Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resizable, Scalable, Concurrent Hash Table
   4 *
   5 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   6 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   7 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   8 *
   9 * Code partially derived from nft_hash
  10 * Rewritten with rehash code from br_multicast plus single list
  11 * pointer as suggested by Josh Triplett
 
 
 
 
  12 */
  13
  14#include <linux/atomic.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/log2.h>
  18#include <linux/sched.h>
  19#include <linux/rculist.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/jhash.h>
  24#include <linux/random.h>
  25#include <linux/rhashtable.h>
  26#include <linux/err.h>
  27#include <linux/export.h>
  28
  29#define HASH_DEFAULT_SIZE	64UL
  30#define HASH_MIN_SIZE		4U
 
  31
  32union nested_table {
  33	union nested_table __rcu *table;
  34	struct rhash_lock_head __rcu *bucket;
  35};
  36
  37static u32 head_hashfn(struct rhashtable *ht,
  38		       const struct bucket_table *tbl,
  39		       const struct rhash_head *he)
  40{
  41	return rht_head_hashfn(ht, tbl, he, ht->p);
  42}
  43
  44#ifdef CONFIG_PROVE_LOCKING
  45#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  46
  47int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  48{
  49	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  50}
  51EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  52
  53int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  54{
  55	if (!debug_locks)
  56		return 1;
  57	if (unlikely(tbl->nest))
  58		return 1;
  59	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
  60}
  61EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  62#else
  63#define ASSERT_RHT_MUTEX(HT)
  64#endif
  65
  66static inline union nested_table *nested_table_top(
  67	const struct bucket_table *tbl)
  68{
  69	/* The top-level bucket entry does not need RCU protection
  70	 * because it's set at the same time as tbl->nest.
  71	 */
  72	return (void *)rcu_dereference_protected(tbl->buckets[0], 1);
  73}
  74
  75static void nested_table_free(union nested_table *ntbl, unsigned int size)
  76{
  77	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  78	const unsigned int len = 1 << shift;
  79	unsigned int i;
  80
  81	ntbl = rcu_dereference_protected(ntbl->table, 1);
  82	if (!ntbl)
  83		return;
  84
  85	if (size > len) {
  86		size >>= shift;
  87		for (i = 0; i < len; i++)
  88			nested_table_free(ntbl + i, size);
  89	}
  90
  91	kfree(ntbl);
  92}
  93
  94static void nested_bucket_table_free(const struct bucket_table *tbl)
  95{
  96	unsigned int size = tbl->size >> tbl->nest;
  97	unsigned int len = 1 << tbl->nest;
  98	union nested_table *ntbl;
  99	unsigned int i;
 100
 101	ntbl = nested_table_top(tbl);
 102
 103	for (i = 0; i < len; i++)
 104		nested_table_free(ntbl + i, size);
 105
 106	kfree(ntbl);
 107}
 108
 109static void bucket_table_free(const struct bucket_table *tbl)
 110{
 111	if (tbl->nest)
 112		nested_bucket_table_free(tbl);
 113
 
 114	kvfree(tbl);
 115}
 116
 117static void bucket_table_free_rcu(struct rcu_head *head)
 118{
 119	bucket_table_free(container_of(head, struct bucket_table, rcu));
 120}
 121
 122static union nested_table *nested_table_alloc(struct rhashtable *ht,
 123					      union nested_table __rcu **prev,
 124					      bool leaf)
 
 125{
 126	union nested_table *ntbl;
 127	int i;
 128
 129	ntbl = rcu_dereference(*prev);
 130	if (ntbl)
 131		return ntbl;
 132
 133	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 134
 135	if (ntbl && leaf) {
 136		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
 137			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
 
 138	}
 139
 140	if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
 141		return ntbl;
 142	/* Raced with another thread. */
 143	kfree(ntbl);
 144	return rcu_dereference(*prev);
 145}
 146
 147static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 148						      size_t nbuckets,
 149						      gfp_t gfp)
 150{
 151	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 152	struct bucket_table *tbl;
 153	size_t size;
 154
 155	if (nbuckets < (1 << (shift + 1)))
 156		return NULL;
 157
 158	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 159
 160	tbl = kzalloc(size, gfp);
 161	if (!tbl)
 162		return NULL;
 163
 164	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 165				false)) {
 166		kfree(tbl);
 167		return NULL;
 168	}
 169
 170	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 171
 172	return tbl;
 173}
 174
 175static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 176					       size_t nbuckets,
 177					       gfp_t gfp)
 178{
 179	struct bucket_table *tbl = NULL;
 180	size_t size;
 181	int i;
 182	static struct lock_class_key __key;
 183
 184	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
 
 
 
 
 185
 186	size = nbuckets;
 187
 188	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
 189		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 190		nbuckets = 0;
 191	}
 192
 193	if (tbl == NULL)
 194		return NULL;
 195
 196	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
 197
 198	tbl->size = size;
 199
 200	rcu_head_init(&tbl->rcu);
 
 
 
 
 
 
 
 
 
 201	INIT_LIST_HEAD(&tbl->walkers);
 202
 203	tbl->hash_rnd = get_random_u32();
 204
 205	for (i = 0; i < nbuckets; i++)
 206		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
 207
 208	return tbl;
 209}
 210
 211static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 212						  struct bucket_table *tbl)
 213{
 214	struct bucket_table *new_tbl;
 215
 216	do {
 217		new_tbl = tbl;
 218		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 219	} while (tbl);
 220
 221	return new_tbl;
 222}
 223
 224static int rhashtable_rehash_one(struct rhashtable *ht,
 225				 struct rhash_lock_head __rcu **bkt,
 226				 unsigned int old_hash)
 227{
 228	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 229	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
 
 
 230	int err = -EAGAIN;
 231	struct rhash_head *head, *next, *entry;
 232	struct rhash_head __rcu **pprev = NULL;
 233	unsigned int new_hash;
 234
 235	if (new_tbl->nest)
 236		goto out;
 237
 238	err = -ENOENT;
 239
 240	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
 241			  old_tbl, old_hash) {
 242		err = 0;
 243		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 244
 245		if (rht_is_a_nulls(next))
 246			break;
 247
 248		pprev = &entry->next;
 249	}
 250
 251	if (err)
 252		goto out;
 253
 254	new_hash = head_hashfn(ht, new_tbl, entry);
 255
 256	rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
 257
 258	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
 
 
 259
 260	RCU_INIT_POINTER(entry->next, head);
 261
 262	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
 
 263
 264	if (pprev)
 265		rcu_assign_pointer(*pprev, next);
 266	else
 267		/* Need to preserved the bit lock. */
 268		rht_assign_locked(bkt, next);
 269
 270out:
 271	return err;
 272}
 273
 274static int rhashtable_rehash_chain(struct rhashtable *ht,
 275				    unsigned int old_hash)
 276{
 277	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 278	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
 279	int err;
 280
 281	if (!bkt)
 282		return 0;
 283	rht_lock(old_tbl, bkt);
 284
 285	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
 
 286		;
 287
 288	if (err == -ENOENT)
 
 289		err = 0;
 290	rht_unlock(old_tbl, bkt);
 
 291
 292	return err;
 293}
 294
 295static int rhashtable_rehash_attach(struct rhashtable *ht,
 296				    struct bucket_table *old_tbl,
 297				    struct bucket_table *new_tbl)
 298{
 
 
 
 
 
 
 
 
 
 299	/* Make insertions go into the new, empty table right away. Deletions
 300	 * and lookups will be attempted in both tables until we synchronize.
 301	 * As cmpxchg() provides strong barriers, we do not need
 302	 * rcu_assign_pointer().
 303	 */
 
 304
 305	if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
 306		    new_tbl) != NULL)
 307		return -EEXIST;
 308
 309	return 0;
 310}
 311
 312static int rhashtable_rehash_table(struct rhashtable *ht)
 313{
 314	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 315	struct bucket_table *new_tbl;
 316	struct rhashtable_walker *walker;
 317	unsigned int old_hash;
 318	int err;
 319
 320	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 321	if (!new_tbl)
 322		return 0;
 323
 324	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 325		err = rhashtable_rehash_chain(ht, old_hash);
 326		if (err)
 327			return err;
 328		cond_resched();
 329	}
 330
 331	/* Publish the new table pointer. */
 332	rcu_assign_pointer(ht->tbl, new_tbl);
 333
 334	spin_lock(&ht->lock);
 335	list_for_each_entry(walker, &old_tbl->walkers, list)
 336		walker->tbl = NULL;
 
