Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include <trace/events/f2fs.h>
21
22#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26static struct kmem_cache *nat_entry_set_slab;
27static struct kmem_cache *fsync_node_entry_slab;
28
29/*
30 * Check whether the given nid is within node id range.
31 */
32int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33{
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41}
42
43bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44{
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 if (!nm_i)
53 return true;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == EXTENT_CACHE) {
87 mem_size = (atomic_read(&sbi->total_ext_tree) *
88 sizeof(struct extent_tree) +
89 atomic_read(&sbi->total_ext_node) *
90 sizeof(struct extent_node)) >> PAGE_SHIFT;
91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 } else if (type == INMEM_PAGES) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 res = mem_size < (val.totalram / 5);
96 } else if (type == DISCARD_CACHE) {
97 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 } else if (type == COMPRESS_PAGE) {
101#ifdef CONFIG_F2FS_FS_COMPRESSION
102 unsigned long free_ram = val.freeram;
103
104 /*
105 * free memory is lower than watermark or cached page count
106 * exceed threshold, deny caching compress page.
107 */
108 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
109 (COMPRESS_MAPPING(sbi)->nrpages <
110 free_ram * sbi->compress_percent / 100);
111#else
112 res = false;
113#endif
114 } else {
115 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
116 return true;
117 }
118 return res;
119}
120
121static void clear_node_page_dirty(struct page *page)
122{
123 if (PageDirty(page)) {
124 f2fs_clear_page_cache_dirty_tag(page);
125 clear_page_dirty_for_io(page);
126 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
127 }
128 ClearPageUptodate(page);
129}
130
131static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
132{
133 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
134}
135
136static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
137{
138 struct page *src_page;
139 struct page *dst_page;
140 pgoff_t dst_off;
141 void *src_addr;
142 void *dst_addr;
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
146
147 /* get current nat block page with lock */
148 src_page = get_current_nat_page(sbi, nid);
149 if (IS_ERR(src_page))
150 return src_page;
151 dst_page = f2fs_grab_meta_page(sbi, dst_off);
152 f2fs_bug_on(sbi, PageDirty(src_page));
153
154 src_addr = page_address(src_page);
155 dst_addr = page_address(dst_page);
156 memcpy(dst_addr, src_addr, PAGE_SIZE);
157 set_page_dirty(dst_page);
158 f2fs_put_page(src_page, 1);
159
160 set_to_next_nat(nm_i, nid);
161
162 return dst_page;
163}
164
165static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
166{
167 struct nat_entry *new;
168
169 if (no_fail)
170 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
171 else
172 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178}
179
180static void __free_nat_entry(struct nat_entry *e)
181{
182 kmem_cache_free(nat_entry_slab, e);
183}
184
185/* must be locked by nat_tree_lock */
186static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188{
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204}
205
206static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207{
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221}
222
223static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225{
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227}
228
229static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230{
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235}
236
237static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239{
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
246
247 INIT_LIST_HEAD(&head->entry_list);
248 INIT_LIST_HEAD(&head->set_list);
249 head->set = set;
250 head->entry_cnt = 0;
251 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
252 }
253 return head;
254}
255
256static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
257 struct nat_entry *ne)
258{
259 struct nat_entry_set *head;
260 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
261
262 if (!new_ne)
263 head = __grab_nat_entry_set(nm_i, ne);
264
265 /*
266 * update entry_cnt in below condition:
267 * 1. update NEW_ADDR to valid block address;
268 * 2. update old block address to new one;
269 */
270 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
271 !get_nat_flag(ne, IS_DIRTY)))
272 head->entry_cnt++;
273
274 set_nat_flag(ne, IS_PREALLOC, new_ne);
275
276 if (get_nat_flag(ne, IS_DIRTY))
277 goto refresh_list;
278
279 nm_i->nat_cnt[DIRTY_NAT]++;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
281 set_nat_flag(ne, IS_DIRTY, true);
282refresh_list:
283 spin_lock(&nm_i->nat_list_lock);
284 if (new_ne)
285 list_del_init(&ne->list);
286 else
287 list_move_tail(&ne->list, &head->entry_list);
288 spin_unlock(&nm_i->nat_list_lock);
289}
290
291static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
292 struct nat_entry_set *set, struct nat_entry *ne)
293{
294 spin_lock(&nm_i->nat_list_lock);
295 list_move_tail(&ne->list, &nm_i->nat_entries);
296 spin_unlock(&nm_i->nat_list_lock);
297
298 set_nat_flag(ne, IS_DIRTY, false);
299 set->entry_cnt--;
300 nm_i->nat_cnt[DIRTY_NAT]--;
301 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
302}
303
304static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
305 nid_t start, unsigned int nr, struct nat_entry_set **ep)
306{
307 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308 start, nr);
309}
310
311bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
312{
313 return NODE_MAPPING(sbi) == page->mapping &&
314 IS_DNODE(page) && is_cold_node(page);
315}
316
317void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
318{
319 spin_lock_init(&sbi->fsync_node_lock);
320 INIT_LIST_HEAD(&sbi->fsync_node_list);
321 sbi->fsync_seg_id = 0;
322 sbi->fsync_node_num = 0;
323}
324
325static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
326 struct page *page)
327{
328 struct fsync_node_entry *fn;
329 unsigned long flags;
330 unsigned int seq_id;
331
332 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
333
334 get_page(page);
335 fn->page = page;
336 INIT_LIST_HEAD(&fn->list);
337
338 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
339 list_add_tail(&fn->list, &sbi->fsync_node_list);
340 fn->seq_id = sbi->fsync_seg_id++;
341 seq_id = fn->seq_id;
342 sbi->fsync_node_num++;
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344
345 return seq_id;
346}
347
348void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
349{
350 struct fsync_node_entry *fn;
351 unsigned long flags;
352
353 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
354 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
355 if (fn->page == page) {
356 list_del(&fn->list);
357 sbi->fsync_node_num--;
358 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
359 kmem_cache_free(fsync_node_entry_slab, fn);
360 put_page(page);
361 return;
362 }
363 }
364 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
365 f2fs_bug_on(sbi, 1);
366}
367
368void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
369{
370 unsigned long flags;
371
372 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
373 sbi->fsync_seg_id = 0;
374 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
375}
376
377int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
378{
379 struct f2fs_nm_info *nm_i = NM_I(sbi);
380 struct nat_entry *e;
381 bool need = false;
382
383 down_read(&nm_i->nat_tree_lock);
384 e = __lookup_nat_cache(nm_i, nid);
385 if (e) {
386 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
387 !get_nat_flag(e, HAS_FSYNCED_INODE))
388 need = true;
389 }
390 up_read(&nm_i->nat_tree_lock);
391 return need;
392}
393
394bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
395{
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 struct nat_entry *e;
398 bool is_cp = true;
399
400 down_read(&nm_i->nat_tree_lock);
401 e = __lookup_nat_cache(nm_i, nid);
402 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
403 is_cp = false;
404 up_read(&nm_i->nat_tree_lock);
405 return is_cp;
406}
407
408bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
409{
410 struct f2fs_nm_info *nm_i = NM_I(sbi);
411 struct nat_entry *e;
412 bool need_update = true;
413
414 down_read(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, ino);
416 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
417 (get_nat_flag(e, IS_CHECKPOINTED) ||
418 get_nat_flag(e, HAS_FSYNCED_INODE)))
419 need_update = false;
420 up_read(&nm_i->nat_tree_lock);
421 return need_update;
422}
423
424/* must be locked by nat_tree_lock */
425static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
426 struct f2fs_nat_entry *ne)
427{
428 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *new, *e;
430
431 new = __alloc_nat_entry(nid, false);
432 if (!new)
433 return;
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, nid);
437 if (!e)
438 e = __init_nat_entry(nm_i, new, ne, false);
439 else
440 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
441 nat_get_blkaddr(e) !=
442 le32_to_cpu(ne->block_addr) ||
443 nat_get_version(e) != ne->version);
444 up_write(&nm_i->nat_tree_lock);
445 if (e != new)
446 __free_nat_entry(new);
447}
448
449static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
450 block_t new_blkaddr, bool fsync_done)
451{
452 struct f2fs_nm_info *nm_i = NM_I(sbi);
453 struct nat_entry *e;
454 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
455
456 down_write(&nm_i->nat_tree_lock);
457 e = __lookup_nat_cache(nm_i, ni->nid);
458 if (!e) {
459 e = __init_nat_entry(nm_i, new, NULL, true);
460 copy_node_info(&e->ni, ni);
461 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
462 } else if (new_blkaddr == NEW_ADDR) {
463 /*
464 * when nid is reallocated,
465 * previous nat entry can be remained in nat cache.
466 * So, reinitialize it with new information.
467 */
468 copy_node_info(&e->ni, ni);
469 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
470 }
471 /* let's free early to reduce memory consumption */
472 if (e != new)
473 __free_nat_entry(new);
474
475 /* sanity check */
476 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
477 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
478 new_blkaddr == NULL_ADDR);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
480 new_blkaddr == NEW_ADDR);
481 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
482 new_blkaddr == NEW_ADDR);
483
484 /* increment version no as node is removed */
485 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
486 unsigned char version = nat_get_version(e);
487
488 nat_set_version(e, inc_node_version(version));
489 }
490
491 /* change address */
492 nat_set_blkaddr(e, new_blkaddr);
493 if (!__is_valid_data_blkaddr(new_blkaddr))
494 set_nat_flag(e, IS_CHECKPOINTED, false);
495 __set_nat_cache_dirty(nm_i, e);
496
497 /* update fsync_mark if its inode nat entry is still alive */
498 if (ni->nid != ni->ino)
499 e = __lookup_nat_cache(nm_i, ni->ino);
500 if (e) {
501 if (fsync_done && ni->nid == ni->ino)
502 set_nat_flag(e, HAS_FSYNCED_INODE, true);
503 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
504 }
505 up_write(&nm_i->nat_tree_lock);
506}
507
508int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
509{
510 struct f2fs_nm_info *nm_i = NM_I(sbi);
511 int nr = nr_shrink;
512
513 if (!down_write_trylock(&nm_i->nat_tree_lock))
514 return 0;
515
516 spin_lock(&nm_i->nat_list_lock);
517 while (nr_shrink) {
518 struct nat_entry *ne;
519
520 if (list_empty(&nm_i->nat_entries))
521 break;
522
523 ne = list_first_entry(&nm_i->nat_entries,
524 struct nat_entry, list);
525 list_del(&ne->list);
526 spin_unlock(&nm_i->nat_list_lock);
527
528 __del_from_nat_cache(nm_i, ne);
529 nr_shrink--;
530
531 spin_lock(&nm_i->nat_list_lock);
532 }
533 spin_unlock(&nm_i->nat_list_lock);
534
535 up_write(&nm_i->nat_tree_lock);
536 return nr - nr_shrink;
537}
538
539int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
540 struct node_info *ni)
541{
542 struct f2fs_nm_info *nm_i = NM_I(sbi);
543 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
544 struct f2fs_journal *journal = curseg->journal;
545 nid_t start_nid = START_NID(nid);
546 struct f2fs_nat_block *nat_blk;
547 struct page *page = NULL;
548 struct f2fs_nat_entry ne;
549 struct nat_entry *e;
550 pgoff_t index;
551 block_t blkaddr;
552 int i;
553
554 ni->nid = nid;
555
556 /* Check nat cache */
557 down_read(&nm_i->nat_tree_lock);
558 e = __lookup_nat_cache(nm_i, nid);
559 if (e) {
560 ni->ino = nat_get_ino(e);
561 ni->blk_addr = nat_get_blkaddr(e);
562 ni->version = nat_get_version(e);
563 up_read(&nm_i->nat_tree_lock);
564 return 0;
565 }
566
567 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
568
569 /* Check current segment summary */
570 down_read(&curseg->journal_rwsem);
571 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
572 if (i >= 0) {
573 ne = nat_in_journal(journal, i);
574 node_info_from_raw_nat(ni, &ne);
575 }
576 up_read(&curseg->journal_rwsem);
577 if (i >= 0) {
578 up_read(&nm_i->nat_tree_lock);
579 goto cache;
580 }
581
582 /* Fill node_info from nat page */
583 index = current_nat_addr(sbi, nid);
584 up_read(&nm_i->nat_tree_lock);
585
586 page = f2fs_get_meta_page(sbi, index);
587 if (IS_ERR(page))
588 return PTR_ERR(page);
589
590 nat_blk = (struct f2fs_nat_block *)page_address(page);
591 ne = nat_blk->entries[nid - start_nid];
592 node_info_from_raw_nat(ni, &ne);
593 f2fs_put_page(page, 1);
594cache:
595 blkaddr = le32_to_cpu(ne.block_addr);
596 if (__is_valid_data_blkaddr(blkaddr) &&
597 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
598 return -EFAULT;
599
600 /* cache nat entry */
601 cache_nat_entry(sbi, nid, &ne);
602 return 0;
603}
604
605/*
606 * readahead MAX_RA_NODE number of node pages.
607 */
608static void f2fs_ra_node_pages(struct page *parent, int start, int n)
609{
610 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
611 struct blk_plug plug;
612 int i, end;
613 nid_t nid;
614
615 blk_start_plug(&plug);
616
617 /* Then, try readahead for siblings of the desired node */
618 end = start + n;
619 end = min(end, NIDS_PER_BLOCK);
620 for (i = start; i < end; i++) {
621 nid = get_nid(parent, i, false);
622 f2fs_ra_node_page(sbi, nid);
623 }
624
625 blk_finish_plug(&plug);
626}
627
628pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
629{
630 const long direct_index = ADDRS_PER_INODE(dn->inode);
631 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
632 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
633 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
634 int cur_level = dn->cur_level;
635 int max_level = dn->max_level;
636 pgoff_t base = 0;
637
638 if (!dn->max_level)
639 return pgofs + 1;
640
641 while (max_level-- > cur_level)
642 skipped_unit *= NIDS_PER_BLOCK;
643
644 switch (dn->max_level) {
645 case 3:
646 base += 2 * indirect_blks;
647 fallthrough;
648 case 2:
649 base += 2 * direct_blks;
650 fallthrough;
651 case 1:
652 base += direct_index;
653 break;
654 default:
655 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
656 }
657
658 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
659}
660
661/*
662 * The maximum depth is four.
663 * Offset[0] will have raw inode offset.
664 */
665static int get_node_path(struct inode *inode, long block,
666 int offset[4], unsigned int noffset[4])
667{
668 const long direct_index = ADDRS_PER_INODE(inode);
669 const long direct_blks = ADDRS_PER_BLOCK(inode);
670 const long dptrs_per_blk = NIDS_PER_BLOCK;
671 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
672 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
673 int n = 0;
674 int level = 0;
675
676 noffset[0] = 0;
677
678 if (block < direct_index) {
679 offset[n] = block;
680 goto got;
681 }
682 block -= direct_index;
683 if (block < direct_blks) {
684 offset[n++] = NODE_DIR1_BLOCK;
685 noffset[n] = 1;
686 offset[n] = block;
687 level = 1;
688 goto got;
689 }
690 block -= direct_blks;
691 if (block < direct_blks) {
692 offset[n++] = NODE_DIR2_BLOCK;
693 noffset[n] = 2;
694 offset[n] = block;
695 level = 1;
696 goto got;
697 }
698 block -= direct_blks;
699 if (block < indirect_blks) {
700 offset[n++] = NODE_IND1_BLOCK;
701 noffset[n] = 3;
702 offset[n++] = block / direct_blks;
703 noffset[n] = 4 + offset[n - 1];
704 offset[n] = block % direct_blks;
705 level = 2;
706 goto got;
707 }
708 block -= indirect_blks;
709 if (block < indirect_blks) {
710 offset[n++] = NODE_IND2_BLOCK;
711 noffset[n] = 4 + dptrs_per_blk;
712 offset[n++] = block / direct_blks;
713 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
714 offset[n] = block % direct_blks;
715 level = 2;
716 goto got;
717 }
718 block -= indirect_blks;
719 if (block < dindirect_blks) {
720 offset[n++] = NODE_DIND_BLOCK;
721 noffset[n] = 5 + (dptrs_per_blk * 2);
722 offset[n++] = block / indirect_blks;
723 noffset[n] = 6 + (dptrs_per_blk * 2) +
724 offset[n - 1] * (dptrs_per_blk + 1);
725 offset[n++] = (block / direct_blks) % dptrs_per_blk;
726 noffset[n] = 7 + (dptrs_per_blk * 2) +
727 offset[n - 2] * (dptrs_per_blk + 1) +
728 offset[n - 1];
729 offset[n] = block % direct_blks;
730 level = 3;
731 goto got;
732 } else {
733 return -E2BIG;
734 }
735got:
736 return level;
737}
738
739/*
740 * Caller should call f2fs_put_dnode(dn).
