1340		.align = sizeof(long),
1341		.get = s390_regs_get,
1342		.set = s390_regs_set,
1343	},
1344	{
1345		.core_note_type = NT_PRFPREG,
1346		.n = sizeof(s390_fp_regs) / sizeof(long),
1347		.size = sizeof(long),
1348		.align = sizeof(long),
1349		.get = s390_fpregs_get,
1350		.set = s390_fpregs_set,
1351	},
1352	{
1353		.core_note_type = NT_S390_SYSTEM_CALL,
1354		.n = 1,
1355		.size = sizeof(unsigned int),
1356		.align = sizeof(unsigned int),
1357		.get = s390_system_call_get,
1358		.set = s390_system_call_set,
1359	},
1360	{
1361		.core_note_type = NT_S390_LAST_BREAK,
1362		.n = 1,
1363		.size = sizeof(long),
1364		.align = sizeof(long),
1365		.get = s390_last_break_get,
1366		.set = s390_last_break_set,
1367	},
1368	{
1369		.core_note_type = NT_S390_TDB,
1370		.n = 1,
1371		.size = 256,
1372		.align = 1,
1373		.get = s390_tdb_get,
1374		.set = s390_tdb_set,
1375	},
1376	{
1377		.core_note_type = NT_S390_VXRS_LOW,
1378		.n = __NUM_VXRS_LOW,
1379		.size = sizeof(__u64),
1380		.align = sizeof(__u64),
1381		.get = s390_vxrs_low_get,
1382		.set = s390_vxrs_low_set,
1383	},
1384	{
1385		.core_note_type = NT_S390_VXRS_HIGH,
1386		.n = __NUM_VXRS_HIGH,
1387		.size = sizeof(__vector128),
1388		.align = sizeof(__vector128),
1389		.get = s390_vxrs_high_get,
1390		.set = s390_vxrs_high_set,
1391	},
1392	{
1393		.core_note_type = NT_S390_GS_CB,
1394		.n = sizeof(struct gs_cb) / sizeof(__u64),
1395		.size = sizeof(__u64),
1396		.align = sizeof(__u64),
1397		.get = s390_gs_cb_get,
1398		.set = s390_gs_cb_set,
1399	},
1400	{
1401		.core_note_type = NT_S390_GS_BC,
1402		.n = sizeof(struct gs_cb) / sizeof(__u64),
1403		.size = sizeof(__u64),
1404		.align = sizeof(__u64),
1405		.get = s390_gs_bc_get,
1406		.set = s390_gs_bc_set,
1407	},
1408	{
1409		.core_note_type = NT_S390_RI_CB,
1410		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411		.size = sizeof(__u64),
1412		.align = sizeof(__u64),
1413		.get = s390_runtime_instr_get,
1414		.set = s390_runtime_instr_set,
1415	},
 