 337
 338	/* Wait for readers. All new readers will see the new
 339	 * table, and thus no references to the old table will
 340	 * remain.
 341	 * We do this inside the locked region so that
 342	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
 343	 * to check if it should not re-link the table.
 344	 */
 345	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 346	spin_unlock(&ht->lock);
 347
 348	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 349}
 350
 351static int rhashtable_rehash_alloc(struct rhashtable *ht,
 352				   struct bucket_table *old_tbl,
 353				   unsigned int size)
 354{
 355	struct bucket_table *new_tbl;
 356	int err;
 357
 358	ASSERT_RHT_MUTEX(ht);
 359
 360	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 361	if (new_tbl == NULL)
 362		return -ENOMEM;
 363
 364	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 365	if (err)
 366		bucket_table_free(new_tbl);
 367
 368	return err;
 369}
 370
 371/**
 372 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 373 * @ht:		the hash table to shrink
 374 *
 375 * This function shrinks the hash table to fit, i.e., the smallest
 376 * size would not cause it to expand right away automatically.
 377 *
 378 * The caller must ensure that no concurrent resizing occurs by holding
 379 * ht->mutex.
 380 *
 381 * The caller must ensure that no concurrent table mutations take place.
 382 * It is however valid to have concurrent lookups if they are RCU protected.
 383 *
 384 * It is valid to have concurrent insertions and deletions protected by per
 385 * bucket locks or concurrent RCU protected lookups and traversals.
 386 */
 387static int rhashtable_shrink(struct rhashtable *ht)
 388{
 389	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 390	unsigned int nelems = atomic_read(&ht->nelems);
 391	unsigned int size = 0;
 392
 393	if (nelems)
 394		size = roundup_pow_of_two(nelems * 3 / 2);
 395	if (size < ht->p.min_size)
 396		size = ht->p.min_size;
 397
 398	if (old_tbl->size <= size)
 399		return 0;
 400
 401	if (rht_dereference(old_tbl->future_tbl, ht))
 402		return -EEXIST;
 403
 404	return rhashtable_rehash_alloc(ht, old_tbl, size);
 405}
 406
 407static void rht_deferred_worker(struct work_struct *work)
 408{
 409	struct rhashtable *ht;
 410	struct bucket_table *tbl;
 411	int err = 0;
 412
 413	ht = container_of(work, struct rhashtable, run_work);
 414	mutex_lock(&ht->mutex);
 415
 416	tbl = rht_dereference(ht->tbl, ht);
 417	tbl = rhashtable_last_table(ht, tbl);
 418
 419	if (rht_grow_above_75(ht, tbl))
 420		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 421	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 422		err = rhashtable_shrink(ht);
 423	else if (tbl->nest)
 424		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 425
 426	if (!err || err == -EEXIST) {
 427		int nerr;
 428
 429		nerr = rhashtable_rehash_table(ht);
 430		err = err ?: nerr;
 431	}
 432
 433	mutex_unlock(&ht->mutex);
 434
 435	if (err)
 436		schedule_work(&ht->run_work);
 437}
 438
 439static int rhashtable_insert_rehash(struct rhashtable *ht,
 440				    struct bucket_table *tbl)
 441{
 442	struct bucket_table *old_tbl;
 443	struct bucket_table *new_tbl;
 444	unsigned int size;
 445	int err;
 446
 447	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 448
 449	size = tbl->size;
 450
 451	err = -EBUSY;
 452
 453	if (rht_grow_above_75(ht, tbl))
 454		size *= 2;
 455	/* Do not schedule more than one rehash */
 456	else if (old_tbl != tbl)
 457		goto fail;
 458
 459	err = -ENOMEM;
 460
 461	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
 462	if (new_tbl == NULL)
 463		goto fail;
 464
 465	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 466	if (err) {
 467		bucket_table_free(new_tbl);
 468		if (err == -EEXIST)
 469			err = 0;
 470	} else
 471		schedule_work(&ht->run_work);
 472
 473	return err;
 474
 475fail:
 476	/* Do not fail the insert if someone else did a rehash. */
 477	if (likely(rcu_access_pointer(tbl->future_tbl)))
 478		return 0;
 479
 480	/* Schedule async rehash to retry allocation in process context. */
 481	if (err == -ENOMEM)
 482		schedule_work(&ht->run_work);
 483
 484	return err;
 485}
 486
 487static void *rhashtable_lookup_one(struct rhashtable *ht,
 488				   struct rhash_lock_head __rcu **bkt,
 489				   struct bucket_table *tbl, unsigned int hash,
 490				   const void *key, struct rhash_head *obj)
 491{
 492	struct rhashtable_compare_arg arg = {
 493		.ht = ht,
 494		.key = key,
 495	};
 496	struct rhash_head __rcu **pprev = NULL;
 497	struct rhash_head *head;
 498	int elasticity;
 499
 500	elasticity = RHT_ELASTICITY;
 501	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
 
 502		struct rhlist_head *list;
 503		struct rhlist_head *plist;
 504
 505		elasticity--;
 506		if (!key ||
 507		    (ht->p.obj_cmpfn ?
 508		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 509		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 510			pprev = &head->next;
 511			continue;
 512		}
 513
 514		if (!ht->rhlist)
 515			return rht_obj(ht, head);
 516
 517		list = container_of(obj, struct rhlist_head, rhead);
 518		plist = container_of(head, struct rhlist_head, rhead);
 519
 520		RCU_INIT_POINTER(list->next, plist);
 521		head = rht_dereference_bucket(head->next, tbl, hash);
 522		RCU_INIT_POINTER(list->rhead.next, head);
 523		if (pprev)
 524			rcu_assign_pointer(*pprev, obj);
 525		else
 526			/* Need to preserve the bit lock */
 527			rht_assign_locked(bkt, obj);
 528
 529		return NULL;
 530	}
 531
 532	if (elasticity <= 0)
 533		return ERR_PTR(-EAGAIN);
 534
 535	return ERR_PTR(-ENOENT);
 536}
 537
 538static struct bucket_table *rhashtable_insert_one(
 539	struct rhashtable *ht, struct rhash_lock_head __rcu **bkt,
 540	struct bucket_table *tbl, unsigned int hash, struct rhash_head *obj,
 541	void *data)
 
 542{
 
 543	struct bucket_table *new_tbl;
 544	struct rhash_head *head;
 545
 546	if (!IS_ERR_OR_NULL(data))
 547		return ERR_PTR(-EEXIST);
 548
 549	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 550		return ERR_CAST(data);
 551
 552	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 553	if (new_tbl)
 554		return new_tbl;
 555
 556	if (PTR_ERR(data) != -ENOENT)
 557		return ERR_CAST(data);
 558
 559	if (unlikely(rht_grow_above_max(ht, tbl)))
 560		return ERR_PTR(-E2BIG);
 561
 562	if (unlikely(rht_grow_above_100(ht, tbl)))
 563		return ERR_PTR(-EAGAIN);
 564
 565	head = rht_ptr(bkt, tbl, hash);
 
 
 
 
 566
 567	RCU_INIT_POINTER(obj->next, head);
 568	if (ht->rhlist) {
 569		struct rhlist_head *list;
 570
 571		list = container_of(obj, struct rhlist_head, rhead);
 572		RCU_INIT_POINTER(list->next, NULL);
 573	}
 574
 575	/* bkt is always the head of the list, so it holds
 576	 * the lock, which we need to preserve
 577	 */
 578	rht_assign_locked(bkt, obj);
 579
 580	atomic_inc(&ht->nelems);
 581	if (rht_grow_above_75(ht, tbl))
 582		schedule_work(&ht->run_work);
 583
 584	return NULL;
 585}
 586
 587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 588				   struct rhash_head *obj)
 589{
 590	struct bucket_table *new_tbl;
 591	struct bucket_table *tbl;
 592	struct rhash_lock_head __rcu **bkt;
 593	unsigned int hash;
 
 594	void *data;
 595
 596	new_tbl = rcu_dereference(ht->tbl);
 597
 598	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599		tbl = new_tbl;
 600		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 601		if (rcu_access_pointer(tbl->future_tbl))
 602			/* Failure is OK */
 603			bkt = rht_bucket_var(tbl, hash);
 604		else
 605			bkt = rht_bucket_insert(ht, tbl, hash);
 606		if (bkt == NULL) {
 607			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 608			data = ERR_PTR(-EAGAIN);
 609		} else {
 610			rht_lock(tbl, bkt);
 611			data = rhashtable_lookup_one(ht, bkt, tbl,
 612						     hash, key, obj);
 613			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
 614							hash, obj, data);
 615			if (PTR_ERR(new_tbl) != -EEXIST)
 616				data = ERR_CAST(new_tbl);
 617
 618			rht_unlock(tbl, bkt);
 619		}
 620	} while (!IS_ERR_OR_NULL(new_tbl));
 
 
 
 
 
