Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include <trace/events/f2fs.h>
21
22#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23
24static struct kmem_cache *nat_entry_slab;
25static struct kmem_cache *free_nid_slab;
26static struct kmem_cache *nat_entry_set_slab;
27static struct kmem_cache *fsync_node_entry_slab;
28
29/*
30 * Check whether the given nid is within node id range.
31 */
32int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33{
34 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 set_sbi_flag(sbi, SBI_NEED_FSCK);
36 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 __func__, nid);
38 return -EFSCORRUPTED;
39 }
40 return 0;
41}
42
43bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44{
45 struct f2fs_nm_info *nm_i = NM_I(sbi);
46 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 if (!nm_i)
53 return true;
54
55 si_meminfo(&val);
56
57 /* only uses low memory */
58 avail_ram = val.totalram - val.totalhigh;
59
60 /*
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
62 */
63 if (type == FREE_NIDS) {
64 mem_size = (nm_i->nid_cnt[FREE_NID] *
65 sizeof(struct free_nid)) >> PAGE_SHIFT;
66 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 } else if (type == NAT_ENTRIES) {
68 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 if (excess_cached_nats(sbi))
72 res = false;
73 } else if (type == DIRTY_DENTS) {
74 if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 return false;
76 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 } else if (type == INO_ENTRIES) {
79 int i;
80
81 for (i = 0; i < MAX_INO_ENTRY; i++)
82 mem_size += sbi->im[i].ino_num *
83 sizeof(struct ino_entry);
84 mem_size >>= PAGE_SHIFT;
85 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 } else if (type == EXTENT_CACHE) {
87 mem_size = (atomic_read(&sbi->total_ext_tree) *
88 sizeof(struct extent_tree) +
89 atomic_read(&sbi->total_ext_node) *
90 sizeof(struct extent_node)) >> PAGE_SHIFT;
91 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
92 } else if (type == INMEM_PAGES) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
95 res = mem_size < (val.totalram / 5);
96 } else if (type == DISCARD_CACHE) {
97 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
98 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
99 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
100 } else if (type == COMPRESS_PAGE) {
101#ifdef CONFIG_F2FS_FS_COMPRESSION
102 unsigned long free_ram = val.freeram;
103
104 /*
105 * free memory is lower than watermark or cached page count
106 * exceed threshold, deny caching compress page.
107 */
108 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
109 (COMPRESS_MAPPING(sbi)->nrpages <
110 free_ram * sbi->compress_percent / 100);
111#else
112 res = false;
113#endif
114 } else {
115 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
116 return true;
117 }
118 return res;
119}
120
121static void clear_node_page_dirty(struct page *page)
122{
123 if (PageDirty(page)) {
124 f2fs_clear_page_cache_dirty_tag(page);
125 clear_page_dirty_for_io(page);
126 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
127 }
128 ClearPageUptodate(page);
129}
130
131static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
132{
133 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
134}
135
136static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
137{
138 struct page *src_page;
139 struct page *dst_page;
140 pgoff_t dst_off;
141 void *src_addr;
142 void *dst_addr;
143 struct f2fs_nm_info *nm_i = NM_I(sbi);
144
145 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
146
147 /* get current nat block page with lock */
148 src_page = get_current_nat_page(sbi, nid);
149 if (IS_ERR(src_page))
150 return src_page;
151 dst_page = f2fs_grab_meta_page(sbi, dst_off);
152 f2fs_bug_on(sbi, PageDirty(src_page));
153
154 src_addr = page_address(src_page);
155 dst_addr = page_address(dst_page);
156 memcpy(dst_addr, src_addr, PAGE_SIZE);
157 set_page_dirty(dst_page);
158 f2fs_put_page(src_page, 1);
159
160 set_to_next_nat(nm_i, nid);
161
162 return dst_page;
163}
164
165static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
166{
167 struct nat_entry *new;
168
169 if (no_fail)
170 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
171 else
172 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
173 if (new) {
174 nat_set_nid(new, nid);
175 nat_reset_flag(new);
176 }
177 return new;
178}
179
180static void __free_nat_entry(struct nat_entry *e)
181{
182 kmem_cache_free(nat_entry_slab, e);
183}
184
185/* must be locked by nat_tree_lock */
186static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
187 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
188{
189 if (no_fail)
190 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
191 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
192 return NULL;
193
194 if (raw_ne)
195 node_info_from_raw_nat(&ne->ni, raw_ne);
196
197 spin_lock(&nm_i->nat_list_lock);
198 list_add_tail(&ne->list, &nm_i->nat_entries);
199 spin_unlock(&nm_i->nat_list_lock);
200
201 nm_i->nat_cnt[TOTAL_NAT]++;
202 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
203 return ne;
204}
205
206static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
207{
208 struct nat_entry *ne;
209
210 ne = radix_tree_lookup(&nm_i->nat_root, n);
211
212 /* for recent accessed nat entry, move it to tail of lru list */
213 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
214 spin_lock(&nm_i->nat_list_lock);
215 if (!list_empty(&ne->list))
216 list_move_tail(&ne->list, &nm_i->nat_entries);
217 spin_unlock(&nm_i->nat_list_lock);
218 }
219
220 return ne;
221}
222
223static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
224 nid_t start, unsigned int nr, struct nat_entry **ep)
225{
226 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
227}
228
229static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
230{
231 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
232 nm_i->nat_cnt[TOTAL_NAT]--;
233 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
234 __free_nat_entry(e);
235}
236
237static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
238 struct nat_entry *ne)
239{
240 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
241 struct nat_entry_set *head;
242
243 head = radix_tree_lookup(&nm_i->nat_set_root, set);
244 if (!head) {
245 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
246
247 INIT_LIST_HEAD(&head->entry_list);
248 INIT_LIST_HEAD(&head->set_list);
249 head->set = set;
250 head->entry_cnt = 0;
251 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
252 }
253 return head;
254}
255
256static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
257 struct nat_entry *ne)
258{
259 struct nat_entry_set *head;
260 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
261
262 if (!new_ne)
263 head = __grab_nat_entry_set(nm_i, ne);
264
265 /*
266 * update entry_cnt in below condition:
267 * 1. update NEW_ADDR to valid block address;
268 * 2. update old block address to new one;
269 */
270 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
271 !get_nat_flag(ne, IS_DIRTY)))
272 head->entry_cnt++;
273
274 set_nat_flag(ne, IS_PREALLOC, new_ne);
275
276 if (get_nat_flag(ne, IS_DIRTY))
277 goto refresh_list;
278
279 nm_i->nat_cnt[DIRTY_NAT]++;
280 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
281 set_nat_flag(ne, IS_DIRTY, true);
282refresh_list:
283 spin_lock(&nm_i->nat_list_lock);
284 if (new_ne)
285 list_del_init(&ne->list);
286 else
287 list_move_tail(&ne->list, &head->entry_list);
288 spin_unlock(&nm_i->nat_list_lock);
289}
290
291static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
292 struct nat_entry_set *set, struct nat_entry *ne)
293{
294 spin_lock(&nm_i->nat_list_lock);
295 list_move_tail(&ne->list, &nm_i->nat_entries);
296 spin_unlock(&nm_i->nat_list_lock);
297
298 set_nat_flag(ne, IS_DIRTY, false);
299 set->entry_cnt--;
300 nm_i->nat_cnt[DIRTY_NAT]--;
301 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
302}
303
304static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
305 nid_t start, unsigned int nr, struct nat_entry_set **ep)
306{
307 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
308 start, nr);
309}
310
311bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
312{
313 return NODE_MAPPING(sbi) == page->mapping &&
314 IS_DNODE(page) && is_cold_node(page);
315}
316
317void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
318{
319 spin_lock_init(&sbi->fsync_node_lock);
320 INIT_LIST_HEAD(&sbi->fsync_node_list);
321 sbi->fsync_seg_id = 0;
322 sbi->fsync_node_num = 0;
323}
324
325static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
326 struct page *page)
327{
328 struct fsync_node_entry *fn;
329 unsigned long flags;
330 unsigned int seq_id;
331
332 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
333
334 get_page(page);
335 fn->page = page;
336 INIT_LIST_HEAD(&fn->list);
337
338 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
339 list_add_tail(&fn->list, &sbi->fsync_node_list);
340 fn->seq_id = sbi->fsync_seg_id++;
341 seq_id = fn->seq_id;
342 sbi->fsync_node_num++;
343 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
344
345 return seq_id;
346}
347
348void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
349{
350 struct fsync_node_entry *fn;
351 unsigned long flags;
352
353 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
354 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
355 if (fn->page == page) {
356 list_del(&fn->list);
357 sbi->fsync_node_num--;
358 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
359 kmem_cache_free(fsync_node_entry_slab, fn);
360 put_page(page);
361 return;
362 }
363 }
364 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
365 f2fs_bug_on(sbi, 1);
366}
367
368void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
369{
370 unsigned long flags;
371
372 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
373 sbi->fsync_seg_id = 0;
374 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
375}
376
377int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
378{
379 struct f2fs_nm_info *nm_i = NM_I(sbi);
380 struct nat_entry *e;
381 bool need = false;
382
383 down_read(&nm_i->nat_tree_lock);
384 e = __lookup_nat_cache(nm_i, nid);
385 if (e) {
386 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
387 !get_nat_flag(e, HAS_FSYNCED_INODE))
388 need = true;
389 }
390 up_read(&nm_i->nat_tree_lock);
391 return need;
392}
393
394bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
395{
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 struct nat_entry *e;
398 bool is_cp = true;
399
400 down_read(&nm_i->nat_tree_lock);
401 e = __lookup_nat_cache(nm_i, nid);
402 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
403 is_cp = false;
404 up_read(&nm_i->nat_tree_lock);
405 return is_cp;
406}
407
408bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
409{
410 struct f2fs_nm_info *nm_i = NM_I(sbi);
411 struct nat_entry *e;
412 bool need_update = true;
413
414 down_read(&nm_i->nat_tree_lock);
415 e = __lookup_nat_cache(nm_i, ino);
416 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
417 (get_nat_flag(e, IS_CHECKPOINTED) ||
418 get_nat_flag(e, HAS_FSYNCED_INODE)))
419 need_update = false;
420 up_read(&nm_i->nat_tree_lock);
421 return need_update;
422}
423
424/* must be locked by nat_tree_lock */
425static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
426 struct f2fs_nat_entry *ne)
427{
428 struct f2fs_nm_info *nm_i = NM_I(sbi);
429 struct nat_entry *new, *e;
430
431 new = __alloc_nat_entry(nid, false);
432 if (!new)
433 return;
434
435 down_write(&nm_i->nat_tree_lock);
436 e = __lookup_nat_cache(nm_i, nid);
437 if (!e)
438 e = __init_nat_entry(nm_i, new, ne, false);
439 else
440 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
441 nat_get_blkaddr(e) !=
442 le32_to_cpu(ne->block_addr) ||
443 nat_get_version(e) != ne->version);
444 up_write(&nm_i->nat_tree_lock);
445 if (e != new)
446 __free_nat_entry(new);
447}
448
449static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
450 block_t new_blkaddr, bool fsync_done)
451{
452 struct f2fs_nm_info *nm_i = NM_I(sbi);
453 struct nat_entry *e;
454 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
455
456 down_write(&nm_i->nat_tree_lock);
457 e = __lookup_nat_cache(nm_i, ni->nid);
458 if (!e) {
459 e = __init_nat_entry(nm_i, new, NULL, true);
460 copy_node_info(&e->ni, ni);
461 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
462 } else if (new_blkaddr == NEW_ADDR) {
463 /*
464 * when nid is reallocated,
465 * previous nat entry can be remained in nat cache.
466 * So, reinitialize it with new information.
467 */
468 copy_node_info(&e->ni, ni);
469 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
470 }
471 /* let's free early to reduce memory consumption */
472 if (e != new)
473 __free_nat_entry(new);
474
475 /* sanity check */
476 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
477 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
478 new_blkaddr == NULL_ADDR);
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
480 new_blkaddr == NEW_ADDR);
481 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
482 new_blkaddr == NEW_ADDR);
483
484 /* increment version no as node is removed */
485 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
486 unsigned char version = nat_get_version(e);
487
488 nat_set_version(e, inc_node_version(version));
489 }
490
491 /* change address */
492 nat_set_blkaddr(e, new_blkaddr);
493 if (!__is_valid_data_blkaddr(new_blkaddr))
494 set_nat_flag(e, IS_CHECKPOINTED, false);
495 __set_nat_cache_dirty(nm_i, e);
496
497 /* update fsync_mark if its inode nat entry is still alive */
498 if (ni->nid != ni->ino)
499 e = __lookup_nat_cache(nm_i, ni->ino);
500 if (e) {
501 if (fsync_done && ni->nid == ni->ino)
502 set_nat_flag(e, HAS_FSYNCED_INODE, true);
503 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
504 }
505 up_write(&nm_i->nat_tree_lock);
506}
507
508int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
509{
510 struct f2fs_nm_info *nm_i = NM_I(sbi);
511 int nr = nr_shrink;
512
513 if (!down_write_trylock(&nm_i->nat_tree_lock))
514 return 0;
515
516 spin_lock(&nm_i->nat_list_lock);
517 while (nr_shrink) {
518 struct nat_entry *ne;
519
520 if (list_empty(&nm_i->nat_entries))
521 break;
522
523 ne = list_first_entry(&nm_i->nat_entries,
524 struct nat_entry, list);
525 list_del(&ne->list);
526 spin_unlock(&nm_i->nat_list_lock);
527
528 __del_from_nat_cache(nm_i, ne);
529 nr_shrink--;
530
531 spin_lock(&nm_i->nat_list_lock);
532 }
533 spin_unlock(&nm_i->nat_list_lock);
534
535 up_write(&nm_i->nat_tree_lock);
536 return nr - nr_shrink;
537}
538
539int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
540 struct node_info *ni)
541{
542 struct f2fs_nm_info *nm_i = NM_I(sbi);
543 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
544 struct f2fs_journal *journal = curseg->journal;
545 nid_t start_nid = START_NID(nid);
546 struct f2fs_nat_block *nat_blk;
547 struct page *page = NULL;
548 struct f2fs_nat_entry ne;
549 struct nat_entry *e;
550 pgoff_t index;
551 block_t blkaddr;
552 int i;
553
554 ni->nid = nid;
555
556 /* Check nat cache */
557 down_read(&nm_i->nat_tree_lock);
558 e = __lookup_nat_cache(nm_i, nid);
559 if (e) {
560 ni->ino = nat_get_ino(e);
561 ni->blk_addr = nat_get_blkaddr(e);
562 ni->version = nat_get_version(e);
563 up_read(&nm_i->nat_tree_lock);
564 return 0;
565 }
566
567 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
568
569 /* Check current segment summary */
570 down_read(&curseg->journal_rwsem);
571 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
572 if (i >= 0) {
573 ne = nat_in_journal(journal, i);
574 node_info_from_raw_nat(ni, &ne);
575 }
576 up_read(&curseg->journal_rwsem);
577 if (i >= 0) {
578 up_read(&nm_i->nat_tree_lock);
579 goto cache;
580 }
581
582 /* Fill node_info from nat page */
583 index = current_nat_addr(sbi, nid);
584 up_read(&nm_i->nat_tree_lock);
585
586 page = f2fs_get_meta_page(sbi, index);
587 if (IS_ERR(page))
588 return PTR_ERR(page);
589
590 nat_blk = (struct f2fs_nat_block *)page_address(page);
591 ne = nat_blk->entries[nid - start_nid];
592 node_info_from_raw_nat(ni, &ne);
593 f2fs_put_page(page, 1);
594cache:
595 blkaddr = le32_to_cpu(ne.block_addr);
596 if (__is_valid_data_blkaddr(blkaddr) &&
597 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
598 return -EFAULT;
599
600 /* cache nat entry */
601 cache_nat_entry(sbi, nid, &ne);
602 return 0;
603}
604
605/*
606 * readahead MAX_RA_NODE number of node pages.
607 */
608static void f2fs_ra_node_pages(struct page *parent, int start, int n)
609{
610 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
611 struct blk_plug plug;
612 int i, end;
613 nid_t nid;
614
615 blk_start_plug(&plug);
616
617 /* Then, try readahead for siblings of the desired node */
618 end = start + n;
619 end = min(end, NIDS_PER_BLOCK);
620 for (i = start; i < end; i++) {
621 nid = get_nid(parent, i, false);
622 f2fs_ra_node_page(sbi, nid);
623 }
624
625 blk_finish_plug(&plug);
626}
627
628pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
629{
630 const long direct_index = ADDRS_PER_INODE(dn->inode);
631 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
632 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
633 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
634 int cur_level = dn->cur_level;
635 int max_level = dn->max_level;
636 pgoff_t base = 0;
637
638 if (!dn->max_level)
639 return pgofs + 1;
640
641 while (max_level-- > cur_level)
642 skipped_unit *= NIDS_PER_BLOCK;
643
644 switch (dn->max_level) {
645 case 3:
646 base += 2 * indirect_blks;
647 fallthrough;
648 case 2:
649 base += 2 * direct_blks;
650 fallthrough;
651 case 1:
652 base += direct_index;
653 break;
654 default:
655 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
656 }
657
658 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
659}
660
661/*
662 * The maximum depth is four.
663 * Offset[0] will have raw inode offset.
664 */
665static int get_node_path(struct inode *inode, long block,
666 int offset[4], unsigned int noffset[4])
667{
668 const long direct_index = ADDRS_PER_INODE(inode);
669 const long direct_blks = ADDRS_PER_BLOCK(inode);
670 const long dptrs_per_blk = NIDS_PER_BLOCK;
671 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
672 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
673 int n = 0;
674 int level = 0;
675
676 noffset[0] = 0;
677
678 if (block < direct_index) {
679 offset[n] = block;
680 goto got;
681 }
682 block -= direct_index;
683 if (block < direct_blks) {
684 offset[n++] = NODE_DIR1_BLOCK;
685 noffset[n] = 1;
686 offset[n] = block;
687 level = 1;
688 goto got;
689 }
690 block -= direct_blks;
691 if (block < direct_blks) {
692 offset[n++] = NODE_DIR2_BLOCK;
693 noffset[n] = 2;
694 offset[n] = block;
695 level = 1;
696 goto got;
697 }
698 block -= direct_blks;
699 if (block < indirect_blks) {
700 offset[n++] = NODE_IND1_BLOCK;
701 noffset[n] = 3;
702 offset[n++] = block / direct_blks;
703 noffset[n] = 4 + offset[n - 1];
704 offset[n] = block % direct_blks;
705 level = 2;
706 goto got;
707 }
708 block -= indirect_blks;
709 if (block < indirect_blks) {
710 offset[n++] = NODE_IND2_BLOCK;
711 noffset[n] = 4 + dptrs_per_blk;
712 offset[n++] = block / direct_blks;
713 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
714 offset[n] = block % direct_blks;
715 level = 2;
716 goto got;
717 }
718 block -= indirect_blks;
719 if (block < dindirect_blks) {
720 offset[n++] = NODE_DIND_BLOCK;
721 noffset[n] = 5 + (dptrs_per_blk * 2);
722 offset[n++] = block / indirect_blks;
723 noffset[n] = 6 + (dptrs_per_blk * 2) +
724 offset[n - 1] * (dptrs_per_blk + 1);
725 offset[n++] = (block / direct_blks) % dptrs_per_blk;
726 noffset[n] = 7 + (dptrs_per_blk * 2) +
727 offset[n - 2] * (dptrs_per_blk + 1) +
728 offset[n - 1];
729 offset[n] = block % direct_blks;
730 level = 3;
731 goto got;
732 } else {
733 return -E2BIG;
734 }
735got:
736 return level;
737}
738
739/*
740 * Caller should call f2fs_put_dnode(dn).