741 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
742 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
743 */
744int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
745{
746 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
747 struct page *npage[4];
748 struct page *parent = NULL;
749 int offset[4];
750 unsigned int noffset[4];
751 nid_t nids[4];
752 int level, i = 0;
753 int err = 0;
754
755 level = get_node_path(dn->inode, index, offset, noffset);
756 if (level < 0)
757 return level;
758
759 nids[0] = dn->inode->i_ino;
760 npage[0] = dn->inode_page;
761
762 if (!npage[0]) {
763 npage[0] = f2fs_get_node_page(sbi, nids[0]);
764 if (IS_ERR(npage[0]))
765 return PTR_ERR(npage[0]);
766 }
767
768 /* if inline_data is set, should not report any block indices */
769 if (f2fs_has_inline_data(dn->inode) && index) {
770 err = -ENOENT;
771 f2fs_put_page(npage[0], 1);
772 goto release_out;
773 }
774
775 parent = npage[0];
776 if (level != 0)
777 nids[1] = get_nid(parent, offset[0], true);
778 dn->inode_page = npage[0];
779 dn->inode_page_locked = true;
780
781 /* get indirect or direct nodes */
782 for (i = 1; i <= level; i++) {
783 bool done = false;
784
785 if (!nids[i] && mode == ALLOC_NODE) {
786 /* alloc new node */
787 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
788 err = -ENOSPC;
789 goto release_pages;
790 }
791
792 dn->nid = nids[i];
793 npage[i] = f2fs_new_node_page(dn, noffset[i]);
794 if (IS_ERR(npage[i])) {
795 f2fs_alloc_nid_failed(sbi, nids[i]);
796 err = PTR_ERR(npage[i]);
797 goto release_pages;
798 }
799
800 set_nid(parent, offset[i - 1], nids[i], i == 1);
801 f2fs_alloc_nid_done(sbi, nids[i]);
802 done = true;
803 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
804 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
805 if (IS_ERR(npage[i])) {
806 err = PTR_ERR(npage[i]);
807 goto release_pages;
808 }
809 done = true;
810 }
811 if (i == 1) {
812 dn->inode_page_locked = false;
813 unlock_page(parent);
814 } else {
815 f2fs_put_page(parent, 1);
816 }
817
818 if (!done) {
819 npage[i] = f2fs_get_node_page(sbi, nids[i]);
820 if (IS_ERR(npage[i])) {
821 err = PTR_ERR(npage[i]);
822 f2fs_put_page(npage[0], 0);
823 goto release_out;
824 }
825 }
826 if (i < level) {
827 parent = npage[i];
828 nids[i + 1] = get_nid(parent, offset[i], false);
829 }
830 }
831 dn->nid = nids[level];
832 dn->ofs_in_node = offset[level];
833 dn->node_page = npage[level];
834 dn->data_blkaddr = f2fs_data_blkaddr(dn);
835 return 0;
836
837release_pages:
838 f2fs_put_page(parent, 1);
839 if (i > 1)
840 f2fs_put_page(npage[0], 0);
841release_out:
842 dn->inode_page = NULL;
843 dn->node_page = NULL;
844 if (err == -ENOENT) {
845 dn->cur_level = i;
846 dn->max_level = level;
847 dn->ofs_in_node = offset[level];
848 }
849 return err;
850}
851
852static int truncate_node(struct dnode_of_data *dn)
853{
854 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
855 struct node_info ni;
856 int err;
857 pgoff_t index;
858
859 err = f2fs_get_node_info(sbi, dn->nid, &ni);
860 if (err)
861 return err;
862
863 /* Deallocate node address */
864 f2fs_invalidate_blocks(sbi, ni.blk_addr);
865 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
866 set_node_addr(sbi, &ni, NULL_ADDR, false);
867
868 if (dn->nid == dn->inode->i_ino) {
869 f2fs_remove_orphan_inode(sbi, dn->nid);
870 dec_valid_inode_count(sbi);
871 f2fs_inode_synced(dn->inode);
872 }
873
874 clear_node_page_dirty(dn->node_page);
875 set_sbi_flag(sbi, SBI_IS_DIRTY);
876
877 index = dn->node_page->index;
878 f2fs_put_page(dn->node_page, 1);
879
880 invalidate_mapping_pages(NODE_MAPPING(sbi),
881 index, index);
882
883 dn->node_page = NULL;
884 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
885
886 return 0;
887}
888
889static int truncate_dnode(struct dnode_of_data *dn)
890{
891 struct page *page;
892 int err;
893
894 if (dn->nid == 0)
895 return 1;
896
897 /* get direct node */
898 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
899 if (PTR_ERR(page) == -ENOENT)
900 return 1;
901 else if (IS_ERR(page))
902 return PTR_ERR(page);
903
904 /* Make dnode_of_data for parameter */
905 dn->node_page = page;
906 dn->ofs_in_node = 0;
907 f2fs_truncate_data_blocks(dn);
908 err = truncate_node(dn);
909 if (err)
910 return err;
911
912 return 1;
913}
914
915static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
916 int ofs, int depth)
917{
918 struct dnode_of_data rdn = *dn;
919 struct page *page;
920 struct f2fs_node *rn;
921 nid_t child_nid;
922 unsigned int child_nofs;
923 int freed = 0;
924 int i, ret;
925
926 if (dn->nid == 0)
927 return NIDS_PER_BLOCK + 1;
928
929 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
930
931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 if (IS_ERR(page)) {
933 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
934 return PTR_ERR(page);
935 }
936
937 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
938
939 rn = F2FS_NODE(page);
940 if (depth < 3) {
941 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
942 child_nid = le32_to_cpu(rn->in.nid[i]);
943 if (child_nid == 0)
944 continue;
945 rdn.nid = child_nid;
946 ret = truncate_dnode(&rdn);
947 if (ret < 0)
948 goto out_err;
949 if (set_nid(page, i, 0, false))
950 dn->node_changed = true;
951 }
952 } else {
953 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
954 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
955 child_nid = le32_to_cpu(rn->in.nid[i]);
956 if (child_nid == 0) {
957 child_nofs += NIDS_PER_BLOCK + 1;
958 continue;
959 }
960 rdn.nid = child_nid;
961 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
962 if (ret == (NIDS_PER_BLOCK + 1)) {
963 if (set_nid(page, i, 0, false))
964 dn->node_changed = true;
965 child_nofs += ret;
966 } else if (ret < 0 && ret != -ENOENT) {
967 goto out_err;
968 }
969 }
970 freed = child_nofs;
971 }
972
973 if (!ofs) {
974 /* remove current indirect node */
975 dn->node_page = page;
976 ret = truncate_node(dn);
977 if (ret)
978 goto out_err;
979 freed++;
980 } else {
981 f2fs_put_page(page, 1);
982 }
983 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
984 return freed;
985
986out_err:
987 f2fs_put_page(page, 1);
988 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
989 return ret;
990}
991
992static int truncate_partial_nodes(struct dnode_of_data *dn,
993 struct f2fs_inode *ri, int *offset, int depth)
994{
995 struct page *pages[2];
996 nid_t nid[3];
997 nid_t child_nid;
998 int err = 0;
999 int i;
1000 int idx = depth - 2;
1001
1002 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1003 if (!nid[0])
1004 return 0;
1005
1006 /* get indirect nodes in the path */
1007 for (i = 0; i < idx + 1; i++) {
1008 /* reference count'll be increased */
1009 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1010 if (IS_ERR(pages[i])) {
1011 err = PTR_ERR(pages[i]);
1012 idx = i - 1;
1013 goto fail;
1014 }
1015 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1016 }
1017
1018 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1019
1020 /* free direct nodes linked to a partial indirect node */
1021 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1022 child_nid = get_nid(pages[idx], i, false);
1023 if (!child_nid)
1024 continue;
1025 dn->nid = child_nid;
1026 err = truncate_dnode(dn);
1027 if (err < 0)
1028 goto fail;
1029 if (set_nid(pages[idx], i, 0, false))
1030 dn->node_changed = true;
1031 }
1032
1033 if (offset[idx + 1] == 0) {
1034 dn->node_page = pages[idx];
1035 dn->nid = nid[idx];
1036 err = truncate_node(dn);
1037 if (err)
1038 goto fail;
1039 } else {
1040 f2fs_put_page(pages[idx], 1);
1041 }
1042 offset[idx]++;
1043 offset[idx + 1] = 0;
1044 idx--;
1045fail:
1046 for (i = idx; i >= 0; i--)
1047 f2fs_put_page(pages[i], 1);
1048
1049 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1050
1051 return err;
1052}
1053
1054/*
1055 * All the block addresses of data and nodes should be nullified.
1056 */
1057int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1058{
1059 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1060 int err = 0, cont = 1;
1061 int level, offset[4], noffset[4];
1062 unsigned int nofs = 0;
1063 struct f2fs_inode *ri;
1064 struct dnode_of_data dn;
1065 struct page *page;
1066
1067 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1068
1069 level = get_node_path(inode, from, offset, noffset);
1070 if (level < 0) {
1071 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1072 return level;
1073 }
1074
1075 page = f2fs_get_node_page(sbi, inode->i_ino);
1076 if (IS_ERR(page)) {
1077 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1078 return PTR_ERR(page);
1079 }
1080
1081 set_new_dnode(&dn, inode, page, NULL, 0);
1082 unlock_page(page);
1083
1084 ri = F2FS_INODE(page);
1085 switch (level) {
1086 case 0:
1087 case 1:
1088 nofs = noffset[1];
1089 break;
1090 case 2:
1091 nofs = noffset[1];
1092 if (!offset[level - 1])
1093 goto skip_partial;
1094 err = truncate_partial_nodes(&dn, ri, offset, level);
1095 if (err < 0 && err != -ENOENT)
1096 goto fail;
1097 nofs += 1 + NIDS_PER_BLOCK;
1098 break;
1099 case 3:
1100 nofs = 5 + 2 * NIDS_PER_BLOCK;
1101 if (!offset[level - 1])
1102 goto skip_partial;
1103 err = truncate_partial_nodes(&dn, ri, offset, level);
1104 if (err < 0 && err != -ENOENT)
1105 goto fail;
1106 break;
1107 default:
1108 BUG();
1109 }
1110
1111skip_partial:
1112 while (cont) {
1113 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1114 switch (offset[0]) {
1115 case NODE_DIR1_BLOCK:
1116 case NODE_DIR2_BLOCK:
1117 err = truncate_dnode(&dn);
1118 break;
1119
1120 case NODE_IND1_BLOCK:
1121 case NODE_IND2_BLOCK:
1122 err = truncate_nodes(&dn, nofs, offset[1], 2);
1123 break;
1124
1125 case NODE_DIND_BLOCK:
1126 err = truncate_nodes(&dn, nofs, offset[1], 3);
1127 cont = 0;
1128 break;
1129
1130 default:
1131 BUG();
1132 }
1133 if (err < 0 && err != -ENOENT)
1134 goto fail;
1135 if (offset[1] == 0 &&
1136 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1137 lock_page(page);
1138 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1139 f2fs_wait_on_page_writeback(page, NODE, true, true);
1140 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1141 set_page_dirty(page);
1142 unlock_page(page);
1143 }
1144 offset[1] = 0;
1145 offset[0]++;
1146 nofs += err;
1147 }
1148fail:
1149 f2fs_put_page(page, 0);
1150 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1151 return err > 0 ? 0 : err;
1152}
1153
1154/* caller must lock inode page */
1155int f2fs_truncate_xattr_node(struct inode *inode)
1156{
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1159 struct dnode_of_data dn;
1160 struct page *npage;
1161 int err;
1162
1163 if (!nid)
1164 return 0;
1165
1166 npage = f2fs_get_node_page(sbi, nid);
1167 if (IS_ERR(npage))
1168 return PTR_ERR(npage);
1169
1170 set_new_dnode(&dn, inode, NULL, npage, nid);
1171 err = truncate_node(&dn);
1172 if (err) {
1173 f2fs_put_page(npage, 1);
1174 return err;
1175 }
1176
1177 f2fs_i_xnid_write(inode, 0);
1178
1179 return 0;
1180}
1181
1182/*
1183 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1184 * f2fs_unlock_op().
1185 */
1186int f2fs_remove_inode_page(struct inode *inode)
1187{
1188 struct dnode_of_data dn;
1189 int err;
1190
1191 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1192 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1193 if (err)
1194 return err;
1195
1196 err = f2fs_truncate_xattr_node(inode);
1197 if (err) {
1198 f2fs_put_dnode(&dn);
1199 return err;
1200 }
1201
1202 /* remove potential inline_data blocks */
1203 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1204 S_ISLNK(inode->i_mode))
1205 f2fs_truncate_data_blocks_range(&dn, 1);
1206
1207 /* 0 is possible, after f2fs_new_inode() has failed */
1208 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1209 f2fs_put_dnode(&dn);
1210 return -EIO;
1211 }
1212
1213 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1214 f2fs_warn(F2FS_I_SB(inode),
1215 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1216 inode->i_ino, (unsigned long long)inode->i_blocks);
1217 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1218 }
1219
1220 /* will put inode & node pages */
1221 err = truncate_node(&dn);
1222 if (err) {
1223 f2fs_put_dnode(&dn);
1224 return err;
1225 }
1226 return 0;
1227}
1228
1229struct page *f2fs_new_inode_page(struct inode *inode)
1230{
1231 struct dnode_of_data dn;
1232
1233 /* allocate inode page for new inode */
1234 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1235
1236 /* caller should f2fs_put_page(page, 1); */
1237 return f2fs_new_node_page(&dn, 0);
1238}
1239
1240struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1241{
1242 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1243 struct node_info new_ni;
1244 struct page *page;
1245 int err;
1246
1247 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1248 return ERR_PTR(-EPERM);
1249
1250 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1251 if (!page)
1252 return ERR_PTR(-ENOMEM);
1253
1254 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1255 goto fail;
1256
1257#ifdef CONFIG_F2FS_CHECK_FS
1258 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1259 if (err) {
1260 dec_valid_node_count(sbi, dn->inode, !ofs);
1261 goto fail;
1262 }
1263 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1264#endif
1265 new_ni.nid = dn->nid;
1266 new_ni.ino = dn->inode->i_ino;
1267 new_ni.blk_addr = NULL_ADDR;
1268 new_ni.flag = 0;
1269 new_ni.version = 0;
1270 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1271
1272 f2fs_wait_on_page_writeback(page, NODE, true, true);
1273 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1274 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1275 if (!PageUptodate(page))
1276 SetPageUptodate(page);
1277 if (set_page_dirty(page))
1278 dn->node_changed = true;
1279
1280 if (f2fs_has_xattr_block(ofs))
1281 f2fs_i_xnid_write(dn->inode, dn->nid);
1282
1283 if (ofs == 0)
1284 inc_valid_inode_count(sbi);
1285 return page;
1286
1287fail:
1288 clear_node_page_dirty(page);
1289 f2fs_put_page(page, 1);
1290 return ERR_PTR(err);
1291}
1292
1293/*
1294 * Caller should do after getting the following values.
1295 * 0: f2fs_put_page(page, 0)
1296 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1297 */
1298static int read_node_page(struct page *page, int op_flags)
1299{
1300 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1301 struct node_info ni;
1302 struct f2fs_io_info fio = {
1303 .sbi = sbi,
1304 .type = NODE,
1305 .op = REQ_OP_READ,
1306 .op_flags = op_flags,
1307 .page = page,
1308 .encrypted_page = NULL,
1309 };
1310 int err;
1311
1312 if (PageUptodate(page)) {
1313 if (!f2fs_inode_chksum_verify(sbi, page)) {
1314 ClearPageUptodate(page);
1315 return -EFSBADCRC;
1316 }
1317 return LOCKED_PAGE;
1318 }
1319
1320 err = f2fs_get_node_info(sbi, page->index, &ni);
1321 if (err)
1322 return err;
1323
1324 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1325 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1326 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1327 ClearPageUptodate(page);
1328 return -ENOENT;
1329 }
1330
1331 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1332
1333 err = f2fs_submit_page_bio(&fio);
1334
1335 if (!err)
1336 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1337
1338 return err;
1339}
1340
1341/*
1342 * Readahead a node page
1343 */
1344void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1345{
1346 struct page *apage;
1347 int err;
1348
1349 if (!nid)
1350 return;
1351 if (f2fs_check_nid_range(sbi, nid))
1352 return;
1353
1354 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1355 if (apage)
1356 return;
1357
1358 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1359 if (!apage)
1360 return;
1361
1362 err = read_node_page(apage, REQ_RAHEAD);
1363 f2fs_put_page(apage, err ? 1 : 0);
1364}
1365
1366static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1367 struct page *parent, int start)
1368{
1369 struct page *page;
1370 int err;
1371
1372 if (!nid)
1373 return ERR_PTR(-ENOENT);
1374 if (f2fs_check_nid_range(sbi, nid))
1375 return ERR_PTR(-EINVAL);
1376repeat:
1377 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1378 if (!page)
1379 return ERR_PTR(-ENOMEM);
1380
1381 err = read_node_page(page, 0);
1382 if (err < 0) {
1383 f2fs_put_page(page, 1);
1384 return ERR_PTR(err);
1385 } else if (err == LOCKED_PAGE) {
1386 err = 0;
1387 goto page_hit;
1388 }
1389
1390 if (parent)
1391 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1392
1393 lock_page(page);
1394
1395 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1396 f2fs_put_page(page, 1);
1397 goto repeat;
1398 }
1399
1400 if (unlikely(!PageUptodate(page))) {
1401 err = -EIO;
1402 goto out_err;
1403 }
1404
1405 if (!f2fs_inode_chksum_verify(sbi, page)) {
1406 err = -EFSBADCRC;
1407 goto out_err;
1408 }
1409page_hit:
1410 if (unlikely(nid != nid_of_node(page))) {
1411 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1412 nid, nid_of_node(page), ino_of_node(page),
1413 ofs_of_node(page), cpver_of_node(page),
1414 next_blkaddr_of_node(page));
1415 err = -EINVAL;
1416out_err:
1417 ClearPageUptodate(page);
1418 f2fs_put_page(page, 1);
1419 return ERR_PTR(err);
1420 }
1421 return page;
1422}
1423
1424struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1425{
1426 return __get_node_page(sbi, nid, NULL, 0);
1427}
1428
1429struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1430{
1431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1432 nid_t nid = get_nid(parent, start, false);
1433
1434 return __get_node_page(sbi, nid, parent, start);
1435}
1436
1437static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1438{
1439 struct inode *inode;
1440 struct page *page;
1441 int ret;
1442
1443 /* should flush inline_data before evict_inode */
1444 inode = ilookup(sbi->sb, ino);
1445 if (!inode)
1446 return;
1447
1448 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1449 FGP_LOCK|FGP_NOWAIT, 0);
1450 if (!page)
1451 goto iput_out;
1452
1453 if (!PageUptodate(page))
1454 goto page_out;
1455
1456 if (!PageDirty(page))
1457 goto page_out;
1458
1459 if (!clear_page_dirty_for_io(page))
1460 goto page_out;
1461
1462 ret = f2fs_write_inline_data(inode, page);
1463 inode_dec_dirty_pages(inode);
1464 f2fs_remove_dirty_inode(inode);
1465 if (ret)
1466 set_page_dirty(page);
1467page_out:
1468 f2fs_put_page(page, 1);
1469iput_out:
1470 iput(inode);
1471}
1472
1473static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1474{
1475 pgoff_t index;
1476 struct pagevec pvec;
1477 struct page *last_page = NULL;
1478 int nr_pages;
1479
1480 pagevec_init(&pvec);
1481 index = 0;
1482
1483 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1484 PAGECACHE_TAG_DIRTY))) {
1485 int i;
1486
1487 for (i = 0; i < nr_pages; i++) {
1488 struct page *page = pvec.pages[i];
1489
1490 if (unlikely(f2fs_cp_error(sbi))) {
1491 f2fs_put_page(last_page, 0);
1492 pagevec_release(&pvec);
1493 return ERR_PTR(-EIO);
1494 }
1495
1496 if (!IS_DNODE(page) || !is_cold_node(page))
1497 continue;
1498 if (ino_of_node(page) != ino)
1499 continue;
1500
1501 lock_page(page);
1502
1503 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1504continue_unlock:
1505 unlock_page(page);
1506 continue;
1507 }
1508 if (ino_of_node(page) != ino)
1509 goto continue_unlock;
1510
1511 if (!PageDirty(page)) {
1512 /* someone wrote it for us */
1513 goto continue_unlock;
1514 }
1515
1516 if (last_page)
1517 f2fs_put_page(last_page, 0);
1518
1519 get_page(page);
1520 last_page = page;
1521 unlock_page(page);
1522 }
1523 pagevec_release(&pvec);
1524 cond_resched();
1525 }
1526 return last_page;
1527}
1528
1529static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1530 struct writeback_control *wbc, bool do_balance,
1531 enum iostat_type io_type, unsigned int *seq_id)
1532{
1533 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1534 nid_t nid;
1535 struct node_info ni;
1536 struct f2fs_io_info fio = {
1537 .sbi = sbi,
1538 .ino = ino_of_node(page),
1539 .type = NODE,
1540 .op = REQ_OP_WRITE,
1541 .op_flags = wbc_to_write_flags(wbc),
1542 .page = page,
1543 .encrypted_page = NULL,
1544 .submitted = false,
1545 .io_type = io_type,
1546 .io_wbc = wbc,
1547 };
1548 unsigned int seq;
1549
1550 trace_f2fs_writepage(page, NODE);
1551
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 ClearPageUptodate(page);
1554 dec_page_count(sbi, F2FS_DIRTY_NODES);
1555 unlock_page(page);
1556 return 0;
1557 }
1558
1559 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1560 goto redirty_out;
1561
1562 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1563 wbc->sync_mode == WB_SYNC_NONE &&
1564 IS_DNODE(page) && is_cold_node(page))
1565 goto redirty_out;
1566
1567 /* get old block addr of this node page */
1568 nid = nid_of_node(page);
1569 f2fs_bug_on(sbi, page->index != nid);
1570
1571 if (f2fs_get_node_info(sbi, nid, &ni))
1572 goto redirty_out;
1573
1574 if (wbc->for_reclaim) {
1575 if (!down_read_trylock(&sbi->node_write))
1576 goto redirty_out;
1577 } else {
1578 down_read(&sbi->node_write);
1579 }
1580
1581 /* This page is already truncated */
1582 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1583 ClearPageUptodate(page);
1584 dec_page_count(sbi, F2FS_DIRTY_NODES);
1585 up_read(&sbi->node_write);
1586 unlock_page(page);
1587 return 0;
1588 }
1589
1590 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1591 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1592 DATA_GENERIC_ENHANCE)) {
1593 up_read(&sbi->node_write);
1594 goto redirty_out;
1595 }
1596
1597 if (atomic && !test_opt(sbi, NOBARRIER))
1598 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1599
1600 /* should add to global list before clearing PAGECACHE status */
1601 if (f2fs_in_warm_node_list(sbi, page)) {
1602 seq = f2fs_add_fsync_node_entry(sbi, page);
1603 if (seq_id)
1604 *seq_id = seq;
1605 }
1606
1607 set_page_writeback(page);
1608 ClearPageError(page);
1609
1610 fio.old_blkaddr = ni.blk_addr;
1611 f2fs_do_write_node_page(nid, &fio);