 
 621
 622	if (PTR_ERR(data) == -EAGAIN)
 623		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 624			       -EAGAIN);
 625
 626	return data;
 627}
 628
 629void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 630			     struct rhash_head *obj)
 631{
 632	void *data;
 633
 634	do {
 635		rcu_read_lock();
 636		data = rhashtable_try_insert(ht, key, obj);
 637		rcu_read_unlock();
 638	} while (PTR_ERR(data) == -EAGAIN);
 639
 640	return data;
 641}
 642EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 643
 644/**
 645 * rhashtable_walk_enter - Initialise an iterator
 646 * @ht:		Table to walk over
 647 * @iter:	Hash table Iterator
 648 *
 649 * This function prepares a hash table walk.
 650 *
 651 * Note that if you restart a walk after rhashtable_walk_stop you
 652 * may see the same object twice.  Also, you may miss objects if
 653 * there are removals in between rhashtable_walk_stop and the next
 654 * call to rhashtable_walk_start.
 655 *
 656 * For a completely stable walk you should construct your own data
 657 * structure outside the hash table.
 658 *
 659 * This function may be called from any process context, including
 660 * non-preemptable context, but cannot be called from softirq or
 661 * hardirq context.
 662 *
 663 * You must call rhashtable_walk_exit after this function returns.
 664 */
 665void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 666{
 667	iter->ht = ht;
 668	iter->p = NULL;
 669	iter->slot = 0;
 670	iter->skip = 0;
 671	iter->end_of_table = 0;
 672
 673	spin_lock(&ht->lock);
 674	iter->walker.tbl =
 675		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 676	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 677	spin_unlock(&ht->lock);
 678}
 679EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 680
 681/**
 682 * rhashtable_walk_exit - Free an iterator
 683 * @iter:	Hash table Iterator
 684 *
 685 * This function frees resources allocated by rhashtable_walk_enter.
 686 */
 687void rhashtable_walk_exit(struct rhashtable_iter *iter)
 688{
 689	spin_lock(&iter->ht->lock);
 690	if (iter->walker.tbl)
 691		list_del(&iter->walker.list);
 692	spin_unlock(&iter->ht->lock);
 693}
 694EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 695
 696/**
 697 * rhashtable_walk_start_check - Start a hash table walk
 698 * @iter:	Hash table iterator
 699 *
 700 * Start a hash table walk at the current iterator position.  Note that we take
 701 * the RCU lock in all cases including when we return an error.  So you must
 702 * always call rhashtable_walk_stop to clean up.
 703 *
 704 * Returns zero if successful.
 705 *
 706 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 707 * will rewind back to the beginning and you may use it immediately
 708 * by calling rhashtable_walk_next.
 709 *
 710 * rhashtable_walk_start is defined as an inline variant that returns
 711 * void. This is preferred in cases where the caller would ignore
 712 * resize events and always continue.
 713 */
 714int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 715	__acquires(RCU)
 716{
 717	struct rhashtable *ht = iter->ht;
 718	bool rhlist = ht->rhlist;
 719
 720	rcu_read_lock();
 721
 722	spin_lock(&ht->lock);
 723	if (iter->walker.tbl)
 724		list_del(&iter->walker.list);
 725	spin_unlock(&ht->lock);
 726
 727	if (iter->end_of_table)
 728		return 0;
 729	if (!iter->walker.tbl) {
 730		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 731		iter->slot = 0;
 732		iter->skip = 0;
 733		return -EAGAIN;
 734	}
 735
 736	if (iter->p && !rhlist) {
 737		/*
 738		 * We need to validate that 'p' is still in the table, and
 739		 * if so, update 'skip'
 740		 */
 741		struct rhash_head *p;
 742		int skip = 0;
 743		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 744			skip++;
 745			if (p == iter->p) {
 746				iter->skip = skip;
 747				goto found;
 748			}
 749		}
 750		iter->p = NULL;
 751	} else if (iter->p && rhlist) {
 752		/* Need to validate that 'list' is still in the table, and
 753		 * if so, update 'skip' and 'p'.
 754		 */
 755		struct rhash_head *p;
 756		struct rhlist_head *list;
 757		int skip = 0;
 758		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
 759			for (list = container_of(p, struct rhlist_head, rhead);
 760			     list;
 761			     list = rcu_dereference(list->next)) {
 762				skip++;
 763				if (list == iter->list) {
 764					iter->p = p;
 765					iter->skip = skip;
 766					goto found;
 767				}
 768			}
 769		}
 770		iter->p = NULL;
 771	}
 772found:
 773	return 0;
 774}
 775EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 776
 777/**
 778 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 779 * one in case of a new walk).
 780 *
 781 * @iter:	Hash table iterator
 782 *
 783 * Returns the found object or NULL when the end of the table is reached.
 784 *
 785 * Returns -EAGAIN if resize event occurred.
 786 */
 787static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 788{
 789	struct bucket_table *tbl = iter->walker.tbl;
 790	struct rhlist_head *list = iter->list;
 791	struct rhashtable *ht = iter->ht;
 792	struct rhash_head *p = iter->p;
 793	bool rhlist = ht->rhlist;
 794
 795	if (!tbl)
 796		return NULL;
 797
 798	for (; iter->slot < tbl->size; iter->slot++) {
 799		int skip = iter->skip;
 800
 801		rht_for_each_rcu(p, tbl, iter->slot) {
 802			if (rhlist) {
 803				list = container_of(p, struct rhlist_head,
 804						    rhead);
 805				do {
 806					if (!skip)
 807						goto next;
 808					skip--;
 809					list = rcu_dereference(list->next);
 810				} while (list);
 811
 812				continue;
 813			}
 814			if (!skip)
 815				break;
 816			skip--;
 817		}
 818
 819next:
 820		if (!rht_is_a_nulls(p)) {
 821			iter->skip++;
 822			iter->p = p;
 823			iter->list = list;
 824			return rht_obj(ht, rhlist ? &list->rhead : p);
 825		}
 826
 827		iter->skip = 0;
 828	}
 829
 830	iter->p = NULL;
 831
 832	/* Ensure we see any new tables. */
 833	smp_rmb();
 834
 835	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 836	if (iter->walker.tbl) {
 837		iter->slot = 0;
 838		iter->skip = 0;
 839		return ERR_PTR(-EAGAIN);
 840	} else {
 841		iter->end_of_table = true;
 842	}
 843
 844	return NULL;
 845}
 846
 847/**
 848 * rhashtable_walk_next - Return the next object and advance the iterator
 849 * @iter:	Hash table iterator
 850 *
 851 * Note that you must call rhashtable_walk_stop when you are finished
 852 * with the walk.
 853 *
 854 * Returns the next object or NULL when the end of the table is reached.
 855 *
 856 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 857 * will rewind back to the beginning and you may continue to use it.
 858 */
 859void *rhashtable_walk_next(struct rhashtable_iter *iter)
 860{
 861	struct rhlist_head *list = iter->list;
 862	struct rhashtable *ht = iter->ht;
 863	struct rhash_head *p = iter->p;
 864	bool rhlist = ht->rhlist;
 865
 866	if (p) {
 867		if (!rhlist || !(list = rcu_dereference(list->next))) {
 868			p = rcu_dereference(p->next);
 869			list = container_of(p, struct rhlist_head, rhead);
 870		}
 871		if (!rht_is_a_nulls(p)) {
 872			iter->skip++;
 873			iter->p = p;
 874			iter->list = list;
 875			return rht_obj(ht, rhlist ? &list->rhead : p);
 876		}
 877
 878		/* At the end of this slot, switch to next one and then find
 879		 * next entry from that point.
 880		 */
 881		iter->skip = 0;
 882		iter->slot++;
 883	}
 884
 885	return __rhashtable_walk_find_next(iter);
 886}
 887EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 888
 889/**
 890 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 891 * @iter:	Hash table iterator
 892 *
 893 * Returns the next object or NULL when the end of the table is reached.
 894 *
 895 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 896 * will rewind back to the beginning and you may continue to use it.
 897 */
 898void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 899{
 900	struct rhlist_head *list = iter->list;
 901	struct rhashtable *ht = iter->ht;
 902	struct rhash_head *p = iter->p;
 903
 904	if (p)
 905		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 906
 907	/* No object found in current iter, find next one in the table. */
 908
 909	if (iter->skip) {
 910		/* A nonzero skip value points to the next entry in the table
 911		 * beyond that last one that was found. Decrement skip so
 912		 * we find the current value. __rhashtable_walk_find_next
 913		 * will restore the original value of skip assuming that
 914		 * the table hasn't changed.
 915		 */
 916		iter->skip--;
 917	}
 918
 919	return __rhashtable_walk_find_next(iter);
 920}
 921EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 922
 923/**
 924 * rhashtable_walk_stop - Finish a hash table walk
 925 * @iter:	Hash table iterator
 926 *
 927 * Finish a hash table walk.  Does not reset the iterator to the start of the
 928 * hash table.
 929 */
 930void rhashtable_walk_stop(struct rhashtable_iter *iter)
 931	__releases(RCU)
 932{
 933	struct rhashtable *ht;
 934	struct bucket_table *tbl = iter->walker.tbl;
 935
 936	if (!tbl)
 937		goto out;
 938
 939	ht = iter->ht;
 940
 941	spin_lock(&ht->lock);
 942	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
 943		/* This bucket table is being freed, don't re-link it. */
 944		iter->walker.tbl = NULL;
 945	else
 946		list_add(&iter->walker.list, &tbl->walkers);
 