741 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
742 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
743 */
744int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
745{
746 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
747 struct page *npage[4];
748 struct page *parent = NULL;
749 int offset[4];
750 unsigned int noffset[4];
751 nid_t nids[4];
752 int level, i = 0;
753 int err = 0;
754
755 level = get_node_path(dn->inode, index, offset, noffset);
756 if (level < 0)
757 return level;
758
759 nids[0] = dn->inode->i_ino;
760 npage[0] = dn->inode_page;
761
762 if (!npage[0]) {
763 npage[0] = f2fs_get_node_page(sbi, nids[0]);
764 if (IS_ERR(npage[0]))
765 return PTR_ERR(npage[0]);
766 }
767
768 /* if inline_data is set, should not report any block indices */
769 if (f2fs_has_inline_data(dn->inode) && index) {
770 err = -ENOENT;
771 f2fs_put_page(npage[0], 1);
772 goto release_out;
773 }
774
775 parent = npage[0];
776 if (level != 0)
777 nids[1] = get_nid(parent, offset[0], true);
778 dn->inode_page = npage[0];
779 dn->inode_page_locked = true;
780
781 /* get indirect or direct nodes */
782 for (i = 1; i <= level; i++) {
783 bool done = false;
784
785 if (!nids[i] && mode == ALLOC_NODE) {
786 /* alloc new node */
787 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
788 err = -ENOSPC;
789 goto release_pages;
790 }
791
792 dn->nid = nids[i];
793 npage[i] = f2fs_new_node_page(dn, noffset[i]);
794 if (IS_ERR(npage[i])) {
795 f2fs_alloc_nid_failed(sbi, nids[i]);
796 err = PTR_ERR(npage[i]);
797 goto release_pages;
798 }
799
800 set_nid(parent, offset[i - 1], nids[i], i == 1);
801 f2fs_alloc_nid_done(sbi, nids[i]);
802 done = true;
803 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
804 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
805 if (IS_ERR(npage[i])) {
806 err = PTR_ERR(npage[i]);
807 goto release_pages;
808 }
809 done = true;
810 }
811 if (i == 1) {
812 dn->inode_page_locked = false;
813 unlock_page(parent);
814 } else {
815 f2fs_put_page(parent, 1);
816 }
817
818 if (!done) {
819 npage[i] = f2fs_get_node_page(sbi, nids[i]);
820 if (IS_ERR(npage[i])) {
821 err = PTR_ERR(npage[i]);
822 f2fs_put_page(npage[0], 0);
823 goto release_out;
824 }
825 }
826 if (i < level) {
827 parent = npage[i];
828 nids[i + 1] = get_nid(parent, offset[i], false);
829 }
830 }
831 dn->nid = nids[level];
832 dn->ofs_in_node = offset[level];
833 dn->node_page = npage[level];
834 dn->data_blkaddr = f2fs_data_blkaddr(dn);
835 return 0;
836
837release_pages:
838 f2fs_put_page(parent, 1);
839 if (i > 1)
840 f2fs_put_page(npage[0], 0);
841release_out:
842 dn->inode_page = NULL;
843 dn->node_page = NULL;
844 if (err == -ENOENT) {
845 dn->cur_level = i;
846 dn->max_level = level;
847 dn->ofs_in_node = offset[level];
848 }
849 return err;
850}
851
852static int truncate_node(struct dnode_of_data *dn)
853{
854 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
855 struct node_info ni;
856 int err;
857 pgoff_t index;
858
859 err = f2fs_get_node_info(sbi, dn->nid, &ni);
860 if (err)
861 return err;
862
863 /* Deallocate node address */
864 f2fs_invalidate_blocks(sbi, ni.blk_addr);
865 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
866 set_node_addr(sbi, &ni, NULL_ADDR, false);
867
868 if (dn->nid == dn->inode->i_ino) {
869 f2fs_remove_orphan_inode(sbi, dn->nid);
870 dec_valid_inode_count(sbi);
871 f2fs_inode_synced(dn->inode);
872 }
873
874 clear_node_page_dirty(dn->node_page);
875 set_sbi_flag(sbi, SBI_IS_DIRTY);
876
877 index = dn->node_page->index;
878 f2fs_put_page(dn->node_page, 1);
879
880 invalidate_mapping_pages(NODE_MAPPING(sbi),
881 index, index);
882
883 dn->node_page = NULL;
884 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
885
886 return 0;
887}
888
889static int truncate_dnode(struct dnode_of_data *dn)
890{
891 struct page *page;
892 int err;
893
894 if (dn->nid == 0)
895 return 1;
896
897 /* get direct node */
898 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
899 if (PTR_ERR(page) == -ENOENT)
900 return 1;
901 else if (IS_ERR(page))
902 return PTR_ERR(page);
903
904 /* Make dnode_of_data for parameter */
905 dn->node_page = page;
906 dn->ofs_in_node = 0;
907 f2fs_truncate_data_blocks(dn);
908 err = truncate_node(dn);
909 if (err)
910 return err;
911
912 return 1;
913}
914
915static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
916 int ofs, int depth)
917{
918 struct dnode_of_data rdn = *dn;
919 struct page *page;
920 struct f2fs_node *rn;
921 nid_t child_nid;
922 unsigned int child_nofs;
923 int freed = 0;
924 int i, ret;
925
926 if (dn->nid == 0)
927 return NIDS_PER_BLOCK + 1;
928
929 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
930
931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 if (IS_ERR(page)) {
933 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
934 return PTR_ERR(page);
935 }
936
937 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
938
939 rn = F2FS_NODE(page);
940 if (depth < 3) {
941 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
942 child_nid = le32_to_cpu(rn->in.nid[i]);
943 if (child_nid == 0)
944 continue;
945 rdn.nid = child_nid;
946 ret = truncate_dnode(&rdn);
947 if (ret < 0)
948 goto out_err;
949 if (set_nid(page, i, 0, false))
950 dn->node_changed = true;
951 }
952 } else {
953 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
954 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
955 child_nid = le32_to_cpu(rn->in.nid[i]);
956 if (child_nid == 0) {
957 child_nofs += NIDS_PER_BLOCK + 1;
958 continue;
959 }
960 rdn.nid = child_nid;
961 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
962 if (ret == (NIDS_PER_BLOCK + 1)) {
963 if (set_nid(page, i, 0, false))
964 dn->node_changed = true;
965 child_nofs += ret;
966 } else if (ret < 0 && ret != -ENOENT) {
967 goto out_err;
968 }
969 }
970 freed = child_nofs;
971 }
972
973 if (!ofs) {
974 /* remove current indirect node */
975 dn->node_page = page;
976 ret = truncate_node(dn);
977 if (ret)
978 goto out_err;
979 freed++;
980 } else {
981 f2fs_put_page(page, 1);
982 }
983 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
984 return freed;
985
986out_err:
987 f2fs_put_page(page, 1);
988 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
989 return ret;
990}
991
992static int truncate_partial_nodes(struct dnode_of_data *dn,
993 struct f2fs_inode *ri, int *offset, int depth)
994{
995 struct page *pages[2];
996 nid_t nid[3];
997 nid_t child_nid;
998 int err = 0;
999 int i;
1000 int idx = depth - 2;
1001
1002 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1003 if (!nid[0])
1004 return 0;
1005
1006 /* get indirect nodes in the path */
1007 for (i = 0; i < idx + 1; i++) {
1008 /* reference count'll be increased */
1009 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1010 if (IS_ERR(pages[i])) {
1011 err = PTR_ERR(pages[i]);
1012 idx = i - 1;
1013 goto fail;
1014 }
1015 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1016 }
1017
1018 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1019
1020 /* free direct nodes linked to a partial indirect node */
1021 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1022 child_nid = get_nid(pages[idx], i, false);
1023 if (!child_nid)
1024 continue;
1025 dn->nid = child_nid;
1026 err = truncate_dnode(dn);
1027 if (err < 0)
1028 goto fail;
1029 if (set_nid(pages[idx], i, 0, false))
1030 dn->node_changed = true;
1031 }
1032
1033 if (offset[idx + 1] == 0) {
1034 dn->node_page = pages[idx];
1035 dn->nid = nid[idx];
1036 err = truncate_node(dn);
1037 if (err)
1038 goto fail;
1039 } else {
1040 f2fs_put_page(pages[idx], 1);
1041 }
1042 offset[idx]++;
1043 offset[idx + 1] = 0;
1044 idx--;
1045fail:
1046 for (i = idx; i >= 0; i--)
1047 f2fs_put_page(pages[i], 1);
1048
1049 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1050
1051 return err;
1052}
1053
1054/*
1055 * All the block addresses of data and nodes should be nullified.
1056 */
1057int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1058{
1059 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1060 int err = 0, cont = 1;
1061 int level, offset[4], noffset[4];
1062 unsigned int nofs = 0;
1063 struct f2fs_inode *ri;
1064 struct dnode_of_data dn;
1065 struct page *page;
1066
1067 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1068
1069 level = get_node_path(inode, from, offset, noffset);
1070 if (level < 0) {
1071 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1072 return level;
1073 }
1074
1075 page = f2fs_get_node_page(sbi, inode->i_ino);
1076 if (IS_ERR(page)) {
1077 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1078 return PTR_ERR(page);
1079 }
1080
1081 set_new_dnode(&dn, inode, page, NULL, 0);
1082 unlock_page(page);
1083
1084 ri = F2FS_INODE(page);
1085 switch (level) {
1086 case 0:
1087 case 1:
1088 nofs = noffset[1];
1089 break;
1090 case 2:
1091 nofs = noffset[1];
1092 if (!offset[level - 1])
1093 goto skip_partial;
1094 err = truncate_partial_nodes(&dn, ri, offset, level);
1095 if (err < 0 && err != -ENOENT)
1096 goto fail;
1097 nofs += 1 + NIDS_PER_BLOCK;
1098 break;
1099 case 3:
1100 nofs = 5 + 2 * NIDS_PER_BLOCK;
1101 if (!offset[level - 1])
1102 goto skip_partial;
1103 err = truncate_partial_nodes(&dn, ri, offset, level);
1104 if (err < 0 && err != -ENOENT)
1105 goto fail;
1106 break;
1107 default:
1108 BUG();
1109 }
1110
1111skip_partial:
1112 while (cont) {
1113 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1114 switch (offset[0]) {
1115 case NODE_DIR1_BLOCK:
1116 case NODE_DIR2_BLOCK:
1117 err = truncate_dnode(&dn);
1118 break;
1119
1120 case NODE_IND1_BLOCK:
1121 case NODE_IND2_BLOCK:
1122 err = truncate_nodes(&dn, nofs, offset[1], 2);
1123 break;
1124
1125 case NODE_DIND_BLOCK:
1126 err = truncate_nodes(&dn, nofs, offset[1], 3);
1127 cont = 0;
1128 break;
1129
1130 default:
1131 BUG();
1132 }
1133 if (err < 0 && err != -ENOENT)
1134 goto fail;
1135 if (offset[1] == 0 &&
1136 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1137 lock_page(page);
1138 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1139 f2fs_wait_on_page_writeback(page, NODE, true, true);
1140 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1141 set_page_dirty(page);
1142 unlock_page(page);
1143 }
1144 offset[1] = 0;
1145 offset[0]++;
1146 nofs += err;
1147 }
1148fail:
1149 f2fs_put_page(page, 0);
1150 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1151 return err > 0 ? 0 : err;
1152}
1153
1154/* caller must lock inode page */
1155int f2fs_truncate_xattr_node(struct inode *inode)
1156{
1157 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1158 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1159 struct dnode_of_data dn;
1160 struct page *npage;
1161 int err;
1162
1163 if (!nid)
1164 return 0;
1165
1166 npage = f2fs_get_node_page(sbi, nid);
1167 if (IS_ERR(npage))
1168 return PTR_ERR(npage);
1169
1170 set_new_dnode(&dn, inode, NULL, npage, nid);
1171 err = truncate_node(&dn);
1172 if (err) {
1173 f2fs_put_page(npage, 1);
1174 return err;
1175 }
1176
1177 f2fs_i_xnid_write(inode, 0);
1178
1179 return 0;
1180}
1181
1182/*
1183 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1184 * f2fs_unlock_op().
1185 */
1186int f2fs_remove_inode_page(struct inode *inode)
1187{
1188 struct dnode_of_data dn;
1189 int err;
1190
1191 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1192 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1193 if (err)
1194 return err;
1195
1196 err = f2fs_truncate_xattr_node(inode);
1197 if (err) {
1198 f2fs_put_dnode(&dn);
1199 return err;
1200 }
1201
1202 /* remove potential inline_data blocks */
1203 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1204 S_ISLNK(inode->i_mode))
1205 f2fs_truncate_data_blocks_range(&dn, 1);
1206
1207 /* 0 is possible, after f2fs_new_inode() has failed */
1208 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1209 f2fs_put_dnode(&dn);
1210 return -EIO;
1211 }
1212
1213 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1214 f2fs_warn(F2FS_I_SB(inode),
1215 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1216 inode->i_ino, (unsigned long long)inode->i_blocks);
1217 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1218 }
1219
1220 /* will put inode & node pages */
1221 err = truncate_node(&dn);
1222 if (err) {
1223 f2fs_put_dnode(&dn);
1224 return err;
1225 }
1226 return 0;
1227}
1228
1229struct page *f2fs_new_inode_page(struct inode *inode)
1230{
1231 struct dnode_of_data dn;
1232
1233 /* allocate inode page for new inode */
1234 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1235
1236 /* caller should f2fs_put_page(page, 1); */
1237 return f2fs_new_node_page(&dn, 0);
1238}
1239
1240struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1241{
1242 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1243 struct node_info new_ni;
1244 struct page *page;
1245 int err;
1246
1247 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1248 return ERR_PTR(-EPERM);
1249
1250 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1251 if (!page)
1252 return ERR_PTR(-ENOMEM);
1253
1254 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1255 goto fail;
1256
1257#ifdef CONFIG_F2FS_CHECK_FS
1258 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1259 if (err) {
1260 dec_valid_node_count(sbi, dn->inode, !ofs);
1261 goto fail;
1262 }
1263 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1264#endif
1265 new_ni.nid = dn->nid;
1266 new_ni.ino = dn->inode->i_ino;
1267 new_ni.blk_addr = NULL_ADDR;
1268 new_ni.flag = 0;
1269 new_ni.version = 0;
1270 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1271
1272 f2fs_wait_on_page_writeback(page, NODE, true, true);
1273 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1274 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1275 if (!PageUptodate(page))
1276 SetPageUptodate(page);
1277 if (set_page_dirty(page))
1278 dn->node_changed = true;
1279
1280 if (f2fs_has_xattr_block(ofs))
1281 f2fs_i_xnid_write(dn->inode, dn->nid);
1282
1283 if (ofs == 0)
1284 inc_valid_inode_count(sbi);
1285 return page;
1286
1287fail:
1288 clear_node_page_dirty(page);
1289 f2fs_put_page(page, 1);
1290 return ERR_PTR(err);
1291}
1292
1293/*
1294 * Caller should do after getting the following values.