1612 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1613 dec_page_count(sbi, F2FS_DIRTY_NODES);
1614 up_read(&sbi->node_write);
1615
1616 if (wbc->for_reclaim) {
1617 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1618 submitted = NULL;
1619 }
1620
1621 unlock_page(page);
1622
1623 if (unlikely(f2fs_cp_error(sbi))) {
1624 f2fs_submit_merged_write(sbi, NODE);
1625 submitted = NULL;
1626 }
1627 if (submitted)
1628 *submitted = fio.submitted;
1629
1630 if (do_balance)
1631 f2fs_balance_fs(sbi, false);
1632 return 0;
1633
1634redirty_out:
1635 redirty_page_for_writepage(wbc, page);
1636 return AOP_WRITEPAGE_ACTIVATE;
1637}
1638
1639int f2fs_move_node_page(struct page *node_page, int gc_type)
1640{
1641 int err = 0;
1642
1643 if (gc_type == FG_GC) {
1644 struct writeback_control wbc = {
1645 .sync_mode = WB_SYNC_ALL,
1646 .nr_to_write = 1,
1647 .for_reclaim = 0,
1648 };
1649
1650 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1651
1652 set_page_dirty(node_page);
1653
1654 if (!clear_page_dirty_for_io(node_page)) {
1655 err = -EAGAIN;
1656 goto out_page;
1657 }
1658
1659 if (__write_node_page(node_page, false, NULL,
1660 &wbc, false, FS_GC_NODE_IO, NULL)) {
1661 err = -EAGAIN;
1662 unlock_page(node_page);
1663 }
1664 goto release_page;
1665 } else {
1666 /* set page dirty and write it */
1667 if (!PageWriteback(node_page))
1668 set_page_dirty(node_page);
1669 }
1670out_page:
1671 unlock_page(node_page);
1672release_page:
1673 f2fs_put_page(node_page, 0);
1674 return err;
1675}
1676
1677static int f2fs_write_node_page(struct page *page,
1678 struct writeback_control *wbc)
1679{
1680 return __write_node_page(page, false, NULL, wbc, false,
1681 FS_NODE_IO, NULL);
1682}
1683
1684int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1685 struct writeback_control *wbc, bool atomic,
1686 unsigned int *seq_id)
1687{
1688 pgoff_t index;
1689 struct pagevec pvec;
1690 int ret = 0;
1691 struct page *last_page = NULL;
1692 bool marked = false;
1693 nid_t ino = inode->i_ino;
1694 int nr_pages;
1695 int nwritten = 0;
1696
1697 if (atomic) {
1698 last_page = last_fsync_dnode(sbi, ino);
1699 if (IS_ERR_OR_NULL(last_page))
1700 return PTR_ERR_OR_ZERO(last_page);
1701 }
1702retry:
1703 pagevec_init(&pvec);
1704 index = 0;
1705
1706 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1707 PAGECACHE_TAG_DIRTY))) {
1708 int i;
1709
1710 for (i = 0; i < nr_pages; i++) {
1711 struct page *page = pvec.pages[i];
1712 bool submitted = false;
1713
1714 if (unlikely(f2fs_cp_error(sbi))) {
1715 f2fs_put_page(last_page, 0);
1716 pagevec_release(&pvec);
1717 ret = -EIO;
1718 goto out;
1719 }
1720
1721 if (!IS_DNODE(page) || !is_cold_node(page))
1722 continue;
1723 if (ino_of_node(page) != ino)
1724 continue;
1725
1726 lock_page(page);
1727
1728 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1729continue_unlock:
1730 unlock_page(page);
1731 continue;
1732 }
1733 if (ino_of_node(page) != ino)
1734 goto continue_unlock;
1735
1736 if (!PageDirty(page) && page != last_page) {
1737 /* someone wrote it for us */
1738 goto continue_unlock;
1739 }
1740
1741 f2fs_wait_on_page_writeback(page, NODE, true, true);
1742
1743 set_fsync_mark(page, 0);
1744 set_dentry_mark(page, 0);
1745
1746 if (!atomic || page == last_page) {
1747 set_fsync_mark(page, 1);
1748 if (IS_INODE(page)) {
1749 if (is_inode_flag_set(inode,
1750 FI_DIRTY_INODE))
1751 f2fs_update_inode(inode, page);
1752 set_dentry_mark(page,
1753 f2fs_need_dentry_mark(sbi, ino));
1754 }
1755 /* may be written by other thread */
1756 if (!PageDirty(page))
1757 set_page_dirty(page);
1758 }
1759
1760 if (!clear_page_dirty_for_io(page))
1761 goto continue_unlock;
1762
1763 ret = __write_node_page(page, atomic &&
1764 page == last_page,
1765 &submitted, wbc, true,
1766 FS_NODE_IO, seq_id);
1767 if (ret) {
1768 unlock_page(page);
1769 f2fs_put_page(last_page, 0);
1770 break;
1771 } else if (submitted) {
1772 nwritten++;
1773 }
1774
1775 if (page == last_page) {
1776 f2fs_put_page(page, 0);
1777 marked = true;
1778 break;
1779 }
1780 }
1781 pagevec_release(&pvec);
1782 cond_resched();
1783
1784 if (ret || marked)
1785 break;
1786 }
1787 if (!ret && atomic && !marked) {
1788 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1789 ino, last_page->index);
1790 lock_page(last_page);
1791 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1792 set_page_dirty(last_page);
1793 unlock_page(last_page);
1794 goto retry;
1795 }
1796out:
1797 if (nwritten)
1798 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1799 return ret ? -EIO : 0;
1800}
1801
1802static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1803{
1804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1805 bool clean;
1806
1807 if (inode->i_ino != ino)
1808 return 0;
1809
1810 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1811 return 0;
1812
1813 spin_lock(&sbi->inode_lock[DIRTY_META]);
1814 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1815 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1816
1817 if (clean)
1818 return 0;
1819
1820 inode = igrab(inode);
1821 if (!inode)
1822 return 0;
1823 return 1;
1824}
1825
1826static bool flush_dirty_inode(struct page *page)
1827{
1828 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1829 struct inode *inode;
1830 nid_t ino = ino_of_node(page);
1831
1832 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1833 if (!inode)
1834 return false;
1835
1836 f2fs_update_inode(inode, page);
1837 unlock_page(page);
1838
1839 iput(inode);
1840 return true;
1841}
1842
1843void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1844{
1845 pgoff_t index = 0;
1846 struct pagevec pvec;
1847 int nr_pages;
1848
1849 pagevec_init(&pvec);
1850
1851 while ((nr_pages = pagevec_lookup_tag(&pvec,
1852 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1853 int i;
1854
1855 for (i = 0; i < nr_pages; i++) {
1856 struct page *page = pvec.pages[i];
1857
1858 if (!IS_DNODE(page))
1859 continue;
1860
1861 lock_page(page);
1862
1863 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1864continue_unlock:
1865 unlock_page(page);
1866 continue;
1867 }
1868
1869 if (!PageDirty(page)) {
1870 /* someone wrote it for us */
1871 goto continue_unlock;
1872 }
1873
1874 /* flush inline_data, if it's async context. */
1875 if (page_private_inline(page)) {
1876 clear_page_private_inline(page);
1877 unlock_page(page);
1878 flush_inline_data(sbi, ino_of_node(page));
1879 continue;
1880 }
1881 unlock_page(page);
1882 }
1883 pagevec_release(&pvec);
1884 cond_resched();
1885 }
1886}
1887
1888int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1889 struct writeback_control *wbc,
1890 bool do_balance, enum iostat_type io_type)
1891{
1892 pgoff_t index;
1893 struct pagevec pvec;
1894 int step = 0;
1895 int nwritten = 0;
1896 int ret = 0;
1897 int nr_pages, done = 0;
1898
1899 pagevec_init(&pvec);
1900
1901next_step:
1902 index = 0;
1903
1904 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1905 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1906 int i;
1907
1908 for (i = 0; i < nr_pages; i++) {
1909 struct page *page = pvec.pages[i];
1910 bool submitted = false;
1911 bool may_dirty = true;
1912
1913 /* give a priority to WB_SYNC threads */
1914 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1915 wbc->sync_mode == WB_SYNC_NONE) {
1916 done = 1;
1917 break;
1918 }
1919
1920 /*
1921 * flushing sequence with step:
1922 * 0. indirect nodes
1923 * 1. dentry dnodes
1924 * 2. file dnodes
1925 */
1926 if (step == 0 && IS_DNODE(page))
1927 continue;
1928 if (step == 1 && (!IS_DNODE(page) ||
1929 is_cold_node(page)))
1930 continue;
1931 if (step == 2 && (!IS_DNODE(page) ||
1932 !is_cold_node(page)))
1933 continue;
1934lock_node:
1935 if (wbc->sync_mode == WB_SYNC_ALL)
1936 lock_page(page);
1937 else if (!trylock_page(page))
1938 continue;
1939
1940 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1941continue_unlock:
1942 unlock_page(page);
1943 continue;
1944 }
1945
1946 if (!PageDirty(page)) {
1947 /* someone wrote it for us */
1948 goto continue_unlock;
1949 }
1950
1951 /* flush inline_data/inode, if it's async context. */
1952 if (!do_balance)
1953 goto write_node;
1954
1955 /* flush inline_data */
1956 if (page_private_inline(page)) {
1957 clear_page_private_inline(page);
1958 unlock_page(page);
1959 flush_inline_data(sbi, ino_of_node(page));
1960 goto lock_node;
1961 }
1962
1963 /* flush dirty inode */
1964 if (IS_INODE(page) && may_dirty) {
1965 may_dirty = false;
1966 if (flush_dirty_inode(page))
1967 goto lock_node;
1968 }
1969write_node:
1970 f2fs_wait_on_page_writeback(page, NODE, true, true);
1971
1972 if (!clear_page_dirty_for_io(page))
1973 goto continue_unlock;
1974
1975 set_fsync_mark(page, 0);
1976 set_dentry_mark(page, 0);
1977
1978 ret = __write_node_page(page, false, &submitted,
1979 wbc, do_balance, io_type, NULL);
1980 if (ret)
1981 unlock_page(page);
1982 else if (submitted)
1983 nwritten++;
1984
1985 if (--wbc->nr_to_write == 0)
1986 break;
1987 }
1988 pagevec_release(&pvec);
1989 cond_resched();
1990
1991 if (wbc->nr_to_write == 0) {
1992 step = 2;
1993 break;
1994 }
1995 }
1996
1997 if (step < 2) {
1998 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1999 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2000 goto out;
2001 step++;
2002 goto next_step;
2003 }
2004out:
2005 if (nwritten)
2006 f2fs_submit_merged_write(sbi, NODE);
2007
2008 if (unlikely(f2fs_cp_error(sbi)))
2009 return -EIO;
2010 return ret;
2011}
2012
2013int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2014 unsigned int seq_id)
2015{
2016 struct fsync_node_entry *fn;
2017 struct page *page;
2018 struct list_head *head = &sbi->fsync_node_list;
2019 unsigned long flags;
2020 unsigned int cur_seq_id = 0;
2021 int ret2, ret = 0;
2022
2023 while (seq_id && cur_seq_id < seq_id) {
2024 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2025 if (list_empty(head)) {
2026 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2027 break;
2028 }
2029 fn = list_first_entry(head, struct fsync_node_entry, list);
2030 if (fn->seq_id > seq_id) {
2031 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2032 break;
2033 }
2034 cur_seq_id = fn->seq_id;
2035 page = fn->page;
2036 get_page(page);
2037 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2038
2039 f2fs_wait_on_page_writeback(page, NODE, true, false);
2040 if (TestClearPageError(page))
2041 ret = -EIO;
2042
2043 put_page(page);
2044
2045 if (ret)
2046 break;
2047 }
2048
2049 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2050 if (!ret)
2051 ret = ret2;
2052
2053 return ret;
2054}
2055
2056static int f2fs_write_node_pages(struct address_space *mapping,
2057 struct writeback_control *wbc)
2058{
2059 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2060 struct blk_plug plug;
2061 long diff;
2062
2063 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2064 goto skip_write;
2065
2066 /* balancing f2fs's metadata in background */
2067 f2fs_balance_fs_bg(sbi, true);
2068
2069 /* collect a number of dirty node pages and write together */
2070 if (wbc->sync_mode != WB_SYNC_ALL &&
2071 get_pages(sbi, F2FS_DIRTY_NODES) <
2072 nr_pages_to_skip(sbi, NODE))
2073 goto skip_write;
2074
2075 if (wbc->sync_mode == WB_SYNC_ALL)
2076 atomic_inc(&sbi->wb_sync_req[NODE]);
2077 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2078 goto skip_write;
2079
2080 trace_f2fs_writepages(mapping->host, wbc, NODE);
2081
2082 diff = nr_pages_to_write(sbi, NODE, wbc);
2083 blk_start_plug(&plug);
2084 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2085 blk_finish_plug(&plug);
2086 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2087
2088 if (wbc->sync_mode == WB_SYNC_ALL)
2089 atomic_dec(&sbi->wb_sync_req[NODE]);
2090 return 0;
2091
2092skip_write:
2093 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2094 trace_f2fs_writepages(mapping->host, wbc, NODE);
2095 return 0;
2096}
2097
2098static int f2fs_set_node_page_dirty(struct page *page)
2099{
2100 trace_f2fs_set_page_dirty(page, NODE);
2101
2102 if (!PageUptodate(page))
2103 SetPageUptodate(page);
2104#ifdef CONFIG_F2FS_CHECK_FS
2105 if (IS_INODE(page))
2106 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2107#endif
2108 if (!PageDirty(page)) {
2109 __set_page_dirty_nobuffers(page);
2110 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2111 set_page_private_reference(page);
2112 return 1;
2113 }
2114 return 0;
2115}
2116
2117/*
2118 * Structure of the f2fs node operations
2119 */
2120const struct address_space_operations f2fs_node_aops = {
2121 .writepage = f2fs_write_node_page,
2122 .writepages = f2fs_write_node_pages,
2123 .set_page_dirty = f2fs_set_node_page_dirty,
2124 .invalidatepage = f2fs_invalidate_page,
2125 .releasepage = f2fs_release_page,
2126#ifdef CONFIG_MIGRATION
2127 .migratepage = f2fs_migrate_page,
2128#endif
2129};
2130
2131static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2132 nid_t n)
2133{
2134 return radix_tree_lookup(&nm_i->free_nid_root, n);
2135}
2136
2137static int __insert_free_nid(struct f2fs_sb_info *sbi,
2138 struct free_nid *i)
2139{
2140 struct f2fs_nm_info *nm_i = NM_I(sbi);
2141 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2142
2143 if (err)
2144 return err;
2145
2146 nm_i->nid_cnt[FREE_NID]++;
2147 list_add_tail(&i->list, &nm_i->free_nid_list);
2148 return 0;
2149}
2150
2151static void __remove_free_nid(struct f2fs_sb_info *sbi,
2152 struct free_nid *i, enum nid_state state)
2153{
2154 struct f2fs_nm_info *nm_i = NM_I(sbi);
2155
2156 f2fs_bug_on(sbi, state != i->state);
2157 nm_i->nid_cnt[state]--;
2158 if (state == FREE_NID)
2159 list_del(&i->list);
2160 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2161}
2162
2163static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2164 enum nid_state org_state, enum nid_state dst_state)
2165{
2166 struct f2fs_nm_info *nm_i = NM_I(sbi);
2167
2168 f2fs_bug_on(sbi, org_state != i->state);
2169 i->state = dst_state;
2170 nm_i->nid_cnt[org_state]--;
2171 nm_i->nid_cnt[dst_state]++;
2172
2173 switch (dst_state) {
2174 case PREALLOC_NID:
2175 list_del(&i->list);
2176 break;
2177 case FREE_NID:
2178 list_add_tail(&i->list, &nm_i->free_nid_list);
2179 break;
2180 default:
2181 BUG_ON(1);
2182 }
2183}
2184
2185static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2186 bool set, bool build)
2187{
2188 struct f2fs_nm_info *nm_i = NM_I(sbi);
2189 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2190 unsigned int nid_ofs = nid - START_NID(nid);
2191
2192 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2193 return;
2194
2195 if (set) {
2196 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2197 return;
2198 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2199 nm_i->free_nid_count[nat_ofs]++;
2200 } else {
2201 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2202 return;
2203 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2204 if (!build)
2205 nm_i->free_nid_count[nat_ofs]--;
2206 }
2207}
2208
2209/* return if the nid is recognized as free */
2210static bool add_free_nid(struct f2fs_sb_info *sbi,
2211 nid_t nid, bool build, bool update)
2212{
2213 struct f2fs_nm_info *nm_i = NM_I(sbi);
2214 struct free_nid *i, *e;
2215 struct nat_entry *ne;
2216 int err = -EINVAL;
2217 bool ret = false;
2218
2219 /* 0 nid should not be used */
2220 if (unlikely(nid == 0))
2221 return false;
2222
2223 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2224 return false;
2225
2226 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2227 i->nid = nid;
2228 i->state = FREE_NID;
2229
2230 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2231
2232 spin_lock(&nm_i->nid_list_lock);
2233
2234 if (build) {
2235 /*
2236 * Thread A Thread B
2237 * - f2fs_create
2238 * - f2fs_new_inode
2239 * - f2fs_alloc_nid
2240 * - __insert_nid_to_list(PREALLOC_NID)
2241 * - f2fs_balance_fs_bg
2242 * - f2fs_build_free_nids
2243 * - __f2fs_build_free_nids
2244 * - scan_nat_page
2245 * - add_free_nid
2246 * - __lookup_nat_cache
2247 * - f2fs_add_link
2248 * - f2fs_init_inode_metadata
2249 * - f2fs_new_inode_page
2250 * - f2fs_new_node_page
2251 * - set_node_addr
2252 * - f2fs_alloc_nid_done
2253 * - __remove_nid_from_list(PREALLOC_NID)
2254 * - __insert_nid_to_list(FREE_NID)
2255 */
2256 ne = __lookup_nat_cache(nm_i, nid);
2257 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2258 nat_get_blkaddr(ne) != NULL_ADDR))
2259 goto err_out;
2260
2261 e = __lookup_free_nid_list(nm_i, nid);
2262 if (e) {
2263 if (e->state == FREE_NID)
2264 ret = true;
2265 goto err_out;
2266 }
2267 }
2268 ret = true;
2269 err = __insert_free_nid(sbi, i);
2270err_out:
2271 if (update) {
2272 update_free_nid_bitmap(sbi, nid, ret, build);
2273 if (!build)
2274 nm_i->available_nids++;
2275 }
2276 spin_unlock(&nm_i->nid_list_lock);
2277 radix_tree_preload_end();
2278
2279 if (err)
2280 kmem_cache_free(free_nid_slab, i);
2281 return ret;
2282}
2283
2284static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2285{
2286 struct f2fs_nm_info *nm_i = NM_I(sbi);
2287 struct free_nid *i;
2288 bool need_free = false;
2289
2290 spin_lock(&nm_i->nid_list_lock);
2291 i = __lookup_free_nid_list(nm_i, nid);
2292 if (i && i->state == FREE_NID) {
2293 __remove_free_nid(sbi, i, FREE_NID);
2294 need_free = true;
2295 }
2296 spin_unlock(&nm_i->nid_list_lock);
2297
2298 if (need_free)
2299 kmem_cache_free(free_nid_slab, i);
2300}
2301
2302static int scan_nat_page(struct f2fs_sb_info *sbi,
2303 struct page *nat_page, nid_t start_nid)
2304{
2305 struct f2fs_nm_info *nm_i = NM_I(sbi);
2306 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2307 block_t blk_addr;
2308 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2309 int i;
2310
2311 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2312
2313 i = start_nid % NAT_ENTRY_PER_BLOCK;
2314
2315 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2316 if (unlikely(start_nid >= nm_i->max_nid))
2317 break;
2318
2319 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2320
2321 if (blk_addr == NEW_ADDR)
2322 return -EINVAL;
2323
2324 if (blk_addr == NULL_ADDR) {
2325 add_free_nid(sbi, start_nid, true, true);
2326 } else {
2327 spin_lock(&NM_I(sbi)->nid_list_lock);
2328 update_free_nid_bitmap(sbi, start_nid, false, true);
2329 spin_unlock(&NM_I(sbi)->nid_list_lock);
2330 }
2331 }
2332
2333 return 0;
2334}
2335
2336static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2337{
2338 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2339 struct f2fs_journal *journal = curseg->journal;
2340 int i;
2341
2342 down_read(&curseg->journal_rwsem);
2343 for (i = 0; i < nats_in_cursum(journal); i++) {
2344 block_t addr;
2345 nid_t nid;
2346
2347 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2348 nid = le32_to_cpu(nid_in_journal(journal, i));
2349 if (addr == NULL_ADDR)
2350 add_free_nid(sbi, nid, true, false);
2351 else
2352 remove_free_nid(sbi, nid);
2353 }
2354 up_read(&curseg->journal_rwsem);
2355}
2356
2357static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2358{
2359 struct f2fs_nm_info *nm_i = NM_I(sbi);
2360 unsigned int i, idx;
2361 nid_t nid;
2362
2363 down_read(&nm_i->nat_tree_lock);
2364
2365 for (i = 0; i < nm_i->nat_blocks; i++) {
2366 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2367 continue;
2368 if (!nm_i->free_nid_count[i])
2369 continue;
2370 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2371 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2372 NAT_ENTRY_PER_BLOCK, idx);
2373 if (idx >= NAT_ENTRY_PER_BLOCK)
2374 break;
2375
2376 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2377 add_free_nid(sbi, nid, true, false);
2378
2379 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2380 goto out;
2381 }
2382 }
2383out:
2384 scan_curseg_cache(sbi);
2385
2386 up_read(&nm_i->nat_tree_lock);
2387}
2388
2389static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2390 bool sync, bool mount)
2391{
2392 struct f2fs_nm_info *nm_i = NM_I(sbi);
2393 int i = 0, ret;
2394 nid_t nid = nm_i->next_scan_nid;
2395
2396 if (unlikely(nid >= nm_i->max_nid))
2397 nid = 0;
2398
2399 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2400 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2401
2402 /* Enough entries */
2403 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2404 return 0;
2405
2406 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2407 return 0;
2408
2409 if (!mount) {
2410 /* try to find free nids in free_nid_bitmap */
2411 scan_free_nid_bits(sbi);
2412
2413 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2414 return 0;
2415 }
2416
2417 /* readahead nat pages to be scanned */
2418 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2419 META_NAT, true);
2420
2421 down_read(&nm_i->nat_tree_lock);
2422
2423 while (1) {
2424 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2425 nm_i->nat_block_bitmap)) {
2426 struct page *page = get_current_nat_page(sbi, nid);
2427
2428 if (IS_ERR(page)) {
2429 ret = PTR_ERR(page);
2430 } else {
2431 ret = scan_nat_page(sbi, page, nid);
2432 f2fs_put_page(page, 1);
2433 }
2434
2435 if (ret) {
2436 up_read(&nm_i->nat_tree_lock);
2437 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2438 return ret;
2439 }
2440 }
2441
2442 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2443 if (unlikely(nid >= nm_i->max_nid))
2444 nid = 0;
2445
2446 if (++i >= FREE_NID_PAGES)
2447 break;
2448 }
2449
2450 /* go to the next free nat pages to find free nids abundantly */
2451 nm_i->next_scan_nid = nid;
2452
2453 /* find free nids from current sum_pages */
2454 scan_curseg_cache(sbi);
2455
2456 up_read(&nm_i->nat_tree_lock);
2457
2458 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2459 nm_i->ra_nid_pages, META_NAT, false);
2460
2461 return 0;
2462}
2463
2464int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2465{
2466 int ret;
2467
2468 mutex_lock(&NM_I(sbi)->build_lock);
2469 ret = __f2fs_build_free_nids(sbi, sync, mount);
2470 mutex_unlock(&NM_I(sbi)->build_lock);
2471
2472 return ret;
2473}
2474
2475/*
2476 * If this function returns success, caller can obtain a new nid
2477 * from second parameter of this function.