1416};
1417
1418static const struct user_regset_view user_s390_view = {
1419	.name = UTS_MACHINE,
1420	.e_machine = EM_S390,
1421	.regsets = s390_regsets,
1422	.n = ARRAY_SIZE(s390_regsets)
1423};
1424
1425#ifdef CONFIG_COMPAT
1426static int s390_compat_regs_get(struct task_struct *target,
1427				const struct user_regset *regset,
1428				unsigned int pos, unsigned int count,
1429				void *kbuf, void __user *ubuf)
1430{
1431	if (target == current)
1432		save_access_regs(target->thread.acrs);
1433
1434	if (kbuf) {
1435		compat_ulong_t *k = kbuf;
1436		while (count > 0) {
1437			*k++ = __peek_user_compat(target, pos);
1438			count -= sizeof(*k);
1439			pos += sizeof(*k);
1440		}
1441	} else {
1442		compat_ulong_t __user *u = ubuf;
1443		while (count > 0) {
1444			if (__put_user(__peek_user_compat(target, pos), u++))
1445				return -EFAULT;
1446			count -= sizeof(*u);
1447			pos += sizeof(*u);
1448		}
1449	}
1450	return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454				const struct user_regset *regset,
1455				unsigned int pos, unsigned int count,
1456				const void *kbuf, const void __user *ubuf)
1457{
1458	int rc = 0;
1459
1460	if (target == current)
1461		save_access_regs(target->thread.acrs);
1462
1463	if (kbuf) {
1464		const compat_ulong_t *k = kbuf;
1465		while (count > 0 && !rc) {
1466			rc = __poke_user_compat(target, pos, *k++);
1467			count -= sizeof(*k);
1468			pos += sizeof(*k);
1469		}
1470	} else {
1471		const compat_ulong_t  __user *u = ubuf;
1472		while (count > 0 && !rc) {
1473			compat_ulong_t word;
1474			rc = __get_user(word, u++);
1475			if (rc)
1476				break;
1477			rc = __poke_user_compat(target, pos, word);
1478			count -= sizeof(*u);
1479			pos += sizeof(*u);
1480		}
1481	}
1482
1483	if (rc == 0 && target == current)
1484		restore_access_regs(target->thread.acrs);
1485
1486	return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490				     const struct user_regset *regset,
1491				     unsigned int pos, unsigned int count,
1492				     void *kbuf, void __user *ubuf)
1493{
1494	compat_ulong_t *gprs_high;
1495
1496	gprs_high = (compat_ulong_t *)
1497		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498	if (kbuf) {
1499		compat_ulong_t *k = kbuf;
1500		while (count > 0) {
1501			*k++ = *gprs_high;
1502			gprs_high += 2;
1503			count -= sizeof(*k);
1504		}
1505	} else {
1506		compat_ulong_t __user *u = ubuf;
1507		while (count > 0) {
1508			if (__put_user(*gprs_high, u++))
1509				return -EFAULT;
1510			gprs_high += 2;
1511			count -= sizeof(*u);
1512		}
1513	}
1514	return 0;
1515}
1516
1517static int s390_compat_regs_high_set(struct task_struct *target,
1518				     const struct user_regset *regset,
1519				     unsigned int pos, unsigned int count,
1520				     const void *kbuf, const void __user *ubuf)
1521{
1522	compat_ulong_t *gprs_high;
1523	int rc = 0;
1524
1525	gprs_high = (compat_ulong_t *)
1526		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527	if (kbuf) {
1528		const compat_ulong_t *k = kbuf;
1529		while (count > 0) {
1530			*gprs_high = *k++;
1531			*gprs_high += 2;
1532			count -= sizeof(*k);
1533		}
1534	} else {
1535		const compat_ulong_t  __user *u = ubuf;
1536		while (count > 0 && !rc) {
1537			unsigned long word;
1538			rc = __get_user(word, u++);
1539			if (rc)
1540				break;
1541			*gprs_high = word;
1542			*gprs_high += 2;
1543			count -= sizeof(*u);
1544		}
1545	}
1546
1547	return rc;
1548}
1549
1550static int s390_compat_last_break_get(struct task_struct *target,
1551				      const struct user_regset *regset,
1552				      unsigned int pos, unsigned int count,
1553				      void *kbuf, void __user *ubuf)
1554{
1555	compat_ulong_t last_break;
1556
1557	if (count > 0) {
1558		last_break = target->thread.last_break;
1559		if (kbuf) {
1560			unsigned long *k = kbuf;
1561			*k = last_break;
1562		} else {
1563			unsigned long  __user *u = ubuf;
1564			if (__put_user(last_break, u))
1565				return -EFAULT;
1566		}
1567	}
1568	return 0;
1569}
1570
1571static int s390_compat_last_break_set(struct task_struct *target,
1572				      const struct user_regset *regset,
1573				      unsigned int pos, unsigned int count,
1574				      const void *kbuf, const void __user *ubuf)
1575{
1576	return 0;
1577}
1578
1579static const struct user_regset s390_compat_regsets[] = {
1580	{
1581		.core_note_type = NT_PRSTATUS,
1582		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583		.size = sizeof(compat_long_t),
1584		.align = sizeof(compat_long_t),
1585		.get = s390_compat_regs_get,
1586		.set = s390_compat_regs_set,
1587	},
1588	{
1589		.core_note_type = NT_PRFPREG,
1590		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591		.size = sizeof(compat_long_t),
1592		.align = sizeof(compat_long_t),
1593		.get = s390_fpregs_get,
1594		.set = s390_fpregs_set,
1595	},
1596	{
1597		.core_note_type = NT_S390_SYSTEM_CALL,
1598		.n = 1,
1599		.size = sizeof(compat_uint_t),
1600		.align = sizeof(compat_uint_t),
1601		.get = s390_system_call_get,
1602		.set = s390_system_call_set,
1603	},
1604	{
1605		.core_note_type = NT_S390_LAST_BREAK,
1606		.n = 1,
1607		.size = sizeof(long),
1608		.align = sizeof(long),
1609		.get = s390_compat_last_break_get,
1610		.set = s390_compat_last_break_set,
1611	},
1612	{
1613		.core_note_type = NT_S390_TDB,
1614		.n = 1,
1615		.size = 256,
1616		.align = 1,
1617		.get = s390_tdb_get,
1618		.set = s390_tdb_set,
1619	},
1620	{
1621		.core_note_type = NT_S390_VXRS_LOW,
1622		.n = __NUM_VXRS_LOW,
1623		.size = sizeof(__u64),
1624		.align = sizeof(__u64),
1625		.get = s390_vxrs_low_get,
1626		.set = s390_vxrs_low_set,
1627	},
1628	{
1629		.core_note_type = NT_S390_VXRS_HIGH,
1630		.n = __NUM_VXRS_HIGH,
1631		.size = sizeof(__vector128),
1632		.align = sizeof(__vector128),
1633		.get = s390_vxrs_high_get,
1634		.set = s390_vxrs_high_set,
1635	},
1636	{
1637		.core_note_type = NT_S390_HIGH_GPRS,
1638		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639		.size = sizeof(compat_long_t),
1640		.align = sizeof(compat_long_t),
1641		.get = s390_compat_regs_high_get,
1642		.set = s390_compat_regs_high_set,
1643	},
1644	{
1645		.core_note_type = NT_S390_GS_CB,
1646		.n = sizeof(struct gs_cb) / sizeof(__u64),
1647		.size = sizeof(__u64),
1648		.align = sizeof(__u64),
1649		.get = s390_gs_cb_get,
1650		.set = s390_gs_cb_set,
1651	},
1652	{
1653		.core_note_type = NT_S390_GS_BC,
1654		.n = sizeof(struct gs_cb) / sizeof(__u64),
1655		.size = sizeof(__u64),
1656		.align = sizeof(__u64),
1657		.get = s390_gs_bc_get,
1658		.set = s390_gs_bc_set,
1659	},
1660	{
1661		.core_note_type = NT_S390_RI_CB,
1662		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663		.size = sizeof(__u64),
1664		.align = sizeof(__u64),
1665		.get = s390_runtime_instr_get,
1666		.set = s390_runtime_instr_set,
1667	},
1668};
1669
1670static const struct user_regset_view user_s390_compat_view = {
1671	.name = "s390",
1672	.e_machine = EM_S390,
1673	.regsets = s390_compat_regsets,
1674	.n = ARRAY_SIZE(s390_compat_regsets)
1675};
1676#endif
1677
1678const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679{
1680#ifdef CONFIG_COMPAT
1681	if (test_tsk_thread_flag(task, TIF_31BIT))
1682		return &user_s390_compat_view;
1683#endif
1684	return &user_s390_view;
1685}
1686
1687static const char *gpr_names[NUM_GPRS] = {
1688	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1689	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690};
1691
1692unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693{
1694	if (offset >= NUM_GPRS)
1695		return 0;
1696	return regs->gprs[offset];
1697}
1698
1699int regs_query_register_offset(const char *name)
1700{
1701	unsigned long offset;
1702
1703	if (!name || *name != 'r')
1704		return -EINVAL;
1705	if (kstrtoul(name + 1, 10, &offset))
1706		return -EINVAL;
1707	if (offset >= NUM_GPRS)
1708		return -EINVAL;
1709	return offset;
1710}
1711
1712const char *regs_query_register_name(unsigned int offset)
1713{
1714	if (offset >= NUM_GPRS)
1715		return NULL;
1716	return gpr_names[offset];
1717}
1718
1719static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720{
1721	unsigned long ksp = kernel_stack_pointer(regs);
1722
1723	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724}
1725
1726/**
1727 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728 * @regs:pt_regs which contains kernel stack pointer.
1729 * @n:stack entry number.
1730 *
1731 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733 * this returns 0.
1734 */
1735unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736{
1737	unsigned long addr;
1738
1739	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740	if (!regs_within_kernel_stack(regs, addr))
1741		return 0;
1742	return *(unsigned long *)addr;
1743}
v3.1
 
   1/*
   2 *  Ptrace user space interface.
   3 *
   4 *    Copyright IBM Corp. 1999,2010
   5 *    Author(s): Denis Joseph Barrow
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
 
