Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 
 103
 104#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 105#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 106#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 107#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 108
 109#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 110#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 111
 112#define REXMIT_NONE	0 /* no loss recovery to do */
 113#define REXMIT_LOST	1 /* retransmit packets marked lost */
 114#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 115
 116#if IS_ENABLED(CONFIG_TLS_DEVICE)
 117static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 118
 119void clean_acked_data_enable(struct inet_connection_sock *icsk,
 120			     void (*cad)(struct sock *sk, u32 ack_seq))
 121{
 122	icsk->icsk_clean_acked = cad;
 123	static_branch_deferred_inc(&clean_acked_data_enabled);
 124}
 125EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 126
 127void clean_acked_data_disable(struct inet_connection_sock *icsk)
 128{
 129	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 130	icsk->icsk_clean_acked = NULL;
 131}
 132EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 133
 134void clean_acked_data_flush(void)
 135{
 136	static_key_deferred_flush(&clean_acked_data_enabled);
 137}
 138EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 139#endif
 140
 141#ifdef CONFIG_CGROUP_BPF
 142static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 143{
 144	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 145		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 146				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 147	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 148						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 149	struct bpf_sock_ops_kern sock_ops;
 150
 151	if (likely(!unknown_opt && !parse_all_opt))
 152		return;
 153
 154	/* The skb will be handled in the
 155	 * bpf_skops_established() or
 156	 * bpf_skops_write_hdr_opt().
 157	 */
 158	switch (sk->sk_state) {
 159	case TCP_SYN_RECV:
 160	case TCP_SYN_SENT:
 161	case TCP_LISTEN:
 162		return;
 163	}
 164
 165	sock_owned_by_me(sk);
 166
 167	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 168	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 169	sock_ops.is_fullsock = 1;
 170	sock_ops.sk = sk;
 171	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 172
 173	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 174}
 175
 176static void bpf_skops_established(struct sock *sk, int bpf_op,
 177				  struct sk_buff *skb)
 178{
 179	struct bpf_sock_ops_kern sock_ops;
 180
 181	sock_owned_by_me(sk);
 182
 183	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 184	sock_ops.op = bpf_op;
 185	sock_ops.is_fullsock = 1;
 186	sock_ops.sk = sk;
 187	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 188	if (skb)
 189		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 190
 191	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 192}
 193#else
 194static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 195{
 196}
 197
 198static void bpf_skops_established(struct sock *sk, int bpf_op,
 199				  struct sk_buff *skb)
 200{
 201}
 202#endif
 203
 204static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 205			     unsigned int len)
 206{
 207	static bool __once __read_mostly;
 208
 209	if (!__once) {
 210		struct net_device *dev;
 211
 212		__once = true;
 213
 214		rcu_read_lock();
 215		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 216		if (!dev || len >= dev->mtu)
 217			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 218				dev ? dev->name : "Unknown driver");
 219		rcu_read_unlock();
 220	}
 221}
 222
 223/* Adapt the MSS value used to make delayed ack decision to the
 224 * real world.
 225 */
 226static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 227{
 228	struct inet_connection_sock *icsk = inet_csk(sk);
 229	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 230	unsigned int len;
 231
 232	icsk->icsk_ack.last_seg_size = 0;
 233
 234	/* skb->len may jitter because of SACKs, even if peer
 235	 * sends good full-sized frames.
 236	 */
 237	len = skb_shinfo(skb)->gso_size ? : skb->len;
 238	if (len >= icsk->icsk_ack.rcv_mss) {
 
 
 
 
 
 
 
 
 
 
 239		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 240					       tcp_sk(sk)->advmss);
 241		/* Account for possibly-removed options */
 242		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 243				   MAX_TCP_OPTION_SPACE))
 244			tcp_gro_dev_warn(sk, skb, len);
 
 
 
 
 
 
 
 
 
 
 
 
 245	} else {
 246		/* Otherwise, we make more careful check taking into account,
 247		 * that SACKs block is variable.
 248		 *
 249		 * "len" is invariant segment length, including TCP header.
 250		 */
 251		len += skb->data - skb_transport_header(skb);
 252		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 253		    /* If PSH is not set, packet should be
 254		     * full sized, provided peer TCP is not badly broken.
 255		     * This observation (if it is correct 8)) allows
 256		     * to handle super-low mtu links fairly.
 257		     */
 258		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 259		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 260			/* Subtract also invariant (if peer is RFC compliant),
 261			 * tcp header plus fixed timestamp option length.
 262			 * Resulting "len" is MSS free of SACK jitter.
 263			 */
 264			len -= tcp_sk(sk)->tcp_header_len;
 265			icsk->icsk_ack.last_seg_size = len;
 266			if (len == lss) {
 267				icsk->icsk_ack.rcv_mss = len;
 268				return;
 269			}
 270		}
 271		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 272			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 273		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 274	}
 275}
 276
 277static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 278{
 279	struct inet_connection_sock *icsk = inet_csk(sk);
 280	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 281
 282	if (quickacks == 0)
 283		quickacks = 2;
 284	quickacks = min(quickacks, max_quickacks);
 285	if (quickacks > icsk->icsk_ack.quick)
 286		icsk->icsk_ack.quick = quickacks;
 287}
 288
 289void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 290{
 291	struct inet_connection_sock *icsk = inet_csk(sk);
 292
 293	tcp_incr_quickack(sk, max_quickacks);
 294	inet_csk_exit_pingpong_mode(sk);
 295	icsk->icsk_ack.ato = TCP_ATO_MIN;
 296}
 297EXPORT_SYMBOL(tcp_enter_quickack_mode);
 298
 299/* Send ACKs quickly, if "quick" count is not exhausted
 300 * and the session is not interactive.
 301 */
 302
 303static bool tcp_in_quickack_mode(struct sock *sk)
 304{
 305	const struct inet_connection_sock *icsk = inet_csk(sk);
 306	const struct dst_entry *dst = __sk_dst_get(sk);
 307
 308	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 309		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 310}
 311
 312static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 313{
 314	if (tp->ecn_flags & TCP_ECN_OK)
 315		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 316}
 317
 318static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 319{
 320	if (tcp_hdr(skb)->cwr) {
 321		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 322
 323		/* If the sender is telling us it has entered CWR, then its
 324		 * cwnd may be very low (even just 1 packet), so we should ACK
 325		 * immediately.
 326		 */
 327		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 328			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 329	}
 330}
 331
 332static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 333{
 334	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 335}
 336
 337static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 338{
 339	struct tcp_sock *tp = tcp_sk(sk);
 340
 341	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 342	case INET_ECN_NOT_ECT:
 343		/* Funny extension: if ECT is not set on a segment,
 344		 * and we already seen ECT on a previous segment,
 345		 * it is probably a retransmit.
 346		 */
 347		if (tp->ecn_flags & TCP_ECN_SEEN)
 348			tcp_enter_quickack_mode(sk, 2);
 349		break;
 350	case INET_ECN_CE:
 351		if (tcp_ca_needs_ecn(sk))
 352			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 353
 354		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 355			/* Better not delay acks, sender can have a very low cwnd */
 356			tcp_enter_quickack_mode(sk, 2);
 357			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 358		}
 359		tp->ecn_flags |= TCP_ECN_SEEN;
 360		break;
 361	default:
 362		if (tcp_ca_needs_ecn(sk))
 363			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 364		tp->ecn_flags |= TCP_ECN_SEEN;
 365		break;
 366	}
 367}
 368
 369static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 370{
 371	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 372		__tcp_ecn_check_ce(sk, skb);
 373}
 374
 375static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 376{
 377	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 378		tp->ecn_flags &= ~TCP_ECN_OK;
 379}
 380
 381static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 382{
 383	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 384		tp->ecn_flags &= ~TCP_ECN_OK;
 385}
 386
 387static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 388{
 389	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 390		return true;
 391	return false;
 392}
 393
 394/* Buffer size and advertised window tuning.
 395 *
 396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 397 */
 398
 399static void tcp_sndbuf_expand(struct sock *sk)
 400{
 401	const struct tcp_sock *tp = tcp_sk(sk);
 402	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 403	int sndmem, per_mss;
 404	u32 nr_segs;
 405
 406	/* Worst case is non GSO/TSO : each frame consumes one skb
 407	 * and skb->head is kmalloced using power of two area of memory
 408	 */
 409	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 410		  MAX_TCP_HEADER +
 411		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 412
 413	per_mss = roundup_pow_of_two(per_mss) +
 414		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 415
 416	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 417	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 418
 419	/* Fast Recovery (RFC 5681 3.2) :
 420	 * Cubic needs 1.7 factor, rounded to 2 to include
 421	 * extra cushion (application might react slowly to EPOLLOUT)
 422	 */
 423	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 424	sndmem *= nr_segs * per_mss;
 425
 426	if (sk->sk_sndbuf < sndmem)
 427		WRITE_ONCE(sk->sk_sndbuf,
 428			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
 429}
 430
 431/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 432 *
 433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 434 * forward and advertised in receiver window (tp->rcv_wnd) and
 435 * "application buffer", required to isolate scheduling/application
 436 * latencies from network.
 437 * window_clamp is maximal advertised window. It can be less than
 438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 439 * is reserved for "application" buffer. The less window_clamp is
 440 * the smoother our behaviour from viewpoint of network, but the lower
 441 * throughput and the higher sensitivity of the connection to losses. 8)
 442 *
 443 * rcv_ssthresh is more strict window_clamp used at "slow start"
 444 * phase to predict further behaviour of this connection.
 445 * It is used for two goals:
 446 * - to enforce header prediction at sender, even when application
 447 *   requires some significant "application buffer". It is check #1.
 448 * - to prevent pruning of receive queue because of misprediction
 449 *   of receiver window. Check #2.
 450 *
 451 * The scheme does not work when sender sends good segments opening
 452 * window and then starts to feed us spaghetti. But it should work
 453 * in common situations. Otherwise, we have to rely on queue collapsing.
 454 */
 455
 456/* Slow part of check#2. */
 457static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 
 458{
 459	struct tcp_sock *tp = tcp_sk(sk);
 460	/* Optimize this! */
 461	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 462	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 463
 464	while (tp->rcv_ssthresh <= window) {
 465		if (truesize <= skb->len)
 466			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 467
 468		truesize >>= 1;
 469		window >>= 1;
 470	}
 471	return 0;
 472}
 473
 474static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475{
 476	struct tcp_sock *tp = tcp_sk(sk);
 477	int room;
 478
 479	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 480
 
 
 
 481	/* Check #1 */
 482	if (room > 0 && !tcp_under_memory_pressure(sk)) {
 
 483		int incr;
 484
 485		/* Check #2. Increase window, if skb with such overhead
 486		 * will fit to rcvbuf in future.
 487		 */
 488		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 489			incr = 2 * tp->advmss;
 490		else
 491			incr = __tcp_grow_window(sk, skb);
 492
 493		if (incr) {
 494			incr = max_t(int, incr, 2 * skb->len);
 495			tp->rcv_ssthresh += min(room, incr);
 496			inet_csk(sk)->icsk_ack.quick |= 1;
 497		}
 
 
 
 
 
 498	}
 499}
 500
 501/* 3. Try to fixup all. It is made immediately after connection enters
 502 *    established state.
 503 */
 504static void tcp_init_buffer_space(struct sock *sk)
 505{
 506	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 507	struct tcp_sock *tp = tcp_sk(sk);
 508	int maxwin;
 509
 510	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 511		tcp_sndbuf_expand(sk);
 512
 513	tcp_mstamp_refresh(tp);
 514	tp->rcvq_space.time = tp->tcp_mstamp;
 515	tp->rcvq_space.seq = tp->copied_seq;
 516
 517	maxwin = tcp_full_space(sk);
 518
 519	if (tp->window_clamp >= maxwin) {
 520		tp->window_clamp = maxwin;
 521
 522		if (tcp_app_win && maxwin > 4 * tp->advmss)
 523			tp->window_clamp = max(maxwin -
 524					       (maxwin >> tcp_app_win),
 525					       4 * tp->advmss);
 526	}
 527
 528	/* Force reservation of one segment. */
 529	if (tcp_app_win &&
 530	    tp->window_clamp > 2 * tp->advmss &&
 531	    tp->window_clamp + tp->advmss > maxwin)
 532		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 533
 534	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 535	tp->snd_cwnd_stamp = tcp_jiffies32;
 536	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 537				    (u32)TCP_INIT_CWND * tp->advmss);
 538}
 539
 540/* 4. Recalculate window clamp after socket hit its memory bounds. */
 541static void tcp_clamp_window(struct sock *sk)
 542{
 543	struct tcp_sock *tp = tcp_sk(sk);
 544	struct inet_connection_sock *icsk = inet_csk(sk);
 545	struct net *net = sock_net(sk);
 
 546
 547	icsk->icsk_ack.quick = 0;
 
 548
 549	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 550	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 551	    !tcp_under_memory_pressure(sk) &&
 552	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 553		WRITE_ONCE(sk->sk_rcvbuf,
 554			   min(atomic_read(&sk->sk_rmem_alloc),
 555			       net->ipv4.sysctl_tcp_rmem[2]));
 556	}
 557	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 558		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 559}
 560
 561/* Initialize RCV_MSS value.
 562 * RCV_MSS is an our guess about MSS used by the peer.
 563 * We haven't any direct information about the MSS.
 564 * It's better to underestimate the RCV_MSS rather than overestimate.
 565 * Overestimations make us ACKing less frequently than needed.
 566 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 567 */
 568void tcp_initialize_rcv_mss(struct sock *sk)
 569{
 570	const struct tcp_sock *tp = tcp_sk(sk);
 571	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 572
 573	hint = min(hint, tp->rcv_wnd / 2);
 574	hint = min(hint, TCP_MSS_DEFAULT);
 575	hint = max(hint, TCP_MIN_MSS);
 576
 577	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 578}
 579EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 580
 581/* Receiver "autotuning" code.
 582 *
 583 * The algorithm for RTT estimation w/o timestamps is based on
 584 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 585 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 586 *
 587 * More detail on this code can be found at
 588 * <http://staff.psc.edu/jheffner/>,
 589 * though this reference is out of date.  A new paper
 590 * is pending.
 591 */
 592static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 593{
 594	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 595	long m = sample;
 596
 597	if (new_sample != 0) {
 598		/* If we sample in larger samples in the non-timestamp
 599		 * case, we could grossly overestimate the RTT especially
 600		 * with chatty applications or bulk transfer apps which
 601		 * are stalled on filesystem I/O.
 602		 *
 603		 * Also, since we are only going for a minimum in the
 604		 * non-timestamp case, we do not smooth things out
 605		 * else with timestamps disabled convergence takes too
 606		 * long.
 607		 */
 608		if (!win_dep) {
 609			m -= (new_sample >> 3);
 610			new_sample += m;
 611		} else {
 612			m <<= 3;
 613			if (m < new_sample)
 614				new_sample = m;
 615		}
 616	} else {
 617		/* No previous measure. */
 618		new_sample = m << 3;
 619	}
 620
 621	tp->rcv_rtt_est.rtt_us = new_sample;
 622}
 623
 624static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 625{
 626	u32 delta_us;
 627
 628	if (tp->rcv_rtt_est.time == 0)
 629		goto new_measure;
 630	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 631		return;
 632	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 633	if (!delta_us)
 634		delta_us = 1;
 635	tcp_rcv_rtt_update(tp, delta_us, 1);
 636
 637new_measure:
 638	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 639	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 640}
 641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 643					  const struct sk_buff *skb)
 644{
 645	struct tcp_sock *tp = tcp_sk(sk);
 646
 647	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 648		return;
 649	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 650
 651	if (TCP_SKB_CB(skb)->end_seq -
 652	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 653		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 654		u32 delta_us;
 655
 656		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 657			if (!delta)
 658				delta = 1;
 659			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 660			tcp_rcv_rtt_update(tp, delta_us, 0);
 661		}
 662	}
 663}
 664
 665/*
 666 * This function should be called every time data is copied to user space.
 667 * It calculates the appropriate TCP receive buffer space.
 668 */
 669void tcp_rcv_space_adjust(struct sock *sk)
 670{
 671	struct tcp_sock *tp = tcp_sk(sk);
 672	u32 copied;
 673	int time;
 674
 675	trace_tcp_rcv_space_adjust(sk);
 676
 677	tcp_mstamp_refresh(tp);
 678	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 679	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 680		return;
 681
 682	/* Number of bytes copied to user in last RTT */
 683	copied = tp->copied_seq - tp->rcvq_space.seq;
 684	if (copied <= tp->rcvq_space.space)
 685		goto new_measure;
 686
 687	/* A bit of theory :
 688	 * copied = bytes received in previous RTT, our base window
 689	 * To cope with packet losses, we need a 2x factor
 690	 * To cope with slow start, and sender growing its cwin by 100 %
 691	 * every RTT, we need a 4x factor, because the ACK we are sending
 692	 * now is for the next RTT, not the current one :
 693	 * <prev RTT . ><current RTT .. ><next RTT .... >
 694	 */
 695
 696	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 697	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 698		int rcvmem, rcvbuf;
 699		u64 rcvwin, grow;
 
 700
 701		/* minimal window to cope with packet losses, assuming
 702		 * steady state. Add some cushion because of small variations.
 703		 */
 704		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 705
 706		/* Accommodate for sender rate increase (eg. slow start) */
 707		grow = rcvwin * (copied - tp->rcvq_space.space);
 708		do_div(grow, tp->rcvq_space.space);
 709		rcvwin += (grow << 1);
 710
 711		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 712		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 713			rcvmem += 128;
 714
 715		do_div(rcvwin, tp->advmss);
 716		rcvbuf = min_t(u64, rcvwin * rcvmem,
 717			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 718		if (rcvbuf > sk->sk_rcvbuf) {
 719			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 720
 721			/* Make the window clamp follow along.  */
 722			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 723		}
 724	}
 725	tp->rcvq_space.space = copied;
 726
 727new_measure:
 728	tp->rcvq_space.seq = tp->copied_seq;
 729	tp->rcvq_space.time = tp->tcp_mstamp;
 730}
 731
 
 
 
 
 
 
 
 
 
 
 732/* There is something which you must keep in mind when you analyze the
 733 * behavior of the tp->ato delayed ack timeout interval.  When a
 734 * connection starts up, we want to ack as quickly as possible.  The
 735 * problem is that "good" TCP's do slow start at the beginning of data
 736 * transmission.  The means that until we send the first few ACK's the
 737 * sender will sit on his end and only queue most of his data, because
 738 * he can only send snd_cwnd unacked packets at any given time.  For
 739 * each ACK we send, he increments snd_cwnd and transmits more of his
 740 * queue.  -DaveM
 741 */
 742static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 743{
 744	struct tcp_sock *tp = tcp_sk(sk);
 745	struct inet_connection_sock *icsk = inet_csk(sk);
 746	u32 now;
 747
 748	inet_csk_schedule_ack(sk);
 749
 750	tcp_measure_rcv_mss(sk, skb);
 751
 752	tcp_rcv_rtt_measure(tp);
 753
 754	now = tcp_jiffies32;
 755
 756	if (!icsk->icsk_ack.ato) {
 757		/* The _first_ data packet received, initialize
 758		 * delayed ACK engine.
 759		 */
 760		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 761		icsk->icsk_ack.ato = TCP_ATO_MIN;
 762	} else {
 763		int m = now - icsk->icsk_ack.lrcvtime;
 764
 765		if (m <= TCP_ATO_MIN / 2) {
 766			/* The fastest case is the first. */
 767			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 768		} else if (m < icsk->icsk_ack.ato) {
 769			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 770			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 771				icsk->icsk_ack.ato = icsk->icsk_rto;
 772		} else if (m > icsk->icsk_rto) {
 773			/* Too long gap. Apparently sender failed to
 774			 * restart window, so that we send ACKs quickly.
 775			 */
 776			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 777			sk_mem_reclaim(sk);
 778		}
 779	}
 780	icsk->icsk_ack.lrcvtime = now;
 
 781
 782	tcp_ecn_check_ce(sk, skb);
 783
 784	if (skb->len >= 128)
 785		tcp_grow_window(sk, skb);
 786}
 787
 788/* Called to compute a smoothed rtt estimate. The data fed to this
 789 * routine either comes from timestamps, or from segments that were
 790 * known _not_ to have been retransmitted [see Karn/Partridge
 791 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 792 * piece by Van Jacobson.
 793 * NOTE: the next three routines used to be one big routine.
 794 * To save cycles in the RFC 1323 implementation it was better to break
 795 * it up into three procedures. -- erics
 796 */
 797static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 798{
 799	struct tcp_sock *tp = tcp_sk(sk);
 800	long m = mrtt_us; /* RTT */
 801	u32 srtt = tp->srtt_us;
 802
 803	/*	The following amusing code comes from Jacobson's
 804	 *	article in SIGCOMM '88.  Note that rtt and mdev
 805	 *	are scaled versions of rtt and mean deviation.
 806	 *	This is designed to be as fast as possible
 807	 *	m stands for "measurement".
 808	 *
 809	 *	On a 1990 paper the rto value is changed to:
 810	 *	RTO = rtt + 4 * mdev
 811	 *
 812	 * Funny. This algorithm seems to be very broken.
 813	 * These formulae increase RTO, when it should be decreased, increase
 814	 * too slowly, when it should be increased quickly, decrease too quickly
 815	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 816	 * does not matter how to _calculate_ it. Seems, it was trap
 817	 * that VJ failed to avoid. 8)
 818	 */
 819	if (srtt != 0) {
 820		m -= (srtt >> 3);	/* m is now error in rtt est */
 821		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 822		if (m < 0) {
 823			m = -m;		/* m is now abs(error) */
 824			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 825			/* This is similar to one of Eifel findings.
 826			 * Eifel blocks mdev updates when rtt decreases.
 827			 * This solution is a bit different: we use finer gain
 828			 * for mdev in this case (alpha*beta).
 829			 * Like Eifel it also prevents growth of rto,
 830			 * but also it limits too fast rto decreases,
 831			 * happening in pure Eifel.
 832			 */
 833			if (m > 0)
 834				m >>= 3;
 835		} else {
 836			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 837		}
 838		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 839		if (tp->mdev_us > tp->mdev_max_us) {
 840			tp->mdev_max_us = tp->mdev_us;
 841			if (tp->mdev_max_us > tp->rttvar_us)
 842				tp->rttvar_us = tp->mdev_max_us;
 843		}
 844		if (after(tp->snd_una, tp->rtt_seq)) {
 845			if (tp->mdev_max_us < tp->rttvar_us)
 846				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 847			tp->rtt_seq = tp->snd_nxt;
 848			tp->mdev_max_us = tcp_rto_min_us(sk);
 849
 850			tcp_bpf_rtt(sk);
 851		}
 852	} else {
 853		/* no previous measure. */
 854		srtt = m << 3;		/* take the measured time to be rtt */
 855		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 856		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 857		tp->mdev_max_us = tp->rttvar_us;
 858		tp->rtt_seq = tp->snd_nxt;
 859
 860		tcp_bpf_rtt(sk);
 861	}
 862	tp->srtt_us = max(1U, srtt);
 863}
 864
 865static void tcp_update_pacing_rate(struct sock *sk)
 866{
 867	const struct tcp_sock *tp = tcp_sk(sk);
 868	u64 rate;
 869
 870	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 871	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 872
 873	/* current rate is (cwnd * mss) / srtt
 874	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 875	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 876	 *
 877	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 878	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 879	 *	 end of slow start and should slow down.
 880	 */
 881	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 882		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 883	else
 884		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 885
 886	rate *= max(tp->snd_cwnd, tp->packets_out);
 887
 888	if (likely(tp->srtt_us))
 889		do_div(rate, tp->srtt_us);
 890
 891	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 892	 * without any lock. We want to make sure compiler wont store
 893	 * intermediate values in this location.
 894	 */
 895	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 896					     sk->sk_max_pacing_rate));
 897}
 898
 899/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 900 * routine referred to above.
 901 */
 902static void tcp_set_rto(struct sock *sk)
 903{
 904	const struct tcp_sock *tp = tcp_sk(sk);
 905	/* Old crap is replaced with new one. 8)
 906	 *
 907	 * More seriously:
 908	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 909	 *    It cannot be less due to utterly erratic ACK generation made
 910	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 911	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 912	 *    is invisible. Actually, Linux-2.4 also generates erratic
 913	 *    ACKs in some circumstances.
 914	 */
 915	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 916
 917	/* 2. Fixups made earlier cannot be right.
 918	 *    If we do not estimate RTO correctly without them,
 919	 *    all the algo is pure shit and should be replaced
 920	 *    with correct one. It is exactly, which we pretend to do.
 921	 */
 922
 923	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 924	 * guarantees that rto is higher.
 925	 */
 926	tcp_bound_rto(sk);
 927}
 928
 929__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 930{
 931	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 932
 933	if (!cwnd)
 934		cwnd = TCP_INIT_CWND;
 935	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 936}
 937
 938struct tcp_sacktag_state {
 939	/* Timestamps for earliest and latest never-retransmitted segment
 940	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
 941	 * but congestion control should still get an accurate delay signal.
 942	 */
 943	u64	first_sackt;
 944	u64	last_sackt;
 945	u32	reord;
 946	u32	sack_delivered;
 947	int	flag;
 948	unsigned int mss_now;
 949	struct rate_sample *rate;
 950};
 951
 952/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
 953 * and spurious retransmission information if this DSACK is unlikely caused by
 954 * sender's action:
 955 * - DSACKed sequence range is larger than maximum receiver's window.
 956 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
 957 */
 958static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
 959			  u32 end_seq, struct tcp_sacktag_state *state)
 960{
 961	u32 seq_len, dup_segs = 1;
 962
 963	if (!before(start_seq, end_seq))
 964		return 0;
 965
 966	seq_len = end_seq - start_seq;
 967	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
 968	if (seq_len > tp->max_window)
 969		return 0;
 970	if (seq_len > tp->mss_cache)
 971		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
 
 
 972
 973	tp->dsack_dups += dup_segs;
 974	/* Skip the DSACK if dup segs weren't retransmitted by sender */
 975	if (tp->dsack_dups > tp->total_retrans)
 976		return 0;
 977
 978	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 979	tp->rack.dsack_seen = 1;
 
 
 
 
 
 
 
 980
 981	state->flag |= FLAG_DSACKING_ACK;
 982	/* A spurious retransmission is delivered */
 983	state->sack_delivered += dup_segs;
 984
 985	return dup_segs;
 986}
 987
 988/* It's reordering when higher sequence was delivered (i.e. sacked) before
 989 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 990 * distance is approximated in full-mss packet distance ("reordering").
 991 */
 992static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 993				      const int ts)
 994{
 995	struct tcp_sock *tp = tcp_sk(sk);
 996	const u32 mss = tp->mss_cache;
 997	u32 fack, metric;
 998
 999	fack = tcp_highest_sack_seq(tp);
1000	if (!before(low_seq, fack))
1001		return;
1002
1003	metric = fack - low_seq;
1004	if ((metric > tp->reordering * mss) && mss) {
1005#if FASTRETRANS_DEBUG > 1
1006		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008			 tp->reordering,
1009			 0,
1010			 tp->sacked_out,
1011			 tp->undo_marker ? tp->undo_retrans : 0);
1012#endif
1013		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015	}
1016
1017	/* This exciting event is worth to be remembered. 8) */
1018	tp->reord_seen++;
1019	NET_INC_STATS(sock_net(sk),
1020		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021}
1022
1023 /* This must be called before lost_out or retrans_out are updated
1024  * on a new loss, because we want to know if all skbs previously
1025  * known to be lost have already been retransmitted, indicating
1026  * that this newly lost skb is our next skb to retransmit.
1027  */
1028static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029{
1030	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031	    (tp->retransmit_skb_hint &&
1032	     before(TCP_SKB_CB(skb)->seq,
1033		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034		tp->retransmit_skb_hint = skb;
1035}
1036
1037/* Sum the number of packets on the wire we have marked as lost, and
1038 * notify the congestion control module that the given skb was marked lost.
1039 */
1040static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041{
1042	tp->lost += tcp_skb_pcount(skb);
1043}
1044
1045void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046{
1047	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1048	struct tcp_sock *tp = tcp_sk(sk);
1049
1050	if (sacked & TCPCB_SACKED_ACKED)
1051		return;
1052
1053	tcp_verify_retransmit_hint(tp, skb);
1054	if (sacked & TCPCB_LOST) {
1055		if (sacked & TCPCB_SACKED_RETRANS) {
1056			/* Account for retransmits that are lost again */
1057			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058			tp->retrans_out -= tcp_skb_pcount(skb);
1059			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060				      tcp_skb_pcount(skb));
1061			tcp_notify_skb_loss_event(tp, skb);
1062		}
1063	} else {
1064		tp->lost_out += tcp_skb_pcount(skb);
1065		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066		tcp_notify_skb_loss_event(tp, skb);
1067	}
1068}
1069
1070/* Updates the delivered and delivered_ce counts */
1071static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072				bool ece_ack)
1073{
1074	tp->delivered += delivered;
1075	if (ece_ack)
1076		tp->delivered_ce += delivered;
1077}
1078
1079/* This procedure tags the retransmission queue when SACKs arrive.
1080 *
1081 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 * Packets in queue with these bits set are counted in variables
1083 * sacked_out, retrans_out and lost_out, correspondingly.
1084 *
1085 * Valid combinations are:
1086 * Tag  InFlight	Description
1087 * 0	1		- orig segment is in flight.
1088 * S	0		- nothing flies, orig reached receiver.
1089 * L	0		- nothing flies, orig lost by net.
1090 * R	2		- both orig and retransmit are in flight.
1091 * L|R	1		- orig is lost, retransmit is in flight.
1092 * S|R  1		- orig reached receiver, retrans is still in flight.
1093 * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 *  but it is equivalent to plain S and code short-curcuits it to S.
1095 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1096 *
1097 * These 6 states form finite state machine, controlled by the following events:
1098 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 * 3. Loss detection event of two flavors:
1101 *	A. Scoreboard estimator decided the packet is lost.
1102 *	   A'. Reno "three dupacks" marks head of queue lost.
1103 *	B. SACK arrives sacking SND.NXT at the moment, when the
1104 *	   segment was retransmitted.
1105 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106 *
1107 * It is pleasant to note, that state diagram turns out to be commutative,
1108 * so that we are allowed not to be bothered by order of our actions,
1109 * when multiple events arrive simultaneously. (see the function below).
1110 *
1111 * Reordering detection.
1112 * --------------------
1113 * Reordering metric is maximal distance, which a packet can be displaced
1114 * in packet stream. With SACKs we can estimate it:
1115 *
1116 * 1. SACK fills old hole and the corresponding segment was not
1117 *    ever retransmitted -> reordering. Alas, we cannot use it
1118 *    when segment was retransmitted.
1119 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 *    for retransmitted and already SACKed segment -> reordering..
1121 * Both of these heuristics are not used in Loss state, when we cannot
1122 * account for retransmits accurately.
1123 *
1124 * SACK block validation.
1125 * ----------------------
1126 *
1127 * SACK block range validation checks that the received SACK block fits to
1128 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 * Note that SND.UNA is not included to the range though being valid because
1130 * it means that the receiver is rather inconsistent with itself reporting
1131 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 * perfectly valid, however, in light of RFC2018 which explicitly states
1133 * that "SACK block MUST reflect the newest segment.  Even if the newest
1134 * segment is going to be discarded ...", not that it looks very clever
1135 * in case of head skb. Due to potentional receiver driven attacks, we
1136 * choose to avoid immediate execution of a walk in write queue due to
1137 * reneging and defer head skb's loss recovery to standard loss recovery
1138 * procedure that will eventually trigger (nothing forbids us doing this).
1139 *
1140 * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 * there's no guarantee that it will be before snd_nxt (n). The problem
1143 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144 * wrap (s_w):
1145 *
1146 *         <- outs wnd ->                          <- wrapzone ->
1147 *         u     e      n                         u_w   e_w  s n_w
1148 *         |     |      |                          |     |   |  |
1149 * |<------------+------+----- TCP seqno space --------------+---------->|
1150 * ...-- <2^31 ->|                                           |<--------...
1151 * ...---- >2^31 ------>|                                    |<--------...
1152 *
1153 * Current code wouldn't be vulnerable but it's better still to discard such
1154 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 * equal to the ideal case (infinite seqno space without wrap caused issues).
1158 *
1159 * With D-SACK the lower bound is extended to cover sequence space below
1160 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 * again, D-SACK block must not to go across snd_una (for the same reason as
1162 * for the normal SACK blocks, explained above). But there all simplicity
1163 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 * fully below undo_marker they do not affect behavior in anyway and can
1165 * therefore be safely ignored. In rare cases (which are more or less
1166 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 * fragmentation and packet reordering past skb's retransmission. To consider
1168 * them correctly, the acceptable range must be extended even more though
1169 * the exact amount is rather hard to quantify. However, tp->max_window can
1170 * be used as an exaggerated estimate.
1171 */
1172static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173				   u32 start_seq, u32 end_seq)
1174{
1175	/* Too far in future, or reversed (interpretation is ambiguous) */
1176	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177		return false;
1178
1179	/* Nasty start_seq wrap-around check (see comments above) */
1180	if (!before(start_seq, tp->snd_nxt))
1181		return false;
1182
1183	/* In outstanding window? ...This is valid exit for D-SACKs too.
1184	 * start_seq == snd_una is non-sensical (see comments above)
1185	 */
1186	if (after(start_seq, tp->snd_una))
1187		return true;
1188
1189	if (!is_dsack || !tp->undo_marker)
1190		return false;
1191
1192	/* ...Then it's D-SACK, and must reside below snd_una completely */
1193	if (after(end_seq, tp->snd_una))
1194		return false;
1195
1196	if (!before(start_seq, tp->undo_marker))
1197		return true;
1198
1199	/* Too old */
1200	if (!after(end_seq, tp->undo_marker))
1201		return false;
1202
1203	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1204	 *   start_seq < undo_marker and end_seq >= undo_marker.
1205	 */
1206	return !before(start_seq, end_seq - tp->max_window);
1207}
1208
1209static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210			    struct tcp_sack_block_wire *sp, int num_sacks,
1211			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1212{
1213	struct tcp_sock *tp = tcp_sk(sk);
1214	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216	u32 dup_segs;
1217
1218	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1219		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220	} else if (num_sacks > 1) {
1221		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223
1224		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225			return false;
1226		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227	} else {
1228		return false;
1229	}
1230
1231	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232	if (!dup_segs) {	/* Skip dubious DSACK */
1233		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234		return false;
1235	}
1236
1237	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238
1239	/* D-SACK for already forgotten data... Do dumb counting. */
1240	if (tp->undo_marker && tp->undo_retrans > 0 &&
1241	    !after(end_seq_0, prior_snd_una) &&
1242	    after(end_seq_0, tp->undo_marker))
1243		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244
1245	return true;
1246}
1247
1248/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1253 *
1254 * FIXME: this could be merged to shift decision code
1255 */
1256static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257				  u32 start_seq, u32 end_seq)
1258{
1259	int err;
1260	bool in_sack;
1261	unsigned int pkt_len;
1262	unsigned int mss;
1263
1264	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266
1267	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269		mss = tcp_skb_mss(skb);
1270		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271
1272		if (!in_sack) {
1273			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274			if (pkt_len < mss)
1275				pkt_len = mss;
1276		} else {
1277			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278			if (pkt_len < mss)
1279				return -EINVAL;
1280		}
1281
1282		/* Round if necessary so that SACKs cover only full MSSes
1283		 * and/or the remaining small portion (if present)
1284		 */
1285		if (pkt_len > mss) {
1286			unsigned int new_len = (pkt_len / mss) * mss;
1287			if (!in_sack && new_len < pkt_len)
1288				new_len += mss;
1289			pkt_len = new_len;
1290		}
1291
1292		if (pkt_len >= skb->len && !in_sack)
1293			return 0;
1294
1295		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296				   pkt_len, mss, GFP_ATOMIC);
1297		if (err < 0)
1298			return err;
1299	}
1300
1301	return in_sack;
1302}
1303
1304/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305static u8 tcp_sacktag_one(struct sock *sk,
1306			  struct tcp_sacktag_state *state, u8 sacked,
1307			  u32 start_seq, u32 end_seq,
1308			  int dup_sack, int pcount,
1309			  u64 xmit_time)
1310{
1311	struct tcp_sock *tp = tcp_sk(sk);
1312
1313	/* Account D-SACK for retransmitted packet. */
1314	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315		if (tp->undo_marker && tp->undo_retrans > 0 &&
1316		    after(end_seq, tp->undo_marker))
1317			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1318		if ((sacked & TCPCB_SACKED_ACKED) &&
1319		    before(start_seq, state->reord))
1320				state->reord = start_seq;
1321	}
1322
1323	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324	if (!after(end_seq, tp->snd_una))
1325		return sacked;
1326
1327	if (!(sacked & TCPCB_SACKED_ACKED)) {
1328		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329
1330		if (sacked & TCPCB_SACKED_RETRANS) {
1331			/* If the segment is not tagged as lost,
1332			 * we do not clear RETRANS, believing
1333			 * that retransmission is still in flight.
1334			 */
1335			if (sacked & TCPCB_LOST) {
1336				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337				tp->lost_out -= pcount;
1338				tp->retrans_out -= pcount;
1339			}
1340		} else {
1341			if (!(sacked & TCPCB_RETRANS)) {
1342				/* New sack for not retransmitted frame,
1343				 * which was in hole. It is reordering.
1344				 */
1345				if (before(start_seq,
1346					   tcp_highest_sack_seq(tp)) &&
1347				    before(start_seq, state->reord))
1348					state->reord = start_seq;
1349
1350				if (!after(end_seq, tp->high_seq))
1351					state->flag |= FLAG_ORIG_SACK_ACKED;
1352				if (state->first_sackt == 0)
1353					state->first_sackt = xmit_time;
1354				state->last_sackt = xmit_time;
1355			}
1356
1357			if (sacked & TCPCB_LOST) {
1358				sacked &= ~TCPCB_LOST;
1359				tp->lost_out -= pcount;
1360			}
1361		}
1362
1363		sacked |= TCPCB_SACKED_ACKED;
1364		state->flag |= FLAG_DATA_SACKED;
1365		tp->sacked_out += pcount;
1366		/* Out-of-order packets delivered */
1367		state->sack_delivered += pcount;
1368
1369		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370		if (tp->lost_skb_hint &&
1371		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372			tp->lost_cnt_hint += pcount;
1373	}
1374
1375	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1376	 * frames and clear it. undo_retrans is decreased above, L|R frames
1377	 * are accounted above as well.
1378	 */
1379	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380		sacked &= ~TCPCB_SACKED_RETRANS;
1381		tp->retrans_out -= pcount;
1382	}
1383
1384	return sacked;
1385}
1386
1387/* Shift newly-SACKed bytes from this skb to the immediately previous
1388 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389 */
1390static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391			    struct sk_buff *skb,
1392			    struct tcp_sacktag_state *state,
1393			    unsigned int pcount, int shifted, int mss,
1394			    bool dup_sack)
1395{
1396	struct tcp_sock *tp = tcp_sk(sk);
1397	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1398	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1399
1400	BUG_ON(!pcount);
1401
1402	/* Adjust counters and hints for the newly sacked sequence
1403	 * range but discard the return value since prev is already
1404	 * marked. We must tag the range first because the seq
1405	 * advancement below implicitly advances
1406	 * tcp_highest_sack_seq() when skb is highest_sack.
1407	 */
1408	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409			start_seq, end_seq, dup_sack, pcount,
1410			tcp_skb_timestamp_us(skb));
1411	tcp_rate_skb_delivered(sk, skb, state->rate);
1412
1413	if (skb == tp->lost_skb_hint)
1414		tp->lost_cnt_hint += pcount;
1415
1416	TCP_SKB_CB(prev)->end_seq += shifted;
1417	TCP_SKB_CB(skb)->seq += shifted;
1418
1419	tcp_skb_pcount_add(prev, pcount);
1420	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421	tcp_skb_pcount_add(skb, -pcount);
1422
1423	/* When we're adding to gso_segs == 1, gso_size will be zero,
1424	 * in theory this shouldn't be necessary but as long as DSACK
1425	 * code can come after this skb later on it's better to keep
1426	 * setting gso_size to something.
1427	 */
1428	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430
1431	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432	if (tcp_skb_pcount(skb) <= 1)
1433		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434
1435	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437
1438	if (skb->len > 0) {
1439		BUG_ON(!tcp_skb_pcount(skb));
1440		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441		return false;
1442	}
1443
1444	/* Whole SKB was eaten :-) */
1445
1446	if (skb == tp->retransmit_skb_hint)
1447		tp->retransmit_skb_hint = prev;
1448	if (skb == tp->lost_skb_hint) {
1449		tp->lost_skb_hint = prev;
1450		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451	}
1452
1453	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456		TCP_SKB_CB(prev)->end_seq++;
1457
1458	if (skb == tcp_highest_sack(sk))
1459		tcp_advance_highest_sack(sk, skb);
1460
1461	tcp_skb_collapse_tstamp(prev, skb);
1462	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464
1465	tcp_rtx_queue_unlink_and_free(skb, sk);
1466
1467	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468
1469	return true;
1470}
1471
1472/* I wish gso_size would have a bit more sane initialization than
1473 * something-or-zero which complicates things
1474 */
1475static int tcp_skb_seglen(const struct sk_buff *skb)
1476{
1477	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478}
1479
1480/* Shifting pages past head area doesn't work */
1481static int skb_can_shift(const struct sk_buff *skb)
1482{
1483	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484}
1485
1486int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487		  int pcount, int shiftlen)
1488{
1489	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491	 * to make sure not storing more than 65535 * 8 bytes per skb,
1492	 * even if current MSS is bigger.
1493	 */
1494	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495		return 0;
1496	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497		return 0;
1498	return skb_shift(to, from, shiftlen);
1499}
1500
1501/* Try collapsing SACK blocks spanning across multiple skbs to a single
1502 * skb.
1503 */
1504static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505					  struct tcp_sacktag_state *state,
1506					  u32 start_seq, u32 end_seq,
1507					  bool dup_sack)
1508{
1509	struct tcp_sock *tp = tcp_sk(sk);
1510	struct sk_buff *prev;
1511	int mss;
1512	int pcount = 0;
1513	int len;
1514	int in_sack;
1515
1516	/* Normally R but no L won't result in plain S */
1517	if (!dup_sack &&
1518	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519		goto fallback;
1520	if (!skb_can_shift(skb))
1521		goto fallback;
1522	/* This frame is about to be dropped (was ACKed). */
1523	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524		goto fallback;
1525
1526	/* Can only happen with delayed DSACK + discard craziness */
1527	prev = skb_rb_prev(skb);
1528	if (!prev)
1529		goto fallback;
1530
1531	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532		goto fallback;
1533
1534	if (!tcp_skb_can_collapse(prev, skb))
1535		goto fallback;
1536
1537	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539
1540	if (in_sack) {
1541		len = skb->len;
1542		pcount = tcp_skb_pcount(skb);
1543		mss = tcp_skb_seglen(skb);
1544
1545		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1546		 * drop this restriction as unnecessary
1547		 */
1548		if (mss != tcp_skb_seglen(prev))
1549			goto fallback;
1550	} else {
1551		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552			goto noop;
1553		/* CHECKME: This is non-MSS split case only?, this will
1554		 * cause skipped skbs due to advancing loop btw, original
1555		 * has that feature too
1556		 */
1557		if (tcp_skb_pcount(skb) <= 1)
1558			goto noop;
1559
1560		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561		if (!in_sack) {
1562			/* TODO: head merge to next could be attempted here
1563			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564			 * though it might not be worth of the additional hassle
1565			 *
1566			 * ...we can probably just fallback to what was done
1567			 * previously. We could try merging non-SACKed ones
1568			 * as well but it probably isn't going to buy off
1569			 * because later SACKs might again split them, and
1570			 * it would make skb timestamp tracking considerably
1571			 * harder problem.
1572			 */
1573			goto fallback;
1574		}
1575
1576		len = end_seq - TCP_SKB_CB(skb)->seq;
1577		BUG_ON(len < 0);
1578		BUG_ON(len > skb->len);
1579
1580		/* MSS boundaries should be honoured or else pcount will
1581		 * severely break even though it makes things bit trickier.
1582		 * Optimize common case to avoid most of the divides
1583		 */
1584		mss = tcp_skb_mss(skb);
1585
1586		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1587		 * drop this restriction as unnecessary
1588		 */
1589		if (mss != tcp_skb_seglen(prev))
1590			goto fallback;
1591
1592		if (len == mss) {
1593			pcount = 1;
1594		} else if (len < mss) {
1595			goto noop;
1596		} else {
1597			pcount = len / mss;
1598			len = pcount * mss;
1599		}
1600	}
1601
1602	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604		goto fallback;
1605
1606	if (!tcp_skb_shift(prev, skb, pcount, len))
1607		goto fallback;
1608	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609		goto out;
1610
1611	/* Hole filled allows collapsing with the next as well, this is very
1612	 * useful when hole on every nth skb pattern happens
1613	 */
1614	skb = skb_rb_next(prev);
1615	if (!skb)
1616		goto out;
1617
1618	if (!skb_can_shift(skb) ||
1619	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620	    (mss != tcp_skb_seglen(skb)))
1621		goto out;
1622
 
