Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resizable, Scalable, Concurrent Hash Table
   4 *
   5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   8 *
   9 * Code partially derived from nft_hash
  10 * Rewritten with rehash code from br_multicast plus single list
  11 * pointer as suggested by Josh Triplett
  12 */
  13
  14#include <linux/atomic.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/log2.h>
  18#include <linux/sched.h>
  19#include <linux/rculist.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/jhash.h>
  24#include <linux/random.h>
  25#include <linux/rhashtable.h>
  26#include <linux/err.h>
  27#include <linux/export.h>
  28
  29#define HASH_DEFAULT_SIZE	64UL
  30#define HASH_MIN_SIZE		4U
  31
  32union nested_table {
  33	union nested_table __rcu *table;
  34	struct rhash_lock_head __rcu *bucket;
  35};
  36
  37static u32 head_hashfn(struct rhashtable *ht,
  38		       const struct bucket_table *tbl,
  39		       const struct rhash_head *he)
  40{
  41	return rht_head_hashfn(ht, tbl, he, ht->p);
  42}
  43
  44#ifdef CONFIG_PROVE_LOCKING
  45#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  46
  47int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  48{
  49	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  50}
  51EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  52
  53int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  54{
  55	if (!debug_locks)
  56		return 1;
  57	if (unlikely(tbl->nest))
  58		return 1;
  59	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
  60}
  61EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  62#else
  63#define ASSERT_RHT_MUTEX(HT)
  64#endif
  65
  66static inline union nested_table *nested_table_top(
  67	const struct bucket_table *tbl)
  68{
  69	/* The top-level bucket entry does not need RCU protection
  70	 * because it's set at the same time as tbl->nest.
  71	 */
  72	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
  73}
  74
  75static void nested_table_free(union nested_table *ntbl, unsigned int size)
  76{
  77	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  78	const unsigned int len = 1 << shift;
  79	unsigned int i;
  80
  81	ntbl = rcu_dereference_protected(ntbl->table, 1);
  82	if (!ntbl)
  83		return;
  84
  85	if (size > len) {
  86		size >>= shift;
  87		for (i = 0; i < len; i++)
  88			nested_table_free(ntbl + i, size);
  89	}
  90
  91	kfree(ntbl);
  92}
  93
  94static void nested_bucket_table_free(const struct bucket_table *tbl)
  95{
  96	unsigned int size = tbl->size >> tbl->nest;
  97	unsigned int len = 1 << tbl->nest;
  98	union nested_table *ntbl;
  99	unsigned int i;
 100
 101	ntbl = nested_table_top(tbl);
 102
 103	for (i = 0; i < len; i++)
 104		nested_table_free(ntbl + i, size);
 105
 106	kfree(ntbl);
 107}
 108
 109static void bucket_table_free(const struct bucket_table *tbl)
 110{
 111	if (tbl->nest)
 112		nested_bucket_table_free(tbl);
 113
 114	kvfree(tbl);
 115}
 116
 117static void bucket_table_free_rcu(struct rcu_head *head)
 118{
 119	bucket_table_free(container_of(head, struct bucket_table, rcu));
 120}
 121
 122static union nested_table *nested_table_alloc(struct rhashtable *ht,
 123					      union nested_table __rcu **prev,
 124					      bool leaf)
 125{
 126	union nested_table *ntbl;
 127	int i;
 128
 129	ntbl = rcu_dereference(*prev);
 130	if (ntbl)
 131		return ntbl;
 132
 133	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 134
 135	if (ntbl && leaf) {
 136		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
 137			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
 138	}
 139
 140	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
 141		return ntbl;
 142	/* Raced with another thread. */
 143	kfree(ntbl);
 144	return rcu_dereference(*prev);
 145}
 146
 147static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 148						      size_t nbuckets,
 149						      gfp_t gfp)
 150{
 151	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 152	struct bucket_table *tbl;
 153	size_t size;
 154
 155	if (nbuckets < (1 << (shift + 1)))
 156		return NULL;
 157
 158	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 159
 160	tbl = kzalloc(size, gfp);
 161	if (!tbl)
 162		return NULL;
 163
 164	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 165				false)) {
 166		kfree(tbl);
 167		return NULL;
 168	}
 169
 170	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 171
 172	return tbl;
 173}
 174
 175static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 176					       size_t nbuckets,
 177					       gfp_t gfp)
 178{
 179	struct bucket_table *tbl = NULL;
 180	size_t size;
 181	int i;
 182	static struct lock_class_key __key;
 183
 184	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
 185
 186	size = nbuckets;
 187
 188	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
 189		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 190		nbuckets = 0;
 191	}
 192
 193	if (tbl == NULL)
 194		return NULL;
 195
 196	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
 197
 198	tbl->size = size;
 199
 200	rcu_head_init(&tbl->rcu);
 201	INIT_LIST_HEAD(&tbl->walkers);
 202
 203	tbl->hash_rnd = get_random_u32();
 204
 205	for (i = 0; i < nbuckets; i++)
 206		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
 207
 208	return tbl;
 209}
 210
 211static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 212						  struct bucket_table *tbl)
 213{
 214	struct bucket_table *new_tbl;
 215
 216	do {
 217		new_tbl = tbl;
 218		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 219	} while (tbl);
 220
 221	return new_tbl;
 222}
 223
 224static int rhashtable_rehash_one(struct rhashtable *ht,
 225				 struct rhash_lock_head __rcu **bkt,
 226				 unsigned int old_hash)
 227{
 228	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 229	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
 230	int err = -EAGAIN;
 231	struct rhash_head *head, *next, *entry;
 232	struct rhash_head __rcu **pprev = NULL;
 233	unsigned int new_hash;
 
 234
 235	if (new_tbl->nest)
 236		goto out;
 237
 238	err = -ENOENT;
 239
 240	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
 241			  old_tbl, old_hash) {
 242		err = 0;
 243		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 244
 245		if (rht_is_a_nulls(next))
 246			break;
 247
 248		pprev = &entry->next;
 249	}
 250
 251	if (err)
 252		goto out;
 253
 254	new_hash = head_hashfn(ht, new_tbl, entry);
 255
 256	rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
 
 257
 258	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
 259
 260	RCU_INIT_POINTER(entry->next, head);
 261
 262	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
 263
 264	if (pprev)
 265		rcu_assign_pointer(*pprev, next);
 266	else
 267		/* Need to preserved the bit lock. */
 268		rht_assign_locked(bkt, next);
 269
 270out:
 271	return err;
 272}
 273
 274static int rhashtable_rehash_chain(struct rhashtable *ht,
 275				    unsigned int old_hash)
 276{
 277	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 278	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
 
 279	int err;
 280
 281	if (!bkt)
 282		return 0;
 283	rht_lock(old_tbl, bkt);
 284
 285	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
 286		;
 287
 288	if (err == -ENOENT)
 289		err = 0;
 290	rht_unlock(old_tbl, bkt);
 291
 292	return err;
 293}
 294
 295static int rhashtable_rehash_attach(struct rhashtable *ht,
 296				    struct bucket_table *old_tbl,
 297				    struct bucket_table *new_tbl)
 298{
 299	/* Make insertions go into the new, empty table right away. Deletions
 300	 * and lookups will be attempted in both tables until we synchronize.
 301	 * As cmpxchg() provides strong barriers, we do not need
 302	 * rcu_assign_pointer().
 303	 */
 304
 305	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
 306		    new_tbl) != NULL)
 307		return -EEXIST;
 308
 309	return 0;
 310}
 311
 312static int rhashtable_rehash_table(struct rhashtable *ht)
 313{
 314	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 315	struct bucket_table *new_tbl;
 316	struct rhashtable_walker *walker;
 317	unsigned int old_hash;
 318	int err;
 319
 320	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 321	if (!new_tbl)
 322		return 0;
 323
 324	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 325		err = rhashtable_rehash_chain(ht, old_hash);
 326		if (err)
 327			return err;
 328		cond_resched();
 329	}
 330
 331	/* Publish the new table pointer. */
 332	rcu_assign_pointer(ht->tbl, new_tbl);
 333
 334	spin_lock(&ht->lock);
 335	list_for_each_entry(walker, &old_tbl->walkers, list)
 336		walker->tbl = NULL;
 337
 338	/* Wait for readers. All new readers will see the new
 339	 * table, and thus no references to the old table will
 340	 * remain.
 341	 * We do this inside the locked region so that
 342	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
 343	 * to check if it should not re-link the table.
 344	 */
 345	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 346	spin_unlock(&ht->lock);
 347
 348	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 349}
 350
 351static int rhashtable_rehash_alloc(struct rhashtable *ht,
 352				   struct bucket_table *old_tbl,
 353				   unsigned int size)
 354{
 355	struct bucket_table *new_tbl;
 356	int err;
 357
 358	ASSERT_RHT_MUTEX(ht);
 359
 360	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 361	if (new_tbl == NULL)
 362		return -ENOMEM;
 363
 364	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 365	if (err)
 366		bucket_table_free(new_tbl);
 367
 368	return err;
 369}
 370
 371/**
 372 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 373 * @ht:		the hash table to shrink
 374 *
 375 * This function shrinks the hash table to fit, i.e., the smallest
 376 * size would not cause it to expand right away automatically.