  11#include <linux/mm.h>
  12#include <linux/smp.h>
  13#include <linux/errno.h>
  14#include <linux/ptrace.h>
  15#include <linux/user.h>
  16#include <linux/security.h>
  17#include <linux/audit.h>
  18#include <linux/signal.h>
  19#include <linux/elf.h>
  20#include <linux/regset.h>
  21#include <linux/tracehook.h>
  22#include <linux/seccomp.h>
 
  23#include <trace/syscall.h>
  24#include <asm/compat.h>
  25#include <asm/segment.h>
  26#include <asm/page.h>
  27#include <asm/pgtable.h>
  28#include <asm/pgalloc.h>
  29#include <asm/system.h>
  30#include <asm/uaccess.h>
  31#include <asm/unistd.h>
 
 
 
 
  32#include "entry.h"
  33
  34#ifdef CONFIG_COMPAT
  35#include "compat_ptrace.h"
  36#endif
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/syscalls.h>
  40
  41enum s390_regset {
  42	REGSET_GENERAL,
  43	REGSET_FP,
  44	REGSET_LAST_BREAK,
  45	REGSET_GENERAL_EXTENDED,
  46};
  47
  48void update_per_regs(struct task_struct *task)
  49{
  50	static const struct per_regs per_single_step = {
  51		.control = PER_EVENT_IFETCH,
  52		.start = 0,
  53		.end = PSW_ADDR_INSN,
  54	};
  55	struct pt_regs *regs = task_pt_regs(task);
  56	struct thread_struct *thread = &task->thread;
  57	const struct per_regs *new;
  58	struct per_regs old;
  59
  60	/* TIF_SINGLE_STEP overrides the user specified PER registers. */
  61	new = test_tsk_thread_flag(task, TIF_SINGLE_STEP) ?
  62		&per_single_step : &thread->per_user;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64	/* Take care of the PER enablement bit in the PSW. */
  65	if (!(new->control & PER_EVENT_MASK)) {
  66		regs->psw.mask &= ~PSW_MASK_PER;
  67		return;
  68	}
  69	regs->psw.mask |= PSW_MASK_PER;
  70	__ctl_store(old, 9, 11);
  71	if (memcmp(new, &old, sizeof(struct per_regs)) != 0)
  72		__ctl_load(*new, 9, 11);
  73}
  74
  75void user_enable_single_step(struct task_struct *task)
  76{
 
  77	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
  78	if (task == current)
  79		update_per_regs(task);
  80}
  81
  82void user_disable_single_step(struct task_struct *task)
  83{
 
  84	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  85	if (task == current)
  86		update_per_regs(task);
 
 
 
 
  87}
  88
  89/*
  90 * Called by kernel/ptrace.c when detaching..
  91 *
  92 * Clear all debugging related fields.
  93 */
  94void ptrace_disable(struct task_struct *task)
  95{
  96	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
  97	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
  98	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
  99	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 
 100}
 101
 102#ifndef CONFIG_64BIT
 103# define __ADDR_MASK 3
 104#else
 105# define __ADDR_MASK 7
 106#endif
 107
 108static inline unsigned long __peek_user_per(struct task_struct *child,
 109					    addr_t addr)
 110{
 111	struct per_struct_kernel *dummy = NULL;
 112
 113	if (addr == (addr_t) &dummy->cr9)
 114		/* Control bits of the active per set. */
 115		return test_thread_flag(TIF_SINGLE_STEP) ?
 116			PER_EVENT_IFETCH : child->thread.per_user.control;
 117	else if (addr == (addr_t) &dummy->cr10)
 118		/* Start address of the active per set. */
 119		return test_thread_flag(TIF_SINGLE_STEP) ?
 120			0 : child->thread.per_user.start;
 121	else if (addr == (addr_t) &dummy->cr11)
 122		/* End address of the active per set. */
 123		return test_thread_flag(TIF_SINGLE_STEP) ?
 124			PSW_ADDR_INSN : child->thread.per_user.end;
 125	else if (addr == (addr_t) &dummy->bits)
 126		/* Single-step bit. */
 127		return test_thread_flag(TIF_SINGLE_STEP) ?
 128			(1UL << (BITS_PER_LONG - 1)) : 0;
 129	else if (addr == (addr_t) &dummy->starting_addr)
 130		/* Start address of the user specified per set. */
 131		return child->thread.per_user.start;
 132	else if (addr == (addr_t) &dummy->ending_addr)
 133		/* End address of the user specified per set. */
 134		return child->thread.per_user.end;
 135	else if (addr == (addr_t) &dummy->perc_atmid)
 136		/* PER code, ATMID and AI of the last PER trap */
 137		return (unsigned long)
 138			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 139	else if (addr == (addr_t) &dummy->address)
 140		/* Address of the last PER trap */
 141		return child->thread.per_event.address;
 142	else if (addr == (addr_t) &dummy->access_id)
 143		/* Access id of the last PER trap */
 144		return (unsigned long)
 145			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 146	return 0;
 147}
 148
 149/*
 150 * Read the word at offset addr from the user area of a process. The
 151 * trouble here is that the information is littered over different
 152 * locations. The process registers are found on the kernel stack,
 153 * the floating point stuff and the trace settings are stored in
 154 * the task structure. In addition the different structures in
 155 * struct user contain pad bytes that should be read as zeroes.
 156 * Lovely...
 157 */
 158static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 159{
 160	struct user *dummy = NULL;
 161	addr_t offset, tmp;
 162
 163	if (addr < (addr_t) &dummy->regs.acrs) {
 164		/*
 165		 * psw and gprs are stored on the stack
 166		 */
 167		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 168		if (addr == (addr_t) &dummy->regs.psw.mask)
 169			/* Remove per bit from user psw. */
 170			tmp &= ~PSW_MASK_PER;
 
 
 171
 172	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 173		/*
 174		 * access registers are stored in the thread structure
 175		 */
 176		offset = addr - (addr_t) &dummy->regs.acrs;
 177#ifdef CONFIG_64BIT
 178		/*
 179		 * Very special case: old & broken 64 bit gdb reading
 180		 * from acrs[15]. Result is a 64 bit value. Read the
 181		 * 32 bit acrs[15] value and shift it by 32. Sick...
 182		 */
 183		if (addr == (addr_t) &dummy->regs.acrs[15])
 184			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 185		else
 186#endif
 187		tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 188
 189	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 190		/*
 191		 * orig_gpr2 is stored on the kernel stack
 192		 */
 193		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 194
 195	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 196		/*
 197		 * prevent reads of padding hole between
 198		 * orig_gpr2 and fp_regs on s390.
 199		 */
 200		tmp = 0;
 201
 