 
1623	len = skb->len;
1624	pcount = tcp_skb_pcount(skb);
1625	if (tcp_skb_shift(prev, skb, pcount, len))
1626		tcp_shifted_skb(sk, prev, skb, state, pcount,
1627				len, mss, 0);
1628
1629out:
1630	return prev;
1631
1632noop:
1633	return skb;
1634
1635fallback:
1636	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637	return NULL;
1638}
1639
1640static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641					struct tcp_sack_block *next_dup,
1642					struct tcp_sacktag_state *state,
1643					u32 start_seq, u32 end_seq,
1644					bool dup_sack_in)
1645{
1646	struct tcp_sock *tp = tcp_sk(sk);
1647	struct sk_buff *tmp;
1648
1649	skb_rbtree_walk_from(skb) {
1650		int in_sack = 0;
1651		bool dup_sack = dup_sack_in;
1652
1653		/* queue is in-order => we can short-circuit the walk early */
1654		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655			break;
1656
1657		if (next_dup  &&
1658		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659			in_sack = tcp_match_skb_to_sack(sk, skb,
1660							next_dup->start_seq,
1661							next_dup->end_seq);
1662			if (in_sack > 0)
1663				dup_sack = true;
1664		}
1665
1666		/* skb reference here is a bit tricky to get right, since
1667		 * shifting can eat and free both this skb and the next,
1668		 * so not even _safe variant of the loop is enough.
1669		 */
1670		if (in_sack <= 0) {
1671			tmp = tcp_shift_skb_data(sk, skb, state,
1672						 start_seq, end_seq, dup_sack);
1673			if (tmp) {
1674				if (tmp != skb) {
1675					skb = tmp;
1676					continue;
1677				}
1678
1679				in_sack = 0;
1680			} else {
1681				in_sack = tcp_match_skb_to_sack(sk, skb,
1682								start_seq,
1683								end_seq);
1684			}
1685		}
1686
1687		if (unlikely(in_sack < 0))
1688			break;
1689
1690		if (in_sack) {
1691			TCP_SKB_CB(skb)->sacked =
1692				tcp_sacktag_one(sk,
1693						state,
1694						TCP_SKB_CB(skb)->sacked,
1695						TCP_SKB_CB(skb)->seq,
1696						TCP_SKB_CB(skb)->end_seq,
1697						dup_sack,
1698						tcp_skb_pcount(skb),
1699						tcp_skb_timestamp_us(skb));
1700			tcp_rate_skb_delivered(sk, skb, state->rate);
1701			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702				list_del_init(&skb->tcp_tsorted_anchor);
1703
1704			if (!before(TCP_SKB_CB(skb)->seq,
1705				    tcp_highest_sack_seq(tp)))
1706				tcp_advance_highest_sack(sk, skb);
1707		}
1708	}
1709	return skb;
1710}
1711
1712static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1713{
1714	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715	struct sk_buff *skb;
1716
1717	while (*p) {
1718		parent = *p;
1719		skb = rb_to_skb(parent);
1720		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721			p = &parent->rb_left;
1722			continue;
1723		}
1724		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725			p = &parent->rb_right;
1726			continue;
1727		}
1728		return skb;
1729	}
1730	return NULL;
1731}
1732
1733static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1734					u32 skip_to_seq)
1735{
1736	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737		return skb;
1738
1739	return tcp_sacktag_bsearch(sk, skip_to_seq);
1740}
1741
1742static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743						struct sock *sk,
1744						struct tcp_sack_block *next_dup,
1745						struct tcp_sacktag_state *state,
1746						u32 skip_to_seq)
1747{
1748	if (!next_dup)
1749		return skb;
1750
1751	if (before(next_dup->start_seq, skip_to_seq)) {
1752		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754				       next_dup->start_seq, next_dup->end_seq,
1755				       1);
1756	}
1757
1758	return skb;
1759}
1760
1761static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762{
1763	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764}
1765
1766static int
1767tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768			u32 prior_snd_una, struct tcp_sacktag_state *state)
1769{
1770	struct tcp_sock *tp = tcp_sk(sk);
1771	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772				    TCP_SKB_CB(ack_skb)->sacked);
1773	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774	struct tcp_sack_block sp[TCP_NUM_SACKS];
1775	struct tcp_sack_block *cache;
1776	struct sk_buff *skb;
1777	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778	int used_sacks;
1779	bool found_dup_sack = false;
1780	int i, j;
1781	int first_sack_index;
1782
1783	state->flag = 0;
1784	state->reord = tp->snd_nxt;
1785
1786	if (!tp->sacked_out)
1787		tcp_highest_sack_reset(sk);
1788
1789	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790					 num_sacks, prior_snd_una, state);
1791
1792	/* Eliminate too old ACKs, but take into
1793	 * account more or less fresh ones, they can
1794	 * contain valid SACK info.
1795	 */
1796	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797		return 0;
1798
1799	if (!tp->packets_out)
1800		goto out;
1801
1802	used_sacks = 0;
1803	first_sack_index = 0;
1804	for (i = 0; i < num_sacks; i++) {
1805		bool dup_sack = !i && found_dup_sack;
1806
1807		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809
1810		if (!tcp_is_sackblock_valid(tp, dup_sack,
1811					    sp[used_sacks].start_seq,
1812					    sp[used_sacks].end_seq)) {
1813			int mib_idx;
1814
1815			if (dup_sack) {
1816				if (!tp->undo_marker)
1817					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818				else
1819					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820			} else {
1821				/* Don't count olds caused by ACK reordering */
1822				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823				    !after(sp[used_sacks].end_seq, tp->snd_una))
1824					continue;
1825				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1826			}
1827
1828			NET_INC_STATS(sock_net(sk), mib_idx);
1829			if (i == 0)
1830				first_sack_index = -1;
1831			continue;
1832		}
1833
1834		/* Ignore very old stuff early */
1835		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836			if (i == 0)
1837				first_sack_index = -1;
1838			continue;
1839		}
1840
1841		used_sacks++;
1842	}
1843
1844	/* order SACK blocks to allow in order walk of the retrans queue */
1845	for (i = used_sacks - 1; i > 0; i--) {
1846		for (j = 0; j < i; j++) {
1847			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848				swap(sp[j], sp[j + 1]);
1849
1850				/* Track where the first SACK block goes to */
1851				if (j == first_sack_index)
1852					first_sack_index = j + 1;
1853			}
1854		}
1855	}
1856
1857	state->mss_now = tcp_current_mss(sk);
1858	skb = NULL;
1859	i = 0;
1860
1861	if (!tp->sacked_out) {
1862		/* It's already past, so skip checking against it */
1863		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864	} else {
1865		cache = tp->recv_sack_cache;
1866		/* Skip empty blocks in at head of the cache */
1867		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868		       !cache->end_seq)
1869			cache++;
1870	}
1871
1872	while (i < used_sacks) {
1873		u32 start_seq = sp[i].start_seq;
1874		u32 end_seq = sp[i].end_seq;
1875		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876		struct tcp_sack_block *next_dup = NULL;
1877
1878		if (found_dup_sack && ((i + 1) == first_sack_index))
1879			next_dup = &sp[i + 1];
1880
1881		/* Skip too early cached blocks */
1882		while (tcp_sack_cache_ok(tp, cache) &&
1883		       !before(start_seq, cache->end_seq))
1884			cache++;
1885
1886		/* Can skip some work by looking recv_sack_cache? */
1887		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888		    after(end_seq, cache->start_seq)) {
1889
1890			/* Head todo? */
1891			if (before(start_seq, cache->start_seq)) {
1892				skb = tcp_sacktag_skip(skb, sk, start_seq);
1893				skb = tcp_sacktag_walk(skb, sk, next_dup,
1894						       state,
1895						       start_seq,
1896						       cache->start_seq,
1897						       dup_sack);
1898			}
1899
1900			/* Rest of the block already fully processed? */
1901			if (!after(end_seq, cache->end_seq))
1902				goto advance_sp;
1903
1904			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905						       state,
1906						       cache->end_seq);
1907
1908			/* ...tail remains todo... */
1909			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910				/* ...but better entrypoint exists! */
1911				skb = tcp_highest_sack(sk);
1912				if (!skb)
1913					break;
1914				cache++;
1915				goto walk;
1916			}
1917
1918			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919			/* Check overlap against next cached too (past this one already) */
1920			cache++;
1921			continue;
1922		}
1923
1924		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925			skb = tcp_highest_sack(sk);
1926			if (!skb)
1927				break;
1928		}
1929		skb = tcp_sacktag_skip(skb, sk, start_seq);
1930
1931walk:
1932		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933				       start_seq, end_seq, dup_sack);
1934
1935advance_sp:
1936		i++;
1937	}
1938
1939	/* Clear the head of the cache sack blocks so we can skip it next time */
1940	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941		tp->recv_sack_cache[i].start_seq = 0;
1942		tp->recv_sack_cache[i].end_seq = 0;
1943	}
1944	for (j = 0; j < used_sacks; j++)
1945		tp->recv_sack_cache[i++] = sp[j];
1946
1947	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948		tcp_check_sack_reordering(sk, state->reord, 0);
1949
1950	tcp_verify_left_out(tp);
1951out:
1952
1953#if FASTRETRANS_DEBUG > 0
1954	WARN_ON((int)tp->sacked_out < 0);
1955	WARN_ON((int)tp->lost_out < 0);
1956	WARN_ON((int)tp->retrans_out < 0);
1957	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958#endif
1959	return state->flag;
1960}
1961
1962/* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964 */
1965static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1966{
1967	u32 holes;
1968
1969	holes = max(tp->lost_out, 1U);
1970	holes = min(holes, tp->packets_out);
1971
1972	if ((tp->sacked_out + holes) > tp->packets_out) {
1973		tp->sacked_out = tp->packets_out - holes;
1974		return true;
1975	}
1976	return false;
1977}
1978
1979/* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1982 */
1983static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984{
1985	struct tcp_sock *tp = tcp_sk(sk);
1986
1987	if (!tcp_limit_reno_sacked(tp))
1988		return;
1989
1990	tp->reordering = min_t(u32, tp->packets_out + addend,
1991			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992	tp->reord_seen++;
1993	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1994}
1995
1996/* Emulate SACKs for SACKless connection: account for a new dupack. */
1997
1998static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1999{
2000	if (num_dupack) {
2001		struct tcp_sock *tp = tcp_sk(sk);
2002		u32 prior_sacked = tp->sacked_out;
2003		s32 delivered;
2004
2005		tp->sacked_out += num_dupack;
2006		tcp_check_reno_reordering(sk, 0);
2007		delivered = tp->sacked_out - prior_sacked;
2008		if (delivered > 0)
2009			tcp_count_delivered(tp, delivered, ece_ack);
2010		tcp_verify_left_out(tp);
2011	}
2012}
2013
2014/* Account for ACK, ACKing some data in Reno Recovery phase. */
2015
2016static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017{
2018	struct tcp_sock *tp = tcp_sk(sk);
2019
2020	if (acked > 0) {
2021		/* One ACK acked hole. The rest eat duplicate ACKs. */
2022		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023				    ece_ack);
2024		if (acked - 1 >= tp->sacked_out)
2025			tp->sacked_out = 0;
2026		else
2027			tp->sacked_out -= acked - 1;
2028	}
2029	tcp_check_reno_reordering(sk, acked);
2030	tcp_verify_left_out(tp);
2031}
2032
2033static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2034{
2035	tp->sacked_out = 0;
2036}
2037
2038void tcp_clear_retrans(struct tcp_sock *tp)
2039{
2040	tp->retrans_out = 0;
2041	tp->lost_out = 0;
2042	tp->undo_marker = 0;
2043	tp->undo_retrans = -1;
2044	tp->sacked_out = 0;
 
 
 
 
2045}
2046
2047static inline void tcp_init_undo(struct tcp_sock *tp)
2048{
2049	tp->undo_marker = tp->snd_una;
2050	/* Retransmission still in flight may cause DSACKs later. */
2051	tp->undo_retrans = tp->retrans_out ? : -1;
2052}
2053
2054static bool tcp_is_rack(const struct sock *sk)
2055{
2056	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
 
2057}
2058
2059/* If we detect SACK reneging, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2062 */
2063static void tcp_timeout_mark_lost(struct sock *sk)
2064{
2065	struct tcp_sock *tp = tcp_sk(sk);
2066	struct sk_buff *skb, *head;
2067	bool is_reneg;			/* is receiver reneging on SACKs? */
2068
2069	head = tcp_rtx_queue_head(sk);
2070	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071	if (is_reneg) {
2072		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073		tp->sacked_out = 0;
2074		/* Mark SACK reneging until we recover from this loss event. */
2075		tp->is_sack_reneg = 1;
2076	} else if (tcp_is_reno(tp)) {
2077		tcp_reset_reno_sack(tp);
2078	}
2079
2080	skb = head;
2081	skb_rbtree_walk_from(skb) {
2082		if (is_reneg)
2083			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084		else if (tcp_is_rack(sk) && skb != head &&
2085			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086			continue; /* Don't mark recently sent ones lost yet */
2087		tcp_mark_skb_lost(sk, skb);
2088	}
2089	tcp_verify_left_out(tp);
2090	tcp_clear_all_retrans_hints(tp);
2091}
2092
2093/* Enter Loss state. */
2094void tcp_enter_loss(struct sock *sk)
2095{
2096	const struct inet_connection_sock *icsk = inet_csk(sk);
2097	struct tcp_sock *tp = tcp_sk(sk);
2098	struct net *net = sock_net(sk);
2099	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
 
2100
2101	tcp_timeout_mark_lost(sk);
2102
2103	/* Reduce ssthresh if it has not yet been made inside this window. */
2104	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105	    !after(tp->high_seq, tp->snd_una) ||
2106	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108		tp->prior_cwnd = tp->snd_cwnd;
2109		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110		tcp_ca_event(sk, CA_EVENT_LOSS);
2111		tcp_init_undo(tp);
2112	}
2113	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2114	tp->snd_cwnd_cnt   = 0;
2115	tp->snd_cwnd_stamp = tcp_jiffies32;
2116
2117	/* Timeout in disordered state after receiving substantial DUPACKs
2118	 * suggests that the degree of reordering is over-estimated.
2119	 */
 
2120	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122		tp->reordering = min_t(unsigned int, tp->reordering,
2123				       net->ipv4.sysctl_tcp_reordering);
 
2124	tcp_set_ca_state(sk, TCP_CA_Loss);
2125	tp->high_seq = tp->snd_nxt;
2126	tcp_ecn_queue_cwr(tp);
2127
2128	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129	 * loss recovery is underway except recurring timeout(s) on
2130	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131	 */
2132	tp->frto = net->ipv4.sysctl_tcp_frto &&
2133		   (new_recovery || icsk->icsk_retransmits) &&
2134		   !inet_csk(sk)->icsk_mtup.probe_size;
2135}
2136
2137/* If ACK arrived pointing to a remembered SACK, it means that our
2138 * remembered SACKs do not reflect real state of receiver i.e.
2139 * receiver _host_ is heavily congested (or buggy).
2140 *
2141 * To avoid big spurious retransmission bursts due to transient SACK
2142 * scoreboard oddities that look like reneging, we give the receiver a
2143 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 * restore sanity to the SACK scoreboard. If the apparent reneging
2145 * persists until this RTO then we'll clear the SACK scoreboard.
2146 */
2147static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148{
2149	if (flag & FLAG_SACK_RENEGING) {
 
2150		struct tcp_sock *tp = tcp_sk(sk);
2151		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152					  msecs_to_jiffies(10));
2153
2154		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155					  delay, TCP_RTO_MAX);
 
2156		return true;
2157	}
2158	return false;
2159}
2160
2161/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 * counter when SACK is enabled (without SACK, sacked_out is used for
2163 * that purpose).
2164 *
2165 * With reordering, holes may still be in flight, so RFC3517 recovery
2166 * uses pure sacked_out (total number of SACKed segments) even though
2167 * it violates the RFC that uses duplicate ACKs, often these are equal
2168 * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 * they differ. Since neither occurs due to loss, TCP should really
2170 * ignore them.
2171 */
2172static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173{
2174	return tp->sacked_out + 1;
2175}
2176
2177/* Linux NewReno/SACK/ECN state machine.
2178 * --------------------------------------
2179 *
2180 * "Open"	Normal state, no dubious events, fast path.
2181 * "Disorder"   In all the respects it is "Open",
2182 *		but requires a bit more attention. It is entered when
2183 *		we see some SACKs or dupacks. It is split of "Open"
2184 *		mainly to move some processing from fast path to slow one.
2185 * "CWR"	CWND was reduced due to some Congestion Notification event.
2186 *		It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2188 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2189 *
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2193 *	* SACK
2194 *	* Duplicate ACK.
2195 *	* ECN ECE.
2196 *
2197 * Counting packets in flight is pretty simple.
2198 *
2199 *	in_flight = packets_out - left_out + retrans_out
2200 *
2201 *	packets_out is SND.NXT-SND.UNA counted in packets.
2202 *
2203 *	retrans_out is number of retransmitted segments.
2204 *
2205 *	left_out is number of segments left network, but not ACKed yet.
2206 *
2207 *		left_out = sacked_out + lost_out
2208 *
2209 *     sacked_out: Packets, which arrived to receiver out of order
2210 *		   and hence not ACKed. With SACKs this number is simply
2211 *		   amount of SACKed data. Even without SACKs
2212 *		   it is easy to give pretty reliable estimate of this number,
2213 *		   counting duplicate ACKs.
2214 *
2215 *       lost_out: Packets lost by network. TCP has no explicit
2216 *		   "loss notification" feedback from network (for now).
2217 *		   It means that this number can be only _guessed_.
2218 *		   Actually, it is the heuristics to predict lossage that
2219 *		   distinguishes different algorithms.
2220 *
2221 *	F.e. after RTO, when all the queue is considered as lost,
2222 *	lost_out = packets_out and in_flight = retrans_out.
2223 *
2224 *		Essentially, we have now a few algorithms detecting
2225 *		lost packets.
2226 *
2227 *		If the receiver supports SACK:
2228 *
2229 *		RFC6675/3517: It is the conventional algorithm. A packet is
2230 *		considered lost if the number of higher sequence packets
2231 *		SACKed is greater than or equal the DUPACK thoreshold
2232 *		(reordering). This is implemented in tcp_mark_head_lost and
2233 *		tcp_update_scoreboard.
2234 *
2235 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 *		(2017-) that checks timing instead of counting DUPACKs.
2237 *		Essentially a packet is considered lost if it's not S/ACKed
2238 *		after RTT + reordering_window, where both metrics are
2239 *		dynamically measured and adjusted. This is implemented in
2240 *		tcp_rack_mark_lost.
2241 *
2242 *		If the receiver does not support SACK:
2243 *
2244 *		NewReno (RFC6582): in Recovery we assume that one segment
2245 *		is lost (classic Reno). While we are in Recovery and
2246 *		a partial ACK arrives, we assume that one more packet
2247 *		is lost (NewReno). This heuristics are the same in NewReno
2248 *		and SACK.
2249 *
2250 * Really tricky (and requiring careful tuning) part of algorithm
2251 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 * The first determines the moment _when_ we should reduce CWND and,
2253 * hence, slow down forward transmission. In fact, it determines the moment
2254 * when we decide that hole is caused by loss, rather than by a reorder.
2255 *
2256 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 * holes, caused by lost packets.
2258 *
2259 * And the most logically complicated part of algorithm is undo
2260 * heuristics. We detect false retransmits due to both too early
2261 * fast retransmit (reordering) and underestimated RTO, analyzing
2262 * timestamps and D-SACKs. When we detect that some segments were
2263 * retransmitted by mistake and CWND reduction was wrong, we undo
2264 * window reduction and abort recovery phase. This logic is hidden
2265 * inside several functions named tcp_try_undo_<something>.
2266 */
2267
2268/* This function decides, when we should leave Disordered state
2269 * and enter Recovery phase, reducing congestion window.
2270 *
2271 * Main question: may we further continue forward transmission
2272 * with the same cwnd?
2273 */
2274static bool tcp_time_to_recover(struct sock *sk, int flag)
2275{
2276	struct tcp_sock *tp = tcp_sk(sk);
2277
2278	/* Trick#1: The loss is proven. */
2279	if (tp->lost_out)
2280		return true;
2281
2282	/* Not-A-Trick#2 : Classic rule... */
2283	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284		return true;
2285
2286	return false;
2287}
2288
2289/* Detect loss in event "A" above by marking head of queue up as lost.
2290 * For RFC3517 SACK, a segment is considered lost if it
2291 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 * the maximum SACKed segments to pass before reaching this limit.
2293 */
2294static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295{
2296	struct tcp_sock *tp = tcp_sk(sk);
2297	struct sk_buff *skb;
2298	int cnt;
2299	/* Use SACK to deduce losses of new sequences sent during recovery */
2300	const u32 loss_high = tp->snd_nxt;
2301
2302	WARN_ON(packets > tp->packets_out);
2303	skb = tp->lost_skb_hint;
2304	if (skb) {
2305		/* Head already handled? */
2306		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307			return;
2308		cnt = tp->lost_cnt_hint;
2309	} else {
2310		skb = tcp_rtx_queue_head(sk);
2311		cnt = 0;
2312	}
2313
2314	skb_rbtree_walk_from(skb) {
2315		/* TODO: do this better */
2316		/* this is not the most efficient way to do this... */
2317		tp->lost_skb_hint = skb;
2318		tp->lost_cnt_hint = cnt;
2319
2320		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321			break;
2322
2323		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2324			cnt += tcp_skb_pcount(skb);
2325
2326		if (cnt > packets)
2327			break;
2328
2329		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330			tcp_mark_skb_lost(sk, skb);
2331
2332		if (mark_head)
2333			break;
2334	}
2335	tcp_verify_left_out(tp);
2336}
2337
2338/* Account newly detected lost packet(s) */
2339
2340static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341{
2342	struct tcp_sock *tp = tcp_sk(sk);
2343
2344	if (tcp_is_sack(tp)) {
2345		int sacked_upto = tp->sacked_out - tp->reordering;
2346		if (sacked_upto >= 0)
2347			tcp_mark_head_lost(sk, sacked_upto, 0);
2348		else if (fast_rexmit)
2349			tcp_mark_head_lost(sk, 1, 1);
2350	}
2351}
2352
2353static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354{
2355	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356	       before(tp->rx_opt.rcv_tsecr, when);
2357}
2358
2359/* skb is spurious retransmitted if the returned timestamp echo
2360 * reply is prior to the skb transmission time
2361 */
2362static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363				     const struct sk_buff *skb)
2364{
2365	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2367}
2368
2369/* Nothing was retransmitted or returned timestamp is less
2370 * than timestamp of the first retransmission.
2371 */
2372static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373{
2374	return tp->retrans_stamp &&
2375	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2376}
2377
2378/* Undo procedures. */
2379
2380/* We can clear retrans_stamp when there are no retransmissions in the
2381 * window. It would seem that it is trivially available for us in
2382 * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 * what will happen if errors occur when sending retransmission for the
2384 * second time. ...It could the that such segment has only
2385 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 * the head skb is enough except for some reneging corner cases that
2387 * are not worth the effort.
2388 *
2389 * Main reason for all this complexity is the fact that connection dying
2390 * time now depends on the validity of the retrans_stamp, in particular,
2391 * that successive retransmissions of a segment must not advance
2392 * retrans_stamp under any conditions.
2393 */
2394static bool tcp_any_retrans_done(const struct sock *sk)
2395{
2396	const struct tcp_sock *tp = tcp_sk(sk);
2397	struct sk_buff *skb;
2398
2399	if (tp->retrans_out)
2400		return true;
2401
2402	skb = tcp_rtx_queue_head(sk);
2403	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404		return true;
2405
2406	return false;
2407}
2408
2409static void DBGUNDO(struct sock *sk, const char *msg)
2410{
2411#if FASTRETRANS_DEBUG > 1
2412	struct tcp_sock *tp = tcp_sk(sk);
2413	struct inet_sock *inet = inet_sk(sk);
2414
2415	if (sk->sk_family == AF_INET) {
2416		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417			 msg,
2418			 &inet->inet_daddr, ntohs(inet->inet_dport),
2419			 tp->snd_cwnd, tcp_left_out(tp),
2420			 tp->snd_ssthresh, tp->prior_ssthresh,
2421			 tp->packets_out);
2422	}
2423#if IS_ENABLED(CONFIG_IPV6)
2424	else if (sk->sk_family == AF_INET6) {
2425		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426			 msg,
2427			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428			 tp->snd_cwnd, tcp_left_out(tp),
2429			 tp->snd_ssthresh, tp->prior_ssthresh,
2430			 tp->packets_out);
2431	}
2432#endif
2433#endif
2434}
2435
2436static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437{
2438	struct tcp_sock *tp = tcp_sk(sk);
2439
2440	if (unmark_loss) {
2441		struct sk_buff *skb;
2442
2443		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2445		}
2446		tp->lost_out = 0;
2447		tcp_clear_all_retrans_hints(tp);
2448	}
2449
2450	if (tp->prior_ssthresh) {
2451		const struct inet_connection_sock *icsk = inet_csk(sk);
2452
2453		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454
2455		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456			tp->snd_ssthresh = tp->prior_ssthresh;
2457			tcp_ecn_withdraw_cwr(tp);
2458		}
2459	}
2460	tp->snd_cwnd_stamp = tcp_jiffies32;
2461	tp->undo_marker = 0;
2462	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2463}
2464
2465static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466{
2467	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2468}
2469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470/* People celebrate: "We love our President!" */
2471static bool tcp_try_undo_recovery(struct sock *sk)
2472{
2473	struct tcp_sock *tp = tcp_sk(sk);
2474
2475	if (tcp_may_undo(tp)) {
2476		int mib_idx;
2477
2478		/* Happy end! We did not retransmit anything
2479		 * or our original transmission succeeded.
2480		 */
2481		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482		tcp_undo_cwnd_reduction(sk, false);
2483		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485		else
2486			mib_idx = LINUX_MIB_TCPFULLUNDO;
2487
2488		NET_INC_STATS(sock_net(sk), mib_idx);
2489	} else if (tp->rack.reo_wnd_persist) {
2490		tp->rack.reo_wnd_persist--;
2491	}
2492	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493		/* Hold old state until something *above* high_seq
2494		 * is ACKed. For Reno it is MUST to prevent false
2495		 * fast retransmits (RFC2582). SACK TCP is safe. */
2496		if (!tcp_any_retrans_done(sk))
2497			tp->retrans_stamp = 0;
2498		return true;
2499	}
2500	tcp_set_ca_state(sk, TCP_CA_Open);
2501	tp->is_sack_reneg = 0;
2502	return false;
2503}
2504
2505/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506static bool tcp_try_undo_dsack(struct sock *sk)
2507{
2508	struct tcp_sock *tp = tcp_sk(sk);
2509
2510	if (tp->undo_marker && !tp->undo_retrans) {
2511		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512					       tp->rack.reo_wnd_persist + 1);
2513		DBGUNDO(sk, "D-SACK");
2514		tcp_undo_cwnd_reduction(sk, false);
2515		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516		return true;
2517	}
2518	return false;
2519}
2520
2521/* Undo during loss recovery after partial ACK or using F-RTO. */
2522static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523{
2524	struct tcp_sock *tp = tcp_sk(sk);
2525
2526	if (frto_undo || tcp_may_undo(tp)) {
2527		tcp_undo_cwnd_reduction(sk, true);
2528
2529		DBGUNDO(sk, "partial loss");
2530		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531		if (frto_undo)
2532			NET_INC_STATS(sock_net(sk),
2533					LINUX_MIB_TCPSPURIOUSRTOS);
2534		inet_csk(sk)->icsk_retransmits = 0;
 