 377 *
 378 * The caller must ensure that no concurrent resizing occurs by holding
 379 * ht->mutex.
 380 *
 381 * The caller must ensure that no concurrent table mutations take place.
 382 * It is however valid to have concurrent lookups if they are RCU protected.
 383 *
 384 * It is valid to have concurrent insertions and deletions protected by per
 385 * bucket locks or concurrent RCU protected lookups and traversals.
 386 */
 387static int rhashtable_shrink(struct rhashtable *ht)
 388{
 389	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 390	unsigned int nelems = atomic_read(&ht->nelems);
 391	unsigned int size = 0;
 392
 393	if (nelems)
 394		size = roundup_pow_of_two(nelems * 3 / 2);
 395	if (size < ht->p.min_size)
 396		size = ht->p.min_size;
 397
 398	if (old_tbl->size <= size)
 399		return 0;
 400
 401	if (rht_dereference(old_tbl->future_tbl, ht))
 402		return -EEXIST;
 403
 404	return rhashtable_rehash_alloc(ht, old_tbl, size);
 405}
 406
 407static void rht_deferred_worker(struct work_struct *work)
 408{
 409	struct rhashtable *ht;
 410	struct bucket_table *tbl;
 411	int err = 0;
 412
 413	ht = container_of(work, struct rhashtable, run_work);
 414	mutex_lock(&ht->mutex);
 415
 416	tbl = rht_dereference(ht->tbl, ht);
 417	tbl = rhashtable_last_table(ht, tbl);
 418
 419	if (rht_grow_above_75(ht, tbl))
 420		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 421	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 422		err = rhashtable_shrink(ht);
 423	else if (tbl->nest)
 424		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 425
 426	if (!err || err == -EEXIST) {
 427		int nerr;
 428
 429		nerr = rhashtable_rehash_table(ht);
 430		err = err ?: nerr;
 431	}
 432
 433	mutex_unlock(&ht->mutex);
 434
 435	if (err)
 436		schedule_work(&ht->run_work);
 437}
 438
 439static int rhashtable_insert_rehash(struct rhashtable *ht,
 440				    struct bucket_table *tbl)
 441{
 442	struct bucket_table *old_tbl;
 443	struct bucket_table *new_tbl;
 444	unsigned int size;
 445	int err;
 446
 447	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 448
 449	size = tbl->size;
 450
 451	err = -EBUSY;
 452
 453	if (rht_grow_above_75(ht, tbl))
 454		size *= 2;
 455	/* Do not schedule more than one rehash */
 456	else if (old_tbl != tbl)
 457		goto fail;
 458
 459	err = -ENOMEM;
 460
 461	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
 462	if (new_tbl == NULL)
 463		goto fail;
 464
 465	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 466	if (err) {
 467		bucket_table_free(new_tbl);
 468		if (err == -EEXIST)
 469			err = 0;
 470	} else
 471		schedule_work(&ht->run_work);
 472
 473	return err;
 474
 475fail:
 476	/* Do not fail the insert if someone else did a rehash. */
 477	if (likely(rcu_access_pointer(tbl->future_tbl)))
 478		return 0;
 479
 480	/* Schedule async rehash to retry allocation in process context. */
 481	if (err == -ENOMEM)
 482		schedule_work(&ht->run_work);
 483
 484	return err;
 485}
 486
 487static void *rhashtable_lookup_one(struct rhashtable *ht,
 488				   struct rhash_lock_head __rcu **bkt,
 489				   struct bucket_table *tbl, unsigned int hash,
 490				   const void *key, struct rhash_head *obj)
 491{
 492	struct rhashtable_compare_arg arg = {
 493		.ht = ht,
 494		.key = key,
 495	};
 496	struct rhash_head __rcu **pprev = NULL;
 497	struct rhash_head *head;
 498	int elasticity;
 499
 500	elasticity = RHT_ELASTICITY;
 501	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
 502		struct rhlist_head *list;
 503		struct rhlist_head *plist;
 504
 505		elasticity--;
 506		if (!key ||
 507		    (ht->p.obj_cmpfn ?
 508		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 509		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 510			pprev = &head->next;
 511			continue;
 512		}
 513
 514		if (!ht->rhlist)
 515			return rht_obj(ht, head);
 516
 517		list = container_of(obj, struct rhlist_head, rhead);
 518		plist = container_of(head, struct rhlist_head, rhead);
 519
 520		RCU_INIT_POINTER(list->next, plist);
 521		head = rht_dereference_bucket(head->next, tbl, hash);
 522		RCU_INIT_POINTER(list->rhead.next, head);
 523		if (pprev)
 524			rcu_assign_pointer(*pprev, obj);
 525		else
 526			/* Need to preserve the bit lock */
 527			rht_assign_locked(bkt, obj);
 528
 529		return NULL;
 530	}
 531
 532	if (elasticity <= 0)
 533		return ERR_PTR(-EAGAIN);
 534
 535	return ERR_PTR(-ENOENT);
 536}
 537
 538static struct bucket_table *rhashtable_insert_one(
 539	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
 540	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
 541	void *data)
 542{
 543	struct bucket_table *new_tbl;
 544	struct rhash_head *head;
 545
 546	if (!IS_ERR_OR_NULL(data))
 547		return ERR_PTR(-EEXIST);
 548
 549	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 550		return ERR_CAST(data);
 551
 552	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 553	if (new_tbl)
 554		return new_tbl;
 555
 556	if (PTR_ERR(data) != -ENOENT)
 557		return ERR_CAST(data);
 558
 559	if (unlikely(rht_grow_above_max(ht, tbl)))
 560		return ERR_PTR(-E2BIG);
 561
 562	if (unlikely(rht_grow_above_100(ht, tbl)))
 563		return ERR_PTR(-EAGAIN);
 564
 565	head = rht_ptr(bkt, tbl, hash);
 566
 567	RCU_INIT_POINTER(obj->next, head);
 568	if (ht->rhlist) {
 569		struct rhlist_head *list;
 570
 571		list = container_of(obj, struct rhlist_head, rhead);
 572		RCU_INIT_POINTER(list->next, NULL);
 573	}
 574
 575	/* bkt is always the head of the list, so it holds
 576	 * the lock, which we need to preserve
 577	 */
 578	rht_assign_locked(bkt, obj);
 579
 580	atomic_inc(&ht->nelems);
 581	if (rht_grow_above_75(ht, tbl))
 582		schedule_work(&ht->run_work);
 583
 584	return NULL;
 585}
 586
 587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 588				   struct rhash_head *obj)
 589{
 590	struct bucket_table *new_tbl;
 591	struct bucket_table *tbl;
 592	struct rhash_lock_head __rcu **bkt;
 
 593	unsigned int hash;
 594	void *data;
 595
 596	new_tbl = rcu_dereference(ht->tbl);
 597
 598	do {
 599		tbl = new_tbl;
 600		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 601		if (rcu_access_pointer(tbl->future_tbl))
 602			/* Failure is OK */
 603			bkt = rht_bucket_var(tbl, hash);
 604		else
 605			bkt = rht_bucket_insert(ht, tbl, hash);
 606		if (bkt == NULL) {
 607			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 608			data = ERR_PTR(-EAGAIN);
 609		} else {
 610			rht_lock(tbl, bkt);
 611			data = rhashtable_lookup_one(ht, bkt, tbl,
 612						     hash, key, obj);
 613			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
 614							hash, obj, data);
 615			if (PTR_ERR(new_tbl) != -EEXIST)
 616				data = ERR_CAST(new_tbl);
 617
 618			rht_unlock(tbl, bkt);
 619		}
 620	} while (!IS_ERR_OR_NULL(new_tbl));
 621
 622	if (PTR_ERR(data) == -EAGAIN)
 623		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 624			       -EAGAIN);
 625
 626	return data;
 627}
 628
 629void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 630			     struct rhash_head *obj)
 631{
 632	void *data;
 633
 634	do {
 635		rcu_read_lock();
 636		data = rhashtable_try_insert(ht, key, obj);
 637		rcu_read_unlock();
 638	} while (PTR_ERR(data) == -EAGAIN);
 639
 640	return data;
 641}
 642EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 643
 644/**
 645 * rhashtable_walk_enter - Initialise an iterator
 646 * @ht:		Table to walk over
 647 * @iter:	Hash table Iterator
 648 *
 649 * This function prepares a hash table walk.
 650 *
 651 * Note that if you restart a walk after rhashtable_walk_stop you
 652 * may see the same object twice.  Also, you may miss objects if
 653 * there are removals in between rhashtable_walk_stop and the next
 654 * call to rhashtable_walk_start.