 
 947	spin_unlock(&ht->lock);
 948
 
 
 949out:
 950	rcu_read_unlock();
 951}
 952EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 953
 954static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 955{
 956	size_t retsize;
 957
 958	if (params->nelem_hint)
 959		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 960			      (unsigned long)params->min_size);
 961	else
 962		retsize = max(HASH_DEFAULT_SIZE,
 963			      (unsigned long)params->min_size);
 964
 965	return retsize;
 966}
 967
 968static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 969{
 970	return jhash2(key, length, seed);
 971}
 972
 973/**
 974 * rhashtable_init - initialize a new hash table
 975 * @ht:		hash table to be initialized
 976 * @params:	configuration parameters
 977 *
 978 * Initializes a new hash table based on the provided configuration
 979 * parameters. A table can be configured either with a variable or
 980 * fixed length key:
 981 *
 982 * Configuration Example 1: Fixed length keys
 983 * struct test_obj {
 984 *	int			key;
 985 *	void *			my_member;
 986 *	struct rhash_head	node;
 987 * };
 988 *
 989 * struct rhashtable_params params = {
 990 *	.head_offset = offsetof(struct test_obj, node),
 991 *	.key_offset = offsetof(struct test_obj, key),
 992 *	.key_len = sizeof(int),
 993 *	.hashfn = jhash,
 
 994 * };
 995 *
 996 * Configuration Example 2: Variable length keys
 997 * struct test_obj {
 998 *	[...]
 999 *	struct rhash_head	node;
1000 * };
1001 *
1002 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1003 * {
1004 *	struct test_obj *obj = data;
1005 *
1006 *	return [... hash ...];
1007 * }
1008 *
1009 * struct rhashtable_params params = {
1010 *	.head_offset = offsetof(struct test_obj, node),
1011 *	.hashfn = jhash,
1012 *	.obj_hashfn = my_hash_fn,
1013 * };
1014 */
1015int rhashtable_init(struct rhashtable *ht,
1016		    const struct rhashtable_params *params)
1017{
1018	struct bucket_table *tbl;
1019	size_t size;
1020
 
 
1021	if ((!params->key_len && !params->obj_hashfn) ||
1022	    (params->obj_hashfn && !params->obj_cmpfn))
1023		return -EINVAL;
1024
 
 
 
1025	memset(ht, 0, sizeof(*ht));
1026	mutex_init(&ht->mutex);
1027	spin_lock_init(&ht->lock);
1028	memcpy(&ht->p, params, sizeof(*params));
1029
1030	if (params->min_size)
1031		ht->p.min_size = roundup_pow_of_two(params->min_size);
1032
1033	/* Cap total entries at 2^31 to avoid nelems overflow. */
1034	ht->max_elems = 1u << 31;
1035
1036	if (params->max_size) {
1037		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1038		if (ht->p.max_size < ht->max_elems / 2)
1039			ht->max_elems = ht->p.max_size * 2;
1040	}
1041
1042	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1043
1044	size = rounded_hashtable_size(&ht->p);
 
 
 
 
 
 
1045
1046	ht->key_len = ht->p.key_len;
1047	if (!params->hashfn) {
1048		ht->p.hashfn = jhash;
1049
1050		if (!(ht->key_len & (sizeof(u32) - 1))) {
1051			ht->key_len /= sizeof(u32);
1052			ht->p.hashfn = rhashtable_jhash2;
1053		}
1054	}
1055
1056	/*
1057	 * This is api initialization and thus we need to guarantee the
1058	 * initial rhashtable allocation. Upon failure, retry with the
1059	 * smallest possible size with __GFP_NOFAIL semantics.
1060	 */
1061	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1062	if (unlikely(tbl == NULL)) {
1063		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1064		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1065	}
1066
1067	atomic_set(&ht->nelems, 0);
1068
1069	RCU_INIT_POINTER(ht->tbl, tbl);
1070
1071	INIT_WORK(&ht->run_work, rht_deferred_worker);
1072
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(rhashtable_init);
1076
1077/**
1078 * rhltable_init - initialize a new hash list table
1079 * @hlt:	hash list table to be initialized
1080 * @params:	configuration parameters
1081 *
1082 * Initializes a new hash list table.
1083 *
1084 * See documentation for rhashtable_init.
1085 */
1086int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1087{
1088	int err;
1089
 
 
 
 
1090	err = rhashtable_init(&hlt->ht, params);
1091	hlt->ht.rhlist = true;
1092	return err;
1093}
1094EXPORT_SYMBOL_GPL(rhltable_init);
1095
1096static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1097				void (*free_fn)(void *ptr, void *arg),
1098				void *arg)
1099{
1100	struct rhlist_head *list;
1101
1102	if (!ht->rhlist) {
1103		free_fn(rht_obj(ht, obj), arg);
1104		return;
1105	}
1106
1107	list = container_of(obj, struct rhlist_head, rhead);
1108	do {
1109		obj = &list->rhead;
1110		list = rht_dereference(list->next, ht);
1111		free_fn(rht_obj(ht, obj), arg);
1112	} while (list);
1113}
1114
1115/**
1116 * rhashtable_free_and_destroy - free elements and destroy hash table
1117 * @ht:		the hash table to destroy
1118 * @free_fn:	callback to release resources of element
1119 * @arg:	pointer passed to free_fn
1120 *
1121 * Stops an eventual async resize. If defined, invokes free_fn for each
1122 * element to releasal resources. Please note that RCU protected
1123 * readers may still be accessing the elements. Releasing of resources
1124 * must occur in a compatible manner. Then frees the bucket array.
1125 *
1126 * This function will eventually sleep to wait for an async resize
1127 * to complete. The caller is responsible that no further write operations
1128 * occurs in parallel.
1129 */
1130void rhashtable_free_and_destroy(struct rhashtable *ht,
1131				 void (*free_fn)(void *ptr, void *arg),
1132				 void *arg)
1133{
1134	struct bucket_table *tbl, *next_tbl;
1135	unsigned int i;
1136
1137	cancel_work_sync(&ht->run_work);
1138
1139	mutex_lock(&ht->mutex);
1140	tbl = rht_dereference(ht->tbl, ht);
1141restart:
1142	if (free_fn) {
1143		for (i = 0; i < tbl->size; i++) {
1144			struct rhash_head *pos, *next;
1145
1146			cond_resched();
1147			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1148			     next = !rht_is_a_nulls(pos) ?
1149					rht_dereference(pos->next, ht) : NULL;
1150			     !rht_is_a_nulls(pos);
1151			     pos = next,
1152			     next = !rht_is_a_nulls(pos) ?
1153					rht_dereference(pos->next, ht) : NULL)
1154				rhashtable_free_one(ht, pos, free_fn, arg);
1155		}
1156	}
1157
1158	next_tbl = rht_dereference(tbl->future_tbl, ht);
1159	bucket_table_free(tbl);
1160	if (next_tbl) {
1161		tbl = next_tbl;
1162		goto restart;
1163	}
1164	mutex_unlock(&ht->mutex);
1165}
1166EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1167
1168void rhashtable_destroy(struct rhashtable *ht)
1169{
1170	return rhashtable_free_and_destroy(ht, NULL, NULL);
1171}
1172EXPORT_SYMBOL_GPL(rhashtable_destroy);
1173
1174struct rhash_lock_head __rcu **__rht_bucket_nested(
1175	const struct bucket_table *tbl, unsigned int hash)
1176{
1177	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 
 
1178	unsigned int index = hash & ((1 << tbl->nest) - 1);
1179	unsigned int size = tbl->size >> tbl->nest;
1180	unsigned int subhash = hash;
1181	union nested_table *ntbl;
1182
1183	ntbl = nested_table_top(tbl);
1184	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1185	subhash >>= tbl->nest;
1186
1187	while (ntbl && size > (1 << shift)) {
1188		index = subhash & ((1 << shift) - 1);
1189		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1190						  tbl, hash);
1191		size >>= shift;
1192		subhash >>= shift;
1193	}
1194
1195	if (!ntbl)
1196		return NULL;
1197
1198	return &ntbl[subhash].bucket;
1199
1200}
1201EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1202
1203struct rhash_lock_head __rcu **rht_bucket_nested(
1204	const struct bucket_table *tbl, unsigned int hash)
1205{
1206	static struct rhash_lock_head __rcu *rhnull;
1207
1208	if (!rhnull)
1209		INIT_RHT_NULLS_HEAD(rhnull);
1210	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1211}
1212EXPORT_SYMBOL_GPL(rht_bucket_nested);
1213
1214struct rhash_lock_head __rcu **rht_bucket_nested_insert(
1215	struct rhashtable *ht, struct bucket_table *tbl, unsigned int hash)
 
1216{
1217	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1218	unsigned int index = hash & ((1 << tbl->nest) - 1);
1219	unsigned int size = tbl->size >> tbl->nest;
1220	union nested_table *ntbl;
 
 
1221
1222	ntbl = nested_table_top(tbl);
1223	hash >>= tbl->nest;
 
 
1224	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1225				  size <= (1 << shift));
1226
1227	while (ntbl && size > (1 << shift)) {
1228		index = hash & ((1 << shift) - 1);
1229		size >>= shift;
1230		hash >>= shift;
 
 
1231		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1232					  size <= (1 << shift));
 