1295 * 0: f2fs_put_page(page, 0)
1296 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1297 */
1298static int read_node_page(struct page *page, int op_flags)
1299{
1300 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1301 struct node_info ni;
1302 struct f2fs_io_info fio = {
1303 .sbi = sbi,
1304 .type = NODE,
1305 .op = REQ_OP_READ,
1306 .op_flags = op_flags,
1307 .page = page,
1308 .encrypted_page = NULL,
1309 };
1310 int err;
1311
1312 if (PageUptodate(page)) {
1313 if (!f2fs_inode_chksum_verify(sbi, page)) {
1314 ClearPageUptodate(page);
1315 return -EFSBADCRC;
1316 }
1317 return LOCKED_PAGE;
1318 }
1319
1320 err = f2fs_get_node_info(sbi, page->index, &ni);
1321 if (err)
1322 return err;
1323
1324 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1325 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1326 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1327 ClearPageUptodate(page);
1328 return -ENOENT;
1329 }
1330
1331 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1332
1333 err = f2fs_submit_page_bio(&fio);
1334
1335 if (!err)
1336 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1337
1338 return err;
1339}
1340
1341/*
1342 * Readahead a node page
1343 */
1344void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1345{
1346 struct page *apage;
1347 int err;
1348
1349 if (!nid)
1350 return;
1351 if (f2fs_check_nid_range(sbi, nid))
1352 return;
1353
1354 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1355 if (apage)
1356 return;
1357
1358 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1359 if (!apage)
1360 return;
1361
1362 err = read_node_page(apage, REQ_RAHEAD);
1363 f2fs_put_page(apage, err ? 1 : 0);
1364}
1365
1366static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1367 struct page *parent, int start)
1368{
1369 struct page *page;
1370 int err;
1371
1372 if (!nid)
1373 return ERR_PTR(-ENOENT);
1374 if (f2fs_check_nid_range(sbi, nid))
1375 return ERR_PTR(-EINVAL);
1376repeat:
1377 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1378 if (!page)
1379 return ERR_PTR(-ENOMEM);
1380
1381 err = read_node_page(page, 0);
1382 if (err < 0) {
1383 f2fs_put_page(page, 1);
1384 return ERR_PTR(err);
1385 } else if (err == LOCKED_PAGE) {
1386 err = 0;
1387 goto page_hit;
1388 }
1389
1390 if (parent)
1391 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1392
1393 lock_page(page);
1394
1395 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1396 f2fs_put_page(page, 1);
1397 goto repeat;
1398 }
1399
1400 if (unlikely(!PageUptodate(page))) {
1401 err = -EIO;
1402 goto out_err;
1403 }
1404
1405 if (!f2fs_inode_chksum_verify(sbi, page)) {
1406 err = -EFSBADCRC;
1407 goto out_err;
1408 }
1409page_hit:
1410 if (unlikely(nid != nid_of_node(page))) {
1411 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1412 nid, nid_of_node(page), ino_of_node(page),
1413 ofs_of_node(page), cpver_of_node(page),
1414 next_blkaddr_of_node(page));
1415 err = -EINVAL;
1416out_err:
1417 ClearPageUptodate(page);
1418 f2fs_put_page(page, 1);
1419 return ERR_PTR(err);
1420 }
1421 return page;
1422}
1423
1424struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1425{
1426 return __get_node_page(sbi, nid, NULL, 0);
1427}
1428
1429struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1430{
1431 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1432 nid_t nid = get_nid(parent, start, false);
1433
1434 return __get_node_page(sbi, nid, parent, start);
1435}
1436
1437static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1438{
1439 struct inode *inode;
1440 struct page *page;
1441 int ret;
1442
1443 /* should flush inline_data before evict_inode */
1444 inode = ilookup(sbi->sb, ino);
1445 if (!inode)
1446 return;
1447
1448 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1449 FGP_LOCK|FGP_NOWAIT, 0);
1450 if (!page)
1451 goto iput_out;
1452
1453 if (!PageUptodate(page))
1454 goto page_out;
1455
1456 if (!PageDirty(page))
1457 goto page_out;
1458
1459 if (!clear_page_dirty_for_io(page))
1460 goto page_out;
1461
1462 ret = f2fs_write_inline_data(inode, page);
1463 inode_dec_dirty_pages(inode);
1464 f2fs_remove_dirty_inode(inode);
1465 if (ret)
1466 set_page_dirty(page);
1467page_out:
1468 f2fs_put_page(page, 1);
1469iput_out:
1470 iput(inode);
1471}
1472
1473static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1474{
1475 pgoff_t index;
1476 struct pagevec pvec;
1477 struct page *last_page = NULL;
1478 int nr_pages;
1479
1480 pagevec_init(&pvec);
1481 index = 0;
1482
1483 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1484 PAGECACHE_TAG_DIRTY))) {
1485 int i;
1486
1487 for (i = 0; i < nr_pages; i++) {
1488 struct page *page = pvec.pages[i];
1489
1490 if (unlikely(f2fs_cp_error(sbi))) {
1491 f2fs_put_page(last_page, 0);
1492 pagevec_release(&pvec);
1493 return ERR_PTR(-EIO);
1494 }
1495
1496 if (!IS_DNODE(page) || !is_cold_node(page))
1497 continue;
1498 if (ino_of_node(page) != ino)
1499 continue;
1500
1501 lock_page(page);
1502
1503 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1504continue_unlock:
1505 unlock_page(page);
1506 continue;
1507 }
1508 if (ino_of_node(page) != ino)
1509 goto continue_unlock;
1510
1511 if (!PageDirty(page)) {
1512 /* someone wrote it for us */
1513 goto continue_unlock;
1514 }
1515
1516 if (last_page)
1517 f2fs_put_page(last_page, 0);
1518
1519 get_page(page);
1520 last_page = page;
1521 unlock_page(page);
1522 }
1523 pagevec_release(&pvec);
1524 cond_resched();
1525 }
1526 return last_page;
1527}
1528
1529static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1530 struct writeback_control *wbc, bool do_balance,
1531 enum iostat_type io_type, unsigned int *seq_id)
1532{
1533 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1534 nid_t nid;
1535 struct node_info ni;
1536 struct f2fs_io_info fio = {
1537 .sbi = sbi,
1538 .ino = ino_of_node(page),
1539 .type = NODE,
1540 .op = REQ_OP_WRITE,
1541 .op_flags = wbc_to_write_flags(wbc),
1542 .page = page,
1543 .encrypted_page = NULL,
1544 .submitted = false,
1545 .io_type = io_type,
1546 .io_wbc = wbc,
1547 };
1548 unsigned int seq;
1549
1550 trace_f2fs_writepage(page, NODE);
1551
1552 if (unlikely(f2fs_cp_error(sbi))) {
1553 ClearPageUptodate(page);
1554 dec_page_count(sbi, F2FS_DIRTY_NODES);
1555 unlock_page(page);
1556 return 0;
1557 }
1558
1559 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1560 goto redirty_out;
1561
1562 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1563 wbc->sync_mode == WB_SYNC_NONE &&
1564 IS_DNODE(page) && is_cold_node(page))
1565 goto redirty_out;
1566
1567 /* get old block addr of this node page */
1568 nid = nid_of_node(page);
1569 f2fs_bug_on(sbi, page->index != nid);
1570
1571 if (f2fs_get_node_info(sbi, nid, &ni))
1572 goto redirty_out;
1573
1574 if (wbc->for_reclaim) {
1575 if (!down_read_trylock(&sbi->node_write))
1576 goto redirty_out;
1577 } else {
1578 down_read(&sbi->node_write);
1579 }
1580
1581 /* This page is already truncated */
1582 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1583 ClearPageUptodate(page);
1584 dec_page_count(sbi, F2FS_DIRTY_NODES);
1585 up_read(&sbi->node_write);
1586 unlock_page(page);
1587 return 0;
1588 }
1589
1590 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1591 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1592 DATA_GENERIC_ENHANCE)) {
1593 up_read(&sbi->node_write);
1594 goto redirty_out;
1595 }
1596
1597 if (atomic && !test_opt(sbi, NOBARRIER))
1598 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1599
1600 /* should add to global list before clearing PAGECACHE status */
1601 if (f2fs_in_warm_node_list(sbi, page)) {
1602 seq = f2fs_add_fsync_node_entry(sbi, page);
1603 if (seq_id)
1604 *seq_id = seq;
1605 }
1606
1607 set_page_writeback(page);
1608 ClearPageError(page);
1609
1610 fio.old_blkaddr = ni.blk_addr;
1611 f2fs_do_write_node_page(nid, &fio);
1612 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1613 dec_page_count(sbi, F2FS_DIRTY_NODES);
1614 up_read(&sbi->node_write);
1615
1616 if (wbc->for_reclaim) {
1617 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1618 submitted = NULL;
1619 }
1620
1621 unlock_page(page);
1622
1623 if (unlikely(f2fs_cp_error(sbi))) {
1624 f2fs_submit_merged_write(sbi, NODE);
1625 submitted = NULL;
1626 }
1627 if (submitted)
1628 *submitted = fio.submitted;
1629
1630 if (do_balance)
1631 f2fs_balance_fs(sbi, false);
1632 return 0;
1633
1634redirty_out:
1635 redirty_page_for_writepage(wbc, page);
1636 return AOP_WRITEPAGE_ACTIVATE;
1637}
1638
1639int f2fs_move_node_page(struct page *node_page, int gc_type)
1640{
1641 int err = 0;
1642
1643 if (gc_type == FG_GC) {
1644 struct writeback_control wbc = {
1645 .sync_mode = WB_SYNC_ALL,
1646 .nr_to_write = 1,
1647 .for_reclaim = 0,
1648 };
1649
1650 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1651
1652 set_page_dirty(node_page);
1653
1654 if (!clear_page_dirty_for_io(node_page)) {
1655 err = -EAGAIN;
1656 goto out_page;
1657 }
1658
1659 if (__write_node_page(node_page, false, NULL,
1660 &wbc, false, FS_GC_NODE_IO, NULL)) {
1661 err = -EAGAIN;
1662 unlock_page(node_page);
1663 }
1664 goto release_page;
1665 } else {
1666 /* set page dirty and write it */
1667 if (!PageWriteback(node_page))
1668 set_page_dirty(node_page);
1669 }
1670out_page:
1671 unlock_page(node_page);
1672release_page:
1673 f2fs_put_page(node_page, 0);
1674 return err;
1675}
1676
1677static int f2fs_write_node_page(struct page *page,
1678 struct writeback_control *wbc)
1679{
1680 return __write_node_page(page, false, NULL, wbc, false,
1681 FS_NODE_IO, NULL);
1682}
1683
1684int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1685 struct writeback_control *wbc, bool atomic,
1686 unsigned int *seq_id)
1687{
1688 pgoff_t index;
1689 struct pagevec pvec;
1690 int ret = 0;
1691 struct page *last_page = NULL;
1692 bool marked = false;
1693 nid_t ino = inode->i_ino;
1694 int nr_pages;
1695 int nwritten = 0;
1696
1697 if (atomic) {
1698 last_page = last_fsync_dnode(sbi, ino);
1699 if (IS_ERR_OR_NULL(last_page))
1700 return PTR_ERR_OR_ZERO(last_page);
1701 }
1702retry:
1703 pagevec_init(&pvec);
1704 index = 0;
1705
1706 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1707 PAGECACHE_TAG_DIRTY))) {
1708 int i;
1709
1710 for (i = 0; i < nr_pages; i++) {
1711 struct page *page = pvec.pages[i];
1712 bool submitted = false;
1713
1714 if (unlikely(f2fs_cp_error(sbi))) {
1715 f2fs_put_page(last_page, 0);
1716 pagevec_release(&pvec);
1717 ret = -EIO;
1718 goto out;
1719 }
1720
1721 if (!IS_DNODE(page) || !is_cold_node(page))
1722 continue;
1723 if (ino_of_node(page) != ino)
1724 continue;
1725
1726 lock_page(page);
1727
1728 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1729continue_unlock:
1730 unlock_page(page);
1731 continue;
1732 }
1733 if (ino_of_node(page) != ino)
1734 goto continue_unlock;
1735
1736 if (!PageDirty(page) && page != last_page) {
1737 /* someone wrote it for us */
1738 goto continue_unlock;
1739 }
1740
1741 f2fs_wait_on_page_writeback(page, NODE, true, true);
1742
1743 set_fsync_mark(page, 0);
1744 set_dentry_mark(page, 0);
1745
1746 if (!atomic || page == last_page) {
1747 set_fsync_mark(page, 1);
1748 if (IS_INODE(page)) {
1749 if (is_inode_flag_set(inode,
1750 FI_DIRTY_INODE))
1751 f2fs_update_inode(inode, page);
1752 set_dentry_mark(page,
1753 f2fs_need_dentry_mark(sbi, ino));
1754 }
1755 /* may be written by other thread */
1756 if (!PageDirty(page))
1757 set_page_dirty(page);
1758 }
1759
1760 if (!clear_page_dirty_for_io(page))
1761 goto continue_unlock;
1762
1763 ret = __write_node_page(page, atomic &&
1764 page == last_page,
1765 &submitted, wbc, true,
1766 FS_NODE_IO, seq_id);
1767 if (ret) {
1768 unlock_page(page);
1769 f2fs_put_page(last_page, 0);
1770 break;
1771 } else if (submitted) {
1772 nwritten++;
1773 }
1774
1775 if (page == last_page) {
1776 f2fs_put_page(page, 0);
1777 marked = true;
1778 break;
1779 }
1780 }
1781 pagevec_release(&pvec);
1782 cond_resched();
1783
1784 if (ret || marked)
1785 break;
1786 }
1787 if (!ret && atomic && !marked) {
1788 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1789 ino, last_page->index);
1790 lock_page(last_page);
1791 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1792 set_page_dirty(last_page);
1793 unlock_page(last_page);
1794 goto retry;
1795 }
1796out:
1797 if (nwritten)
1798 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1799 return ret ? -EIO : 0;
1800}
1801
1802static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1803{
1804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1805 bool clean;
1806
1807 if (inode->i_ino != ino)
1808 return 0;
1809
1810 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1811 return 0;
1812
1813 spin_lock(&sbi->inode_lock[DIRTY_META]);
1814 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1815 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1816
1817 if (clean)
1818 return 0;
1819
1820 inode = igrab(inode);
1821 if (!inode)
1822 return 0;
1823 return 1;
1824}
1825
1826static bool flush_dirty_inode(struct page *page)
1827{
1828 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1829 struct inode *inode;
1830 nid_t ino = ino_of_node(page);
1831
1832 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1833 if (!inode)
1834 return false;
1835
1836 f2fs_update_inode(inode, page);
1837 unlock_page(page);
1838
1839 iput(inode);
1840 return true;
1841}
1842
1843void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1844{
1845 pgoff_t index = 0;
1846 struct pagevec pvec;
1847 int nr_pages;
1848
1849 pagevec_init(&pvec);
1850
1851 while ((nr_pages = pagevec_lookup_tag(&pvec,
1852 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1853 int i;
1854
1855 for (i = 0; i < nr_pages; i++) {
1856 struct page *page = pvec.pages[i];
1857
1858 if (!IS_DNODE(page))
1859 continue;
1860
1861 lock_page(page);
1862
1863 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1864continue_unlock:
1865 unlock_page(page);
1866 continue;
1867 }
1868
1869 if (!PageDirty(page)) {
1870 /* someone wrote it for us */
1871 goto continue_unlock;
1872 }
1873
1874 /* flush inline_data, if it's async context. */
1875 if (page_private_inline(page)) {
1876 clear_page_private_inline(page);
1877 unlock_page(page);
1878 flush_inline_data(sbi, ino_of_node(page));
1879 continue;
1880 }
1881 unlock_page(page);
1882 }
1883 pagevec_release(&pvec);
1884 cond_resched();
1885 }
1886}
1887
1888int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1889 struct writeback_control *wbc,
1890 bool do_balance, enum iostat_type io_type)
1891{
1892 pgoff_t index;
1893 struct pagevec pvec;
1894 int step = 0;
1895 int nwritten = 0;
1896 int ret = 0;
1897 int nr_pages, done = 0;
1898
1899 pagevec_init(&pvec);
1900
1901next_step:
1902 index = 0;
1903
1904 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1905 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1906 int i;
1907
1908 for (i = 0; i < nr_pages; i++) {
1909 struct page *page = pvec.pages[i];
1910 bool submitted = false;
1911 bool may_dirty = true;
1912
1913 /* give a priority to WB_SYNC threads */
1914 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1915 wbc->sync_mode == WB_SYNC_NONE) {
1916 done = 1;
1917 break;
1918 }
1919
1920 /*
1921 * flushing sequence with step:
1922 * 0. indirect nodes
1923 * 1. dentry dnodes
1924 * 2. file dnodes
1925 */
1926 if (step == 0 && IS_DNODE(page))
1927 continue;
1928 if (step == 1 && (!IS_DNODE(page) ||
1929 is_cold_node(page)))
1930 continue;
1931 if (step == 2 && (!IS_DNODE(page) ||
1932 !is_cold_node(page)))
1933 continue;
1934lock_node:
1935 if (wbc->sync_mode == WB_SYNC_ALL)
1936 lock_page(page);
1937 else if (!trylock_page(page))
1938 continue;
1939
1940 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1941continue_unlock:
1942 unlock_page(page);
1943 continue;
1944 }
1945
1946 if (!PageDirty(page)) {
1947 /* someone wrote it for us */
1948 goto continue_unlock;
1949 }
1950
1951 /* flush inline_data/inode, if it's async context. */
1952 if (!do_balance)
1953 goto write_node;
1954
1955 /* flush inline_data */
1956 if (page_private_inline(page)) {
1957 clear_page_private_inline(page);
1958 unlock_page(page);
1959 flush_inline_data(sbi, ino_of_node(page));
1960 goto lock_node;
1961 }
1962
1963 /* flush dirty inode */
1964 if (IS_INODE(page) && may_dirty) {
1965 may_dirty = false;
1966 if (flush_dirty_inode(page))
1967 goto lock_node;
1968 }
1969write_node:
1970 f2fs_wait_on_page_writeback(page, NODE, true, true);
1971
1972 if (!clear_page_dirty_for_io(page))
1973 goto continue_unlock;
1974
1975 set_fsync_mark(page, 0);
1976 set_dentry_mark(page, 0);
1977
1978 ret = __write_node_page(page, false, &submitted,
1979 wbc, do_balance, io_type, NULL);
1980 if (ret)
1981 unlock_page(page);
1982 else if (submitted)
1983 nwritten++;
1984
1985 if (--wbc->nr_to_write == 0)
1986 break;
1987 }
1988 pagevec_release(&pvec);
1989 cond_resched();
1990
1991 if (wbc->nr_to_write == 0) {
1992 step = 2;
1993 break;
1994 }
1995 }
1996
1997 if (step < 2) {
1998 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1999 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2000 goto out;
2001 step++;
2002 goto next_step;
2003 }
2004out:
2005 if (nwritten)
2006 f2fs_submit_merged_write(sbi, NODE);
2007
2008 if (unlikely(f2fs_cp_error(sbi)))
2009 return -EIO;
2010 return ret;
2011}
2012
2013int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2014 unsigned int seq_id)
2015{
2016 struct fsync_node_entry *fn;
2017 struct page *page;
2018 struct list_head *head = &sbi->fsync_node_list;
2019 unsigned long flags;
2020 unsigned int cur_seq_id = 0;
2021 int ret2, ret = 0;
2022
2023 while (seq_id && cur_seq_id < seq_id) {
2024 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2025 if (list_empty(head)) {
2026 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2027 break;
2028 }
2029 fn = list_first_entry(head, struct fsync_node_entry, list);
2030 if (fn->seq_id > seq_id) {
2031 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2032 break;
2033 }
2034 cur_seq_id = fn->seq_id;
2035 page = fn->page;
2036 get_page(page);
2037 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2038
2039 f2fs_wait_on_page_writeback(page, NODE, true, false);
2040 if (TestClearPageError(page))
2041 ret = -EIO;
2042
2043 put_page(page);
2044
2045 if (ret)
2046 break;
2047 }
2048
2049 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2050 if (!ret)
2051 ret = ret2;
2052
2053 return ret;
2054}
2055
2056static int f2fs_write_node_pages(struct address_space *mapping,
2057 struct writeback_control *wbc)
2058{
2059 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2060 struct blk_plug plug;
2061 long diff;
2062
2063 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2064 goto skip_write;
2065
2066 /* balancing f2fs's metadata in background */
2067 f2fs_balance_fs_bg(sbi, true);
2068
2069 /* collect a number of dirty node pages and write together */
2070 if (wbc->sync_mode != WB_SYNC_ALL &&
2071 get_pages(sbi, F2FS_DIRTY_NODES) <
2072 nr_pages_to_skip(sbi, NODE))
2073 goto skip_write;
2074
2075 if (wbc->sync_mode == WB_SYNC_ALL)
2076 atomic_inc(&sbi->wb_sync_req[NODE]);
2077 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2078 goto skip_write;
2079
2080 trace_f2fs_writepages(mapping->host, wbc, NODE);
2081
2082 diff = nr_pages_to_write(sbi, NODE, wbc);
2083 blk_start_plug(&plug);
2084 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2085 blk_finish_plug(&plug);
2086 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2087
2088 if (wbc->sync_mode == WB_SYNC_ALL)
2089 atomic_dec(&sbi->wb_sync_req[NODE]);
2090 return 0;
2091
2092skip_write:
2093 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2094 trace_f2fs_writepages(mapping->host, wbc, NODE);
2095 return 0;
2096}
2097
2098static int f2fs_set_node_page_dirty(struct page *page)
2099{
2100 trace_f2fs_set_page_dirty(page, NODE);
2101
2102 if (!PageUptodate(page))
2103 SetPageUptodate(page);
2104#ifdef CONFIG_F2FS_CHECK_FS
2105 if (IS_INODE(page))
2106 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2107#endif
2108 if (!PageDirty(page)) {
2109 __set_page_dirty_nobuffers(page);
2110 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2111 set_page_private_reference(page);
2112 return 1;
2113 }
2114 return 0;
2115}
2116
2117/*
2118 * Structure of the f2fs node operations
2119 */
2120const struct address_space_operations f2fs_node_aops = {
2121 .writepage = f2fs_write_node_page,
2122 .writepages = f2fs_write_node_pages,
2123 .set_page_dirty = f2fs_set_node_page_dirty,
2124 .invalidatepage = f2fs_invalidate_page,
2125 .releasepage = f2fs_release_page,
2126#ifdef CONFIG_MIGRATION
2127 .migratepage = f2fs_migrate_page,
2128#endif
2129};
2130
2131static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2132 nid_t n)
2133{
2134 return radix_tree_lookup(&nm_i->free_nid_root, n);
2135}
2136
2137static int __insert_free_nid(struct f2fs_sb_info *sbi,
2138 struct free_nid *i)
2139{
2140 struct f2fs_nm_info *nm_i = NM_I(sbi);
2141 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2142
2143 if (err)
2144 return err;
2145
2146 nm_i->nid_cnt[FREE_NID]++;
2147 list_add_tail(&i->list, &nm_i->free_nid_list);
2148 return 0;
2149}
2150
2151static void __remove_free_nid(struct f2fs_sb_info *sbi,
2152 struct free_nid *i, enum nid_state state)
2153{
2154 struct f2fs_nm_info *nm_i = NM_I(sbi);
2155
2156 f2fs_bug_on(sbi, state != i->state);
2157 nm_i->nid_cnt[state]--;
2158 if (state == FREE_NID)
2159 list_del(&i->list);
2160 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2161}
2162
2163static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2164 enum nid_state org_state, enum nid_state dst_state)
2165{
2166 struct f2fs_nm_info *nm_i = NM_I(sbi);
2167
2168 f2fs_bug_on(sbi, org_state != i->state);
2169 i->state = dst_state;
2170 nm_i->nid_cnt[org_state]--;
2171 nm_i->nid_cnt[dst_state]++;
2172
2173 switch (dst_state) {
2174 case PREALLOC_NID:
2175 list_del(&i->list);
2176 break;
2177 case FREE_NID:
2178 list_add_tail(&i->list, &nm_i->free_nid_list);