 655 *
 656 * For a completely stable walk you should construct your own data
 657 * structure outside the hash table.
 658 *
 659 * This function may be called from any process context, including
 660 * non-preemptable context, but cannot be called from softirq or
 661 * hardirq context.
 662 *
 663 * You must call rhashtable_walk_exit after this function returns.
 664 */
 665void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 666{
 667	iter->ht = ht;
 668	iter->p = NULL;
 669	iter->slot = 0;
 670	iter->skip = 0;
 671	iter->end_of_table = 0;
 672
 673	spin_lock(&ht->lock);
 674	iter->walker.tbl =
 675		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 676	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 677	spin_unlock(&ht->lock);
 678}
 679EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 680
 681/**
 682 * rhashtable_walk_exit - Free an iterator
 683 * @iter:	Hash table Iterator
 684 *
 685 * This function frees resources allocated by rhashtable_walk_enter.
 686 */
 687void rhashtable_walk_exit(struct rhashtable_iter *iter)
 688{
 689	spin_lock(&iter->ht->lock);
 690	if (iter->walker.tbl)
 691		list_del(&iter->walker.list);
 692	spin_unlock(&iter->ht->lock);
 693}
 694EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 695
 696/**
 697 * rhashtable_walk_start_check - Start a hash table walk
 698 * @iter:	Hash table iterator
 699 *
 700 * Start a hash table walk at the current iterator position.  Note that we take
 701 * the RCU lock in all cases including when we return an error.  So you must
 702 * always call rhashtable_walk_stop to clean up.
 703 *
 704 * Returns zero if successful.
 705 *
 706 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 707 * will rewind back to the beginning and you may use it immediately
 708 * by calling rhashtable_walk_next.
 709 *
 710 * rhashtable_walk_start is defined as an inline variant that returns
 711 * void. This is preferred in cases where the caller would ignore
 712 * resize events and always continue.
 713 */
 714int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 715	__acquires(RCU)
 716{
 717	struct rhashtable *ht = iter->ht;
 718	bool rhlist = ht->rhlist;
 719
 720	rcu_read_lock();
 721
 722	spin_lock(&ht->lock);
 723	if (iter->walker.tbl)
 724		list_del(&iter->walker.list);
 725	spin_unlock(&ht->lock);
 726
 727	if (iter->end_of_table)
 728		return 0;
 729	if (!iter->walker.tbl) {
 730		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 731		iter->slot = 0;
 732		iter->skip = 0;
 733		return -EAGAIN;
 734	}
 735
 736	if (iter->p && !rhlist) {
 737		/*
 738		 * We need to validate that 'p' is still in the table, and
 739		 * if so, update 'skip'
 740		 */
 741		struct rhash_head *p;
 742		int skip = 0;
 743		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 744			skip++;
 745			if (p == iter->p) {
 746				iter->skip = skip;
 747				goto found;
 748			}
 749		}
 750		iter->p = NULL;
 751	} else if (iter->p && rhlist) {
 752		/* Need to validate that 'list' is still in the table, and
 753		 * if so, update 'skip' and 'p'.
 754		 */
 755		struct rhash_head *p;
 756		struct rhlist_head *list;
 757		int skip = 0;
 758		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 759			for (list = container_of(p, struct rhlist_head, rhead);
 760			     list;
 761			     list = rcu_dereference(list->next)) {
 762				skip++;
 763				if (list == iter->list) {
 764					iter->p = p;
 765					iter->skip = skip;
 766					goto found;
 767				}
 768			}
 769		}
 770		iter->p = NULL;
 771	}
 772found:
 773	return 0;
 774}
 775EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 776
 777/**
 778 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 779 * one in case of a new walk).
 780 *
 781 * @iter:	Hash table iterator
 782 *
 783 * Returns the found object or NULL when the end of the table is reached.
 784 *
 785 * Returns -EAGAIN if resize event occurred.
 786 */
 787static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 788{
 789	struct bucket_table *tbl = iter->walker.tbl;
 790	struct rhlist_head *list = iter->list;
 791	struct rhashtable *ht = iter->ht;
 792	struct rhash_head *p = iter->p;
 793	bool rhlist = ht->rhlist;
 794
 795	if (!tbl)
 796		return NULL;
 797
 798	for (; iter->slot < tbl->size; iter->slot++) {
 799		int skip = iter->skip;
 800
 801		rht_for_each_rcu(p, tbl, iter->slot) {
 802			if (rhlist) {
 803				list = container_of(p, struct rhlist_head,
 804						    rhead);
 805				do {
 806					if (!skip)
 807						goto next;
 808					skip--;
 809					list = rcu_dereference(list->next);
 810				} while (list);
 811
 812				continue;
 813			}
 814			if (!skip)
 815				break;
 816			skip--;
 817		}
 818
 819next:
 820		if (!rht_is_a_nulls(p)) {
 821			iter->skip++;
 822			iter->p = p;
 823			iter->list = list;
 824			return rht_obj(ht, rhlist ? &list->rhead : p);
 825		}
 826
 827		iter->skip = 0;
 828	}
 829
 830	iter->p = NULL;
 831
 832	/* Ensure we see any new tables. */
 833	smp_rmb();
 834
 835	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 836	if (iter->walker.tbl) {
 837		iter->slot = 0;
 838		iter->skip = 0;
 839		return ERR_PTR(-EAGAIN);
 840	} else {
 841		iter->end_of_table = true;
 842	}
 843
 844	return NULL;
 845}
 846
 847/**
 848 * rhashtable_walk_next - Return the next object and advance the iterator
 849 * @iter:	Hash table iterator
 850 *
 851 * Note that you must call rhashtable_walk_stop when you are finished
 852 * with the walk.
 853 *
 854 * Returns the next object or NULL when the end of the table is reached.
 855 *
 856 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 857 * will rewind back to the beginning and you may continue to use it.
 858 */
 859void *rhashtable_walk_next(struct rhashtable_iter *iter)
 860{
 861	struct rhlist_head *list = iter->list;
 862	struct rhashtable *ht = iter->ht;
 863	struct rhash_head *p = iter->p;
 864	bool rhlist = ht->rhlist;
 865
 866	if (p) {
 867		if (!rhlist || !(list = rcu_dereference(list->next))) {
 868			p = rcu_dereference(p->next);
 869			list = container_of(p, struct rhlist_head, rhead);
 870		}
 871		if (!rht_is_a_nulls(p)) {
 872			iter->skip++;
 873			iter->p = p;
 874			iter->list = list;
 875			return rht_obj(ht, rhlist ? &list->rhead : p);
 876		}
 877
 878		/* At the end of this slot, switch to next one and then find
 879		 * next entry from that point.
 880		 */
 881		iter->skip = 0;
 882		iter->slot++;
 883	}
 884
 885	return __rhashtable_walk_find_next(iter);
 886}
 887EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 888
 889/**
 890 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 891 * @iter:	Hash table iterator
 892 *
 893 * Returns the next object or NULL when the end of the table is reached.
 894 *
 895 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 896 * will rewind back to the beginning and you may continue to use it.
 897 */
 898void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 899{
 900	struct rhlist_head *list = iter->list;
 901	struct rhashtable *ht = iter->ht;
 902	struct rhash_head *p = iter->p;
 903
 904	if (p)
 905		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 906
 907	/* No object found in current iter, find next one in the table. */
 908
 909	if (iter->skip) {
 910		/* A nonzero skip value points to the next entry in the table
 911		 * beyond that last one that was found. Decrement skip so
 912		 * we find the current value. __rhashtable_walk_find_next
 913		 * will restore the original value of skip assuming that
 914		 * the table hasn't changed.
 915		 */
 916		iter->skip--;
 917	}
 918
 919	return __rhashtable_walk_find_next(iter);
 920}
 921EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 922
 923/**
 924 * rhashtable_walk_stop - Finish a hash table walk
 925 * @iter:	Hash table iterator
 926 *
 927 * Finish a hash table walk.  Does not reset the iterator to the start of the
 928 * hash table.