 
 
 
 
 
 
 202	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 203		/* 
 204		 * floating point regs. are stored in the thread structure
 
 205		 */
 206		offset = addr - (addr_t) &dummy->regs.fp_regs;
 207		tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
 208		if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
 209			tmp &= (unsigned long) FPC_VALID_MASK
 210				<< (BITS_PER_LONG - 32);
 
 
 211
 212	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 213		/*
 214		 * Handle access to the per_info structure.
 215		 */
 216		addr -= (addr_t) &dummy->regs.per_info;
 217		tmp = __peek_user_per(child, addr);
 218
 219	} else
 220		tmp = 0;
 221
 222	return tmp;
 223}
 224
 225static int
 226peek_user(struct task_struct *child, addr_t addr, addr_t data)
 227{
 228	addr_t tmp, mask;
 229
 230	/*
 231	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 232	 * an alignment of 4. Programmers from hell...
 233	 */
 234	mask = __ADDR_MASK;
 235#ifdef CONFIG_64BIT
 236	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 237	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 238		mask = 3;
 239#endif
 240	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 241		return -EIO;
 242
 243	tmp = __peek_user(child, addr);
 244	return put_user(tmp, (addr_t __user *) data);
 245}
 246
 247static inline void __poke_user_per(struct task_struct *child,
 248				   addr_t addr, addr_t data)
 249{
 250	struct per_struct_kernel *dummy = NULL;
 251
 252	/*
 253	 * There are only three fields in the per_info struct that the
 254	 * debugger user can write to.
 255	 * 1) cr9: the debugger wants to set a new PER event mask
 256	 * 2) starting_addr: the debugger wants to set a new starting
 257	 *    address to use with the PER event mask.
 258	 * 3) ending_addr: the debugger wants to set a new ending
 259	 *    address to use with the PER event mask.
 260	 * The user specified PER event mask and the start and end
 261	 * addresses are used only if single stepping is not in effect.
 262	 * Writes to any other field in per_info are ignored.
 263	 */
 264	if (addr == (addr_t) &dummy->cr9)
 265		/* PER event mask of the user specified per set. */
 266		child->thread.per_user.control =
 267			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 268	else if (addr == (addr_t) &dummy->starting_addr)
 269		/* Starting address of the user specified per set. */
 270		child->thread.per_user.start = data;
 271	else if (addr == (addr_t) &dummy->ending_addr)
 272		/* Ending address of the user specified per set. */
 273		child->thread.per_user.end = data;
 274}
 275
 276/*
 277 * Write a word to the user area of a process at location addr. This
 278 * operation does have an additional problem compared to peek_user.
 279 * Stores to the program status word and on the floating point
 280 * control register needs to get checked for validity.
 281 */
 282static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 283{
 284	struct user *dummy = NULL;
 285	addr_t offset;
 286
 287	if (addr < (addr_t) &dummy->regs.acrs) {
 288		/*
 289		 * psw and gprs are stored on the stack
 290		 */
 291		if (addr == (addr_t) &dummy->regs.psw.mask &&
 292#ifdef CONFIG_COMPAT
 293		    data != PSW_MASK_MERGE(psw_user32_bits, data) &&
 294#endif
 295		    data != PSW_MASK_MERGE(psw_user_bits, data))
 296			/* Invalid psw mask. */
 297			return -EINVAL;
 298#ifndef CONFIG_64BIT
 299		if (addr == (addr_t) &dummy->regs.psw.addr)
 300			/* I'd like to reject addresses without the
 301			   high order bit but older gdb's rely on it */
 302			data |= PSW_ADDR_AMODE;
 303#endif
 
 304		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 305
 306	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 307		/*
 308		 * access registers are stored in the thread structure
 309		 */
 310		offset = addr - (addr_t) &dummy->regs.acrs;
 311#ifdef CONFIG_64BIT
 312		/*
 313		 * Very special case: old & broken 64 bit gdb writing
 314		 * to acrs[15] with a 64 bit value. Ignore the lower
 315		 * half of the value and write the upper 32 bit to
 316		 * acrs[15]. Sick...
 317		 */
 318		if (addr == (addr_t) &dummy->regs.acrs[15])
 319			child->thread.acrs[15] = (unsigned int) (data >> 32);
 320		else
 321#endif
 322		*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 323
 324	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 325		/*
 326		 * orig_gpr2 is stored on the kernel stack
 327		 */
 328		task_pt_regs(child)->orig_gpr2 = data;
 329
 330	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 331		/*
 332		 * prevent writes of padding hole between
 333		 * orig_gpr2 and fp_regs on s390.
 334		 */
 335		return 0;
 336
 
 
 
 
 
 
 
 
 
 337	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 338		/*
 339		 * floating point regs. are stored in the thread structure
 
 340		 */
 341		if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
 342		    (data & ~((unsigned long) FPC_VALID_MASK
 343			      << (BITS_PER_LONG - 32))) != 0)
 344			return -EINVAL;
 345		offset = addr - (addr_t) &dummy->regs.fp_regs;
 346		*(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
 