 
2535		if (frto_undo || tcp_is_sack(tp)) {
2536			tcp_set_ca_state(sk, TCP_CA_Open);
2537			tp->is_sack_reneg = 0;
2538		}
2539		return true;
2540	}
2541	return false;
2542}
2543
2544/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 * It computes the number of packets to send (sndcnt) based on packets newly
2546 * delivered:
2547 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 *	cwnd reductions across a full RTT.
2549 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 *      But when SND_UNA is acked without further losses,
2551 *      slow starts cwnd up to ssthresh to speed up the recovery.
2552 */
2553static void tcp_init_cwnd_reduction(struct sock *sk)
2554{
2555	struct tcp_sock *tp = tcp_sk(sk);
2556
2557	tp->high_seq = tp->snd_nxt;
2558	tp->tlp_high_seq = 0;
2559	tp->snd_cwnd_cnt = 0;
2560	tp->prior_cwnd = tp->snd_cwnd;
2561	tp->prr_delivered = 0;
2562	tp->prr_out = 0;
2563	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564	tcp_ecn_queue_cwr(tp);
2565}
2566
2567void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2568{
2569	struct tcp_sock *tp = tcp_sk(sk);
2570	int sndcnt = 0;
2571	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572
2573	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574		return;
2575
2576	tp->prr_delivered += newly_acked_sacked;
2577	if (delta < 0) {
2578		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579			       tp->prior_cwnd - 1;
2580		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
2582		sndcnt = min_t(int, delta,
2583			       max_t(int, tp->prr_delivered - tp->prr_out,
2584				     newly_acked_sacked) + 1);
2585	} else {
2586		sndcnt = min(delta, newly_acked_sacked);
 
 
 
 
2587	}
2588	/* Force a fast retransmit upon entering fast recovery */
2589	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2591}
2592
2593static inline void tcp_end_cwnd_reduction(struct sock *sk)
2594{
2595	struct tcp_sock *tp = tcp_sk(sk);
2596
2597	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598		return;
2599
2600	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603		tp->snd_cwnd = tp->snd_ssthresh;
2604		tp->snd_cwnd_stamp = tcp_jiffies32;
2605	}
2606	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2607}
2608
2609/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610void tcp_enter_cwr(struct sock *sk)
2611{
2612	struct tcp_sock *tp = tcp_sk(sk);
2613
2614	tp->prior_ssthresh = 0;
2615	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616		tp->undo_marker = 0;
2617		tcp_init_cwnd_reduction(sk);
2618		tcp_set_ca_state(sk, TCP_CA_CWR);
2619	}
2620}
2621EXPORT_SYMBOL(tcp_enter_cwr);
2622
2623static void tcp_try_keep_open(struct sock *sk)
2624{
2625	struct tcp_sock *tp = tcp_sk(sk);
2626	int state = TCP_CA_Open;
2627
2628	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629		state = TCP_CA_Disorder;
2630
2631	if (inet_csk(sk)->icsk_ca_state != state) {
2632		tcp_set_ca_state(sk, state);
2633		tp->high_seq = tp->snd_nxt;
2634	}
2635}
2636
2637static void tcp_try_to_open(struct sock *sk, int flag)
2638{
2639	struct tcp_sock *tp = tcp_sk(sk);
2640
2641	tcp_verify_left_out(tp);
2642
2643	if (!tcp_any_retrans_done(sk))
2644		tp->retrans_stamp = 0;
2645
2646	if (flag & FLAG_ECE)
2647		tcp_enter_cwr(sk);
2648
2649	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650		tcp_try_keep_open(sk);
2651	}
2652}
2653
2654static void tcp_mtup_probe_failed(struct sock *sk)
2655{
2656	struct inet_connection_sock *icsk = inet_csk(sk);
2657
2658	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659	icsk->icsk_mtup.probe_size = 0;
2660	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2661}
2662
2663static void tcp_mtup_probe_success(struct sock *sk)
2664{
2665	struct tcp_sock *tp = tcp_sk(sk);
2666	struct inet_connection_sock *icsk = inet_csk(sk);
 
2667
2668	/* FIXME: breaks with very large cwnd */
2669	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670	tp->snd_cwnd = tp->snd_cwnd *
2671		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2672		       icsk->icsk_mtup.probe_size;
 
 
 
2673	tp->snd_cwnd_cnt = 0;
2674	tp->snd_cwnd_stamp = tcp_jiffies32;
2675	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2676
2677	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678	icsk->icsk_mtup.probe_size = 0;
2679	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2681}
2682
2683/* Do a simple retransmit without using the backoff mechanisms in
2684 * tcp_timer. This is used for path mtu discovery.
2685 * The socket is already locked here.
2686 */
2687void tcp_simple_retransmit(struct sock *sk)
2688{
2689	const struct inet_connection_sock *icsk = inet_csk(sk);
2690	struct tcp_sock *tp = tcp_sk(sk);
2691	struct sk_buff *skb;
2692	int mss;
2693
2694	/* A fastopen SYN request is stored as two separate packets within
2695	 * the retransmit queue, this is done by tcp_send_syn_data().
2696	 * As a result simply checking the MSS of the frames in the queue
2697	 * will not work for the SYN packet.
2698	 *
2699	 * Us being here is an indication of a path MTU issue so we can
2700	 * assume that the fastopen SYN was lost and just mark all the
2701	 * frames in the retransmit queue as lost. We will use an MSS of
2702	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2703	 */
2704	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2705		mss = -1;
2706	else
2707		mss = tcp_current_mss(sk);
2708
2709	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2710		if (tcp_skb_seglen(skb) > mss)
2711			tcp_mark_skb_lost(sk, skb);
2712	}
2713
2714	tcp_clear_retrans_hints_partial(tp);
2715
2716	if (!tp->lost_out)
2717		return;
2718
2719	if (tcp_is_reno(tp))
2720		tcp_limit_reno_sacked(tp);
2721
2722	tcp_verify_left_out(tp);
2723
2724	/* Don't muck with the congestion window here.
2725	 * Reason is that we do not increase amount of _data_
2726	 * in network, but units changed and effective
2727	 * cwnd/ssthresh really reduced now.
2728	 */
2729	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2730		tp->high_seq = tp->snd_nxt;
2731		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2732		tp->prior_ssthresh = 0;
2733		tp->undo_marker = 0;
2734		tcp_set_ca_state(sk, TCP_CA_Loss);
2735	}
2736	tcp_xmit_retransmit_queue(sk);
2737}
2738EXPORT_SYMBOL(tcp_simple_retransmit);
2739
2740void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2741{
2742	struct tcp_sock *tp = tcp_sk(sk);
2743	int mib_idx;
2744
2745	if (tcp_is_reno(tp))
2746		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2747	else
2748		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2749
2750	NET_INC_STATS(sock_net(sk), mib_idx);
2751
2752	tp->prior_ssthresh = 0;
2753	tcp_init_undo(tp);
2754
2755	if (!tcp_in_cwnd_reduction(sk)) {
2756		if (!ece_ack)
2757			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2758		tcp_init_cwnd_reduction(sk);
2759	}
2760	tcp_set_ca_state(sk, TCP_CA_Recovery);
2761}
2762
 
 
 
 
 
 
 
 
2763/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2765 */
2766static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2767			     int *rexmit)
2768{
2769	struct tcp_sock *tp = tcp_sk(sk);
2770	bool recovered = !before(tp->snd_una, tp->high_seq);
2771
2772	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2773	    tcp_try_undo_loss(sk, false))
2774		return;
2775
2776	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777		/* Step 3.b. A timeout is spurious if not all data are
2778		 * lost, i.e., never-retransmitted data are (s)acked.
2779		 */
2780		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2781		    tcp_try_undo_loss(sk, true))
2782			return;
2783
2784		if (after(tp->snd_nxt, tp->high_seq)) {
2785			if (flag & FLAG_DATA_SACKED || num_dupack)
2786				tp->frto = 0; /* Step 3.a. loss was real */
2787		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2788			tp->high_seq = tp->snd_nxt;
2789			/* Step 2.b. Try send new data (but deferred until cwnd
2790			 * is updated in tcp_ack()). Otherwise fall back to
2791			 * the conventional recovery.
2792			 */
2793			if (!tcp_write_queue_empty(sk) &&
2794			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2795				*rexmit = REXMIT_NEW;
2796				return;
2797			}
2798			tp->frto = 0;
2799		}
2800	}
2801
2802	if (recovered) {
2803		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804		tcp_try_undo_recovery(sk);
2805		return;
2806	}
2807	if (tcp_is_reno(tp)) {
2808		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2809		 * delivered. Lower inflight to clock out (re)tranmissions.
2810		 */
2811		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2812			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2813		else if (flag & FLAG_SND_UNA_ADVANCED)
2814			tcp_reset_reno_sack(tp);
2815	}
2816	*rexmit = REXMIT_LOST;
2817}
2818
2819static bool tcp_force_fast_retransmit(struct sock *sk)
2820{
2821	struct tcp_sock *tp = tcp_sk(sk);
2822
2823	return after(tcp_highest_sack_seq(tp),
2824		     tp->snd_una + tp->reordering * tp->mss_cache);
2825}
2826
2827/* Undo during fast recovery after partial ACK. */
2828static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2829				 bool *do_lost)
2830{
2831	struct tcp_sock *tp = tcp_sk(sk);
2832
2833	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2834		/* Plain luck! Hole if filled with delayed
2835		 * packet, rather than with a retransmit. Check reordering.
2836		 */
2837		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2838
2839		/* We are getting evidence that the reordering degree is higher
2840		 * than we realized. If there are no retransmits out then we
2841		 * can undo. Otherwise we clock out new packets but do not
2842		 * mark more packets lost or retransmit more.
2843		 */
2844		if (tp->retrans_out)
2845			return true;
2846
2847		if (!tcp_any_retrans_done(sk))
2848			tp->retrans_stamp = 0;
2849
2850		DBGUNDO(sk, "partial recovery");
2851		tcp_undo_cwnd_reduction(sk, true);
2852		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2853		tcp_try_keep_open(sk);
2854	} else {
2855		/* Partial ACK arrived. Force fast retransmit. */
2856		*do_lost = tcp_force_fast_retransmit(sk);
2857	}
2858	return false;
2859}
2860
2861static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2862{
2863	struct tcp_sock *tp = tcp_sk(sk);
2864
2865	if (tcp_rtx_queue_empty(sk))
2866		return;
2867
2868	if (unlikely(tcp_is_reno(tp))) {
2869		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2870	} else if (tcp_is_rack(sk)) {
2871		u32 prior_retrans = tp->retrans_out;
2872
2873		if (tcp_rack_mark_lost(sk))
2874			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2875		if (prior_retrans > tp->retrans_out)
2876			*ack_flag |= FLAG_LOST_RETRANS;
2877	}
2878}
2879
2880/* Process an event, which can update packets-in-flight not trivially.
2881 * Main goal of this function is to calculate new estimate for left_out,
2882 * taking into account both packets sitting in receiver's buffer and
2883 * packets lost by network.
2884 *
2885 * Besides that it updates the congestion state when packet loss or ECN
2886 * is detected. But it does not reduce the cwnd, it is done by the
2887 * congestion control later.
2888 *
2889 * It does _not_ decide what to send, it is made in function
2890 * tcp_xmit_retransmit_queue().
2891 */
2892static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2893				  int num_dupack, int *ack_flag, int *rexmit)
2894{
2895	struct inet_connection_sock *icsk = inet_csk(sk);
2896	struct tcp_sock *tp = tcp_sk(sk);
2897	int fast_rexmit = 0, flag = *ack_flag;
2898	bool ece_ack = flag & FLAG_ECE;
2899	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2900				      tcp_force_fast_retransmit(sk));
2901
2902	if (!tp->packets_out && tp->sacked_out)
2903		tp->sacked_out = 0;
2904
2905	/* Now state machine starts.
2906	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907	if (ece_ack)
2908		tp->prior_ssthresh = 0;
2909
2910	/* B. In all the states check for reneging SACKs. */
2911	if (tcp_check_sack_reneging(sk, flag))
2912		return;
2913
2914	/* C. Check consistency of the current state. */
2915	tcp_verify_left_out(tp);
2916
2917	/* D. Check state exit conditions. State can be terminated
2918	 *    when high_seq is ACKed. */
2919	if (icsk->icsk_ca_state == TCP_CA_Open) {
2920		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2921		tp->retrans_stamp = 0;
2922	} else if (!before(tp->snd_una, tp->high_seq)) {
2923		switch (icsk->icsk_ca_state) {
2924		case TCP_CA_CWR:
2925			/* CWR is to be held something *above* high_seq
2926			 * is ACKed for CWR bit to reach receiver. */
2927			if (tp->snd_una != tp->high_seq) {
2928				tcp_end_cwnd_reduction(sk);
2929				tcp_set_ca_state(sk, TCP_CA_Open);
2930			}
2931			break;
2932
2933		case TCP_CA_Recovery:
2934			if (tcp_is_reno(tp))
2935				tcp_reset_reno_sack(tp);
2936			if (tcp_try_undo_recovery(sk))
2937				return;
2938			tcp_end_cwnd_reduction(sk);
2939			break;
2940		}
2941	}
2942
2943	/* E. Process state. */
2944	switch (icsk->icsk_ca_state) {
2945	case TCP_CA_Recovery:
2946		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2947			if (tcp_is_reno(tp))
2948				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2949		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2950			return;
2951
2952		if (tcp_try_undo_dsack(sk))
2953			tcp_try_keep_open(sk);
2954
2955		tcp_identify_packet_loss(sk, ack_flag);
2956		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2957			if (!tcp_time_to_recover(sk, flag))
2958				return;
2959			/* Undo reverts the recovery state. If loss is evident,
2960			 * starts a new recovery (e.g. reordering then loss);
2961			 */
2962			tcp_enter_recovery(sk, ece_ack);
2963		}
2964		break;
2965	case TCP_CA_Loss:
2966		tcp_process_loss(sk, flag, num_dupack, rexmit);
 
 
2967		tcp_identify_packet_loss(sk, ack_flag);
2968		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2969		      (*ack_flag & FLAG_LOST_RETRANS)))
2970			return;
2971		/* Change state if cwnd is undone or retransmits are lost */
2972		fallthrough;
2973	default:
2974		if (tcp_is_reno(tp)) {
2975			if (flag & FLAG_SND_UNA_ADVANCED)
2976				tcp_reset_reno_sack(tp);
2977			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2978		}
2979
2980		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2981			tcp_try_undo_dsack(sk);
2982
2983		tcp_identify_packet_loss(sk, ack_flag);
2984		if (!tcp_time_to_recover(sk, flag)) {
2985			tcp_try_to_open(sk, flag);
2986			return;
2987		}
2988
2989		/* MTU probe failure: don't reduce cwnd */
2990		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991		    icsk->icsk_mtup.probe_size &&
2992		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993			tcp_mtup_probe_failed(sk);
2994			/* Restores the reduction we did in tcp_mtup_probe() */
2995			tp->snd_cwnd++;
2996			tcp_simple_retransmit(sk);
2997			return;
2998		}
2999
3000		/* Otherwise enter Recovery state */
3001		tcp_enter_recovery(sk, ece_ack);
3002		fast_rexmit = 1;
3003	}
3004
3005	if (!tcp_is_rack(sk) && do_lost)
3006		tcp_update_scoreboard(sk, fast_rexmit);
3007	*rexmit = REXMIT_LOST;
3008}
3009
3010static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3011{
3012	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3013	struct tcp_sock *tp = tcp_sk(sk);
3014
3015	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3016		/* If the remote keeps returning delayed ACKs, eventually
3017		 * the min filter would pick it up and overestimate the
3018		 * prop. delay when it expires. Skip suspected delayed ACKs.
3019		 */
3020		return;
3021	}
3022	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3023			   rtt_us ? : jiffies_to_usecs(1));
3024}
3025
3026static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3027			       long seq_rtt_us, long sack_rtt_us,
3028			       long ca_rtt_us, struct rate_sample *rs)
3029{
3030	const struct tcp_sock *tp = tcp_sk(sk);
3031
3032	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3033	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3034	 * Karn's algorithm forbids taking RTT if some retransmitted data
3035	 * is acked (RFC6298).
3036	 */
3037	if (seq_rtt_us < 0)
3038		seq_rtt_us = sack_rtt_us;
3039
3040	/* RTTM Rule: A TSecr value received in a segment is used to
3041	 * update the averaged RTT measurement only if the segment
3042	 * acknowledges some new data, i.e., only if it advances the
3043	 * left edge of the send window.
3044	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3045	 */
3046	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3047	    flag & FLAG_ACKED) {
3048		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3049
3050		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3051			if (!delta)
3052				delta = 1;
3053			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3054			ca_rtt_us = seq_rtt_us;
3055		}
3056	}
3057	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3058	if (seq_rtt_us < 0)
3059		return false;
3060
3061	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3062	 * always taken together with ACK, SACK, or TS-opts. Any negative
3063	 * values will be skipped with the seq_rtt_us < 0 check above.
3064	 */
3065	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3066	tcp_rtt_estimator(sk, seq_rtt_us);
3067	tcp_set_rto(sk);
3068
3069	/* RFC6298: only reset backoff on valid RTT measurement. */
3070	inet_csk(sk)->icsk_backoff = 0;
3071	return true;
3072}
3073
3074/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3075void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3076{
3077	struct rate_sample rs;
3078	long rtt_us = -1L;
3079
3080	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3081		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3082
3083	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3084}
3085
3086
3087static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3088{
3089	const struct inet_connection_sock *icsk = inet_csk(sk);
3090
3091	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3092	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3093}
3094
3095/* Restart timer after forward progress on connection.
3096 * RFC2988 recommends to restart timer to now+rto.
3097 */
3098void tcp_rearm_rto(struct sock *sk)
3099{
3100	const struct inet_connection_sock *icsk = inet_csk(sk);
3101	struct tcp_sock *tp = tcp_sk(sk);
3102
3103	/* If the retrans timer is currently being used by Fast Open
3104	 * for SYN-ACK retrans purpose, stay put.
3105	 */
3106	if (rcu_access_pointer(tp->fastopen_rsk))
3107		return;
3108
3109	if (!tp->packets_out) {
3110		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3111	} else {
3112		u32 rto = inet_csk(sk)->icsk_rto;
3113		/* Offset the time elapsed after installing regular RTO */
3114		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3115		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3116			s64 delta_us = tcp_rto_delta_us(sk);
3117			/* delta_us may not be positive if the socket is locked
3118			 * when the retrans timer fires and is rescheduled.
3119			 */
3120			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3121		}
3122		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3123				     TCP_RTO_MAX);
3124	}
3125}
3126
3127/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3128static void tcp_set_xmit_timer(struct sock *sk)
3129{
3130	if (!tcp_schedule_loss_probe(sk, true))
3131		tcp_rearm_rto(sk);
3132}
3133
3134/* If we get here, the whole TSO packet has not been acked. */
3135static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3136{
3137	struct tcp_sock *tp = tcp_sk(sk);
3138	u32 packets_acked;
3139
3140	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3141
3142	packets_acked = tcp_skb_pcount(skb);
3143	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3144		return 0;
3145	packets_acked -= tcp_skb_pcount(skb);
3146
3147	if (packets_acked) {
3148		BUG_ON(tcp_skb_pcount(skb) == 0);
3149		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3150	}
3151
3152	return packets_acked;
3153}
3154
3155static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3156			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3157{
3158	const struct skb_shared_info *shinfo;
3159
3160	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3161	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3162		return;
3163
3164	shinfo = skb_shinfo(skb);
3165	if (!before(shinfo->tskey, prior_snd_una) &&
3166	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3167		tcp_skb_tsorted_save(skb) {
3168			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3169		} tcp_skb_tsorted_restore(skb);
3170	}
3171}
3172
3173/* Remove acknowledged frames from the retransmission queue. If our packet
3174 * is before the ack sequence we can discard it as it's confirmed to have
3175 * arrived at the other end.
3176 */
3177static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3178			       u32 prior_fack, u32 prior_snd_una,
3179			       struct tcp_sacktag_state *sack, bool ece_ack)
3180{
3181	const struct inet_connection_sock *icsk = inet_csk(sk);
3182	u64 first_ackt, last_ackt;
3183	struct tcp_sock *tp = tcp_sk(sk);
3184	u32 prior_sacked = tp->sacked_out;
3185	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3186	struct sk_buff *skb, *next;
3187	bool fully_acked = true;
3188	long sack_rtt_us = -1L;
3189	long seq_rtt_us = -1L;
3190	long ca_rtt_us = -1L;
3191	u32 pkts_acked = 0;
3192	u32 last_in_flight = 0;
3193	bool rtt_update;
3194	int flag = 0;
3195
3196	first_ackt = 0;
3197
3198	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3199		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3200		const u32 start_seq = scb->seq;
3201		u8 sacked = scb->sacked;
3202		u32 acked_pcount;
3203
3204		/* Determine how many packets and what bytes were acked, tso and else */
3205		if (after(scb->end_seq, tp->snd_una)) {
3206			if (tcp_skb_pcount(skb) == 1 ||
3207			    !after(tp->snd_una, scb->seq))
3208				break;
3209
3210			acked_pcount = tcp_tso_acked(sk, skb);
3211			if (!acked_pcount)
3212				break;
3213			fully_acked = false;
3214		} else {
3215			acked_pcount = tcp_skb_pcount(skb);
3216		}
3217
3218		if (unlikely(sacked & TCPCB_RETRANS)) {
3219			if (sacked & TCPCB_SACKED_RETRANS)
3220				tp->retrans_out -= acked_pcount;
3221			flag |= FLAG_RETRANS_DATA_ACKED;
3222		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3223			last_ackt = tcp_skb_timestamp_us(skb);
3224			WARN_ON_ONCE(last_ackt == 0);
3225			if (!first_ackt)
3226				first_ackt = last_ackt;
3227
3228			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3229			if (before(start_seq, reord))
3230				reord = start_seq;
3231			if (!after(scb->end_seq, tp->high_seq))
3232				flag |= FLAG_ORIG_SACK_ACKED;
3233		}
3234
3235		if (sacked & TCPCB_SACKED_ACKED) {
3236			tp->sacked_out -= acked_pcount;
3237		} else if (tcp_is_sack(tp)) {
3238			tcp_count_delivered(tp, acked_pcount, ece_ack);
3239			if (!tcp_skb_spurious_retrans(tp, skb))
3240				tcp_rack_advance(tp, sacked, scb->end_seq,
3241						 tcp_skb_timestamp_us(skb));
3242		}
3243		if (sacked & TCPCB_LOST)
3244			tp->lost_out -= acked_pcount;
3245
3246		tp->packets_out -= acked_pcount;
3247		pkts_acked += acked_pcount;
3248		tcp_rate_skb_delivered(sk, skb, sack->rate);
3249
3250		/* Initial outgoing SYN's get put onto the write_queue
3251		 * just like anything else we transmit.  It is not
3252		 * true data, and if we misinform our callers that
3253		 * this ACK acks real data, we will erroneously exit
3254		 * connection startup slow start one packet too
3255		 * quickly.  This is severely frowned upon behavior.
3256		 */
3257		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3258			flag |= FLAG_DATA_ACKED;
3259		} else {
3260			flag |= FLAG_SYN_ACKED;
3261			tp->retrans_stamp = 0;
3262		}
3263
3264		if (!fully_acked)
3265			break;
3266
3267		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3268
3269		next = skb_rb_next(skb);
3270		if (unlikely(skb == tp->retransmit_skb_hint))
3271			tp->retransmit_skb_hint = NULL;
3272		if (unlikely(skb == tp->lost_skb_hint))
3273			tp->lost_skb_hint = NULL;
3274		tcp_highest_sack_replace(sk, skb, next);
3275		tcp_rtx_queue_unlink_and_free(skb, sk);
3276	}
3277
3278	if (!skb)
3279		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3280
3281	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3282		tp->snd_up = tp->snd_una;
3283
3284	if (skb) {
3285		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3286		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3287			flag |= FLAG_SACK_RENEGING;
3288	}
3289
3290	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3291		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3292		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3293
3294		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3295		    last_in_flight && !prior_sacked && fully_acked &&
3296		    sack->rate->prior_delivered + 1 == tp->delivered &&
3297		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3298			/* Conservatively mark a delayed ACK. It's typically
3299			 * from a lone runt packet over the round trip to
3300			 * a receiver w/o out-of-order or CE events.
3301			 */
3302			flag |= FLAG_ACK_MAYBE_DELAYED;
3303		}
3304	}
3305	if (sack->first_sackt) {
3306		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3307		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3308	}
3309	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3310					ca_rtt_us, sack->rate);
3311
3312	if (flag & FLAG_ACKED) {
3313		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3314		if (unlikely(icsk->icsk_mtup.probe_size &&
3315			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3316			tcp_mtup_probe_success(sk);
3317		}
3318
3319		if (tcp_is_reno(tp)) {
3320			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3321
3322			/* If any of the cumulatively ACKed segments was
3323			 * retransmitted, non-SACK case cannot confirm that
3324			 * progress was due to original transmission due to
3325			 * lack of TCPCB_SACKED_ACKED bits even if some of
3326			 * the packets may have been never retransmitted.
3327			 */
3328			if (flag & FLAG_RETRANS_DATA_ACKED)
3329				flag &= ~FLAG_ORIG_SACK_ACKED;
3330		} else {
3331			int delta;
3332
3333			/* Non-retransmitted hole got filled? That's reordering */
3334			if (before(reord, prior_fack))
3335				tcp_check_sack_reordering(sk, reord, 0);
3336
3337			delta = prior_sacked - tp->sacked_out;
3338			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339		}
3340	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3341		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3342						    tcp_skb_timestamp_us(skb))) {
3343		/* Do not re-arm RTO if the sack RTT is measured from data sent
3344		 * after when the head was last (re)transmitted. Otherwise the
3345		 * timeout may continue to extend in loss recovery.
3346		 */
3347		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3348	}
3349
3350	if (icsk->icsk_ca_ops->pkts_acked) {
3351		struct ack_sample sample = { .pkts_acked = pkts_acked,
3352					     .rtt_us = sack->rate->rtt_us,
3353					     .in_flight = last_in_flight };
3354
 
 
3355		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3356	}
3357
3358#if FASTRETRANS_DEBUG > 0
3359	WARN_ON((int)tp->sacked_out < 0);
3360	WARN_ON((int)tp->lost_out < 0);
3361	WARN_ON((int)tp->retrans_out < 0);
3362	if (!tp->packets_out && tcp_is_sack(tp)) {
3363		icsk = inet_csk(sk);
3364		if (tp->lost_out) {
3365			pr_debug("Leak l=%u %d\n",
3366				 tp->lost_out, icsk->icsk_ca_state);
3367			tp->lost_out = 0;
3368		}
3369		if (tp->sacked_out) {
3370			pr_debug("Leak s=%u %d\n",
3371				 tp->sacked_out, icsk->icsk_ca_state);
3372			tp->sacked_out = 0;
3373		}
3374		if (tp->retrans_out) {
3375			pr_debug("Leak r=%u %d\n",
3376				 tp->retrans_out, icsk->icsk_ca_state);
3377			tp->retrans_out = 0;
3378		}
3379	}
3380#endif
3381	return flag;
3382}
3383
3384static void tcp_ack_probe(struct sock *sk)
3385{
3386	struct inet_connection_sock *icsk = inet_csk(sk);
3387	struct sk_buff *head = tcp_send_head(sk);
3388	const struct tcp_sock *tp = tcp_sk(sk);
3389
3390	/* Was it a usable window open? */
3391	if (!head)
3392		return;
3393	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3394		icsk->icsk_backoff = 0;
3395		icsk->icsk_probes_tstamp = 0;
3396		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397		/* Socket must be waked up by subsequent tcp_data_snd_check().
3398		 * This function is not for random using!
3399		 */
3400	} else {
3401		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3402
3403		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3404		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3405	}
3406}
3407
3408static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3409{
3410	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3411		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3412}
3413
3414/* Decide wheather to run the increase function of congestion control. */
3415static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3416{
3417	/* If reordering is high then always grow cwnd whenever data is
3418	 * delivered regardless of its ordering. Otherwise stay conservative
3419	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3420	 * new SACK or ECE mark may first advance cwnd here and later reduce
3421	 * cwnd in tcp_fastretrans_alert() based on more states.
3422	 */
3423	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
 
3424		return flag & FLAG_FORWARD_PROGRESS;
3425
3426	return flag & FLAG_DATA_ACKED;
3427}
3428
3429/* The "ultimate" congestion control function that aims to replace the rigid
3430 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3431 * It's called toward the end of processing an ACK with precise rate
3432 * information. All transmission or retransmission are delayed afterwards.
3433 */
3434static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3435			     int flag, const struct rate_sample *rs)
3436{
3437	const struct inet_connection_sock *icsk = inet_csk(sk);
3438
3439	if (icsk->icsk_ca_ops->cong_control) {
3440		icsk->icsk_ca_ops->cong_control(sk, rs);
3441		return;
3442	}
3443
3444	if (tcp_in_cwnd_reduction(sk)) {
3445		/* Reduce cwnd if state mandates */
3446		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3447	} else if (tcp_may_raise_cwnd(sk, flag)) {
3448		/* Advance cwnd if state allows */
3449		tcp_cong_avoid(sk, ack, acked_sacked);
3450	}
3451	tcp_update_pacing_rate(sk);
3452}
3453
3454/* Check that window update is acceptable.
3455 * The function assumes that snd_una<=ack<=snd_next.
3456 */
3457static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3458					const u32 ack, const u32 ack_seq,
3459					const u32 nwin)
3460{
3461	return	after(ack, tp->snd_una) ||
3462		after(ack_seq, tp->snd_wl1) ||
3463		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3464}
3465
3466/* If we update tp->snd_una, also update tp->bytes_acked */
3467static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3468{
3469	u32 delta = ack - tp->snd_una;
3470
3471	sock_owned_by_me((struct sock *)tp);
3472	tp->bytes_acked += delta;
 
3473	tp->snd_una = ack;
3474}
3475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476/* If we update tp->rcv_nxt, also update tp->bytes_received */
3477static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3478{
3479	u32 delta = seq - tp->rcv_nxt;
3480
3481	sock_owned_by_me((struct sock *)tp);
3482	tp->bytes_received += delta;
 
3483	WRITE_ONCE(tp->rcv_nxt, seq);
3484}
3485
3486/* Update our send window.
3487 *
3488 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3489 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3490 */
3491static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3492				 u32 ack_seq)
3493{
3494	struct tcp_sock *tp = tcp_sk(sk);
3495	int flag = 0;
3496	u32 nwin = ntohs(tcp_hdr(skb)->window);
3497
3498	if (likely(!tcp_hdr(skb)->syn))
3499		nwin <<= tp->rx_opt.snd_wscale;
3500
3501	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3502		flag |= FLAG_WIN_UPDATE;
3503		tcp_update_wl(tp, ack_seq);
3504
3505		if (tp->snd_wnd != nwin) {
3506			tp->snd_wnd = nwin;
3507
3508			/* Note, it is the only place, where
3509			 * fast path is recovered for sending TCP.
3510			 */
3511			tp->pred_flags = 0;
3512			tcp_fast_path_check(sk);
3513
3514			if (!tcp_write_queue_empty(sk))
3515				tcp_slow_start_after_idle_check(sk);
3516
3517			if (nwin > tp->max_window) {
3518				tp->max_window = nwin;
3519				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3520			}
3521		}
3522	}
3523
3524	tcp_snd_una_update(tp, ack);
3525
3526	return flag;
3527}
3528
3529static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3530				   u32 *last_oow_ack_time)
3531{
3532	if (*last_oow_ack_time) {
3533		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
 
 
 
3534
3535		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
 
3536			NET_INC_STATS(net, mib_idx);
3537			return true;	/* rate-limited: don't send yet! */
3538		}
3539	}
3540
3541	*last_oow_ack_time = tcp_jiffies32;
 
 
 
3542
3543	return false;	/* not rate-limited: go ahead, send dupack now! */
3544}
3545
3546/* Return true if we're currently rate-limiting out-of-window ACKs and
3547 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3548 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3549 * attacks that send repeated SYNs or ACKs for the same connection. To
3550 * do this, we do not send a duplicate SYNACK or ACK if the remote
3551 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3552 */
3553bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3554			  int mib_idx, u32 *last_oow_ack_time)
3555{
3556	/* Data packets without SYNs are not likely part of an ACK loop. */
3557	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3558	    !tcp_hdr(skb)->syn)
3559		return false;
3560
3561	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3562}
3563
3564/* RFC 5961 7 [ACK Throttling] */
3565static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3566{
3567	/* unprotected vars, we dont care of overwrites */
3568	static u32 challenge_timestamp;
3569	static unsigned int challenge_count;
3570	struct tcp_sock *tp = tcp_sk(sk);
3571	struct net *net = sock_net(sk);
3572	u32 count, now;
3573
3574	/* First check our per-socket dupack rate limit. */
3575	if (__tcp_oow_rate_limited(net,
3576				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3577				   &tp->last_oow_ack_time))
3578		return;
3579
 
 
 
 
3580	/* Then check host-wide RFC 5961 rate limit. */
3581	now = jiffies / HZ;
3582	if (now != challenge_timestamp) {
3583		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3584		u32 half = (ack_limit + 1) >> 1;
3585
3586		challenge_timestamp = now;
3587		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
 
3588	}
3589	count = READ_ONCE(challenge_count);
3590	if (count > 0) {
3591		WRITE_ONCE(challenge_count, count - 1);
 
3592		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3593		tcp_send_ack(sk);
3594	}
3595}
3596
3597static void tcp_store_ts_recent(struct tcp_sock *tp)
3598{
3599	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3600	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3601}
3602
3603static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3604{
3605	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3606		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3607		 * extra check below makes sure this can only happen
3608		 * for pure ACK frames.  -DaveM
3609		 *
3610		 * Not only, also it occurs for expired timestamps.
3611		 */
3612
3613		if (tcp_paws_check(&tp->rx_opt, 0))
3614			tcp_store_ts_recent(tp);
3615	}
3616}
3617
3618/* This routine deals with acks during a TLP episode and ends an episode by
3619 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3620 */
3621static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3622{
3623	struct tcp_sock *tp = tcp_sk(sk);
3624
3625	if (before(ack, tp->tlp_high_seq))
3626		return;
3627
3628	if (!tp->tlp_retrans) {
3629		/* TLP of new data has been acknowledged */
3630		tp->tlp_high_seq = 0;
3631	} else if (flag & FLAG_DSACKING_ACK) {
3632		/* This DSACK means original and TLP probe arrived; no loss */
3633		tp->tlp_high_seq = 0;
3634	} else if (after(ack, tp->tlp_high_seq)) {
3635		/* ACK advances: there was a loss, so reduce cwnd. Reset
3636		 * tlp_high_seq in tcp_init_cwnd_reduction()
3637		 */
3638		tcp_init_cwnd_reduction(sk);
3639		tcp_set_ca_state(sk, TCP_CA_CWR);
3640		tcp_end_cwnd_reduction(sk);
3641		tcp_try_keep_open(sk);
3642		NET_INC_STATS(sock_net(sk),
3643				LINUX_MIB_TCPLOSSPROBERECOVERY);
3644	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3645			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3646		/* Pure dupack: original and TLP probe arrived; no loss */
3647		tp->tlp_high_seq = 0;
3648	}
3649}
3650
3651static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3652{
3653	const struct inet_connection_sock *icsk = inet_csk(sk);
3654
3655	if (icsk->icsk_ca_ops->in_ack_event)
3656		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3657}
3658
3659/* Congestion control has updated the cwnd already. So if we're in
3660 * loss recovery then now we do any new sends (for FRTO) or
3661 * retransmits (for CA_Loss or CA_recovery) that make sense.
3662 */
3663static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3664{
3665	struct tcp_sock *tp = tcp_sk(sk);
3666
3667	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3668		return;
3669
3670	if (unlikely(rexmit == REXMIT_NEW)) {
3671		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3672					  TCP_NAGLE_OFF);
3673		if (after(tp->snd_nxt, tp->high_seq))
3674			return;
3675		tp->frto = 0;
3676	}
3677	tcp_xmit_retransmit_queue(sk);
3678}
3679
3680/* Returns the number of packets newly acked or sacked by the current ACK */
3681static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3682{
3683	const struct net *net = sock_net(sk);
3684	struct tcp_sock *tp = tcp_sk(sk);
3685	u32 delivered;
3686
3687	delivered = tp->delivered - prior_delivered;
3688	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3689	if (flag & FLAG_ECE)
3690		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3691
3692	return delivered;
3693}
3694
3695/* This routine deals with incoming acks, but not outgoing ones. */
3696static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3697{
3698	struct inet_connection_sock *icsk = inet_csk(sk);
3699	struct tcp_sock *tp = tcp_sk(sk);
3700	struct tcp_sacktag_state sack_state;
3701	struct rate_sample rs = { .prior_delivered = 0 };
3702	u32 prior_snd_una = tp->snd_una;
3703	bool is_sack_reneg = tp->is_sack_reneg;
3704	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3705	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3706	int num_dupack = 0;
3707	int prior_packets = tp->packets_out;
3708	u32 delivered = tp->delivered;
3709	u32 lost = tp->lost;
3710	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3711	u32 prior_fack;
3712
3713	sack_state.first_sackt = 0;
3714	sack_state.rate = &rs;
3715	sack_state.sack_delivered = 0;
3716
3717	/* We very likely will need to access rtx queue. */
3718	prefetch(sk->tcp_rtx_queue.rb_node);
3719
3720	/* If the ack is older than previous acks
3721	 * then we can probably ignore it.
3722	 */
3723	if (before(ack, prior_snd_una)) {
 