2478 * The returned nid could be used ino as well as nid when inode is created.
2479 */
2480bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2481{
2482 struct f2fs_nm_info *nm_i = NM_I(sbi);
2483 struct free_nid *i = NULL;
2484retry:
2485 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2486 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2487 return false;
2488 }
2489
2490 spin_lock(&nm_i->nid_list_lock);
2491
2492 if (unlikely(nm_i->available_nids == 0)) {
2493 spin_unlock(&nm_i->nid_list_lock);
2494 return false;
2495 }
2496
2497 /* We should not use stale free nids created by f2fs_build_free_nids */
2498 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2499 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2500 i = list_first_entry(&nm_i->free_nid_list,
2501 struct free_nid, list);
2502 *nid = i->nid;
2503
2504 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2505 nm_i->available_nids--;
2506
2507 update_free_nid_bitmap(sbi, *nid, false, false);
2508
2509 spin_unlock(&nm_i->nid_list_lock);
2510 return true;
2511 }
2512 spin_unlock(&nm_i->nid_list_lock);
2513
2514 /* Let's scan nat pages and its caches to get free nids */
2515 if (!f2fs_build_free_nids(sbi, true, false))
2516 goto retry;
2517 return false;
2518}
2519
2520/*
2521 * f2fs_alloc_nid() should be called prior to this function.
2522 */
2523void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2524{
2525 struct f2fs_nm_info *nm_i = NM_I(sbi);
2526 struct free_nid *i;
2527
2528 spin_lock(&nm_i->nid_list_lock);
2529 i = __lookup_free_nid_list(nm_i, nid);
2530 f2fs_bug_on(sbi, !i);
2531 __remove_free_nid(sbi, i, PREALLOC_NID);
2532 spin_unlock(&nm_i->nid_list_lock);
2533
2534 kmem_cache_free(free_nid_slab, i);
2535}
2536
2537/*
2538 * f2fs_alloc_nid() should be called prior to this function.
2539 */
2540void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2541{
2542 struct f2fs_nm_info *nm_i = NM_I(sbi);
2543 struct free_nid *i;
2544 bool need_free = false;
2545
2546 if (!nid)
2547 return;
2548
2549 spin_lock(&nm_i->nid_list_lock);
2550 i = __lookup_free_nid_list(nm_i, nid);
2551 f2fs_bug_on(sbi, !i);
2552
2553 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2554 __remove_free_nid(sbi, i, PREALLOC_NID);
2555 need_free = true;
2556 } else {
2557 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2558 }
2559
2560 nm_i->available_nids++;
2561
2562 update_free_nid_bitmap(sbi, nid, true, false);
2563
2564 spin_unlock(&nm_i->nid_list_lock);
2565
2566 if (need_free)
2567 kmem_cache_free(free_nid_slab, i);
2568}
2569
2570int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2571{
2572 struct f2fs_nm_info *nm_i = NM_I(sbi);
2573 int nr = nr_shrink;
2574
2575 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2576 return 0;
2577
2578 if (!mutex_trylock(&nm_i->build_lock))
2579 return 0;
2580
2581 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2582 struct free_nid *i, *next;
2583 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2584
2585 spin_lock(&nm_i->nid_list_lock);
2586 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2587 if (!nr_shrink || !batch ||
2588 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2589 break;
2590 __remove_free_nid(sbi, i, FREE_NID);
2591 kmem_cache_free(free_nid_slab, i);
2592 nr_shrink--;
2593 batch--;
2594 }
2595 spin_unlock(&nm_i->nid_list_lock);
2596 }
2597
2598 mutex_unlock(&nm_i->build_lock);
2599
2600 return nr - nr_shrink;
2601}
2602
2603int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2604{
2605 void *src_addr, *dst_addr;
2606 size_t inline_size;
2607 struct page *ipage;
2608 struct f2fs_inode *ri;
2609
2610 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2611 if (IS_ERR(ipage))
2612 return PTR_ERR(ipage);
2613
2614 ri = F2FS_INODE(page);
2615 if (ri->i_inline & F2FS_INLINE_XATTR) {
2616 if (!f2fs_has_inline_xattr(inode)) {
2617 set_inode_flag(inode, FI_INLINE_XATTR);
2618 stat_inc_inline_xattr(inode);
2619 }
2620 } else {
2621 if (f2fs_has_inline_xattr(inode)) {
2622 stat_dec_inline_xattr(inode);
2623 clear_inode_flag(inode, FI_INLINE_XATTR);
2624 }
2625 goto update_inode;
2626 }
2627
2628 dst_addr = inline_xattr_addr(inode, ipage);
2629 src_addr = inline_xattr_addr(inode, page);
2630 inline_size = inline_xattr_size(inode);
2631
2632 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2633 memcpy(dst_addr, src_addr, inline_size);
2634update_inode:
2635 f2fs_update_inode(inode, ipage);
2636 f2fs_put_page(ipage, 1);
2637 return 0;
2638}
2639
2640int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2641{
2642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2644 nid_t new_xnid;
2645 struct dnode_of_data dn;
2646 struct node_info ni;
2647 struct page *xpage;
2648 int err;
2649
2650 if (!prev_xnid)
2651 goto recover_xnid;
2652
2653 /* 1: invalidate the previous xattr nid */
2654 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2655 if (err)
2656 return err;
2657
2658 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2659 dec_valid_node_count(sbi, inode, false);
2660 set_node_addr(sbi, &ni, NULL_ADDR, false);
2661
2662recover_xnid:
2663 /* 2: update xattr nid in inode */
2664 if (!f2fs_alloc_nid(sbi, &new_xnid))
2665 return -ENOSPC;
2666
2667 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2668 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2669 if (IS_ERR(xpage)) {
2670 f2fs_alloc_nid_failed(sbi, new_xnid);
2671 return PTR_ERR(xpage);
2672 }
2673
2674 f2fs_alloc_nid_done(sbi, new_xnid);
2675 f2fs_update_inode_page(inode);
2676
2677 /* 3: update and set xattr node page dirty */
2678 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2679
2680 set_page_dirty(xpage);
2681 f2fs_put_page(xpage, 1);
2682
2683 return 0;
2684}
2685
2686int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2687{
2688 struct f2fs_inode *src, *dst;
2689 nid_t ino = ino_of_node(page);
2690 struct node_info old_ni, new_ni;
2691 struct page *ipage;
2692 int err;
2693
2694 err = f2fs_get_node_info(sbi, ino, &old_ni);
2695 if (err)
2696 return err;
2697
2698 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2699 return -EINVAL;
2700retry:
2701 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2702 if (!ipage) {
2703 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2704 goto retry;
2705 }
2706
2707 /* Should not use this inode from free nid list */
2708 remove_free_nid(sbi, ino);
2709
2710 if (!PageUptodate(ipage))
2711 SetPageUptodate(ipage);
2712 fill_node_footer(ipage, ino, ino, 0, true);
2713 set_cold_node(ipage, false);
2714
2715 src = F2FS_INODE(page);
2716 dst = F2FS_INODE(ipage);
2717
2718 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2719 dst->i_size = 0;
2720 dst->i_blocks = cpu_to_le64(1);
2721 dst->i_links = cpu_to_le32(1);
2722 dst->i_xattr_nid = 0;
2723 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2724 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2725 dst->i_extra_isize = src->i_extra_isize;
2726
2727 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2728 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2729 i_inline_xattr_size))
2730 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2731
2732 if (f2fs_sb_has_project_quota(sbi) &&
2733 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2734 i_projid))
2735 dst->i_projid = src->i_projid;
2736
2737 if (f2fs_sb_has_inode_crtime(sbi) &&
2738 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2739 i_crtime_nsec)) {
2740 dst->i_crtime = src->i_crtime;
2741 dst->i_crtime_nsec = src->i_crtime_nsec;
2742 }
2743 }
2744
2745 new_ni = old_ni;
2746 new_ni.ino = ino;
2747
2748 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2749 WARN_ON(1);
2750 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2751 inc_valid_inode_count(sbi);
2752 set_page_dirty(ipage);
2753 f2fs_put_page(ipage, 1);
2754 return 0;
2755}
2756
2757int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2758 unsigned int segno, struct f2fs_summary_block *sum)
2759{
2760 struct f2fs_node *rn;
2761 struct f2fs_summary *sum_entry;
2762 block_t addr;
2763 int i, idx, last_offset, nrpages;
2764
2765 /* scan the node segment */
2766 last_offset = sbi->blocks_per_seg;
2767 addr = START_BLOCK(sbi, segno);
2768 sum_entry = &sum->entries[0];
2769
2770 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2771 nrpages = bio_max_segs(last_offset - i);
2772
2773 /* readahead node pages */
2774 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2775
2776 for (idx = addr; idx < addr + nrpages; idx++) {
2777 struct page *page = f2fs_get_tmp_page(sbi, idx);
2778
2779 if (IS_ERR(page))
2780 return PTR_ERR(page);
2781
2782 rn = F2FS_NODE(page);
2783 sum_entry->nid = rn->footer.nid;
2784 sum_entry->version = 0;
2785 sum_entry->ofs_in_node = 0;
2786 sum_entry++;
2787 f2fs_put_page(page, 1);
2788 }
2789
2790 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2791 addr + nrpages);
2792 }
2793 return 0;
2794}
2795
2796static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2797{
2798 struct f2fs_nm_info *nm_i = NM_I(sbi);
2799 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2800 struct f2fs_journal *journal = curseg->journal;
2801 int i;
2802
2803 down_write(&curseg->journal_rwsem);
2804 for (i = 0; i < nats_in_cursum(journal); i++) {
2805 struct nat_entry *ne;
2806 struct f2fs_nat_entry raw_ne;
2807 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2808
2809 if (f2fs_check_nid_range(sbi, nid))
2810 continue;
2811
2812 raw_ne = nat_in_journal(journal, i);
2813
2814 ne = __lookup_nat_cache(nm_i, nid);
2815 if (!ne) {
2816 ne = __alloc_nat_entry(nid, true);
2817 __init_nat_entry(nm_i, ne, &raw_ne, true);
2818 }
2819
2820 /*
2821 * if a free nat in journal has not been used after last
2822 * checkpoint, we should remove it from available nids,
2823 * since later we will add it again.
2824 */
2825 if (!get_nat_flag(ne, IS_DIRTY) &&
2826 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2827 spin_lock(&nm_i->nid_list_lock);
2828 nm_i->available_nids--;
2829 spin_unlock(&nm_i->nid_list_lock);
2830 }
2831
2832 __set_nat_cache_dirty(nm_i, ne);
2833 }
2834 update_nats_in_cursum(journal, -i);
2835 up_write(&curseg->journal_rwsem);
2836}
2837
2838static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2839 struct list_head *head, int max)
2840{
2841 struct nat_entry_set *cur;
2842
2843 if (nes->entry_cnt >= max)
2844 goto add_out;
2845
2846 list_for_each_entry(cur, head, set_list) {
2847 if (cur->entry_cnt >= nes->entry_cnt) {
2848 list_add(&nes->set_list, cur->set_list.prev);
2849 return;
2850 }
2851 }
2852add_out:
2853 list_add_tail(&nes->set_list, head);
2854}
2855
2856static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2857 struct page *page)
2858{
2859 struct f2fs_nm_info *nm_i = NM_I(sbi);
2860 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2861 struct f2fs_nat_block *nat_blk = page_address(page);
2862 int valid = 0;
2863 int i = 0;
2864
2865 if (!enabled_nat_bits(sbi, NULL))
2866 return;
2867
2868 if (nat_index == 0) {
2869 valid = 1;
2870 i = 1;
2871 }
2872 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2873 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2874 valid++;
2875 }
2876 if (valid == 0) {
2877 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2878 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2879 return;
2880 }
2881
2882 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2883 if (valid == NAT_ENTRY_PER_BLOCK)
2884 __set_bit_le(nat_index, nm_i->full_nat_bits);
2885 else
2886 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2887}
2888
2889static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2890 struct nat_entry_set *set, struct cp_control *cpc)
2891{
2892 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2893 struct f2fs_journal *journal = curseg->journal;
2894 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2895 bool to_journal = true;
2896 struct f2fs_nat_block *nat_blk;
2897 struct nat_entry *ne, *cur;
2898 struct page *page = NULL;
2899
2900 /*
2901 * there are two steps to flush nat entries:
2902 * #1, flush nat entries to journal in current hot data summary block.
2903 * #2, flush nat entries to nat page.
2904 */
2905 if (enabled_nat_bits(sbi, cpc) ||
2906 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2907 to_journal = false;
2908
2909 if (to_journal) {
2910 down_write(&curseg->journal_rwsem);
2911 } else {
2912 page = get_next_nat_page(sbi, start_nid);
2913 if (IS_ERR(page))
2914 return PTR_ERR(page);
2915
2916 nat_blk = page_address(page);
2917 f2fs_bug_on(sbi, !nat_blk);
2918 }
2919
2920 /* flush dirty nats in nat entry set */
2921 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2922 struct f2fs_nat_entry *raw_ne;
2923 nid_t nid = nat_get_nid(ne);
2924 int offset;
2925
2926 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2927
2928 if (to_journal) {
2929 offset = f2fs_lookup_journal_in_cursum(journal,
2930 NAT_JOURNAL, nid, 1);
2931 f2fs_bug_on(sbi, offset < 0);
2932 raw_ne = &nat_in_journal(journal, offset);
2933 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2934 } else {
2935 raw_ne = &nat_blk->entries[nid - start_nid];
2936 }
2937 raw_nat_from_node_info(raw_ne, &ne->ni);
2938 nat_reset_flag(ne);
2939 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2940 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2941 add_free_nid(sbi, nid, false, true);
2942 } else {
2943 spin_lock(&NM_I(sbi)->nid_list_lock);
2944 update_free_nid_bitmap(sbi, nid, false, false);
2945 spin_unlock(&NM_I(sbi)->nid_list_lock);
2946 }
2947 }
2948
2949 if (to_journal) {
2950 up_write(&curseg->journal_rwsem);
2951 } else {
2952 __update_nat_bits(sbi, start_nid, page);
2953 f2fs_put_page(page, 1);
2954 }
2955
2956 /* Allow dirty nats by node block allocation in write_begin */
2957 if (!set->entry_cnt) {
2958 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2959 kmem_cache_free(nat_entry_set_slab, set);
2960 }
2961 return 0;
2962}
2963
2964/*
2965 * This function is called during the checkpointing process.
2966 */
2967int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2968{
2969 struct f2fs_nm_info *nm_i = NM_I(sbi);
2970 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2971 struct f2fs_journal *journal = curseg->journal;
2972 struct nat_entry_set *setvec[SETVEC_SIZE];
2973 struct nat_entry_set *set, *tmp;
2974 unsigned int found;
2975 nid_t set_idx = 0;
2976 LIST_HEAD(sets);
2977 int err = 0;
2978
2979 /*
2980 * during unmount, let's flush nat_bits before checking
2981 * nat_cnt[DIRTY_NAT].
2982 */
2983 if (enabled_nat_bits(sbi, cpc)) {
2984 down_write(&nm_i->nat_tree_lock);
2985 remove_nats_in_journal(sbi);
2986 up_write(&nm_i->nat_tree_lock);
2987 }
2988
2989 if (!nm_i->nat_cnt[DIRTY_NAT])
2990 return 0;
2991
2992 down_write(&nm_i->nat_tree_lock);
2993
2994 /*
2995 * if there are no enough space in journal to store dirty nat
2996 * entries, remove all entries from journal and merge them
2997 * into nat entry set.