 347
 348	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 349		/*
 350		 * Handle access to the per_info structure.
 351		 */
 352		addr -= (addr_t) &dummy->regs.per_info;
 353		__poke_user_per(child, addr, data);
 354
 355	}
 356
 357	return 0;
 358}
 359
 360static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 361{
 362	addr_t mask;
 363
 364	/*
 365	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 366	 * an alignment of 4. Programmers from hell indeed...
 367	 */
 368	mask = __ADDR_MASK;
 369#ifdef CONFIG_64BIT
 370	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 371	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 372		mask = 3;
 373#endif
 374	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 375		return -EIO;
 376
 377	return __poke_user(child, addr, data);
 378}
 379
 380long arch_ptrace(struct task_struct *child, long request,
 381		 unsigned long addr, unsigned long data)
 382{
 383	ptrace_area parea; 
 384	int copied, ret;
 385
 386	switch (request) {
 387	case PTRACE_PEEKUSR:
 388		/* read the word at location addr in the USER area. */
 389		return peek_user(child, addr, data);
 390
 391	case PTRACE_POKEUSR:
 392		/* write the word at location addr in the USER area */
 393		return poke_user(child, addr, data);
 394
 395	case PTRACE_PEEKUSR_AREA:
 396	case PTRACE_POKEUSR_AREA:
 397		if (copy_from_user(&parea, (void __force __user *) addr,
 398							sizeof(parea)))
 399			return -EFAULT;
 400		addr = parea.kernel_addr;
 401		data = parea.process_addr;
 402		copied = 0;
 403		while (copied < parea.len) {
 404			if (request == PTRACE_PEEKUSR_AREA)
 405				ret = peek_user(child, addr, data);
 406			else {
 407				addr_t utmp;
 408				if (get_user(utmp,
 409					     (addr_t __force __user *) data))
 410					return -EFAULT;
 411				ret = poke_user(child, addr, utmp);
 412			}
 413			if (ret)
 414				return ret;
 415			addr += sizeof(unsigned long);
 416			data += sizeof(unsigned long);
 417			copied += sizeof(unsigned long);
 418		}
 419		return 0;
 420	case PTRACE_GET_LAST_BREAK:
 421		put_user(task_thread_info(child)->last_break,
 422			 (unsigned long __user *) data);
 423		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	default:
 425		/* Removing high order bit from addr (only for 31 bit). */
 426		addr &= PSW_ADDR_INSN;
 427		return ptrace_request(child, request, addr, data);
 428	}
 429}
 430
 431#ifdef CONFIG_COMPAT
 432/*
 433 * Now the fun part starts... a 31 bit program running in the
 434 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 435 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 436 * to handle, the difference to the 64 bit versions of the requests
 437 * is that the access is done in multiples of 4 byte instead of
 438 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 439 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 440 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 441 * is a 31 bit program too, the content of struct user can be
 442 * emulated. A 31 bit program peeking into the struct user of
 443 * a 64 bit program is a no-no.
 444 */
 445
 446/*
 447 * Same as peek_user_per but for a 31 bit program.
 448 */
 449static inline __u32 __peek_user_per_compat(struct task_struct *child,
 450					   addr_t addr)
 451{
 452	struct compat_per_struct_kernel *dummy32 = NULL;
 453
 454	if (addr == (addr_t) &dummy32->cr9)
 455		/* Control bits of the active per set. */
 456		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 457			PER_EVENT_IFETCH : child->thread.per_user.control;
 458	else if (addr == (addr_t) &dummy32->cr10)
 459		/* Start address of the active per set. */
 460		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 461			0 : child->thread.per_user.start;
 462	else if (addr == (addr_t) &dummy32->cr11)
 463		/* End address of the active per set. */
 464		return test_thread_flag(TIF_SINGLE_STEP) ?
 465			PSW32_ADDR_INSN : child->thread.per_user.end;
 466	else if (addr == (addr_t) &dummy32->bits)
 467		/* Single-step bit. */
 468		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 469			0x80000000 : 0;
 470	else if (addr == (addr_t) &dummy32->starting_addr)
 471		/* Start address of the user specified per set. */
 472		return (__u32) child->thread.per_user.start;
 473	else if (addr == (addr_t) &dummy32->ending_addr)
 474		/* End address of the user specified per set. */
 475		return (__u32) child->thread.per_user.end;
 476	else if (addr == (addr_t) &dummy32->perc_atmid)
 477		/* PER code, ATMID and AI of the last PER trap */
 478		return (__u32) child->thread.per_event.cause << 16;
 479	else if (addr == (addr_t) &dummy32->address)
 480		/* Address of the last PER trap */
 481		return (__u32) child->thread.per_event.address;
 482	else if (addr == (addr_t) &dummy32->access_id)
 483		/* Access id of the last PER trap */
 484		return (__u32) child->thread.per_event.paid << 24;
 485	return 0;
 486}
 487
 488/*
 489 * Same as peek_user but for a 31 bit program.
 490 */
 491static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 492{
 493	struct compat_user *dummy32 = NULL;
 494	addr_t offset;
 495	__u32 tmp;
 496
 497	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 498		/*
 499		 * psw and gprs are stored on the stack
 500		 */
 501		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 502			/* Fake a 31 bit psw mask. */
 503			tmp = (__u32)(task_pt_regs(child)->psw.mask >> 32);
 504			tmp = PSW32_MASK_MERGE(psw32_user_bits, tmp);
 
 505		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 506			/* Fake a 31 bit psw address. */
 507			tmp = (__u32) task_pt_regs(child)->psw.addr |
 508				PSW32_ADDR_AMODE31;
 509		} else {
 510			/* gpr 0-15 */
 511			tmp = *(__u32 *)((addr_t) &task_pt_regs(child)->psw +
 512					 addr*2 + 4);
 513		}
 514	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 515		/*
 516		 * access registers are stored in the thread structure
 517		 */
 518		offset = addr - (addr_t) &dummy32->regs.acrs;
 519		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 520
 521	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 522		/*
 523		 * orig_gpr2 is stored on the kernel stack
 524		 */
 525		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 526
 527	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 528		/*
 529		 * prevent reads of padding hole between
 530		 * orig_gpr2 and fp_regs on s390.
 531		 */
 532		tmp = 0;
 533
 
 
 
 
 
 
 534	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 535		/*
 536		 * floating point regs. are stored in the thread structure 
 
 537		 */
 538	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 539		tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
 
 
 
 
 
 540
 541	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 542		/*
 543		 * Handle access to the per_info structure.
 544		 */
 545		addr -= (addr_t) &dummy32->regs.per_info;
 546		tmp = __peek_user_per_compat(child, addr);
 547
 548	} else
 549		tmp = 0;
 550
 551	return tmp;
 552}
 553
 554static int peek_user_compat(struct task_struct *child,
 555			    addr_t addr, addr_t data)
 556{
 557	__u32 tmp;
 558
 559	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 560		return -EIO;
 561
 562	tmp = __peek_user_compat(child, addr);
 563	return put_user(tmp, (__u32 __user *) data);
 564}
 565
 566/*
 567 * Same as poke_user_per but for a 31 bit program.
 568 */
 569static inline void __poke_user_per_compat(struct task_struct *child,
 570					  addr_t addr, __u32 data)
 571{
 572	struct compat_per_struct_kernel *dummy32 = NULL;
 573
 574	if (addr == (addr_t) &dummy32->cr9)
 575		/* PER event mask of the user specified per set. */
 576		child->thread.per_user.control =
 577			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 578	else if (addr == (addr_t) &dummy32->starting_addr)
 579		/* Starting address of the user specified per set. */
 580		child->thread.per_user.start = data;
 581	else if (addr == (addr_t) &dummy32->ending_addr)
 582		/* Ending address of the user specified per set. */
 583		child->thread.per_user.end = data;
 584}
 585
 586/*
 587 * Same as poke_user but for a 31 bit program.
 588 */
 589static int __poke_user_compat(struct task_struct *child,
 590			      addr_t addr, addr_t data)
 591{
 592	struct compat_user *dummy32 = NULL;
 593	__u32 tmp = (__u32) data;
 594	addr_t offset;
 595
 596	if (addr < (addr_t) &dummy32->regs.acrs) {
 