 
 
 
3724		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3725		if (before(ack, prior_snd_una - tp->max_window)) {
3726			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3727				tcp_send_challenge_ack(sk, skb);
3728			return -1;
3729		}
3730		goto old_ack;
3731	}
3732
3733	/* If the ack includes data we haven't sent yet, discard
3734	 * this segment (RFC793 Section 3.9).
3735	 */
3736	if (after(ack, tp->snd_nxt))
3737		return -1;
3738
3739	if (after(ack, prior_snd_una)) {
3740		flag |= FLAG_SND_UNA_ADVANCED;
3741		icsk->icsk_retransmits = 0;
3742
3743#if IS_ENABLED(CONFIG_TLS_DEVICE)
3744		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3745			if (icsk->icsk_clean_acked)
3746				icsk->icsk_clean_acked(sk, ack);
3747#endif
3748	}
3749
3750	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3751	rs.prior_in_flight = tcp_packets_in_flight(tp);
3752
3753	/* ts_recent update must be made after we are sure that the packet
3754	 * is in window.
3755	 */
3756	if (flag & FLAG_UPDATE_TS_RECENT)
3757		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3758
3759	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3760	    FLAG_SND_UNA_ADVANCED) {
3761		/* Window is constant, pure forward advance.
3762		 * No more checks are required.
3763		 * Note, we use the fact that SND.UNA>=SND.WL2.
3764		 */
3765		tcp_update_wl(tp, ack_seq);
3766		tcp_snd_una_update(tp, ack);
3767		flag |= FLAG_WIN_UPDATE;
3768
3769		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3770
3771		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3772	} else {
3773		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3774
3775		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3776			flag |= FLAG_DATA;
3777		else
3778			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3779
3780		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3781
3782		if (TCP_SKB_CB(skb)->sacked)
3783			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3784							&sack_state);
3785
3786		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3787			flag |= FLAG_ECE;
3788			ack_ev_flags |= CA_ACK_ECE;
3789		}
3790
3791		if (sack_state.sack_delivered)
3792			tcp_count_delivered(tp, sack_state.sack_delivered,
3793					    flag & FLAG_ECE);
3794
3795		if (flag & FLAG_WIN_UPDATE)
3796			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3797
3798		tcp_in_ack_event(sk, ack_ev_flags);
3799	}
3800
3801	/* This is a deviation from RFC3168 since it states that:
3802	 * "When the TCP data sender is ready to set the CWR bit after reducing
3803	 * the congestion window, it SHOULD set the CWR bit only on the first
3804	 * new data packet that it transmits."
3805	 * We accept CWR on pure ACKs to be more robust
3806	 * with widely-deployed TCP implementations that do this.
3807	 */
3808	tcp_ecn_accept_cwr(sk, skb);
3809
3810	/* We passed data and got it acked, remove any soft error
3811	 * log. Something worked...
3812	 */
3813	sk->sk_err_soft = 0;
3814	icsk->icsk_probes_out = 0;
3815	tp->rcv_tstamp = tcp_jiffies32;
3816	if (!prior_packets)
3817		goto no_queue;
3818
3819	/* See if we can take anything off of the retransmit queue. */
3820	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3821				    &sack_state, flag & FLAG_ECE);
3822
3823	tcp_rack_update_reo_wnd(sk, &rs);
3824
3825	if (tp->tlp_high_seq)
3826		tcp_process_tlp_ack(sk, ack, flag);
3827
3828	if (tcp_ack_is_dubious(sk, flag)) {
3829		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
 
3830			num_dupack = 1;
3831			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3832			if (!(flag & FLAG_DATA))
3833				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3834		}
3835		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3836				      &rexmit);
3837	}
3838
3839	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3840	if (flag & FLAG_SET_XMIT_TIMER)
3841		tcp_set_xmit_timer(sk);
3842
3843	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3844		sk_dst_confirm(sk);
3845
3846	delivered = tcp_newly_delivered(sk, delivered, flag);
3847	lost = tp->lost - lost;			/* freshly marked lost */
3848	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3849	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3850	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3851	tcp_xmit_recovery(sk, rexmit);
3852	return 1;
3853
3854no_queue:
3855	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3856	if (flag & FLAG_DSACKING_ACK) {
3857		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3858				      &rexmit);
3859		tcp_newly_delivered(sk, delivered, flag);
3860	}
3861	/* If this ack opens up a zero window, clear backoff.  It was
3862	 * being used to time the probes, and is probably far higher than
3863	 * it needs to be for normal retransmission.
3864	 */
3865	tcp_ack_probe(sk);
3866
3867	if (tp->tlp_high_seq)
3868		tcp_process_tlp_ack(sk, ack, flag);
3869	return 1;
3870
3871old_ack:
3872	/* If data was SACKed, tag it and see if we should send more data.
3873	 * If data was DSACKed, see if we can undo a cwnd reduction.
3874	 */
3875	if (TCP_SKB_CB(skb)->sacked) {
3876		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3877						&sack_state);
3878		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3879				      &rexmit);
3880		tcp_newly_delivered(sk, delivered, flag);
3881		tcp_xmit_recovery(sk, rexmit);
3882	}
3883
3884	return 0;
3885}
3886
3887static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3888				      bool syn, struct tcp_fastopen_cookie *foc,
3889				      bool exp_opt)
3890{
3891	/* Valid only in SYN or SYN-ACK with an even length.  */
3892	if (!foc || !syn || len < 0 || (len & 1))
3893		return;
3894
3895	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3896	    len <= TCP_FASTOPEN_COOKIE_MAX)
3897		memcpy(foc->val, cookie, len);
3898	else if (len != 0)
3899		len = -1;
3900	foc->len = len;
3901	foc->exp = exp_opt;
3902}
3903
3904static bool smc_parse_options(const struct tcphdr *th,
3905			      struct tcp_options_received *opt_rx,
3906			      const unsigned char *ptr,
3907			      int opsize)
3908{
3909#if IS_ENABLED(CONFIG_SMC)
3910	if (static_branch_unlikely(&tcp_have_smc)) {
3911		if (th->syn && !(opsize & 1) &&
3912		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3913		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3914			opt_rx->smc_ok = 1;
3915			return true;
3916		}
3917	}
3918#endif
3919	return false;
3920}
3921
3922/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3923 * value on success.
3924 */
3925static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3926{
3927	const unsigned char *ptr = (const unsigned char *)(th + 1);
3928	int length = (th->doff * 4) - sizeof(struct tcphdr);
3929	u16 mss = 0;
3930
3931	while (length > 0) {
3932		int opcode = *ptr++;
3933		int opsize;
3934
3935		switch (opcode) {
3936		case TCPOPT_EOL:
3937			return mss;
3938		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3939			length--;
3940			continue;
3941		default:
3942			if (length < 2)
3943				return mss;
3944			opsize = *ptr++;
3945			if (opsize < 2) /* "silly options" */
3946				return mss;
3947			if (opsize > length)
3948				return mss;	/* fail on partial options */
3949			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3950				u16 in_mss = get_unaligned_be16(ptr);
3951
3952				if (in_mss) {
3953					if (user_mss && user_mss < in_mss)
3954						in_mss = user_mss;
3955					mss = in_mss;
3956				}
3957			}
3958			ptr += opsize - 2;
3959			length -= opsize;
3960		}
3961	}
3962	return mss;
3963}
 
3964
3965/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3966 * But, this can also be called on packets in the established flow when
3967 * the fast version below fails.
3968 */
3969void tcp_parse_options(const struct net *net,
3970		       const struct sk_buff *skb,
3971		       struct tcp_options_received *opt_rx, int estab,
3972		       struct tcp_fastopen_cookie *foc)
3973{
3974	const unsigned char *ptr;
3975	const struct tcphdr *th = tcp_hdr(skb);
3976	int length = (th->doff * 4) - sizeof(struct tcphdr);
3977
3978	ptr = (const unsigned char *)(th + 1);
3979	opt_rx->saw_tstamp = 0;
3980	opt_rx->saw_unknown = 0;
3981
3982	while (length > 0) {
3983		int opcode = *ptr++;
3984		int opsize;
3985
3986		switch (opcode) {
3987		case TCPOPT_EOL:
3988			return;
3989		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3990			length--;
3991			continue;
3992		default:
3993			if (length < 2)
3994				return;
3995			opsize = *ptr++;
3996			if (opsize < 2) /* "silly options" */
3997				return;
3998			if (opsize > length)
3999				return;	/* don't parse partial options */
4000			switch (opcode) {
4001			case TCPOPT_MSS:
4002				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4003					u16 in_mss = get_unaligned_be16(ptr);
4004					if (in_mss) {
4005						if (opt_rx->user_mss &&
4006						    opt_rx->user_mss < in_mss)
4007							in_mss = opt_rx->user_mss;
4008						opt_rx->mss_clamp = in_mss;
4009					}
4010				}
4011				break;
4012			case TCPOPT_WINDOW:
4013				if (opsize == TCPOLEN_WINDOW && th->syn &&
4014				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4015					__u8 snd_wscale = *(__u8 *)ptr;
4016					opt_rx->wscale_ok = 1;
4017					if (snd_wscale > TCP_MAX_WSCALE) {
4018						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4019								     __func__,
4020								     snd_wscale,
4021								     TCP_MAX_WSCALE);
4022						snd_wscale = TCP_MAX_WSCALE;
4023					}
4024					opt_rx->snd_wscale = snd_wscale;
4025				}
4026				break;
4027			case TCPOPT_TIMESTAMP:
4028				if ((opsize == TCPOLEN_TIMESTAMP) &&
4029				    ((estab && opt_rx->tstamp_ok) ||
4030				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4031					opt_rx->saw_tstamp = 1;
4032					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4033					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4034				}
4035				break;
4036			case TCPOPT_SACK_PERM:
4037				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4038				    !estab && net->ipv4.sysctl_tcp_sack) {
4039					opt_rx->sack_ok = TCP_SACK_SEEN;
4040					tcp_sack_reset(opt_rx);
4041				}
4042				break;
4043
4044			case TCPOPT_SACK:
4045				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4046				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4047				   opt_rx->sack_ok) {
4048					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4049				}
4050				break;
4051#ifdef CONFIG_TCP_MD5SIG
4052			case TCPOPT_MD5SIG:
4053				/*
4054				 * The MD5 Hash has already been
4055				 * checked (see tcp_v{4,6}_do_rcv()).
4056				 */
4057				break;
4058#endif
4059			case TCPOPT_FASTOPEN:
4060				tcp_parse_fastopen_option(
4061					opsize - TCPOLEN_FASTOPEN_BASE,
4062					ptr, th->syn, foc, false);
4063				break;
4064
4065			case TCPOPT_EXP:
4066				/* Fast Open option shares code 254 using a
4067				 * 16 bits magic number.
4068				 */
4069				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4070				    get_unaligned_be16(ptr) ==
4071				    TCPOPT_FASTOPEN_MAGIC) {
4072					tcp_parse_fastopen_option(opsize -
4073						TCPOLEN_EXP_FASTOPEN_BASE,
4074						ptr + 2, th->syn, foc, true);
4075					break;
4076				}
4077
4078				if (smc_parse_options(th, opt_rx, ptr, opsize))
4079					break;
4080
4081				opt_rx->saw_unknown = 1;
4082				break;
4083
4084			default:
4085				opt_rx->saw_unknown = 1;
4086			}
4087			ptr += opsize-2;
4088			length -= opsize;
4089		}
4090	}
4091}
4092EXPORT_SYMBOL(tcp_parse_options);
4093
4094static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4095{
4096	const __be32 *ptr = (const __be32 *)(th + 1);
4097
4098	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4099			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4100		tp->rx_opt.saw_tstamp = 1;
4101		++ptr;
4102		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4103		++ptr;
4104		if (*ptr)
4105			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4106		else
4107			tp->rx_opt.rcv_tsecr = 0;
4108		return true;
4109	}
4110	return false;
4111}
4112
4113/* Fast parse options. This hopes to only see timestamps.
4114 * If it is wrong it falls back on tcp_parse_options().
4115 */
4116static bool tcp_fast_parse_options(const struct net *net,
4117				   const struct sk_buff *skb,
4118				   const struct tcphdr *th, struct tcp_sock *tp)
4119{
4120	/* In the spirit of fast parsing, compare doff directly to constant
4121	 * values.  Because equality is used, short doff can be ignored here.
4122	 */
4123	if (th->doff == (sizeof(*th) / 4)) {
4124		tp->rx_opt.saw_tstamp = 0;
4125		return false;
4126	} else if (tp->rx_opt.tstamp_ok &&
4127		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4128		if (tcp_parse_aligned_timestamp(tp, th))
4129			return true;
4130	}
4131
4132	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4133	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4134		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4135
4136	return true;
4137}
4138
4139#ifdef CONFIG_TCP_MD5SIG
4140/*
4141 * Parse MD5 Signature option
4142 */
4143const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
 
4144{
4145	int length = (th->doff << 2) - sizeof(*th);
4146	const u8 *ptr = (const u8 *)(th + 1);
 
 
 
 
 
 
 
4147
4148	/* If not enough data remaining, we can short cut */
4149	while (length >= TCPOLEN_MD5SIG) {
4150		int opcode = *ptr++;
4151		int opsize;
4152
4153		switch (opcode) {
4154		case TCPOPT_EOL:
4155			return NULL;
4156		case TCPOPT_NOP:
4157			length--;
4158			continue;
4159		default:
4160			opsize = *ptr++;
4161			if (opsize < 2 || opsize > length)
4162				return NULL;
4163			if (opcode == TCPOPT_MD5SIG)
4164				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
 
 
 
 
 
 
 
 
 
 
 
4165		}
4166		ptr += opsize - 2;
4167		length -= opsize;
4168	}
4169	return NULL;
4170}
4171EXPORT_SYMBOL(tcp_parse_md5sig_option);
4172#endif
4173
4174/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4175 *
4176 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4177 * it can pass through stack. So, the following predicate verifies that
4178 * this segment is not used for anything but congestion avoidance or
4179 * fast retransmit. Moreover, we even are able to eliminate most of such
4180 * second order effects, if we apply some small "replay" window (~RTO)
4181 * to timestamp space.
4182 *
4183 * All these measures still do not guarantee that we reject wrapped ACKs
4184 * on networks with high bandwidth, when sequence space is recycled fastly,
4185 * but it guarantees that such events will be very rare and do not affect
4186 * connection seriously. This doesn't look nice, but alas, PAWS is really
4187 * buggy extension.
4188 *
4189 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4190 * states that events when retransmit arrives after original data are rare.
4191 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4192 * the biggest problem on large power networks even with minor reordering.
4193 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4194 * up to bandwidth of 18Gigabit/sec. 8) ]
4195 */
4196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4197static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4198{
4199	const struct tcp_sock *tp = tcp_sk(sk);
4200	const struct tcphdr *th = tcp_hdr(skb);
4201	u32 seq = TCP_SKB_CB(skb)->seq;
4202	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4203
4204	return (/* 1. Pure ACK with correct sequence number. */
4205		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4206
4207		/* 2. ... and duplicate ACK. */
4208		ack == tp->snd_una &&
4209
4210		/* 3. ... and does not update window. */
4211		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4212
4213		/* 4. ... and sits in replay window. */
4214		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
 
4215}
4216
4217static inline bool tcp_paws_discard(const struct sock *sk,
4218				   const struct sk_buff *skb)
4219{
4220	const struct tcp_sock *tp = tcp_sk(sk);
4221
4222	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4223	       !tcp_disordered_ack(sk, skb);
4224}
4225
4226/* Check segment sequence number for validity.
4227 *
4228 * Segment controls are considered valid, if the segment
4229 * fits to the window after truncation to the window. Acceptability
4230 * of data (and SYN, FIN, of course) is checked separately.
4231 * See tcp_data_queue(), for example.
4232 *
4233 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4234 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4235 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4236 * (borrowed from freebsd)
4237 */
4238
4239static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
 
4240{
4241	return	!before(end_seq, tp->rcv_wup) &&
4242		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
 
 
 
 
 
4243}
4244
4245/* When we get a reset we do this. */
4246void tcp_reset(struct sock *sk, struct sk_buff *skb)
4247{
4248	trace_tcp_receive_reset(sk);
4249
4250	/* mptcp can't tell us to ignore reset pkts,
4251	 * so just ignore the return value of mptcp_incoming_options().
4252	 */
4253	if (sk_is_mptcp(sk))
4254		mptcp_incoming_options(sk, skb);
4255
4256	/* We want the right error as BSD sees it (and indeed as we do). */
4257	switch (sk->sk_state) {
4258	case TCP_SYN_SENT:
4259		sk->sk_err = ECONNREFUSED;
4260		break;
4261	case TCP_CLOSE_WAIT:
4262		sk->sk_err = EPIPE;
4263		break;
4264	case TCP_CLOSE:
4265		return;
4266	default:
4267		sk->sk_err = ECONNRESET;
4268	}
4269	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4270	smp_wmb();
4271
4272	tcp_write_queue_purge(sk);
4273	tcp_done(sk);
4274
4275	if (!sock_flag(sk, SOCK_DEAD))
4276		sk_error_report(sk);
4277}
4278
4279/*
4280 * 	Process the FIN bit. This now behaves as it is supposed to work
4281 *	and the FIN takes effect when it is validly part of sequence
4282 *	space. Not before when we get holes.
4283 *
4284 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4285 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4286 *	TIME-WAIT)
4287 *
4288 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4289 *	close and we go into CLOSING (and later onto TIME-WAIT)
4290 *
4291 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4292 */
4293void tcp_fin(struct sock *sk)
4294{
4295	struct tcp_sock *tp = tcp_sk(sk);
4296
4297	inet_csk_schedule_ack(sk);
4298
4299	sk->sk_shutdown |= RCV_SHUTDOWN;
4300	sock_set_flag(sk, SOCK_DONE);
4301
4302	switch (sk->sk_state) {
4303	case TCP_SYN_RECV:
4304	case TCP_ESTABLISHED:
4305		/* Move to CLOSE_WAIT */
4306		tcp_set_state(sk, TCP_CLOSE_WAIT);
4307		inet_csk_enter_pingpong_mode(sk);
4308		break;
4309
4310	case TCP_CLOSE_WAIT:
4311	case TCP_CLOSING:
4312		/* Received a retransmission of the FIN, do
4313		 * nothing.
4314		 */
4315		break;
4316	case TCP_LAST_ACK:
4317		/* RFC793: Remain in the LAST-ACK state. */
4318		break;
4319
4320	case TCP_FIN_WAIT1:
4321		/* This case occurs when a simultaneous close
4322		 * happens, we must ack the received FIN and
4323		 * enter the CLOSING state.
4324		 */
4325		tcp_send_ack(sk);
4326		tcp_set_state(sk, TCP_CLOSING);
4327		break;
4328	case TCP_FIN_WAIT2:
4329		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4330		tcp_send_ack(sk);
4331		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4332		break;
4333	default:
4334		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4335		 * cases we should never reach this piece of code.
4336		 */
4337		pr_err("%s: Impossible, sk->sk_state=%d\n",
4338		       __func__, sk->sk_state);
4339		break;
4340	}
4341
4342	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4343	 * Probably, we should reset in this case. For now drop them.
4344	 */
4345	skb_rbtree_purge(&tp->out_of_order_queue);
4346	if (tcp_is_sack(tp))
4347		tcp_sack_reset(&tp->rx_opt);
4348	sk_mem_reclaim(sk);
4349
4350	if (!sock_flag(sk, SOCK_DEAD)) {
4351		sk->sk_state_change(sk);
4352
4353		/* Do not send POLL_HUP for half duplex close. */
4354		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4355		    sk->sk_state == TCP_CLOSE)
4356			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4357		else
4358			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4359	}
4360}
4361
4362static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4363				  u32 end_seq)
4364{
4365	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4366		if (before(seq, sp->start_seq))
4367			sp->start_seq = seq;
4368		if (after(end_seq, sp->end_seq))
4369			sp->end_seq = end_seq;
4370		return true;
4371	}
4372	return false;
4373}
4374
4375static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4376{
4377	struct tcp_sock *tp = tcp_sk(sk);
4378
4379	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4380		int mib_idx;
4381
4382		if (before(seq, tp->rcv_nxt))
4383			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4384		else
4385			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4386
4387		NET_INC_STATS(sock_net(sk), mib_idx);
4388
4389		tp->rx_opt.dsack = 1;
4390		tp->duplicate_sack[0].start_seq = seq;
4391		tp->duplicate_sack[0].end_seq = end_seq;
4392	}
4393}
4394
4395static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4396{
4397	struct tcp_sock *tp = tcp_sk(sk);
4398
4399	if (!tp->rx_opt.dsack)
4400		tcp_dsack_set(sk, seq, end_seq);
4401	else
4402		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4403}
4404
4405static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4406{
4407	/* When the ACK path fails or drops most ACKs, the sender would
4408	 * timeout and spuriously retransmit the same segment repeatedly.
4409	 * The receiver remembers and reflects via DSACKs. Leverage the
4410	 * DSACK state and change the txhash to re-route speculatively.
 
 
 
4411	 */
4412	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
 
 
 
 
4413	    sk_rethink_txhash(sk))
4414		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
 
 
 
 
4415}
4416
4417static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4418{
4419	struct tcp_sock *tp = tcp_sk(sk);
4420
4421	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4422	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4423		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4424		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4425
4426		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4427			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4428
4429			tcp_rcv_spurious_retrans(sk, skb);
4430			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4431				end_seq = tp->rcv_nxt;
4432			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4433		}
4434	}
4435
4436	tcp_send_ack(sk);
4437}
4438
4439/* These routines update the SACK block as out-of-order packets arrive or
4440 * in-order packets close up the sequence space.
4441 */
4442static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4443{
4444	int this_sack;
4445	struct tcp_sack_block *sp = &tp->selective_acks[0];
4446	struct tcp_sack_block *swalk = sp + 1;
4447
4448	/* See if the recent change to the first SACK eats into
4449	 * or hits the sequence space of other SACK blocks, if so coalesce.
4450	 */
4451	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4452		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4453			int i;
4454
4455			/* Zap SWALK, by moving every further SACK up by one slot.
4456			 * Decrease num_sacks.
4457			 */
4458			tp->rx_opt.num_sacks--;
4459			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4460				sp[i] = sp[i + 1];
4461			continue;
4462		}
4463		this_sack++;
4464		swalk++;
4465	}
4466}
4467
4468static void tcp_sack_compress_send_ack(struct sock *sk)
4469{
4470	struct tcp_sock *tp = tcp_sk(sk);
4471
4472	if (!tp->compressed_ack)
4473		return;
4474
4475	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4476		__sock_put(sk);
4477
4478	/* Since we have to send one ack finally,
4479	 * substract one from tp->compressed_ack to keep
4480	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4481	 */
4482	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4483		      tp->compressed_ack - 1);
4484
4485	tp->compressed_ack = 0;
4486	tcp_send_ack(sk);
4487}
4488
4489/* Reasonable amount of sack blocks included in TCP SACK option
4490 * The max is 4, but this becomes 3 if TCP timestamps are there.
4491 * Given that SACK packets might be lost, be conservative and use 2.
4492 */
4493#define TCP_SACK_BLOCKS_EXPECTED 2
4494
4495static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4496{
4497	struct tcp_sock *tp = tcp_sk(sk);
4498	struct tcp_sack_block *sp = &tp->selective_acks[0];
4499	int cur_sacks = tp->rx_opt.num_sacks;
4500	int this_sack;
4501
4502	if (!cur_sacks)
4503		goto new_sack;
4504
4505	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4506		if (tcp_sack_extend(sp, seq, end_seq)) {
4507			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4508				tcp_sack_compress_send_ack(sk);
4509			/* Rotate this_sack to the first one. */
4510			for (; this_sack > 0; this_sack--, sp--)
4511				swap(*sp, *(sp - 1));
4512			if (cur_sacks > 1)
4513				tcp_sack_maybe_coalesce(tp);
4514			return;
4515		}
4516	}
4517
4518	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4519		tcp_sack_compress_send_ack(sk);
4520
4521	/* Could not find an adjacent existing SACK, build a new one,
4522	 * put it at the front, and shift everyone else down.  We
4523	 * always know there is at least one SACK present already here.
4524	 *
4525	 * If the sack array is full, forget about the last one.
4526	 */
4527	if (this_sack >= TCP_NUM_SACKS) {
4528		this_sack--;
4529		tp->rx_opt.num_sacks--;
4530		sp--;
4531	}
4532	for (; this_sack > 0; this_sack--, sp--)
4533		*sp = *(sp - 1);
4534
4535new_sack:
4536	/* Build the new head SACK, and we're done. */
4537	sp->start_seq = seq;
4538	sp->end_seq = end_seq;
4539	tp->rx_opt.num_sacks++;
4540}
4541
4542/* RCV.NXT advances, some SACKs should be eaten. */
4543
4544static void tcp_sack_remove(struct tcp_sock *tp)
4545{
4546	struct tcp_sack_block *sp = &tp->selective_acks[0];
4547	int num_sacks = tp->rx_opt.num_sacks;
4548	int this_sack;
4549
4550	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4551	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4552		tp->rx_opt.num_sacks = 0;
4553		return;
4554	}
4555
4556	for (this_sack = 0; this_sack < num_sacks;) {
4557		/* Check if the start of the sack is covered by RCV.NXT. */
4558		if (!before(tp->rcv_nxt, sp->start_seq)) {
4559			int i;
4560
4561			/* RCV.NXT must cover all the block! */
4562			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4563
4564			/* Zap this SACK, by moving forward any other SACKS. */
4565			for (i = this_sack+1; i < num_sacks; i++)
4566				tp->selective_acks[i-1] = tp->selective_acks[i];
4567			num_sacks--;
4568			continue;
4569		}
4570		this_sack++;
4571		sp++;
4572	}
4573	tp->rx_opt.num_sacks = num_sacks;
4574}
4575
4576/**
4577 * tcp_try_coalesce - try to merge skb to prior one
4578 * @sk: socket
4579 * @to: prior buffer
4580 * @from: buffer to add in queue
4581 * @fragstolen: pointer to boolean
4582 *
4583 * Before queueing skb @from after @to, try to merge them
4584 * to reduce overall memory use and queue lengths, if cost is small.
4585 * Packets in ofo or receive queues can stay a long time.
4586 * Better try to coalesce them right now to avoid future collapses.
4587 * Returns true if caller should free @from instead of queueing it
4588 */
4589static bool tcp_try_coalesce(struct sock *sk,
4590			     struct sk_buff *to,
4591			     struct sk_buff *from,
4592			     bool *fragstolen)
4593{
4594	int delta;
4595
4596	*fragstolen = false;
4597
4598	/* Its possible this segment overlaps with prior segment in queue */
4599	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4600		return false;
4601
4602	if (!mptcp_skb_can_collapse(to, from))
4603		return false;
4604
4605#ifdef CONFIG_TLS_DEVICE
4606	if (from->decrypted != to->decrypted)
4607		return false;
4608#endif
4609
4610	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4611		return false;
4612
4613	atomic_add(delta, &sk->sk_rmem_alloc);
4614	sk_mem_charge(sk, delta);
4615	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4616	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4617	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4618	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4619
4620	if (TCP_SKB_CB(from)->has_rxtstamp) {
4621		TCP_SKB_CB(to)->has_rxtstamp = true;
4622		to->tstamp = from->tstamp;
4623		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4624	}
4625
4626	return true;
4627}
4628
4629static bool tcp_ooo_try_coalesce(struct sock *sk,
4630			     struct sk_buff *to,
4631			     struct sk_buff *from,
4632			     bool *fragstolen)
4633{
4634	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4635
4636	/* In case tcp_drop() is called later, update to->gso_segs */
4637	if (res) {
4638		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4639			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4640
4641		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4642	}
4643	return res;
4644}
4645
4646static void tcp_drop(struct sock *sk, struct sk_buff *skb)
 
4647{
4648	sk_drops_add(sk, skb);
4649	__kfree_skb(skb);
4650}
4651
4652/* This one checks to see if we can put data from the
4653 * out_of_order queue into the receive_queue.
4654 */
4655static void tcp_ofo_queue(struct sock *sk)
4656{
4657	struct tcp_sock *tp = tcp_sk(sk);
4658	__u32 dsack_high = tp->rcv_nxt;
4659	bool fin, fragstolen, eaten;
4660	struct sk_buff *skb, *tail;
4661	struct rb_node *p;
4662
4663	p = rb_first(&tp->out_of_order_queue);
4664	while (p) {
4665		skb = rb_to_skb(p);
4666		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4667			break;
4668
4669		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4670			__u32 dsack = dsack_high;
4671			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4672				dsack_high = TCP_SKB_CB(skb)->end_seq;
4673			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4674		}
4675		p = rb_next(p);
4676		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4677
4678		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4679			tcp_drop(sk, skb);
4680			continue;
4681		}
4682
4683		tail = skb_peek_tail(&sk->sk_receive_queue);
4684		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4685		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4686		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4687		if (!eaten)
4688			__skb_queue_tail(&sk->sk_receive_queue, skb);
4689		else
4690			kfree_skb_partial(skb, fragstolen);
4691
4692		if (unlikely(fin)) {
4693			tcp_fin(sk);
4694			/* tcp_fin() purges tp->out_of_order_queue,
4695			 * so we must end this loop right now.
4696			 */
4697			break;
4698		}
4699	}
4700}
4701
4702static bool tcp_prune_ofo_queue(struct sock *sk);
4703static int tcp_prune_queue(struct sock *sk);
4704
4705static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4706				 unsigned int size)
4707{
4708	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4709	    !sk_rmem_schedule(sk, skb, size)) {
4710
4711		if (tcp_prune_queue(sk) < 0)
4712			return -1;
4713
4714		while (!sk_rmem_schedule(sk, skb, size)) {
4715			if (!tcp_prune_ofo_queue(sk))
4716				return -1;
4717		}
4718	}
4719	return 0;
4720}
4721
4722static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4723{
4724	struct tcp_sock *tp = tcp_sk(sk);
4725	struct rb_node **p, *parent;
4726	struct sk_buff *skb1;
4727	u32 seq, end_seq;
4728	bool fragstolen;
4729
 
4730	tcp_ecn_check_ce(sk, skb);
4731
4732	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4733		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4734		sk->sk_data_ready(sk);
4735		tcp_drop(sk, skb);
4736		return;
4737	}
4738
4739	/* Disable header prediction. */
4740	tp->pred_flags = 0;
4741	inet_csk_schedule_ack(sk);
4742
4743	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4744	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4745	seq = TCP_SKB_CB(skb)->seq;
4746	end_seq = TCP_SKB_CB(skb)->end_seq;
4747
4748	p = &tp->out_of_order_queue.rb_node;
4749	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4750		/* Initial out of order segment, build 1 SACK. */
4751		if (tcp_is_sack(tp)) {
4752			tp->rx_opt.num_sacks = 1;
4753			tp->selective_acks[0].start_seq = seq;
4754			tp->selective_acks[0].end_seq = end_seq;
4755		}
4756		rb_link_node(&skb->rbnode, NULL, p);
4757		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4758		tp->ooo_last_skb = skb;
4759		goto end;
4760	}
4761
4762	/* In the typical case, we are adding an skb to the end of the list.
4763	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4764	 */
4765	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4766				 skb, &fragstolen)) {
4767coalesce_done:
4768		/* For non sack flows, do not grow window to force DUPACK
4769		 * and trigger fast retransmit.
4770		 */
4771		if (tcp_is_sack(tp))
4772			tcp_grow_window(sk, skb);
4773		kfree_skb_partial(skb, fragstolen);
4774		skb = NULL;
4775		goto add_sack;
4776	}
4777	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4778	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4779		parent = &tp->ooo_last_skb->rbnode;
4780		p = &parent->rb_right;
4781		goto insert;
4782	}
4783
4784	/* Find place to insert this segment. Handle overlaps on the way. */
4785	parent = NULL;
4786	while (*p) {
4787		parent = *p;
4788		skb1 = rb_to_skb(parent);
4789		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4790			p = &parent->rb_left;
4791			continue;
4792		}
4793		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4794			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4795				/* All the bits are present. Drop. */
4796				NET_INC_STATS(sock_net(sk),
4797					      LINUX_MIB_TCPOFOMERGE);
4798				tcp_drop(sk, skb);
 
4799				skb = NULL;
4800				tcp_dsack_set(sk, seq, end_seq);
4801				goto add_sack;
4802			}
4803			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4804				/* Partial overlap. */
4805				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4806			} else {
4807				/* skb's seq == skb1's seq and skb covers skb1.
4808				 * Replace skb1 with skb.
4809				 */
4810				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4811						&tp->out_of_order_queue);
4812				tcp_dsack_extend(sk,
4813						 TCP_SKB_CB(skb1)->seq,
4814						 TCP_SKB_CB(skb1)->end_seq);
4815				NET_INC_STATS(sock_net(sk),
4816					      LINUX_MIB_TCPOFOMERGE);
4817				tcp_drop(sk, skb1);
 
4818				goto merge_right;
4819			}
4820		} else if (tcp_ooo_try_coalesce(sk, skb1,
4821						skb, &fragstolen)) {
4822			goto coalesce_done;
4823		}
4824		p = &parent->rb_right;
4825	}
4826insert:
4827	/* Insert segment into RB tree. */
4828	rb_link_node(&skb->rbnode, parent, p);
4829	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4830
4831merge_right:
4832	/* Remove other segments covered by skb. */
4833	while ((skb1 = skb_rb_next(skb)) != NULL) {
4834		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4835			break;
4836		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4837			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4838					 end_seq);
4839			break;
4840		}
4841		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4842		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4843				 TCP_SKB_CB(skb1)->end_seq);
4844		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4845		tcp_drop(sk, skb1);
4846	}
4847	/* If there is no skb after us, we are the last_skb ! */
4848	if (!skb1)
4849		tp->ooo_last_skb = skb;
4850
4851add_sack:
4852	if (tcp_is_sack(tp))
4853		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4854end:
4855	if (skb) {
4856		/* For non sack flows, do not grow window to force DUPACK
4857		 * and trigger fast retransmit.
4858		 */
4859		if (tcp_is_sack(tp))
4860			tcp_grow_window(sk, skb);
4861		skb_condense(skb);
4862		skb_set_owner_r(skb, sk);
4863	}
4864}
4865
4866static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4867				      bool *fragstolen)
4868{
4869	int eaten;
4870	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4871
4872	eaten = (tail &&
4873		 tcp_try_coalesce(sk, tail,
4874				  skb, fragstolen)) ? 1 : 0;
4875	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4876	if (!eaten) {
4877		__skb_queue_tail(&sk->sk_receive_queue, skb);
4878		skb_set_owner_r(skb, sk);
4879	}
4880	return eaten;
4881}
4882
4883int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4884{
4885	struct sk_buff *skb;
4886	int err = -ENOMEM;
4887	int data_len = 0;
4888	bool fragstolen;
4889
4890	if (size == 0)
4891		return 0;
4892
4893	if (size > PAGE_SIZE) {
4894		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4895
4896		data_len = npages << PAGE_SHIFT;
4897		size = data_len + (size & ~PAGE_MASK);
4898	}
4899	skb = alloc_skb_with_frags(size - data_len, data_len,
4900				   PAGE_ALLOC_COSTLY_ORDER,
4901				   &err, sk->sk_allocation);
4902	if (!skb)
4903		goto err;
4904
4905	skb_put(skb, size - data_len);
4906	skb->data_len = data_len;
4907	skb->len = size;
4908
4909	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4910		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4911		goto err_free;
4912	}
4913
4914	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4915	if (err)
4916		goto err_free;
4917
4918	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4919	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4920	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4921
4922	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4923		WARN_ON_ONCE(fragstolen); /* should not happen */
4924		__kfree_skb(skb);
4925	}
4926	return size;
4927
4928err_free:
4929	kfree_skb(skb);
4930err:
4931	return err;
4932
4933}
4934
4935void tcp_data_ready(struct sock *sk)
4936{
4937	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4938		sk->sk_data_ready(sk);
4939}
4940
4941static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4942{
4943	struct tcp_sock *tp = tcp_sk(sk);
 