2998 */
2999 if (enabled_nat_bits(sbi, cpc) ||
3000 !__has_cursum_space(journal,
3001 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3002 remove_nats_in_journal(sbi);
3003
3004 while ((found = __gang_lookup_nat_set(nm_i,
3005 set_idx, SETVEC_SIZE, setvec))) {
3006 unsigned idx;
3007
3008 set_idx = setvec[found - 1]->set + 1;
3009 for (idx = 0; idx < found; idx++)
3010 __adjust_nat_entry_set(setvec[idx], &sets,
3011 MAX_NAT_JENTRIES(journal));
3012 }
3013
3014 /* flush dirty nats in nat entry set */
3015 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3016 err = __flush_nat_entry_set(sbi, set, cpc);
3017 if (err)
3018 break;
3019 }
3020
3021 up_write(&nm_i->nat_tree_lock);
3022 /* Allow dirty nats by node block allocation in write_begin */
3023
3024 return err;
3025}
3026
3027static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3028{
3029 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3030 struct f2fs_nm_info *nm_i = NM_I(sbi);
3031 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3032 unsigned int i;
3033 __u64 cp_ver = cur_cp_version(ckpt);
3034 block_t nat_bits_addr;
3035
3036 if (!enabled_nat_bits(sbi, NULL))
3037 return 0;
3038
3039 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3040 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3041 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3042 if (!nm_i->nat_bits)
3043 return -ENOMEM;
3044
3045 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3046 nm_i->nat_bits_blocks;
3047 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3048 struct page *page;
3049
3050 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3051 if (IS_ERR(page))
3052 return PTR_ERR(page);
3053
3054 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3055 page_address(page), F2FS_BLKSIZE);
3056 f2fs_put_page(page, 1);
3057 }
3058
3059 cp_ver |= (cur_cp_crc(ckpt) << 32);
3060 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3061 disable_nat_bits(sbi, true);
3062 return 0;
3063 }
3064
3065 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3066 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3067
3068 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3069 return 0;
3070}
3071
3072static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3073{
3074 struct f2fs_nm_info *nm_i = NM_I(sbi);
3075 unsigned int i = 0;
3076 nid_t nid, last_nid;
3077
3078 if (!enabled_nat_bits(sbi, NULL))
3079 return;
3080
3081 for (i = 0; i < nm_i->nat_blocks; i++) {
3082 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3083 if (i >= nm_i->nat_blocks)
3084 break;
3085
3086 __set_bit_le(i, nm_i->nat_block_bitmap);
3087
3088 nid = i * NAT_ENTRY_PER_BLOCK;
3089 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3090
3091 spin_lock(&NM_I(sbi)->nid_list_lock);
3092 for (; nid < last_nid; nid++)
3093 update_free_nid_bitmap(sbi, nid, true, true);
3094 spin_unlock(&NM_I(sbi)->nid_list_lock);
3095 }
3096
3097 for (i = 0; i < nm_i->nat_blocks; i++) {
3098 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3099 if (i >= nm_i->nat_blocks)
3100 break;
3101
3102 __set_bit_le(i, nm_i->nat_block_bitmap);
3103 }
3104}
3105
3106static int init_node_manager(struct f2fs_sb_info *sbi)
3107{
3108 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3109 struct f2fs_nm_info *nm_i = NM_I(sbi);
3110 unsigned char *version_bitmap;
3111 unsigned int nat_segs;
3112 int err;
3113
3114 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3115
3116 /* segment_count_nat includes pair segment so divide to 2. */
3117 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3118 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3119 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3120
3121 /* not used nids: 0, node, meta, (and root counted as valid node) */
3122 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3123 F2FS_RESERVED_NODE_NUM;
3124 nm_i->nid_cnt[FREE_NID] = 0;
3125 nm_i->nid_cnt[PREALLOC_NID] = 0;
3126 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3127 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3128 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3129
3130 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3131 INIT_LIST_HEAD(&nm_i->free_nid_list);
3132 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3133 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3134 INIT_LIST_HEAD(&nm_i->nat_entries);
3135 spin_lock_init(&nm_i->nat_list_lock);
3136
3137 mutex_init(&nm_i->build_lock);
3138 spin_lock_init(&nm_i->nid_list_lock);
3139 init_rwsem(&nm_i->nat_tree_lock);
3140
3141 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3142 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3143 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3144 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3145 GFP_KERNEL);
3146 if (!nm_i->nat_bitmap)
3147 return -ENOMEM;
3148
3149 err = __get_nat_bitmaps(sbi);
3150 if (err)
3151 return err;
3152
3153#ifdef CONFIG_F2FS_CHECK_FS
3154 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3155 GFP_KERNEL);
3156 if (!nm_i->nat_bitmap_mir)
3157 return -ENOMEM;
3158#endif
3159
3160 return 0;
3161}
3162
3163static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3164{
3165 struct f2fs_nm_info *nm_i = NM_I(sbi);
3166 int i;
3167
3168 nm_i->free_nid_bitmap =
3169 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3170 nm_i->nat_blocks),
3171 GFP_KERNEL);
3172 if (!nm_i->free_nid_bitmap)
3173 return -ENOMEM;
3174
3175 for (i = 0; i < nm_i->nat_blocks; i++) {
3176 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3177 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3178 if (!nm_i->free_nid_bitmap[i])
3179 return -ENOMEM;
3180 }
3181
3182 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3183 GFP_KERNEL);
3184 if (!nm_i->nat_block_bitmap)
3185 return -ENOMEM;
3186
3187 nm_i->free_nid_count =
3188 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3189 nm_i->nat_blocks),
3190 GFP_KERNEL);
3191 if (!nm_i->free_nid_count)
3192 return -ENOMEM;
3193 return 0;
3194}
3195
3196int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3197{
3198 int err;
3199
3200 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3201 GFP_KERNEL);
3202 if (!sbi->nm_info)
3203 return -ENOMEM;
3204
3205 err = init_node_manager(sbi);
3206 if (err)
3207 return err;
3208
3209 err = init_free_nid_cache(sbi);
3210 if (err)
3211 return err;
3212
3213 /* load free nid status from nat_bits table */
3214 load_free_nid_bitmap(sbi);
3215
3216 return f2fs_build_free_nids(sbi, true, true);
3217}
3218
3219void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3220{
3221 struct f2fs_nm_info *nm_i = NM_I(sbi);
3222 struct free_nid *i, *next_i;
3223 struct nat_entry *natvec[NATVEC_SIZE];
3224 struct nat_entry_set *setvec[SETVEC_SIZE];
3225 nid_t nid = 0;
3226 unsigned int found;
3227
3228 if (!nm_i)
3229 return;
3230
3231 /* destroy free nid list */
3232 spin_lock(&nm_i->nid_list_lock);
3233 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3234 __remove_free_nid(sbi, i, FREE_NID);
3235 spin_unlock(&nm_i->nid_list_lock);
3236 kmem_cache_free(free_nid_slab, i);
3237 spin_lock(&nm_i->nid_list_lock);
3238 }
3239 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3240 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3241 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3242 spin_unlock(&nm_i->nid_list_lock);
3243
3244 /* destroy nat cache */
3245 down_write(&nm_i->nat_tree_lock);
3246 while ((found = __gang_lookup_nat_cache(nm_i,
3247 nid, NATVEC_SIZE, natvec))) {
3248 unsigned idx;
3249
3250 nid = nat_get_nid(natvec[found - 1]) + 1;
3251 for (idx = 0; idx < found; idx++) {
3252 spin_lock(&nm_i->nat_list_lock);
3253 list_del(&natvec[idx]->list);
3254 spin_unlock(&nm_i->nat_list_lock);
3255
3256 __del_from_nat_cache(nm_i, natvec[idx]);
3257 }
3258 }
3259 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3260
3261 /* destroy nat set cache */
3262 nid = 0;
3263 while ((found = __gang_lookup_nat_set(nm_i,
3264 nid, SETVEC_SIZE, setvec))) {
3265 unsigned idx;
3266
3267 nid = setvec[found - 1]->set + 1;
3268 for (idx = 0; idx < found; idx++) {
3269 /* entry_cnt is not zero, when cp_error was occurred */
3270 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3271 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3272 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3273 }
3274 }
3275 up_write(&nm_i->nat_tree_lock);
3276
3277 kvfree(nm_i->nat_block_bitmap);
3278 if (nm_i->free_nid_bitmap) {
3279 int i;
3280
3281 for (i = 0; i < nm_i->nat_blocks; i++)
3282 kvfree(nm_i->free_nid_bitmap[i]);
3283 kvfree(nm_i->free_nid_bitmap);
3284 }
3285 kvfree(nm_i->free_nid_count);
3286
3287 kvfree(nm_i->nat_bitmap);
3288 kvfree(nm_i->nat_bits);
3289#ifdef CONFIG_F2FS_CHECK_FS
3290 kvfree(nm_i->nat_bitmap_mir);
3291#endif
3292 sbi->nm_info = NULL;
3293 kfree(nm_i);
3294}
3295
3296int __init f2fs_create_node_manager_caches(void)
3297{
3298 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3299 sizeof(struct nat_entry));
3300 if (!nat_entry_slab)
3301 goto fail;
3302
3303 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3304 sizeof(struct free_nid));
3305 if (!free_nid_slab)
3306 goto destroy_nat_entry;
3307
3308 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3309 sizeof(struct nat_entry_set));
3310 if (!nat_entry_set_slab)
3311 goto destroy_free_nid;
3312
3313 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3314 sizeof(struct fsync_node_entry));
3315 if (!fsync_node_entry_slab)
3316 goto destroy_nat_entry_set;
3317 return 0;
3318
3319destroy_nat_entry_set:
3320 kmem_cache_destroy(nat_entry_set_slab);
3321destroy_free_nid:
3322 kmem_cache_destroy(free_nid_slab);
3323destroy_nat_entry:
3324 kmem_cache_destroy(nat_entry_slab);
3325fail:
3326 return -ENOMEM;
3327}
3328
3329void f2fs_destroy_node_manager_caches(void)
3330{
3331 kmem_cache_destroy(fsync_node_entry_slab);
3332 kmem_cache_destroy(nat_entry_set_slab);
3333 kmem_cache_destroy(free_nid_slab);
3334 kmem_cache_destroy(nat_entry_slab);
3335}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620}
621
622/*
623 * readahead MAX_RA_NODE number of node pages.
624 */
625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626{
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, (int)NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643}
644
645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646{
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676}
677
678/*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
682static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684{
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752got:
753 return level;
754}
755
756/*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762{
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
856 unsigned int ofs_in_node = dn->ofs_in_node;
857 pgoff_t fofs = index;
858 unsigned int c_len;
859 block_t blkaddr;
860
861 /* should align fofs and ofs_in_node to cluster_size */
862 if (fofs % cluster_size) {
863 fofs = round_down(fofs, cluster_size);
864 ofs_in_node = round_down(ofs_in_node, cluster_size);
865 }
866
867 c_len = f2fs_cluster_blocks_are_contiguous(dn, ofs_in_node);
868 if (!c_len)
869 goto out;
870
871 blkaddr = data_blkaddr(dn->inode, dn->node_page, ofs_in_node);
872 if (blkaddr == COMPRESS_ADDR)
873 blkaddr = data_blkaddr(dn->inode, dn->node_page,
874 ofs_in_node + 1);
875
876 f2fs_update_read_extent_tree_range_compressed(dn->inode,
877 fofs, blkaddr, cluster_size, c_len);
878 }
879out:
880 return 0;
881
882release_pages:
883 f2fs_put_page(parent, 1);
884 if (i > 1)
885 f2fs_put_page(npage[0], 0);
886release_out:
887 dn->inode_page = NULL;
888 dn->node_page = NULL;
889 if (err == -ENOENT) {
890 dn->cur_level = i;
891 dn->max_level = level;
892 dn->ofs_in_node = offset[level];
893 }
894 return err;
895}
896
897static int truncate_node(struct dnode_of_data *dn)
898{
899 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
900 struct node_info ni;
901 int err;
902 pgoff_t index;
903
904 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
905 if (err)
906 return err;
907
908 /* Deallocate node address */
909 f2fs_invalidate_blocks(sbi, ni.blk_addr);
910 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
911 set_node_addr(sbi, &ni, NULL_ADDR, false);
912
913 if (dn->nid == dn->inode->i_ino) {
914 f2fs_remove_orphan_inode(sbi, dn->nid);
915 dec_valid_inode_count(sbi);
916 f2fs_inode_synced(dn->inode);
917 }
918
919 clear_node_page_dirty(dn->node_page);
920 set_sbi_flag(sbi, SBI_IS_DIRTY);
921
922 index = dn->node_page->index;
923 f2fs_put_page(dn->node_page, 1);
924
925 invalidate_mapping_pages(NODE_MAPPING(sbi),
926 index, index);
927
928 dn->node_page = NULL;
929 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
930
931 return 0;
932}
933
934static int truncate_dnode(struct dnode_of_data *dn)
935{
936 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
937 struct page *page;
938 int err;
939
940 if (dn->nid == 0)
941 return 1;
942
943 /* get direct node */
944 page = f2fs_get_node_page(sbi, dn->nid);
945 if (PTR_ERR(page) == -ENOENT)
946 return 1;
947 else if (IS_ERR(page))
948 return PTR_ERR(page);
949
950 if (IS_INODE(page) || ino_of_node(page) != dn->inode->i_ino) {
951 f2fs_err(sbi, "incorrect node reference, ino: %lu, nid: %u, ino_of_node: %u",
952 dn->inode->i_ino, dn->nid, ino_of_node(page));
953 set_sbi_flag(sbi, SBI_NEED_FSCK);
954 f2fs_handle_error(sbi, ERROR_INVALID_NODE_REFERENCE);
955 f2fs_put_page(page, 1);
956 return -EFSCORRUPTED;
957 }
958
959 /* Make dnode_of_data for parameter */
960 dn->node_page = page;
961 dn->ofs_in_node = 0;
962 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
963 err = truncate_node(dn);
964 if (err) {
965 f2fs_put_page(page, 1);
966 return err;
967 }
968
969 return 1;
970}
971
972static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
973 int ofs, int depth)
974{
975 struct dnode_of_data rdn = *dn;
976 struct page *page;
977 struct f2fs_node *rn;
978 nid_t child_nid;
979 unsigned int child_nofs;
980 int freed = 0;
981 int i, ret;
982
983 if (dn->nid == 0)
984 return NIDS_PER_BLOCK + 1;
985
986 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
987
988 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
989 if (IS_ERR(page)) {
990 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
991 return PTR_ERR(page);
992 }
993
994 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
995
996 rn = F2FS_NODE(page);
997 if (depth < 3) {
998 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
999 child_nid = le32_to_cpu(rn->in.nid[i]);
1000 if (child_nid == 0)
1001 continue;
1002 rdn.nid = child_nid;
1003 ret = truncate_dnode(&rdn);
1004 if (ret < 0)
1005 goto out_err;
1006 if (set_nid(page, i, 0, false))
1007 dn->node_changed = true;
1008 }
1009 } else {
1010 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
1011 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
1012 child_nid = le32_to_cpu(rn->in.nid[i]);
1013 if (child_nid == 0) {
1014 child_nofs += NIDS_PER_BLOCK + 1;
1015 continue;
1016 }
1017 rdn.nid = child_nid;
1018 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1019 if (ret == (NIDS_PER_BLOCK + 1)) {
1020 if (set_nid(page, i, 0, false))
1021 dn->node_changed = true;
1022 child_nofs += ret;
1023 } else if (ret < 0 && ret != -ENOENT) {
1024 goto out_err;
1025 }
1026 }
1027 freed = child_nofs;
1028 }
1029
1030 if (!ofs) {
1031 /* remove current indirect node */
1032 dn->node_page = page;
1033 ret = truncate_node(dn);
1034 if (ret)
1035 goto out_err;
1036 freed++;
1037 } else {
1038 f2fs_put_page(page, 1);
1039 }
1040 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1041 return freed;
1042
1043out_err:
1044 f2fs_put_page(page, 1);
1045 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1046 return ret;
1047}
1048
1049static int truncate_partial_nodes(struct dnode_of_data *dn,
1050 struct f2fs_inode *ri, int *offset, int depth)
1051{
1052 struct page *pages[2];
1053 nid_t nid[3];
1054 nid_t child_nid;
1055 int err = 0;
1056 int i;
1057 int idx = depth - 2;
1058
1059 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1060 if (!nid[0])
1061 return 0;
1062
1063 /* get indirect nodes in the path */
1064 for (i = 0; i < idx + 1; i++) {
1065 /* reference count'll be increased */
1066 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1067 if (IS_ERR(pages[i])) {
1068 err = PTR_ERR(pages[i]);
1069 idx = i - 1;
1070 goto fail;
1071 }
1072 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1073 }
1074
1075 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1076
1077 /* free direct nodes linked to a partial indirect node */
1078 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1079 child_nid = get_nid(pages[idx], i, false);
1080 if (!child_nid)
1081 continue;
1082 dn->nid = child_nid;
1083 err = truncate_dnode(dn);
1084 if (err < 0)
1085 goto fail;
1086 if (set_nid(pages[idx], i, 0, false))
1087 dn->node_changed = true;
1088 }
1089
1090 if (offset[idx + 1] == 0) {
1091 dn->node_page = pages[idx];
1092 dn->nid = nid[idx];
1093 err = truncate_node(dn);
1094 if (err)
1095 goto fail;
1096 } else {
1097 f2fs_put_page(pages[idx], 1);
1098 }
1099 offset[idx]++;
1100 offset[idx + 1] = 0;
1101 idx--;
1102fail:
1103 for (i = idx; i >= 0; i--)
1104 f2fs_put_page(pages[i], 1);
1105
1106 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1107
1108 return err;
1109}
1110
1111/*
1112 * All the block addresses of data and nodes should be nullified.
1113 */
1114int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1115{
1116 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1117 int err = 0, cont = 1;
1118 int level, offset[4], noffset[4];
1119 unsigned int nofs = 0;
1120 struct f2fs_inode *ri;
1121 struct dnode_of_data dn;
1122 struct page *page;
1123
1124 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1125
1126 level = get_node_path(inode, from, offset, noffset);
1127 if (level < 0) {
1128 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1129 return level;
1130 }
1131
1132 page = f2fs_get_node_page(sbi, inode->i_ino);
1133 if (IS_ERR(page)) {
1134 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1135 return PTR_ERR(page);
1136 }
1137
1138 set_new_dnode(&dn, inode, page, NULL, 0);
1139 unlock_page(page);
1140
1141 ri = F2FS_INODE(page);
1142 switch (level) {
1143 case 0:
1144 case 1:
1145 nofs = noffset[1];
1146 break;
1147 case 2:
1148 nofs = noffset[1];
1149 if (!offset[level - 1])
1150 goto skip_partial;
1151 err = truncate_partial_nodes(&dn, ri, offset, level);
1152 if (err < 0 && err != -ENOENT)
1153 goto fail;
1154 nofs += 1 + NIDS_PER_BLOCK;
1155 break;
1156 case 3:
1157 nofs = 5 + 2 * NIDS_PER_BLOCK;
1158 if (!offset[level - 1])
1159 goto skip_partial;
1160 err = truncate_partial_nodes(&dn, ri, offset, level);
1161 if (err < 0 && err != -ENOENT)
1162 goto fail;
1163 break;
1164 default:
1165 BUG();
1166 }
1167
1168skip_partial:
1169 while (cont) {
1170 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1171 switch (offset[0]) {
1172 case NODE_DIR1_BLOCK:
1173 case NODE_DIR2_BLOCK:
1174 err = truncate_dnode(&dn);
1175 break;
1176
1177 case NODE_IND1_BLOCK:
1178 case NODE_IND2_BLOCK:
1179 err = truncate_nodes(&dn, nofs, offset[1], 2);
1180 break;
1181
1182 case NODE_DIND_BLOCK:
1183 err = truncate_nodes(&dn, nofs, offset[1], 3);
1184 cont = 0;
1185 break;
1186
1187 default:
1188 BUG();
1189 }
1190 if (err < 0 && err != -ENOENT)
1191 goto fail;
1192 if (offset[1] == 0 &&
1193 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1194 lock_page(page);
1195 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1196 f2fs_wait_on_page_writeback(page, NODE, true, true);
1197 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1198 set_page_dirty(page);
1199 unlock_page(page);
1200 }
1201 offset[1] = 0;
1202 offset[0]++;
1203 nofs += err;
1204 }
1205fail:
1206 f2fs_put_page(page, 0);
1207 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1208 return err > 0 ? 0 : err;
1209}
1210
1211/* caller must lock inode page */
1212int f2fs_truncate_xattr_node(struct inode *inode)
1213{
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1215 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1216 struct dnode_of_data dn;
1217 struct page *npage;
1218 int err;
1219
1220 if (!nid)
1221 return 0;
1222
1223 npage = f2fs_get_node_page(sbi, nid);
1224 if (IS_ERR(npage))
1225 return PTR_ERR(npage);
1226
1227 set_new_dnode(&dn, inode, NULL, npage, nid);
1228 err = truncate_node(&dn);
1229 if (err) {
1230 f2fs_put_page(npage, 1);
1231 return err;
1232 }
1233
1234 f2fs_i_xnid_write(inode, 0);
1235
1236 return 0;
1237}
1238
1239/*
1240 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1241 * f2fs_unlock_op().
1242 */
1243int f2fs_remove_inode_page(struct inode *inode)
1244{
1245 struct dnode_of_data dn;
1246 int err;
1247
1248 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1249 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1250 if (err)
1251 return err;
1252
1253 err = f2fs_truncate_xattr_node(inode);
1254 if (err) {
1255 f2fs_put_dnode(&dn);
1256 return err;
1257 }
1258
1259 /* remove potential inline_data blocks */
1260 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1261 S_ISLNK(inode->i_mode))
1262 f2fs_truncate_data_blocks_range(&dn, 1);
1263
1264 /* 0 is possible, after f2fs_new_inode() has failed */
1265 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1266 f2fs_put_dnode(&dn);
1267 return -EIO;
1268 }
1269
1270 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1271 f2fs_warn(F2FS_I_SB(inode),
1272 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1273 inode->i_ino, (unsigned long long)inode->i_blocks);
1274 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1275 }
1276
1277 /* will put inode & node pages */
1278 err = truncate_node(&dn);
1279 if (err) {
1280 f2fs_put_dnode(&dn);
1281 return err;
1282 }
1283 return 0;
1284}
1285
1286struct page *f2fs_new_inode_page(struct inode *inode)
1287{
1288 struct dnode_of_data dn;
1289
1290 /* allocate inode page for new inode */
1291 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1292
1293 /* caller should f2fs_put_page(page, 1); */
1294 return f2fs_new_node_page(&dn, 0);
1295}
1296
1297struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1298{
1299 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1300 struct node_info new_ni;
1301 struct page *page;
1302 int err;
1303
1304 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1305 return ERR_PTR(-EPERM);
1306
1307 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1308 if (!page)
1309 return ERR_PTR(-ENOMEM);
1310
1311 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1312 goto fail;
1313
1314#ifdef CONFIG_F2FS_CHECK_FS
1315 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1316 if (err) {
1317 dec_valid_node_count(sbi, dn->inode, !ofs);
1318 goto fail;
1319 }
1320 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1321 err = -EFSCORRUPTED;
1322 dec_valid_node_count(sbi, dn->inode, !ofs);
1323 set_sbi_flag(sbi, SBI_NEED_FSCK);
1324 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1325 goto fail;
1326 }
1327#endif
1328 new_ni.nid = dn->nid;
1329 new_ni.ino = dn->inode->i_ino;
1330 new_ni.blk_addr = NULL_ADDR;
1331 new_ni.flag = 0;
1332 new_ni.version = 0;
1333 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1334
1335 f2fs_wait_on_page_writeback(page, NODE, true, true);
1336 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1337 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1338 if (!PageUptodate(page))
1339 SetPageUptodate(page);
1340 if (set_page_dirty(page))
1341 dn->node_changed = true;
1342
1343 if (f2fs_has_xattr_block(ofs))
1344 f2fs_i_xnid_write(dn->inode, dn->nid);
1345
1346 if (ofs == 0)
1347 inc_valid_inode_count(sbi);
1348 return page;
1349fail:
1350 clear_node_page_dirty(page);
1351 f2fs_put_page(page, 1);
1352 return ERR_PTR(err);
1353}
1354
1355/*
1356 * Caller should do after getting the following values.