2179 break;
2180 default:
2181 BUG_ON(1);
2182 }
2183}
2184
2185static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2186 bool set, bool build)
2187{
2188 struct f2fs_nm_info *nm_i = NM_I(sbi);
2189 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2190 unsigned int nid_ofs = nid - START_NID(nid);
2191
2192 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2193 return;
2194
2195 if (set) {
2196 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2197 return;
2198 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2199 nm_i->free_nid_count[nat_ofs]++;
2200 } else {
2201 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2202 return;
2203 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2204 if (!build)
2205 nm_i->free_nid_count[nat_ofs]--;
2206 }
2207}
2208
2209/* return if the nid is recognized as free */
2210static bool add_free_nid(struct f2fs_sb_info *sbi,
2211 nid_t nid, bool build, bool update)
2212{
2213 struct f2fs_nm_info *nm_i = NM_I(sbi);
2214 struct free_nid *i, *e;
2215 struct nat_entry *ne;
2216 int err = -EINVAL;
2217 bool ret = false;
2218
2219 /* 0 nid should not be used */
2220 if (unlikely(nid == 0))
2221 return false;
2222
2223 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2224 return false;
2225
2226 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2227 i->nid = nid;
2228 i->state = FREE_NID;
2229
2230 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2231
2232 spin_lock(&nm_i->nid_list_lock);
2233
2234 if (build) {
2235 /*
2236 * Thread A Thread B
2237 * - f2fs_create
2238 * - f2fs_new_inode
2239 * - f2fs_alloc_nid
2240 * - __insert_nid_to_list(PREALLOC_NID)
2241 * - f2fs_balance_fs_bg
2242 * - f2fs_build_free_nids
2243 * - __f2fs_build_free_nids
2244 * - scan_nat_page
2245 * - add_free_nid
2246 * - __lookup_nat_cache
2247 * - f2fs_add_link
2248 * - f2fs_init_inode_metadata
2249 * - f2fs_new_inode_page
2250 * - f2fs_new_node_page
2251 * - set_node_addr
2252 * - f2fs_alloc_nid_done
2253 * - __remove_nid_from_list(PREALLOC_NID)
2254 * - __insert_nid_to_list(FREE_NID)
2255 */
2256 ne = __lookup_nat_cache(nm_i, nid);
2257 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2258 nat_get_blkaddr(ne) != NULL_ADDR))
2259 goto err_out;
2260
2261 e = __lookup_free_nid_list(nm_i, nid);
2262 if (e) {
2263 if (e->state == FREE_NID)
2264 ret = true;
2265 goto err_out;
2266 }
2267 }
2268 ret = true;
2269 err = __insert_free_nid(sbi, i);
2270err_out:
2271 if (update) {
2272 update_free_nid_bitmap(sbi, nid, ret, build);
2273 if (!build)
2274 nm_i->available_nids++;
2275 }
2276 spin_unlock(&nm_i->nid_list_lock);
2277 radix_tree_preload_end();
2278
2279 if (err)
2280 kmem_cache_free(free_nid_slab, i);
2281 return ret;
2282}
2283
2284static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2285{
2286 struct f2fs_nm_info *nm_i = NM_I(sbi);
2287 struct free_nid *i;
2288 bool need_free = false;
2289
2290 spin_lock(&nm_i->nid_list_lock);
2291 i = __lookup_free_nid_list(nm_i, nid);
2292 if (i && i->state == FREE_NID) {
2293 __remove_free_nid(sbi, i, FREE_NID);
2294 need_free = true;
2295 }
2296 spin_unlock(&nm_i->nid_list_lock);
2297
2298 if (need_free)
2299 kmem_cache_free(free_nid_slab, i);
2300}
2301
2302static int scan_nat_page(struct f2fs_sb_info *sbi,
2303 struct page *nat_page, nid_t start_nid)
2304{
2305 struct f2fs_nm_info *nm_i = NM_I(sbi);
2306 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2307 block_t blk_addr;
2308 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2309 int i;
2310
2311 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2312
2313 i = start_nid % NAT_ENTRY_PER_BLOCK;
2314
2315 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2316 if (unlikely(start_nid >= nm_i->max_nid))
2317 break;
2318
2319 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2320
2321 if (blk_addr == NEW_ADDR)
2322 return -EINVAL;
2323
2324 if (blk_addr == NULL_ADDR) {
2325 add_free_nid(sbi, start_nid, true, true);
2326 } else {
2327 spin_lock(&NM_I(sbi)->nid_list_lock);
2328 update_free_nid_bitmap(sbi, start_nid, false, true);
2329 spin_unlock(&NM_I(sbi)->nid_list_lock);
2330 }
2331 }
2332
2333 return 0;
2334}
2335
2336static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2337{
2338 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2339 struct f2fs_journal *journal = curseg->journal;
2340 int i;
2341
2342 down_read(&curseg->journal_rwsem);
2343 for (i = 0; i < nats_in_cursum(journal); i++) {
2344 block_t addr;
2345 nid_t nid;
2346
2347 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2348 nid = le32_to_cpu(nid_in_journal(journal, i));
2349 if (addr == NULL_ADDR)
2350 add_free_nid(sbi, nid, true, false);
2351 else
2352 remove_free_nid(sbi, nid);
2353 }
2354 up_read(&curseg->journal_rwsem);
2355}
2356
2357static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2358{
2359 struct f2fs_nm_info *nm_i = NM_I(sbi);
2360 unsigned int i, idx;
2361 nid_t nid;
2362
2363 down_read(&nm_i->nat_tree_lock);
2364
2365 for (i = 0; i < nm_i->nat_blocks; i++) {
2366 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2367 continue;
2368 if (!nm_i->free_nid_count[i])
2369 continue;
2370 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2371 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2372 NAT_ENTRY_PER_BLOCK, idx);
2373 if (idx >= NAT_ENTRY_PER_BLOCK)
2374 break;
2375
2376 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2377 add_free_nid(sbi, nid, true, false);
2378
2379 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2380 goto out;
2381 }
2382 }
2383out:
2384 scan_curseg_cache(sbi);
2385
2386 up_read(&nm_i->nat_tree_lock);
2387}
2388
2389static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2390 bool sync, bool mount)
2391{
2392 struct f2fs_nm_info *nm_i = NM_I(sbi);
2393 int i = 0, ret;
2394 nid_t nid = nm_i->next_scan_nid;
2395
2396 if (unlikely(nid >= nm_i->max_nid))
2397 nid = 0;
2398
2399 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2400 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2401
2402 /* Enough entries */
2403 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2404 return 0;
2405
2406 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2407 return 0;
2408
2409 if (!mount) {
2410 /* try to find free nids in free_nid_bitmap */
2411 scan_free_nid_bits(sbi);
2412
2413 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2414 return 0;
2415 }
2416
2417 /* readahead nat pages to be scanned */
2418 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2419 META_NAT, true);
2420
2421 down_read(&nm_i->nat_tree_lock);
2422
2423 while (1) {
2424 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2425 nm_i->nat_block_bitmap)) {
2426 struct page *page = get_current_nat_page(sbi, nid);
2427
2428 if (IS_ERR(page)) {
2429 ret = PTR_ERR(page);
2430 } else {
2431 ret = scan_nat_page(sbi, page, nid);
2432 f2fs_put_page(page, 1);
2433 }
2434
2435 if (ret) {
2436 up_read(&nm_i->nat_tree_lock);
2437 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2438 return ret;
2439 }
2440 }
2441
2442 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2443 if (unlikely(nid >= nm_i->max_nid))
2444 nid = 0;
2445
2446 if (++i >= FREE_NID_PAGES)
2447 break;
2448 }
2449
2450 /* go to the next free nat pages to find free nids abundantly */
2451 nm_i->next_scan_nid = nid;
2452
2453 /* find free nids from current sum_pages */
2454 scan_curseg_cache(sbi);
2455
2456 up_read(&nm_i->nat_tree_lock);
2457
2458 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2459 nm_i->ra_nid_pages, META_NAT, false);
2460
2461 return 0;
2462}
2463
2464int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2465{
2466 int ret;
2467
2468 mutex_lock(&NM_I(sbi)->build_lock);
2469 ret = __f2fs_build_free_nids(sbi, sync, mount);
2470 mutex_unlock(&NM_I(sbi)->build_lock);
2471
2472 return ret;
2473}
2474
2475/*
2476 * If this function returns success, caller can obtain a new nid
2477 * from second parameter of this function.
2478 * The returned nid could be used ino as well as nid when inode is created.
2479 */
2480bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2481{
2482 struct f2fs_nm_info *nm_i = NM_I(sbi);
2483 struct free_nid *i = NULL;
2484retry:
2485 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2486 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2487 return false;
2488 }
2489
2490 spin_lock(&nm_i->nid_list_lock);
2491
2492 if (unlikely(nm_i->available_nids == 0)) {
2493 spin_unlock(&nm_i->nid_list_lock);
2494 return false;
2495 }
2496
2497 /* We should not use stale free nids created by f2fs_build_free_nids */
2498 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2499 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2500 i = list_first_entry(&nm_i->free_nid_list,
2501 struct free_nid, list);
2502 *nid = i->nid;
2503
2504 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2505 nm_i->available_nids--;
2506
2507 update_free_nid_bitmap(sbi, *nid, false, false);
2508
2509 spin_unlock(&nm_i->nid_list_lock);
2510 return true;
2511 }
2512 spin_unlock(&nm_i->nid_list_lock);
2513
2514 /* Let's scan nat pages and its caches to get free nids */
2515 if (!f2fs_build_free_nids(sbi, true, false))
2516 goto retry;
2517 return false;
2518}
2519
2520/*
2521 * f2fs_alloc_nid() should be called prior to this function.
2522 */
2523void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2524{
2525 struct f2fs_nm_info *nm_i = NM_I(sbi);
2526 struct free_nid *i;
2527
2528 spin_lock(&nm_i->nid_list_lock);
2529 i = __lookup_free_nid_list(nm_i, nid);
2530 f2fs_bug_on(sbi, !i);
2531 __remove_free_nid(sbi, i, PREALLOC_NID);
2532 spin_unlock(&nm_i->nid_list_lock);
2533
2534 kmem_cache_free(free_nid_slab, i);
2535}
2536
2537/*
2538 * f2fs_alloc_nid() should be called prior to this function.
2539 */
2540void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2541{
2542 struct f2fs_nm_info *nm_i = NM_I(sbi);
2543 struct free_nid *i;
2544 bool need_free = false;
2545
2546 if (!nid)
2547 return;
2548
2549 spin_lock(&nm_i->nid_list_lock);
2550 i = __lookup_free_nid_list(nm_i, nid);
2551 f2fs_bug_on(sbi, !i);
2552
2553 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2554 __remove_free_nid(sbi, i, PREALLOC_NID);
2555 need_free = true;
2556 } else {
2557 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2558 }
2559
2560 nm_i->available_nids++;
2561
2562 update_free_nid_bitmap(sbi, nid, true, false);
2563
2564 spin_unlock(&nm_i->nid_list_lock);
2565
2566 if (need_free)
2567 kmem_cache_free(free_nid_slab, i);
2568}
2569
2570int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2571{
2572 struct f2fs_nm_info *nm_i = NM_I(sbi);
2573 int nr = nr_shrink;
2574
2575 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2576 return 0;
2577
2578 if (!mutex_trylock(&nm_i->build_lock))
2579 return 0;
2580
2581 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2582 struct free_nid *i, *next;
2583 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2584
2585 spin_lock(&nm_i->nid_list_lock);
2586 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2587 if (!nr_shrink || !batch ||
2588 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2589 break;
2590 __remove_free_nid(sbi, i, FREE_NID);
2591 kmem_cache_free(free_nid_slab, i);
2592 nr_shrink--;
2593 batch--;
2594 }
2595 spin_unlock(&nm_i->nid_list_lock);
2596 }
2597
2598 mutex_unlock(&nm_i->build_lock);
2599
2600 return nr - nr_shrink;
2601}
2602
2603int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2604{
2605 void *src_addr, *dst_addr;
2606 size_t inline_size;
2607 struct page *ipage;
2608 struct f2fs_inode *ri;
2609
2610 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2611 if (IS_ERR(ipage))
2612 return PTR_ERR(ipage);
2613
2614 ri = F2FS_INODE(page);
2615 if (ri->i_inline & F2FS_INLINE_XATTR) {
2616 if (!f2fs_has_inline_xattr(inode)) {
2617 set_inode_flag(inode, FI_INLINE_XATTR);
2618 stat_inc_inline_xattr(inode);
2619 }
2620 } else {
2621 if (f2fs_has_inline_xattr(inode)) {
2622 stat_dec_inline_xattr(inode);
2623 clear_inode_flag(inode, FI_INLINE_XATTR);
2624 }
2625 goto update_inode;
2626 }
2627
2628 dst_addr = inline_xattr_addr(inode, ipage);
2629 src_addr = inline_xattr_addr(inode, page);
2630 inline_size = inline_xattr_size(inode);
2631
2632 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2633 memcpy(dst_addr, src_addr, inline_size);
2634update_inode:
2635 f2fs_update_inode(inode, ipage);
2636 f2fs_put_page(ipage, 1);
2637 return 0;
2638}
2639
2640int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2641{
2642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2643 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2644 nid_t new_xnid;
2645 struct dnode_of_data dn;
2646 struct node_info ni;
2647 struct page *xpage;
2648 int err;
2649
2650 if (!prev_xnid)
2651 goto recover_xnid;
2652
2653 /* 1: invalidate the previous xattr nid */
2654 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2655 if (err)
2656 return err;
2657
2658 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2659 dec_valid_node_count(sbi, inode, false);
2660 set_node_addr(sbi, &ni, NULL_ADDR, false);
2661
2662recover_xnid:
2663 /* 2: update xattr nid in inode */
2664 if (!f2fs_alloc_nid(sbi, &new_xnid))
2665 return -ENOSPC;
2666
2667 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2668 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2669 if (IS_ERR(xpage)) {
2670 f2fs_alloc_nid_failed(sbi, new_xnid);
2671 return PTR_ERR(xpage);
2672 }
2673
2674 f2fs_alloc_nid_done(sbi, new_xnid);
2675 f2fs_update_inode_page(inode);
2676
2677 /* 3: update and set xattr node page dirty */
2678 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2679
2680 set_page_dirty(xpage);
2681 f2fs_put_page(xpage, 1);
2682
2683 return 0;
2684}
2685
2686int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2687{
2688 struct f2fs_inode *src, *dst;
2689 nid_t ino = ino_of_node(page);
2690 struct node_info old_ni, new_ni;
2691 struct page *ipage;
2692 int err;
2693
2694 err = f2fs_get_node_info(sbi, ino, &old_ni);
2695 if (err)
2696 return err;
2697
2698 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2699 return -EINVAL;
2700retry:
2701 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2702 if (!ipage) {
2703 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2704 goto retry;
2705 }
2706
2707 /* Should not use this inode from free nid list */
2708 remove_free_nid(sbi, ino);
2709
2710 if (!PageUptodate(ipage))
2711 SetPageUptodate(ipage);
2712 fill_node_footer(ipage, ino, ino, 0, true);
2713 set_cold_node(ipage, false);
2714
2715 src = F2FS_INODE(page);
2716 dst = F2FS_INODE(ipage);
2717
2718 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2719 dst->i_size = 0;
2720 dst->i_blocks = cpu_to_le64(1);
2721 dst->i_links = cpu_to_le32(1);
2722 dst->i_xattr_nid = 0;
2723 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2724 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2725 dst->i_extra_isize = src->i_extra_isize;
2726
2727 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2728 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2729 i_inline_xattr_size))
2730 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2731
2732 if (f2fs_sb_has_project_quota(sbi) &&
2733 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2734 i_projid))
2735 dst->i_projid = src->i_projid;
2736
2737 if (f2fs_sb_has_inode_crtime(sbi) &&
2738 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2739 i_crtime_nsec)) {
2740 dst->i_crtime = src->i_crtime;
2741 dst->i_crtime_nsec = src->i_crtime_nsec;
2742 }
2743 }
2744
2745 new_ni = old_ni;
2746 new_ni.ino = ino;
2747
2748 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2749 WARN_ON(1);
2750 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2751 inc_valid_inode_count(sbi);
2752 set_page_dirty(ipage);
2753 f2fs_put_page(ipage, 1);
2754 return 0;
2755}
2756
2757int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2758 unsigned int segno, struct f2fs_summary_block *sum)
2759{
2760 struct f2fs_node *rn;
2761 struct f2fs_summary *sum_entry;
2762 block_t addr;
2763 int i, idx, last_offset, nrpages;
2764
2765 /* scan the node segment */
2766 last_offset = sbi->blocks_per_seg;
2767 addr = START_BLOCK(sbi, segno);
2768 sum_entry = &sum->entries[0];
2769
2770 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2771 nrpages = bio_max_segs(last_offset - i);
2772
2773 /* readahead node pages */
2774 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2775
2776 for (idx = addr; idx < addr + nrpages; idx++) {
2777 struct page *page = f2fs_get_tmp_page(sbi, idx);
2778
2779 if (IS_ERR(page))
2780 return PTR_ERR(page);
2781
2782 rn = F2FS_NODE(page);
2783 sum_entry->nid = rn->footer.nid;
2784 sum_entry->version = 0;
2785 sum_entry->ofs_in_node = 0;
2786 sum_entry++;
2787 f2fs_put_page(page, 1);
2788 }
2789
2790 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2791 addr + nrpages);
2792 }
2793 return 0;
2794}
2795
2796static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2797{
2798 struct f2fs_nm_info *nm_i = NM_I(sbi);
2799 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2800 struct f2fs_journal *journal = curseg->journal;
2801 int i;
2802
2803 down_write(&curseg->journal_rwsem);
2804 for (i = 0; i < nats_in_cursum(journal); i++) {
2805 struct nat_entry *ne;
2806 struct f2fs_nat_entry raw_ne;
2807 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2808
2809 if (f2fs_check_nid_range(sbi, nid))
2810 continue;
2811
2812 raw_ne = nat_in_journal(journal, i);
2813
2814 ne = __lookup_nat_cache(nm_i, nid);
2815 if (!ne) {
2816 ne = __alloc_nat_entry(nid, true);
2817 __init_nat_entry(nm_i, ne, &raw_ne, true);
2818 }
2819
2820 /*
2821 * if a free nat in journal has not been used after last
2822 * checkpoint, we should remove it from available nids,
2823 * since later we will add it again.
2824 */
2825 if (!get_nat_flag(ne, IS_DIRTY) &&
2826 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2827 spin_lock(&nm_i->nid_list_lock);
2828 nm_i->available_nids--;
2829 spin_unlock(&nm_i->nid_list_lock);
2830 }
2831
2832 __set_nat_cache_dirty(nm_i, ne);
2833 }
2834 update_nats_in_cursum(journal, -i);
2835 up_write(&curseg->journal_rwsem);
2836}
2837
2838static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2839 struct list_head *head, int max)
2840{
2841 struct nat_entry_set *cur;
2842
2843 if (nes->entry_cnt >= max)
2844 goto add_out;
2845
2846 list_for_each_entry(cur, head, set_list) {
2847 if (cur->entry_cnt >= nes->entry_cnt) {
2848 list_add(&nes->set_list, cur->set_list.prev);
2849 return;
2850 }
2851 }
2852add_out:
2853 list_add_tail(&nes->set_list, head);
2854}
2855
2856static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2857 struct page *page)
2858{
2859 struct f2fs_nm_info *nm_i = NM_I(sbi);
2860 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2861 struct f2fs_nat_block *nat_blk = page_address(page);
2862 int valid = 0;
2863 int i = 0;
2864
2865 if (!enabled_nat_bits(sbi, NULL))
2866 return;
2867
2868 if (nat_index == 0) {
2869 valid = 1;
2870 i = 1;
2871 }
2872 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2873 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2874 valid++;
2875 }
2876 if (valid == 0) {
2877 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2878 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2879 return;
2880 }
2881
2882 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2883 if (valid == NAT_ENTRY_PER_BLOCK)
2884 __set_bit_le(nat_index, nm_i->full_nat_bits);
2885 else
2886 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2887}
2888
2889static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2890 struct nat_entry_set *set, struct cp_control *cpc)
2891{
2892 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2893 struct f2fs_journal *journal = curseg->journal;
2894 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2895 bool to_journal = true;
2896 struct f2fs_nat_block *nat_blk;
2897 struct nat_entry *ne, *cur;
2898 struct page *page = NULL;
2899
2900 /*
2901 * there are two steps to flush nat entries:
2902 * #1, flush nat entries to journal in current hot data summary block.
2903 * #2, flush nat entries to nat page.
2904 */
2905 if (enabled_nat_bits(sbi, cpc) ||
2906 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2907 to_journal = false;
2908
2909 if (to_journal) {
2910 down_write(&curseg->journal_rwsem);
2911 } else {
2912 page = get_next_nat_page(sbi, start_nid);
2913 if (IS_ERR(page))
2914 return PTR_ERR(page);
2915
2916 nat_blk = page_address(page);
2917 f2fs_bug_on(sbi, !nat_blk);
2918 }
2919
2920 /* flush dirty nats in nat entry set */
2921 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2922 struct f2fs_nat_entry *raw_ne;
2923 nid_t nid = nat_get_nid(ne);
2924 int offset;
2925
2926 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2927
2928 if (to_journal) {
2929 offset = f2fs_lookup_journal_in_cursum(journal,
2930 NAT_JOURNAL, nid, 1);
2931 f2fs_bug_on(sbi, offset < 0);
2932 raw_ne = &nat_in_journal(journal, offset);
2933 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2934 } else {
2935 raw_ne = &nat_blk->entries[nid - start_nid];
2936 }
2937 raw_nat_from_node_info(raw_ne, &ne->ni);
2938 nat_reset_flag(ne);
2939 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2940 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2941 add_free_nid(sbi, nid, false, true);
2942 } else {
2943 spin_lock(&NM_I(sbi)->nid_list_lock);
2944 update_free_nid_bitmap(sbi, nid, false, false);
2945 spin_unlock(&NM_I(sbi)->nid_list_lock);
2946 }
2947 }
2948
2949 if (to_journal) {
2950 up_write(&curseg->journal_rwsem);
2951 } else {
2952 __update_nat_bits(sbi, start_nid, page);
2953 f2fs_put_page(page, 1);
2954 }
2955
2956 /* Allow dirty nats by node block allocation in write_begin */
2957 if (!set->entry_cnt) {
2958 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2959 kmem_cache_free(nat_entry_set_slab, set);
2960 }
2961 return 0;
2962}
2963
2964/*
2965 * This function is called during the checkpointing process.