4944	bool fragstolen;
4945	int eaten;
4946
4947	/* If a subflow has been reset, the packet should not continue
4948	 * to be processed, drop the packet.
4949	 */
4950	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4951		__kfree_skb(skb);
4952		return;
4953	}
4954
4955	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4956		__kfree_skb(skb);
4957		return;
4958	}
4959	skb_dst_drop(skb);
4960	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4961
 
4962	tp->rx_opt.dsack = 0;
4963
4964	/*  Queue data for delivery to the user.
4965	 *  Packets in sequence go to the receive queue.
4966	 *  Out of sequence packets to the out_of_order_queue.
4967	 */
4968	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4969		if (tcp_receive_window(tp) == 0) {
 
4970			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4971			goto out_of_window;
4972		}
4973
4974		/* Ok. In sequence. In window. */
4975queue_and_out:
4976		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4977			sk_forced_mem_schedule(sk, skb->truesize);
4978		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4979			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
 
4980			sk->sk_data_ready(sk);
4981			goto drop;
 
 
 
 
 
 
4982		}
4983
4984		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4985		if (skb->len)
4986			tcp_event_data_recv(sk, skb);
4987		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4988			tcp_fin(sk);
4989
4990		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4991			tcp_ofo_queue(sk);
4992
4993			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4994			 * gap in queue is filled.
4995			 */
4996			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4997				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4998		}
4999
5000		if (tp->rx_opt.num_sacks)
5001			tcp_sack_remove(tp);
5002
5003		tcp_fast_path_check(sk);
5004
5005		if (eaten > 0)
5006			kfree_skb_partial(skb, fragstolen);
5007		if (!sock_flag(sk, SOCK_DEAD))
5008			tcp_data_ready(sk);
5009		return;
5010	}
5011
5012	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5013		tcp_rcv_spurious_retrans(sk, skb);
5014		/* A retransmit, 2nd most common case.  Force an immediate ack. */
 
5015		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5016		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5017
5018out_of_window:
5019		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5020		inet_csk_schedule_ack(sk);
5021drop:
5022		tcp_drop(sk, skb);
5023		return;
5024	}
5025
5026	/* Out of window. F.e. zero window probe. */
5027	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
 
 
5028		goto out_of_window;
 
5029
5030	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5031		/* Partial packet, seq < rcv_next < end_seq */
5032		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5033
5034		/* If window is closed, drop tail of packet. But after
5035		 * remembering D-SACK for its head made in previous line.
5036		 */
5037		if (!tcp_receive_window(tp)) {
 
5038			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5039			goto out_of_window;
5040		}
5041		goto queue_and_out;
5042	}
5043
5044	tcp_data_queue_ofo(sk, skb);
5045}
5046
5047static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5048{
5049	if (list)
5050		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5051
5052	return skb_rb_next(skb);
5053}
5054
5055static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5056					struct sk_buff_head *list,
5057					struct rb_root *root)
5058{
5059	struct sk_buff *next = tcp_skb_next(skb, list);
5060
5061	if (list)
5062		__skb_unlink(skb, list);
5063	else
5064		rb_erase(&skb->rbnode, root);
5065
5066	__kfree_skb(skb);
5067	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5068
5069	return next;
5070}
5071
5072/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5073void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5074{
5075	struct rb_node **p = &root->rb_node;
5076	struct rb_node *parent = NULL;
5077	struct sk_buff *skb1;
5078
5079	while (*p) {
5080		parent = *p;
5081		skb1 = rb_to_skb(parent);
5082		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5083			p = &parent->rb_left;
5084		else
5085			p = &parent->rb_right;
5086	}
5087	rb_link_node(&skb->rbnode, parent, p);
5088	rb_insert_color(&skb->rbnode, root);
5089}
5090
5091/* Collapse contiguous sequence of skbs head..tail with
5092 * sequence numbers start..end.
5093 *
5094 * If tail is NULL, this means until the end of the queue.
5095 *
5096 * Segments with FIN/SYN are not collapsed (only because this
5097 * simplifies code)
5098 */
5099static void
5100tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5101	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5102{
5103	struct sk_buff *skb = head, *n;
5104	struct sk_buff_head tmp;
5105	bool end_of_skbs;
5106
5107	/* First, check that queue is collapsible and find
5108	 * the point where collapsing can be useful.
5109	 */
5110restart:
5111	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5112		n = tcp_skb_next(skb, list);
5113
5114		/* No new bits? It is possible on ofo queue. */
5115		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5116			skb = tcp_collapse_one(sk, skb, list, root);
5117			if (!skb)
5118				break;
5119			goto restart;
5120		}
5121
5122		/* The first skb to collapse is:
5123		 * - not SYN/FIN and
5124		 * - bloated or contains data before "start" or
5125		 *   overlaps to the next one and mptcp allow collapsing.
5126		 */
5127		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5128		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5129		     before(TCP_SKB_CB(skb)->seq, start))) {
5130			end_of_skbs = false;
5131			break;
5132		}
5133
5134		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5135		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5136			end_of_skbs = false;
5137			break;
5138		}
5139
5140		/* Decided to skip this, advance start seq. */
5141		start = TCP_SKB_CB(skb)->end_seq;
5142	}
5143	if (end_of_skbs ||
5144	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5145		return;
5146
5147	__skb_queue_head_init(&tmp);
5148
5149	while (before(start, end)) {
5150		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5151		struct sk_buff *nskb;
5152
5153		nskb = alloc_skb(copy, GFP_ATOMIC);
5154		if (!nskb)
5155			break;
5156
5157		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5158#ifdef CONFIG_TLS_DEVICE
5159		nskb->decrypted = skb->decrypted;
5160#endif
5161		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5162		if (list)
5163			__skb_queue_before(list, skb, nskb);
5164		else
5165			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5166		skb_set_owner_r(nskb, sk);
5167		mptcp_skb_ext_move(nskb, skb);
5168
5169		/* Copy data, releasing collapsed skbs. */
5170		while (copy > 0) {
5171			int offset = start - TCP_SKB_CB(skb)->seq;
5172			int size = TCP_SKB_CB(skb)->end_seq - start;
5173
5174			BUG_ON(offset < 0);
5175			if (size > 0) {
5176				size = min(copy, size);
5177				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5178					BUG();
5179				TCP_SKB_CB(nskb)->end_seq += size;
5180				copy -= size;
5181				start += size;
5182			}
5183			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5184				skb = tcp_collapse_one(sk, skb, list, root);
5185				if (!skb ||
5186				    skb == tail ||
5187				    !mptcp_skb_can_collapse(nskb, skb) ||
5188				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5189					goto end;
5190#ifdef CONFIG_TLS_DEVICE
5191				if (skb->decrypted != nskb->decrypted)
5192					goto end;
5193#endif
5194			}
5195		}
5196	}
5197end:
5198	skb_queue_walk_safe(&tmp, skb, n)
5199		tcp_rbtree_insert(root, skb);
5200}
5201
5202/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5203 * and tcp_collapse() them until all the queue is collapsed.
5204 */
5205static void tcp_collapse_ofo_queue(struct sock *sk)
5206{
5207	struct tcp_sock *tp = tcp_sk(sk);
5208	u32 range_truesize, sum_tiny = 0;
5209	struct sk_buff *skb, *head;
5210	u32 start, end;
5211
5212	skb = skb_rb_first(&tp->out_of_order_queue);
5213new_range:
5214	if (!skb) {
5215		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5216		return;
5217	}
5218	start = TCP_SKB_CB(skb)->seq;
5219	end = TCP_SKB_CB(skb)->end_seq;
5220	range_truesize = skb->truesize;
5221
5222	for (head = skb;;) {
5223		skb = skb_rb_next(skb);
5224
5225		/* Range is terminated when we see a gap or when
5226		 * we are at the queue end.
5227		 */
5228		if (!skb ||
5229		    after(TCP_SKB_CB(skb)->seq, end) ||
5230		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5231			/* Do not attempt collapsing tiny skbs */
5232			if (range_truesize != head->truesize ||
5233			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5234				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5235					     head, skb, start, end);
5236			} else {
5237				sum_tiny += range_truesize;
5238				if (sum_tiny > sk->sk_rcvbuf >> 3)
5239					return;
5240			}
5241			goto new_range;
5242		}
5243
5244		range_truesize += skb->truesize;
5245		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5246			start = TCP_SKB_CB(skb)->seq;
5247		if (after(TCP_SKB_CB(skb)->end_seq, end))
5248			end = TCP_SKB_CB(skb)->end_seq;
5249	}
5250}
5251
5252/*
5253 * Clean the out-of-order queue to make room.
5254 * We drop high sequences packets to :
5255 * 1) Let a chance for holes to be filled.
 
 
5256 * 2) not add too big latencies if thousands of packets sit there.
5257 *    (But if application shrinks SO_RCVBUF, we could still end up
5258 *     freeing whole queue here)
5259 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5260 *
5261 * Return true if queue has shrunk.
5262 */
5263static bool tcp_prune_ofo_queue(struct sock *sk)
5264{
5265	struct tcp_sock *tp = tcp_sk(sk);
5266	struct rb_node *node, *prev;
 
5267	int goal;
5268
5269	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5270		return false;
5271
5272	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5273	goal = sk->sk_rcvbuf >> 3;
5274	node = &tp->ooo_last_skb->rbnode;
 
5275	do {
 
 
 
 
 
 
5276		prev = rb_prev(node);
5277		rb_erase(node, &tp->out_of_order_queue);
5278		goal -= rb_to_skb(node)->truesize;
5279		tcp_drop(sk, rb_to_skb(node));
 
5280		if (!prev || goal <= 0) {
5281			sk_mem_reclaim(sk);
5282			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5283			    !tcp_under_memory_pressure(sk))
5284				break;
5285			goal = sk->sk_rcvbuf >> 3;
5286		}
5287		node = prev;
5288	} while (node);
5289	tp->ooo_last_skb = rb_to_skb(prev);
5290
5291	/* Reset SACK state.  A conforming SACK implementation will
5292	 * do the same at a timeout based retransmit.  When a connection
5293	 * is in a sad state like this, we care only about integrity
5294	 * of the connection not performance.
5295	 */
5296	if (tp->rx_opt.sack_ok)
5297		tcp_sack_reset(&tp->rx_opt);
5298	return true;
 
 
 
5299}
5300
5301/* Reduce allocated memory if we can, trying to get
5302 * the socket within its memory limits again.
5303 *
5304 * Return less than zero if we should start dropping frames
5305 * until the socket owning process reads some of the data
5306 * to stabilize the situation.
5307 */
5308static int tcp_prune_queue(struct sock *sk)
5309{
5310	struct tcp_sock *tp = tcp_sk(sk);
5311
5312	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5313
5314	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5315		tcp_clamp_window(sk);
5316	else if (tcp_under_memory_pressure(sk))
5317		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5318
5319	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5320		return 0;
5321
5322	tcp_collapse_ofo_queue(sk);
5323	if (!skb_queue_empty(&sk->sk_receive_queue))
5324		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5325			     skb_peek(&sk->sk_receive_queue),
5326			     NULL,
5327			     tp->copied_seq, tp->rcv_nxt);
5328	sk_mem_reclaim(sk);
5329
5330	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5331		return 0;
5332
5333	/* Collapsing did not help, destructive actions follow.
5334	 * This must not ever occur. */
5335
5336	tcp_prune_ofo_queue(sk);
5337
5338	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5339		return 0;
5340
5341	/* If we are really being abused, tell the caller to silently
5342	 * drop receive data on the floor.  It will get retransmitted
5343	 * and hopefully then we'll have sufficient space.
5344	 */
5345	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5346
5347	/* Massive buffer overcommit. */
5348	tp->pred_flags = 0;
5349	return -1;
5350}
5351
5352static bool tcp_should_expand_sndbuf(const struct sock *sk)
5353{
5354	const struct tcp_sock *tp = tcp_sk(sk);
5355
5356	/* If the user specified a specific send buffer setting, do
5357	 * not modify it.
5358	 */
5359	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5360		return false;
5361
5362	/* If we are under global TCP memory pressure, do not expand.  */
5363	if (tcp_under_memory_pressure(sk))
 
 
 
 
 
 
 
 
 
5364		return false;
 
5365
5366	/* If we are under soft global TCP memory pressure, do not expand.  */
5367	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5368		return false;
5369
5370	/* If we filled the congestion window, do not expand.  */
5371	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5372		return false;
5373
5374	return true;
5375}
5376
5377static void tcp_new_space(struct sock *sk)
5378{
5379	struct tcp_sock *tp = tcp_sk(sk);
5380
5381	if (tcp_should_expand_sndbuf(sk)) {
5382		tcp_sndbuf_expand(sk);
5383		tp->snd_cwnd_stamp = tcp_jiffies32;
5384	}
5385
5386	sk->sk_write_space(sk);
5387}
5388
5389static void tcp_check_space(struct sock *sk)
 
 
 
 
 
 
 
 
 
 
5390{
5391	/* pairs with tcp_poll() */
5392	smp_mb();
5393	if (sk->sk_socket &&
5394	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5395		tcp_new_space(sk);
5396		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5397			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5398	}
5399}
5400
5401static inline void tcp_data_snd_check(struct sock *sk)
5402{
5403	tcp_push_pending_frames(sk);
5404	tcp_check_space(sk);
5405}
5406
5407/*
5408 * Check if sending an ack is needed.
5409 */
5410static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5411{
5412	struct tcp_sock *tp = tcp_sk(sk);
5413	unsigned long rtt, delay;
5414
5415	    /* More than one full frame received... */
5416	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5417	     /* ... and right edge of window advances far enough.
5418	      * (tcp_recvmsg() will send ACK otherwise).
5419	      * If application uses SO_RCVLOWAT, we want send ack now if
5420	      * we have not received enough bytes to satisfy the condition.
5421	      */
5422	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5423	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5424	    /* We ACK each frame or... */
5425	    tcp_in_quickack_mode(sk) ||
5426	    /* Protocol state mandates a one-time immediate ACK */
5427	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
 
 
 
 
 
 
 
 
5428send_now:
5429		tcp_send_ack(sk);
5430		return;
5431	}
5432
5433	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5434		tcp_send_delayed_ack(sk);
5435		return;
5436	}
5437
5438	if (!tcp_is_sack(tp) ||
5439	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5440		goto send_now;
5441
5442	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5443		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5444		tp->dup_ack_counter = 0;
5445	}
5446	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5447		tp->dup_ack_counter++;
5448		goto send_now;
5449	}
5450	tp->compressed_ack++;
5451	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5452		return;
5453
5454	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5455
5456	rtt = tp->rcv_rtt_est.rtt_us;
5457	if (tp->srtt_us && tp->srtt_us < rtt)
5458		rtt = tp->srtt_us;
5459
5460	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
 
5461		      rtt * (NSEC_PER_USEC >> 3)/20);
5462	sock_hold(sk);
5463	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5464			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5465			       HRTIMER_MODE_REL_PINNED_SOFT);
5466}
5467
5468static inline void tcp_ack_snd_check(struct sock *sk)
5469{
5470	if (!inet_csk_ack_scheduled(sk)) {
5471		/* We sent a data segment already. */
5472		return;
5473	}
5474	__tcp_ack_snd_check(sk, 1);
5475}
5476
5477/*
5478 *	This routine is only called when we have urgent data
5479 *	signaled. Its the 'slow' part of tcp_urg. It could be
5480 *	moved inline now as tcp_urg is only called from one
5481 *	place. We handle URGent data wrong. We have to - as
5482 *	BSD still doesn't use the correction from RFC961.
5483 *	For 1003.1g we should support a new option TCP_STDURG to permit
5484 *	either form (or just set the sysctl tcp_stdurg).
5485 */
5486
5487static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5488{
5489	struct tcp_sock *tp = tcp_sk(sk);
5490	u32 ptr = ntohs(th->urg_ptr);
5491
5492	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5493		ptr--;
5494	ptr += ntohl(th->seq);
5495
5496	/* Ignore urgent data that we've already seen and read. */
5497	if (after(tp->copied_seq, ptr))
5498		return;
5499
5500	/* Do not replay urg ptr.
5501	 *
5502	 * NOTE: interesting situation not covered by specs.
5503	 * Misbehaving sender may send urg ptr, pointing to segment,
5504	 * which we already have in ofo queue. We are not able to fetch
5505	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5506	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5507	 * situations. But it is worth to think about possibility of some
5508	 * DoSes using some hypothetical application level deadlock.
5509	 */
5510	if (before(ptr, tp->rcv_nxt))
5511		return;
5512
5513	/* Do we already have a newer (or duplicate) urgent pointer? */
5514	if (tp->urg_data && !after(ptr, tp->urg_seq))
5515		return;
5516
5517	/* Tell the world about our new urgent pointer. */
5518	sk_send_sigurg(sk);
5519
5520	/* We may be adding urgent data when the last byte read was
5521	 * urgent. To do this requires some care. We cannot just ignore
5522	 * tp->copied_seq since we would read the last urgent byte again
5523	 * as data, nor can we alter copied_seq until this data arrives
5524	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5525	 *
5526	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5527	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5528	 * and expect that both A and B disappear from stream. This is _wrong_.
5529	 * Though this happens in BSD with high probability, this is occasional.
5530	 * Any application relying on this is buggy. Note also, that fix "works"
5531	 * only in this artificial test. Insert some normal data between A and B and we will
5532	 * decline of BSD again. Verdict: it is better to remove to trap
5533	 * buggy users.
5534	 */
5535	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5536	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5537		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5538		tp->copied_seq++;
5539		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5540			__skb_unlink(skb, &sk->sk_receive_queue);
5541			__kfree_skb(skb);
5542		}
5543	}
5544
5545	tp->urg_data = TCP_URG_NOTYET;
5546	WRITE_ONCE(tp->urg_seq, ptr);
5547
5548	/* Disable header prediction. */
5549	tp->pred_flags = 0;
5550}
5551
5552/* This is the 'fast' part of urgent handling. */
5553static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5554{
5555	struct tcp_sock *tp = tcp_sk(sk);
5556
5557	/* Check if we get a new urgent pointer - normally not. */
5558	if (th->urg)
5559		tcp_check_urg(sk, th);
5560
5561	/* Do we wait for any urgent data? - normally not... */
5562	if (tp->urg_data == TCP_URG_NOTYET) {
5563		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5564			  th->syn;
5565
5566		/* Is the urgent pointer pointing into this packet? */
5567		if (ptr < skb->len) {
5568			u8 tmp;
5569			if (skb_copy_bits(skb, ptr, &tmp, 1))
5570				BUG();
5571			tp->urg_data = TCP_URG_VALID | tmp;
5572			if (!sock_flag(sk, SOCK_DEAD))
5573				sk->sk_data_ready(sk);
5574		}
5575	}
5576}
5577
5578/* Accept RST for rcv_nxt - 1 after a FIN.
5579 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5580 * FIN is sent followed by a RST packet. The RST is sent with the same
5581 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5582 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5583 * ACKs on the closed socket. In addition middleboxes can drop either the
5584 * challenge ACK or a subsequent RST.
5585 */
5586static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5587{
5588	struct tcp_sock *tp = tcp_sk(sk);
5589
5590	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5591			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5592					       TCPF_CLOSING));
5593}
5594
5595/* Does PAWS and seqno based validation of an incoming segment, flags will
5596 * play significant role here.
5597 */
5598static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5599				  const struct tcphdr *th, int syn_inerr)
5600{
5601	struct tcp_sock *tp = tcp_sk(sk);
5602	bool rst_seq_match = false;
5603
5604	/* RFC1323: H1. Apply PAWS check first. */
5605	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5606	    tp->rx_opt.saw_tstamp &&
5607	    tcp_paws_discard(sk, skb)) {
5608		if (!th->rst) {
 
 
5609			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5610			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5611						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5612						  &tp->last_oow_ack_time))
5613				tcp_send_dupack(sk, skb);
 
5614			goto discard;
5615		}
5616		/* Reset is accepted even if it did not pass PAWS. */
5617	}
5618
5619	/* Step 1: check sequence number */
5620	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
 
5621		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5622		 * (RST) segments are validated by checking their SEQ-fields."
5623		 * And page 69: "If an incoming segment is not acceptable,
5624		 * an acknowledgment should be sent in reply (unless the RST
5625		 * bit is set, if so drop the segment and return)".
5626		 */
5627		if (!th->rst) {
5628			if (th->syn)
5629				goto syn_challenge;
5630			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5631						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5632						  &tp->last_oow_ack_time))
5633				tcp_send_dupack(sk, skb);
5634		} else if (tcp_reset_check(sk, skb)) {
5635			tcp_reset(sk, skb);
5636		}
5637		goto discard;
5638	}
5639
5640	/* Step 2: check RST bit */
5641	if (th->rst) {
5642		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5643		 * FIN and SACK too if available):
5644		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5645		 * the right-most SACK block,
5646		 * then
5647		 *     RESET the connection
5648		 * else
5649		 *     Send a challenge ACK
5650		 */
5651		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5652		    tcp_reset_check(sk, skb)) {
5653			rst_seq_match = true;
5654		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
 
5655			struct tcp_sack_block *sp = &tp->selective_acks[0];
5656			int max_sack = sp[0].end_seq;
5657			int this_sack;
5658
5659			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5660			     ++this_sack) {
5661				max_sack = after(sp[this_sack].end_seq,
5662						 max_sack) ?
5663					sp[this_sack].end_seq : max_sack;
5664			}
5665
5666			if (TCP_SKB_CB(skb)->seq == max_sack)
5667				rst_seq_match = true;
5668		}
5669
5670		if (rst_seq_match)
5671			tcp_reset(sk, skb);
5672		else {
5673			/* Disable TFO if RST is out-of-order
5674			 * and no data has been received
5675			 * for current active TFO socket
5676			 */
5677			if (tp->syn_fastopen && !tp->data_segs_in &&
5678			    sk->sk_state == TCP_ESTABLISHED)
5679				tcp_fastopen_active_disable(sk);
5680			tcp_send_challenge_ack(sk, skb);
5681		}
5682		goto discard;
5683	}
5684
5685	/* step 3: check security and precedence [ignored] */
5686
5687	/* step 4: Check for a SYN
5688	 * RFC 5961 4.2 : Send a challenge ack
5689	 */
5690	if (th->syn) {
5691syn_challenge:
5692		if (syn_inerr)
5693			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5694		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5695		tcp_send_challenge_ack(sk, skb);
 
5696		goto discard;
5697	}
5698
5699	bpf_skops_parse_hdr(sk, skb);
5700
5701	return true;
5702
5703discard:
5704	tcp_drop(sk, skb);
 
 
 
 
 
5705	return false;
5706}
5707
5708/*
5709 *	TCP receive function for the ESTABLISHED state.
5710 *
5711 *	It is split into a fast path and a slow path. The fast path is
5712 * 	disabled when:
5713 *	- A zero window was announced from us - zero window probing
5714 *        is only handled properly in the slow path.
5715 *	- Out of order segments arrived.
5716 *	- Urgent data is expected.
5717 *	- There is no buffer space left
5718 *	- Unexpected TCP flags/window values/header lengths are received
5719 *	  (detected by checking the TCP header against pred_flags)
5720 *	- Data is sent in both directions. Fast path only supports pure senders
5721 *	  or pure receivers (this means either the sequence number or the ack
5722 *	  value must stay constant)
5723 *	- Unexpected TCP option.
5724 *
5725 *	When these conditions are not satisfied it drops into a standard
5726 *	receive procedure patterned after RFC793 to handle all cases.
5727 *	The first three cases are guaranteed by proper pred_flags setting,
5728 *	the rest is checked inline. Fast processing is turned on in
5729 *	tcp_data_queue when everything is OK.
5730 */
5731void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5732{
 
5733	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5734	struct tcp_sock *tp = tcp_sk(sk);
5735	unsigned int len = skb->len;
5736
5737	/* TCP congestion window tracking */
5738	trace_tcp_probe(sk, skb);
5739
5740	tcp_mstamp_refresh(tp);
5741	if (unlikely(!sk->sk_rx_dst))
5742		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5743	/*
5744	 *	Header prediction.
5745	 *	The code loosely follows the one in the famous
5746	 *	"30 instruction TCP receive" Van Jacobson mail.
5747	 *
5748	 *	Van's trick is to deposit buffers into socket queue
5749	 *	on a device interrupt, to call tcp_recv function
5750	 *	on the receive process context and checksum and copy
5751	 *	the buffer to user space. smart...
5752	 *
5753	 *	Our current scheme is not silly either but we take the
5754	 *	extra cost of the net_bh soft interrupt processing...
5755	 *	We do checksum and copy also but from device to kernel.
5756	 */
5757
5758	tp->rx_opt.saw_tstamp = 0;
5759
5760	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5761	 *	if header_prediction is to be made
5762	 *	'S' will always be tp->tcp_header_len >> 2
5763	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5764	 *  turn it off	(when there are holes in the receive
5765	 *	 space for instance)
5766	 *	PSH flag is ignored.
5767	 */
5768
5769	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5770	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5771	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5772		int tcp_header_len = tp->tcp_header_len;
5773
5774		/* Timestamp header prediction: tcp_header_len
5775		 * is automatically equal to th->doff*4 due to pred_flags
5776		 * match.
5777		 */
5778
5779		/* Check timestamp */
5780		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5781			/* No? Slow path! */
5782			if (!tcp_parse_aligned_timestamp(tp, th))
5783				goto slow_path;
5784
5785			/* If PAWS failed, check it more carefully in slow path */
5786			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5787				goto slow_path;
5788
5789			/* DO NOT update ts_recent here, if checksum fails
5790			 * and timestamp was corrupted part, it will result
5791			 * in a hung connection since we will drop all
5792			 * future packets due to the PAWS test.
5793			 */
5794		}
5795
5796		if (len <= tcp_header_len) {
5797			/* Bulk data transfer: sender */
5798			if (len == tcp_header_len) {
5799				/* Predicted packet is in window by definition.
5800				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5801				 * Hence, check seq<=rcv_wup reduces to:
5802				 */
5803				if (tcp_header_len ==
5804				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5805				    tp->rcv_nxt == tp->rcv_wup)
5806					tcp_store_ts_recent(tp);
5807
5808				/* We know that such packets are checksummed
5809				 * on entry.
5810				 */
5811				tcp_ack(sk, skb, 0);
5812				__kfree_skb(skb);
5813				tcp_data_snd_check(sk);
5814				/* When receiving pure ack in fast path, update
5815				 * last ts ecr directly instead of calling
5816				 * tcp_rcv_rtt_measure_ts()
5817				 */
5818				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5819				return;
5820			} else { /* Header too small */
 
5821				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5822				goto discard;
5823			}
5824		} else {
5825			int eaten = 0;
5826			bool fragstolen = false;
5827
5828			if (tcp_checksum_complete(skb))
5829				goto csum_error;
5830
5831			if ((int)skb->truesize > sk->sk_forward_alloc)
5832				goto step5;
5833
5834			/* Predicted packet is in window by definition.
5835			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5836			 * Hence, check seq<=rcv_wup reduces to:
5837			 */
5838			if (tcp_header_len ==
5839			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5840			    tp->rcv_nxt == tp->rcv_wup)
5841				tcp_store_ts_recent(tp);
5842
5843			tcp_rcv_rtt_measure_ts(sk, skb);
5844
5845			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5846
5847			/* Bulk data transfer: receiver */
 
5848			__skb_pull(skb, tcp_header_len);
5849			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5850
5851			tcp_event_data_recv(sk, skb);
5852
5853			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5854				/* Well, only one small jumplet in fast path... */
5855				tcp_ack(sk, skb, FLAG_DATA);
5856				tcp_data_snd_check(sk);
5857				if (!inet_csk_ack_scheduled(sk))
5858					goto no_ack;
5859			} else {
5860				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5861			}
5862
5863			__tcp_ack_snd_check(sk, 0);
5864no_ack:
5865			if (eaten)
5866				kfree_skb_partial(skb, fragstolen);
5867			tcp_data_ready(sk);
5868			return;
5869		}
5870	}
5871
5872slow_path:
5873	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5874		goto csum_error;
5875
5876	if (!th->ack && !th->rst && !th->syn)
 
5877		goto discard;
 
5878
5879	/*
5880	 *	Standard slow path.
5881	 */
5882
5883	if (!tcp_validate_incoming(sk, skb, th, 1))
5884		return;
5885
5886step5:
5887	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
 
 
5888		goto discard;
5889
5890	tcp_rcv_rtt_measure_ts(sk, skb);
5891
5892	/* Process urgent data. */
5893	tcp_urg(sk, skb, th);
5894
5895	/* step 7: process the segment text */
5896	tcp_data_queue(sk, skb);
5897
5898	tcp_data_snd_check(sk);
5899	tcp_ack_snd_check(sk);
5900	return;
5901
5902csum_error:
 
5903	trace_tcp_bad_csum(skb);
5904	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5905	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5906
5907discard:
5908	tcp_drop(sk, skb);
5909}
5910EXPORT_SYMBOL(tcp_rcv_established);
5911
5912void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5913{
5914	struct inet_connection_sock *icsk = inet_csk(sk);
5915	struct tcp_sock *tp = tcp_sk(sk);
5916
5917	tcp_mtup_init(sk);
5918	icsk->icsk_af_ops->rebuild_header(sk);
5919	tcp_init_metrics(sk);
5920
5921	/* Initialize the congestion window to start the transfer.
5922	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5923	 * retransmitted. In light of RFC6298 more aggressive 1sec
5924	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5925	 * retransmission has occurred.
5926	 */
5927	if (tp->total_retrans > 1 && tp->undo_marker)
5928		tp->snd_cwnd = 1;
5929	else
5930		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5931	tp->snd_cwnd_stamp = tcp_jiffies32;
5932
5933	bpf_skops_established(sk, bpf_op, skb);
5934	/* Initialize congestion control unless BPF initialized it already: */
5935	if (!icsk->icsk_ca_initialized)
5936		tcp_init_congestion_control(sk);
5937	tcp_init_buffer_space(sk);
5938}
5939
5940void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5941{
5942	struct tcp_sock *tp = tcp_sk(sk);
5943	struct inet_connection_sock *icsk = inet_csk(sk);
5944
 
5945	tcp_set_state(sk, TCP_ESTABLISHED);
5946	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5947
5948	if (skb) {
5949		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5950		security_inet_conn_established(sk, skb);
5951		sk_mark_napi_id(sk, skb);
5952	}
5953
5954	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5955
5956	/* Prevent spurious tcp_cwnd_restart() on first data
5957	 * packet.
5958	 */
5959	tp->lsndtime = tcp_jiffies32;
5960
5961	if (sock_flag(sk, SOCK_KEEPOPEN))
5962		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5963
5964	if (!tp->rx_opt.snd_wscale)
5965		__tcp_fast_path_on(tp, tp->snd_wnd);
5966	else
5967		tp->pred_flags = 0;
5968}
5969
5970static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5971				    struct tcp_fastopen_cookie *cookie)
5972{
5973	struct tcp_sock *tp = tcp_sk(sk);
5974	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5975	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5976	bool syn_drop = false;
5977
5978	if (mss == tp->rx_opt.user_mss) {
5979		struct tcp_options_received opt;
5980
5981		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5982		tcp_clear_options(&opt);
5983		opt.user_mss = opt.mss_clamp = 0;
5984		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5985		mss = opt.mss_clamp;
5986	}
5987
5988	if (!tp->syn_fastopen) {
5989		/* Ignore an unsolicited cookie */
5990		cookie->len = -1;
5991	} else if (tp->total_retrans) {
5992		/* SYN timed out and the SYN-ACK neither has a cookie nor
5993		 * acknowledges data. Presumably the remote received only
5994		 * the retransmitted (regular) SYNs: either the original
5995		 * SYN-data or the corresponding SYN-ACK was dropped.
5996		 */
5997		syn_drop = (cookie->len < 0 && data);
5998	} else if (cookie->len < 0 && !tp->syn_data) {
5999		/* We requested a cookie but didn't get it. If we did not use
6000		 * the (old) exp opt format then try so next time (try_exp=1).
6001		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6002		 */
6003		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6004	}
6005
6006	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6007
6008	if (data) { /* Retransmit unacked data in SYN */
6009		if (tp->total_retrans)
6010			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6011		else
6012			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6013		skb_rbtree_walk_from(data)
6014			 tcp_mark_skb_lost(sk, data);
6015		tcp_xmit_retransmit_queue(sk);
6016		NET_INC_STATS(sock_net(sk),
6017				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6018		return true;
6019	}
6020	tp->syn_data_acked = tp->syn_data;
6021	if (tp->syn_data_acked) {
6022		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6023		/* SYN-data is counted as two separate packets in tcp_ack() */
6024		if (tp->delivered > 1)
6025			--tp->delivered;
6026	}
6027
6028	tcp_fastopen_add_skb(sk, synack);
6029
6030	return false;
6031}
6032
6033static void smc_check_reset_syn(struct tcp_sock *tp)
6034{
6035#if IS_ENABLED(CONFIG_SMC)
6036	if (static_branch_unlikely(&tcp_have_smc)) {
6037		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6038			tp->syn_smc = 0;
6039	}
6040#endif
6041}
6042
6043static void tcp_try_undo_spurious_syn(struct sock *sk)
6044{
6045	struct tcp_sock *tp = tcp_sk(sk);
6046	u32 syn_stamp;
6047
6048	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6049	 * spurious if the ACK's timestamp option echo value matches the
6050	 * original SYN timestamp.
6051	 */
6052	syn_stamp = tp->retrans_stamp;
6053	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6054	    syn_stamp == tp->rx_opt.rcv_tsecr)
6055		tp->undo_marker = 0;
6056}
6057
6058static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6059					 const struct tcphdr *th)
6060{
6061	struct inet_connection_sock *icsk = inet_csk(sk);
6062	struct tcp_sock *tp = tcp_sk(sk);
6063	struct tcp_fastopen_cookie foc = { .len = -1 };
6064	int saved_clamp = tp->rx_opt.mss_clamp;
6065	bool fastopen_fail;
 
6066
6067	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6068	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6069		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6070
6071	if (th->ack) {
6072		/* rfc793:
6073		 * "If the state is SYN-SENT then
6074		 *    first check the ACK bit
6075		 *      If the ACK bit is set
6076		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6077		 *        a reset (unless the RST bit is set, if so drop
6078		 *        the segment and return)"
6079		 */
6080		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6081		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6082			/* Previous FIN/ACK or RST/ACK might be ignored. */
6083			if (icsk->icsk_retransmits == 0)
6084				inet_csk_reset_xmit_timer(sk,
6085						ICSK_TIME_RETRANS,
6086						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6087			goto reset_and_undo;
6088		}
6089
6090		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6091		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6092			     tcp_time_stamp(tp))) {
6093			NET_INC_STATS(sock_net(sk),
6094					LINUX_MIB_PAWSACTIVEREJECTED);
6095			goto reset_and_undo;
6096		}
6097
6098		/* Now ACK is acceptable.
6099		 *
6100		 * "If the RST bit is set
6101		 *    If the ACK was acceptable then signal the user "error:
6102		 *    connection reset", drop the segment, enter CLOSED state,
6103		 *    delete TCB, and return."
6104		 */
6105
6106		if (th->rst) {
6107			tcp_reset(sk, skb);
6108			goto discard;
 
 
6109		}
6110
6111		/* rfc793:
6112		 *   "fifth, if neither of the SYN or RST bits is set then
6113		 *    drop the segment and return."
6114		 *
6115		 *    See note below!
6116		 *                                        --ANK(990513)
6117		 */
6118		if (!th->syn)
 