1357 * 0: f2fs_put_page(page, 0)
1358 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1359 */
1360static int read_node_page(struct page *page, blk_opf_t op_flags)
1361{
1362 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1363 struct node_info ni;
1364 struct f2fs_io_info fio = {
1365 .sbi = sbi,
1366 .type = NODE,
1367 .op = REQ_OP_READ,
1368 .op_flags = op_flags,
1369 .page = page,
1370 .encrypted_page = NULL,
1371 };
1372 int err;
1373
1374 if (PageUptodate(page)) {
1375 if (!f2fs_inode_chksum_verify(sbi, page)) {
1376 ClearPageUptodate(page);
1377 return -EFSBADCRC;
1378 }
1379 return LOCKED_PAGE;
1380 }
1381
1382 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1383 if (err)
1384 return err;
1385
1386 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1387 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1388 ClearPageUptodate(page);
1389 return -ENOENT;
1390 }
1391
1392 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1393
1394 err = f2fs_submit_page_bio(&fio);
1395
1396 if (!err)
1397 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1398
1399 return err;
1400}
1401
1402/*
1403 * Readahead a node page
1404 */
1405void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1406{
1407 struct page *apage;
1408 int err;
1409
1410 if (!nid)
1411 return;
1412 if (f2fs_check_nid_range(sbi, nid))
1413 return;
1414
1415 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1416 if (apage)
1417 return;
1418
1419 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1420 if (!apage)
1421 return;
1422
1423 err = read_node_page(apage, REQ_RAHEAD);
1424 f2fs_put_page(apage, err ? 1 : 0);
1425}
1426
1427static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1428 struct page *parent, int start)
1429{
1430 struct page *page;
1431 int err;
1432
1433 if (!nid)
1434 return ERR_PTR(-ENOENT);
1435 if (f2fs_check_nid_range(sbi, nid))
1436 return ERR_PTR(-EINVAL);
1437repeat:
1438 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1439 if (!page)
1440 return ERR_PTR(-ENOMEM);
1441
1442 err = read_node_page(page, 0);
1443 if (err < 0) {
1444 goto out_put_err;
1445 } else if (err == LOCKED_PAGE) {
1446 err = 0;
1447 goto page_hit;
1448 }
1449
1450 if (parent)
1451 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1452
1453 lock_page(page);
1454
1455 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1456 f2fs_put_page(page, 1);
1457 goto repeat;
1458 }
1459
1460 if (unlikely(!PageUptodate(page))) {
1461 err = -EIO;
1462 goto out_err;
1463 }
1464
1465 if (!f2fs_inode_chksum_verify(sbi, page)) {
1466 err = -EFSBADCRC;
1467 goto out_err;
1468 }
1469page_hit:
1470 if (likely(nid == nid_of_node(page)))
1471 return page;
1472
1473 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1474 nid, nid_of_node(page), ino_of_node(page),
1475 ofs_of_node(page), cpver_of_node(page),
1476 next_blkaddr_of_node(page));
1477 set_sbi_flag(sbi, SBI_NEED_FSCK);
1478 f2fs_handle_error(sbi, ERROR_INCONSISTENT_FOOTER);
1479 err = -EFSCORRUPTED;
1480out_err:
1481 ClearPageUptodate(page);
1482out_put_err:
1483 /* ENOENT comes from read_node_page which is not an error. */
1484 if (err != -ENOENT)
1485 f2fs_handle_page_eio(sbi, page->index, NODE);
1486 f2fs_put_page(page, 1);
1487 return ERR_PTR(err);
1488}
1489
1490struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1491{
1492 return __get_node_page(sbi, nid, NULL, 0);
1493}
1494
1495struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1496{
1497 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1498 nid_t nid = get_nid(parent, start, false);
1499
1500 return __get_node_page(sbi, nid, parent, start);
1501}
1502
1503static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1504{
1505 struct inode *inode;
1506 struct page *page;
1507 int ret;
1508
1509 /* should flush inline_data before evict_inode */
1510 inode = ilookup(sbi->sb, ino);
1511 if (!inode)
1512 return;
1513
1514 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1515 FGP_LOCK|FGP_NOWAIT, 0);
1516 if (!page)
1517 goto iput_out;
1518
1519 if (!PageUptodate(page))
1520 goto page_out;
1521
1522 if (!PageDirty(page))
1523 goto page_out;
1524
1525 if (!clear_page_dirty_for_io(page))
1526 goto page_out;
1527
1528 ret = f2fs_write_inline_data(inode, page);
1529 inode_dec_dirty_pages(inode);
1530 f2fs_remove_dirty_inode(inode);
1531 if (ret)
1532 set_page_dirty(page);
1533page_out:
1534 f2fs_put_page(page, 1);
1535iput_out:
1536 iput(inode);
1537}
1538
1539static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1540{
1541 pgoff_t index;
1542 struct folio_batch fbatch;
1543 struct page *last_page = NULL;
1544 int nr_folios;
1545
1546 folio_batch_init(&fbatch);
1547 index = 0;
1548
1549 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1550 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1551 &fbatch))) {
1552 int i;
1553
1554 for (i = 0; i < nr_folios; i++) {
1555 struct page *page = &fbatch.folios[i]->page;
1556
1557 if (unlikely(f2fs_cp_error(sbi))) {
1558 f2fs_put_page(last_page, 0);
1559 folio_batch_release(&fbatch);
1560 return ERR_PTR(-EIO);
1561 }
1562
1563 if (!IS_DNODE(page) || !is_cold_node(page))
1564 continue;
1565 if (ino_of_node(page) != ino)
1566 continue;
1567
1568 lock_page(page);
1569
1570 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1571continue_unlock:
1572 unlock_page(page);
1573 continue;
1574 }
1575 if (ino_of_node(page) != ino)
1576 goto continue_unlock;
1577
1578 if (!PageDirty(page)) {
1579 /* someone wrote it for us */
1580 goto continue_unlock;
1581 }
1582
1583 if (last_page)
1584 f2fs_put_page(last_page, 0);
1585
1586 get_page(page);
1587 last_page = page;
1588 unlock_page(page);
1589 }
1590 folio_batch_release(&fbatch);
1591 cond_resched();
1592 }
1593 return last_page;
1594}
1595
1596static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1597 struct writeback_control *wbc, bool do_balance,
1598 enum iostat_type io_type, unsigned int *seq_id)
1599{
1600 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1601 nid_t nid;
1602 struct node_info ni;
1603 struct f2fs_io_info fio = {
1604 .sbi = sbi,
1605 .ino = ino_of_node(page),
1606 .type = NODE,
1607 .op = REQ_OP_WRITE,
1608 .op_flags = wbc_to_write_flags(wbc),
1609 .page = page,
1610 .encrypted_page = NULL,
1611 .submitted = 0,
1612 .io_type = io_type,
1613 .io_wbc = wbc,
1614 };
1615 unsigned int seq;
1616
1617 trace_f2fs_writepage(page, NODE);
1618
1619 if (unlikely(f2fs_cp_error(sbi))) {
1620 /* keep node pages in remount-ro mode */
1621 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
1622 goto redirty_out;
1623 ClearPageUptodate(page);
1624 dec_page_count(sbi, F2FS_DIRTY_NODES);
1625 unlock_page(page);
1626 return 0;
1627 }
1628
1629 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1630 goto redirty_out;
1631
1632 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1633 wbc->sync_mode == WB_SYNC_NONE &&
1634 IS_DNODE(page) && is_cold_node(page))
1635 goto redirty_out;
1636
1637 /* get old block addr of this node page */
1638 nid = nid_of_node(page);
1639 f2fs_bug_on(sbi, page->index != nid);
1640
1641 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1642 goto redirty_out;
1643
1644 if (wbc->for_reclaim) {
1645 if (!f2fs_down_read_trylock(&sbi->node_write))
1646 goto redirty_out;
1647 } else {
1648 f2fs_down_read(&sbi->node_write);
1649 }
1650
1651 /* This page is already truncated */
1652 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1653 ClearPageUptodate(page);
1654 dec_page_count(sbi, F2FS_DIRTY_NODES);
1655 f2fs_up_read(&sbi->node_write);
1656 unlock_page(page);
1657 return 0;
1658 }
1659
1660 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1661 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1662 DATA_GENERIC_ENHANCE)) {
1663 f2fs_up_read(&sbi->node_write);
1664 goto redirty_out;
1665 }
1666
1667 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1668 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1669
1670 /* should add to global list before clearing PAGECACHE status */
1671 if (f2fs_in_warm_node_list(sbi, page)) {
1672 seq = f2fs_add_fsync_node_entry(sbi, page);
1673 if (seq_id)
1674 *seq_id = seq;
1675 }
1676
1677 set_page_writeback(page);
1678
1679 fio.old_blkaddr = ni.blk_addr;
1680 f2fs_do_write_node_page(nid, &fio);
1681 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1682 dec_page_count(sbi, F2FS_DIRTY_NODES);
1683 f2fs_up_read(&sbi->node_write);
1684
1685 if (wbc->for_reclaim) {
1686 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1687 submitted = NULL;
1688 }
1689
1690 unlock_page(page);
1691
1692 if (unlikely(f2fs_cp_error(sbi))) {
1693 f2fs_submit_merged_write(sbi, NODE);
1694 submitted = NULL;
1695 }
1696 if (submitted)
1697 *submitted = fio.submitted;
1698
1699 if (do_balance)
1700 f2fs_balance_fs(sbi, false);
1701 return 0;
1702
1703redirty_out:
1704 redirty_page_for_writepage(wbc, page);
1705 return AOP_WRITEPAGE_ACTIVATE;
1706}
1707
1708int f2fs_move_node_page(struct page *node_page, int gc_type)
1709{
1710 int err = 0;
1711
1712 if (gc_type == FG_GC) {
1713 struct writeback_control wbc = {
1714 .sync_mode = WB_SYNC_ALL,
1715 .nr_to_write = 1,
1716 .for_reclaim = 0,
1717 };
1718
1719 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1720
1721 set_page_dirty(node_page);
1722
1723 if (!clear_page_dirty_for_io(node_page)) {
1724 err = -EAGAIN;
1725 goto out_page;
1726 }
1727
1728 if (__write_node_page(node_page, false, NULL,
1729 &wbc, false, FS_GC_NODE_IO, NULL)) {
1730 err = -EAGAIN;
1731 unlock_page(node_page);
1732 }
1733 goto release_page;
1734 } else {
1735 /* set page dirty and write it */
1736 if (!PageWriteback(node_page))
1737 set_page_dirty(node_page);
1738 }
1739out_page:
1740 unlock_page(node_page);
1741release_page:
1742 f2fs_put_page(node_page, 0);
1743 return err;
1744}
1745
1746static int f2fs_write_node_page(struct page *page,
1747 struct writeback_control *wbc)
1748{
1749 return __write_node_page(page, false, NULL, wbc, false,
1750 FS_NODE_IO, NULL);
1751}
1752
1753int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1754 struct writeback_control *wbc, bool atomic,
1755 unsigned int *seq_id)
1756{
1757 pgoff_t index;
1758 struct folio_batch fbatch;
1759 int ret = 0;
1760 struct page *last_page = NULL;
1761 bool marked = false;
1762 nid_t ino = inode->i_ino;
1763 int nr_folios;
1764 int nwritten = 0;
1765
1766 if (atomic) {
1767 last_page = last_fsync_dnode(sbi, ino);
1768 if (IS_ERR_OR_NULL(last_page))
1769 return PTR_ERR_OR_ZERO(last_page);
1770 }
1771retry:
1772 folio_batch_init(&fbatch);
1773 index = 0;
1774
1775 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1776 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1777 &fbatch))) {
1778 int i;
1779
1780 for (i = 0; i < nr_folios; i++) {
1781 struct page *page = &fbatch.folios[i]->page;
1782 bool submitted = false;
1783
1784 if (unlikely(f2fs_cp_error(sbi))) {
1785 f2fs_put_page(last_page, 0);
1786 folio_batch_release(&fbatch);
1787 ret = -EIO;
1788 goto out;
1789 }
1790
1791 if (!IS_DNODE(page) || !is_cold_node(page))
1792 continue;
1793 if (ino_of_node(page) != ino)
1794 continue;
1795
1796 lock_page(page);
1797
1798 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1799continue_unlock:
1800 unlock_page(page);
1801 continue;
1802 }
1803 if (ino_of_node(page) != ino)
1804 goto continue_unlock;
1805
1806 if (!PageDirty(page) && page != last_page) {
1807 /* someone wrote it for us */
1808 goto continue_unlock;
1809 }
1810
1811 f2fs_wait_on_page_writeback(page, NODE, true, true);
1812
1813 set_fsync_mark(page, 0);
1814 set_dentry_mark(page, 0);
1815
1816 if (!atomic || page == last_page) {
1817 set_fsync_mark(page, 1);
1818 percpu_counter_inc(&sbi->rf_node_block_count);
1819 if (IS_INODE(page)) {
1820 if (is_inode_flag_set(inode,
1821 FI_DIRTY_INODE))
1822 f2fs_update_inode(inode, page);
1823 set_dentry_mark(page,
1824 f2fs_need_dentry_mark(sbi, ino));
1825 }
1826 /* may be written by other thread */
1827 if (!PageDirty(page))
1828 set_page_dirty(page);
1829 }
1830
1831 if (!clear_page_dirty_for_io(page))
1832 goto continue_unlock;
1833
1834 ret = __write_node_page(page, atomic &&
1835 page == last_page,
1836 &submitted, wbc, true,
1837 FS_NODE_IO, seq_id);
1838 if (ret) {
1839 unlock_page(page);
1840 f2fs_put_page(last_page, 0);
1841 break;
1842 } else if (submitted) {
1843 nwritten++;
1844 }
1845
1846 if (page == last_page) {
1847 f2fs_put_page(page, 0);
1848 marked = true;
1849 break;
1850 }
1851 }
1852 folio_batch_release(&fbatch);
1853 cond_resched();
1854
1855 if (ret || marked)
1856 break;
1857 }
1858 if (!ret && atomic && !marked) {
1859 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1860 ino, last_page->index);
1861 lock_page(last_page);
1862 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1863 set_page_dirty(last_page);
1864 unlock_page(last_page);
1865 goto retry;
1866 }
1867out:
1868 if (nwritten)
1869 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1870 return ret ? -EIO : 0;
1871}
1872
1873static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1874{
1875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1876 bool clean;
1877
1878 if (inode->i_ino != ino)
1879 return 0;
1880
1881 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1882 return 0;
1883
1884 spin_lock(&sbi->inode_lock[DIRTY_META]);
1885 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1886 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1887
1888 if (clean)
1889 return 0;
1890
1891 inode = igrab(inode);
1892 if (!inode)
1893 return 0;
1894 return 1;
1895}
1896
1897static bool flush_dirty_inode(struct page *page)
1898{
1899 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1900 struct inode *inode;
1901 nid_t ino = ino_of_node(page);
1902
1903 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1904 if (!inode)
1905 return false;
1906
1907 f2fs_update_inode(inode, page);
1908 unlock_page(page);
1909
1910 iput(inode);
1911 return true;
1912}
1913
1914void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1915{
1916 pgoff_t index = 0;
1917 struct folio_batch fbatch;
1918 int nr_folios;
1919
1920 folio_batch_init(&fbatch);
1921
1922 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1923 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1924 &fbatch))) {
1925 int i;
1926
1927 for (i = 0; i < nr_folios; i++) {
1928 struct page *page = &fbatch.folios[i]->page;
1929
1930 if (!IS_INODE(page))
1931 continue;
1932
1933 lock_page(page);
1934
1935 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1936continue_unlock:
1937 unlock_page(page);
1938 continue;
1939 }
1940
1941 if (!PageDirty(page)) {
1942 /* someone wrote it for us */
1943 goto continue_unlock;
1944 }
1945
1946 /* flush inline_data, if it's async context. */
1947 if (page_private_inline(page)) {
1948 clear_page_private_inline(page);
1949 unlock_page(page);
1950 flush_inline_data(sbi, ino_of_node(page));
1951 continue;
1952 }
1953 unlock_page(page);
1954 }
1955 folio_batch_release(&fbatch);
1956 cond_resched();
1957 }
1958}
1959
1960int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1961 struct writeback_control *wbc,
1962 bool do_balance, enum iostat_type io_type)
1963{
1964 pgoff_t index;
1965 struct folio_batch fbatch;
1966 int step = 0;
1967 int nwritten = 0;
1968 int ret = 0;
1969 int nr_folios, done = 0;
1970
1971 folio_batch_init(&fbatch);
1972
1973next_step:
1974 index = 0;
1975
1976 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1977 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1978 &fbatch))) {
1979 int i;
1980
1981 for (i = 0; i < nr_folios; i++) {
1982 struct page *page = &fbatch.folios[i]->page;
1983 bool submitted = false;
1984
1985 /* give a priority to WB_SYNC threads */
1986 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1987 wbc->sync_mode == WB_SYNC_NONE) {
1988 done = 1;
1989 break;
1990 }
1991
1992 /*
1993 * flushing sequence with step:
1994 * 0. indirect nodes
1995 * 1. dentry dnodes
1996 * 2. file dnodes
1997 */
1998 if (step == 0 && IS_DNODE(page))
1999 continue;
2000 if (step == 1 && (!IS_DNODE(page) ||
2001 is_cold_node(page)))
2002 continue;
2003 if (step == 2 && (!IS_DNODE(page) ||
2004 !is_cold_node(page)))
2005 continue;
2006lock_node:
2007 if (wbc->sync_mode == WB_SYNC_ALL)
2008 lock_page(page);
2009 else if (!trylock_page(page))
2010 continue;
2011
2012 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
2013continue_unlock:
2014 unlock_page(page);
2015 continue;
2016 }
2017
2018 if (!PageDirty(page)) {
2019 /* someone wrote it for us */
2020 goto continue_unlock;
2021 }
2022
2023 /* flush inline_data/inode, if it's async context. */
2024 if (!do_balance)
2025 goto write_node;
2026
2027 /* flush inline_data */
2028 if (page_private_inline(page)) {
2029 clear_page_private_inline(page);
2030 unlock_page(page);
2031 flush_inline_data(sbi, ino_of_node(page));
2032 goto lock_node;
2033 }
2034
2035 /* flush dirty inode */
2036 if (IS_INODE(page) && flush_dirty_inode(page))
2037 goto lock_node;
2038write_node:
2039 f2fs_wait_on_page_writeback(page, NODE, true, true);
2040
2041 if (!clear_page_dirty_for_io(page))
2042 goto continue_unlock;
2043
2044 set_fsync_mark(page, 0);
2045 set_dentry_mark(page, 0);
2046
2047 ret = __write_node_page(page, false, &submitted,
2048 wbc, do_balance, io_type, NULL);
2049 if (ret)
2050 unlock_page(page);
2051 else if (submitted)
2052 nwritten++;
2053
2054 if (--wbc->nr_to_write == 0)
2055 break;
2056 }
2057 folio_batch_release(&fbatch);
2058 cond_resched();
2059
2060 if (wbc->nr_to_write == 0) {
2061 step = 2;
2062 break;
2063 }
2064 }
2065
2066 if (step < 2) {
2067 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2068 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2069 goto out;
2070 step++;
2071 goto next_step;
2072 }
2073out:
2074 if (nwritten)
2075 f2fs_submit_merged_write(sbi, NODE);
2076
2077 if (unlikely(f2fs_cp_error(sbi)))
2078 return -EIO;
2079 return ret;
2080}
2081
2082int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2083 unsigned int seq_id)
2084{
2085 struct fsync_node_entry *fn;
2086 struct page *page;
2087 struct list_head *head = &sbi->fsync_node_list;
2088 unsigned long flags;
2089 unsigned int cur_seq_id = 0;
2090
2091 while (seq_id && cur_seq_id < seq_id) {
2092 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2093 if (list_empty(head)) {
2094 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2095 break;
2096 }
2097 fn = list_first_entry(head, struct fsync_node_entry, list);
2098 if (fn->seq_id > seq_id) {
2099 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2100 break;
2101 }
2102 cur_seq_id = fn->seq_id;
2103 page = fn->page;
2104 get_page(page);
2105 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2106
2107 f2fs_wait_on_page_writeback(page, NODE, true, false);
2108
2109 put_page(page);
2110 }
2111
2112 return filemap_check_errors(NODE_MAPPING(sbi));
2113}
2114
2115static int f2fs_write_node_pages(struct address_space *mapping,
2116 struct writeback_control *wbc)
2117{
2118 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2119 struct blk_plug plug;
2120 long diff;
2121
2122 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2123 goto skip_write;
2124
2125 /* balancing f2fs's metadata in background */
2126 f2fs_balance_fs_bg(sbi, true);
2127
2128 /* collect a number of dirty node pages and write together */
2129 if (wbc->sync_mode != WB_SYNC_ALL &&
2130 get_pages(sbi, F2FS_DIRTY_NODES) <
2131 nr_pages_to_skip(sbi, NODE))
2132 goto skip_write;
2133
2134 if (wbc->sync_mode == WB_SYNC_ALL)
2135 atomic_inc(&sbi->wb_sync_req[NODE]);
2136 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2137 /* to avoid potential deadlock */
2138 if (current->plug)
2139 blk_finish_plug(current->plug);
2140 goto skip_write;
2141 }
2142
2143 trace_f2fs_writepages(mapping->host, wbc, NODE);
2144
2145 diff = nr_pages_to_write(sbi, NODE, wbc);
2146 blk_start_plug(&plug);
2147 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2148 blk_finish_plug(&plug);
2149 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2150
2151 if (wbc->sync_mode == WB_SYNC_ALL)
2152 atomic_dec(&sbi->wb_sync_req[NODE]);
2153 return 0;
2154
2155skip_write:
2156 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2157 trace_f2fs_writepages(mapping->host, wbc, NODE);
2158 return 0;
2159}
2160
2161static bool f2fs_dirty_node_folio(struct address_space *mapping,
2162 struct folio *folio)
2163{
2164 trace_f2fs_set_page_dirty(&folio->page, NODE);
2165