 597		/*
 598		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 599		 */
 600		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 
 
 
 601			/* Build a 64 bit psw mask from 31 bit mask. */
 602			if (tmp != PSW32_MASK_MERGE(psw32_user_bits, tmp))
 603				/* Invalid psw mask. */
 604				return -EINVAL;
 605			task_pt_regs(child)->psw.mask =
 606				PSW_MASK_MERGE(psw_user32_bits, (__u64) tmp << 32);
 
 
 
 
 607		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 608			/* Build a 64 bit psw address from 31 bit address. */
 609			task_pt_regs(child)->psw.addr =
 610				(__u64) tmp & PSW32_ADDR_INSN;
 
 
 611		} else {
 612			/* gpr 0-15 */
 613			*(__u32*)((addr_t) &task_pt_regs(child)->psw
 614				  + addr*2 + 4) = tmp;
 615		}
 616	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 617		/*
 618		 * access registers are stored in the thread structure
 619		 */
 620		offset = addr - (addr_t) &dummy32->regs.acrs;
 621		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 622
 623	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 624		/*
 625		 * orig_gpr2 is stored on the kernel stack
 626		 */
 627		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 628
 629	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 630		/*
 631		 * prevent writess of padding hole between
 632		 * orig_gpr2 and fp_regs on s390.
 633		 */
 634		return 0;
 635
 
 
 
 
 
 
 
 
 636	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 637		/*
 638		 * floating point regs. are stored in the thread structure 
 
 639		 */
 640		if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
 641		    (tmp & ~FPC_VALID_MASK) != 0)
 642			/* Invalid floating point control. */
 643			return -EINVAL;
 644	        offset = addr - (addr_t) &dummy32->regs.fp_regs;
 645		*(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
 
 646
 647	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 648		/*
 649		 * Handle access to the per_info structure.
 650		 */
 651		addr -= (addr_t) &dummy32->regs.per_info;
 652		__poke_user_per_compat(child, addr, data);
 653	}
 654
 655	return 0;
 656}
 657
 658static int poke_user_compat(struct task_struct *child,
 659			    addr_t addr, addr_t data)
 660{
 661	if (!is_compat_task() || (addr & 3) ||
 662	    addr > sizeof(struct compat_user) - 3)
 663		return -EIO;
 664
 665	return __poke_user_compat(child, addr, data);
 666}
 667
 668long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 669			compat_ulong_t caddr, compat_ulong_t cdata)
 670{
 671	unsigned long addr = caddr;
 672	unsigned long data = cdata;
 673	compat_ptrace_area parea;
 674	int copied, ret;
 675
 676	switch (request) {
 677	case PTRACE_PEEKUSR:
 678		/* read the word at location addr in the USER area. */
 679		return peek_user_compat(child, addr, data);
 680
 681	case PTRACE_POKEUSR:
 682		/* write the word at location addr in the USER area */
 683		return poke_user_compat(child, addr, data);
 684
 685	case PTRACE_PEEKUSR_AREA:
 686	case PTRACE_POKEUSR_AREA:
 687		if (copy_from_user(&parea, (void __force __user *) addr,
 688							sizeof(parea)))
 689			return -EFAULT;
 690		addr = parea.kernel_addr;
 691		data = parea.process_addr;
 692		copied = 0;
 693		while (copied < parea.len) {
 694			if (request == PTRACE_PEEKUSR_AREA)
 695				ret = peek_user_compat(child, addr, data);
 696			else {
 697				__u32 utmp;
 698				if (get_user(utmp,
 699					     (__u32 __force __user *) data))
 700					return -EFAULT;
 701				ret = poke_user_compat(child, addr, utmp);
 702			}
 703			if (ret)
 704				return ret;
 705			addr += sizeof(unsigned int);
 706			data += sizeof(unsigned int);
 707			copied += sizeof(unsigned int);
 708		}
 709		return 0;
 710	case PTRACE_GET_LAST_BREAK:
 711		put_user(task_thread_info(child)->last_break,
 712			 (unsigned int __user *) data);
 713		return 0;
 714	}
 715	return compat_ptrace_request(child, request, addr, data);
 716}
 717#endif
 718
 719asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 720{
 721	long ret = 0;
 722
 723	/* Do the secure computing check first. */
 724	secure_computing(regs->gprs[2]);
 725
 726	/*
 727	 * The sysc_tracesys code in entry.S stored the system
 728	 * call number to gprs[2].
 729	 */
 730	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 731	    (tracehook_report_syscall_entry(regs) ||
 732	     regs->gprs[2] >= NR_syscalls)) {
 733		/*
 734		 * Tracing decided this syscall should not happen or the
 735		 * debugger stored an invalid system call number. Skip
 736		 * the system call and the system call restart handling.
 737		 */
 738		regs->svcnr = 0;
 739		ret = -1;
 
 
 
 
 
 
 740	}
 741
 742	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 743		trace_sys_enter(regs, regs->gprs[2]);
 744
 745	if (unlikely(current->audit_context))
 746		audit_syscall_entry(is_compat_task() ?
 747					AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
 748				    regs->gprs[2], regs->orig_gpr2,
 749				    regs->gprs[3], regs->gprs[4],
 750				    regs->gprs[5]);
 751	return ret ?: regs->gprs[2];
 