1233	}
1234
1235	if (!ntbl)
1236		return NULL;
1237
1238	return &ntbl[hash].bucket;
1239
1240}
1241EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
v4.17
 
   1/*
   2 * Resizable, Scalable, Concurrent Hash Table
   3 *
   4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
   5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
   6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
   7 *
   8 * Code partially derived from nft_hash
   9 * Rewritten with rehash code from br_multicast plus single list
  10 * pointer as suggested by Josh Triplett
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/atomic.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/sched.h>
  22#include <linux/rculist.h>
  23#include <linux/slab.h>
  24#include <linux/vmalloc.h>
  25#include <linux/mm.h>
  26#include <linux/jhash.h>
  27#include <linux/random.h>
  28#include <linux/rhashtable.h>
  29#include <linux/err.h>
  30#include <linux/export.h>
  31
  32#define HASH_DEFAULT_SIZE	64UL
  33#define HASH_MIN_SIZE		4U
  34#define BUCKET_LOCKS_PER_CPU	32UL
  35
  36union nested_table {
  37	union nested_table __rcu *table;
  38	struct rhash_head __rcu *bucket;
  39};
  40
  41static u32 head_hashfn(struct rhashtable *ht,
  42		       const struct bucket_table *tbl,
  43		       const struct rhash_head *he)
  44{
  45	return rht_head_hashfn(ht, tbl, he, ht->p);
  46}
  47
  48#ifdef CONFIG_PROVE_LOCKING
  49#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
  50
  51int lockdep_rht_mutex_is_held(struct rhashtable *ht)
  52{
  53	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
  54}
  55EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
  56
  57int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
  58{
  59	spinlock_t *lock = rht_bucket_lock(tbl, hash);
  60
  61	return (debug_locks) ? lockdep_is_held(lock) : 1;
 
 
  62}
  63EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
  64#else
  65#define ASSERT_RHT_MUTEX(HT)
  66#endif
  67
 
 
 
 
 
 
 
 
 
  68static void nested_table_free(union nested_table *ntbl, unsigned int size)
  69{
  70	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
  71	const unsigned int len = 1 << shift;
  72	unsigned int i;
  73
  74	ntbl = rcu_dereference_raw(ntbl->table);
  75	if (!ntbl)
  76		return;
  77
  78	if (size > len) {
  79		size >>= shift;
  80		for (i = 0; i < len; i++)
  81			nested_table_free(ntbl + i, size);
  82	}
  83
  84	kfree(ntbl);
  85}
  86
  87static void nested_bucket_table_free(const struct bucket_table *tbl)
  88{
  89	unsigned int size = tbl->size >> tbl->nest;
  90	unsigned int len = 1 << tbl->nest;
  91	union nested_table *ntbl;
  92	unsigned int i;
  93
  94	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
  95
  96	for (i = 0; i < len; i++)
  97		nested_table_free(ntbl + i, size);
  98
  99	kfree(ntbl);
 100}
 101
 102static void bucket_table_free(const struct bucket_table *tbl)
 103{
 104	if (tbl->nest)
 105		nested_bucket_table_free(tbl);
 106
 107	free_bucket_spinlocks(tbl->locks);
 108	kvfree(tbl);
 109}
 110
 111static void bucket_table_free_rcu(struct rcu_head *head)
 112{
 113	bucket_table_free(container_of(head, struct bucket_table, rcu));
 114}
 115
 116static union nested_table *nested_table_alloc(struct rhashtable *ht,
 117					      union nested_table __rcu **prev,
 118					      unsigned int shifted,
 119					      unsigned int nhash)
 120{
 121	union nested_table *ntbl;
 122	int i;
 123
 124	ntbl = rcu_dereference(*prev);
 125	if (ntbl)
 126		return ntbl;
 127
 128	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
 129
 130	if (ntbl && shifted) {
 131		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
 132			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
 133					    (i << shifted) | nhash);
 134	}
 135
 136	rcu_assign_pointer(*prev, ntbl);
 137
 138	return ntbl;
 
 
 139}
 140
 141static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
 142						      size_t nbuckets,
 143						      gfp_t gfp)
 144{
 145	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
 146	struct bucket_table *tbl;
 147	size_t size;
 148
 149	if (nbuckets < (1 << (shift + 1)))
 150		return NULL;
 151
 152	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
 153
 154	tbl = kzalloc(size, gfp);
 155	if (!tbl)
 156		return NULL;
 157
 158	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
 159				0, 0)) {
 160		kfree(tbl);
 161		return NULL;
 162	}
 163
 164	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
 165
 166	return tbl;
 167}
 168
 169static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
 170					       size_t nbuckets,
 171					       gfp_t gfp)
 172{
 173	struct bucket_table *tbl = NULL;
 174	size_t size, max_locks;
 175	int i;
 
 176
 177	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
 178	if (gfp != GFP_KERNEL)
 179		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
 180	else
 181		tbl = kvzalloc(size, gfp);
 182
 183	size = nbuckets;
 184
 185	if (tbl == NULL && gfp != GFP_KERNEL) {
 186		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
 187		nbuckets = 0;
 188	}
 
 189	if (tbl == NULL)
 190		return NULL;
 191
 
 
 192	tbl->size = size;
 193
 194	max_locks = size >> 1;
 195	if (tbl->nest)
 196		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
 197
 198	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
 199				   ht->p.locks_mul, gfp) < 0) {
 200		bucket_table_free(tbl);
 201		return NULL;
 202	}
 203
 204	INIT_LIST_HEAD(&tbl->walkers);
 205
 206	tbl->hash_rnd = get_random_u32();
 207
 208	for (i = 0; i < nbuckets; i++)
 209		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
 210
 211	return tbl;
 212}
 213
 214static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
 215						  struct bucket_table *tbl)
 216{
 217	struct bucket_table *new_tbl;
 218
 219	do {
 220		new_tbl = tbl;
 221		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 222	} while (tbl);
 223
 224	return new_tbl;
 225}
 226
 227static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
 
 
 228{
 229	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 230	struct bucket_table *new_tbl = rhashtable_last_table(ht,
 231		rht_dereference_rcu(old_tbl->future_tbl, ht));
 232	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
 233	int err = -EAGAIN;
 234	struct rhash_head *head, *next, *entry;
 235	spinlock_t *new_bucket_lock;
 236	unsigned int new_hash;
 237
 238	if (new_tbl->nest)
 239		goto out;
 240
 241	err = -ENOENT;
 242
 243	rht_for_each(entry, old_tbl, old_hash) {
 
 244		err = 0;
 245		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
 246
 247		if (rht_is_a_nulls(next))
 248			break;
 249
 250		pprev = &entry->next;
 251	}
 252
 253	if (err)
 254		goto out;
 255
 256	new_hash = head_hashfn(ht, new_tbl, entry);
 257
 258	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
 259
 260	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
 261	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
 262				      new_tbl, new_hash);
 263
 264	RCU_INIT_POINTER(entry->next, head);
 265
 266	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
 267	spin_unlock(new_bucket_lock);
 268
 269	rcu_assign_pointer(*pprev, next);
 
 
 
 
 270
 271out:
 272	return err;
 273}
 274
 275static int rhashtable_rehash_chain(struct rhashtable *ht,
 276				    unsigned int old_hash)
 277{
 278	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 279	spinlock_t *old_bucket_lock;
 280	int err;
 281
 282	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
 
 
 283
 284	spin_lock_bh(old_bucket_lock);
 285	while (!(err = rhashtable_rehash_one(ht, old_hash)))
 286		;
 287
 288	if (err == -ENOENT) {
 289		old_tbl->rehash++;
 290		err = 0;
 291	}
 292	spin_unlock_bh(old_bucket_lock);
 293
 294	return err;
 295}
 296
 297static int rhashtable_rehash_attach(struct rhashtable *ht,
 298				    struct bucket_table *old_tbl,
 299				    struct bucket_table *new_tbl)
 300{
 301	/* Protect future_tbl using the first bucket lock. */
 302	spin_lock_bh(old_tbl->locks);
 303
 304	/* Did somebody beat us to it? */
 305	if (rcu_access_pointer(old_tbl->future_tbl)) {
 306		spin_unlock_bh(old_tbl->locks);
 307		return -EEXIST;
 308	}
 309
 310	/* Make insertions go into the new, empty table right away. Deletions
 311	 * and lookups will be attempted in both tables until we synchronize.
 
 
 312	 */
 313	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
 314
 315	spin_unlock_bh(old_tbl->locks);
 
 
 316
 317	return 0;
 318}
 319
 320static int rhashtable_rehash_table(struct rhashtable *ht)
 321{
 322	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 323	struct bucket_table *new_tbl;
 324	struct rhashtable_walker *walker;
 325	unsigned int old_hash;
 326	int err;
 327
 328	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
 329	if (!new_tbl)
 330		return 0;
 331
 332	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
 333		err = rhashtable_rehash_chain(ht, old_hash);
 334		if (err)
 335			return err;
 336		cond_resched();
 337	}
 338
 339	/* Publish the new table pointer. */
 340	rcu_assign_pointer(ht->tbl, new_tbl);
 341
 342	spin_lock(&ht->lock);
 343	list_for_each_entry(walker, &old_tbl->walkers, list)
 344		walker->tbl = NULL;
 345	spin_unlock(&ht->lock);
 346
 347	/* Wait for readers. All new readers will see the new
 348	 * table, and thus no references to the old table will
 349	 * remain.
 