6119			goto discard_and_undo;
6120
6121		/* rfc793:
6122		 *   "If the SYN bit is on ...
6123		 *    are acceptable then ...
6124		 *    (our SYN has been ACKed), change the connection
6125		 *    state to ESTABLISHED..."
6126		 */
6127
6128		tcp_ecn_rcv_synack(tp, th);
6129
6130		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6131		tcp_try_undo_spurious_syn(sk);
6132		tcp_ack(sk, skb, FLAG_SLOWPATH);
6133
6134		/* Ok.. it's good. Set up sequence numbers and
6135		 * move to established.
6136		 */
6137		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6138		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6139
6140		/* RFC1323: The window in SYN & SYN/ACK segments is
6141		 * never scaled.
6142		 */
6143		tp->snd_wnd = ntohs(th->window);
6144
6145		if (!tp->rx_opt.wscale_ok) {
6146			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6147			tp->window_clamp = min(tp->window_clamp, 65535U);
6148		}
6149
6150		if (tp->rx_opt.saw_tstamp) {
6151			tp->rx_opt.tstamp_ok	   = 1;
6152			tp->tcp_header_len =
6153				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6154			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6155			tcp_store_ts_recent(tp);
6156		} else {
6157			tp->tcp_header_len = sizeof(struct tcphdr);
6158		}
6159
6160		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6161		tcp_initialize_rcv_mss(sk);
6162
6163		/* Remember, tcp_poll() does not lock socket!
6164		 * Change state from SYN-SENT only after copied_seq
6165		 * is initialized. */
6166		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6167
6168		smc_check_reset_syn(tp);
6169
6170		smp_mb();
6171
6172		tcp_finish_connect(sk, skb);
6173
6174		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6175				tcp_rcv_fastopen_synack(sk, skb, &foc);
6176
6177		if (!sock_flag(sk, SOCK_DEAD)) {
6178			sk->sk_state_change(sk);
6179			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6180		}
6181		if (fastopen_fail)
6182			return -1;
6183		if (sk->sk_write_pending ||
6184		    icsk->icsk_accept_queue.rskq_defer_accept ||
6185		    inet_csk_in_pingpong_mode(sk)) {
6186			/* Save one ACK. Data will be ready after
6187			 * several ticks, if write_pending is set.
6188			 *
6189			 * It may be deleted, but with this feature tcpdumps
6190			 * look so _wonderfully_ clever, that I was not able
6191			 * to stand against the temptation 8)     --ANK
6192			 */
6193			inet_csk_schedule_ack(sk);
6194			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6195			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6196						  TCP_DELACK_MAX, TCP_RTO_MAX);
6197
6198discard:
6199			tcp_drop(sk, skb);
6200			return 0;
6201		} else {
6202			tcp_send_ack(sk);
6203		}
 
6204		return -1;
6205	}
6206
6207	/* No ACK in the segment */
6208
6209	if (th->rst) {
6210		/* rfc793:
6211		 * "If the RST bit is set
6212		 *
6213		 *      Otherwise (no ACK) drop the segment and return."
6214		 */
6215
6216		goto discard_and_undo;
6217	}
6218
6219	/* PAWS check. */
6220	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6221	    tcp_paws_reject(&tp->rx_opt, 0))
 
6222		goto discard_and_undo;
6223
6224	if (th->syn) {
6225		/* We see SYN without ACK. It is attempt of
6226		 * simultaneous connect with crossed SYNs.
6227		 * Particularly, it can be connect to self.
6228		 */
 
 
 
 
 
 
 
 
 
 
6229		tcp_set_state(sk, TCP_SYN_RECV);
6230
6231		if (tp->rx_opt.saw_tstamp) {
6232			tp->rx_opt.tstamp_ok = 1;
6233			tcp_store_ts_recent(tp);
6234			tp->tcp_header_len =
6235				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6236		} else {
6237			tp->tcp_header_len = sizeof(struct tcphdr);
6238		}
6239
6240		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6241		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6242		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6243
6244		/* RFC1323: The window in SYN & SYN/ACK segments is
6245		 * never scaled.
6246		 */
6247		tp->snd_wnd    = ntohs(th->window);
6248		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6249		tp->max_window = tp->snd_wnd;
6250
6251		tcp_ecn_rcv_syn(tp, th);
6252
6253		tcp_mtup_init(sk);
6254		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6255		tcp_initialize_rcv_mss(sk);
6256
6257		tcp_send_synack(sk);
6258#if 0
6259		/* Note, we could accept data and URG from this segment.
6260		 * There are no obstacles to make this (except that we must
6261		 * either change tcp_recvmsg() to prevent it from returning data
6262		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6263		 *
6264		 * However, if we ignore data in ACKless segments sometimes,
6265		 * we have no reasons to accept it sometimes.
6266		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6267		 * is not flawless. So, discard packet for sanity.
6268		 * Uncomment this return to process the data.
6269		 */
6270		return -1;
6271#else
6272		goto discard;
6273#endif
6274	}
6275	/* "fifth, if neither of the SYN or RST bits is set then
6276	 * drop the segment and return."
6277	 */
6278
6279discard_and_undo:
6280	tcp_clear_options(&tp->rx_opt);
6281	tp->rx_opt.mss_clamp = saved_clamp;
6282	goto discard;
 
6283
6284reset_and_undo:
6285	tcp_clear_options(&tp->rx_opt);
6286	tp->rx_opt.mss_clamp = saved_clamp;
6287	return 1;
6288}
6289
6290static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6291{
 
6292	struct request_sock *req;
6293
6294	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6295	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6296	 */
6297	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6298		tcp_try_undo_loss(sk, false);
6299
6300	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6301	tcp_sk(sk)->retrans_stamp = 0;
 
6302	inet_csk(sk)->icsk_retransmits = 0;
6303
6304	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6305	 * we no longer need req so release it.
6306	 */
6307	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6308					lockdep_sock_is_held(sk));
6309	reqsk_fastopen_remove(sk, req, false);
6310
6311	/* Re-arm the timer because data may have been sent out.
6312	 * This is similar to the regular data transmission case
6313	 * when new data has just been ack'ed.
6314	 *
6315	 * (TFO) - we could try to be more aggressive and
6316	 * retransmitting any data sooner based on when they
6317	 * are sent out.
6318	 */
6319	tcp_rearm_rto(sk);
6320}
6321
6322/*
6323 *	This function implements the receiving procedure of RFC 793 for
6324 *	all states except ESTABLISHED and TIME_WAIT.
6325 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6326 *	address independent.
6327 */
6328
6329int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6330{
6331	struct tcp_sock *tp = tcp_sk(sk);
6332	struct inet_connection_sock *icsk = inet_csk(sk);
6333	const struct tcphdr *th = tcp_hdr(skb);
6334	struct request_sock *req;
6335	int queued = 0;
6336	bool acceptable;
 
6337
6338	switch (sk->sk_state) {
6339	case TCP_CLOSE:
 
6340		goto discard;
6341
6342	case TCP_LISTEN:
6343		if (th->ack)
6344			return 1;
6345
6346		if (th->rst)
 
6347			goto discard;
6348
6349		if (th->syn) {
6350			if (th->fin)
 
6351				goto discard;
 
6352			/* It is possible that we process SYN packets from backlog,
6353			 * so we need to make sure to disable BH and RCU right there.
6354			 */
6355			rcu_read_lock();
6356			local_bh_disable();
6357			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6358			local_bh_enable();
6359			rcu_read_unlock();
6360
6361			if (!acceptable)
6362				return 1;
6363			consume_skb(skb);
6364			return 0;
6365		}
 
6366		goto discard;
6367
6368	case TCP_SYN_SENT:
6369		tp->rx_opt.saw_tstamp = 0;
6370		tcp_mstamp_refresh(tp);
6371		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6372		if (queued >= 0)
6373			return queued;
6374
6375		/* Do step6 onward by hand. */
6376		tcp_urg(sk, skb, th);
6377		__kfree_skb(skb);
6378		tcp_data_snd_check(sk);
6379		return 0;
6380	}
6381
6382	tcp_mstamp_refresh(tp);
6383	tp->rx_opt.saw_tstamp = 0;
6384	req = rcu_dereference_protected(tp->fastopen_rsk,
6385					lockdep_sock_is_held(sk));
6386	if (req) {
6387		bool req_stolen;
6388
6389		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6390		    sk->sk_state != TCP_FIN_WAIT1);
6391
6392		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
 
6393			goto discard;
 
6394	}
6395
6396	if (!th->ack && !th->rst && !th->syn)
 
6397		goto discard;
6398
6399	if (!tcp_validate_incoming(sk, skb, th, 0))
6400		return 0;
6401
6402	/* step 5: check the ACK field */
6403	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6404				      FLAG_UPDATE_TS_RECENT |
6405				      FLAG_NO_CHALLENGE_ACK) > 0;
6406
6407	if (!acceptable) {
6408		if (sk->sk_state == TCP_SYN_RECV)
6409			return 1;	/* send one RST */
6410		tcp_send_challenge_ack(sk, skb);
 
6411		goto discard;
6412	}
6413	switch (sk->sk_state) {
6414	case TCP_SYN_RECV:
6415		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6416		if (!tp->srtt_us)
6417			tcp_synack_rtt_meas(sk, req);
6418
6419		if (req) {
6420			tcp_rcv_synrecv_state_fastopen(sk);
6421		} else {
6422			tcp_try_undo_spurious_syn(sk);
6423			tp->retrans_stamp = 0;
6424			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6425					  skb);
6426			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6427		}
 
6428		smp_mb();
6429		tcp_set_state(sk, TCP_ESTABLISHED);
6430		sk->sk_state_change(sk);
6431
6432		/* Note, that this wakeup is only for marginal crossed SYN case.
6433		 * Passively open sockets are not waked up, because
6434		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6435		 */
6436		if (sk->sk_socket)
6437			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6438
6439		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6440		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6441		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6442
6443		if (tp->rx_opt.tstamp_ok)
6444			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6445
6446		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6447			tcp_update_pacing_rate(sk);
6448
6449		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6450		tp->lsndtime = tcp_jiffies32;
6451
6452		tcp_initialize_rcv_mss(sk);
6453		tcp_fast_path_on(tp);
6454		break;
6455
6456	case TCP_FIN_WAIT1: {
6457		int tmo;
6458
6459		if (req)
6460			tcp_rcv_synrecv_state_fastopen(sk);
6461
6462		if (tp->snd_una != tp->write_seq)
6463			break;
6464
6465		tcp_set_state(sk, TCP_FIN_WAIT2);
6466		sk->sk_shutdown |= SEND_SHUTDOWN;
6467
6468		sk_dst_confirm(sk);
6469
6470		if (!sock_flag(sk, SOCK_DEAD)) {
6471			/* Wake up lingering close() */
6472			sk->sk_state_change(sk);
6473			break;
6474		}
6475
6476		if (tp->linger2 < 0) {
6477			tcp_done(sk);
6478			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6479			return 1;
6480		}
6481		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6482		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6483			/* Receive out of order FIN after close() */
6484			if (tp->syn_fastopen && th->fin)
6485				tcp_fastopen_active_disable(sk);
6486			tcp_done(sk);
6487			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6488			return 1;
6489		}
6490
6491		tmo = tcp_fin_time(sk);
6492		if (tmo > TCP_TIMEWAIT_LEN) {
6493			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6494		} else if (th->fin || sock_owned_by_user(sk)) {
6495			/* Bad case. We could lose such FIN otherwise.
6496			 * It is not a big problem, but it looks confusing
6497			 * and not so rare event. We still can lose it now,
6498			 * if it spins in bh_lock_sock(), but it is really
6499			 * marginal case.
6500			 */
6501			inet_csk_reset_keepalive_timer(sk, tmo);
6502		} else {
6503			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6504			goto discard;
6505		}
6506		break;
6507	}
6508
6509	case TCP_CLOSING:
6510		if (tp->snd_una == tp->write_seq) {
6511			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6512			goto discard;
6513		}
6514		break;
6515
6516	case TCP_LAST_ACK:
6517		if (tp->snd_una == tp->write_seq) {
6518			tcp_update_metrics(sk);
6519			tcp_done(sk);
6520			goto discard;
6521		}
6522		break;
6523	}
6524
6525	/* step 6: check the URG bit */
6526	tcp_urg(sk, skb, th);
6527
6528	/* step 7: process the segment text */
6529	switch (sk->sk_state) {
6530	case TCP_CLOSE_WAIT:
6531	case TCP_CLOSING:
6532	case TCP_LAST_ACK:
6533		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6534			/* If a subflow has been reset, the packet should not
6535			 * continue to be processed, drop the packet.
6536			 */
6537			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6538				goto discard;
6539			break;
6540		}
6541		fallthrough;
6542	case TCP_FIN_WAIT1:
6543	case TCP_FIN_WAIT2:
6544		/* RFC 793 says to queue data in these states,
6545		 * RFC 1122 says we MUST send a reset.
6546		 * BSD 4.4 also does reset.
6547		 */
6548		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6549			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6550			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6551				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552				tcp_reset(sk, skb);
6553				return 1;
6554			}
6555		}
6556		fallthrough;
6557	case TCP_ESTABLISHED:
6558		tcp_data_queue(sk, skb);
6559		queued = 1;
6560		break;
6561	}
6562
6563	/* tcp_data could move socket to TIME-WAIT */
6564	if (sk->sk_state != TCP_CLOSE) {
6565		tcp_data_snd_check(sk);
6566		tcp_ack_snd_check(sk);
6567	}
6568
6569	if (!queued) {
6570discard:
6571		tcp_drop(sk, skb);
6572	}
6573	return 0;
 
 
 
 
6574}
6575EXPORT_SYMBOL(tcp_rcv_state_process);
6576
6577static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6578{
6579	struct inet_request_sock *ireq = inet_rsk(req);
6580
6581	if (family == AF_INET)
6582		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6583				    &ireq->ir_rmt_addr, port);
6584#if IS_ENABLED(CONFIG_IPV6)
6585	else if (family == AF_INET6)
6586		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6587				    &ireq->ir_v6_rmt_addr, port);
6588#endif
6589}
6590
6591/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6592 *
6593 * If we receive a SYN packet with these bits set, it means a
6594 * network is playing bad games with TOS bits. In order to
6595 * avoid possible false congestion notifications, we disable
6596 * TCP ECN negotiation.
6597 *
6598 * Exception: tcp_ca wants ECN. This is required for DCTCP
6599 * congestion control: Linux DCTCP asserts ECT on all packets,
6600 * including SYN, which is most optimal solution; however,
6601 * others, such as FreeBSD do not.
6602 *
6603 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6604 * set, indicating the use of a future TCP extension (such as AccECN). See
6605 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6606 * extensions.
6607 */
6608static void tcp_ecn_create_request(struct request_sock *req,
6609				   const struct sk_buff *skb,
6610				   const struct sock *listen_sk,
6611				   const struct dst_entry *dst)
6612{
6613	const struct tcphdr *th = tcp_hdr(skb);
6614	const struct net *net = sock_net(listen_sk);
6615	bool th_ecn = th->ece && th->cwr;
6616	bool ect, ecn_ok;
6617	u32 ecn_ok_dst;
6618
6619	if (!th_ecn)
6620		return;
6621
6622	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6623	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6624	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6625
6626	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6627	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6628	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6629		inet_rsk(req)->ecn_ok = 1;
6630}
6631
6632static void tcp_openreq_init(struct request_sock *req,
6633			     const struct tcp_options_received *rx_opt,
6634			     struct sk_buff *skb, const struct sock *sk)
6635{
6636	struct inet_request_sock *ireq = inet_rsk(req);
6637
6638	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6639	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6640	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6641	tcp_rsk(req)->snt_synack = 0;
6642	tcp_rsk(req)->last_oow_ack_time = 0;
6643	req->mss = rx_opt->mss_clamp;
6644	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6645	ireq->tstamp_ok = rx_opt->tstamp_ok;
6646	ireq->sack_ok = rx_opt->sack_ok;
6647	ireq->snd_wscale = rx_opt->snd_wscale;
6648	ireq->wscale_ok = rx_opt->wscale_ok;
6649	ireq->acked = 0;
6650	ireq->ecn_ok = 0;
6651	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6652	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6653	ireq->ir_mark = inet_request_mark(sk, skb);
6654#if IS_ENABLED(CONFIG_SMC)
6655	ireq->smc_ok = rx_opt->smc_ok;
 
6656#endif
6657}
6658
6659struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6660				      struct sock *sk_listener,
6661				      bool attach_listener)
6662{
6663	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6664					       attach_listener);
6665
6666	if (req) {
6667		struct inet_request_sock *ireq = inet_rsk(req);
6668
6669		ireq->ireq_opt = NULL;
6670#if IS_ENABLED(CONFIG_IPV6)
6671		ireq->pktopts = NULL;
6672#endif
6673		atomic64_set(&ireq->ir_cookie, 0);
6674		ireq->ireq_state = TCP_NEW_SYN_RECV;
6675		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6676		ireq->ireq_family = sk_listener->sk_family;
 
6677	}
6678
6679	return req;
6680}
6681EXPORT_SYMBOL(inet_reqsk_alloc);
6682
6683/*
6684 * Return true if a syncookie should be sent
6685 */
6686static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6687{
6688	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6689	const char *msg = "Dropping request";
6690	bool want_cookie = false;
6691	struct net *net = sock_net(sk);
 
 
 
 
6692
6693#ifdef CONFIG_SYN_COOKIES
6694	if (net->ipv4.sysctl_tcp_syncookies) {
6695		msg = "Sending cookies";
6696		want_cookie = true;
6697		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6698	} else
6699#endif
6700		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6701
6702	if (!queue->synflood_warned &&
6703	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6704	    xchg(&queue->synflood_warned, 1) == 0)
6705		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6706				     proto, sk->sk_num, msg);
 
 
 
 
 
 
 
6707
6708	return want_cookie;
6709}
6710
6711static void tcp_reqsk_record_syn(const struct sock *sk,
6712				 struct request_sock *req,
6713				 const struct sk_buff *skb)
6714{
6715	if (tcp_sk(sk)->save_syn) {
6716		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6717		struct saved_syn *saved_syn;
6718		u32 mac_hdrlen;
6719		void *base;
6720
6721		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6722			base = skb_mac_header(skb);
6723			mac_hdrlen = skb_mac_header_len(skb);
6724			len += mac_hdrlen;
6725		} else {
6726			base = skb_network_header(skb);
6727			mac_hdrlen = 0;
6728		}
6729
6730		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6731				    GFP_ATOMIC);
6732		if (saved_syn) {
6733			saved_syn->mac_hdrlen = mac_hdrlen;
6734			saved_syn->network_hdrlen = skb_network_header_len(skb);
6735			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6736			memcpy(saved_syn->data, base, len);
6737			req->saved_syn = saved_syn;
6738		}
6739	}
6740}
6741
6742/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6743 * used for SYN cookie generation.
6744 */
6745u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6746			  const struct tcp_request_sock_ops *af_ops,
6747			  struct sock *sk, struct tcphdr *th)
6748{
6749	struct tcp_sock *tp = tcp_sk(sk);
6750	u16 mss;
6751
6752	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6753	    !inet_csk_reqsk_queue_is_full(sk))
6754		return 0;
6755
6756	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6757		return 0;
6758
6759	if (sk_acceptq_is_full(sk)) {
6760		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6761		return 0;
6762	}
6763
6764	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6765	if (!mss)
6766		mss = af_ops->mss_clamp;
6767
6768	return mss;
6769}
6770EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6771
6772int tcp_conn_request(struct request_sock_ops *rsk_ops,
6773		     const struct tcp_request_sock_ops *af_ops,
6774		     struct sock *sk, struct sk_buff *skb)
6775{
6776	struct tcp_fastopen_cookie foc = { .len = -1 };
6777	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6778	struct tcp_options_received tmp_opt;
6779	struct tcp_sock *tp = tcp_sk(sk);
6780	struct net *net = sock_net(sk);
6781	struct sock *fastopen_sk = NULL;
6782	struct request_sock *req;
6783	bool want_cookie = false;
6784	struct dst_entry *dst;
6785	struct flowi fl;
 
 
 
 
 
 
 
6786
6787	/* TW buckets are converted to open requests without
6788	 * limitations, they conserve resources and peer is
6789	 * evidently real one.
6790	 */
6791	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6792	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6793		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6794		if (!want_cookie)
6795			goto drop;
6796	}
6797
6798	if (sk_acceptq_is_full(sk)) {
6799		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6800		goto drop;
6801	}
6802
6803	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6804	if (!req)
6805		goto drop;
6806
6807	req->syncookie = want_cookie;
6808	tcp_rsk(req)->af_specific = af_ops;
6809	tcp_rsk(req)->ts_off = 0;
 
6810#if IS_ENABLED(CONFIG_MPTCP)
6811	tcp_rsk(req)->is_mptcp = 0;
6812#endif
6813
6814	tcp_clear_options(&tmp_opt);
6815	tmp_opt.mss_clamp = af_ops->mss_clamp;
6816	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6817	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6818			  want_cookie ? NULL : &foc);
6819
6820	if (want_cookie && !tmp_opt.saw_tstamp)
6821		tcp_clear_options(&tmp_opt);
6822
6823	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6824		tmp_opt.smc_ok = 0;
6825
6826	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6827	tcp_openreq_init(req, &tmp_opt, skb, sk);
6828	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6829
6830	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6831	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6832
6833	dst = af_ops->route_req(sk, skb, &fl, req);
6834	if (!dst)
6835		goto drop_and_free;
6836
6837	if (tmp_opt.tstamp_ok)
 
6838		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6839
6840	if (!want_cookie && !isn) {
 
 
6841		/* Kill the following clause, if you dislike this way. */
6842		if (!net->ipv4.sysctl_tcp_syncookies &&
6843		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6844		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6845		    !tcp_peer_is_proven(req, dst)) {
6846			/* Without syncookies last quarter of
6847			 * backlog is filled with destinations,
6848			 * proven to be alive.
6849			 * It means that we continue to communicate
6850			 * to destinations, already remembered
6851			 * to the moment of synflood.
6852			 */
6853			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6854				    rsk_ops->family);
6855			goto drop_and_release;
6856		}
6857
6858		isn = af_ops->init_seq(skb);
6859	}
6860
6861	tcp_ecn_create_request(req, skb, sk, dst);
6862
6863	if (want_cookie) {
6864		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6865		if (!tmp_opt.tstamp_ok)
6866			inet_rsk(req)->ecn_ok = 0;
6867	}
6868
 
 
 
 
 
 
 
 
 
 
 
 
6869	tcp_rsk(req)->snt_isn = isn;
6870	tcp_rsk(req)->txhash = net_tx_rndhash();
6871	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6872	tcp_openreq_init_rwin(req, sk, dst);
6873	sk_rx_queue_set(req_to_sk(req), skb);
6874	if (!want_cookie) {
6875		tcp_reqsk_record_syn(sk, req, skb);
6876		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6877	}
6878	if (fastopen_sk) {
6879		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6880				    &foc, TCP_SYNACK_FASTOPEN, skb);
6881		/* Add the child socket directly into the accept queue */
6882		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6883			reqsk_fastopen_remove(fastopen_sk, req, false);
6884			bh_unlock_sock(fastopen_sk);
6885			sock_put(fastopen_sk);
6886			goto drop_and_free;
6887		}
6888		sk->sk_data_ready(sk);
6889		bh_unlock_sock(fastopen_sk);
6890		sock_put(fastopen_sk);
6891	} else {
6892		tcp_rsk(req)->tfo_listener = false;
6893		if (!want_cookie)
6894			inet_csk_reqsk_queue_hash_add(sk, req,
6895				tcp_timeout_init((struct sock *)req));
 
6896		af_ops->send_synack(sk, dst, &fl, req, &foc,
6897				    !want_cookie ? TCP_SYNACK_NORMAL :
6898						   TCP_SYNACK_COOKIE,
6899				    skb);
6900		if (want_cookie) {
6901			reqsk_free(req);
6902			return 0;
6903		}
6904	}
6905	reqsk_put(req);
6906	return 0;
6907
6908drop_and_release:
6909	dst_release(dst);
6910drop_and_free:
6911	__reqsk_free(req);
6912drop:
6913	tcp_listendrop(sk);
6914	return 0;
6915}
6916EXPORT_SYMBOL(tcp_conn_request);
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
 104
 105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 109
 110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 112
 113#define REXMIT_NONE	0 /* no loss recovery to do */
 114#define REXMIT_LOST	1 /* retransmit packets marked lost */
 115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 116
 117#if IS_ENABLED(CONFIG_TLS_DEVICE)
 118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 119
 120void clean_acked_data_enable(struct inet_connection_sock *icsk,
 121			     void (*cad)(struct sock *sk, u32 ack_seq))
 122{
 123	icsk->icsk_clean_acked = cad;
 124	static_branch_deferred_inc(&clean_acked_data_enabled);
 125}
 126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 127
 128void clean_acked_data_disable(struct inet_connection_sock *icsk)
 129{
 130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 131	icsk->icsk_clean_acked = NULL;
 132}
 133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 134
 135void clean_acked_data_flush(void)
 136{
 137	static_key_deferred_flush(&clean_acked_data_enabled);
 138}
 139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 140#endif
 141
 142#ifdef CONFIG_CGROUP_BPF
 143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 144{
 145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 150	struct bpf_sock_ops_kern sock_ops;
 151
 152	if (likely(!unknown_opt && !parse_all_opt))
 153		return;
 154
 155	/* The skb will be handled in the
 156	 * bpf_skops_established() or
 157	 * bpf_skops_write_hdr_opt().
 158	 */
 159	switch (sk->sk_state) {
 160	case TCP_SYN_RECV:
 161	case TCP_SYN_SENT:
 162	case TCP_LISTEN:
 163		return;
 164	}
 165
 166	sock_owned_by_me(sk);
 167
 168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 170	sock_ops.is_fullsock = 1;
 171	sock_ops.sk = sk;
 172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 173
 174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 175}
 176
 177static void bpf_skops_established(struct sock *sk, int bpf_op,
 178				  struct sk_buff *skb)
 179{
 180	struct bpf_sock_ops_kern sock_ops;
 181
 182	sock_owned_by_me(sk);
 183
 184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 185	sock_ops.op = bpf_op;
 186	sock_ops.is_fullsock = 1;
 187	sock_ops.sk = sk;
 188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 189	if (skb)
 190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 191
 192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 193}
 194#else
 195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 196{
 197}
 198
 199static void bpf_skops_established(struct sock *sk, int bpf_op,
 200				  struct sk_buff *skb)
 201{
 202}
 203#endif
 204
 205static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
 206				    unsigned int len)
 207{
 208	struct net_device *dev;
 209
 210	rcu_read_lock();
 211	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 212	if (!dev || len >= READ_ONCE(dev->mtu))
 213		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 214			dev ? dev->name : "Unknown driver");
 215	rcu_read_unlock();
 
 
 
 
 
 
 216}
 217
 218/* Adapt the MSS value used to make delayed ack decision to the
 219 * real world.
 220 */
 221static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 222{
 223	struct inet_connection_sock *icsk = inet_csk(sk);
 224	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 225	unsigned int len;
 226
 227	icsk->icsk_ack.last_seg_size = 0;
 228
 229	/* skb->len may jitter because of SACKs, even if peer
 230	 * sends good full-sized frames.
 231	 */
 232	len = skb_shinfo(skb)->gso_size ? : skb->len;
 233	if (len >= icsk->icsk_ack.rcv_mss) {
 234		/* Note: divides are still a bit expensive.
 235		 * For the moment, only adjust scaling_ratio
 236		 * when we update icsk_ack.rcv_mss.
 237		 */
 238		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
 239			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
 240
 241			do_div(val, skb->truesize);
 242			tcp_sk(sk)->scaling_ratio = val ? val : 1;
 243		}
 244		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 245					       tcp_sk(sk)->advmss);
 246		/* Account for possibly-removed options */
 247		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
 248				tcp_gro_dev_warn, sk, skb, len);
 249		/* If the skb has a len of exactly 1*MSS and has the PSH bit
 250		 * set then it is likely the end of an application write. So
 251		 * more data may not be arriving soon, and yet the data sender
 252		 * may be waiting for an ACK if cwnd-bound or using TX zero
 253		 * copy. So we set ICSK_ACK_PUSHED here so that
 254		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
 255		 * reads all of the data and is not ping-pong. If len > MSS
 256		 * then this logic does not matter (and does not hurt) because
 257		 * tcp_cleanup_rbuf() will always ACK immediately if the app
 258		 * reads data and there is more than an MSS of unACKed data.
 259		 */
 260		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
 261			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 262	} else {
 263		/* Otherwise, we make more careful check taking into account,
 264		 * that SACKs block is variable.
 265		 *
 266		 * "len" is invariant segment length, including TCP header.
 267		 */
 268		len += skb->data - skb_transport_header(skb);
 269		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 270		    /* If PSH is not set, packet should be
 271		     * full sized, provided peer TCP is not badly broken.
 272		     * This observation (if it is correct 8)) allows
 273		     * to handle super-low mtu links fairly.
 274		     */
 275		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 276		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 277			/* Subtract also invariant (if peer is RFC compliant),
 278			 * tcp header plus fixed timestamp option length.
 279			 * Resulting "len" is MSS free of SACK jitter.
 280			 */
 281			len -= tcp_sk(sk)->tcp_header_len;
 282			icsk->icsk_ack.last_seg_size = len;
 283			if (len == lss) {
 284				icsk->icsk_ack.rcv_mss = len;
 285				return;
 286			}
 287		}
 288		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 289			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 290		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 291	}
 292}
 293
 294static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 295{
 296	struct inet_connection_sock *icsk = inet_csk(sk);
 297	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 298
 299	if (quickacks == 0)
 300		quickacks = 2;
 301	quickacks = min(quickacks, max_quickacks);
 302	if (quickacks > icsk->icsk_ack.quick)
 303		icsk->icsk_ack.quick = quickacks;
 304}
 305
 306static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 307{
 308	struct inet_connection_sock *icsk = inet_csk(sk);
 309
 310	tcp_incr_quickack(sk, max_quickacks);
 311	inet_csk_exit_pingpong_mode(sk);
 312	icsk->icsk_ack.ato = TCP_ATO_MIN;
 313}
 
 314
 315/* Send ACKs quickly, if "quick" count is not exhausted
 316 * and the session is not interactive.
 317 */
 318
 319static bool tcp_in_quickack_mode(struct sock *sk)
 320{
 321	const struct inet_connection_sock *icsk = inet_csk(sk);
 322	const struct dst_entry *dst = __sk_dst_get(sk);
 323
 324	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 325		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 326}
 327
 328static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 329{
 330	if (tp->ecn_flags & TCP_ECN_OK)
 331		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 332}
 333
 334static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 335{
 336	if (tcp_hdr(skb)->cwr) {
 337		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 338
 339		/* If the sender is telling us it has entered CWR, then its
 340		 * cwnd may be very low (even just 1 packet), so we should ACK
 341		 * immediately.
 342		 */
 343		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 344			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 345	}
 346}
 347
 348static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 349{
 350	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 351}
 352
 353static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 354{
 355	struct tcp_sock *tp = tcp_sk(sk);
 356
 357	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 358	case INET_ECN_NOT_ECT:
 359		/* Funny extension: if ECT is not set on a segment,
 360		 * and we already seen ECT on a previous segment,
 361		 * it is probably a retransmit.
 362		 */
 363		if (tp->ecn_flags & TCP_ECN_SEEN)
 364			tcp_enter_quickack_mode(sk, 2);
 365		break;
 366	case INET_ECN_CE:
 367		if (tcp_ca_needs_ecn(sk))
 368			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 369
 370		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 371			/* Better not delay acks, sender can have a very low cwnd */
 372			tcp_enter_quickack_mode(sk, 2);
 373			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 374		}
 375		tp->ecn_flags |= TCP_ECN_SEEN;
 376		break;
 377	default:
 378		if (tcp_ca_needs_ecn(sk))
 379			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 380		tp->ecn_flags |= TCP_ECN_SEEN;
 381		break;
 382	}
 383}
 384
 385static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 386{
 387	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 388		__tcp_ecn_check_ce(sk, skb);
 389}
 390
 391static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 392{
 393	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 394		tp->ecn_flags &= ~TCP_ECN_OK;
 395}
 396
 397static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 398{
 399	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 400		tp->ecn_flags &= ~TCP_ECN_OK;
 401}
 402
 403static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 404{
 405	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 406		return true;
 407	return false;
 408}
 409
 410/* Buffer size and advertised window tuning.
 411 *
 412 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 413 */
 414
 415static void tcp_sndbuf_expand(struct sock *sk)
 416{
 417	const struct tcp_sock *tp = tcp_sk(sk);
 418	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 419	int sndmem, per_mss;
 420	u32 nr_segs;
 421
 422	/* Worst case is non GSO/TSO : each frame consumes one skb
 423	 * and skb->head is kmalloced using power of two area of memory
 424	 */
 425	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 426		  MAX_TCP_HEADER +
 427		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 428
 429	per_mss = roundup_pow_of_two(per_mss) +
 430		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 431
 432	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
 433	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 434
 435	/* Fast Recovery (RFC 5681 3.2) :
 436	 * Cubic needs 1.7 factor, rounded to 2 to include
 437	 * extra cushion (application might react slowly to EPOLLOUT)
 438	 */
 439	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 440	sndmem *= nr_segs * per_mss;
 441
 442	if (sk->sk_sndbuf < sndmem)
 443		WRITE_ONCE(sk->sk_sndbuf,
 444			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
 445}
 446
 447/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 448 *
 449 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 450 * forward and advertised in receiver window (tp->rcv_wnd) and
 451 * "application buffer", required to isolate scheduling/application
 452 * latencies from network.
 453 * window_clamp is maximal advertised window. It can be less than
 454 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 455 * is reserved for "application" buffer. The less window_clamp is
 456 * the smoother our behaviour from viewpoint of network, but the lower
 457 * throughput and the higher sensitivity of the connection to losses. 8)
 458 *
 459 * rcv_ssthresh is more strict window_clamp used at "slow start"
 460 * phase to predict further behaviour of this connection.
 461 * It is used for two goals:
 462 * - to enforce header prediction at sender, even when application
 463 *   requires some significant "application buffer". It is check #1.
 464 * - to prevent pruning of receive queue because of misprediction
 465 *   of receiver window. Check #2.
 466 *
 467 * The scheme does not work when sender sends good segments opening
 468 * window and then starts to feed us spaghetti. But it should work
 469 * in common situations. Otherwise, we have to rely on queue collapsing.
 470 */
 471
 472/* Slow part of check#2. */
 473static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
 474			     unsigned int skbtruesize)
 475{
 476	const struct tcp_sock *tp = tcp_sk(sk);
 477	/* Optimize this! */
 478	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
 479	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
 480
 481	while (tp->rcv_ssthresh <= window) {
 482		if (truesize <= skb->len)
 483			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 484
 485		truesize >>= 1;
 486		window >>= 1;
 487	}
 488	return 0;
 489}
 490
 491/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
 492 * can play nice with us, as sk_buff and skb->head might be either
 493 * freed or shared with up to MAX_SKB_FRAGS segments.
 494 * Only give a boost to drivers using page frag(s) to hold the frame(s),
 495 * and if no payload was pulled in skb->head before reaching us.
 496 */
 497static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
 498{
 499	u32 truesize = skb->truesize;
 500
 501	if (adjust && !skb_headlen(skb)) {
 502		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
 503		/* paranoid check, some drivers might be buggy */
 504		if (unlikely((int)truesize < (int)skb->len))
 505			truesize = skb->truesize;
 506	}
 507	return truesize;
 508}
 509
 510static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
 511			    bool adjust)
 512{
 513	struct tcp_sock *tp = tcp_sk(sk);
 514	int room;
 515
 516	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 517
 518	if (room <= 0)
 519		return;
 520
 521	/* Check #1 */
 522	if (!tcp_under_memory_pressure(sk)) {
 523		unsigned int truesize = truesize_adjust(adjust, skb);
 524		int incr;
 525
 526		/* Check #2. Increase window, if skb with such overhead
 527		 * will fit to rcvbuf in future.
 528		 */
 529		if (tcp_win_from_space(sk, truesize) <= skb->len)
 530			incr = 2 * tp->advmss;
 531		else
 532			incr = __tcp_grow_window(sk, skb, truesize);
 533
 534		if (incr) {
 535			incr = max_t(int, incr, 2 * skb->len);
 536			tp->rcv_ssthresh += min(room, incr);
 537			inet_csk(sk)->icsk_ack.quick |= 1;
 538		}
 539	} else {
 540		/* Under pressure:
 541		 * Adjust rcv_ssthresh according to reserved mem
 542		 */
 543		tcp_adjust_rcv_ssthresh(sk);
 544	}
 545}
 546
 547/* 3. Try to fixup all. It is made immediately after connection enters
 548 *    established state.
 549 */
 550static void tcp_init_buffer_space(struct sock *sk)
 551{
 552	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
 553	struct tcp_sock *tp = tcp_sk(sk);
 554	int maxwin;
 555
 556	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 557		tcp_sndbuf_expand(sk);
 558
 559	tcp_mstamp_refresh(tp);
 560	tp->rcvq_space.time = tp->tcp_mstamp;
 561	tp->rcvq_space.seq = tp->copied_seq;
 562
 563	maxwin = tcp_full_space(sk);
 564
 565	if (tp->window_clamp >= maxwin) {
 566		tp->window_clamp = maxwin;
 567
 568		if (tcp_app_win && maxwin > 4 * tp->advmss)
 569			tp->window_clamp = max(maxwin -
 570					       (maxwin >> tcp_app_win),
 571					       4 * tp->advmss);
 572	}
 573
 574	/* Force reservation of one segment. */
 575	if (tcp_app_win &&
 576	    tp->window_clamp > 2 * tp->advmss &&
 577	    tp->window_clamp + tp->advmss > maxwin)
 578		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 579
 580	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 581	tp->snd_cwnd_stamp = tcp_jiffies32;
 582	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 583				    (u32)TCP_INIT_CWND * tp->advmss);
 584}
 585
 586/* 4. Recalculate window clamp after socket hit its memory bounds. */
 587static void tcp_clamp_window(struct sock *sk)
 588{
 589	struct tcp_sock *tp = tcp_sk(sk);
 590	struct inet_connection_sock *icsk = inet_csk(sk);
 591	struct net *net = sock_net(sk);
 592	int rmem2;
 593
 594	icsk->icsk_ack.quick = 0;
 595	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
 596
 597	if (sk->sk_rcvbuf < rmem2 &&
 598	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 599	    !tcp_under_memory_pressure(sk) &&
 600	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 601		WRITE_ONCE(sk->sk_rcvbuf,
 602			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
 