 929 */
 930void rhashtable_walk_stop(struct rhashtable_iter *iter)
 931	__releases(RCU)
 932{
 933	struct rhashtable *ht;
 934	struct bucket_table *tbl = iter->walker.tbl;
 935
 936	if (!tbl)
 937		goto out;
 938
 939	ht = iter->ht;
 940
 941	spin_lock(&ht->lock);
 942	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
 943		/* This bucket table is being freed, don't re-link it. */
 944		iter->walker.tbl = NULL;
 945	else
 946		list_add(&iter->walker.list, &tbl->walkers);
 947	spin_unlock(&ht->lock);
 948
 949out:
 950	rcu_read_unlock();
 951}
 952EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 953
 954static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 955{
 956	size_t retsize;
 957
 958	if (params->nelem_hint)
 959		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 960			      (unsigned long)params->min_size);
 961	else
 962		retsize = max(HASH_DEFAULT_SIZE,
 963			      (unsigned long)params->min_size);
 964
 965	return retsize;
 966}
 967
 968static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 969{
 970	return jhash2(key, length, seed);
 971}
 972
 973/**
 974 * rhashtable_init - initialize a new hash table
 975 * @ht:		hash table to be initialized
 976 * @params:	configuration parameters
 977 *
 978 * Initializes a new hash table based on the provided configuration
 979 * parameters. A table can be configured either with a variable or
 980 * fixed length key:
 981 *
 982 * Configuration Example 1: Fixed length keys
 983 * struct test_obj {
 984 *	int			key;
 985 *	void *			my_member;
 986 *	struct rhash_head	node;
 987 * };
 988 *
 989 * struct rhashtable_params params = {
 990 *	.head_offset = offsetof(struct test_obj, node),
 991 *	.key_offset = offsetof(struct test_obj, key),
 992 *	.key_len = sizeof(int),
 993 *	.hashfn = jhash,
 994 * };
 995 *
 996 * Configuration Example 2: Variable length keys
 997 * struct test_obj {
 998 *	[...]
 999 *	struct rhash_head	node;
1000 * };
1001 *
1002 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1003 * {
1004 *	struct test_obj *obj = data;
1005 *
1006 *	return [... hash ...];
1007 * }
1008 *
1009 * struct rhashtable_params params = {
1010 *	.head_offset = offsetof(struct test_obj, node),
1011 *	.hashfn = jhash,
1012 *	.obj_hashfn = my_hash_fn,
1013 * };
1014 */
1015int rhashtable_init(struct rhashtable *ht,
1016		    const struct rhashtable_params *params)
1017{
1018	struct bucket_table *tbl;
1019	size_t size;
1020
1021	if ((!params->key_len && !params->obj_hashfn) ||
1022	    (params->obj_hashfn && !params->obj_cmpfn))
1023		return -EINVAL;
1024
1025	memset(ht, 0, sizeof(*ht));
1026	mutex_init(&ht->mutex);
1027	spin_lock_init(&ht->lock);
1028	memcpy(&ht->p, params, sizeof(*params));
1029
1030	if (params->min_size)
1031		ht->p.min_size = roundup_pow_of_two(params->min_size);
1032
1033	/* Cap total entries at 2^31 to avoid nelems overflow. */
1034	ht->max_elems = 1u << 31;
1035
1036	if (params->max_size) {
1037		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1038		if (ht->p.max_size < ht->max_elems / 2)
1039			ht->max_elems = ht->p.max_size * 2;
1040	}
1041
1042	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1043
1044	size = rounded_hashtable_size(&ht->p);
1045
1046	ht->key_len = ht->p.key_len;
1047	if (!params->hashfn) {
1048		ht->p.hashfn = jhash;
1049
1050		if (!(ht->key_len & (sizeof(u32) - 1))) {
1051			ht->key_len /= sizeof(u32);
1052			ht->p.hashfn = rhashtable_jhash2;
1053		}
1054	}
1055
1056	/*
1057	 * This is api initialization and thus we need to guarantee the
1058	 * initial rhashtable allocation. Upon failure, retry with the
1059	 * smallest possible size with __GFP_NOFAIL semantics.
1060	 */
1061	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1062	if (unlikely(tbl == NULL)) {
1063		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1064		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1065	}
1066
1067	atomic_set(&ht->nelems, 0);
1068
1069	RCU_INIT_POINTER(ht->tbl, tbl);
1070
1071	INIT_WORK(&ht->run_work, rht_deferred_worker);
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(rhashtable_init);
1076
1077/**
1078 * rhltable_init - initialize a new hash list table
1079 * @hlt:	hash list table to be initialized
1080 * @params:	configuration parameters
1081 *
1082 * Initializes a new hash list table.
1083 *
1084 * See documentation for rhashtable_init.
1085 */
1086int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1087{
1088	int err;
1089
1090	err = rhashtable_init(&hlt->ht, params);
1091	hlt->ht.rhlist = true;
1092	return err;
1093}
1094EXPORT_SYMBOL_GPL(rhltable_init);
1095
1096static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1097				void (*free_fn)(void *ptr, void *arg),
1098				void *arg)
1099{
1100	struct rhlist_head *list;
1101
1102	if (!ht->rhlist) {
1103		free_fn(rht_obj(ht, obj), arg);
1104		return;
1105	}
1106
1107	list = container_of(obj, struct rhlist_head, rhead);
1108	do {
1109		obj = &list->rhead;
1110		list = rht_dereference(list->next, ht);
1111		free_fn(rht_obj(ht, obj), arg);
1112	} while (list);
1113}
1114
1115/**
1116 * rhashtable_free_and_destroy - free elements and destroy hash table
1117 * @ht:		the hash table to destroy
1118 * @free_fn:	callback to release resources of element
1119 * @arg:	pointer passed to free_fn
1120 *
1121 * Stops an eventual async resize. If defined, invokes free_fn for each
1122 * element to releasal resources. Please note that RCU protected
1123 * readers may still be accessing the elements. Releasing of resources
1124 * must occur in a compatible manner. Then frees the bucket array.
1125 *
1126 * This function will eventually sleep to wait for an async resize
1127 * to complete. The caller is responsible that no further write operations
1128 * occurs in parallel.
1129 */
1130void rhashtable_free_and_destroy(struct rhashtable *ht,
1131				 void (*free_fn)(void *ptr, void *arg),
1132				 void *arg)
1133{
1134	struct bucket_table *tbl, *next_tbl;
1135	unsigned int i;
1136
1137	cancel_work_sync(&ht->run_work);
1138
1139	mutex_lock(&ht->mutex);
1140	tbl = rht_dereference(ht->tbl, ht);
1141restart:
1142	if (free_fn) {
1143		for (i = 0; i < tbl->size; i++) {
1144			struct rhash_head *pos, *next;
1145
1146			cond_resched();
1147			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1148			     next = !rht_is_a_nulls(pos) ?
1149					rht_dereference(pos->next, ht) : NULL;
1150			     !rht_is_a_nulls(pos);
1151			     pos = next,
1152			     next = !rht_is_a_nulls(pos) ?
1153					rht_dereference(pos->next, ht) : NULL)
1154				rhashtable_free_one(ht, pos, free_fn, arg);
1155		}
1156	}
1157
1158	next_tbl = rht_dereference(tbl->future_tbl, ht);
1159	bucket_table_free(tbl);
1160	if (next_tbl) {
1161		tbl = next_tbl;
1162		goto restart;
1163	}
1164	mutex_unlock(&ht->mutex);
1165}
1166EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1167
1168void rhashtable_destroy(struct rhashtable *ht)
1169{
1170	return rhashtable_free_and_destroy(ht, NULL, NULL);
1171}
1172EXPORT_SYMBOL_GPL(rhashtable_destroy);
1173
1174struct rhash_lock_head __rcu **__rht_bucket_nested(
1175	const struct bucket_table *tbl, unsigned int hash)
1176{
1177	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1178	unsigned int index = hash & ((1 << tbl->nest) - 1);
1179	unsigned int size = tbl->size >> tbl->nest;
1180	unsigned int subhash = hash;
1181	union nested_table *ntbl;
1182
1183	ntbl = nested_table_top(tbl);
1184	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1185	subhash >>= tbl->nest;
1186
1187	while (ntbl && size > (1 << shift)) {
1188		index = subhash & ((1 << shift) - 1);
1189		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1190						  tbl, hash);
1191		size >>= shift;
1192		subhash >>= shift;
1193	}
1194
1195	if (!ntbl)
1196		return NULL;
1197
1198	return &ntbl[subhash].bucket;
1199
1200}
1201EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1202
1203struct rhash_lock_head __rcu **rht_bucket_nested(
1204	const struct bucket_table *tbl, unsigned int hash)
1205{
1206	static struct rhash_lock_head __rcu *rhnull;
1207
1208	if (!rhnull)
1209		INIT_RHT_NULLS_HEAD(rhnull);
1210	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1211}
1212EXPORT_SYMBOL_GPL(rht_bucket_nested);
1213
1214struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1215	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
1216{
1217	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1218	unsigned int index = hash & ((1 << tbl->nest) - 1);
1219	unsigned int size = tbl->size >> tbl->nest;
1220	union nested_table *ntbl;
1221
1222	ntbl = nested_table_top(tbl);
1223	hash >>= tbl->nest;
1224	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1225				  size <= (1 << shift));
1226
1227	while (ntbl && size > (1 << shift)) {
1228		index = hash & ((1 << shift) - 1);
1229		size >>= shift;
1230		hash >>= shift;
1231		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1232					  size <= (1 << shift));
1233	}
1234
1235	if (!ntbl)
1236		return NULL;
1237
1238	return &ntbl[hash].bucket;
1239
1240}
1241EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resizable, Scalable, Concurrent Hash Table
   4 *
   5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   8 *
   9 * Code partially derived from nft_hash
  10 * Rewritten with rehash code from br_multicast plus single list
  11 * pointer as suggested by Josh Triplett
  12 */
  13
  14#include <linux/atomic.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/log2.h>
  18#include <linux/sched.h>
  19#include <linux/rculist.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/jhash.h>
  24#include <linux/random.h>
  25#include <linux/rhashtable.h>
  26#include <linux/err.h>
  27#include <linux/export.h>
  28
  29#define HASH_DEFAULT_SIZE	64UL
  30#define HASH_MIN_SIZE		4U
  31
  32union nested_table {
  33	union nested_table __rcu *table;
  34	struct rhash_lock_head __rcu *bucket;
  35};
  36
  37static u32 head_hashfn(struct rhashtable *ht,
  38		       const struct bucket_table *tbl,
  39		       const struct rhash_head *he)
  40{
  41	return rht_head_hashfn(ht, tbl, he, ht->p);
  42}
  43
  44#ifdef CONFIG_PROVE_LOCKING
  45#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  46
  47int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  48{
  49	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  50}
  51EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  52
  53int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  54{
  55	if (!debug_locks)
  56		return 1;
  57	if (unlikely(tbl->nest))
  58		return 1;
  59	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
  60}
  61EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  62#else
  63#define ASSERT_RHT_MUTEX(HT)
  64#endif
  65
  66static inline union nested_table *nested_table_top(
  67	const struct bucket_table *tbl)
  68{
  69	/* The top-level bucket entry does not need RCU protection
  70	 * because it's set at the same time as tbl->nest.