2966 */
2967int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2968{
2969 struct f2fs_nm_info *nm_i = NM_I(sbi);
2970 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2971 struct f2fs_journal *journal = curseg->journal;
2972 struct nat_entry_set *setvec[SETVEC_SIZE];
2973 struct nat_entry_set *set, *tmp;
2974 unsigned int found;
2975 nid_t set_idx = 0;
2976 LIST_HEAD(sets);
2977 int err = 0;
2978
2979 /*
2980 * during unmount, let's flush nat_bits before checking
2981 * nat_cnt[DIRTY_NAT].
2982 */
2983 if (enabled_nat_bits(sbi, cpc)) {
2984 down_write(&nm_i->nat_tree_lock);
2985 remove_nats_in_journal(sbi);
2986 up_write(&nm_i->nat_tree_lock);
2987 }
2988
2989 if (!nm_i->nat_cnt[DIRTY_NAT])
2990 return 0;
2991
2992 down_write(&nm_i->nat_tree_lock);
2993
2994 /*
2995 * if there are no enough space in journal to store dirty nat
2996 * entries, remove all entries from journal and merge them
2997 * into nat entry set.
2998 */
2999 if (enabled_nat_bits(sbi, cpc) ||
3000 !__has_cursum_space(journal,
3001 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3002 remove_nats_in_journal(sbi);
3003
3004 while ((found = __gang_lookup_nat_set(nm_i,
3005 set_idx, SETVEC_SIZE, setvec))) {
3006 unsigned idx;
3007
3008 set_idx = setvec[found - 1]->set + 1;
3009 for (idx = 0; idx < found; idx++)
3010 __adjust_nat_entry_set(setvec[idx], &sets,
3011 MAX_NAT_JENTRIES(journal));
3012 }
3013
3014 /* flush dirty nats in nat entry set */
3015 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3016 err = __flush_nat_entry_set(sbi, set, cpc);
3017 if (err)
3018 break;
3019 }
3020
3021 up_write(&nm_i->nat_tree_lock);
3022 /* Allow dirty nats by node block allocation in write_begin */
3023
3024 return err;
3025}
3026
3027static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3028{
3029 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3030 struct f2fs_nm_info *nm_i = NM_I(sbi);
3031 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3032 unsigned int i;
3033 __u64 cp_ver = cur_cp_version(ckpt);
3034 block_t nat_bits_addr;
3035
3036 if (!enabled_nat_bits(sbi, NULL))
3037 return 0;
3038
3039 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3040 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3041 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3042 if (!nm_i->nat_bits)
3043 return -ENOMEM;
3044
3045 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3046 nm_i->nat_bits_blocks;
3047 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3048 struct page *page;
3049
3050 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3051 if (IS_ERR(page))
3052 return PTR_ERR(page);
3053
3054 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3055 page_address(page), F2FS_BLKSIZE);
3056 f2fs_put_page(page, 1);
3057 }
3058
3059 cp_ver |= (cur_cp_crc(ckpt) << 32);
3060 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3061 disable_nat_bits(sbi, true);
3062 return 0;
3063 }
3064
3065 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3066 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3067
3068 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3069 return 0;
3070}
3071
3072static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3073{
3074 struct f2fs_nm_info *nm_i = NM_I(sbi);
3075 unsigned int i = 0;
3076 nid_t nid, last_nid;
3077
3078 if (!enabled_nat_bits(sbi, NULL))
3079 return;
3080
3081 for (i = 0; i < nm_i->nat_blocks; i++) {
3082 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3083 if (i >= nm_i->nat_blocks)
3084 break;
3085
3086 __set_bit_le(i, nm_i->nat_block_bitmap);
3087
3088 nid = i * NAT_ENTRY_PER_BLOCK;
3089 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3090
3091 spin_lock(&NM_I(sbi)->nid_list_lock);
3092 for (; nid < last_nid; nid++)
3093 update_free_nid_bitmap(sbi, nid, true, true);
3094 spin_unlock(&NM_I(sbi)->nid_list_lock);
3095 }
3096
3097 for (i = 0; i < nm_i->nat_blocks; i++) {
3098 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3099 if (i >= nm_i->nat_blocks)
3100 break;
3101
3102 __set_bit_le(i, nm_i->nat_block_bitmap);
3103 }
3104}
3105
3106static int init_node_manager(struct f2fs_sb_info *sbi)
3107{
3108 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3109 struct f2fs_nm_info *nm_i = NM_I(sbi);
3110 unsigned char *version_bitmap;
3111 unsigned int nat_segs;
3112 int err;
3113
3114 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3115
3116 /* segment_count_nat includes pair segment so divide to 2. */
3117 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3118 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3119 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3120
3121 /* not used nids: 0, node, meta, (and root counted as valid node) */
3122 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3123 F2FS_RESERVED_NODE_NUM;
3124 nm_i->nid_cnt[FREE_NID] = 0;
3125 nm_i->nid_cnt[PREALLOC_NID] = 0;
3126 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3127 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3128 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3129
3130 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3131 INIT_LIST_HEAD(&nm_i->free_nid_list);
3132 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3133 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3134 INIT_LIST_HEAD(&nm_i->nat_entries);
3135 spin_lock_init(&nm_i->nat_list_lock);
3136
3137 mutex_init(&nm_i->build_lock);
3138 spin_lock_init(&nm_i->nid_list_lock);
3139 init_rwsem(&nm_i->nat_tree_lock);
3140
3141 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3142 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3143 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3144 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3145 GFP_KERNEL);
3146 if (!nm_i->nat_bitmap)
3147 return -ENOMEM;
3148
3149 err = __get_nat_bitmaps(sbi);
3150 if (err)
3151 return err;
3152
3153#ifdef CONFIG_F2FS_CHECK_FS
3154 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3155 GFP_KERNEL);
3156 if (!nm_i->nat_bitmap_mir)
3157 return -ENOMEM;
3158#endif
3159
3160 return 0;
3161}
3162
3163static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3164{
3165 struct f2fs_nm_info *nm_i = NM_I(sbi);
3166 int i;
3167
3168 nm_i->free_nid_bitmap =
3169 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3170 nm_i->nat_blocks),
3171 GFP_KERNEL);
3172 if (!nm_i->free_nid_bitmap)
3173 return -ENOMEM;
3174
3175 for (i = 0; i < nm_i->nat_blocks; i++) {
3176 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3177 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3178 if (!nm_i->free_nid_bitmap[i])
3179 return -ENOMEM;
3180 }
3181
3182 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3183 GFP_KERNEL);
3184 if (!nm_i->nat_block_bitmap)
3185 return -ENOMEM;
3186
3187 nm_i->free_nid_count =
3188 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3189 nm_i->nat_blocks),
3190 GFP_KERNEL);
3191 if (!nm_i->free_nid_count)
3192 return -ENOMEM;
3193 return 0;
3194}
3195
3196int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3197{
3198 int err;
3199
3200 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3201 GFP_KERNEL);
3202 if (!sbi->nm_info)
3203 return -ENOMEM;
3204
3205 err = init_node_manager(sbi);
3206 if (err)
3207 return err;
3208
3209 err = init_free_nid_cache(sbi);
3210 if (err)
3211 return err;
3212
3213 /* load free nid status from nat_bits table */
3214 load_free_nid_bitmap(sbi);
3215
3216 return f2fs_build_free_nids(sbi, true, true);
3217}
3218
3219void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3220{
3221 struct f2fs_nm_info *nm_i = NM_I(sbi);
3222 struct free_nid *i, *next_i;
3223 struct nat_entry *natvec[NATVEC_SIZE];
3224 struct nat_entry_set *setvec[SETVEC_SIZE];
3225 nid_t nid = 0;
3226 unsigned int found;
3227
3228 if (!nm_i)
3229 return;
3230
3231 /* destroy free nid list */
3232 spin_lock(&nm_i->nid_list_lock);
3233 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3234 __remove_free_nid(sbi, i, FREE_NID);
3235 spin_unlock(&nm_i->nid_list_lock);
3236 kmem_cache_free(free_nid_slab, i);
3237 spin_lock(&nm_i->nid_list_lock);
3238 }
3239 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3240 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3241 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3242 spin_unlock(&nm_i->nid_list_lock);
3243
3244 /* destroy nat cache */
3245 down_write(&nm_i->nat_tree_lock);
3246 while ((found = __gang_lookup_nat_cache(nm_i,
3247 nid, NATVEC_SIZE, natvec))) {
3248 unsigned idx;
3249
3250 nid = nat_get_nid(natvec[found - 1]) + 1;
3251 for (idx = 0; idx < found; idx++) {
3252 spin_lock(&nm_i->nat_list_lock);
3253 list_del(&natvec[idx]->list);
3254 spin_unlock(&nm_i->nat_list_lock);
3255
3256 __del_from_nat_cache(nm_i, natvec[idx]);
3257 }
3258 }
3259 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3260
3261 /* destroy nat set cache */
3262 nid = 0;
3263 while ((found = __gang_lookup_nat_set(nm_i,
3264 nid, SETVEC_SIZE, setvec))) {
3265 unsigned idx;
3266
3267 nid = setvec[found - 1]->set + 1;
3268 for (idx = 0; idx < found; idx++) {
3269 /* entry_cnt is not zero, when cp_error was occurred */
3270 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3271 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3272 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3273 }
3274 }
3275 up_write(&nm_i->nat_tree_lock);
3276
3277 kvfree(nm_i->nat_block_bitmap);
3278 if (nm_i->free_nid_bitmap) {
3279 int i;
3280
3281 for (i = 0; i < nm_i->nat_blocks; i++)
3282 kvfree(nm_i->free_nid_bitmap[i]);
3283 kvfree(nm_i->free_nid_bitmap);
3284 }
3285 kvfree(nm_i->free_nid_count);
3286
3287 kvfree(nm_i->nat_bitmap);
3288 kvfree(nm_i->nat_bits);
3289#ifdef CONFIG_F2FS_CHECK_FS
3290 kvfree(nm_i->nat_bitmap_mir);
3291#endif
3292 sbi->nm_info = NULL;
3293 kfree(nm_i);
3294}
3295
3296int __init f2fs_create_node_manager_caches(void)
3297{
3298 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3299 sizeof(struct nat_entry));
3300 if (!nat_entry_slab)
3301 goto fail;
3302
3303 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3304 sizeof(struct free_nid));
3305 if (!free_nid_slab)
3306 goto destroy_nat_entry;
3307
3308 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3309 sizeof(struct nat_entry_set));
3310 if (!nat_entry_set_slab)
3311 goto destroy_free_nid;
3312
3313 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3314 sizeof(struct fsync_node_entry));
3315 if (!fsync_node_entry_slab)
3316 goto destroy_nat_entry_set;
3317 return 0;
3318
3319destroy_nat_entry_set:
3320 kmem_cache_destroy(nat_entry_set_slab);
3321destroy_free_nid:
3322 kmem_cache_destroy(free_nid_slab);
3323destroy_nat_entry:
3324 kmem_cache_destroy(nat_entry_slab);
3325fail:
3326 return -ENOMEM;
3327}
3328
3329void f2fs_destroy_node_manager_caches(void)
3330{
3331 kmem_cache_destroy(fsync_node_entry_slab);
3332 kmem_cache_destroy(nat_entry_set_slab);
3333 kmem_cache_destroy(free_nid_slab);
3334 kmem_cache_destroy(nat_entry_slab);
3335}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620}
621
622/*
623 * readahead MAX_RA_NODE number of node pages.
624 */
625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626{
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643}
644
645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646{
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676}
677
678/*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
682static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684{
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752got:
753 return level;
754}
755
756/*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762{
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 block_t blkaddr;
857
858 if (!c_len)
859 goto out;
860
861 blkaddr = f2fs_data_blkaddr(dn);
862 if (blkaddr == COMPRESS_ADDR)
863 blkaddr = data_blkaddr(dn->inode, dn->node_page,
864 dn->ofs_in_node + 1);
865
866 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867 index, blkaddr,
868 F2FS_I(dn->inode)->i_cluster_size,
869 c_len);
870 }
871out:
872 return 0;
873
874release_pages:
875 f2fs_put_page(parent, 1);
876 if (i > 1)
877 f2fs_put_page(npage[0], 0);
878release_out:
879 dn->inode_page = NULL;
880 dn->node_page = NULL;
881 if (err == -ENOENT) {
882 dn->cur_level = i;
883 dn->max_level = level;
884 dn->ofs_in_node = offset[level];
885 }
886 return err;
887}
888
889static int truncate_node(struct dnode_of_data *dn)
890{
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 struct node_info ni;
893 int err;
894 pgoff_t index;
895
896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897 if (err)
898 return err;
899
900 /* Deallocate node address */
901 f2fs_invalidate_blocks(sbi, ni.blk_addr);
902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903 set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905 if (dn->nid == dn->inode->i_ino) {
906 f2fs_remove_orphan_inode(sbi, dn->nid);
907 dec_valid_inode_count(sbi);
908 f2fs_inode_synced(dn->inode);
909 }
910
911 clear_node_page_dirty(dn->node_page);
912 set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914 index = dn->node_page->index;
915 f2fs_put_page(dn->node_page, 1);
916
917 invalidate_mapping_pages(NODE_MAPPING(sbi),
918 index, index);
919
920 dn->node_page = NULL;
921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923 return 0;
924}
925
926static int truncate_dnode(struct dnode_of_data *dn)
927{
928 struct page *page;
929 int err;
930
931 if (dn->nid == 0)
932 return 1;
933
934 /* get direct node */
935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
936 if (PTR_ERR(page) == -ENOENT)
937 return 1;
938 else if (IS_ERR(page))
939 return PTR_ERR(page);
940
941 /* Make dnode_of_data for parameter */
942 dn->node_page = page;
943 dn->ofs_in_node = 0;
944 f2fs_truncate_data_blocks(dn);
945 err = truncate_node(dn);
946 if (err)
947 return err;
948
949 return 1;
950}
951
952static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
953 int ofs, int depth)
954{
955 struct dnode_of_data rdn = *dn;
956 struct page *page;
957 struct f2fs_node *rn;
958 nid_t child_nid;
959 unsigned int child_nofs;
960 int freed = 0;
961 int i, ret;
962
963 if (dn->nid == 0)
964 return NIDS_PER_BLOCK + 1;
965
966 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
967
968 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
969 if (IS_ERR(page)) {
970 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
971 return PTR_ERR(page);
972 }
973
974 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
975
976 rn = F2FS_NODE(page);
977 if (depth < 3) {
978 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
979 child_nid = le32_to_cpu(rn->in.nid[i]);
980 if (child_nid == 0)
981 continue;
982 rdn.nid = child_nid;
983 ret = truncate_dnode(&rdn);
984 if (ret < 0)
985 goto out_err;
986 if (set_nid(page, i, 0, false))
987 dn->node_changed = true;
988 }
989 } else {
990 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
991 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
992 child_nid = le32_to_cpu(rn->in.nid[i]);
993 if (child_nid == 0) {
994 child_nofs += NIDS_PER_BLOCK + 1;
995 continue;
996 }
997 rdn.nid = child_nid;
998 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
999 if (ret == (NIDS_PER_BLOCK + 1)) {
1000 if (set_nid(page, i, 0, false))
1001 dn->node_changed = true;
1002 child_nofs += ret;
1003 } else if (ret < 0 && ret != -ENOENT) {
1004 goto out_err;
1005 }
1006 }
1007 freed = child_nofs;
1008 }
1009
1010 if (!ofs) {
1011 /* remove current indirect node */
1012 dn->node_page = page;
1013 ret = truncate_node(dn);
1014 if (ret)
1015 goto out_err;
1016 freed++;
1017 } else {
1018 f2fs_put_page(page, 1);
1019 }
1020 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021 return freed;
1022
1023out_err:
1024 f2fs_put_page(page, 1);
1025 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026 return ret;
1027}
1028
1029static int truncate_partial_nodes(struct dnode_of_data *dn,
1030 struct f2fs_inode *ri, int *offset, int depth)
1031{
1032 struct page *pages[2];
1033 nid_t nid[3];
1034 nid_t child_nid;
1035 int err = 0;
1036 int i;
1037 int idx = depth - 2;
1038
1039 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040 if (!nid[0])
1041 return 0;
1042
1043 /* get indirect nodes in the path */
1044 for (i = 0; i < idx + 1; i++) {
1045 /* reference count'll be increased */
1046 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047 if (IS_ERR(pages[i])) {
1048 err = PTR_ERR(pages[i]);
1049 idx = i - 1;
1050 goto fail;
1051 }
1052 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053 }
1054
1055 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057 /* free direct nodes linked to a partial indirect node */
1058 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059 child_nid = get_nid(pages[idx], i, false);
1060 if (!child_nid)
1061 continue;
1062 dn->nid = child_nid;
1063 err = truncate_dnode(dn);
1064 if (err < 0)
1065 goto fail;
1066 if (set_nid(pages[idx], i, 0, false))
1067 dn->node_changed = true;
1068 }
1069
1070 if (offset[idx + 1] == 0) {
1071 dn->node_page = pages[idx];
1072 dn->nid = nid[idx];
1073 err = truncate_node(dn);
1074 if (err)
1075 goto fail;
1076 } else {
1077 f2fs_put_page(pages[idx], 1);
1078 }
1079 offset[idx]++;
1080 offset[idx + 1] = 0;
1081 idx--;
1082fail:
1083 for (i = idx; i >= 0; i--)
1084 f2fs_put_page(pages[i], 1);
1085
1086 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088 return err;
1089}
1090
1091/*
1092 * All the block addresses of data and nodes should be nullified.
1093 */
1094int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095{
1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097 int err = 0, cont = 1;
1098 int level, offset[4], noffset[4];
1099 unsigned int nofs = 0;
1100 struct f2fs_inode *ri;
1101 struct dnode_of_data dn;
1102 struct page *page;
1103
1104 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106 level = get_node_path(inode, from, offset, noffset);
1107 if (level < 0) {
1108 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109 return level;
1110 }
1111
1112 page = f2fs_get_node_page(sbi, inode->i_ino);
1113 if (IS_ERR(page)) {
1114 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115 return PTR_ERR(page);
1116 }
1117
1118 set_new_dnode(&dn, inode, page, NULL, 0);
1119 unlock_page(page);
1120
1121 ri = F2FS_INODE(page);
1122 switch (level) {
1123 case 0:
1124 case 1:
1125 nofs = noffset[1];
1126 break;
1127 case 2:
1128 nofs = noffset[1];
1129 if (!offset[level - 1])
1130 goto skip_partial;
1131 err = truncate_partial_nodes(&dn, ri, offset, level);
1132 if (err < 0 && err != -ENOENT)
1133 goto fail;
1134 nofs += 1 + NIDS_PER_BLOCK;
1135 break;
1136 case 3:
1137 nofs = 5 + 2 * NIDS_PER_BLOCK;
1138 if (!offset[level - 1])
1139 goto skip_partial;
1140 err = truncate_partial_nodes(&dn, ri, offset, level);
1141 if (err < 0 && err != -ENOENT)
1142 goto fail;
1143 break;
1144 default:
1145 BUG();
1146 }
1147
1148skip_partial:
1149 while (cont) {
1150 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151 switch (offset[0]) {
1152 case NODE_DIR1_BLOCK:
1153 case NODE_DIR2_BLOCK:
1154 err = truncate_dnode(&dn);
1155 break;
1156
1157 case NODE_IND1_BLOCK:
1158 case NODE_IND2_BLOCK:
1159 err = truncate_nodes(&dn, nofs, offset[1], 2);
1160 break;
1161
1162 case NODE_DIND_BLOCK:
1163 err = truncate_nodes(&dn, nofs, offset[1], 3);
1164 cont = 0;
1165 break;
1166
1167 default:
1168 BUG();
1169 }
1170 if (err < 0 && err != -ENOENT)
1171 goto fail;
1172 if (offset[1] == 0 &&
1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174 lock_page(page);
1175 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176 f2fs_wait_on_page_writeback(page, NODE, true, true);
1177 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178 set_page_dirty(page);
1179 unlock_page(page);
1180 }
1181 offset[1] = 0;
1182 offset[0]++;
1183 nofs += err;
1184 }
1185fail:
1186 f2fs_put_page(page, 0);
1187 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188 return err > 0 ? 0 : err;
1189}
1190
1191/* caller must lock inode page */
1192int f2fs_truncate_xattr_node(struct inode *inode)
1193{
1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196 struct dnode_of_data dn;
1197 struct page *npage;
1198 int err;
1199
1200 if (!nid)
1201 return 0;
1202
1203 npage = f2fs_get_node_page(sbi, nid);
1204 if (IS_ERR(npage))
1205 return PTR_ERR(npage);
1206
1207 set_new_dnode(&dn, inode, NULL, npage, nid);
1208 err = truncate_node(&dn);
1209 if (err) {
1210 f2fs_put_page(npage, 1);
1211 return err;
1212 }
1213
1214 f2fs_i_xnid_write(inode, 0);
1215
1216 return 0;
1217}
1218
1219/*
1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221 * f2fs_unlock_op().