 603	}
 604	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 605		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 606}
 607
 608/* Initialize RCV_MSS value.
 609 * RCV_MSS is an our guess about MSS used by the peer.
 610 * We haven't any direct information about the MSS.
 611 * It's better to underestimate the RCV_MSS rather than overestimate.
 612 * Overestimations make us ACKing less frequently than needed.
 613 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 614 */
 615void tcp_initialize_rcv_mss(struct sock *sk)
 616{
 617	const struct tcp_sock *tp = tcp_sk(sk);
 618	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 619
 620	hint = min(hint, tp->rcv_wnd / 2);
 621	hint = min(hint, TCP_MSS_DEFAULT);
 622	hint = max(hint, TCP_MIN_MSS);
 623
 624	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 625}
 626EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 627
 628/* Receiver "autotuning" code.
 629 *
 630 * The algorithm for RTT estimation w/o timestamps is based on
 631 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 632 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 633 *
 634 * More detail on this code can be found at
 635 * <http://staff.psc.edu/jheffner/>,
 636 * though this reference is out of date.  A new paper
 637 * is pending.
 638 */
 639static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 640{
 641	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 642	long m = sample;
 643
 644	if (new_sample != 0) {
 645		/* If we sample in larger samples in the non-timestamp
 646		 * case, we could grossly overestimate the RTT especially
 647		 * with chatty applications or bulk transfer apps which
 648		 * are stalled on filesystem I/O.
 649		 *
 650		 * Also, since we are only going for a minimum in the
 651		 * non-timestamp case, we do not smooth things out
 652		 * else with timestamps disabled convergence takes too
 653		 * long.
 654		 */
 655		if (!win_dep) {
 656			m -= (new_sample >> 3);
 657			new_sample += m;
 658		} else {
 659			m <<= 3;
 660			if (m < new_sample)
 661				new_sample = m;
 662		}
 663	} else {
 664		/* No previous measure. */
 665		new_sample = m << 3;
 666	}
 667
 668	tp->rcv_rtt_est.rtt_us = new_sample;
 669}
 670
 671static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 672{
 673	u32 delta_us;
 674
 675	if (tp->rcv_rtt_est.time == 0)
 676		goto new_measure;
 677	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 678		return;
 679	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 680	if (!delta_us)
 681		delta_us = 1;
 682	tcp_rcv_rtt_update(tp, delta_us, 1);
 683
 684new_measure:
 685	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 686	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 687}
 688
 689static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
 690{
 691	u32 delta, delta_us;
 692
 693	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
 694	if (tp->tcp_usec_ts)
 695		return delta;
 696
 697	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 698		if (!delta)
 699			delta = 1;
 700		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 701		return delta_us;
 702	}
 703	return -1;
 704}
 705
 706static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 707					  const struct sk_buff *skb)
 708{
 709	struct tcp_sock *tp = tcp_sk(sk);
 710
 711	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 712		return;
 713	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 714
 715	if (TCP_SKB_CB(skb)->end_seq -
 716	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 717		s32 delta = tcp_rtt_tsopt_us(tp);
 
 718
 719		if (delta >= 0)
 720			tcp_rcv_rtt_update(tp, delta, 0);
 
 
 
 
 721	}
 722}
 723
 724/*
 725 * This function should be called every time data is copied to user space.
 726 * It calculates the appropriate TCP receive buffer space.
 727 */
 728void tcp_rcv_space_adjust(struct sock *sk)
 729{
 730	struct tcp_sock *tp = tcp_sk(sk);
 731	u32 copied;
 732	int time;
 733
 734	trace_tcp_rcv_space_adjust(sk);
 735
 736	tcp_mstamp_refresh(tp);
 737	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 738	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 739		return;
 740
 741	/* Number of bytes copied to user in last RTT */
 742	copied = tp->copied_seq - tp->rcvq_space.seq;
 743	if (copied <= tp->rcvq_space.space)
 744		goto new_measure;
 745
 746	/* A bit of theory :
 747	 * copied = bytes received in previous RTT, our base window
 748	 * To cope with packet losses, we need a 2x factor
 749	 * To cope with slow start, and sender growing its cwin by 100 %
 750	 * every RTT, we need a 4x factor, because the ACK we are sending
 751	 * now is for the next RTT, not the current one :
 752	 * <prev RTT . ><current RTT .. ><next RTT .... >
 753	 */
 754
 755	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
 756	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 
 757		u64 rcvwin, grow;
 758		int rcvbuf;
 759
 760		/* minimal window to cope with packet losses, assuming
 761		 * steady state. Add some cushion because of small variations.
 762		 */
 763		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 764
 765		/* Accommodate for sender rate increase (eg. slow start) */
 766		grow = rcvwin * (copied - tp->rcvq_space.space);
 767		do_div(grow, tp->rcvq_space.space);
 768		rcvwin += (grow << 1);
 769
 770		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
 771			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 
 
 
 
 
 772		if (rcvbuf > sk->sk_rcvbuf) {
 773			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 774
 775			/* Make the window clamp follow along.  */
 776			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 777		}
 778	}
 779	tp->rcvq_space.space = copied;
 780
 781new_measure:
 782	tp->rcvq_space.seq = tp->copied_seq;
 783	tp->rcvq_space.time = tp->tcp_mstamp;
 784}
 785
 786static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
 787{
 788#if IS_ENABLED(CONFIG_IPV6)
 789	struct inet_connection_sock *icsk = inet_csk(sk);
 790
 791	if (skb->protocol == htons(ETH_P_IPV6))
 792		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
 793#endif
 794}
 795
 796/* There is something which you must keep in mind when you analyze the
 797 * behavior of the tp->ato delayed ack timeout interval.  When a
 798 * connection starts up, we want to ack as quickly as possible.  The
 799 * problem is that "good" TCP's do slow start at the beginning of data
 800 * transmission.  The means that until we send the first few ACK's the
 801 * sender will sit on his end and only queue most of his data, because
 802 * he can only send snd_cwnd unacked packets at any given time.  For
 803 * each ACK we send, he increments snd_cwnd and transmits more of his
 804 * queue.  -DaveM
 805 */
 806static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 807{
 808	struct tcp_sock *tp = tcp_sk(sk);
 809	struct inet_connection_sock *icsk = inet_csk(sk);
 810	u32 now;
 811
 812	inet_csk_schedule_ack(sk);
 813
 814	tcp_measure_rcv_mss(sk, skb);
 815
 816	tcp_rcv_rtt_measure(tp);
 817
 818	now = tcp_jiffies32;
 819
 820	if (!icsk->icsk_ack.ato) {
 821		/* The _first_ data packet received, initialize
 822		 * delayed ACK engine.
 823		 */
 824		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 825		icsk->icsk_ack.ato = TCP_ATO_MIN;
 826	} else {
 827		int m = now - icsk->icsk_ack.lrcvtime;
 828
 829		if (m <= TCP_ATO_MIN / 2) {
 830			/* The fastest case is the first. */
 831			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 832		} else if (m < icsk->icsk_ack.ato) {
 833			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 834			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 835				icsk->icsk_ack.ato = icsk->icsk_rto;
 836		} else if (m > icsk->icsk_rto) {
 837			/* Too long gap. Apparently sender failed to
 838			 * restart window, so that we send ACKs quickly.
 839			 */
 840			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 
 841		}
 842	}
 843	icsk->icsk_ack.lrcvtime = now;
 844	tcp_save_lrcv_flowlabel(sk, skb);
 845
 846	tcp_ecn_check_ce(sk, skb);
 847
 848	if (skb->len >= 128)
 849		tcp_grow_window(sk, skb, true);
 850}
 851
 852/* Called to compute a smoothed rtt estimate. The data fed to this
 853 * routine either comes from timestamps, or from segments that were
 854 * known _not_ to have been retransmitted [see Karn/Partridge
 855 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 856 * piece by Van Jacobson.
 857 * NOTE: the next three routines used to be one big routine.
 858 * To save cycles in the RFC 1323 implementation it was better to break
 859 * it up into three procedures. -- erics
 860 */
 861static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 862{
 863	struct tcp_sock *tp = tcp_sk(sk);
 864	long m = mrtt_us; /* RTT */
 865	u32 srtt = tp->srtt_us;
 866
 867	/*	The following amusing code comes from Jacobson's
 868	 *	article in SIGCOMM '88.  Note that rtt and mdev
 869	 *	are scaled versions of rtt and mean deviation.
 870	 *	This is designed to be as fast as possible
 871	 *	m stands for "measurement".
 872	 *
 873	 *	On a 1990 paper the rto value is changed to:
 874	 *	RTO = rtt + 4 * mdev
 875	 *
 876	 * Funny. This algorithm seems to be very broken.
 877	 * These formulae increase RTO, when it should be decreased, increase
 878	 * too slowly, when it should be increased quickly, decrease too quickly
 879	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 880	 * does not matter how to _calculate_ it. Seems, it was trap
 881	 * that VJ failed to avoid. 8)
 882	 */
 883	if (srtt != 0) {
 884		m -= (srtt >> 3);	/* m is now error in rtt est */
 885		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 886		if (m < 0) {
 887			m = -m;		/* m is now abs(error) */
 888			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 889			/* This is similar to one of Eifel findings.
 890			 * Eifel blocks mdev updates when rtt decreases.
 891			 * This solution is a bit different: we use finer gain
 892			 * for mdev in this case (alpha*beta).
 893			 * Like Eifel it also prevents growth of rto,
 894			 * but also it limits too fast rto decreases,
 895			 * happening in pure Eifel.
 896			 */
 897			if (m > 0)
 898				m >>= 3;
 899		} else {
 900			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 901		}
 902		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 903		if (tp->mdev_us > tp->mdev_max_us) {
 904			tp->mdev_max_us = tp->mdev_us;
 905			if (tp->mdev_max_us > tp->rttvar_us)
 906				tp->rttvar_us = tp->mdev_max_us;
 907		}
 908		if (after(tp->snd_una, tp->rtt_seq)) {
 909			if (tp->mdev_max_us < tp->rttvar_us)
 910				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 911			tp->rtt_seq = tp->snd_nxt;
 912			tp->mdev_max_us = tcp_rto_min_us(sk);
 913
 914			tcp_bpf_rtt(sk);
 915		}
 916	} else {
 917		/* no previous measure. */
 918		srtt = m << 3;		/* take the measured time to be rtt */
 919		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 920		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 921		tp->mdev_max_us = tp->rttvar_us;
 922		tp->rtt_seq = tp->snd_nxt;
 923
 924		tcp_bpf_rtt(sk);
 925	}
 926	tp->srtt_us = max(1U, srtt);
 927}
 928
 929static void tcp_update_pacing_rate(struct sock *sk)
 930{
 931	const struct tcp_sock *tp = tcp_sk(sk);
 932	u64 rate;
 933
 934	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 935	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 936
 937	/* current rate is (cwnd * mss) / srtt
 938	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 939	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 940	 *
 941	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 942	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 943	 *	 end of slow start and should slow down.
 944	 */
 945	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
 946		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
 947	else
 948		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
 949
 950	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
 951
 952	if (likely(tp->srtt_us))
 953		do_div(rate, tp->srtt_us);
 954
 955	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 956	 * without any lock. We want to make sure compiler wont store
 957	 * intermediate values in this location.
 958	 */
 959	WRITE_ONCE(sk->sk_pacing_rate,
 960		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
 961}
 962
 963/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 964 * routine referred to above.
 965 */
 966static void tcp_set_rto(struct sock *sk)
 967{
 968	const struct tcp_sock *tp = tcp_sk(sk);
 969	/* Old crap is replaced with new one. 8)
 970	 *
 971	 * More seriously:
 972	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 973	 *    It cannot be less due to utterly erratic ACK generation made
 974	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 975	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 976	 *    is invisible. Actually, Linux-2.4 also generates erratic
 977	 *    ACKs in some circumstances.
 978	 */
 979	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 980
 981	/* 2. Fixups made earlier cannot be right.
 982	 *    If we do not estimate RTO correctly without them,
 983	 *    all the algo is pure shit and should be replaced
 984	 *    with correct one. It is exactly, which we pretend to do.
 985	 */
 986
 987	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 988	 * guarantees that rto is higher.
 989	 */
 990	tcp_bound_rto(sk);
 991}
 992
 993__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 994{
 995	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 996
 997	if (!cwnd)
 998		cwnd = TCP_INIT_CWND;
 999	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1000}
1001
1002struct tcp_sacktag_state {
1003	/* Timestamps for earliest and latest never-retransmitted segment
1004	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1005	 * but congestion control should still get an accurate delay signal.
1006	 */
1007	u64	first_sackt;
1008	u64	last_sackt;
1009	u32	reord;
1010	u32	sack_delivered;
1011	int	flag;
1012	unsigned int mss_now;
1013	struct rate_sample *rate;
1014};
1015
1016/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1017 * and spurious retransmission information if this DSACK is unlikely caused by
1018 * sender's action:
1019 * - DSACKed sequence range is larger than maximum receiver's window.
1020 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1021 */
1022static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1023			  u32 end_seq, struct tcp_sacktag_state *state)
1024{
1025	u32 seq_len, dup_segs = 1;
1026
1027	if (!before(start_seq, end_seq))
1028		return 0;
1029
1030	seq_len = end_seq - start_seq;
1031	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1032	if (seq_len > tp->max_window)
1033		return 0;
1034	if (seq_len > tp->mss_cache)
1035		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1036	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1037		state->flag |= FLAG_DSACK_TLP;
1038
1039	tp->dsack_dups += dup_segs;
1040	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1041	if (tp->dsack_dups > tp->total_retrans)
1042		return 0;
1043
1044	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1045	/* We increase the RACK ordering window in rounds where we receive
1046	 * DSACKs that may have been due to reordering causing RACK to trigger
1047	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1048	 * without having seen reordering, or that match TLP probes (TLP
1049	 * is timer-driven, not triggered by RACK).
1050	 */
1051	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1052		tp->rack.dsack_seen = 1;
1053
1054	state->flag |= FLAG_DSACKING_ACK;
1055	/* A spurious retransmission is delivered */
1056	state->sack_delivered += dup_segs;
1057
1058	return dup_segs;
1059}
1060
1061/* It's reordering when higher sequence was delivered (i.e. sacked) before
1062 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1063 * distance is approximated in full-mss packet distance ("reordering").
1064 */
1065static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1066				      const int ts)
1067{
1068	struct tcp_sock *tp = tcp_sk(sk);
1069	const u32 mss = tp->mss_cache;
1070	u32 fack, metric;
1071
1072	fack = tcp_highest_sack_seq(tp);
1073	if (!before(low_seq, fack))
1074		return;
1075
1076	metric = fack - low_seq;
1077	if ((metric > tp->reordering * mss) && mss) {
1078#if FASTRETRANS_DEBUG > 1
1079		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1080			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1081			 tp->reordering,
1082			 0,
1083			 tp->sacked_out,
1084			 tp->undo_marker ? tp->undo_retrans : 0);
1085#endif
1086		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1087				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1088	}
1089
1090	/* This exciting event is worth to be remembered. 8) */
1091	tp->reord_seen++;
1092	NET_INC_STATS(sock_net(sk),
1093		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1094}
1095
1096 /* This must be called before lost_out or retrans_out are updated
1097  * on a new loss, because we want to know if all skbs previously
1098  * known to be lost have already been retransmitted, indicating
1099  * that this newly lost skb is our next skb to retransmit.
1100  */
1101static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1102{
1103	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1104	    (tp->retransmit_skb_hint &&
1105	     before(TCP_SKB_CB(skb)->seq,
1106		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1107		tp->retransmit_skb_hint = skb;
1108}
1109
1110/* Sum the number of packets on the wire we have marked as lost, and
1111 * notify the congestion control module that the given skb was marked lost.
1112 */
1113static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1114{
1115	tp->lost += tcp_skb_pcount(skb);
1116}
1117
1118void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1119{
1120	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1121	struct tcp_sock *tp = tcp_sk(sk);
1122
1123	if (sacked & TCPCB_SACKED_ACKED)
1124		return;
1125
1126	tcp_verify_retransmit_hint(tp, skb);
1127	if (sacked & TCPCB_LOST) {
1128		if (sacked & TCPCB_SACKED_RETRANS) {
1129			/* Account for retransmits that are lost again */
1130			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1131			tp->retrans_out -= tcp_skb_pcount(skb);
1132			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1133				      tcp_skb_pcount(skb));
1134			tcp_notify_skb_loss_event(tp, skb);
1135		}
1136	} else {
1137		tp->lost_out += tcp_skb_pcount(skb);
1138		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1139		tcp_notify_skb_loss_event(tp, skb);
1140	}
1141}
1142
1143/* Updates the delivered and delivered_ce counts */
1144static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1145				bool ece_ack)
1146{
1147	tp->delivered += delivered;
1148	if (ece_ack)
1149		tp->delivered_ce += delivered;
1150}
1151
1152/* This procedure tags the retransmission queue when SACKs arrive.
1153 *
1154 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1155 * Packets in queue with these bits set are counted in variables
1156 * sacked_out, retrans_out and lost_out, correspondingly.
1157 *
1158 * Valid combinations are:
1159 * Tag  InFlight	Description
1160 * 0	1		- orig segment is in flight.
1161 * S	0		- nothing flies, orig reached receiver.
1162 * L	0		- nothing flies, orig lost by net.
1163 * R	2		- both orig and retransmit are in flight.
1164 * L|R	1		- orig is lost, retransmit is in flight.
1165 * S|R  1		- orig reached receiver, retrans is still in flight.
1166 * (L|S|R is logically valid, it could occur when L|R is sacked,
1167 *  but it is equivalent to plain S and code short-curcuits it to S.
1168 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1169 *
1170 * These 6 states form finite state machine, controlled by the following events:
1171 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1172 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1173 * 3. Loss detection event of two flavors:
1174 *	A. Scoreboard estimator decided the packet is lost.
1175 *	   A'. Reno "three dupacks" marks head of queue lost.
1176 *	B. SACK arrives sacking SND.NXT at the moment, when the
1177 *	   segment was retransmitted.
1178 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1179 *
1180 * It is pleasant to note, that state diagram turns out to be commutative,
1181 * so that we are allowed not to be bothered by order of our actions,
1182 * when multiple events arrive simultaneously. (see the function below).
1183 *
1184 * Reordering detection.
1185 * --------------------
1186 * Reordering metric is maximal distance, which a packet can be displaced
1187 * in packet stream. With SACKs we can estimate it:
1188 *
1189 * 1. SACK fills old hole and the corresponding segment was not
1190 *    ever retransmitted -> reordering. Alas, we cannot use it
1191 *    when segment was retransmitted.
1192 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1193 *    for retransmitted and already SACKed segment -> reordering..
1194 * Both of these heuristics are not used in Loss state, when we cannot
1195 * account for retransmits accurately.
1196 *
1197 * SACK block validation.
1198 * ----------------------
1199 *
1200 * SACK block range validation checks that the received SACK block fits to
1201 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1202 * Note that SND.UNA is not included to the range though being valid because
1203 * it means that the receiver is rather inconsistent with itself reporting
1204 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1205 * perfectly valid, however, in light of RFC2018 which explicitly states
1206 * that "SACK block MUST reflect the newest segment.  Even if the newest
1207 * segment is going to be discarded ...", not that it looks very clever
1208 * in case of head skb. Due to potentional receiver driven attacks, we
1209 * choose to avoid immediate execution of a walk in write queue due to
1210 * reneging and defer head skb's loss recovery to standard loss recovery
1211 * procedure that will eventually trigger (nothing forbids us doing this).
1212 *
1213 * Implements also blockage to start_seq wrap-around. Problem lies in the
1214 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1215 * there's no guarantee that it will be before snd_nxt (n). The problem
1216 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1217 * wrap (s_w):
1218 *
1219 *         <- outs wnd ->                          <- wrapzone ->
1220 *         u     e      n                         u_w   e_w  s n_w
1221 *         |     |      |                          |     |   |  |
1222 * |<------------+------+----- TCP seqno space --------------+---------->|
1223 * ...-- <2^31 ->|                                           |<--------...
1224 * ...---- >2^31 ------>|                                    |<--------...
1225 *
1226 * Current code wouldn't be vulnerable but it's better still to discard such
1227 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1228 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1229 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1230 * equal to the ideal case (infinite seqno space without wrap caused issues).
1231 *
1232 * With D-SACK the lower bound is extended to cover sequence space below
1233 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1234 * again, D-SACK block must not to go across snd_una (for the same reason as
1235 * for the normal SACK blocks, explained above). But there all simplicity
1236 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1237 * fully below undo_marker they do not affect behavior in anyway and can
1238 * therefore be safely ignored. In rare cases (which are more or less
1239 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1240 * fragmentation and packet reordering past skb's retransmission. To consider
1241 * them correctly, the acceptable range must be extended even more though
1242 * the exact amount is rather hard to quantify. However, tp->max_window can
1243 * be used as an exaggerated estimate.
1244 */
1245static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1246				   u32 start_seq, u32 end_seq)
1247{
1248	/* Too far in future, or reversed (interpretation is ambiguous) */
1249	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1250		return false;
1251
1252	/* Nasty start_seq wrap-around check (see comments above) */
1253	if (!before(start_seq, tp->snd_nxt))
1254		return false;
1255
1256	/* In outstanding window? ...This is valid exit for D-SACKs too.
1257	 * start_seq == snd_una is non-sensical (see comments above)
1258	 */
1259	if (after(start_seq, tp->snd_una))
1260		return true;
1261
1262	if (!is_dsack || !tp->undo_marker)
1263		return false;
1264
1265	/* ...Then it's D-SACK, and must reside below snd_una completely */
1266	if (after(end_seq, tp->snd_una))
1267		return false;
1268
1269	if (!before(start_seq, tp->undo_marker))
1270		return true;
1271
1272	/* Too old */
1273	if (!after(end_seq, tp->undo_marker))
1274		return false;
1275
1276	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1277	 *   start_seq < undo_marker and end_seq >= undo_marker.
1278	 */
1279	return !before(start_seq, end_seq - tp->max_window);
1280}
1281
1282static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1283			    struct tcp_sack_block_wire *sp, int num_sacks,
1284			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1285{
1286	struct tcp_sock *tp = tcp_sk(sk);
1287	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1288	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1289	u32 dup_segs;
1290
1291	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1292		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1293	} else if (num_sacks > 1) {
1294		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1295		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1296
1297		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1298			return false;
1299		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1300	} else {
1301		return false;
1302	}
1303
1304	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1305	if (!dup_segs) {	/* Skip dubious DSACK */
1306		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1307		return false;
1308	}
1309
1310	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1311
1312	/* D-SACK for already forgotten data... Do dumb counting. */
1313	if (tp->undo_marker && tp->undo_retrans > 0 &&
1314	    !after(end_seq_0, prior_snd_una) &&
1315	    after(end_seq_0, tp->undo_marker))
1316		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1317
1318	return true;
1319}
1320
1321/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1322 * the incoming SACK may not exactly match but we can find smaller MSS
1323 * aligned portion of it that matches. Therefore we might need to fragment
1324 * which may fail and creates some hassle (caller must handle error case
1325 * returns).
1326 *
1327 * FIXME: this could be merged to shift decision code
1328 */
1329static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1330				  u32 start_seq, u32 end_seq)
1331{
1332	int err;
1333	bool in_sack;
1334	unsigned int pkt_len;
1335	unsigned int mss;
1336
1337	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1338		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1339
1340	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1341	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1342		mss = tcp_skb_mss(skb);
1343		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1344
1345		if (!in_sack) {
1346			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1347			if (pkt_len < mss)
1348				pkt_len = mss;
1349		} else {
1350			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1351			if (pkt_len < mss)
1352				return -EINVAL;
1353		}
1354
1355		/* Round if necessary so that SACKs cover only full MSSes
1356		 * and/or the remaining small portion (if present)
1357		 */
1358		if (pkt_len > mss) {
1359			unsigned int new_len = (pkt_len / mss) * mss;
1360			if (!in_sack && new_len < pkt_len)
1361				new_len += mss;
1362			pkt_len = new_len;
1363		}
1364
1365		if (pkt_len >= skb->len && !in_sack)
1366			return 0;
1367
1368		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1369				   pkt_len, mss, GFP_ATOMIC);
1370		if (err < 0)
1371			return err;
1372	}
1373
1374	return in_sack;
1375}
1376
1377/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1378static u8 tcp_sacktag_one(struct sock *sk,
1379			  struct tcp_sacktag_state *state, u8 sacked,
1380			  u32 start_seq, u32 end_seq,
1381			  int dup_sack, int pcount,
1382			  u64 xmit_time)
1383{
1384	struct tcp_sock *tp = tcp_sk(sk);
1385
1386	/* Account D-SACK for retransmitted packet. */
1387	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1388		if (tp->undo_marker && tp->undo_retrans > 0 &&
1389		    after(end_seq, tp->undo_marker))
1390			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1391		if ((sacked & TCPCB_SACKED_ACKED) &&
1392		    before(start_seq, state->reord))
1393				state->reord = start_seq;
1394	}
1395
1396	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1397	if (!after(end_seq, tp->snd_una))
1398		return sacked;
1399
1400	if (!(sacked & TCPCB_SACKED_ACKED)) {
1401		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1402
1403		if (sacked & TCPCB_SACKED_RETRANS) {
1404			/* If the segment is not tagged as lost,
1405			 * we do not clear RETRANS, believing
1406			 * that retransmission is still in flight.
1407			 */
1408			if (sacked & TCPCB_LOST) {
1409				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1410				tp->lost_out -= pcount;
1411				tp->retrans_out -= pcount;
1412			}
1413		} else {
1414			if (!(sacked & TCPCB_RETRANS)) {
1415				/* New sack for not retransmitted frame,
1416				 * which was in hole. It is reordering.
1417				 */
1418				if (before(start_seq,
1419					   tcp_highest_sack_seq(tp)) &&
1420				    before(start_seq, state->reord))
1421					state->reord = start_seq;
1422
1423				if (!after(end_seq, tp->high_seq))
1424					state->flag |= FLAG_ORIG_SACK_ACKED;
1425				if (state->first_sackt == 0)
1426					state->first_sackt = xmit_time;
1427				state->last_sackt = xmit_time;
1428			}
1429
1430			if (sacked & TCPCB_LOST) {
1431				sacked &= ~TCPCB_LOST;
1432				tp->lost_out -= pcount;
1433			}
1434		}
1435
1436		sacked |= TCPCB_SACKED_ACKED;
1437		state->flag |= FLAG_DATA_SACKED;
1438		tp->sacked_out += pcount;
1439		/* Out-of-order packets delivered */
1440		state->sack_delivered += pcount;
1441
1442		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1443		if (tp->lost_skb_hint &&
1444		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1445			tp->lost_cnt_hint += pcount;
1446	}
1447
1448	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1449	 * frames and clear it. undo_retrans is decreased above, L|R frames
1450	 * are accounted above as well.
1451	 */
1452	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1453		sacked &= ~TCPCB_SACKED_RETRANS;
1454		tp->retrans_out -= pcount;
1455	}
1456
1457	return sacked;
1458}
1459
1460/* Shift newly-SACKed bytes from this skb to the immediately previous
1461 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1462 */
1463static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1464			    struct sk_buff *skb,
1465			    struct tcp_sacktag_state *state,
1466			    unsigned int pcount, int shifted, int mss,
1467			    bool dup_sack)
1468{
1469	struct tcp_sock *tp = tcp_sk(sk);
1470	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1471	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1472
1473	BUG_ON(!pcount);
1474
1475	/* Adjust counters and hints for the newly sacked sequence
1476	 * range but discard the return value since prev is already
1477	 * marked. We must tag the range first because the seq
1478	 * advancement below implicitly advances
1479	 * tcp_highest_sack_seq() when skb is highest_sack.
1480	 */
1481	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1482			start_seq, end_seq, dup_sack, pcount,
1483			tcp_skb_timestamp_us(skb));
1484	tcp_rate_skb_delivered(sk, skb, state->rate);
1485
1486	if (skb == tp->lost_skb_hint)
1487		tp->lost_cnt_hint += pcount;
1488
1489	TCP_SKB_CB(prev)->end_seq += shifted;
1490	TCP_SKB_CB(skb)->seq += shifted;
1491
1492	tcp_skb_pcount_add(prev, pcount);
1493	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1494	tcp_skb_pcount_add(skb, -pcount);
1495
1496	/* When we're adding to gso_segs == 1, gso_size will be zero,
1497	 * in theory this shouldn't be necessary but as long as DSACK
1498	 * code can come after this skb later on it's better to keep
1499	 * setting gso_size to something.
1500	 */
1501	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1502		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1503
1504	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1505	if (tcp_skb_pcount(skb) <= 1)
1506		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1507
1508	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1509	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1510
1511	if (skb->len > 0) {
1512		BUG_ON(!tcp_skb_pcount(skb));
1513		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1514		return false;
1515	}
1516
1517	/* Whole SKB was eaten :-) */
1518
1519	if (skb == tp->retransmit_skb_hint)
1520		tp->retransmit_skb_hint = prev;
1521	if (skb == tp->lost_skb_hint) {
1522		tp->lost_skb_hint = prev;
1523		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1524	}
1525
1526	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1527	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1528	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1529		TCP_SKB_CB(prev)->end_seq++;
1530
1531	if (skb == tcp_highest_sack(sk))
1532		tcp_advance_highest_sack(sk, skb);
1533
1534	tcp_skb_collapse_tstamp(prev, skb);
1535	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1536		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1537
1538	tcp_rtx_queue_unlink_and_free(skb, sk);
1539
1540	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1541
1542	return true;
1543}
1544
1545/* I wish gso_size would have a bit more sane initialization than
1546 * something-or-zero which complicates things
1547 */
1548static int tcp_skb_seglen(const struct sk_buff *skb)
1549{
1550	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1551}
1552
1553/* Shifting pages past head area doesn't work */
1554static int skb_can_shift(const struct sk_buff *skb)
1555{
1556	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1557}
1558
1559int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1560		  int pcount, int shiftlen)
1561{
1562	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1563	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1564	 * to make sure not storing more than 65535 * 8 bytes per skb,
1565	 * even if current MSS is bigger.
1566	 */
1567	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1568		return 0;
1569	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1570		return 0;
1571	return skb_shift(to, from, shiftlen);
1572}
1573
1574/* Try collapsing SACK blocks spanning across multiple skbs to a single
1575 * skb.
1576 */
1577static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1578					  struct tcp_sacktag_state *state,
1579					  u32 start_seq, u32 end_seq,
1580					  bool dup_sack)
1581{
1582	struct tcp_sock *tp = tcp_sk(sk);
1583	struct sk_buff *prev;
1584	int mss;
1585	int pcount = 0;
1586	int len;
1587	int in_sack;
1588
1589	/* Normally R but no L won't result in plain S */
1590	if (!dup_sack &&
1591	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1592		goto fallback;
1593	if (!skb_can_shift(skb))
1594		goto fallback;
1595	/* This frame is about to be dropped (was ACKed). */
1596	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1597		goto fallback;
1598
1599	/* Can only happen with delayed DSACK + discard craziness */
1600	prev = skb_rb_prev(skb);
1601	if (!prev)
1602		goto fallback;
1603
1604	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1605		goto fallback;
1606
1607	if (!tcp_skb_can_collapse(prev, skb))
1608		goto fallback;
1609
1610	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1611		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1612
1613	if (in_sack) {
1614		len = skb->len;
1615		pcount = tcp_skb_pcount(skb);
1616		mss = tcp_skb_seglen(skb);
1617
1618		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1619		 * drop this restriction as unnecessary
1620		 */
1621		if (mss != tcp_skb_seglen(prev))
1622			goto fallback;
1623	} else {
1624		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1625			goto noop;
1626		/* CHECKME: This is non-MSS split case only?, this will
1627		 * cause skipped skbs due to advancing loop btw, original
1628		 * has that feature too
1629		 */
1630		if (tcp_skb_pcount(skb) <= 1)
1631			goto noop;
1632
1633		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1634		if (!in_sack) {
1635			/* TODO: head merge to next could be attempted here
1636			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1637			 * though it might not be worth of the additional hassle
1638			 *
1639			 * ...we can probably just fallback to what was done
1640			 * previously. We could try merging non-SACKed ones
1641			 * as well but it probably isn't going to buy off
1642			 * because later SACKs might again split them, and
1643			 * it would make skb timestamp tracking considerably
1644			 * harder problem.
1645			 */
1646			goto fallback;
1647		}
1648
1649		len = end_seq - TCP_SKB_CB(skb)->seq;
1650		BUG_ON(len < 0);
1651		BUG_ON(len > skb->len);
1652
1653		/* MSS boundaries should be honoured or else pcount will
1654		 * severely break even though it makes things bit trickier.
1655		 * Optimize common case to avoid most of the divides
1656		 */
1657		mss = tcp_skb_mss(skb);
1658
1659		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1660		 * drop this restriction as unnecessary
1661		 */
1662		if (mss != tcp_skb_seglen(prev))
1663			goto fallback;
1664
1665		if (len == mss) {
1666			pcount = 1;
1667		} else if (len < mss) {
1668			goto noop;
1669		} else {
1670			pcount = len / mss;
1671			len = pcount * mss;
1672		}
1673	}
1674
1675	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1676	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1677		goto fallback;
1678
1679	if (!tcp_skb_shift(prev, skb, pcount, len))
1680		goto fallback;
1681	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1682		goto out;
1683
1684	/* Hole filled allows collapsing with the next as well, this is very
1685	 * useful when hole on every nth skb pattern happens
1686	 */
1687	skb = skb_rb_next(prev);
1688	if (!skb)
1689		goto out;
1690
1691	if (!skb_can_shift(skb) ||
1692	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1693	    (mss != tcp_skb_seglen(skb)))
1694		goto out;
1695
1696	if (!tcp_skb_can_collapse(prev, skb))
1697		goto out;
1698	len = skb->len;
1699	pcount = tcp_skb_pcount(skb);
1700	if (tcp_skb_shift(prev, skb, pcount, len))
1701		tcp_shifted_skb(sk, prev, skb, state, pcount,
1702				len, mss, 0);
1703
1704out:
1705	return prev;
1706
1707noop:
1708	return skb;
1709
1710fallback:
1711	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1712	return NULL;
1713}
1714
1715static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1716					struct tcp_sack_block *next_dup,
1717					struct tcp_sacktag_state *state,
1718					u32 start_seq, u32 end_seq,
1719					bool dup_sack_in)
1720{
1721	struct tcp_sock *tp = tcp_sk(sk);
1722	struct sk_buff *tmp;
1723
1724	skb_rbtree_walk_from(skb) {
1725		int in_sack = 0;
1726		bool dup_sack = dup_sack_in;
1727
1728		/* queue is in-order => we can short-circuit the walk early */
1729		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1730			break;
1731
1732		if (next_dup  &&
1733		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1734			in_sack = tcp_match_skb_to_sack(sk, skb,
1735							next_dup->start_seq,
1736							next_dup->end_seq);
1737			if (in_sack > 0)
1738				dup_sack = true;
1739		}
1740
1741		/* skb reference here is a bit tricky to get right, since
1742		 * shifting can eat and free both this skb and the next,
1743		 * so not even _safe variant of the loop is enough.
1744		 */
1745		if (in_sack <= 0) {
1746			tmp = tcp_shift_skb_data(sk, skb, state,
1747						 start_seq, end_seq, dup_sack);
1748			if (tmp) {
1749				if (tmp != skb) {
1750					skb = tmp;
1751					continue;
1752				}
1753
1754				in_sack = 0;
1755			} else {
1756				in_sack = tcp_match_skb_to_sack(sk, skb,
1757								start_seq,
1758								end_seq);
1759			}
1760		}
1761
1762		if (unlikely(in_sack < 0))
1763			break;
1764
1765		if (in_sack) {
1766			TCP_SKB_CB(skb)->sacked =
1767				tcp_sacktag_one(sk,
1768						state,
1769						TCP_SKB_CB(skb)->sacked,
1770						TCP_SKB_CB(skb)->seq,
1771						TCP_SKB_CB(skb)->end_seq,
1772						dup_sack,
1773						tcp_skb_pcount(skb),
1774						tcp_skb_timestamp_us(skb));
1775			tcp_rate_skb_delivered(sk, skb, state->rate);
1776			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1777				list_del_init(&skb->tcp_tsorted_anchor);
1778
1779			if (!before(TCP_SKB_CB(skb)->seq,
1780				    tcp_highest_sack_seq(tp)))
1781				tcp_advance_highest_sack(sk, skb);
1782		}
1783	}
1784	return skb;
1785}
1786
1787static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1788{
1789	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1790	struct sk_buff *skb;
1791
1792	while (*p) {
1793		parent = *p;
1794		skb = rb_to_skb(parent);
1795		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1796			p = &parent->rb_left;
1797			continue;
1798		}
1799		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1800			p = &parent->rb_right;
1801			continue;
1802		}
1803		return skb;
1804	}
1805	return NULL;
1806}
1807
1808static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1809					u32 skip_to_seq)
1810{
1811	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1812		return skb;
1813
1814	return tcp_sacktag_bsearch(sk, skip_to_seq);
1815}
1816
1817static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1818						struct sock *sk,
1819						struct tcp_sack_block *next_dup,
1820						struct tcp_sacktag_state *state,
1821						u32 skip_to_seq)
1822{
1823	if (!next_dup)
1824		return skb;
1825
1826	if (before(next_dup->start_seq, skip_to_seq)) {
1827		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1828		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1829				       next_dup->start_seq, next_dup->end_seq,
1830				       1);
1831	}
1832
1833	return skb;
1834}
1835
1836static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1837{
1838	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1839}
1840
1841static int
1842tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1843			u32 prior_snd_una, struct tcp_sacktag_state *state)
1844{
1845	struct tcp_sock *tp = tcp_sk(sk);
1846	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1847				    TCP_SKB_CB(ack_skb)->sacked);
1848	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1849	struct tcp_sack_block sp[TCP_NUM_SACKS];
1850	struct tcp_sack_block *cache;
1851	struct sk_buff *skb;
1852	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1853	int used_sacks;
1854	bool found_dup_sack = false;
1855	int i, j;
1856	int first_sack_index;
1857
1858	state->flag = 0;
1859	state->reord = tp->snd_nxt;
1860
1861	if (!tp->sacked_out)
1862		tcp_highest_sack_reset(sk);
1863
1864	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1865					 num_sacks, prior_snd_una, state);
1866
1867	/* Eliminate too old ACKs, but take into
1868	 * account more or less fresh ones, they can
1869	 * contain valid SACK info.
1870	 */
1871	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1872		return 0;
1873
1874	if (!tp->packets_out)
1875		goto out;
1876
1877	used_sacks = 0;
1878	first_sack_index = 0;
1879	for (i = 0; i < num_sacks; i++) {
1880		bool dup_sack = !i && found_dup_sack;
1881
1882		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1883		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1884
1885		if (!tcp_is_sackblock_valid(tp, dup_sack,
1886					    sp[used_sacks].start_seq,
1887					    sp[used_sacks].end_seq)) {
1888			int mib_idx;
1889
1890			if (dup_sack) {
1891				if (!tp->undo_marker)
1892					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1893				else
1894					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1895			} else {
1896				/* Don't count olds caused by ACK reordering */
1897				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1898				    !after(sp[used_sacks].end_seq, tp->snd_una))
1899					continue;
1900				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1901			}
1902
1903			NET_INC_STATS(sock_net(sk), mib_idx);
1904			if (i == 0)
1905				first_sack_index = -1;
1906			continue;
1907		}
1908
1909		/* Ignore very old stuff early */
1910		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1911			if (i == 0)
1912				first_sack_index = -1;
1913			continue;
1914		}
1915
1916		used_sacks++;
1917	}
1918
1919	/* order SACK blocks to allow in order walk of the retrans queue */
1920	for (i = used_sacks - 1; i > 0; i--) {
1921		for (j = 0; j < i; j++) {
1922			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1923				swap(sp[j], sp[j + 1]);
1924
1925				/* Track where the first SACK block goes to */
1926				if (j == first_sack_index)
1927					first_sack_index = j + 1;
1928			}
1929		}
1930	}
1931
1932	state->mss_now = tcp_current_mss(sk);
1933	skb = NULL;
1934	i = 0;
1935
1936	if (!tp->sacked_out) {
1937		/* It's already past, so skip checking against it */
1938		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1939	} else {
1940		cache = tp->recv_sack_cache;
1941		/* Skip empty blocks in at head of the cache */
1942		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1943		       !cache->end_seq)
1944			cache++;
1945	}
1946
1947	while (i < used_sacks) {
1948		u32 start_seq = sp[i].start_seq;
1949		u32 end_seq = sp[i].end_seq;
1950		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1951		struct tcp_sack_block *next_dup = NULL;
1952
1953		if (found_dup_sack && ((i + 1) == first_sack_index))
1954			next_dup = &sp[i + 1];
1955
1956		/* Skip too early cached blocks */
1957		while (tcp_sack_cache_ok(tp, cache) &&
1958		       !before(start_seq, cache->end_seq))
1959			cache++;
1960
1961		/* Can skip some work by looking recv_sack_cache? */
1962		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1963		    after(end_seq, cache->start_seq)) {
1964
1965			/* Head todo? */
1966			if (before(start_seq, cache->start_seq)) {
1967				skb = tcp_sacktag_skip(skb, sk, start_seq);
1968				skb = tcp_sacktag_walk(skb, sk, next_dup,
1969						       state,
1970						       start_seq,
1971						       cache->start_seq,
1972						       dup_sack);
1973			}
1974
1975			/* Rest of the block already fully processed? */
1976			if (!after(end_seq, cache->end_seq))
1977				goto advance_sp;
1978
1979			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1980						       state,
1981						       cache->end_seq);
1982
1983			/* ...tail remains todo... */
1984			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1985				/* ...but better entrypoint exists! */
1986				skb = tcp_highest_sack(sk);
1987				if (!skb)
1988					break;
1989				cache++;
1990				goto walk;
1991			}
1992
1993			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1994			/* Check overlap against next cached too (past this one already) */
1995			cache++;
1996			continue;
1997		}
1998
1999		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2000			skb = tcp_highest_sack(sk);
2001			if (!skb)
2002				break;
2003		}
2004		skb = tcp_sacktag_skip(skb, sk, start_seq);
2005
2006walk:
2007		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2008				       start_seq, end_seq, dup_sack);
2009
2010advance_sp:
2011		i++;
2012	}
2013
2014	/* Clear the head of the cache sack blocks so we can skip it next time */
2015	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2016		tp->recv_sack_cache[i].start_seq = 0;
2017		tp->recv_sack_cache[i].end_seq = 0;
2018	}
2019	for (j = 0; j < used_sacks; j++)
2020		tp->recv_sack_cache[i++] = sp[j];
2021
2022	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2023		tcp_check_sack_reordering(sk, state->reord, 0);
2024
2025	tcp_verify_left_out(tp);
2026out:
2027
2028#if FASTRETRANS_DEBUG > 0
2029	WARN_ON((int)tp->sacked_out < 0);
2030	WARN_ON((int)tp->lost_out < 0);
2031	WARN_ON((int)tp->retrans_out < 0);
2032	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2033#endif
2034	return state->flag;
2035}
2036
2037/* Limits sacked_out so that sum with lost_out isn't ever larger than
2038 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2039 */
2040static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2041{
2042	u32 holes;
2043
2044	holes = max(tp->lost_out, 1U);
2045	holes = min(holes, tp->packets_out);
2046
2047	if ((tp->sacked_out + holes) > tp->packets_out) {
2048		tp->sacked_out = tp->packets_out - holes;
2049		return true;
2050	}
2051	return false;
2052}
2053
2054/* If we receive more dupacks than we expected counting segments
2055 * in assumption of absent reordering, interpret this as reordering.
2056 * The only another reason could be bug in receiver TCP.
2057 */
2058static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2059{
2060	struct tcp_sock *tp = tcp_sk(sk);
2061
2062	if (!tcp_limit_reno_sacked(tp))
2063		return;
2064
2065	tp->reordering = min_t(u32, tp->packets_out + addend,
2066			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2067	tp->reord_seen++;
2068	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2069}
2070
2071/* Emulate SACKs for SACKless connection: account for a new dupack. */
2072
2073static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2074{
2075	if (num_dupack) {
2076		struct tcp_sock *tp = tcp_sk(sk);
2077		u32 prior_sacked = tp->sacked_out;
2078		s32 delivered;
2079
2080		tp->sacked_out += num_dupack;
2081		tcp_check_reno_reordering(sk, 0);
2082		delivered = tp->sacked_out - prior_sacked;
2083		if (delivered > 0)
2084			tcp_count_delivered(tp, delivered, ece_ack);
2085		tcp_verify_left_out(tp);
2086	}
2087}
2088
2089/* Account for ACK, ACKing some data in Reno Recovery phase. */
2090
2091static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2092{
2093	struct tcp_sock *tp = tcp_sk(sk);
2094
2095	if (acked > 0) {
2096		/* One ACK acked hole. The rest eat duplicate ACKs. */
2097		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2098				    ece_ack);
2099		if (acked - 1 >= tp->sacked_out)
2100			tp->sacked_out = 0;
2101		else
2102			tp->sacked_out -= acked - 1;
2103	}
2104	tcp_check_reno_reordering(sk, acked);
2105	tcp_verify_left_out(tp);
2106}
2107
2108static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2109{
2110	tp->sacked_out = 0;
2111}
2112
2113void tcp_clear_retrans(struct tcp_sock *tp)
2114{
2115	tp->retrans_out = 0;
2116	tp->lost_out = 0;
2117	tp->undo_marker = 0;
2118	tp->undo_retrans = -1;
2119	tp->sacked_out = 0;
2120	tp->rto_stamp = 0;
2121	tp->total_rto = 0;
2122	tp->total_rto_recoveries = 0;
2123	tp->total_rto_time = 0;
2124}
2125
2126static inline void tcp_init_undo(struct tcp_sock *tp)
2127{
2128	tp->undo_marker = tp->snd_una;
2129	/* Retransmission still in flight may cause DSACKs later. */
2130	tp->undo_retrans = tp->retrans_out ? : -1;
2131}
2132
2133static bool tcp_is_rack(const struct sock *sk)
2134{
2135	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2136		TCP_RACK_LOSS_DETECTION;
2137}
2138
2139/* If we detect SACK reneging, forget all SACK information
2140 * and reset tags completely, otherwise preserve SACKs. If receiver
2141 * dropped its ofo queue, we will know this due to reneging detection.
2142 */
2143static void tcp_timeout_mark_lost(struct sock *sk)
2144{
2145	struct tcp_sock *tp = tcp_sk(sk);
2146	struct sk_buff *skb, *head;
2147	bool is_reneg;			/* is receiver reneging on SACKs? */
2148
2149	head = tcp_rtx_queue_head(sk);
2150	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2151	if (is_reneg) {
2152		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2153		tp->sacked_out = 0;
2154		/* Mark SACK reneging until we recover from this loss event. */
2155		tp->is_sack_reneg = 1;
2156	} else if (tcp_is_reno(tp)) {
2157		tcp_reset_reno_sack(tp);
2158	}
2159
2160	skb = head;
2161	skb_rbtree_walk_from(skb) {
2162		if (is_reneg)
2163			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2164		else if (tcp_is_rack(sk) && skb != head &&
2165			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2166			continue; /* Don't mark recently sent ones lost yet */
2167		tcp_mark_skb_lost(sk, skb);
2168	}
2169	tcp_verify_left_out(tp);
2170	tcp_clear_all_retrans_hints(tp);
2171}
2172
2173/* Enter Loss state. */
2174void tcp_enter_loss(struct sock *sk)
2175{
2176	const struct inet_connection_sock *icsk = inet_csk(sk);
2177	struct tcp_sock *tp = tcp_sk(sk);
2178	struct net *net = sock_net(sk);
2179	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2180	u8 reordering;
2181
2182	tcp_timeout_mark_lost(sk);
2183
2184	/* Reduce ssthresh if it has not yet been made inside this window. */
2185	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2186	    !after(tp->high_seq, tp->snd_una) ||
2187	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2188		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2189		tp->prior_cwnd = tcp_snd_cwnd(tp);
2190		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2191		tcp_ca_event(sk, CA_EVENT_LOSS);
2192		tcp_init_undo(tp);
2193	}
2194	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2195	tp->snd_cwnd_cnt   = 0;
2196	tp->snd_cwnd_stamp = tcp_jiffies32;
2197
2198	/* Timeout in disordered state after receiving substantial DUPACKs
2199	 * suggests that the degree of reordering is over-estimated.
2200	 */
2201	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2202	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2203	    tp->sacked_out >= reordering)
2204		tp->reordering = min_t(unsigned int, tp->reordering,
2205				       reordering);
2206
2207	tcp_set_ca_state(sk, TCP_CA_Loss);
2208	tp->high_seq = tp->snd_nxt;
2209	tcp_ecn_queue_cwr(tp);
2210
2211	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212	 * loss recovery is underway except recurring timeout(s) on
2213	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214	 */
2215	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216		   (new_recovery || icsk->icsk_retransmits) &&
2217		   !inet_csk(sk)->icsk_mtup.probe_size;
2218}
2219
2220/* If ACK arrived pointing to a remembered SACK, it means that our
2221 * remembered SACKs do not reflect real state of receiver i.e.
2222 * receiver _host_ is heavily congested (or buggy).
2223 *
2224 * To avoid big spurious retransmission bursts due to transient SACK
2225 * scoreboard oddities that look like reneging, we give the receiver a
2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227 * restore sanity to the SACK scoreboard. If the apparent reneging
2228 * persists until this RTO then we'll clear the SACK scoreboard.
2229 */
2230static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231{
2232	if (*ack_flag & FLAG_SACK_RENEGING &&
2233	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234		struct tcp_sock *tp = tcp_sk(sk);
2235		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236					  msecs_to_jiffies(10));
2237
2238		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239					  delay, TCP_RTO_MAX);
2240		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241		return true;
2242	}
2243	return false;
2244}
2245
2246/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247 * counter when SACK is enabled (without SACK, sacked_out is used for
2248 * that purpose).
2249 *
2250 * With reordering, holes may still be in flight, so RFC3517 recovery
2251 * uses pure sacked_out (total number of SACKed segments) even though
2252 * it violates the RFC that uses duplicate ACKs, often these are equal
2253 * but when e.g. out-of-window ACKs or packet duplication occurs,
2254 * they differ. Since neither occurs due to loss, TCP should really
2255 * ignore them.
2256 */
2257static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258{
2259	return tp->sacked_out + 1;
2260}
2261
2262/* Linux NewReno/SACK/ECN state machine.
2263 * --------------------------------------
2264 *
2265 * "Open"	Normal state, no dubious events, fast path.
2266 * "Disorder"   In all the respects it is "Open",
2267 *		but requires a bit more attention. It is entered when
2268 *		we see some SACKs or dupacks. It is split of "Open"
2269 *		mainly to move some processing from fast path to slow one.
2270 * "CWR"	CWND was reduced due to some Congestion Notification event.
2271 *		It can be ECN, ICMP source quench, local device congestion.
2272 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2273 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2274 *
2275 * tcp_fastretrans_alert() is entered:
2276 * - each incoming ACK, if state is not "Open"
2277 * - when arrived ACK is unusual, namely:
2278 *	* SACK
2279 *	* Duplicate ACK.
2280 *	* ECN ECE.
2281 *
2282 * Counting packets in flight is pretty simple.
2283 *
2284 *	in_flight = packets_out - left_out + retrans_out
2285 *
2286 *	packets_out is SND.NXT-SND.UNA counted in packets.
2287 *
2288 *	retrans_out is number of retransmitted segments.
2289 *
2290 *	left_out is number of segments left network, but not ACKed yet.
2291 *
2292 *		left_out = sacked_out + lost_out
2293 *
2294 *     sacked_out: Packets, which arrived to receiver out of order
2295 *		   and hence not ACKed. With SACKs this number is simply
2296 *		   amount of SACKed data. Even without SACKs
2297 *		   it is easy to give pretty reliable estimate of this number,
2298 *		   counting duplicate ACKs.
2299 *
2300 *       lost_out: Packets lost by network. TCP has no explicit
2301 *		   "loss notification" feedback from network (for now).
2302 *		   It means that this number can be only _guessed_.
2303 *		   Actually, it is the heuristics to predict lossage that
2304 *		   distinguishes different algorithms.
2305 *
2306 *	F.e. after RTO, when all the queue is considered as lost,
2307 *	lost_out = packets_out and in_flight = retrans_out.
2308 *
2309 *		Essentially, we have now a few algorithms detecting
2310 *		lost packets.
2311 *
2312 *		If the receiver supports SACK:
2313 *
2314 *		RFC6675/3517: It is the conventional algorithm. A packet is
2315 *		considered lost if the number of higher sequence packets
2316 *		SACKed is greater than or equal the DUPACK thoreshold
2317 *		(reordering). This is implemented in tcp_mark_head_lost and
2318 *		tcp_update_scoreboard.
2319 *
2320 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321 *		(2017-) that checks timing instead of counting DUPACKs.
2322 *		Essentially a packet is considered lost if it's not S/ACKed
2323 *		after RTT + reordering_window, where both metrics are
2324 *		dynamically measured and adjusted. This is implemented in
2325 *		tcp_rack_mark_lost.
2326 *
2327 *		If the receiver does not support SACK:
2328 *
2329 *		NewReno (RFC6582): in Recovery we assume that one segment
2330 *		is lost (classic Reno). While we are in Recovery and
2331 *		a partial ACK arrives, we assume that one more packet
2332 *		is lost (NewReno). This heuristics are the same in NewReno
2333 *		and SACK.
2334 *
2335 * Really tricky (and requiring careful tuning) part of algorithm
2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337 * The first determines the moment _when_ we should reduce CWND and,
2338 * hence, slow down forward transmission. In fact, it determines the moment
2339 * when we decide that hole is caused by loss, rather than by a reorder.
2340 *
2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342 * holes, caused by lost packets.
2343 *
2344 * And the most logically complicated part of algorithm is undo
2345 * heuristics. We detect false retransmits due to both too early
2346 * fast retransmit (reordering) and underestimated RTO, analyzing
2347 * timestamps and D-SACKs. When we detect that some segments were
2348 * retransmitted by mistake and CWND reduction was wrong, we undo
2349 * window reduction and abort recovery phase. This logic is hidden
2350 * inside several functions named tcp_try_undo_<something>.
2351 */
2352
2353/* This function decides, when we should leave Disordered state
2354 * and enter Recovery phase, reducing congestion window.
2355 *
2356 * Main question: may we further continue forward transmission
2357 * with the same cwnd?
2358 */
2359static bool tcp_time_to_recover(struct sock *sk, int flag)
2360{
2361	struct tcp_sock *tp = tcp_sk(sk);
2362
2363	/* Trick#1: The loss is proven. */
2364	if (tp->lost_out)
2365		return true;
2366
2367	/* Not-A-Trick#2 : Classic rule... */
2368	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2369		return true;
2370
2371	return false;
2372}
2373
2374/* Detect loss in event "A" above by marking head of queue up as lost.
2375 * For RFC3517 SACK, a segment is considered lost if it
2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377 * the maximum SACKed segments to pass before reaching this limit.
2378 */
2379static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380{
2381	struct tcp_sock *tp = tcp_sk(sk);
2382	struct sk_buff *skb;
2383	int cnt;
2384	/* Use SACK to deduce losses of new sequences sent during recovery */
2385	const u32 loss_high = tp->snd_nxt;
2386
2387	WARN_ON(packets > tp->packets_out);
2388	skb = tp->lost_skb_hint;
2389	if (skb) {
2390		/* Head already handled? */
2391		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392			return;
2393		cnt = tp->lost_cnt_hint;
2394	} else {
2395		skb = tcp_rtx_queue_head(sk);
2396		cnt = 0;
2397	}
2398
2399	skb_rbtree_walk_from(skb) {
2400		/* TODO: do this better */
2401		/* this is not the most efficient way to do this... */
2402		tp->lost_skb_hint = skb;
2403		tp->lost_cnt_hint = cnt;
2404
2405		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406			break;
2407
2408		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2409			cnt += tcp_skb_pcount(skb);
2410
2411		if (cnt > packets)
2412			break;
2413
2414		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415			tcp_mark_skb_lost(sk, skb);
2416
2417		if (mark_head)
2418			break;
2419	}
2420	tcp_verify_left_out(tp);
2421}
2422
2423/* Account newly detected lost packet(s) */
2424
2425static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428
2429	if (tcp_is_sack(tp)) {
2430		int sacked_upto = tp->sacked_out - tp->reordering;
2431		if (sacked_upto >= 0)
2432			tcp_mark_head_lost(sk, sacked_upto, 0);
2433		else if (fast_rexmit)
2434			tcp_mark_head_lost(sk, 1, 1);
2435	}
2436}
2437
2438static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439{
2440	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441	       before(tp->rx_opt.rcv_tsecr, when);
2442}
2443
2444/* skb is spurious retransmitted if the returned timestamp echo
2445 * reply is prior to the skb transmission time
2446 */
2447static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448				     const struct sk_buff *skb)
2449{
2450	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2452}
2453
2454/* Nothing was retransmitted or returned timestamp is less
2455 * than timestamp of the first retransmission.
2456 */
2457static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458{
2459	return tp->retrans_stamp &&
2460	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2461}
2462
2463/* Undo procedures. */
2464
2465/* We can clear retrans_stamp when there are no retransmissions in the
2466 * window. It would seem that it is trivially available for us in
2467 * tp->retrans_out, however, that kind of assumptions doesn't consider
2468 * what will happen if errors occur when sending retransmission for the
2469 * second time. ...It could the that such segment has only
2470 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2471 * the head skb is enough except for some reneging corner cases that
2472 * are not worth the effort.
2473 *
2474 * Main reason for all this complexity is the fact that connection dying
2475 * time now depends on the validity of the retrans_stamp, in particular,
2476 * that successive retransmissions of a segment must not advance
2477 * retrans_stamp under any conditions.
2478 */
2479static bool tcp_any_retrans_done(const struct sock *sk)
2480{
2481	const struct tcp_sock *tp = tcp_sk(sk);
2482	struct sk_buff *skb;
2483
2484	if (tp->retrans_out)
2485		return true;
2486
2487	skb = tcp_rtx_queue_head(sk);
2488	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2489		return true;
2490
2491	return false;
2492}
2493
2494static void DBGUNDO(struct sock *sk, const char *msg)
2495{
2496#if FASTRETRANS_DEBUG > 1
2497	struct tcp_sock *tp = tcp_sk(sk);
2498	struct inet_sock *inet = inet_sk(sk);
2499
2500	if (sk->sk_family == AF_INET) {
2501		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2502			 msg,
2503			 &inet->inet_daddr, ntohs(inet->inet_dport),
2504			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2505			 tp->snd_ssthresh, tp->prior_ssthresh,
2506			 tp->packets_out);
2507	}
2508#if IS_ENABLED(CONFIG_IPV6)
2509	else if (sk->sk_family == AF_INET6) {
2510		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2511			 msg,
2512			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2513			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2514			 tp->snd_ssthresh, tp->prior_ssthresh,
2515			 tp->packets_out);
2516	}
2517#endif
2518#endif
2519}
2520
2521static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2522{
2523	struct tcp_sock *tp = tcp_sk(sk);
2524
2525	if (unmark_loss) {
2526		struct sk_buff *skb;
2527
2528		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2529			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2530		}
2531		tp->lost_out = 0;
2532		tcp_clear_all_retrans_hints(tp);
2533	}
2534
2535	if (tp->prior_ssthresh) {
2536		const struct inet_connection_sock *icsk = inet_csk(sk);
2537
2538		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2539
2540		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2541			tp->snd_ssthresh = tp->prior_ssthresh;
2542			tcp_ecn_withdraw_cwr(tp);
2543		}
2544	}
2545	tp->snd_cwnd_stamp = tcp_jiffies32;
2546	tp->undo_marker = 0;
2547	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2548}
2549
2550static inline bool tcp_may_undo(const struct tcp_sock *tp)
2551{
2552	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2553}
2554
2555static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2560		/* Hold old state until something *above* high_seq
2561		 * is ACKed. For Reno it is MUST to prevent false
2562		 * fast retransmits (RFC2582). SACK TCP is safe. */
2563		if (!tcp_any_retrans_done(sk))
2564			tp->retrans_stamp = 0;
2565		return true;
2566	}
2567	return false;
2568}
2569
2570/* People celebrate: "We love our President!" */
2571static bool tcp_try_undo_recovery(struct sock *sk)
2572{
2573	struct tcp_sock *tp = tcp_sk(sk);
2574
2575	if (tcp_may_undo(tp)) {
2576		int mib_idx;
2577
2578		/* Happy end! We did not retransmit anything
2579		 * or our original transmission succeeded.
2580		 */
2581		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2582		tcp_undo_cwnd_reduction(sk, false);
2583		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2584			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2585		else
2586			mib_idx = LINUX_MIB_TCPFULLUNDO;
2587
2588		NET_INC_STATS(sock_net(sk), mib_idx);
2589	} else if (tp->rack.reo_wnd_persist) {
2590		tp->rack.reo_wnd_persist--;
2591	}
2592	if (tcp_is_non_sack_preventing_reopen(sk))
 