 
 
 350	 */
 351	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
 
 352
 353	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
 354}
 355
 356static int rhashtable_rehash_alloc(struct rhashtable *ht,
 357				   struct bucket_table *old_tbl,
 358				   unsigned int size)
 359{
 360	struct bucket_table *new_tbl;
 361	int err;
 362
 363	ASSERT_RHT_MUTEX(ht);
 364
 365	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
 366	if (new_tbl == NULL)
 367		return -ENOMEM;
 368
 369	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
 370	if (err)
 371		bucket_table_free(new_tbl);
 372
 373	return err;
 374}
 375
 376/**
 377 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
 378 * @ht:		the hash table to shrink
 379 *
 380 * This function shrinks the hash table to fit, i.e., the smallest
 381 * size would not cause it to expand right away automatically.
 382 *
 383 * The caller must ensure that no concurrent resizing occurs by holding
 384 * ht->mutex.
 385 *
 386 * The caller must ensure that no concurrent table mutations take place.
 387 * It is however valid to have concurrent lookups if they are RCU protected.
 388 *
 389 * It is valid to have concurrent insertions and deletions protected by per
 390 * bucket locks or concurrent RCU protected lookups and traversals.
 391 */
 392static int rhashtable_shrink(struct rhashtable *ht)
 393{
 394	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
 395	unsigned int nelems = atomic_read(&ht->nelems);
 396	unsigned int size = 0;
 397
 398	if (nelems)
 399		size = roundup_pow_of_two(nelems * 3 / 2);
 400	if (size < ht->p.min_size)
 401		size = ht->p.min_size;
 402
 403	if (old_tbl->size <= size)
 404		return 0;
 405
 406	if (rht_dereference(old_tbl->future_tbl, ht))
 407		return -EEXIST;
 408
 409	return rhashtable_rehash_alloc(ht, old_tbl, size);
 410}
 411
 412static void rht_deferred_worker(struct work_struct *work)
 413{
 414	struct rhashtable *ht;
 415	struct bucket_table *tbl;
 416	int err = 0;
 417
 418	ht = container_of(work, struct rhashtable, run_work);
 419	mutex_lock(&ht->mutex);
 420
 421	tbl = rht_dereference(ht->tbl, ht);
 422	tbl = rhashtable_last_table(ht, tbl);
 423
 424	if (rht_grow_above_75(ht, tbl))
 425		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
 426	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
 427		err = rhashtable_shrink(ht);
 428	else if (tbl->nest)
 429		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
 430
 431	if (!err)
 432		err = rhashtable_rehash_table(ht);
 
 
 
 
 433
 434	mutex_unlock(&ht->mutex);
 435
 436	if (err)
 437		schedule_work(&ht->run_work);
 438}
 439
 440static int rhashtable_insert_rehash(struct rhashtable *ht,
 441				    struct bucket_table *tbl)
 442{
 443	struct bucket_table *old_tbl;
 444	struct bucket_table *new_tbl;
 445	unsigned int size;
 446	int err;
 447
 448	old_tbl = rht_dereference_rcu(ht->tbl, ht);
 449
 450	size = tbl->size;
 451
 452	err = -EBUSY;
 453
 454	if (rht_grow_above_75(ht, tbl))
 455		size *= 2;
 456	/* Do not schedule more than one rehash */
 457	else if (old_tbl != tbl)
 458		goto fail;
 459
 460	err = -ENOMEM;
 461
 462	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
 463	if (new_tbl == NULL)
 464		goto fail;
 465
 466	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
 467	if (err) {
 468		bucket_table_free(new_tbl);
 469		if (err == -EEXIST)
 470			err = 0;
 471	} else
 472		schedule_work(&ht->run_work);
 473
 474	return err;
 475
 476fail:
 477	/* Do not fail the insert if someone else did a rehash. */
 478	if (likely(rcu_dereference_raw(tbl->future_tbl)))
 479		return 0;
 480
 481	/* Schedule async rehash to retry allocation in process context. */
 482	if (err == -ENOMEM)
 483		schedule_work(&ht->run_work);
 484
 485	return err;
 486}
 487
 488static void *rhashtable_lookup_one(struct rhashtable *ht,
 
 489				   struct bucket_table *tbl, unsigned int hash,
 490				   const void *key, struct rhash_head *obj)
 491{
 492	struct rhashtable_compare_arg arg = {
 493		.ht = ht,
 494		.key = key,
 495	};
 496	struct rhash_head __rcu **pprev;
 497	struct rhash_head *head;
 498	int elasticity;
 499
 500	elasticity = RHT_ELASTICITY;
 501	pprev = rht_bucket_var(tbl, hash);
 502	rht_for_each_continue(head, *pprev, tbl, hash) {
 503		struct rhlist_head *list;
 504		struct rhlist_head *plist;
 505
 506		elasticity--;
 507		if (!key ||
 508		    (ht->p.obj_cmpfn ?
 509		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
 510		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
 511			pprev = &head->next;
 512			continue;
 513		}
 514
 515		if (!ht->rhlist)
 516			return rht_obj(ht, head);
 517
 518		list = container_of(obj, struct rhlist_head, rhead);
 519		plist = container_of(head, struct rhlist_head, rhead);
 520
 521		RCU_INIT_POINTER(list->next, plist);
 522		head = rht_dereference_bucket(head->next, tbl, hash);
 523		RCU_INIT_POINTER(list->rhead.next, head);
 524		rcu_assign_pointer(*pprev, obj);
 
 
 
 
 525
 526		return NULL;
 527	}
 528
 529	if (elasticity <= 0)
 530		return ERR_PTR(-EAGAIN);
 531
 532	return ERR_PTR(-ENOENT);
 533}
 534
 535static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
 536						  struct bucket_table *tbl,
 537						  unsigned int hash,
 538						  struct rhash_head *obj,
 539						  void *data)
 540{
 541	struct rhash_head __rcu **pprev;
 542	struct bucket_table *new_tbl;
 543	struct rhash_head *head;
 544
 545	if (!IS_ERR_OR_NULL(data))
 546		return ERR_PTR(-EEXIST);
 547
 548	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
 549		return ERR_CAST(data);
 550
 551	new_tbl = rcu_dereference(tbl->future_tbl);
 552	if (new_tbl)
 553		return new_tbl;
 554
 555	if (PTR_ERR(data) != -ENOENT)
 556		return ERR_CAST(data);
 557
 558	if (unlikely(rht_grow_above_max(ht, tbl)))
 559		return ERR_PTR(-E2BIG);
 560
 561	if (unlikely(rht_grow_above_100(ht, tbl)))
 562		return ERR_PTR(-EAGAIN);
 563
 564	pprev = rht_bucket_insert(ht, tbl, hash);
 565	if (!pprev)
 566		return ERR_PTR(-ENOMEM);
 567
 568	head = rht_dereference_bucket(*pprev, tbl, hash);
 569
 570	RCU_INIT_POINTER(obj->next, head);
 571	if (ht->rhlist) {
 572		struct rhlist_head *list;
 573
 574		list = container_of(obj, struct rhlist_head, rhead);
 575		RCU_INIT_POINTER(list->next, NULL);
 576	}
 577
 578	rcu_assign_pointer(*pprev, obj);
 
 
 
 579
 580	atomic_inc(&ht->nelems);
 581	if (rht_grow_above_75(ht, tbl))
 582		schedule_work(&ht->run_work);
 583
 584	return NULL;
 585}
 586
 587static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
 588				   struct rhash_head *obj)
 589{
 590	struct bucket_table *new_tbl;
 591	struct bucket_table *tbl;
 
 592	unsigned int hash;
 593	spinlock_t *lock;
 594	void *data;
 595
 596	tbl = rcu_dereference(ht->tbl);
 597
 598	/* All insertions must grab the oldest table containing
 599	 * the hashed bucket that is yet to be rehashed.
 600	 */
 601	for (;;) {
 602		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 603		lock = rht_bucket_lock(tbl, hash);
 604		spin_lock_bh(lock);
 605
 606		if (tbl->rehash <= hash)
 607			break;
 608
 609		spin_unlock_bh(lock);
 610		tbl = rcu_dereference(tbl->future_tbl);
 611	}
 612
 613	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 614	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 615	if (PTR_ERR(new_tbl) != -EEXIST)
 616		data = ERR_CAST(new_tbl);
 617
 618	while (!IS_ERR_OR_NULL(new_tbl)) {
 619		tbl = new_tbl;
 620		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
 621		spin_lock_nested(rht_bucket_lock(tbl, hash),
 622				 SINGLE_DEPTH_NESTING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623
 624		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
 625		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
 626		if (PTR_ERR(new_tbl) != -EEXIST)
 627			data = ERR_CAST(new_tbl);
 628
 629		spin_unlock(rht_bucket_lock(tbl, hash));
 630	}
 631
 632	spin_unlock_bh(lock);
 633
 634	if (PTR_ERR(data) == -EAGAIN)
 635		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
 636			       -EAGAIN);
 637
 638	return data;
 639}
 640
 641void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
 642			     struct rhash_head *obj)
 643{
 644	void *data;
 645
 646	do {
 647		rcu_read_lock();
 648		data = rhashtable_try_insert(ht, key, obj);
 649		rcu_read_unlock();
 650	} while (PTR_ERR(data) == -EAGAIN);
 651
 652	return data;
 653}
 654EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
 655
 656/**
 657 * rhashtable_walk_enter - Initialise an iterator
 658 * @ht:		Table to walk over
 659 * @iter:	Hash table Iterator
 660 *
 661 * This function prepares a hash table walk.
 662 *
 663 * Note that if you restart a walk after rhashtable_walk_stop you
 664 * may see the same object twice.  Also, you may miss objects if
 665 * there are removals in between rhashtable_walk_stop and the next
 666 * call to rhashtable_walk_start.
 667 *
 668 * For a completely stable walk you should construct your own data
 669 * structure outside the hash table.
 670 *
 671 * This function may sleep so you must not call it from interrupt
 672 * context or with spin locks held.
 