1222 */
1223int f2fs_remove_inode_page(struct inode *inode)
1224{
1225 struct dnode_of_data dn;
1226 int err;
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230 if (err)
1231 return err;
1232
1233 err = f2fs_truncate_xattr_node(inode);
1234 if (err) {
1235 f2fs_put_dnode(&dn);
1236 return err;
1237 }
1238
1239 /* remove potential inline_data blocks */
1240 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241 S_ISLNK(inode->i_mode))
1242 f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244 /* 0 is possible, after f2fs_new_inode() has failed */
1245 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246 f2fs_put_dnode(&dn);
1247 return -EIO;
1248 }
1249
1250 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251 f2fs_warn(F2FS_I_SB(inode),
1252 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253 inode->i_ino, (unsigned long long)inode->i_blocks);
1254 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255 }
1256
1257 /* will put inode & node pages */
1258 err = truncate_node(&dn);
1259 if (err) {
1260 f2fs_put_dnode(&dn);
1261 return err;
1262 }
1263 return 0;
1264}
1265
1266struct page *f2fs_new_inode_page(struct inode *inode)
1267{
1268 struct dnode_of_data dn;
1269
1270 /* allocate inode page for new inode */
1271 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273 /* caller should f2fs_put_page(page, 1); */
1274 return f2fs_new_node_page(&dn, 0);
1275}
1276
1277struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1278{
1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280 struct node_info new_ni;
1281 struct page *page;
1282 int err;
1283
1284 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285 return ERR_PTR(-EPERM);
1286
1287 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1288 if (!page)
1289 return ERR_PTR(-ENOMEM);
1290
1291 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292 goto fail;
1293
1294#ifdef CONFIG_F2FS_CHECK_FS
1295 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296 if (err) {
1297 dec_valid_node_count(sbi, dn->inode, !ofs);
1298 goto fail;
1299 }
1300 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301 err = -EFSCORRUPTED;
1302 set_sbi_flag(sbi, SBI_NEED_FSCK);
1303 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304 goto fail;
1305 }
1306#endif
1307 new_ni.nid = dn->nid;
1308 new_ni.ino = dn->inode->i_ino;
1309 new_ni.blk_addr = NULL_ADDR;
1310 new_ni.flag = 0;
1311 new_ni.version = 0;
1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314 f2fs_wait_on_page_writeback(page, NODE, true, true);
1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317 if (!PageUptodate(page))
1318 SetPageUptodate(page);
1319 if (set_page_dirty(page))
1320 dn->node_changed = true;
1321
1322 if (f2fs_has_xattr_block(ofs))
1323 f2fs_i_xnid_write(dn->inode, dn->nid);
1324
1325 if (ofs == 0)
1326 inc_valid_inode_count(sbi);
1327 return page;
1328
1329fail:
1330 clear_node_page_dirty(page);
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(err);
1333}
1334
1335/*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339 */
1340static int read_node_page(struct page *page, blk_opf_t op_flags)
1341{
1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 struct node_info ni;
1344 struct f2fs_io_info fio = {
1345 .sbi = sbi,
1346 .type = NODE,
1347 .op = REQ_OP_READ,
1348 .op_flags = op_flags,
1349 .page = page,
1350 .encrypted_page = NULL,
1351 };
1352 int err;
1353
1354 if (PageUptodate(page)) {
1355 if (!f2fs_inode_chksum_verify(sbi, page)) {
1356 ClearPageUptodate(page);
1357 return -EFSBADCRC;
1358 }
1359 return LOCKED_PAGE;
1360 }
1361
1362 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363 if (err)
1364 return err;
1365
1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368 ClearPageUptodate(page);
1369 return -ENOENT;
1370 }
1371
1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374 err = f2fs_submit_page_bio(&fio);
1375
1376 if (!err)
1377 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379 return err;
1380}
1381
1382/*
1383 * Readahead a node page
1384 */
1385void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387 struct page *apage;
1388 int err;
1389
1390 if (!nid)
1391 return;
1392 if (f2fs_check_nid_range(sbi, nid))
1393 return;
1394
1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396 if (apage)
1397 return;
1398
1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400 if (!apage)
1401 return;
1402
1403 err = read_node_page(apage, REQ_RAHEAD);
1404 f2fs_put_page(apage, err ? 1 : 0);
1405}
1406
1407static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408 struct page *parent, int start)
1409{
1410 struct page *page;
1411 int err;
1412
1413 if (!nid)
1414 return ERR_PTR(-ENOENT);
1415 if (f2fs_check_nid_range(sbi, nid))
1416 return ERR_PTR(-EINVAL);
1417repeat:
1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419 if (!page)
1420 return ERR_PTR(-ENOMEM);
1421
1422 err = read_node_page(page, 0);
1423 if (err < 0) {
1424 goto out_put_err;
1425 } else if (err == LOCKED_PAGE) {
1426 err = 0;
1427 goto page_hit;
1428 }
1429
1430 if (parent)
1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433 lock_page(page);
1434
1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436 f2fs_put_page(page, 1);
1437 goto repeat;
1438 }
1439
1440 if (unlikely(!PageUptodate(page))) {
1441 err = -EIO;
1442 goto out_err;
1443 }
1444
1445 if (!f2fs_inode_chksum_verify(sbi, page)) {
1446 err = -EFSBADCRC;
1447 goto out_err;
1448 }
1449page_hit:
1450 if (likely(nid == nid_of_node(page)))
1451 return page;
1452
1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454 nid, nid_of_node(page), ino_of_node(page),
1455 ofs_of_node(page), cpver_of_node(page),
1456 next_blkaddr_of_node(page));
1457 set_sbi_flag(sbi, SBI_NEED_FSCK);
1458 err = -EINVAL;
1459out_err:
1460 ClearPageUptodate(page);
1461out_put_err:
1462 /* ENOENT comes from read_node_page which is not an error. */
1463 if (err != -ENOENT)
1464 f2fs_handle_page_eio(sbi, page->index, NODE);
1465 f2fs_put_page(page, 1);
1466 return ERR_PTR(err);
1467}
1468
1469struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470{
1471 return __get_node_page(sbi, nid, NULL, 0);
1472}
1473
1474struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475{
1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477 nid_t nid = get_nid(parent, start, false);
1478
1479 return __get_node_page(sbi, nid, parent, start);
1480}
1481
1482static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483{
1484 struct inode *inode;
1485 struct page *page;
1486 int ret;
1487
1488 /* should flush inline_data before evict_inode */
1489 inode = ilookup(sbi->sb, ino);
1490 if (!inode)
1491 return;
1492
1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494 FGP_LOCK|FGP_NOWAIT, 0);
1495 if (!page)
1496 goto iput_out;
1497
1498 if (!PageUptodate(page))
1499 goto page_out;
1500
1501 if (!PageDirty(page))
1502 goto page_out;
1503
1504 if (!clear_page_dirty_for_io(page))
1505 goto page_out;
1506
1507 ret = f2fs_write_inline_data(inode, page);
1508 inode_dec_dirty_pages(inode);
1509 f2fs_remove_dirty_inode(inode);
1510 if (ret)
1511 set_page_dirty(page);
1512page_out:
1513 f2fs_put_page(page, 1);
1514iput_out:
1515 iput(inode);
1516}
1517
1518static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519{
1520 pgoff_t index;
1521 struct pagevec pvec;
1522 struct page *last_page = NULL;
1523 int nr_pages;
1524
1525 pagevec_init(&pvec);
1526 index = 0;
1527
1528 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529 PAGECACHE_TAG_DIRTY))) {
1530 int i;
1531
1532 for (i = 0; i < nr_pages; i++) {
1533 struct page *page = pvec.pages[i];
1534
1535 if (unlikely(f2fs_cp_error(sbi))) {
1536 f2fs_put_page(last_page, 0);
1537 pagevec_release(&pvec);
1538 return ERR_PTR(-EIO);
1539 }
1540
1541 if (!IS_DNODE(page) || !is_cold_node(page))
1542 continue;
1543 if (ino_of_node(page) != ino)
1544 continue;
1545
1546 lock_page(page);
1547
1548 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549continue_unlock:
1550 unlock_page(page);
1551 continue;
1552 }
1553 if (ino_of_node(page) != ino)
1554 goto continue_unlock;
1555
1556 if (!PageDirty(page)) {
1557 /* someone wrote it for us */
1558 goto continue_unlock;
1559 }
1560
1561 if (last_page)
1562 f2fs_put_page(last_page, 0);
1563
1564 get_page(page);
1565 last_page = page;
1566 unlock_page(page);
1567 }
1568 pagevec_release(&pvec);
1569 cond_resched();
1570 }
1571 return last_page;
1572}
1573
1574static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575 struct writeback_control *wbc, bool do_balance,
1576 enum iostat_type io_type, unsigned int *seq_id)
1577{
1578 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579 nid_t nid;
1580 struct node_info ni;
1581 struct f2fs_io_info fio = {
1582 .sbi = sbi,
1583 .ino = ino_of_node(page),
1584 .type = NODE,
1585 .op = REQ_OP_WRITE,
1586 .op_flags = wbc_to_write_flags(wbc),
1587 .page = page,
1588 .encrypted_page = NULL,
1589 .submitted = false,
1590 .io_type = io_type,
1591 .io_wbc = wbc,
1592 };
1593 unsigned int seq;
1594
1595 trace_f2fs_writepage(page, NODE);
1596
1597 if (unlikely(f2fs_cp_error(sbi))) {
1598 ClearPageUptodate(page);
1599 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600 unlock_page(page);
1601 return 0;
1602 }
1603
1604 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605 goto redirty_out;
1606
1607 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608 wbc->sync_mode == WB_SYNC_NONE &&
1609 IS_DNODE(page) && is_cold_node(page))
1610 goto redirty_out;
1611
1612 /* get old block addr of this node page */
1613 nid = nid_of_node(page);
1614 f2fs_bug_on(sbi, page->index != nid);
1615
1616 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617 goto redirty_out;
1618
1619 if (wbc->for_reclaim) {
1620 if (!f2fs_down_read_trylock(&sbi->node_write))
1621 goto redirty_out;
1622 } else {
1623 f2fs_down_read(&sbi->node_write);
1624 }
1625
1626 /* This page is already truncated */
1627 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628 ClearPageUptodate(page);
1629 dec_page_count(sbi, F2FS_DIRTY_NODES);
1630 f2fs_up_read(&sbi->node_write);
1631 unlock_page(page);
1632 return 0;
1633 }
1634
1635 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637 DATA_GENERIC_ENHANCE)) {
1638 f2fs_up_read(&sbi->node_write);
1639 goto redirty_out;
1640 }
1641
1642 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1643 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645 /* should add to global list before clearing PAGECACHE status */
1646 if (f2fs_in_warm_node_list(sbi, page)) {
1647 seq = f2fs_add_fsync_node_entry(sbi, page);
1648 if (seq_id)
1649 *seq_id = seq;
1650 }
1651
1652 set_page_writeback(page);
1653 ClearPageError(page);
1654
1655 fio.old_blkaddr = ni.blk_addr;
1656 f2fs_do_write_node_page(nid, &fio);
1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658 dec_page_count(sbi, F2FS_DIRTY_NODES);
1659 f2fs_up_read(&sbi->node_write);
1660
1661 if (wbc->for_reclaim) {
1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 submitted = NULL;
1664 }
1665
1666 unlock_page(page);
1667
1668 if (unlikely(f2fs_cp_error(sbi))) {
1669 f2fs_submit_merged_write(sbi, NODE);
1670 submitted = NULL;
1671 }
1672 if (submitted)
1673 *submitted = fio.submitted;
1674
1675 if (do_balance)
1676 f2fs_balance_fs(sbi, false);
1677 return 0;
1678
1679redirty_out:
1680 redirty_page_for_writepage(wbc, page);
1681 return AOP_WRITEPAGE_ACTIVATE;
1682}
1683
1684int f2fs_move_node_page(struct page *node_page, int gc_type)
1685{
1686 int err = 0;
1687
1688 if (gc_type == FG_GC) {
1689 struct writeback_control wbc = {
1690 .sync_mode = WB_SYNC_ALL,
1691 .nr_to_write = 1,
1692 .for_reclaim = 0,
1693 };
1694
1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697 set_page_dirty(node_page);
1698
1699 if (!clear_page_dirty_for_io(node_page)) {
1700 err = -EAGAIN;
1701 goto out_page;
1702 }
1703
1704 if (__write_node_page(node_page, false, NULL,
1705 &wbc, false, FS_GC_NODE_IO, NULL)) {
1706 err = -EAGAIN;
1707 unlock_page(node_page);
1708 }
1709 goto release_page;
1710 } else {
1711 /* set page dirty and write it */
1712 if (!PageWriteback(node_page))
1713 set_page_dirty(node_page);
1714 }
1715out_page:
1716 unlock_page(node_page);
1717release_page:
1718 f2fs_put_page(node_page, 0);
1719 return err;
1720}
1721
1722static int f2fs_write_node_page(struct page *page,
1723 struct writeback_control *wbc)
1724{
1725 return __write_node_page(page, false, NULL, wbc, false,
1726 FS_NODE_IO, NULL);
1727}
1728
1729int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730 struct writeback_control *wbc, bool atomic,
1731 unsigned int *seq_id)
1732{
1733 pgoff_t index;
1734 struct pagevec pvec;
1735 int ret = 0;
1736 struct page *last_page = NULL;
1737 bool marked = false;
1738 nid_t ino = inode->i_ino;
1739 int nr_pages;
1740 int nwritten = 0;
1741
1742 if (atomic) {
1743 last_page = last_fsync_dnode(sbi, ino);
1744 if (IS_ERR_OR_NULL(last_page))
1745 return PTR_ERR_OR_ZERO(last_page);
1746 }
1747retry:
1748 pagevec_init(&pvec);
1749 index = 0;
1750
1751 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752 PAGECACHE_TAG_DIRTY))) {
1753 int i;
1754
1755 for (i = 0; i < nr_pages; i++) {
1756 struct page *page = pvec.pages[i];
1757 bool submitted = false;
1758
1759 if (unlikely(f2fs_cp_error(sbi))) {
1760 f2fs_put_page(last_page, 0);
1761 pagevec_release(&pvec);
1762 ret = -EIO;
1763 goto out;
1764 }
1765
1766 if (!IS_DNODE(page) || !is_cold_node(page))
1767 continue;
1768 if (ino_of_node(page) != ino)
1769 continue;
1770
1771 lock_page(page);
1772
1773 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774continue_unlock:
1775 unlock_page(page);
1776 continue;
1777 }
1778 if (ino_of_node(page) != ino)
1779 goto continue_unlock;
1780
1781 if (!PageDirty(page) && page != last_page) {
1782 /* someone wrote it for us */
1783 goto continue_unlock;
1784 }
1785
1786 f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788 set_fsync_mark(page, 0);
1789 set_dentry_mark(page, 0);
1790
1791 if (!atomic || page == last_page) {
1792 set_fsync_mark(page, 1);
1793 percpu_counter_inc(&sbi->rf_node_block_count);
1794 if (IS_INODE(page)) {
1795 if (is_inode_flag_set(inode,
1796 FI_DIRTY_INODE))
1797 f2fs_update_inode(inode, page);
1798 set_dentry_mark(page,
1799 f2fs_need_dentry_mark(sbi, ino));
1800 }
1801 /* may be written by other thread */
1802 if (!PageDirty(page))
1803 set_page_dirty(page);
1804 }
1805
1806 if (!clear_page_dirty_for_io(page))
1807 goto continue_unlock;
1808
1809 ret = __write_node_page(page, atomic &&
1810 page == last_page,
1811 &submitted, wbc, true,
1812 FS_NODE_IO, seq_id);
1813 if (ret) {
1814 unlock_page(page);
1815 f2fs_put_page(last_page, 0);
1816 break;
1817 } else if (submitted) {
1818 nwritten++;
1819 }
1820
1821 if (page == last_page) {
1822 f2fs_put_page(page, 0);
1823 marked = true;
1824 break;
1825 }
1826 }
1827 pagevec_release(&pvec);
1828 cond_resched();
1829
1830 if (ret || marked)
1831 break;
1832 }
1833 if (!ret && atomic && !marked) {
1834 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835 ino, last_page->index);
1836 lock_page(last_page);
1837 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838 set_page_dirty(last_page);
1839 unlock_page(last_page);
1840 goto retry;
1841 }
1842out:
1843 if (nwritten)
1844 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845 return ret ? -EIO : 0;
1846}
1847
1848static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849{
1850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851 bool clean;
1852
1853 if (inode->i_ino != ino)
1854 return 0;
1855
1856 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857 return 0;
1858
1859 spin_lock(&sbi->inode_lock[DIRTY_META]);
1860 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863 if (clean)
1864 return 0;
1865
1866 inode = igrab(inode);
1867 if (!inode)
1868 return 0;
1869 return 1;
1870}
1871
1872static bool flush_dirty_inode(struct page *page)
1873{
1874 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875 struct inode *inode;
1876 nid_t ino = ino_of_node(page);
1877
1878 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879 if (!inode)
1880 return false;
1881
1882 f2fs_update_inode(inode, page);
1883 unlock_page(page);
1884
1885 iput(inode);
1886 return true;
1887}
1888
1889void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1890{
1891 pgoff_t index = 0;
1892 struct pagevec pvec;
1893 int nr_pages;
1894
1895 pagevec_init(&pvec);
1896
1897 while ((nr_pages = pagevec_lookup_tag(&pvec,
1898 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899 int i;
1900
1901 for (i = 0; i < nr_pages; i++) {
1902 struct page *page = pvec.pages[i];
1903
1904 if (!IS_DNODE(page))
1905 continue;
1906
1907 lock_page(page);
1908
1909 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910continue_unlock:
1911 unlock_page(page);
1912 continue;
1913 }
1914
1915 if (!PageDirty(page)) {
1916 /* someone wrote it for us */
1917 goto continue_unlock;
1918 }
1919
1920 /* flush inline_data, if it's async context. */
1921 if (page_private_inline(page)) {
1922 clear_page_private_inline(page);
1923 unlock_page(page);
1924 flush_inline_data(sbi, ino_of_node(page));
1925 continue;
1926 }
1927 unlock_page(page);
1928 }
1929 pagevec_release(&pvec);
1930 cond_resched();
1931 }
1932}
1933
1934int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935 struct writeback_control *wbc,
1936 bool do_balance, enum iostat_type io_type)
1937{
1938 pgoff_t index;
1939 struct pagevec pvec;