  71	 */
  72	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
  73}
  74
  75static void nested_table_free(union nested_table *ntbl, unsigned int size)
  76{
  77	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  78	const unsigned int len = 1 << shift;
  79	unsigned int i;
  80
  81	ntbl = rcu_dereference_protected(ntbl->table, 1);
  82	if (!ntbl)
  83		return;
  84
  85	if (size > len) {
  86		size >>= shift;
  87		for (i = 0; i < len; i++)
  88			nested_table_free(ntbl + i, size);
  89	}
  90
  91	kfree(ntbl);
  92}
  93
  94static void nested_bucket_table_free(const struct bucket_table *tbl)
  95{
  96	unsigned int size = tbl->size >> tbl->nest;
  97	unsigned int len = 1 << tbl->nest;
  98	union nested_table *ntbl;
  99	unsigned int i;
 100
 101	ntbl = nested_table_top(tbl);
 102
 103	for (i = 0; i < len; i++)
 104		nested_table_free(ntbl + i, size);
 105
 106	kfree(ntbl);
 107}
 108
 109static void bucket_table_free(const struct bucket_table *tbl)
 110{
 111	if (tbl->nest)
 112		nested_bucket_table_free(tbl);
 113
 114	kvfree(tbl);
 115}
 116
 117static void bucket_table_free_rcu(struct rcu_head *head)
 118{
 119	bucket_table_free(container_of(head, struct bucket_table, rcu));
 120}
 121
 122static union nested_table *nested_table_alloc(struct rhashtable *ht,
 123					      union nested_table __rcu **prev,
 124					      bool leaf)
 125{
 126	union nested_table *ntbl;
 127	int i;
 128
 129	ntbl = rcu_dereference(*prev);
 130	if (ntbl)
 131		return ntbl;
 132
 133	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 134
 135	if (ntbl && leaf) {
 136		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
 137			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
 138	}
 139
 140	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
 141		return ntbl;
 142	/* Raced with another thread. */
 143	kfree(ntbl);
 144	return rcu_dereference(*prev);
 145}
 146
 147static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 148						      size_t nbuckets,
 149						      gfp_t gfp)
 150{
 151	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 152	struct bucket_table *tbl;
 153	size_t size;
 154
 155	if (nbuckets < (1 << (shift + 1)))
 156		return NULL;
 157
 158	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 159
 160	tbl = kzalloc(size, gfp);
 161	if (!tbl)
 162		return NULL;
 163
 164	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 165				false)) {
 166		kfree(tbl);
 167		return NULL;
 168	}
 169
 170	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 171
 172	return tbl;
 173}
 174
 175static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 176					       size_t nbuckets,
 177					       gfp_t gfp)
 178{
 179	struct bucket_table *tbl = NULL;
 180	size_t size;
 181	int i;
 182	static struct lock_class_key __key;
 183
 184	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
 185
 186	size = nbuckets;
 187
 188	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
 189		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 190		nbuckets = 0;
 191	}
 192
 193	if (tbl == NULL)
 194		return NULL;
 195
 196	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
 197
 198	tbl->size = size;
 199
 200	rcu_head_init(&tbl->rcu);
 201	INIT_LIST_HEAD(&tbl->walkers);
 202
 203	tbl->hash_rnd = get_random_u32();
 204
 205	for (i = 0; i < nbuckets; i++)
 206		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
 207
 208	return tbl;
 209}
 210
 211static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 212						  struct bucket_table *tbl)
 213{
 214	struct bucket_table *new_tbl;
 215
 216	do {
 217		new_tbl = tbl;
 218		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 219	} while (tbl);
 220
 221	return new_tbl;
 222}
 223
 224static int rhashtable_rehash_one(struct rhashtable *ht,
 225				 struct rhash_lock_head __rcu **bkt,
 226				 unsigned int old_hash)
 227{
 228	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 229	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
 230	int err = -EAGAIN;
 231	struct rhash_head *head, *next, *entry;
 232	struct rhash_head __rcu **pprev = NULL;
 233	unsigned int new_hash;
 234	unsigned long flags;
 235
 236	if (new_tbl->nest)
 237		goto out;
 238
 239	err = -ENOENT;
 240
 241	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
 242			  old_tbl, old_hash) {
 243		err = 0;
 244		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 245
 246		if (rht_is_a_nulls(next))
 247			break;
 248
 249		pprev = &entry->next;
 250	}
 251
 252	if (err)
 253		goto out;
 254
 255	new_hash = head_hashfn(ht, new_tbl, entry);
 256
 257	flags = rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash],
 258				SINGLE_DEPTH_NESTING);
 259
 260	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
 261
 262	RCU_INIT_POINTER(entry->next, head);
 263
 264	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry, flags);
 265
 266	if (pprev)
 267		rcu_assign_pointer(*pprev, next);
 268	else
 269		/* Need to preserved the bit lock. */
 270		rht_assign_locked(bkt, next);
 271
 272out:
 273	return err;
 274}
 275
 276static int rhashtable_rehash_chain(struct rhashtable *ht,
 277				    unsigned int old_hash)
 278{
 279	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 280	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
 281	unsigned long flags;
 282	int err;
 283
 284	if (!bkt)
 285		return 0;
 286	flags = rht_lock(old_tbl, bkt);
 287
 288	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
 289		;
 290
 291	if (err == -ENOENT)
 292		err = 0;
 293	rht_unlock(old_tbl, bkt, flags);
 294
 295	return err;
 296}
 297
 298static int rhashtable_rehash_attach(struct rhashtable *ht,
 299				    struct bucket_table *old_tbl,
 300				    struct bucket_table *new_tbl)
 301{
 302	/* Make insertions go into the new, empty table right away. Deletions
 303	 * and lookups will be attempted in both tables until we synchronize.
 304	 * As cmpxchg() provides strong barriers, we do not need
 305	 * rcu_assign_pointer().
 306	 */
 307
 308	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
 309		    new_tbl) != NULL)
 310		return -EEXIST;
 311
 312	return 0;
 313}
 314
 315static int rhashtable_rehash_table(struct rhashtable *ht)
 316{
 317	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 318	struct bucket_table *new_tbl;
 319	struct rhashtable_walker *walker;
 320	unsigned int old_hash;
 321	int err;
 322
 323	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 324	if (!new_tbl)
 325		return 0;
 326
 327	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 328		err = rhashtable_rehash_chain(ht, old_hash);
 329		if (err)
 330			return err;
 331		cond_resched();
 332	}
 333
 334	/* Publish the new table pointer. */
 335	rcu_assign_pointer(ht->tbl, new_tbl);
 336
 337	spin_lock(&ht->lock);
 338	list_for_each_entry(walker, &old_tbl->walkers, list)
 339		walker->tbl = NULL;
 340
 341	/* Wait for readers. All new readers will see the new
 342	 * table, and thus no references to the old table will
 343	 * remain.
 344	 * We do this inside the locked region so that
 345	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
 346	 * to check if it should not re-link the table.
 347	 */
 348	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 349	spin_unlock(&ht->lock);
 350
 351	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 352}
 353
 354static int rhashtable_rehash_alloc(struct rhashtable *ht,
 355				   struct bucket_table *old_tbl,
 356				   unsigned int size)
 357{
 358	struct bucket_table *new_tbl;
 359	int err;
 360
 361	ASSERT_RHT_MUTEX(ht);
 362
 363	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 364	if (new_tbl == NULL)
 365		return -ENOMEM;
 366
 367	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 368	if (err)
 369		bucket_table_free(new_tbl);
 370
 371	return err;
 372}
 373
 374/**
 375 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 376 * @ht:		the hash table to shrink
 377 *
 378 * This function shrinks the hash table to fit, i.e., the smallest
 379 * size would not cause it to expand right away automatically.