2166 if (!folio_test_uptodate(folio))
2167 folio_mark_uptodate(folio);
2168#ifdef CONFIG_F2FS_CHECK_FS
2169 if (IS_INODE(&folio->page))
2170 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2171#endif
2172 if (filemap_dirty_folio(mapping, folio)) {
2173 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2174 set_page_private_reference(&folio->page);
2175 return true;
2176 }
2177 return false;
2178}
2179
2180/*
2181 * Structure of the f2fs node operations
2182 */
2183const struct address_space_operations f2fs_node_aops = {
2184 .writepage = f2fs_write_node_page,
2185 .writepages = f2fs_write_node_pages,
2186 .dirty_folio = f2fs_dirty_node_folio,
2187 .invalidate_folio = f2fs_invalidate_folio,
2188 .release_folio = f2fs_release_folio,
2189 .migrate_folio = filemap_migrate_folio,
2190};
2191
2192static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2193 nid_t n)
2194{
2195 return radix_tree_lookup(&nm_i->free_nid_root, n);
2196}
2197
2198static int __insert_free_nid(struct f2fs_sb_info *sbi,
2199 struct free_nid *i)
2200{
2201 struct f2fs_nm_info *nm_i = NM_I(sbi);
2202 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2203
2204 if (err)
2205 return err;
2206
2207 nm_i->nid_cnt[FREE_NID]++;
2208 list_add_tail(&i->list, &nm_i->free_nid_list);
2209 return 0;
2210}
2211
2212static void __remove_free_nid(struct f2fs_sb_info *sbi,
2213 struct free_nid *i, enum nid_state state)
2214{
2215 struct f2fs_nm_info *nm_i = NM_I(sbi);
2216
2217 f2fs_bug_on(sbi, state != i->state);
2218 nm_i->nid_cnt[state]--;
2219 if (state == FREE_NID)
2220 list_del(&i->list);
2221 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2222}
2223
2224static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2225 enum nid_state org_state, enum nid_state dst_state)
2226{
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2228
2229 f2fs_bug_on(sbi, org_state != i->state);
2230 i->state = dst_state;
2231 nm_i->nid_cnt[org_state]--;
2232 nm_i->nid_cnt[dst_state]++;
2233
2234 switch (dst_state) {
2235 case PREALLOC_NID:
2236 list_del(&i->list);
2237 break;
2238 case FREE_NID:
2239 list_add_tail(&i->list, &nm_i->free_nid_list);
2240 break;
2241 default:
2242 BUG_ON(1);
2243 }
2244}
2245
2246bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2247{
2248 struct f2fs_nm_info *nm_i = NM_I(sbi);
2249 unsigned int i;
2250 bool ret = true;
2251
2252 f2fs_down_read(&nm_i->nat_tree_lock);
2253 for (i = 0; i < nm_i->nat_blocks; i++) {
2254 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2255 ret = false;
2256 break;
2257 }
2258 }
2259 f2fs_up_read(&nm_i->nat_tree_lock);
2260
2261 return ret;
2262}
2263
2264static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2265 bool set, bool build)
2266{
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2269 unsigned int nid_ofs = nid - START_NID(nid);
2270
2271 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2272 return;
2273
2274 if (set) {
2275 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2276 return;
2277 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2278 nm_i->free_nid_count[nat_ofs]++;
2279 } else {
2280 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2281 return;
2282 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2283 if (!build)
2284 nm_i->free_nid_count[nat_ofs]--;
2285 }
2286}
2287
2288/* return if the nid is recognized as free */
2289static bool add_free_nid(struct f2fs_sb_info *sbi,
2290 nid_t nid, bool build, bool update)
2291{
2292 struct f2fs_nm_info *nm_i = NM_I(sbi);
2293 struct free_nid *i, *e;
2294 struct nat_entry *ne;
2295 int err = -EINVAL;
2296 bool ret = false;
2297
2298 /* 0 nid should not be used */
2299 if (unlikely(nid == 0))
2300 return false;
2301
2302 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2303 return false;
2304
2305 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2306 i->nid = nid;
2307 i->state = FREE_NID;
2308
2309 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2310
2311 spin_lock(&nm_i->nid_list_lock);
2312
2313 if (build) {
2314 /*
2315 * Thread A Thread B
2316 * - f2fs_create
2317 * - f2fs_new_inode
2318 * - f2fs_alloc_nid
2319 * - __insert_nid_to_list(PREALLOC_NID)
2320 * - f2fs_balance_fs_bg
2321 * - f2fs_build_free_nids
2322 * - __f2fs_build_free_nids
2323 * - scan_nat_page
2324 * - add_free_nid
2325 * - __lookup_nat_cache
2326 * - f2fs_add_link
2327 * - f2fs_init_inode_metadata
2328 * - f2fs_new_inode_page
2329 * - f2fs_new_node_page
2330 * - set_node_addr
2331 * - f2fs_alloc_nid_done
2332 * - __remove_nid_from_list(PREALLOC_NID)
2333 * - __insert_nid_to_list(FREE_NID)
2334 */
2335 ne = __lookup_nat_cache(nm_i, nid);
2336 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2337 nat_get_blkaddr(ne) != NULL_ADDR))
2338 goto err_out;
2339
2340 e = __lookup_free_nid_list(nm_i, nid);
2341 if (e) {
2342 if (e->state == FREE_NID)
2343 ret = true;
2344 goto err_out;
2345 }
2346 }
2347 ret = true;
2348 err = __insert_free_nid(sbi, i);
2349err_out:
2350 if (update) {
2351 update_free_nid_bitmap(sbi, nid, ret, build);
2352 if (!build)
2353 nm_i->available_nids++;
2354 }
2355 spin_unlock(&nm_i->nid_list_lock);
2356 radix_tree_preload_end();
2357
2358 if (err)
2359 kmem_cache_free(free_nid_slab, i);
2360 return ret;
2361}
2362
2363static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2364{
2365 struct f2fs_nm_info *nm_i = NM_I(sbi);
2366 struct free_nid *i;
2367 bool need_free = false;
2368
2369 spin_lock(&nm_i->nid_list_lock);
2370 i = __lookup_free_nid_list(nm_i, nid);
2371 if (i && i->state == FREE_NID) {
2372 __remove_free_nid(sbi, i, FREE_NID);
2373 need_free = true;
2374 }
2375 spin_unlock(&nm_i->nid_list_lock);
2376
2377 if (need_free)
2378 kmem_cache_free(free_nid_slab, i);
2379}
2380
2381static int scan_nat_page(struct f2fs_sb_info *sbi,
2382 struct page *nat_page, nid_t start_nid)
2383{
2384 struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2386 block_t blk_addr;
2387 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2388 int i;
2389
2390 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2391
2392 i = start_nid % NAT_ENTRY_PER_BLOCK;
2393
2394 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2395 if (unlikely(start_nid >= nm_i->max_nid))
2396 break;
2397
2398 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2399
2400 if (blk_addr == NEW_ADDR)
2401 return -EFSCORRUPTED;
2402
2403 if (blk_addr == NULL_ADDR) {
2404 add_free_nid(sbi, start_nid, true, true);
2405 } else {
2406 spin_lock(&NM_I(sbi)->nid_list_lock);
2407 update_free_nid_bitmap(sbi, start_nid, false, true);
2408 spin_unlock(&NM_I(sbi)->nid_list_lock);
2409 }
2410 }
2411
2412 return 0;
2413}
2414
2415static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2416{
2417 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2418 struct f2fs_journal *journal = curseg->journal;
2419 int i;
2420
2421 down_read(&curseg->journal_rwsem);
2422 for (i = 0; i < nats_in_cursum(journal); i++) {
2423 block_t addr;
2424 nid_t nid;
2425
2426 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2427 nid = le32_to_cpu(nid_in_journal(journal, i));
2428 if (addr == NULL_ADDR)
2429 add_free_nid(sbi, nid, true, false);
2430 else
2431 remove_free_nid(sbi, nid);
2432 }
2433 up_read(&curseg->journal_rwsem);
2434}
2435
2436static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2437{
2438 struct f2fs_nm_info *nm_i = NM_I(sbi);
2439 unsigned int i, idx;
2440 nid_t nid;
2441
2442 f2fs_down_read(&nm_i->nat_tree_lock);
2443
2444 for (i = 0; i < nm_i->nat_blocks; i++) {
2445 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2446 continue;
2447 if (!nm_i->free_nid_count[i])
2448 continue;
2449 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2450 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2451 NAT_ENTRY_PER_BLOCK, idx);
2452 if (idx >= NAT_ENTRY_PER_BLOCK)
2453 break;
2454
2455 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2456 add_free_nid(sbi, nid, true, false);
2457
2458 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2459 goto out;
2460 }
2461 }
2462out:
2463 scan_curseg_cache(sbi);
2464
2465 f2fs_up_read(&nm_i->nat_tree_lock);
2466}
2467
2468static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2469 bool sync, bool mount)
2470{
2471 struct f2fs_nm_info *nm_i = NM_I(sbi);
2472 int i = 0, ret;
2473 nid_t nid = nm_i->next_scan_nid;
2474
2475 if (unlikely(nid >= nm_i->max_nid))
2476 nid = 0;
2477
2478 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2479 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2480
2481 /* Enough entries */
2482 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2483 return 0;
2484
2485 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2486 return 0;
2487
2488 if (!mount) {
2489 /* try to find free nids in free_nid_bitmap */
2490 scan_free_nid_bits(sbi);
2491
2492 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2493 return 0;
2494 }
2495
2496 /* readahead nat pages to be scanned */
2497 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2498 META_NAT, true);
2499
2500 f2fs_down_read(&nm_i->nat_tree_lock);
2501
2502 while (1) {
2503 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2504 nm_i->nat_block_bitmap)) {
2505 struct page *page = get_current_nat_page(sbi, nid);
2506
2507 if (IS_ERR(page)) {
2508 ret = PTR_ERR(page);
2509 } else {
2510 ret = scan_nat_page(sbi, page, nid);
2511 f2fs_put_page(page, 1);
2512 }
2513
2514 if (ret) {
2515 f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517 if (ret == -EFSCORRUPTED) {
2518 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2519 set_sbi_flag(sbi, SBI_NEED_FSCK);
2520 f2fs_handle_error(sbi,
2521 ERROR_INCONSISTENT_NAT);
2522 }
2523
2524 return ret;
2525 }
2526 }
2527
2528 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2529 if (unlikely(nid >= nm_i->max_nid))
2530 nid = 0;
2531
2532 if (++i >= FREE_NID_PAGES)
2533 break;
2534 }
2535
2536 /* go to the next free nat pages to find free nids abundantly */
2537 nm_i->next_scan_nid = nid;
2538
2539 /* find free nids from current sum_pages */
2540 scan_curseg_cache(sbi);
2541
2542 f2fs_up_read(&nm_i->nat_tree_lock);
2543
2544 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2545 nm_i->ra_nid_pages, META_NAT, false);
2546
2547 return 0;
2548}
2549
2550int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2551{
2552 int ret;
2553
2554 mutex_lock(&NM_I(sbi)->build_lock);
2555 ret = __f2fs_build_free_nids(sbi, sync, mount);
2556 mutex_unlock(&NM_I(sbi)->build_lock);
2557
2558 return ret;
2559}
2560
2561/*
2562 * If this function returns success, caller can obtain a new nid
2563 * from second parameter of this function.
2564 * The returned nid could be used ino as well as nid when inode is created.
2565 */
2566bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2567{
2568 struct f2fs_nm_info *nm_i = NM_I(sbi);
2569 struct free_nid *i = NULL;
2570retry:
2571 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2572 return false;
2573
2574 spin_lock(&nm_i->nid_list_lock);
2575
2576 if (unlikely(nm_i->available_nids == 0)) {
2577 spin_unlock(&nm_i->nid_list_lock);
2578 return false;
2579 }
2580
2581 /* We should not use stale free nids created by f2fs_build_free_nids */
2582 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2583 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2584 i = list_first_entry(&nm_i->free_nid_list,
2585 struct free_nid, list);
2586 *nid = i->nid;
2587
2588 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2589 nm_i->available_nids--;
2590
2591 update_free_nid_bitmap(sbi, *nid, false, false);
2592
2593 spin_unlock(&nm_i->nid_list_lock);
2594 return true;
2595 }
2596 spin_unlock(&nm_i->nid_list_lock);
2597
2598 /* Let's scan nat pages and its caches to get free nids */
2599 if (!f2fs_build_free_nids(sbi, true, false))
2600 goto retry;
2601 return false;
2602}
2603
2604/*
2605 * f2fs_alloc_nid() should be called prior to this function.
2606 */
2607void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2608{
2609 struct f2fs_nm_info *nm_i = NM_I(sbi);
2610 struct free_nid *i;
2611
2612 spin_lock(&nm_i->nid_list_lock);
2613 i = __lookup_free_nid_list(nm_i, nid);
2614 f2fs_bug_on(sbi, !i);
2615 __remove_free_nid(sbi, i, PREALLOC_NID);
2616 spin_unlock(&nm_i->nid_list_lock);
2617
2618 kmem_cache_free(free_nid_slab, i);
2619}
2620
2621/*
2622 * f2fs_alloc_nid() should be called prior to this function.
2623 */
2624void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2625{
2626 struct f2fs_nm_info *nm_i = NM_I(sbi);
2627 struct free_nid *i;
2628 bool need_free = false;
2629
2630 if (!nid)
2631 return;
2632
2633 spin_lock(&nm_i->nid_list_lock);
2634 i = __lookup_free_nid_list(nm_i, nid);
2635 f2fs_bug_on(sbi, !i);
2636
2637 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2638 __remove_free_nid(sbi, i, PREALLOC_NID);
2639 need_free = true;
2640 } else {
2641 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2642 }
2643
2644 nm_i->available_nids++;
2645
2646 update_free_nid_bitmap(sbi, nid, true, false);
2647
2648 spin_unlock(&nm_i->nid_list_lock);
2649
2650 if (need_free)
2651 kmem_cache_free(free_nid_slab, i);
2652}
2653
2654int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2655{
2656 struct f2fs_nm_info *nm_i = NM_I(sbi);
2657 int nr = nr_shrink;
2658
2659 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2660 return 0;
2661
2662 if (!mutex_trylock(&nm_i->build_lock))
2663 return 0;
2664
2665 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2666 struct free_nid *i, *next;
2667 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2668
2669 spin_lock(&nm_i->nid_list_lock);
2670 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2671 if (!nr_shrink || !batch ||
2672 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2673 break;
2674 __remove_free_nid(sbi, i, FREE_NID);
2675 kmem_cache_free(free_nid_slab, i);
2676 nr_shrink--;
2677 batch--;
2678 }
2679 spin_unlock(&nm_i->nid_list_lock);
2680 }
2681
2682 mutex_unlock(&nm_i->build_lock);
2683
2684 return nr - nr_shrink;
2685}
2686
2687int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2688{
2689 void *src_addr, *dst_addr;
2690 size_t inline_size;
2691 struct page *ipage;
2692 struct f2fs_inode *ri;
2693
2694 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2695 if (IS_ERR(ipage))
2696 return PTR_ERR(ipage);
2697
2698 ri = F2FS_INODE(page);
2699 if (ri->i_inline & F2FS_INLINE_XATTR) {
2700 if (!f2fs_has_inline_xattr(inode)) {
2701 set_inode_flag(inode, FI_INLINE_XATTR);
2702 stat_inc_inline_xattr(inode);
2703 }
2704 } else {
2705 if (f2fs_has_inline_xattr(inode)) {
2706 stat_dec_inline_xattr(inode);
2707 clear_inode_flag(inode, FI_INLINE_XATTR);
2708 }
2709 goto update_inode;
2710 }
2711
2712 dst_addr = inline_xattr_addr(inode, ipage);
2713 src_addr = inline_xattr_addr(inode, page);
2714 inline_size = inline_xattr_size(inode);
2715
2716 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2717 memcpy(dst_addr, src_addr, inline_size);
2718update_inode:
2719 f2fs_update_inode(inode, ipage);
2720 f2fs_put_page(ipage, 1);
2721 return 0;
2722}
2723
2724int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2725{
2726 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2727 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2728 nid_t new_xnid;
2729 struct dnode_of_data dn;
2730 struct node_info ni;
2731 struct page *xpage;
2732 int err;
2733
2734 if (!prev_xnid)
2735 goto recover_xnid;
2736
2737 /* 1: invalidate the previous xattr nid */
2738 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2739 if (err)
2740 return err;
2741
2742 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2743 dec_valid_node_count(sbi, inode, false);
2744 set_node_addr(sbi, &ni, NULL_ADDR, false);
2745
2746recover_xnid:
2747 /* 2: update xattr nid in inode */
2748 if (!f2fs_alloc_nid(sbi, &new_xnid))
2749 return -ENOSPC;
2750
2751 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2752 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2753 if (IS_ERR(xpage)) {
2754 f2fs_alloc_nid_failed(sbi, new_xnid);
2755 return PTR_ERR(xpage);
2756 }
2757
2758 f2fs_alloc_nid_done(sbi, new_xnid);
2759 f2fs_update_inode_page(inode);
2760
2761 /* 3: update and set xattr node page dirty */
2762 if (page) {
2763 memcpy(F2FS_NODE(xpage), F2FS_NODE(page),
2764 VALID_XATTR_BLOCK_SIZE);
2765 set_page_dirty(xpage);
2766 }
2767 f2fs_put_page(xpage, 1);
2768
2769 return 0;
2770}
2771
2772int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2773{
2774 struct f2fs_inode *src, *dst;
2775 nid_t ino = ino_of_node(page);
2776 struct node_info old_ni, new_ni;
2777 struct page *ipage;
2778 int err;
2779
2780 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2781 if (err)
2782 return err;
2783
2784 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2785 return -EINVAL;
2786retry:
2787 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2788 if (!ipage) {
2789 memalloc_retry_wait(GFP_NOFS);
2790 goto retry;
2791 }
2792
2793 /* Should not use this inode from free nid list */
2794 remove_free_nid(sbi, ino);
2795
2796 if (!PageUptodate(ipage))
2797 SetPageUptodate(ipage);
2798 fill_node_footer(ipage, ino, ino, 0, true);
2799 set_cold_node(ipage, false);
2800
2801 src = F2FS_INODE(page);
2802 dst = F2FS_INODE(ipage);
2803
2804 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2805 dst->i_size = 0;
2806 dst->i_blocks = cpu_to_le64(1);
2807 dst->i_links = cpu_to_le32(1);
2808 dst->i_xattr_nid = 0;
2809 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2810 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2811 dst->i_extra_isize = src->i_extra_isize;
2812
2813 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2814 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2815 i_inline_xattr_size))
2816 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2817
2818 if (f2fs_sb_has_project_quota(sbi) &&
2819 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2820 i_projid))
2821 dst->i_projid = src->i_projid;
2822
2823 if (f2fs_sb_has_inode_crtime(sbi) &&
2824 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2825 i_crtime_nsec)) {
2826 dst->i_crtime = src->i_crtime;
2827 dst->i_crtime_nsec = src->i_crtime_nsec;
2828 }
2829 }
2830
2831 new_ni = old_ni;
2832 new_ni.ino = ino;
2833
2834 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2835 WARN_ON(1);
2836 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2837 inc_valid_inode_count(sbi);
2838 set_page_dirty(ipage);
2839 f2fs_put_page(ipage, 1);
2840 return 0;
2841}
2842
2843int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2844 unsigned int segno, struct f2fs_summary_block *sum)
2845{
2846 struct f2fs_node *rn;
2847 struct f2fs_summary *sum_entry;
2848 block_t addr;
2849 int i, idx, last_offset, nrpages;
2850
2851 /* scan the node segment */
2852 last_offset = BLKS_PER_SEG(sbi);
2853 addr = START_BLOCK(sbi, segno);
2854 sum_entry = &sum->entries[0];
2855
2856 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2857 nrpages = bio_max_segs(last_offset - i);
2858
2859 /* readahead node pages */
2860 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2861
2862 for (idx = addr; idx < addr + nrpages; idx++) {
2863 struct page *page = f2fs_get_tmp_page(sbi, idx);
2864
2865 if (IS_ERR(page))
2866 return PTR_ERR(page);
2867
2868 rn = F2FS_NODE(page);
2869 sum_entry->nid = rn->footer.nid;
2870 sum_entry->version = 0;
2871 sum_entry->ofs_in_node = 0;
2872 sum_entry++;
2873 f2fs_put_page(page, 1);
2874 }
2875
2876 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2877 addr + nrpages);
2878 }
2879 return 0;
2880}
2881
2882static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2883{
2884 struct f2fs_nm_info *nm_i = NM_I(sbi);
2885 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2886 struct f2fs_journal *journal = curseg->journal;
2887 int i;
2888
2889 down_write(&curseg->journal_rwsem);
2890 for (i = 0; i < nats_in_cursum(journal); i++) {
2891 struct nat_entry *ne;
2892 struct f2fs_nat_entry raw_ne;
2893 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2894
2895 if (f2fs_check_nid_range(sbi, nid))
2896 continue;
2897
2898 raw_ne = nat_in_journal(journal, i);
2899
2900 ne = __lookup_nat_cache(nm_i, nid);
2901 if (!ne) {
2902 ne = __alloc_nat_entry(sbi, nid, true);
2903 __init_nat_entry(nm_i, ne, &raw_ne, true);
2904 }
2905
2906 /*
2907 * if a free nat in journal has not been used after last
2908 * checkpoint, we should remove it from available nids,
2909 * since later we will add it again.