 752}
 753
 754asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 755{
 756	if (unlikely(current->audit_context))
 757		audit_syscall_exit(AUDITSC_RESULT(regs->gprs[2]),
 758				   regs->gprs[2]);
 759
 760	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 761		trace_sys_exit(regs, regs->gprs[2]);
 762
 763	if (test_thread_flag(TIF_SYSCALL_TRACE))
 764		tracehook_report_syscall_exit(regs, 0);
 765}
 766
 767/*
 768 * user_regset definitions.
 769 */
 770
 771static int s390_regs_get(struct task_struct *target,
 772			 const struct user_regset *regset,
 773			 unsigned int pos, unsigned int count,
 774			 void *kbuf, void __user *ubuf)
 775{
 776	if (target == current)
 777		save_access_regs(target->thread.acrs);
 778
 779	if (kbuf) {
 780		unsigned long *k = kbuf;
 781		while (count > 0) {
 782			*k++ = __peek_user(target, pos);
 783			count -= sizeof(*k);
 784			pos += sizeof(*k);
 785		}
 786	} else {
 787		unsigned long __user *u = ubuf;
 788		while (count > 0) {
 789			if (__put_user(__peek_user(target, pos), u++))
 790				return -EFAULT;
 791			count -= sizeof(*u);
 792			pos += sizeof(*u);
 793		}
 794	}
 795	return 0;
 796}
 797
 798static int s390_regs_set(struct task_struct *target,
 799			 const struct user_regset *regset,
 800			 unsigned int pos, unsigned int count,
 801			 const void *kbuf, const void __user *ubuf)
 802{
 803	int rc = 0;
 804
 805	if (target == current)
 806		save_access_regs(target->thread.acrs);
 807
 808	if (kbuf) {
 809		const unsigned long *k = kbuf;
 810		while (count > 0 && !rc) {
 811			rc = __poke_user(target, pos, *k++);
 812			count -= sizeof(*k);
 813			pos += sizeof(*k);
 814		}
 815	} else {
 816		const unsigned long  __user *u = ubuf;
 817		while (count > 0 && !rc) {
 818			unsigned long word;
 819			rc = __get_user(word, u++);
 820			if (rc)
 821				break;
 822			rc = __poke_user(target, pos, word);
 823			count -= sizeof(*u);
 824			pos += sizeof(*u);
 825		}
 826	}
 827
 828	if (rc == 0 && target == current)
 829		restore_access_regs(target->thread.acrs);
 830
 831	return rc;
 832}
 833
 834static int s390_fpregs_get(struct task_struct *target,
 835			   const struct user_regset *regset, unsigned int pos,
 836			   unsigned int count, void *kbuf, void __user *ubuf)
 837{
 
 
 838	if (target == current)
 839		save_fp_regs(&target->thread.fp_regs);
 
 
 
 840
 841	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 842				   &target->thread.fp_regs, 0, -1);
 843}
 844
 845static int s390_fpregs_set(struct task_struct *target,
 846			   const struct user_regset *regset, unsigned int pos,
 847			   unsigned int count, const void *kbuf,
 848			   const void __user *ubuf)
 849{
 850	int rc = 0;
 
 851
 852	if (target == current)
 853		save_fp_regs(&target->thread.fp_regs);
 
 
 
 
 
 854
 855	/* If setting FPC, must validate it first. */
 856	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 857		u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
 858		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
 859					0, offsetof(s390_fp_regs, fprs));
 860		if (rc)
 861			return rc;
 862		if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
 863			return -EINVAL;
 864		target->thread.fp_regs.fpc = fpc[0];
 865	}
 866
 867	if (rc == 0 && count > 0)
 868		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 869					target->thread.fp_regs.fprs,
 870					offsetof(s390_fp_regs, fprs), -1);
 871
 872	if (rc == 0 && target == current)
 873		restore_fp_regs(&target->thread.fp_regs);
 
 
 
 874
 875	return rc;
 876}
 877
 878#ifdef CONFIG_64BIT
 879
 880static int s390_last_break_get(struct task_struct *target,
 881			       const struct user_regset *regset,
 882			       unsigned int pos, unsigned int count,
 883			       void *kbuf, void __user *ubuf)
 884{
 885	if (count > 0) {
 886		if (kbuf) {
 887			unsigned long *k = kbuf;
 888			*k = task_thread_info(target)->last_break;
 889		} else {
 890			unsigned long  __user *u = ubuf;
 891			if (__put_user(task_thread_info(target)->last_break, u))
 892				return -EFAULT;
 893		}
 894	}
 895	return 0;
 896}
 897
 898#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900static const struct user_regset s390_regsets[] = {
 901	[REGSET_GENERAL] = {
 902		.core_note_type = NT_PRSTATUS,
 903		.n = sizeof(s390_regs) / sizeof(long),
 904		.size = sizeof(long),
 905		.align = sizeof(long),
 906		.get = s390_regs_get,
 907		.set = s390_regs_set,
 908	},
 909	[REGSET_FP] = {
 910		.core_note_type = NT_PRFPREG,
 911		.n = sizeof(s390_fp_regs) / sizeof(long),
 912		.size = sizeof(long),
 913		.align = sizeof(long),
 914		.get = s390_fpregs_get,
 915		.set = s390_fpregs_set,
 916	},
 917#ifdef CONFIG_64BIT
 918	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 919		.core_note_type = NT_S390_LAST_BREAK,
 920		.n = 1,
 921		.size = sizeof(long),
 922		.align = sizeof(long),
 923		.get = s390_last_break_get,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924	},
 925#endif
 926};
 927
 928static const struct user_regset_view user_s390_view = {
 929	.name = UTS_MACHINE,
 930	.e_machine = EM_S390,
 931	.regsets = s390_regsets,
 932	.n = ARRAY_SIZE(s390_regsets)
 933};
 934
 935#ifdef CONFIG_COMPAT
 936static int s390_compat_regs_get(struct task_struct *target,
 937				const struct user_regset *regset,
 938				unsigned int pos, unsigned int count,
 939				void *kbuf, void __user *ubuf)
 940{
 941	if (target == current)
 942		save_access_regs(target->thread.acrs);
 943
 944	if (kbuf) {
 945		compat_ulong_t *k = kbuf;
 946		while (count > 0) {
 947			*k++ = __peek_user_compat(target, pos);
 948			count -= sizeof(*k);
 949			pos += sizeof(*k);
 950		}
 951	} else {
 952		compat_ulong_t __user *u = ubuf;
 953		while (count > 0) {
 954			if (__put_user(__peek_user_compat(target, pos), u++))
 955				return -EFAULT;
 956			count -= sizeof(*u);
 957			pos += sizeof(*u);
 958		}
 959	}
 960	return 0;
 961}
 962
 963static int s390_compat_regs_set(struct task_struct *target,
 964				const struct user_regset *regset,
 965				unsigned int pos, unsigned int count,
 966				const void *kbuf, const void __user *ubuf)
 967{
 968	int rc = 0;
 969
 970	if (target == current)
 971		save_access_regs(target->thread.acrs);
 972
 973	if (kbuf) {
 974		const compat_ulong_t *k = kbuf;
 975		while (count > 0 && !rc) {
 976			rc = __poke_user_compat(target, pos, *k++);
 977			count -= sizeof(*k);
 978			pos += sizeof(*k);
 979		}
 980	} else {
 981		const compat_ulong_t  __user *u = ubuf;
 982		while (count > 0 && !rc) {
 983			compat_ulong_t word;
 984			rc = __get_user(word, u++);
 985			if (rc)
 986				break;
 987			rc = __poke_user_compat(target, pos, word);
 988			count -= sizeof(*u);
 989			pos += sizeof(*u);
 990		}
 991	}
 992
 993	if (rc == 0 && target == current)
 994		restore_access_regs(target->thread.acrs);
 995
 996	return rc;
 997}
 998
 999static int s390_compat_regs_high_get(struct task_struct *target,
1000				     const struct user_regset *regset,
1001				     unsigned int pos, unsigned int count,
1002				     void *kbuf, void __user *ubuf)
1003{
1004	compat_ulong_t *gprs_high;
1005
1006	gprs_high = (compat_ulong_t *)
1007		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1008	if (kbuf) {
1009		compat_ulong_t *k = kbuf;
1010		while (count > 0) {
1011			*k++ = *gprs_high;
1012			gprs_high += 2;
1013			count -= sizeof(*k);
1014		}
1015	} else {
1016		compat_ulong_t __user *u = ubuf;
1017		while (count > 0) {
1018			if (__put_user(*gprs_high, u++))
1019				return -EFAULT;
1020			gprs_high += 2;
1021			count -= sizeof(*u);
1022		}
1023	}
1024	return 0;
1025}
1026
1027static int s390_compat_regs_high_set(struct task_struct *target,
1028				     const struct user_regset *regset,
1029				     unsigned int pos, unsigned int count,
1030				     const void *kbuf, const void __user *ubuf)
1031{
1032	compat_ulong_t *gprs_high;
1033	int rc = 0;
1034
1035	gprs_high = (compat_ulong_t *)
1036		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1037	if (kbuf) {
1038		const compat_ulong_t *k = kbuf;
1039		while (count > 0) {
1040			*gprs_high = *k++;
1041			*gprs_high += 2;
1042			count -= sizeof(*k);
1043		}
1044	} else {
1045		const compat_ulong_t  __user *u = ubuf;
1046		while (count > 0 && !rc) {
1047			unsigned long word;
1048			rc = __get_user(word, u++);
1049			if (rc)
1050				break;
1051			*gprs_high = word;
1052			*gprs_high += 2;
1053			count -= sizeof(*u);
1054		}
1055	}
1056
1057	return rc;
1058}
1059
1060static int s390_compat_last_break_get(struct task_struct *target,
1061				      const struct user_regset *regset,
1062				      unsigned int pos, unsigned int count,
1063				      void *kbuf, void __user *ubuf)
1064{
1065	compat_ulong_t last_break;
1066
1067	if (count > 0) {
1068		last_break = task_thread_info(target)->last_break;
1069		if (kbuf) {
1070			unsigned long *k = kbuf;
1071			*k = last_break;
1072		} else {
1073			unsigned long  __user *u = ubuf;
1074			if (__put_user(last_break, u))
1075				return -EFAULT;
1076		}
1077	}
1078	return 0;
1079}
1080
 