 380 *
 381 * The caller must ensure that no concurrent resizing occurs by holding
 382 * ht->mutex.
 383 *
 384 * The caller must ensure that no concurrent table mutations take place.
 385 * It is however valid to have concurrent lookups if they are RCU protected.
 386 *
 387 * It is valid to have concurrent insertions and deletions protected by per
 388 * bucket locks or concurrent RCU protected lookups and traversals.
 389 */
 390static int rhashtable_shrink(struct rhashtable *ht)
 391{
 392	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 393	unsigned int nelems = atomic_read(&ht->nelems);
 394	unsigned int size = 0;
 395
 396	if (nelems)
 397		size = roundup_pow_of_two(nelems * 3 / 2);
 398	if (size < ht->p.min_size)
 399		size = ht->p.min_size;
 400
 401	if (old_tbl->size <= size)
 402		return 0;
 403
 404	if (rht_dereference(old_tbl->future_tbl, ht))
 405		return -EEXIST;
 406
 407	return rhashtable_rehash_alloc(ht, old_tbl, size);
 408}
 409
 410static void rht_deferred_worker(struct work_struct *work)
 411{
 412	struct rhashtable *ht;
 413	struct bucket_table *tbl;
 414	int err = 0;
 415
 416	ht = container_of(work, struct rhashtable, run_work);
 417	mutex_lock(&ht->mutex);
 418
 419	tbl = rht_dereference(ht->tbl, ht);
 420	tbl = rhashtable_last_table(ht, tbl);
 421
 422	if (rht_grow_above_75(ht, tbl))
 423		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 424	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 425		err = rhashtable_shrink(ht);
 426	else if (tbl->nest)
 427		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 428
 429	if (!err || err == -EEXIST) {
 430		int nerr;
 431
 432		nerr = rhashtable_rehash_table(ht);
 433		err = err ?: nerr;
 434	}
 435
 436	mutex_unlock(&ht->mutex);
 437
 438	if (err)
 439		schedule_work(&ht->run_work);
 440}
 441
 442static int rhashtable_insert_rehash(struct rhashtable *ht,
 443				    struct bucket_table *tbl)
 444{
 445	struct bucket_table *old_tbl;
 446	struct bucket_table *new_tbl;
 447	unsigned int size;
 448	int err;
 449
 450	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 451
 452	size = tbl->size;
 453
 454	err = -EBUSY;
 455
 456	if (rht_grow_above_75(ht, tbl))
 457		size *= 2;
 458	/* Do not schedule more than one rehash */
 459	else if (old_tbl != tbl)
 460		goto fail;
 461
 462	err = -ENOMEM;
 463
 464	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
 465	if (new_tbl == NULL)
 466		goto fail;
 467
 468	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 469	if (err) {
 470		bucket_table_free(new_tbl);
 471		if (err == -EEXIST)
 472			err = 0;
 473	} else
 474		schedule_work(&ht->run_work);
 475
 476	return err;
 477
 478fail:
 479	/* Do not fail the insert if someone else did a rehash. */
 480	if (likely(rcu_access_pointer(tbl->future_tbl)))
 481		return 0;
 482
 483	/* Schedule async rehash to retry allocation in process context. */
 484	if (err == -ENOMEM)
 485		schedule_work(&ht->run_work);
 486
 487	return err;
 488}
 489
 490static void *rhashtable_lookup_one(struct rhashtable *ht,
 491				   struct rhash_lock_head __rcu **bkt,
 492				   struct bucket_table *tbl, unsigned int hash,
 493				   const void *key, struct rhash_head *obj)
 494{
 495	struct rhashtable_compare_arg arg = {
 496		.ht = ht,
 497		.key = key,
 498	};
 499	struct rhash_head __rcu **pprev = NULL;
 500	struct rhash_head *head;
 501	int elasticity;
 502
 503	elasticity = RHT_ELASTICITY;
 504	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
 505		struct rhlist_head *list;
 506		struct rhlist_head *plist;
 507
 508		elasticity--;
 509		if (!key ||
 510		    (ht->p.obj_cmpfn ?
 511		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 512		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 513			pprev = &head->next;
 514			continue;
 515		}
 516
 517		if (!ht->rhlist)
 518			return rht_obj(ht, head);
 519
 520		list = container_of(obj, struct rhlist_head, rhead);
 521		plist = container_of(head, struct rhlist_head, rhead);
 522
 523		RCU_INIT_POINTER(list->next, plist);
 524		head = rht_dereference_bucket(head->next, tbl, hash);
 525		RCU_INIT_POINTER(list->rhead.next, head);
 526		if (pprev)
 527			rcu_assign_pointer(*pprev, obj);
 528		else
 529			/* Need to preserve the bit lock */
 530			rht_assign_locked(bkt, obj);
 531
 532		return NULL;
 533	}
 534
 535	if (elasticity <= 0)
 536		return ERR_PTR(-EAGAIN);
 537
 538	return ERR_PTR(-ENOENT);
 539}
 540
 541static struct bucket_table *rhashtable_insert_one(
 542	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
 543	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
 544	void *data)
 545{
 546	struct bucket_table *new_tbl;
 547	struct rhash_head *head;
 548
 549	if (!IS_ERR_OR_NULL(data))
 550		return ERR_PTR(-EEXIST);
 551
 552	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 553		return ERR_CAST(data);
 554
 555	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 556	if (new_tbl)
 557		return new_tbl;
 558
 559	if (PTR_ERR(data) != -ENOENT)
 560		return ERR_CAST(data);
 561
 562	if (unlikely(rht_grow_above_max(ht, tbl)))
 563		return ERR_PTR(-E2BIG);
 564
 565	if (unlikely(rht_grow_above_100(ht, tbl)))
 566		return ERR_PTR(-EAGAIN);
 567
 568	head = rht_ptr(bkt, tbl, hash);
 569
 570	RCU_INIT_POINTER(obj->next, head);
 571	if (ht->rhlist) {
 572		struct rhlist_head *list;
 573
 574		list = container_of(obj, struct rhlist_head, rhead);
 575		RCU_INIT_POINTER(list->next, NULL);
 576	}
 577
 578	/* bkt is always the head of the list, so it holds
 579	 * the lock, which we need to preserve
 580	 */
 581	rht_assign_locked(bkt, obj);
 582
 583	atomic_inc(&ht->nelems);
 584	if (rht_grow_above_75(ht, tbl))
 585		schedule_work(&ht->run_work);
 586
 587	return NULL;
 588}
 589
 590static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 591				   struct rhash_head *obj)
 592{
 593	struct bucket_table *new_tbl;
 594	struct bucket_table *tbl;
 595	struct rhash_lock_head __rcu **bkt;
 596	unsigned long flags;
 597	unsigned int hash;
 598	void *data;
 599
 600	new_tbl = rcu_dereference(ht->tbl);
 601
 602	do {
 603		tbl = new_tbl;
 604		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 605		if (rcu_access_pointer(tbl->future_tbl))
 606			/* Failure is OK */
 607			bkt = rht_bucket_var(tbl, hash);
 608		else
 609			bkt = rht_bucket_insert(ht, tbl, hash);
 610		if (bkt == NULL) {
 611			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 612			data = ERR_PTR(-EAGAIN);
 613		} else {
 614			flags = rht_lock(tbl, bkt);
 615			data = rhashtable_lookup_one(ht, bkt, tbl,
 616						     hash, key, obj);
 617			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
 618							hash, obj, data);
 619			if (PTR_ERR(new_tbl) != -EEXIST)
 620				data = ERR_CAST(new_tbl);
 621
 622			rht_unlock(tbl, bkt, flags);
 623		}
 624	} while (!IS_ERR_OR_NULL(new_tbl));
 625
 626	if (PTR_ERR(data) == -EAGAIN)
 627		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 628			       -EAGAIN);
 629
 630	return data;
 631}
 632
 633void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 634			     struct rhash_head *obj)
 635{
 636	void *data;
 637
 638	do {
 639		rcu_read_lock();
 640		data = rhashtable_try_insert(ht, key, obj);
 641		rcu_read_unlock();
 642	} while (PTR_ERR(data) == -EAGAIN);
 643
 644	return data;
 645}
 646EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 647
 648/**
 649 * rhashtable_walk_enter - Initialise an iterator
 650 * @ht:		Table to walk over
 651 * @iter:	Hash table Iterator
 652 *
 653 * This function prepares a hash table walk.
 654 *
 655 * Note that if you restart a walk after rhashtable_walk_stop you
 656 * may see the same object twice.  Also, you may miss objects if
 657 * there are removals in between rhashtable_walk_stop and the next
 658 * call to rhashtable_walk_start.