 673 *
 674 * You must call rhashtable_walk_exit after this function returns.
 675 */
 676void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
 677{
 678	iter->ht = ht;
 679	iter->p = NULL;
 680	iter->slot = 0;
 681	iter->skip = 0;
 682	iter->end_of_table = 0;
 683
 684	spin_lock(&ht->lock);
 685	iter->walker.tbl =
 686		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
 687	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
 688	spin_unlock(&ht->lock);
 689}
 690EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
 691
 692/**
 693 * rhashtable_walk_exit - Free an iterator
 694 * @iter:	Hash table Iterator
 695 *
 696 * This function frees resources allocated by rhashtable_walk_init.
 697 */
 698void rhashtable_walk_exit(struct rhashtable_iter *iter)
 699{
 700	spin_lock(&iter->ht->lock);
 701	if (iter->walker.tbl)
 702		list_del(&iter->walker.list);
 703	spin_unlock(&iter->ht->lock);
 704}
 705EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
 706
 707/**
 708 * rhashtable_walk_start_check - Start a hash table walk
 709 * @iter:	Hash table iterator
 710 *
 711 * Start a hash table walk at the current iterator position.  Note that we take
 712 * the RCU lock in all cases including when we return an error.  So you must
 713 * always call rhashtable_walk_stop to clean up.
 714 *
 715 * Returns zero if successful.
 716 *
 717 * Returns -EAGAIN if resize event occured.  Note that the iterator
 718 * will rewind back to the beginning and you may use it immediately
 719 * by calling rhashtable_walk_next.
 720 *
 721 * rhashtable_walk_start is defined as an inline variant that returns
 722 * void. This is preferred in cases where the caller would ignore
 723 * resize events and always continue.
 724 */
 725int rhashtable_walk_start_check(struct rhashtable_iter *iter)
 726	__acquires(RCU)
 727{
 728	struct rhashtable *ht = iter->ht;
 
 729
 730	rcu_read_lock();
 731
 732	spin_lock(&ht->lock);
 733	if (iter->walker.tbl)
 734		list_del(&iter->walker.list);
 735	spin_unlock(&ht->lock);
 736
 737	if (!iter->walker.tbl && !iter->end_of_table) {
 
 
 738		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
 
 
 739		return -EAGAIN;
 740	}
 741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742	return 0;
 743}
 744EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
 745
 746/**
 747 * __rhashtable_walk_find_next - Find the next element in a table (or the first
 748 * one in case of a new walk).
 749 *
 750 * @iter:	Hash table iterator
 751 *
 752 * Returns the found object or NULL when the end of the table is reached.
 753 *
 754 * Returns -EAGAIN if resize event occurred.
 755 */
 756static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
 757{
 758	struct bucket_table *tbl = iter->walker.tbl;
 759	struct rhlist_head *list = iter->list;
 760	struct rhashtable *ht = iter->ht;
 761	struct rhash_head *p = iter->p;
 762	bool rhlist = ht->rhlist;
 763
 764	if (!tbl)
 765		return NULL;
 766
 767	for (; iter->slot < tbl->size; iter->slot++) {
 768		int skip = iter->skip;
 769
 770		rht_for_each_rcu(p, tbl, iter->slot) {
 771			if (rhlist) {
 772				list = container_of(p, struct rhlist_head,
 773						    rhead);
 774				do {
 775					if (!skip)
 776						goto next;
 777					skip--;
 778					list = rcu_dereference(list->next);
 779				} while (list);
 780
 781				continue;
 782			}
 783			if (!skip)
 784				break;
 785			skip--;
 786		}
 787
 788next:
 789		if (!rht_is_a_nulls(p)) {
 790			iter->skip++;
 791			iter->p = p;
 792			iter->list = list;
 793			return rht_obj(ht, rhlist ? &list->rhead : p);
 794		}
 795
 796		iter->skip = 0;
 797	}
 798
 799	iter->p = NULL;
 800
 801	/* Ensure we see any new tables. */
 802	smp_rmb();
 803
 804	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
 805	if (iter->walker.tbl) {
 806		iter->slot = 0;
 807		iter->skip = 0;
 808		return ERR_PTR(-EAGAIN);
 809	} else {
 810		iter->end_of_table = true;
 811	}
 812
 813	return NULL;
 814}
 815
 816/**
 817 * rhashtable_walk_next - Return the next object and advance the iterator
 818 * @iter:	Hash table iterator
 819 *
 820 * Note that you must call rhashtable_walk_stop when you are finished
 821 * with the walk.
 822 *
 823 * Returns the next object or NULL when the end of the table is reached.
 824 *
 825 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 826 * will rewind back to the beginning and you may continue to use it.
 827 */
 828void *rhashtable_walk_next(struct rhashtable_iter *iter)
 829{
 830	struct rhlist_head *list = iter->list;
 831	struct rhashtable *ht = iter->ht;
 832	struct rhash_head *p = iter->p;
 833	bool rhlist = ht->rhlist;
 834
 835	if (p) {
 836		if (!rhlist || !(list = rcu_dereference(list->next))) {
 837			p = rcu_dereference(p->next);
 838			list = container_of(p, struct rhlist_head, rhead);
 839		}
 840		if (!rht_is_a_nulls(p)) {
 841			iter->skip++;
 842			iter->p = p;
 843			iter->list = list;
 844			return rht_obj(ht, rhlist ? &list->rhead : p);
 845		}
 846
 847		/* At the end of this slot, switch to next one and then find
 848		 * next entry from that point.
 849		 */
 850		iter->skip = 0;
 851		iter->slot++;
 852	}
 853
 854	return __rhashtable_walk_find_next(iter);
 855}
 856EXPORT_SYMBOL_GPL(rhashtable_walk_next);
 857
 858/**
 859 * rhashtable_walk_peek - Return the next object but don't advance the iterator
 860 * @iter:	Hash table iterator
 861 *
 862 * Returns the next object or NULL when the end of the table is reached.
 863 *
 864 * Returns -EAGAIN if resize event occurred.  Note that the iterator
 865 * will rewind back to the beginning and you may continue to use it.
 866 */
 867void *rhashtable_walk_peek(struct rhashtable_iter *iter)
 868{
 869	struct rhlist_head *list = iter->list;
 870	struct rhashtable *ht = iter->ht;
 871	struct rhash_head *p = iter->p;
 872
 873	if (p)
 874		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
 875
 876	/* No object found in current iter, find next one in the table. */
 877
 878	if (iter->skip) {
 879		/* A nonzero skip value points to the next entry in the table
 880		 * beyond that last one that was found. Decrement skip so
 881		 * we find the current value. __rhashtable_walk_find_next
 882		 * will restore the original value of skip assuming that
 883		 * the table hasn't changed.
 884		 */
 885		iter->skip--;
 886	}
 887
 888	return __rhashtable_walk_find_next(iter);
 889}
 890EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
 891
 892/**
 893 * rhashtable_walk_stop - Finish a hash table walk
 894 * @iter:	Hash table iterator
 895 *
 896 * Finish a hash table walk.  Does not reset the iterator to the start of the
 897 * hash table.
 898 */
 899void rhashtable_walk_stop(struct rhashtable_iter *iter)
 900	__releases(RCU)
 901{
 902	struct rhashtable *ht;
 903	struct bucket_table *tbl = iter->walker.tbl;
 904
 905	if (!tbl)
 906		goto out;
 907
 908	ht = iter->ht;
 909
 910	spin_lock(&ht->lock);
 911	if (tbl->rehash < tbl->size)
 
 
 
 912		list_add(&iter->walker.list, &tbl->walkers);
 913	else
 914		iter->walker.tbl = NULL;
 915	spin_unlock(&ht->lock);
 916
 917	iter->p = NULL;
 918
 919out:
 920	rcu_read_unlock();
 921}
 922EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
 923
 924static size_t rounded_hashtable_size(const struct rhashtable_params *params)
 925{
 926	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
 927		   (unsigned long)params->min_size);
 