1940 int step = 0;
1941 int nwritten = 0;
1942 int ret = 0;
1943 int nr_pages, done = 0;
1944
1945 pagevec_init(&pvec);
1946
1947next_step:
1948 index = 0;
1949
1950 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952 int i;
1953
1954 for (i = 0; i < nr_pages; i++) {
1955 struct page *page = pvec.pages[i];
1956 bool submitted = false;
1957
1958 /* give a priority to WB_SYNC threads */
1959 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960 wbc->sync_mode == WB_SYNC_NONE) {
1961 done = 1;
1962 break;
1963 }
1964
1965 /*
1966 * flushing sequence with step:
1967 * 0. indirect nodes
1968 * 1. dentry dnodes
1969 * 2. file dnodes
1970 */
1971 if (step == 0 && IS_DNODE(page))
1972 continue;
1973 if (step == 1 && (!IS_DNODE(page) ||
1974 is_cold_node(page)))
1975 continue;
1976 if (step == 2 && (!IS_DNODE(page) ||
1977 !is_cold_node(page)))
1978 continue;
1979lock_node:
1980 if (wbc->sync_mode == WB_SYNC_ALL)
1981 lock_page(page);
1982 else if (!trylock_page(page))
1983 continue;
1984
1985 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986continue_unlock:
1987 unlock_page(page);
1988 continue;
1989 }
1990
1991 if (!PageDirty(page)) {
1992 /* someone wrote it for us */
1993 goto continue_unlock;
1994 }
1995
1996 /* flush inline_data/inode, if it's async context. */
1997 if (!do_balance)
1998 goto write_node;
1999
2000 /* flush inline_data */
2001 if (page_private_inline(page)) {
2002 clear_page_private_inline(page);
2003 unlock_page(page);
2004 flush_inline_data(sbi, ino_of_node(page));
2005 goto lock_node;
2006 }
2007
2008 /* flush dirty inode */
2009 if (IS_INODE(page) && flush_dirty_inode(page))
2010 goto lock_node;
2011write_node:
2012 f2fs_wait_on_page_writeback(page, NODE, true, true);
2013
2014 if (!clear_page_dirty_for_io(page))
2015 goto continue_unlock;
2016
2017 set_fsync_mark(page, 0);
2018 set_dentry_mark(page, 0);
2019
2020 ret = __write_node_page(page, false, &submitted,
2021 wbc, do_balance, io_type, NULL);
2022 if (ret)
2023 unlock_page(page);
2024 else if (submitted)
2025 nwritten++;
2026
2027 if (--wbc->nr_to_write == 0)
2028 break;
2029 }
2030 pagevec_release(&pvec);
2031 cond_resched();
2032
2033 if (wbc->nr_to_write == 0) {
2034 step = 2;
2035 break;
2036 }
2037 }
2038
2039 if (step < 2) {
2040 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2041 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2042 goto out;
2043 step++;
2044 goto next_step;
2045 }
2046out:
2047 if (nwritten)
2048 f2fs_submit_merged_write(sbi, NODE);
2049
2050 if (unlikely(f2fs_cp_error(sbi)))
2051 return -EIO;
2052 return ret;
2053}
2054
2055int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2056 unsigned int seq_id)
2057{
2058 struct fsync_node_entry *fn;
2059 struct page *page;
2060 struct list_head *head = &sbi->fsync_node_list;
2061 unsigned long flags;
2062 unsigned int cur_seq_id = 0;
2063 int ret2, ret = 0;
2064
2065 while (seq_id && cur_seq_id < seq_id) {
2066 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2067 if (list_empty(head)) {
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069 break;
2070 }
2071 fn = list_first_entry(head, struct fsync_node_entry, list);
2072 if (fn->seq_id > seq_id) {
2073 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074 break;
2075 }
2076 cur_seq_id = fn->seq_id;
2077 page = fn->page;
2078 get_page(page);
2079 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2080
2081 f2fs_wait_on_page_writeback(page, NODE, true, false);
2082 if (TestClearPageError(page))
2083 ret = -EIO;
2084
2085 put_page(page);
2086
2087 if (ret)
2088 break;
2089 }
2090
2091 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2092 if (!ret)
2093 ret = ret2;
2094
2095 return ret;
2096}
2097
2098static int f2fs_write_node_pages(struct address_space *mapping,
2099 struct writeback_control *wbc)
2100{
2101 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2102 struct blk_plug plug;
2103 long diff;
2104
2105 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2106 goto skip_write;
2107
2108 /* balancing f2fs's metadata in background */
2109 f2fs_balance_fs_bg(sbi, true);
2110
2111 /* collect a number of dirty node pages and write together */
2112 if (wbc->sync_mode != WB_SYNC_ALL &&
2113 get_pages(sbi, F2FS_DIRTY_NODES) <
2114 nr_pages_to_skip(sbi, NODE))
2115 goto skip_write;
2116
2117 if (wbc->sync_mode == WB_SYNC_ALL)
2118 atomic_inc(&sbi->wb_sync_req[NODE]);
2119 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2120 /* to avoid potential deadlock */
2121 if (current->plug)
2122 blk_finish_plug(current->plug);
2123 goto skip_write;
2124 }
2125
2126 trace_f2fs_writepages(mapping->host, wbc, NODE);
2127
2128 diff = nr_pages_to_write(sbi, NODE, wbc);
2129 blk_start_plug(&plug);
2130 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2131 blk_finish_plug(&plug);
2132 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2133
2134 if (wbc->sync_mode == WB_SYNC_ALL)
2135 atomic_dec(&sbi->wb_sync_req[NODE]);
2136 return 0;
2137
2138skip_write:
2139 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2140 trace_f2fs_writepages(mapping->host, wbc, NODE);
2141 return 0;
2142}
2143
2144static bool f2fs_dirty_node_folio(struct address_space *mapping,
2145 struct folio *folio)
2146{
2147 trace_f2fs_set_page_dirty(&folio->page, NODE);
2148
2149 if (!folio_test_uptodate(folio))
2150 folio_mark_uptodate(folio);
2151#ifdef CONFIG_F2FS_CHECK_FS
2152 if (IS_INODE(&folio->page))
2153 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2154#endif
2155 if (filemap_dirty_folio(mapping, folio)) {
2156 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2157 set_page_private_reference(&folio->page);
2158 return true;
2159 }
2160 return false;
2161}
2162
2163/*
2164 * Structure of the f2fs node operations
2165 */
2166const struct address_space_operations f2fs_node_aops = {
2167 .writepage = f2fs_write_node_page,
2168 .writepages = f2fs_write_node_pages,
2169 .dirty_folio = f2fs_dirty_node_folio,
2170 .invalidate_folio = f2fs_invalidate_folio,
2171 .release_folio = f2fs_release_folio,
2172 .migrate_folio = filemap_migrate_folio,
2173};
2174
2175static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176 nid_t n)
2177{
2178 return radix_tree_lookup(&nm_i->free_nid_root, n);
2179}
2180
2181static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182 struct free_nid *i)
2183{
2184 struct f2fs_nm_info *nm_i = NM_I(sbi);
2185 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187 if (err)
2188 return err;
2189
2190 nm_i->nid_cnt[FREE_NID]++;
2191 list_add_tail(&i->list, &nm_i->free_nid_list);
2192 return 0;
2193}
2194
2195static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196 struct free_nid *i, enum nid_state state)
2197{
2198 struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200 f2fs_bug_on(sbi, state != i->state);
2201 nm_i->nid_cnt[state]--;
2202 if (state == FREE_NID)
2203 list_del(&i->list);
2204 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205}
2206
2207static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208 enum nid_state org_state, enum nid_state dst_state)
2209{
2210 struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212 f2fs_bug_on(sbi, org_state != i->state);
2213 i->state = dst_state;
2214 nm_i->nid_cnt[org_state]--;
2215 nm_i->nid_cnt[dst_state]++;
2216
2217 switch (dst_state) {
2218 case PREALLOC_NID:
2219 list_del(&i->list);
2220 break;
2221 case FREE_NID:
2222 list_add_tail(&i->list, &nm_i->free_nid_list);
2223 break;
2224 default:
2225 BUG_ON(1);
2226 }
2227}
2228
2229bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230{
2231 struct f2fs_nm_info *nm_i = NM_I(sbi);
2232 unsigned int i;
2233 bool ret = true;
2234
2235 f2fs_down_read(&nm_i->nat_tree_lock);
2236 for (i = 0; i < nm_i->nat_blocks; i++) {
2237 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238 ret = false;
2239 break;
2240 }
2241 }
2242 f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244 return ret;
2245}
2246
2247static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248 bool set, bool build)
2249{
2250 struct f2fs_nm_info *nm_i = NM_I(sbi);
2251 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252 unsigned int nid_ofs = nid - START_NID(nid);
2253
2254 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255 return;
2256
2257 if (set) {
2258 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259 return;
2260 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261 nm_i->free_nid_count[nat_ofs]++;
2262 } else {
2263 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264 return;
2265 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266 if (!build)
2267 nm_i->free_nid_count[nat_ofs]--;
2268 }
2269}
2270
2271/* return if the nid is recognized as free */
2272static bool add_free_nid(struct f2fs_sb_info *sbi,
2273 nid_t nid, bool build, bool update)
2274{
2275 struct f2fs_nm_info *nm_i = NM_I(sbi);
2276 struct free_nid *i, *e;
2277 struct nat_entry *ne;
2278 int err = -EINVAL;
2279 bool ret = false;
2280
2281 /* 0 nid should not be used */
2282 if (unlikely(nid == 0))
2283 return false;
2284
2285 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286 return false;
2287
2288 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289 i->nid = nid;
2290 i->state = FREE_NID;
2291
2292 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294 spin_lock(&nm_i->nid_list_lock);
2295
2296 if (build) {
2297 /*
2298 * Thread A Thread B
2299 * - f2fs_create
2300 * - f2fs_new_inode
2301 * - f2fs_alloc_nid
2302 * - __insert_nid_to_list(PREALLOC_NID)
2303 * - f2fs_balance_fs_bg
2304 * - f2fs_build_free_nids
2305 * - __f2fs_build_free_nids
2306 * - scan_nat_page
2307 * - add_free_nid
2308 * - __lookup_nat_cache
2309 * - f2fs_add_link
2310 * - f2fs_init_inode_metadata
2311 * - f2fs_new_inode_page
2312 * - f2fs_new_node_page
2313 * - set_node_addr
2314 * - f2fs_alloc_nid_done
2315 * - __remove_nid_from_list(PREALLOC_NID)
2316 * - __insert_nid_to_list(FREE_NID)
2317 */
2318 ne = __lookup_nat_cache(nm_i, nid);
2319 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320 nat_get_blkaddr(ne) != NULL_ADDR))
2321 goto err_out;
2322
2323 e = __lookup_free_nid_list(nm_i, nid);
2324 if (e) {
2325 if (e->state == FREE_NID)
2326 ret = true;
2327 goto err_out;
2328 }
2329 }
2330 ret = true;
2331 err = __insert_free_nid(sbi, i);
2332err_out:
2333 if (update) {
2334 update_free_nid_bitmap(sbi, nid, ret, build);
2335 if (!build)
2336 nm_i->available_nids++;
2337 }
2338 spin_unlock(&nm_i->nid_list_lock);
2339 radix_tree_preload_end();
2340
2341 if (err)
2342 kmem_cache_free(free_nid_slab, i);
2343 return ret;
2344}
2345
2346static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347{
2348 struct f2fs_nm_info *nm_i = NM_I(sbi);
2349 struct free_nid *i;
2350 bool need_free = false;
2351
2352 spin_lock(&nm_i->nid_list_lock);
2353 i = __lookup_free_nid_list(nm_i, nid);
2354 if (i && i->state == FREE_NID) {
2355 __remove_free_nid(sbi, i, FREE_NID);
2356 need_free = true;
2357 }
2358 spin_unlock(&nm_i->nid_list_lock);
2359
2360 if (need_free)
2361 kmem_cache_free(free_nid_slab, i);
2362}
2363
2364static int scan_nat_page(struct f2fs_sb_info *sbi,
2365 struct page *nat_page, nid_t start_nid)
2366{
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369 block_t blk_addr;
2370 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371 int i;
2372
2373 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375 i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2378 if (unlikely(start_nid >= nm_i->max_nid))
2379 break;
2380
2381 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383 if (blk_addr == NEW_ADDR)
2384 return -EINVAL;
2385
2386 if (blk_addr == NULL_ADDR) {
2387 add_free_nid(sbi, start_nid, true, true);
2388 } else {
2389 spin_lock(&NM_I(sbi)->nid_list_lock);
2390 update_free_nid_bitmap(sbi, start_nid, false, true);
2391 spin_unlock(&NM_I(sbi)->nid_list_lock);
2392 }
2393 }
2394
2395 return 0;
2396}
2397
2398static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399{
2400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401 struct f2fs_journal *journal = curseg->journal;
2402 int i;
2403
2404 down_read(&curseg->journal_rwsem);
2405 for (i = 0; i < nats_in_cursum(journal); i++) {
2406 block_t addr;
2407 nid_t nid;
2408
2409 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410 nid = le32_to_cpu(nid_in_journal(journal, i));
2411 if (addr == NULL_ADDR)
2412 add_free_nid(sbi, nid, true, false);
2413 else
2414 remove_free_nid(sbi, nid);
2415 }
2416 up_read(&curseg->journal_rwsem);
2417}
2418
2419static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420{
2421 struct f2fs_nm_info *nm_i = NM_I(sbi);
2422 unsigned int i, idx;
2423 nid_t nid;
2424
2425 f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427 for (i = 0; i < nm_i->nat_blocks; i++) {
2428 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429 continue;
2430 if (!nm_i->free_nid_count[i])
2431 continue;
2432 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434 NAT_ENTRY_PER_BLOCK, idx);
2435 if (idx >= NAT_ENTRY_PER_BLOCK)
2436 break;
2437
2438 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439 add_free_nid(sbi, nid, true, false);
2440
2441 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442 goto out;
2443 }
2444 }
2445out:
2446 scan_curseg_cache(sbi);
2447
2448 f2fs_up_read(&nm_i->nat_tree_lock);
2449}
2450
2451static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452 bool sync, bool mount)
2453{
2454 struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 int i = 0, ret;
2456 nid_t nid = nm_i->next_scan_nid;
2457
2458 if (unlikely(nid >= nm_i->max_nid))
2459 nid = 0;
2460
2461 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464 /* Enough entries */
2465 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466 return 0;
2467
2468 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469 return 0;
2470
2471 if (!mount) {
2472 /* try to find free nids in free_nid_bitmap */
2473 scan_free_nid_bits(sbi);
2474
2475 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476 return 0;
2477 }
2478
2479 /* readahead nat pages to be scanned */
2480 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481 META_NAT, true);
2482
2483 f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485 while (1) {
2486 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487 nm_i->nat_block_bitmap)) {
2488 struct page *page = get_current_nat_page(sbi, nid);
2489
2490 if (IS_ERR(page)) {
2491 ret = PTR_ERR(page);
2492 } else {
2493 ret = scan_nat_page(sbi, page, nid);
2494 f2fs_put_page(page, 1);
2495 }
2496
2497 if (ret) {
2498 f2fs_up_read(&nm_i->nat_tree_lock);
2499 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500 return ret;
2501 }
2502 }
2503
2504 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505 if (unlikely(nid >= nm_i->max_nid))
2506 nid = 0;
2507
2508 if (++i >= FREE_NID_PAGES)
2509 break;
2510 }
2511
2512 /* go to the next free nat pages to find free nids abundantly */
2513 nm_i->next_scan_nid = nid;
2514
2515 /* find free nids from current sum_pages */
2516 scan_curseg_cache(sbi);
2517
2518 f2fs_up_read(&nm_i->nat_tree_lock);
2519
2520 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521 nm_i->ra_nid_pages, META_NAT, false);
2522
2523 return 0;
2524}
2525
2526int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527{
2528 int ret;
2529
2530 mutex_lock(&NM_I(sbi)->build_lock);
2531 ret = __f2fs_build_free_nids(sbi, sync, mount);
2532 mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534 return ret;
2535}
2536
2537/*
2538 * If this function returns success, caller can obtain a new nid
2539 * from second parameter of this function.
2540 * The returned nid could be used ino as well as nid when inode is created.
2541 */
2542bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543{
2544 struct f2fs_nm_info *nm_i = NM_I(sbi);
2545 struct free_nid *i = NULL;
2546retry:
2547 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2548 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2549 return false;
2550 }
2551
2552 spin_lock(&nm_i->nid_list_lock);
2553
2554 if (unlikely(nm_i->available_nids == 0)) {
2555 spin_unlock(&nm_i->nid_list_lock);
2556 return false;
2557 }
2558
2559 /* We should not use stale free nids created by f2fs_build_free_nids */
2560 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2561 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2562 i = list_first_entry(&nm_i->free_nid_list,
2563 struct free_nid, list);
2564 *nid = i->nid;
2565
2566 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2567 nm_i->available_nids--;
2568
2569 update_free_nid_bitmap(sbi, *nid, false, false);
2570
2571 spin_unlock(&nm_i->nid_list_lock);
2572 return true;
2573 }
2574 spin_unlock(&nm_i->nid_list_lock);
2575
2576 /* Let's scan nat pages and its caches to get free nids */
2577 if (!f2fs_build_free_nids(sbi, true, false))
2578 goto retry;
2579 return false;
2580}
2581
2582/*
2583 * f2fs_alloc_nid() should be called prior to this function.
2584 */
2585void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2586{
2587 struct f2fs_nm_info *nm_i = NM_I(sbi);
2588 struct free_nid *i;
2589
2590 spin_lock(&nm_i->nid_list_lock);
2591 i = __lookup_free_nid_list(nm_i, nid);
2592 f2fs_bug_on(sbi, !i);
2593 __remove_free_nid(sbi, i, PREALLOC_NID);
2594 spin_unlock(&nm_i->nid_list_lock);
2595
2596 kmem_cache_free(free_nid_slab, i);
2597}
2598
2599/*
2600 * f2fs_alloc_nid() should be called prior to this function.