 659 *
 660 * For a completely stable walk you should construct your own data
 661 * structure outside the hash table.
 662 *
 663 * This function may be called from any process context, including
 664 * non-preemptable context, but cannot be called from softirq or
 665 * hardirq context.
 666 *
 667 * You must call rhashtable_walk_exit after this function returns.
 668 */
 669void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 670{
 671	iter->ht = ht;
 672	iter->p = NULL;
 673	iter->slot = 0;
 674	iter->skip = 0;
 675	iter->end_of_table = 0;
 676
 677	spin_lock(&ht->lock);
 678	iter->walker.tbl =
 679		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 680	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 681	spin_unlock(&ht->lock);
 682}
 683EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 684
 685/**
 686 * rhashtable_walk_exit - Free an iterator
 687 * @iter:	Hash table Iterator
 688 *
 689 * This function frees resources allocated by rhashtable_walk_enter.
 690 */
 691void rhashtable_walk_exit(struct rhashtable_iter *iter)
 692{
 693	spin_lock(&iter->ht->lock);
 694	if (iter->walker.tbl)
 695		list_del(&iter->walker.list);
 696	spin_unlock(&iter->ht->lock);
 697}
 698EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 699
 700/**
 701 * rhashtable_walk_start_check - Start a hash table walk
 702 * @iter:	Hash table iterator
 703 *
 704 * Start a hash table walk at the current iterator position.  Note that we take
 705 * the RCU lock in all cases including when we return an error.  So you must
 706 * always call rhashtable_walk_stop to clean up.
 707 *
 708 * Returns zero if successful.
 709 *
 710 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 711 * will rewind back to the beginning and you may use it immediately
 712 * by calling rhashtable_walk_next.
 713 *
 714 * rhashtable_walk_start is defined as an inline variant that returns
 715 * void. This is preferred in cases where the caller would ignore
 716 * resize events and always continue.
 717 */
 718int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 719	__acquires(RCU)
 720{
 721	struct rhashtable *ht = iter->ht;
 722	bool rhlist = ht->rhlist;
 723
 724	rcu_read_lock();
 725
 726	spin_lock(&ht->lock);
 727	if (iter->walker.tbl)
 728		list_del(&iter->walker.list);
 729	spin_unlock(&ht->lock);
 730
 731	if (iter->end_of_table)
 732		return 0;
 733	if (!iter->walker.tbl) {
 734		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 735		iter->slot = 0;
 736		iter->skip = 0;
 737		return -EAGAIN;
 738	}
 739
 740	if (iter->p && !rhlist) {
 741		/*
 742		 * We need to validate that 'p' is still in the table, and
 743		 * if so, update 'skip'
 744		 */
 745		struct rhash_head *p;
 746		int skip = 0;
 747		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 748			skip++;
 749			if (p == iter->p) {
 750				iter->skip = skip;
 751				goto found;
 752			}
 753		}
 754		iter->p = NULL;
 755	} else if (iter->p && rhlist) {
 756		/* Need to validate that 'list' is still in the table, and
 757		 * if so, update 'skip' and 'p'.
 758		 */
 759		struct rhash_head *p;
 760		struct rhlist_head *list;
 761		int skip = 0;
 762		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 763			for (list = container_of(p, struct rhlist_head, rhead);
 764			     list;
 765			     list = rcu_dereference(list->next)) {
 766				skip++;
 767				if (list == iter->list) {
 768					iter->p = p;
 769					iter->skip = skip;
 770					goto found;
 771				}
 772			}
 773		}
 774		iter->p = NULL;
 775	}
 776found:
 777	return 0;
 778}
 779EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 780
 781/**
 782 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 783 * one in case of a new walk).
 784 *
 785 * @iter:	Hash table iterator
 786 *
 787 * Returns the found object or NULL when the end of the table is reached.
 788 *
 789 * Returns -EAGAIN if resize event occurred.
 790 */
 791static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 792{
 793	struct bucket_table *tbl = iter->walker.tbl;
 794	struct rhlist_head *list = iter->list;
 795	struct rhashtable *ht = iter->ht;
 796	struct rhash_head *p = iter->p;
 797	bool rhlist = ht->rhlist;
 798
 799	if (!tbl)
 800		return NULL;
 801
 802	for (; iter->slot < tbl->size; iter->slot++) {
 803		int skip = iter->skip;
 804
 805		rht_for_each_rcu(p, tbl, iter->slot) {
 806			if (rhlist) {
 807				list = container_of(p, struct rhlist_head,
 808						    rhead);
 809				do {
 810					if (!skip)
 811						goto next;
 812					skip--;
 813					list = rcu_dereference(list->next);
 814				} while (list);
 815
 816				continue;
 817			}
 818			if (!skip)
 819				break;
 820			skip--;
 821		}
 822
 823next:
 824		if (!rht_is_a_nulls(p)) {
 825			iter->skip++;
 826			iter->p = p;
 827			iter->list = list;
 828			return rht_obj(ht, rhlist ? &list->rhead : p);
 829		}
 830
 831		iter->skip = 0;
 832	}
 833
 834	iter->p = NULL;
 835
 836	/* Ensure we see any new tables. */
 837	smp_rmb();
 838
 839	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 840	if (iter->walker.tbl) {
 841		iter->slot = 0;
 842		iter->skip = 0;
 843		return ERR_PTR(-EAGAIN);
 844	} else {
 845		iter->end_of_table = true;
 846	}
 847
 848	return NULL;
 849}
 850
 851/**
 852 * rhashtable_walk_next - Return the next object and advance the iterator
 853 * @iter:	Hash table iterator
 854 *
 855 * Note that you must call rhashtable_walk_stop when you are finished
 856 * with the walk.
 857 *
 858 * Returns the next object or NULL when the end of the table is reached.
 859 *
 860 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 861 * will rewind back to the beginning and you may continue to use it.
 862 */
 863void *rhashtable_walk_next(struct rhashtable_iter *iter)
 864{
 865	struct rhlist_head *list = iter->list;
 866	struct rhashtable *ht = iter->ht;
 867	struct rhash_head *p = iter->p;
 868	bool rhlist = ht->rhlist;
 869
 870	if (p) {
 871		if (!rhlist || !(list = rcu_dereference(list->next))) {
 872			p = rcu_dereference(p->next);
 873			list = container_of(p, struct rhlist_head, rhead);
 874		}
 875		if (!rht_is_a_nulls(p)) {
 876			iter->skip++;
 877			iter->p = p;
 878			iter->list = list;
 879			return rht_obj(ht, rhlist ? &list->rhead : p);
 880		}
 881
 882		/* At the end of this slot, switch to next one and then find
 883		 * next entry from that point.
 884		 */
 885		iter->skip = 0;
 886		iter->slot++;
 887	}
 888
 889	return __rhashtable_walk_find_next(iter);
 890}
 891EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 892
 893/**
 894 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 895 * @iter:	Hash table iterator
 896 *
 897 * Returns the next object or NULL when the end of the table is reached.
 898 *
 899 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 900 * will rewind back to the beginning and you may continue to use it.
 901 */
 902void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 903{
 904	struct rhlist_head *list = iter->list;
 905	struct rhashtable *ht = iter->ht;
 906	struct rhash_head *p = iter->p;
 907
 908	if (p)
 909		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 910
 911	/* No object found in current iter, find next one in the table. */
 912
 913	if (iter->skip) {
 914		/* A nonzero skip value points to the next entry in the table
 915		 * beyond that last one that was found. Decrement skip so
 916		 * we find the current value. __rhashtable_walk_find_next
 917		 * will restore the original value of skip assuming that
 918		 * the table hasn't changed.
 919		 */
 920		iter->skip--;
 921	}
 922
 923	return __rhashtable_walk_find_next(iter);
 924}
 925EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 926
 927/**
 928 * rhashtable_walk_stop - Finish a hash table walk
 929 * @iter:	Hash table iterator
 930 *
 931 * Finish a hash table walk.  Does not reset the iterator to the start of the
 932 * hash table.