 
 
 
 
 
 
 
1081static const struct user_regset s390_compat_regsets[] = {
1082	[REGSET_GENERAL] = {
1083		.core_note_type = NT_PRSTATUS,
1084		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1085		.size = sizeof(compat_long_t),
1086		.align = sizeof(compat_long_t),
1087		.get = s390_compat_regs_get,
1088		.set = s390_compat_regs_set,
1089	},
1090	[REGSET_FP] = {
1091		.core_note_type = NT_PRFPREG,
1092		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1093		.size = sizeof(compat_long_t),
1094		.align = sizeof(compat_long_t),
1095		.get = s390_fpregs_get,
1096		.set = s390_fpregs_set,
1097	},
1098	[REGSET_LAST_BREAK] = {
 
 
 
 
 
 
 
 
1099		.core_note_type = NT_S390_LAST_BREAK,
1100		.n = 1,
1101		.size = sizeof(long),
1102		.align = sizeof(long),
1103		.get = s390_compat_last_break_get,
 
 
 
 
 
 
 
 
 
1104	},
1105	[REGSET_GENERAL_EXTENDED] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106		.core_note_type = NT_S390_HIGH_GPRS,
1107		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1108		.size = sizeof(compat_long_t),
1109		.align = sizeof(compat_long_t),
1110		.get = s390_compat_regs_high_get,
1111		.set = s390_compat_regs_high_set,
1112	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113};
1114
1115static const struct user_regset_view user_s390_compat_view = {
1116	.name = "s390",
1117	.e_machine = EM_S390,
1118	.regsets = s390_compat_regsets,
1119	.n = ARRAY_SIZE(s390_compat_regsets)
1120};
1121#endif
1122
1123const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1124{
1125#ifdef CONFIG_COMPAT
1126	if (test_tsk_thread_flag(task, TIF_31BIT))
1127		return &user_s390_compat_view;
1128#endif
1129	return &user_s390_view;
1130}
1131
1132static const char *gpr_names[NUM_GPRS] = {
1133	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1134	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1135};
1136
1137unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1138{
1139	if (offset >= NUM_GPRS)
1140		return 0;
1141	return regs->gprs[offset];
1142}
1143
1144int regs_query_register_offset(const char *name)
1145{
1146	unsigned long offset;
1147
1148	if (!name || *name != 'r')
1149		return -EINVAL;
1150	if (strict_strtoul(name + 1, 10, &offset))
1151		return -EINVAL;
1152	if (offset >= NUM_GPRS)
1153		return -EINVAL;
1154	return offset;
1155}
1156
1157const char *regs_query_register_name(unsigned int offset)
1158{
1159	if (offset >= NUM_GPRS)
1160		return NULL;
1161	return gpr_names[offset];
1162}
1163
1164static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1165{
1166	unsigned long ksp = kernel_stack_pointer(regs);
1167
1168	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1169}
1170
1171/**
1172 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1173 * @regs:pt_regs which contains kernel stack pointer.
1174 * @n:stack entry number.
1175 *
1176 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1177 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1178 * this returns 0.
1179 */
1180unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1181{
1182	unsigned long addr;
1183
1184	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1185	if (!regs_within_kernel_stack(regs, addr))
1186		return 0;
1187	return *(unsigned long *)addr;
1188}