2601 */
2602void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2603{
2604 struct f2fs_nm_info *nm_i = NM_I(sbi);
2605 struct free_nid *i;
2606 bool need_free = false;
2607
2608 if (!nid)
2609 return;
2610
2611 spin_lock(&nm_i->nid_list_lock);
2612 i = __lookup_free_nid_list(nm_i, nid);
2613 f2fs_bug_on(sbi, !i);
2614
2615 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2616 __remove_free_nid(sbi, i, PREALLOC_NID);
2617 need_free = true;
2618 } else {
2619 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2620 }
2621
2622 nm_i->available_nids++;
2623
2624 update_free_nid_bitmap(sbi, nid, true, false);
2625
2626 spin_unlock(&nm_i->nid_list_lock);
2627
2628 if (need_free)
2629 kmem_cache_free(free_nid_slab, i);
2630}
2631
2632int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2633{
2634 struct f2fs_nm_info *nm_i = NM_I(sbi);
2635 int nr = nr_shrink;
2636
2637 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638 return 0;
2639
2640 if (!mutex_trylock(&nm_i->build_lock))
2641 return 0;
2642
2643 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2644 struct free_nid *i, *next;
2645 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2646
2647 spin_lock(&nm_i->nid_list_lock);
2648 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2649 if (!nr_shrink || !batch ||
2650 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2651 break;
2652 __remove_free_nid(sbi, i, FREE_NID);
2653 kmem_cache_free(free_nid_slab, i);
2654 nr_shrink--;
2655 batch--;
2656 }
2657 spin_unlock(&nm_i->nid_list_lock);
2658 }
2659
2660 mutex_unlock(&nm_i->build_lock);
2661
2662 return nr - nr_shrink;
2663}
2664
2665int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2666{
2667 void *src_addr, *dst_addr;
2668 size_t inline_size;
2669 struct page *ipage;
2670 struct f2fs_inode *ri;
2671
2672 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2673 if (IS_ERR(ipage))
2674 return PTR_ERR(ipage);
2675
2676 ri = F2FS_INODE(page);
2677 if (ri->i_inline & F2FS_INLINE_XATTR) {
2678 if (!f2fs_has_inline_xattr(inode)) {
2679 set_inode_flag(inode, FI_INLINE_XATTR);
2680 stat_inc_inline_xattr(inode);
2681 }
2682 } else {
2683 if (f2fs_has_inline_xattr(inode)) {
2684 stat_dec_inline_xattr(inode);
2685 clear_inode_flag(inode, FI_INLINE_XATTR);
2686 }
2687 goto update_inode;
2688 }
2689
2690 dst_addr = inline_xattr_addr(inode, ipage);
2691 src_addr = inline_xattr_addr(inode, page);
2692 inline_size = inline_xattr_size(inode);
2693
2694 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2695 memcpy(dst_addr, src_addr, inline_size);
2696update_inode:
2697 f2fs_update_inode(inode, ipage);
2698 f2fs_put_page(ipage, 1);
2699 return 0;
2700}
2701
2702int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2703{
2704 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2705 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2706 nid_t new_xnid;
2707 struct dnode_of_data dn;
2708 struct node_info ni;
2709 struct page *xpage;
2710 int err;
2711
2712 if (!prev_xnid)
2713 goto recover_xnid;
2714
2715 /* 1: invalidate the previous xattr nid */
2716 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2717 if (err)
2718 return err;
2719
2720 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2721 dec_valid_node_count(sbi, inode, false);
2722 set_node_addr(sbi, &ni, NULL_ADDR, false);
2723
2724recover_xnid:
2725 /* 2: update xattr nid in inode */
2726 if (!f2fs_alloc_nid(sbi, &new_xnid))
2727 return -ENOSPC;
2728
2729 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2730 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2731 if (IS_ERR(xpage)) {
2732 f2fs_alloc_nid_failed(sbi, new_xnid);
2733 return PTR_ERR(xpage);
2734 }
2735
2736 f2fs_alloc_nid_done(sbi, new_xnid);
2737 f2fs_update_inode_page(inode);
2738
2739 /* 3: update and set xattr node page dirty */
2740 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2741
2742 set_page_dirty(xpage);
2743 f2fs_put_page(xpage, 1);
2744
2745 return 0;
2746}
2747
2748int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749{
2750 struct f2fs_inode *src, *dst;
2751 nid_t ino = ino_of_node(page);
2752 struct node_info old_ni, new_ni;
2753 struct page *ipage;
2754 int err;
2755
2756 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757 if (err)
2758 return err;
2759
2760 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761 return -EINVAL;
2762retry:
2763 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764 if (!ipage) {
2765 memalloc_retry_wait(GFP_NOFS);
2766 goto retry;
2767 }
2768
2769 /* Should not use this inode from free nid list */
2770 remove_free_nid(sbi, ino);
2771
2772 if (!PageUptodate(ipage))
2773 SetPageUptodate(ipage);
2774 fill_node_footer(ipage, ino, ino, 0, true);
2775 set_cold_node(ipage, false);
2776
2777 src = F2FS_INODE(page);
2778 dst = F2FS_INODE(ipage);
2779
2780 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781 dst->i_size = 0;
2782 dst->i_blocks = cpu_to_le64(1);
2783 dst->i_links = cpu_to_le32(1);
2784 dst->i_xattr_nid = 0;
2785 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787 dst->i_extra_isize = src->i_extra_isize;
2788
2789 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791 i_inline_xattr_size))
2792 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794 if (f2fs_sb_has_project_quota(sbi) &&
2795 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796 i_projid))
2797 dst->i_projid = src->i_projid;
2798
2799 if (f2fs_sb_has_inode_crtime(sbi) &&
2800 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801 i_crtime_nsec)) {
2802 dst->i_crtime = src->i_crtime;
2803 dst->i_crtime_nsec = src->i_crtime_nsec;
2804 }
2805 }
2806
2807 new_ni = old_ni;
2808 new_ni.ino = ino;
2809
2810 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811 WARN_ON(1);
2812 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813 inc_valid_inode_count(sbi);
2814 set_page_dirty(ipage);
2815 f2fs_put_page(ipage, 1);
2816 return 0;
2817}
2818
2819int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2820 unsigned int segno, struct f2fs_summary_block *sum)
2821{
2822 struct f2fs_node *rn;
2823 struct f2fs_summary *sum_entry;
2824 block_t addr;
2825 int i, idx, last_offset, nrpages;
2826
2827 /* scan the node segment */
2828 last_offset = sbi->blocks_per_seg;
2829 addr = START_BLOCK(sbi, segno);
2830 sum_entry = &sum->entries[0];
2831
2832 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833 nrpages = bio_max_segs(last_offset - i);
2834
2835 /* readahead node pages */
2836 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838 for (idx = addr; idx < addr + nrpages; idx++) {
2839 struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841 if (IS_ERR(page))
2842 return PTR_ERR(page);
2843
2844 rn = F2FS_NODE(page);
2845 sum_entry->nid = rn->footer.nid;
2846 sum_entry->version = 0;
2847 sum_entry->ofs_in_node = 0;
2848 sum_entry++;
2849 f2fs_put_page(page, 1);
2850 }
2851
2852 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853 addr + nrpages);
2854 }
2855 return 0;
2856}
2857
2858static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859{
2860 struct f2fs_nm_info *nm_i = NM_I(sbi);
2861 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862 struct f2fs_journal *journal = curseg->journal;
2863 int i;
2864
2865 down_write(&curseg->journal_rwsem);
2866 for (i = 0; i < nats_in_cursum(journal); i++) {
2867 struct nat_entry *ne;
2868 struct f2fs_nat_entry raw_ne;
2869 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871 if (f2fs_check_nid_range(sbi, nid))
2872 continue;
2873
2874 raw_ne = nat_in_journal(journal, i);
2875
2876 ne = __lookup_nat_cache(nm_i, nid);
2877 if (!ne) {
2878 ne = __alloc_nat_entry(sbi, nid, true);
2879 __init_nat_entry(nm_i, ne, &raw_ne, true);
2880 }
2881
2882 /*
2883 * if a free nat in journal has not been used after last
2884 * checkpoint, we should remove it from available nids,
2885 * since later we will add it again.
2886 */
2887 if (!get_nat_flag(ne, IS_DIRTY) &&
2888 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889 spin_lock(&nm_i->nid_list_lock);
2890 nm_i->available_nids--;
2891 spin_unlock(&nm_i->nid_list_lock);
2892 }
2893
2894 __set_nat_cache_dirty(nm_i, ne);
2895 }
2896 update_nats_in_cursum(journal, -i);
2897 up_write(&curseg->journal_rwsem);
2898}
2899
2900static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901 struct list_head *head, int max)
2902{
2903 struct nat_entry_set *cur;
2904
2905 if (nes->entry_cnt >= max)
2906 goto add_out;
2907
2908 list_for_each_entry(cur, head, set_list) {
2909 if (cur->entry_cnt >= nes->entry_cnt) {
2910 list_add(&nes->set_list, cur->set_list.prev);
2911 return;
2912 }
2913 }
2914add_out:
2915 list_add_tail(&nes->set_list, head);
2916}
2917
2918static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919 unsigned int valid)
2920{
2921 if (valid == 0) {
2922 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924 return;
2925 }
2926
2927 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928 if (valid == NAT_ENTRY_PER_BLOCK)
2929 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 else
2931 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932}
2933
2934static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935 struct page *page)
2936{
2937 struct f2fs_nm_info *nm_i = NM_I(sbi);
2938 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939 struct f2fs_nat_block *nat_blk = page_address(page);
2940 int valid = 0;
2941 int i = 0;
2942
2943 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944 return;
2945
2946 if (nat_index == 0) {
2947 valid = 1;
2948 i = 1;
2949 }
2950 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952 valid++;
2953 }
2954
2955 __update_nat_bits(nm_i, nat_index, valid);
2956}
2957
2958void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959{
2960 struct f2fs_nm_info *nm_i = NM_I(sbi);
2961 unsigned int nat_ofs;
2962
2963 f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966 unsigned int valid = 0, nid_ofs = 0;
2967
2968 /* handle nid zero due to it should never be used */
2969 if (unlikely(nat_ofs == 0)) {
2970 valid = 1;
2971 nid_ofs = 1;
2972 }
2973
2974 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975 if (!test_bit_le(nid_ofs,
2976 nm_i->free_nid_bitmap[nat_ofs]))
2977 valid++;
2978 }
2979
2980 __update_nat_bits(nm_i, nat_ofs, valid);
2981 }
2982
2983 f2fs_up_read(&nm_i->nat_tree_lock);
2984}
2985
2986static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987 struct nat_entry_set *set, struct cp_control *cpc)
2988{
2989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990 struct f2fs_journal *journal = curseg->journal;
2991 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992 bool to_journal = true;
2993 struct f2fs_nat_block *nat_blk;
2994 struct nat_entry *ne, *cur;
2995 struct page *page = NULL;
2996
2997 /*
2998 * there are two steps to flush nat entries:
2999 * #1, flush nat entries to journal in current hot data summary block.
3000 * #2, flush nat entries to nat page.
3001 */
3002 if ((cpc->reason & CP_UMOUNT) ||
3003 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004 to_journal = false;
3005
3006 if (to_journal) {
3007 down_write(&curseg->journal_rwsem);
3008 } else {
3009 page = get_next_nat_page(sbi, start_nid);
3010 if (IS_ERR(page))
3011 return PTR_ERR(page);
3012
3013 nat_blk = page_address(page);
3014 f2fs_bug_on(sbi, !nat_blk);
3015 }
3016
3017 /* flush dirty nats in nat entry set */
3018 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019 struct f2fs_nat_entry *raw_ne;
3020 nid_t nid = nat_get_nid(ne);
3021 int offset;
3022
3023 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3024
3025 if (to_journal) {
3026 offset = f2fs_lookup_journal_in_cursum(journal,
3027 NAT_JOURNAL, nid, 1);
3028 f2fs_bug_on(sbi, offset < 0);
3029 raw_ne = &nat_in_journal(journal, offset);
3030 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031 } else {
3032 raw_ne = &nat_blk->entries[nid - start_nid];
3033 }
3034 raw_nat_from_node_info(raw_ne, &ne->ni);
3035 nat_reset_flag(ne);
3036 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038 add_free_nid(sbi, nid, false, true);
3039 } else {
3040 spin_lock(&NM_I(sbi)->nid_list_lock);
3041 update_free_nid_bitmap(sbi, nid, false, false);
3042 spin_unlock(&NM_I(sbi)->nid_list_lock);
3043 }
3044 }
3045
3046 if (to_journal) {
3047 up_write(&curseg->journal_rwsem);
3048 } else {
3049 update_nat_bits(sbi, start_nid, page);
3050 f2fs_put_page(page, 1);
3051 }
3052
3053 /* Allow dirty nats by node block allocation in write_begin */
3054 if (!set->entry_cnt) {
3055 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056 kmem_cache_free(nat_entry_set_slab, set);
3057 }
3058 return 0;
3059}
3060
3061/*
3062 * This function is called during the checkpointing process.
3063 */
3064int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065{
3066 struct f2fs_nm_info *nm_i = NM_I(sbi);
3067 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068 struct f2fs_journal *journal = curseg->journal;
3069 struct nat_entry_set *setvec[SETVEC_SIZE];
3070 struct nat_entry_set *set, *tmp;
3071 unsigned int found;
3072 nid_t set_idx = 0;
3073 LIST_HEAD(sets);
3074 int err = 0;
3075
3076 /*
3077 * during unmount, let's flush nat_bits before checking
3078 * nat_cnt[DIRTY_NAT].
3079 */
3080 if (cpc->reason & CP_UMOUNT) {
3081 f2fs_down_write(&nm_i->nat_tree_lock);
3082 remove_nats_in_journal(sbi);
3083 f2fs_up_write(&nm_i->nat_tree_lock);
3084 }
3085
3086 if (!nm_i->nat_cnt[DIRTY_NAT])
3087 return 0;
3088
3089 f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091 /*
3092 * if there are no enough space in journal to store dirty nat
3093 * entries, remove all entries from journal and merge them
3094 * into nat entry set.
3095 */
3096 if (cpc->reason & CP_UMOUNT ||
3097 !__has_cursum_space(journal,
3098 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099 remove_nats_in_journal(sbi);
3100
3101 while ((found = __gang_lookup_nat_set(nm_i,
3102 set_idx, SETVEC_SIZE, setvec))) {
3103 unsigned idx;
3104
3105 set_idx = setvec[found - 1]->set + 1;
3106 for (idx = 0; idx < found; idx++)
3107 __adjust_nat_entry_set(setvec[idx], &sets,
3108 MAX_NAT_JENTRIES(journal));
3109 }
3110
3111 /* flush dirty nats in nat entry set */
3112 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113 err = __flush_nat_entry_set(sbi, set, cpc);
3114 if (err)
3115 break;
3116 }
3117
3118 f2fs_up_write(&nm_i->nat_tree_lock);
3119 /* Allow dirty nats by node block allocation in write_begin */
3120
3121 return err;
3122}
3123
3124static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125{
3126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127 struct f2fs_nm_info *nm_i = NM_I(sbi);
3128 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129 unsigned int i;
3130 __u64 cp_ver = cur_cp_version(ckpt);
3131 block_t nat_bits_addr;
3132
3133 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136 if (!nm_i->nat_bits)
3137 return -ENOMEM;
3138
3139 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143 return 0;
3144
3145 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146 nm_i->nat_bits_blocks;
3147 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148 struct page *page;
3149
3150 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151 if (IS_ERR(page))
3152 return PTR_ERR(page);
3153
3154 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155 page_address(page), F2FS_BLKSIZE);
3156 f2fs_put_page(page, 1);
3157 }
3158
3159 cp_ver |= (cur_cp_crc(ckpt) << 32);
3160 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164 return 0;
3165 }
3166
3167 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168 return 0;
3169}
3170
3171static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172{
3173 struct f2fs_nm_info *nm_i = NM_I(sbi);
3174 unsigned int i = 0;
3175 nid_t nid, last_nid;
3176
3177 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178 return;
3179
3180 for (i = 0; i < nm_i->nat_blocks; i++) {
3181 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182 if (i >= nm_i->nat_blocks)
3183 break;
3184
3185 __set_bit_le(i, nm_i->nat_block_bitmap);
3186
3187 nid = i * NAT_ENTRY_PER_BLOCK;
3188 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3189
3190 spin_lock(&NM_I(sbi)->nid_list_lock);
3191 for (; nid < last_nid; nid++)
3192 update_free_nid_bitmap(sbi, nid, true, true);
3193 spin_unlock(&NM_I(sbi)->nid_list_lock);
3194 }
3195
3196 for (i = 0; i < nm_i->nat_blocks; i++) {
3197 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198 if (i >= nm_i->nat_blocks)
3199 break;
3200
3201 __set_bit_le(i, nm_i->nat_block_bitmap);
3202 }
3203}
3204
3205static int init_node_manager(struct f2fs_sb_info *sbi)
3206{
3207 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208 struct f2fs_nm_info *nm_i = NM_I(sbi);
3209 unsigned char *version_bitmap;
3210 unsigned int nat_segs;
3211 int err;
3212
3213 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215 /* segment_count_nat includes pair segment so divide to 2. */
3216 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3219
3220 /* not used nids: 0, node, meta, (and root counted as valid node) */
3221 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222 F2FS_RESERVED_NODE_NUM;
3223 nm_i->nid_cnt[FREE_NID] = 0;
3224 nm_i->nid_cnt[PREALLOC_NID] = 0;
3225 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231 INIT_LIST_HEAD(&nm_i->free_nid_list);
3232 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234 INIT_LIST_HEAD(&nm_i->nat_entries);
3235 spin_lock_init(&nm_i->nat_list_lock);
3236
3237 mutex_init(&nm_i->build_lock);
3238 spin_lock_init(&nm_i->nid_list_lock);
3239 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3244 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245 GFP_KERNEL);
3246 if (!nm_i->nat_bitmap)
3247 return -ENOMEM;
3248
3249 err = __get_nat_bitmaps(sbi);
3250 if (err)
3251 return err;
3252
3253#ifdef CONFIG_F2FS_CHECK_FS
3254 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255 GFP_KERNEL);
3256 if (!nm_i->nat_bitmap_mir)
3257 return -ENOMEM;
3258#endif
3259
3260 return 0;
3261}
3262
3263static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264{
3265 struct f2fs_nm_info *nm_i = NM_I(sbi);
3266 int i;
3267
3268 nm_i->free_nid_bitmap =
3269 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270 nm_i->nat_blocks),
3271 GFP_KERNEL);
3272 if (!nm_i->free_nid_bitmap)
3273 return -ENOMEM;
3274
3275 for (i = 0; i < nm_i->nat_blocks; i++) {
3276 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278 if (!nm_i->free_nid_bitmap[i])
3279 return -ENOMEM;
3280 }
3281
3282 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283 GFP_KERNEL);
3284 if (!nm_i->nat_block_bitmap)
3285 return -ENOMEM;
3286
3287 nm_i->free_nid_count =
3288 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289 nm_i->nat_blocks),
3290 GFP_KERNEL);
3291 if (!nm_i->free_nid_count)
3292 return -ENOMEM;
3293 return 0;
3294}
3295
3296int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297{
3298 int err;
3299
3300 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301 GFP_KERNEL);
3302 if (!sbi->nm_info)
3303 return -ENOMEM;
3304
3305 err = init_node_manager(sbi);
3306 if (err)
3307 return err;
3308
3309 err = init_free_nid_cache(sbi);
3310 if (err)
3311 return err;
3312
3313 /* load free nid status from nat_bits table */
3314 load_free_nid_bitmap(sbi);
3315
3316 return f2fs_build_free_nids(sbi, true, true);
3317}
3318
3319void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320{
3321 struct f2fs_nm_info *nm_i = NM_I(sbi);
3322 struct free_nid *i, *next_i;
3323 struct nat_entry *natvec[NATVEC_SIZE];
3324 struct nat_entry_set *setvec[SETVEC_SIZE];
3325 nid_t nid = 0;
3326 unsigned int found;
3327
3328 if (!nm_i)
3329 return;
3330
3331 /* destroy free nid list */
3332 spin_lock(&nm_i->nid_list_lock);
3333 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334 __remove_free_nid(sbi, i, FREE_NID);
3335 spin_unlock(&nm_i->nid_list_lock);
3336 kmem_cache_free(free_nid_slab, i);
3337 spin_lock(&nm_i->nid_list_lock);
3338 }
3339 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342 spin_unlock(&nm_i->nid_list_lock);
3343
3344 /* destroy nat cache */
3345 f2fs_down_write(&nm_i->nat_tree_lock);
3346 while ((found = __gang_lookup_nat_cache(nm_i,
3347 nid, NATVEC_SIZE, natvec))) {
3348 unsigned idx;
3349
3350 nid = nat_get_nid(natvec[found - 1]) + 1;
3351 for (idx = 0; idx < found; idx++) {
3352 spin_lock(&nm_i->nat_list_lock);
3353 list_del(&natvec[idx]->list);
3354 spin_unlock(&nm_i->nat_list_lock);
3355
3356 __del_from_nat_cache(nm_i, natvec[idx]);
3357 }
3358 }
3359 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361 /* destroy nat set cache */
3362 nid = 0;
3363 while ((found = __gang_lookup_nat_set(nm_i,
3364 nid, SETVEC_SIZE, setvec))) {
3365 unsigned idx;
3366
3367 nid = setvec[found - 1]->set + 1;
3368 for (idx = 0; idx < found; idx++) {
3369 /* entry_cnt is not zero, when cp_error was occurred */
3370 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373 }
3374 }
3375 f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377 kvfree(nm_i->nat_block_bitmap);
3378 if (nm_i->free_nid_bitmap) {
3379 int i;
3380
3381 for (i = 0; i < nm_i->nat_blocks; i++)
3382 kvfree(nm_i->free_nid_bitmap[i]);
3383 kvfree(nm_i->free_nid_bitmap);
3384 }
3385 kvfree(nm_i->free_nid_count);
3386
3387 kvfree(nm_i->nat_bitmap);
3388 kvfree(nm_i->nat_bits);
3389#ifdef CONFIG_F2FS_CHECK_FS
3390 kvfree(nm_i->nat_bitmap_mir);
3391#endif
3392 sbi->nm_info = NULL;
3393 kfree(nm_i);
3394}
3395
3396int __init f2fs_create_node_manager_caches(void)
3397{
3398 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399 sizeof(struct nat_entry));
3400 if (!nat_entry_slab)
3401 goto fail;
3402
3403 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404 sizeof(struct free_nid));
3405 if (!free_nid_slab)
3406 goto destroy_nat_entry;
3407
3408 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409 sizeof(struct nat_entry_set));
3410 if (!nat_entry_set_slab)
3411 goto destroy_free_nid;
3412
3413 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414 sizeof(struct fsync_node_entry));
3415 if (!fsync_node_entry_slab)
3416 goto destroy_nat_entry_set;
3417 return 0;
3418
3419destroy_nat_entry_set:
3420 kmem_cache_destroy(nat_entry_set_slab);
3421destroy_free_nid:
3422 kmem_cache_destroy(free_nid_slab);
3423destroy_nat_entry:
3424 kmem_cache_destroy(nat_entry_slab);
3425fail:
3426 return -ENOMEM;
3427}
3428
3429void f2fs_destroy_node_manager_caches(void)
3430{
3431 kmem_cache_destroy(fsync_node_entry_slab);
3432 kmem_cache_destroy(nat_entry_set_slab);
3433 kmem_cache_destroy(free_nid_slab);
3434 kmem_cache_destroy(nat_entry_slab);
3435}