 933 */
 934void rhashtable_walk_stop(struct rhashtable_iter *iter)
 935	__releases(RCU)
 936{
 937	struct rhashtable *ht;
 938	struct bucket_table *tbl = iter->walker.tbl;
 939
 940	if (!tbl)
 941		goto out;
 942
 943	ht = iter->ht;
 944
 945	spin_lock(&ht->lock);
 946	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
 947		/* This bucket table is being freed, don't re-link it. */
 948		iter->walker.tbl = NULL;
 949	else
 950		list_add(&iter->walker.list, &tbl->walkers);
 951	spin_unlock(&ht->lock);
 952
 953out:
 954	rcu_read_unlock();
 955}
 956EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 957
 958static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 959{
 960	size_t retsize;
 961
 962	if (params->nelem_hint)
 963		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 964			      (unsigned long)params->min_size);
 965	else
 966		retsize = max(HASH_DEFAULT_SIZE,
 967			      (unsigned long)params->min_size);
 968
 969	return retsize;
 970}
 971
 972static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 973{
 974	return jhash2(key, length, seed);
 975}
 976
 977/**
 978 * rhashtable_init - initialize a new hash table
 979 * @ht:		hash table to be initialized
 980 * @params:	configuration parameters
 981 *
 982 * Initializes a new hash table based on the provided configuration
 983 * parameters. A table can be configured either with a variable or
 984 * fixed length key:
 985 *
 986 * Configuration Example 1: Fixed length keys
 987 * struct test_obj {
 988 *	int			key;
 989 *	void *			my_member;
 990 *	struct rhash_head	node;
 991 * };
 992 *
 993 * struct rhashtable_params params = {
 994 *	.head_offset = offsetof(struct test_obj, node),
 995 *	.key_offset = offsetof(struct test_obj, key),
 996 *	.key_len = sizeof(int),
 997 *	.hashfn = jhash,
 998 * };
 999 *
1000 * Configuration Example 2: Variable length keys
1001 * struct test_obj {
1002 *	[...]
1003 *	struct rhash_head	node;
1004 * };
1005 *
1006 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1007 * {
1008 *	struct test_obj *obj = data;
1009 *
1010 *	return [... hash ...];
1011 * }
1012 *
1013 * struct rhashtable_params params = {
1014 *	.head_offset = offsetof(struct test_obj, node),
1015 *	.hashfn = jhash,
1016 *	.obj_hashfn = my_hash_fn,
1017 * };
1018 */
1019int rhashtable_init(struct rhashtable *ht,
1020		    const struct rhashtable_params *params)
1021{
1022	struct bucket_table *tbl;
1023	size_t size;
1024
1025	if ((!params->key_len && !params->obj_hashfn) ||
1026	    (params->obj_hashfn && !params->obj_cmpfn))
1027		return -EINVAL;
1028
1029	memset(ht, 0, sizeof(*ht));
1030	mutex_init(&ht->mutex);
1031	spin_lock_init(&ht->lock);
1032	memcpy(&ht->p, params, sizeof(*params));
1033
1034	if (params->min_size)
1035		ht->p.min_size = roundup_pow_of_two(params->min_size);
1036
1037	/* Cap total entries at 2^31 to avoid nelems overflow. */
1038	ht->max_elems = 1u << 31;
1039
1040	if (params->max_size) {
1041		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1042		if (ht->p.max_size < ht->max_elems / 2)
1043			ht->max_elems = ht->p.max_size * 2;
1044	}
1045
1046	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1047
1048	size = rounded_hashtable_size(&ht->p);
1049
1050	ht->key_len = ht->p.key_len;
1051	if (!params->hashfn) {
1052		ht->p.hashfn = jhash;
1053
1054		if (!(ht->key_len & (sizeof(u32) - 1))) {
1055			ht->key_len /= sizeof(u32);
1056			ht->p.hashfn = rhashtable_jhash2;
1057		}
1058	}
1059
1060	/*
1061	 * This is api initialization and thus we need to guarantee the
1062	 * initial rhashtable allocation. Upon failure, retry with the
1063	 * smallest possible size with __GFP_NOFAIL semantics.
1064	 */
1065	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1066	if (unlikely(tbl == NULL)) {
1067		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1068		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1069	}
1070
1071	atomic_set(&ht->nelems, 0);
1072
1073	RCU_INIT_POINTER(ht->tbl, tbl);
1074
1075	INIT_WORK(&ht->run_work, rht_deferred_worker);
1076
1077	return 0;
1078}
1079EXPORT_SYMBOL_GPL(rhashtable_init);
1080
1081/**
1082 * rhltable_init - initialize a new hash list table
1083 * @hlt:	hash list table to be initialized
1084 * @params:	configuration parameters
1085 *
1086 * Initializes a new hash list table.
1087 *
1088 * See documentation for rhashtable_init.
1089 */
1090int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1091{
1092	int err;
1093
1094	err = rhashtable_init(&hlt->ht, params);
1095	hlt->ht.rhlist = true;
1096	return err;
1097}
1098EXPORT_SYMBOL_GPL(rhltable_init);
1099
1100static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1101				void (*free_fn)(void *ptr, void *arg),
1102				void *arg)
1103{
1104	struct rhlist_head *list;
1105
1106	if (!ht->rhlist) {
1107		free_fn(rht_obj(ht, obj), arg);
1108		return;
1109	}
1110
1111	list = container_of(obj, struct rhlist_head, rhead);
1112	do {
1113		obj = &list->rhead;
1114		list = rht_dereference(list->next, ht);
1115		free_fn(rht_obj(ht, obj), arg);
1116	} while (list);
1117}
1118
1119/**
1120 * rhashtable_free_and_destroy - free elements and destroy hash table
1121 * @ht:		the hash table to destroy
1122 * @free_fn:	callback to release resources of element
1123 * @arg:	pointer passed to free_fn
1124 *
1125 * Stops an eventual async resize. If defined, invokes free_fn for each
1126 * element to releasal resources. Please note that RCU protected
1127 * readers may still be accessing the elements. Releasing of resources
1128 * must occur in a compatible manner. Then frees the bucket array.
1129 *
1130 * This function will eventually sleep to wait for an async resize
1131 * to complete. The caller is responsible that no further write operations
1132 * occurs in parallel.
1133 */
1134void rhashtable_free_and_destroy(struct rhashtable *ht,
1135				 void (*free_fn)(void *ptr, void *arg),
1136				 void *arg)
1137{
1138	struct bucket_table *tbl, *next_tbl;
1139	unsigned int i;
1140
1141	cancel_work_sync(&ht->run_work);
1142
1143	mutex_lock(&ht->mutex);
1144	tbl = rht_dereference(ht->tbl, ht);
1145restart:
1146	if (free_fn) {
1147		for (i = 0; i < tbl->size; i++) {
1148			struct rhash_head *pos, *next;
1149
1150			cond_resched();
1151			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1152			     next = !rht_is_a_nulls(pos) ?
1153					rht_dereference(pos->next, ht) : NULL;
1154			     !rht_is_a_nulls(pos);
1155			     pos = next,
1156			     next = !rht_is_a_nulls(pos) ?
1157					rht_dereference(pos->next, ht) : NULL)
1158				rhashtable_free_one(ht, pos, free_fn, arg);
1159		}
1160	}
1161
1162	next_tbl = rht_dereference(tbl->future_tbl, ht);
1163	bucket_table_free(tbl);
1164	if (next_tbl) {
1165		tbl = next_tbl;
1166		goto restart;
1167	}
1168	mutex_unlock(&ht->mutex);
1169}
1170EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1171
1172void rhashtable_destroy(struct rhashtable *ht)
1173{
1174	return rhashtable_free_and_destroy(ht, NULL, NULL);
1175}
1176EXPORT_SYMBOL_GPL(rhashtable_destroy);
1177
1178struct rhash_lock_head __rcu **__rht_bucket_nested(
1179	const struct bucket_table *tbl, unsigned int hash)
1180{
1181	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1182	unsigned int index = hash & ((1 << tbl->nest) - 1);
1183	unsigned int size = tbl->size >> tbl->nest;
1184	unsigned int subhash = hash;
1185	union nested_table *ntbl;
1186
1187	ntbl = nested_table_top(tbl);
1188	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1189	subhash >>= tbl->nest;
1190
1191	while (ntbl && size > (1 << shift)) {
1192		index = subhash & ((1 << shift) - 1);
1193		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1194						  tbl, hash);
1195		size >>= shift;
1196		subhash >>= shift;
1197	}
1198
1199	if (!ntbl)
1200		return NULL;
1201
1202	return &ntbl[subhash].bucket;
1203
1204}
1205EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1206
1207struct rhash_lock_head __rcu **rht_bucket_nested(
1208	const struct bucket_table *tbl, unsigned int hash)
1209{
1210	static struct rhash_lock_head __rcu *rhnull;
1211
1212	if (!rhnull)
1213		INIT_RHT_NULLS_HEAD(rhnull);
1214	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1215}
1216EXPORT_SYMBOL_GPL(rht_bucket_nested);
1217
1218struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1219	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
1220{
1221	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1222	unsigned int index = hash & ((1 << tbl->nest) - 1);
1223	unsigned int size = tbl->size >> tbl->nest;
1224	union nested_table *ntbl;
1225
1226	ntbl = nested_table_top(tbl);
1227	hash >>= tbl->nest;
1228	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1229				  size <= (1 << shift));
1230
1231	while (ntbl && size > (1 << shift)) {
1232		index = hash & ((1 << shift) - 1);
1233		size >>= shift;
1234		hash >>= shift;
1235		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1236					  size <= (1 << shift));
1237	}
1238
1239	if (!ntbl)
1240		return NULL;
1241
1242	return &ntbl[hash].bucket;
1243
1244}
1245EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);