2910 */
2911 if (!get_nat_flag(ne, IS_DIRTY) &&
2912 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2913 spin_lock(&nm_i->nid_list_lock);
2914 nm_i->available_nids--;
2915 spin_unlock(&nm_i->nid_list_lock);
2916 }
2917
2918 __set_nat_cache_dirty(nm_i, ne);
2919 }
2920 update_nats_in_cursum(journal, -i);
2921 up_write(&curseg->journal_rwsem);
2922}
2923
2924static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2925 struct list_head *head, int max)
2926{
2927 struct nat_entry_set *cur;
2928
2929 if (nes->entry_cnt >= max)
2930 goto add_out;
2931
2932 list_for_each_entry(cur, head, set_list) {
2933 if (cur->entry_cnt >= nes->entry_cnt) {
2934 list_add(&nes->set_list, cur->set_list.prev);
2935 return;
2936 }
2937 }
2938add_out:
2939 list_add_tail(&nes->set_list, head);
2940}
2941
2942static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2943 unsigned int valid)
2944{
2945 if (valid == 0) {
2946 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2947 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2948 return;
2949 }
2950
2951 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2952 if (valid == NAT_ENTRY_PER_BLOCK)
2953 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2954 else
2955 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2956}
2957
2958static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2959 struct page *page)
2960{
2961 struct f2fs_nm_info *nm_i = NM_I(sbi);
2962 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2963 struct f2fs_nat_block *nat_blk = page_address(page);
2964 int valid = 0;
2965 int i = 0;
2966
2967 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2968 return;
2969
2970 if (nat_index == 0) {
2971 valid = 1;
2972 i = 1;
2973 }
2974 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2975 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2976 valid++;
2977 }
2978
2979 __update_nat_bits(nm_i, nat_index, valid);
2980}
2981
2982void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2983{
2984 struct f2fs_nm_info *nm_i = NM_I(sbi);
2985 unsigned int nat_ofs;
2986
2987 f2fs_down_read(&nm_i->nat_tree_lock);
2988
2989 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2990 unsigned int valid = 0, nid_ofs = 0;
2991
2992 /* handle nid zero due to it should never be used */
2993 if (unlikely(nat_ofs == 0)) {
2994 valid = 1;
2995 nid_ofs = 1;
2996 }
2997
2998 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2999 if (!test_bit_le(nid_ofs,
3000 nm_i->free_nid_bitmap[nat_ofs]))
3001 valid++;
3002 }
3003
3004 __update_nat_bits(nm_i, nat_ofs, valid);
3005 }
3006
3007 f2fs_up_read(&nm_i->nat_tree_lock);
3008}
3009
3010static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
3011 struct nat_entry_set *set, struct cp_control *cpc)
3012{
3013 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3014 struct f2fs_journal *journal = curseg->journal;
3015 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
3016 bool to_journal = true;
3017 struct f2fs_nat_block *nat_blk;
3018 struct nat_entry *ne, *cur;
3019 struct page *page = NULL;
3020
3021 /*
3022 * there are two steps to flush nat entries:
3023 * #1, flush nat entries to journal in current hot data summary block.
3024 * #2, flush nat entries to nat page.
3025 */
3026 if ((cpc->reason & CP_UMOUNT) ||
3027 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3028 to_journal = false;
3029
3030 if (to_journal) {
3031 down_write(&curseg->journal_rwsem);
3032 } else {
3033 page = get_next_nat_page(sbi, start_nid);
3034 if (IS_ERR(page))
3035 return PTR_ERR(page);
3036
3037 nat_blk = page_address(page);
3038 f2fs_bug_on(sbi, !nat_blk);
3039 }
3040
3041 /* flush dirty nats in nat entry set */
3042 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3043 struct f2fs_nat_entry *raw_ne;
3044 nid_t nid = nat_get_nid(ne);
3045 int offset;
3046
3047 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3048
3049 if (to_journal) {
3050 offset = f2fs_lookup_journal_in_cursum(journal,
3051 NAT_JOURNAL, nid, 1);
3052 f2fs_bug_on(sbi, offset < 0);
3053 raw_ne = &nat_in_journal(journal, offset);
3054 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3055 } else {
3056 raw_ne = &nat_blk->entries[nid - start_nid];
3057 }
3058 raw_nat_from_node_info(raw_ne, &ne->ni);
3059 nat_reset_flag(ne);
3060 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3061 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3062 add_free_nid(sbi, nid, false, true);
3063 } else {
3064 spin_lock(&NM_I(sbi)->nid_list_lock);
3065 update_free_nid_bitmap(sbi, nid, false, false);
3066 spin_unlock(&NM_I(sbi)->nid_list_lock);
3067 }
3068 }
3069
3070 if (to_journal) {
3071 up_write(&curseg->journal_rwsem);
3072 } else {
3073 update_nat_bits(sbi, start_nid, page);
3074 f2fs_put_page(page, 1);
3075 }
3076
3077 /* Allow dirty nats by node block allocation in write_begin */
3078 if (!set->entry_cnt) {
3079 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3080 kmem_cache_free(nat_entry_set_slab, set);
3081 }
3082 return 0;
3083}
3084
3085/*
3086 * This function is called during the checkpointing process.
3087 */
3088int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3089{
3090 struct f2fs_nm_info *nm_i = NM_I(sbi);
3091 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3092 struct f2fs_journal *journal = curseg->journal;
3093 struct nat_entry_set *setvec[NAT_VEC_SIZE];
3094 struct nat_entry_set *set, *tmp;
3095 unsigned int found;
3096 nid_t set_idx = 0;
3097 LIST_HEAD(sets);
3098 int err = 0;
3099
3100 /*
3101 * during unmount, let's flush nat_bits before checking
3102 * nat_cnt[DIRTY_NAT].
3103 */
3104 if (cpc->reason & CP_UMOUNT) {
3105 f2fs_down_write(&nm_i->nat_tree_lock);
3106 remove_nats_in_journal(sbi);
3107 f2fs_up_write(&nm_i->nat_tree_lock);
3108 }
3109
3110 if (!nm_i->nat_cnt[DIRTY_NAT])
3111 return 0;
3112
3113 f2fs_down_write(&nm_i->nat_tree_lock);
3114
3115 /*
3116 * if there are no enough space in journal to store dirty nat
3117 * entries, remove all entries from journal and merge them
3118 * into nat entry set.
3119 */
3120 if (cpc->reason & CP_UMOUNT ||
3121 !__has_cursum_space(journal,
3122 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3123 remove_nats_in_journal(sbi);
3124
3125 while ((found = __gang_lookup_nat_set(nm_i,
3126 set_idx, NAT_VEC_SIZE, setvec))) {
3127 unsigned idx;
3128
3129 set_idx = setvec[found - 1]->set + 1;
3130 for (idx = 0; idx < found; idx++)
3131 __adjust_nat_entry_set(setvec[idx], &sets,
3132 MAX_NAT_JENTRIES(journal));
3133 }
3134
3135 /* flush dirty nats in nat entry set */
3136 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3137 err = __flush_nat_entry_set(sbi, set, cpc);
3138 if (err)
3139 break;
3140 }
3141
3142 f2fs_up_write(&nm_i->nat_tree_lock);
3143 /* Allow dirty nats by node block allocation in write_begin */
3144
3145 return err;
3146}
3147
3148static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3149{
3150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3151 struct f2fs_nm_info *nm_i = NM_I(sbi);
3152 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3153 unsigned int i;
3154 __u64 cp_ver = cur_cp_version(ckpt);
3155 block_t nat_bits_addr;
3156
3157 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3158 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3159 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3160 if (!nm_i->nat_bits)
3161 return -ENOMEM;
3162
3163 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3164 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3165
3166 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3167 return 0;
3168
3169 nat_bits_addr = __start_cp_addr(sbi) + BLKS_PER_SEG(sbi) -
3170 nm_i->nat_bits_blocks;
3171 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3172 struct page *page;
3173
3174 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3175 if (IS_ERR(page))
3176 return PTR_ERR(page);
3177
3178 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3179 page_address(page), F2FS_BLKSIZE);
3180 f2fs_put_page(page, 1);
3181 }
3182
3183 cp_ver |= (cur_cp_crc(ckpt) << 32);
3184 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3185 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3186 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3187 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3188 return 0;
3189 }
3190
3191 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3192 return 0;
3193}
3194
3195static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3196{
3197 struct f2fs_nm_info *nm_i = NM_I(sbi);
3198 unsigned int i = 0;
3199 nid_t nid, last_nid;
3200
3201 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3202 return;
3203
3204 for (i = 0; i < nm_i->nat_blocks; i++) {
3205 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3206 if (i >= nm_i->nat_blocks)
3207 break;
3208
3209 __set_bit_le(i, nm_i->nat_block_bitmap);
3210
3211 nid = i * NAT_ENTRY_PER_BLOCK;
3212 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3213
3214 spin_lock(&NM_I(sbi)->nid_list_lock);
3215 for (; nid < last_nid; nid++)
3216 update_free_nid_bitmap(sbi, nid, true, true);
3217 spin_unlock(&NM_I(sbi)->nid_list_lock);
3218 }
3219
3220 for (i = 0; i < nm_i->nat_blocks; i++) {
3221 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3222 if (i >= nm_i->nat_blocks)
3223 break;
3224
3225 __set_bit_le(i, nm_i->nat_block_bitmap);
3226 }
3227}
3228
3229static int init_node_manager(struct f2fs_sb_info *sbi)
3230{
3231 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3232 struct f2fs_nm_info *nm_i = NM_I(sbi);
3233 unsigned char *version_bitmap;
3234 unsigned int nat_segs;
3235 int err;
3236
3237 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3238
3239 /* segment_count_nat includes pair segment so divide to 2. */
3240 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3241 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3242 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3243
3244 /* not used nids: 0, node, meta, (and root counted as valid node) */
3245 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3246 F2FS_RESERVED_NODE_NUM;
3247 nm_i->nid_cnt[FREE_NID] = 0;
3248 nm_i->nid_cnt[PREALLOC_NID] = 0;
3249 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3250 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3251 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3252 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3253
3254 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3255 INIT_LIST_HEAD(&nm_i->free_nid_list);
3256 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3257 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3258 INIT_LIST_HEAD(&nm_i->nat_entries);
3259 spin_lock_init(&nm_i->nat_list_lock);
3260
3261 mutex_init(&nm_i->build_lock);
3262 spin_lock_init(&nm_i->nid_list_lock);
3263 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3264
3265 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3266 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3267 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3268 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3269 GFP_KERNEL);
3270 if (!nm_i->nat_bitmap)
3271 return -ENOMEM;
3272
3273 err = __get_nat_bitmaps(sbi);
3274 if (err)
3275 return err;
3276
3277#ifdef CONFIG_F2FS_CHECK_FS
3278 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3279 GFP_KERNEL);
3280 if (!nm_i->nat_bitmap_mir)
3281 return -ENOMEM;
3282#endif
3283
3284 return 0;
3285}
3286
3287static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3288{
3289 struct f2fs_nm_info *nm_i = NM_I(sbi);
3290 int i;
3291
3292 nm_i->free_nid_bitmap =
3293 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3294 nm_i->nat_blocks),
3295 GFP_KERNEL);
3296 if (!nm_i->free_nid_bitmap)
3297 return -ENOMEM;
3298
3299 for (i = 0; i < nm_i->nat_blocks; i++) {
3300 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3301 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3302 if (!nm_i->free_nid_bitmap[i])
3303 return -ENOMEM;
3304 }
3305
3306 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3307 GFP_KERNEL);
3308 if (!nm_i->nat_block_bitmap)
3309 return -ENOMEM;
3310
3311 nm_i->free_nid_count =
3312 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3313 nm_i->nat_blocks),
3314 GFP_KERNEL);
3315 if (!nm_i->free_nid_count)
3316 return -ENOMEM;
3317 return 0;
3318}
3319
3320int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3321{
3322 int err;
3323
3324 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3325 GFP_KERNEL);
3326 if (!sbi->nm_info)
3327 return -ENOMEM;
3328
3329 err = init_node_manager(sbi);
3330 if (err)
3331 return err;
3332
3333 err = init_free_nid_cache(sbi);
3334 if (err)
3335 return err;
3336
3337 /* load free nid status from nat_bits table */
3338 load_free_nid_bitmap(sbi);
3339
3340 return f2fs_build_free_nids(sbi, true, true);
3341}
3342
3343void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3344{
3345 struct f2fs_nm_info *nm_i = NM_I(sbi);
3346 struct free_nid *i, *next_i;
3347 void *vec[NAT_VEC_SIZE];
3348 struct nat_entry **natvec = (struct nat_entry **)vec;
3349 struct nat_entry_set **setvec = (struct nat_entry_set **)vec;
3350 nid_t nid = 0;
3351 unsigned int found;
3352
3353 if (!nm_i)
3354 return;
3355
3356 /* destroy free nid list */
3357 spin_lock(&nm_i->nid_list_lock);
3358 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3359 __remove_free_nid(sbi, i, FREE_NID);
3360 spin_unlock(&nm_i->nid_list_lock);
3361 kmem_cache_free(free_nid_slab, i);
3362 spin_lock(&nm_i->nid_list_lock);
3363 }
3364 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3365 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3366 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3367 spin_unlock(&nm_i->nid_list_lock);
3368
3369 /* destroy nat cache */
3370 f2fs_down_write(&nm_i->nat_tree_lock);
3371 while ((found = __gang_lookup_nat_cache(nm_i,
3372 nid, NAT_VEC_SIZE, natvec))) {
3373 unsigned idx;
3374
3375 nid = nat_get_nid(natvec[found - 1]) + 1;
3376 for (idx = 0; idx < found; idx++) {
3377 spin_lock(&nm_i->nat_list_lock);
3378 list_del(&natvec[idx]->list);
3379 spin_unlock(&nm_i->nat_list_lock);
3380
3381 __del_from_nat_cache(nm_i, natvec[idx]);
3382 }
3383 }
3384 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3385
3386 /* destroy nat set cache */
3387 nid = 0;
3388 memset(vec, 0, sizeof(void *) * NAT_VEC_SIZE);
3389 while ((found = __gang_lookup_nat_set(nm_i,
3390 nid, NAT_VEC_SIZE, setvec))) {
3391 unsigned idx;
3392
3393 nid = setvec[found - 1]->set + 1;
3394 for (idx = 0; idx < found; idx++) {
3395 /* entry_cnt is not zero, when cp_error was occurred */
3396 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3397 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3398 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3399 }
3400 }
3401 f2fs_up_write(&nm_i->nat_tree_lock);
3402
3403 kvfree(nm_i->nat_block_bitmap);
3404 if (nm_i->free_nid_bitmap) {
3405 int i;
3406
3407 for (i = 0; i < nm_i->nat_blocks; i++)
3408 kvfree(nm_i->free_nid_bitmap[i]);
3409 kvfree(nm_i->free_nid_bitmap);
3410 }
3411 kvfree(nm_i->free_nid_count);
3412
3413 kvfree(nm_i->nat_bitmap);
3414 kvfree(nm_i->nat_bits);
3415#ifdef CONFIG_F2FS_CHECK_FS
3416 kvfree(nm_i->nat_bitmap_mir);
3417#endif
3418 sbi->nm_info = NULL;
3419 kfree(nm_i);
3420}
3421
3422int __init f2fs_create_node_manager_caches(void)
3423{
3424 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3425 sizeof(struct nat_entry));
3426 if (!nat_entry_slab)
3427 goto fail;
3428
3429 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3430 sizeof(struct free_nid));
3431 if (!free_nid_slab)
3432 goto destroy_nat_entry;
3433
3434 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3435 sizeof(struct nat_entry_set));
3436 if (!nat_entry_set_slab)
3437 goto destroy_free_nid;
3438
3439 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3440 sizeof(struct fsync_node_entry));
3441 if (!fsync_node_entry_slab)
3442 goto destroy_nat_entry_set;
3443 return 0;
3444
3445destroy_nat_entry_set:
3446 kmem_cache_destroy(nat_entry_set_slab);
3447destroy_free_nid:
3448 kmem_cache_destroy(free_nid_slab);
3449destroy_nat_entry:
3450 kmem_cache_destroy(nat_entry_slab);
3451fail:
3452 return -ENOMEM;
3453}
3454
3455void f2fs_destroy_node_manager_caches(void)
3456{
3457 kmem_cache_destroy(fsync_node_entry_slab);
3458 kmem_cache_destroy(nat_entry_set_slab);
3459 kmem_cache_destroy(free_nid_slab);
3460 kmem_cache_destroy(nat_entry_slab);
3461}