 
 
 
 
 
 
 
 928}
 929
 930static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
 931{
 932	return jhash2(key, length, seed);
 933}
 934
 935/**
 936 * rhashtable_init - initialize a new hash table
 937 * @ht:		hash table to be initialized
 938 * @params:	configuration parameters
 939 *
 940 * Initializes a new hash table based on the provided configuration
 941 * parameters. A table can be configured either with a variable or
 942 * fixed length key:
 943 *
 944 * Configuration Example 1: Fixed length keys
 945 * struct test_obj {
 946 *	int			key;
 947 *	void *			my_member;
 948 *	struct rhash_head	node;
 949 * };
 950 *
 951 * struct rhashtable_params params = {
 952 *	.head_offset = offsetof(struct test_obj, node),
 953 *	.key_offset = offsetof(struct test_obj, key),
 954 *	.key_len = sizeof(int),
 955 *	.hashfn = jhash,
 956 *	.nulls_base = (1U << RHT_BASE_SHIFT),
 957 * };
 958 *
 959 * Configuration Example 2: Variable length keys
 960 * struct test_obj {
 961 *	[...]
 962 *	struct rhash_head	node;
 963 * };
 964 *
 965 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
 966 * {
 967 *	struct test_obj *obj = data;
 968 *
 969 *	return [... hash ...];
 970 * }
 971 *
 972 * struct rhashtable_params params = {
 973 *	.head_offset = offsetof(struct test_obj, node),
 974 *	.hashfn = jhash,
 975 *	.obj_hashfn = my_hash_fn,
 976 * };
 977 */
 978int rhashtable_init(struct rhashtable *ht,
 979		    const struct rhashtable_params *params)
 980{
 981	struct bucket_table *tbl;
 982	size_t size;
 983
 984	size = HASH_DEFAULT_SIZE;
 985
 986	if ((!params->key_len && !params->obj_hashfn) ||
 987	    (params->obj_hashfn && !params->obj_cmpfn))
 988		return -EINVAL;
 989
 990	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
 991		return -EINVAL;
 992
 993	memset(ht, 0, sizeof(*ht));
 994	mutex_init(&ht->mutex);
 995	spin_lock_init(&ht->lock);
 996	memcpy(&ht->p, params, sizeof(*params));
 997
 998	if (params->min_size)
 999		ht->p.min_size = roundup_pow_of_two(params->min_size);
1000
1001	/* Cap total entries at 2^31 to avoid nelems overflow. */
1002	ht->max_elems = 1u << 31;
1003
1004	if (params->max_size) {
1005		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1006		if (ht->p.max_size < ht->max_elems / 2)
1007			ht->max_elems = ht->p.max_size * 2;
1008	}
1009
1010	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1011
1012	if (params->nelem_hint)
1013		size = rounded_hashtable_size(&ht->p);
1014
1015	if (params->locks_mul)
1016		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1017	else
1018		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1019
1020	ht->key_len = ht->p.key_len;
1021	if (!params->hashfn) {
1022		ht->p.hashfn = jhash;
1023
1024		if (!(ht->key_len & (sizeof(u32) - 1))) {
1025			ht->key_len /= sizeof(u32);
1026			ht->p.hashfn = rhashtable_jhash2;
1027		}
1028	}
1029
 
 
 
 
 
1030	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1031	if (tbl == NULL)
1032		return -ENOMEM;
 
 
1033
1034	atomic_set(&ht->nelems, 0);
1035
1036	RCU_INIT_POINTER(ht->tbl, tbl);
1037
1038	INIT_WORK(&ht->run_work, rht_deferred_worker);
1039
1040	return 0;
1041}
1042EXPORT_SYMBOL_GPL(rhashtable_init);
1043
1044/**
1045 * rhltable_init - initialize a new hash list table
1046 * @hlt:	hash list table to be initialized
1047 * @params:	configuration parameters
1048 *
1049 * Initializes a new hash list table.
1050 *
1051 * See documentation for rhashtable_init.
1052 */
1053int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1054{
1055	int err;
1056
1057	/* No rhlist NULLs marking for now. */
1058	if (params->nulls_base)
1059		return -EINVAL;
1060
1061	err = rhashtable_init(&hlt->ht, params);
1062	hlt->ht.rhlist = true;
1063	return err;
1064}
1065EXPORT_SYMBOL_GPL(rhltable_init);
1066
1067static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1068				void (*free_fn)(void *ptr, void *arg),
1069				void *arg)
1070{
1071	struct rhlist_head *list;
1072
1073	if (!ht->rhlist) {
1074		free_fn(rht_obj(ht, obj), arg);
1075		return;
1076	}
1077
1078	list = container_of(obj, struct rhlist_head, rhead);
1079	do {
1080		obj = &list->rhead;
1081		list = rht_dereference(list->next, ht);
1082		free_fn(rht_obj(ht, obj), arg);
1083	} while (list);
1084}
1085
1086/**
1087 * rhashtable_free_and_destroy - free elements and destroy hash table
1088 * @ht:		the hash table to destroy
1089 * @free_fn:	callback to release resources of element
1090 * @arg:	pointer passed to free_fn
1091 *
1092 * Stops an eventual async resize. If defined, invokes free_fn for each
1093 * element to releasal resources. Please note that RCU protected
1094 * readers may still be accessing the elements. Releasing of resources
1095 * must occur in a compatible manner. Then frees the bucket array.
1096 *
1097 * This function will eventually sleep to wait for an async resize
1098 * to complete. The caller is responsible that no further write operations
1099 * occurs in parallel.
1100 */
1101void rhashtable_free_and_destroy(struct rhashtable *ht,
1102				 void (*free_fn)(void *ptr, void *arg),
1103				 void *arg)
1104{
1105	struct bucket_table *tbl;
1106	unsigned int i;
1107
1108	cancel_work_sync(&ht->run_work);
1109
1110	mutex_lock(&ht->mutex);
1111	tbl = rht_dereference(ht->tbl, ht);
 
1112	if (free_fn) {
1113		for (i = 0; i < tbl->size; i++) {
1114			struct rhash_head *pos, *next;
1115
1116			cond_resched();
1117			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1118			     next = !rht_is_a_nulls(pos) ?
1119					rht_dereference(pos->next, ht) : NULL;
1120			     !rht_is_a_nulls(pos);
1121			     pos = next,
1122			     next = !rht_is_a_nulls(pos) ?
1123					rht_dereference(pos->next, ht) : NULL)
1124				rhashtable_free_one(ht, pos, free_fn, arg);
1125		}
1126	}
1127
 
1128	bucket_table_free(tbl);
 
 
 
 
1129	mutex_unlock(&ht->mutex);
1130}
1131EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1132
1133void rhashtable_destroy(struct rhashtable *ht)
1134{
1135	return rhashtable_free_and_destroy(ht, NULL, NULL);
1136}
1137EXPORT_SYMBOL_GPL(rhashtable_destroy);
1138
1139struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1140					    unsigned int hash)
1141{
1142	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1143	static struct rhash_head __rcu *rhnull =
1144		(struct rhash_head __rcu *)NULLS_MARKER(0);
1145	unsigned int index = hash & ((1 << tbl->nest) - 1);
1146	unsigned int size = tbl->size >> tbl->nest;
1147	unsigned int subhash = hash;
1148	union nested_table *ntbl;
1149
1150	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1151	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1152	subhash >>= tbl->nest;
1153
1154	while (ntbl && size > (1 << shift)) {
1155		index = subhash & ((1 << shift) - 1);
1156		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1157						  tbl, hash);
1158		size >>= shift;
1159		subhash >>= shift;
1160	}
1161
1162	if (!ntbl)
1163		return &rhnull;
1164
1165	return &ntbl[subhash].bucket;
1166
1167}
 
 
 
 
 
 
 
 
 
 
 
1168EXPORT_SYMBOL_GPL(rht_bucket_nested);
1169
1170struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1171						   struct bucket_table *tbl,
1172						   unsigned int hash)
1173{
1174	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1175	unsigned int index = hash & ((1 << tbl->nest) - 1);
1176	unsigned int size = tbl->size >> tbl->nest;
1177	union nested_table *ntbl;
1178	unsigned int shifted;
1179	unsigned int nhash;
1180
1181	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1182	hash >>= tbl->nest;
1183	nhash = index;
1184	shifted = tbl->nest;
1185	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1186				  size <= (1 << shift) ? shifted : 0, nhash);
1187
1188	while (ntbl && size > (1 << shift)) {
1189		index = hash & ((1 << shift) - 1);
1190		size >>= shift;
1191		hash >>= shift;
1192		nhash |= index << shifted;
1193		shifted += shift;
1194		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1195					  size <= (1 << shift) ? shifted : 0,
1196					  nhash);
1197	}
1198
1199	if (!ntbl)
1200		return NULL;
1201
1202	return &ntbl[hash].bucket;
1203
1204}
1205EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);