 
 
 
 
2593		return true;
 
2594	tcp_set_ca_state(sk, TCP_CA_Open);
2595	tp->is_sack_reneg = 0;
2596	return false;
2597}
2598
2599/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2600static bool tcp_try_undo_dsack(struct sock *sk)
2601{
2602	struct tcp_sock *tp = tcp_sk(sk);
2603
2604	if (tp->undo_marker && !tp->undo_retrans) {
2605		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2606					       tp->rack.reo_wnd_persist + 1);
2607		DBGUNDO(sk, "D-SACK");
2608		tcp_undo_cwnd_reduction(sk, false);
2609		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2610		return true;
2611	}
2612	return false;
2613}
2614
2615/* Undo during loss recovery after partial ACK or using F-RTO. */
2616static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2617{
2618	struct tcp_sock *tp = tcp_sk(sk);
2619
2620	if (frto_undo || tcp_may_undo(tp)) {
2621		tcp_undo_cwnd_reduction(sk, true);
2622
2623		DBGUNDO(sk, "partial loss");
2624		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2625		if (frto_undo)
2626			NET_INC_STATS(sock_net(sk),
2627					LINUX_MIB_TCPSPURIOUSRTOS);
2628		inet_csk(sk)->icsk_retransmits = 0;
2629		if (tcp_is_non_sack_preventing_reopen(sk))
2630			return true;
2631		if (frto_undo || tcp_is_sack(tp)) {
2632			tcp_set_ca_state(sk, TCP_CA_Open);
2633			tp->is_sack_reneg = 0;
2634		}
2635		return true;
2636	}
2637	return false;
2638}
2639
2640/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2641 * It computes the number of packets to send (sndcnt) based on packets newly
2642 * delivered:
2643 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2644 *	cwnd reductions across a full RTT.
2645 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2646 *      But when SND_UNA is acked without further losses,
2647 *      slow starts cwnd up to ssthresh to speed up the recovery.
2648 */
2649static void tcp_init_cwnd_reduction(struct sock *sk)
2650{
2651	struct tcp_sock *tp = tcp_sk(sk);
2652
2653	tp->high_seq = tp->snd_nxt;
2654	tp->tlp_high_seq = 0;
2655	tp->snd_cwnd_cnt = 0;
2656	tp->prior_cwnd = tcp_snd_cwnd(tp);
2657	tp->prr_delivered = 0;
2658	tp->prr_out = 0;
2659	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2660	tcp_ecn_queue_cwr(tp);
2661}
2662
2663void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2664{
2665	struct tcp_sock *tp = tcp_sk(sk);
2666	int sndcnt = 0;
2667	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2668
2669	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2670		return;
2671
2672	tp->prr_delivered += newly_acked_sacked;
2673	if (delta < 0) {
2674		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2675			       tp->prior_cwnd - 1;
2676		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
 
 
 
 
2677	} else {
2678		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2679			       newly_acked_sacked);
2680		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2681			sndcnt++;
2682		sndcnt = min(delta, sndcnt);
2683	}
2684	/* Force a fast retransmit upon entering fast recovery */
2685	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2686	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2687}
2688
2689static inline void tcp_end_cwnd_reduction(struct sock *sk)
2690{
2691	struct tcp_sock *tp = tcp_sk(sk);
2692
2693	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2694		return;
2695
2696	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2697	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2698	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2699		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2700		tp->snd_cwnd_stamp = tcp_jiffies32;
2701	}
2702	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2703}
2704
2705/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2706void tcp_enter_cwr(struct sock *sk)
2707{
2708	struct tcp_sock *tp = tcp_sk(sk);
2709
2710	tp->prior_ssthresh = 0;
2711	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2712		tp->undo_marker = 0;
2713		tcp_init_cwnd_reduction(sk);
2714		tcp_set_ca_state(sk, TCP_CA_CWR);
2715	}
2716}
2717EXPORT_SYMBOL(tcp_enter_cwr);
2718
2719static void tcp_try_keep_open(struct sock *sk)
2720{
2721	struct tcp_sock *tp = tcp_sk(sk);
2722	int state = TCP_CA_Open;
2723
2724	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2725		state = TCP_CA_Disorder;
2726
2727	if (inet_csk(sk)->icsk_ca_state != state) {
2728		tcp_set_ca_state(sk, state);
2729		tp->high_seq = tp->snd_nxt;
2730	}
2731}
2732
2733static void tcp_try_to_open(struct sock *sk, int flag)
2734{
2735	struct tcp_sock *tp = tcp_sk(sk);
2736
2737	tcp_verify_left_out(tp);
2738
2739	if (!tcp_any_retrans_done(sk))
2740		tp->retrans_stamp = 0;
2741
2742	if (flag & FLAG_ECE)
2743		tcp_enter_cwr(sk);
2744
2745	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2746		tcp_try_keep_open(sk);
2747	}
2748}
2749
2750static void tcp_mtup_probe_failed(struct sock *sk)
2751{
2752	struct inet_connection_sock *icsk = inet_csk(sk);
2753
2754	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2755	icsk->icsk_mtup.probe_size = 0;
2756	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2757}
2758
2759static void tcp_mtup_probe_success(struct sock *sk)
2760{
2761	struct tcp_sock *tp = tcp_sk(sk);
2762	struct inet_connection_sock *icsk = inet_csk(sk);
2763	u64 val;
2764
 
2765	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2766
2767	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2768	do_div(val, icsk->icsk_mtup.probe_size);
2769	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2770	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2771
2772	tp->snd_cwnd_cnt = 0;
2773	tp->snd_cwnd_stamp = tcp_jiffies32;
2774	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2775
2776	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2777	icsk->icsk_mtup.probe_size = 0;
2778	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2779	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2780}
2781
2782/* Do a simple retransmit without using the backoff mechanisms in
2783 * tcp_timer. This is used for path mtu discovery.
2784 * The socket is already locked here.
2785 */
2786void tcp_simple_retransmit(struct sock *sk)
2787{
2788	const struct inet_connection_sock *icsk = inet_csk(sk);
2789	struct tcp_sock *tp = tcp_sk(sk);
2790	struct sk_buff *skb;
2791	int mss;
2792
2793	/* A fastopen SYN request is stored as two separate packets within
2794	 * the retransmit queue, this is done by tcp_send_syn_data().
2795	 * As a result simply checking the MSS of the frames in the queue
2796	 * will not work for the SYN packet.
2797	 *
2798	 * Us being here is an indication of a path MTU issue so we can
2799	 * assume that the fastopen SYN was lost and just mark all the
2800	 * frames in the retransmit queue as lost. We will use an MSS of
2801	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2802	 */
2803	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2804		mss = -1;
2805	else
2806		mss = tcp_current_mss(sk);
2807
2808	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2809		if (tcp_skb_seglen(skb) > mss)
2810			tcp_mark_skb_lost(sk, skb);
2811	}
2812
2813	tcp_clear_retrans_hints_partial(tp);
2814
2815	if (!tp->lost_out)
2816		return;
2817
2818	if (tcp_is_reno(tp))
2819		tcp_limit_reno_sacked(tp);
2820
2821	tcp_verify_left_out(tp);
2822
2823	/* Don't muck with the congestion window here.
2824	 * Reason is that we do not increase amount of _data_
2825	 * in network, but units changed and effective
2826	 * cwnd/ssthresh really reduced now.
2827	 */
2828	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2829		tp->high_seq = tp->snd_nxt;
2830		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2831		tp->prior_ssthresh = 0;
2832		tp->undo_marker = 0;
2833		tcp_set_ca_state(sk, TCP_CA_Loss);
2834	}
2835	tcp_xmit_retransmit_queue(sk);
2836}
2837EXPORT_SYMBOL(tcp_simple_retransmit);
2838
2839void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2840{
2841	struct tcp_sock *tp = tcp_sk(sk);
2842	int mib_idx;
2843
2844	if (tcp_is_reno(tp))
2845		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2846	else
2847		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2848
2849	NET_INC_STATS(sock_net(sk), mib_idx);
2850
2851	tp->prior_ssthresh = 0;
2852	tcp_init_undo(tp);
2853
2854	if (!tcp_in_cwnd_reduction(sk)) {
2855		if (!ece_ack)
2856			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2857		tcp_init_cwnd_reduction(sk);
2858	}
2859	tcp_set_ca_state(sk, TCP_CA_Recovery);
2860}
2861
2862static void tcp_update_rto_time(struct tcp_sock *tp)
2863{
2864	if (tp->rto_stamp) {
2865		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2866		tp->rto_stamp = 0;
2867	}
2868}
2869
2870/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2871 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2872 */
2873static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2874			     int *rexmit)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877	bool recovered = !before(tp->snd_una, tp->high_seq);
2878
2879	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2880	    tcp_try_undo_loss(sk, false))
2881		return;
2882
2883	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2884		/* Step 3.b. A timeout is spurious if not all data are
2885		 * lost, i.e., never-retransmitted data are (s)acked.
2886		 */
2887		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2888		    tcp_try_undo_loss(sk, true))
2889			return;
2890
2891		if (after(tp->snd_nxt, tp->high_seq)) {
2892			if (flag & FLAG_DATA_SACKED || num_dupack)
2893				tp->frto = 0; /* Step 3.a. loss was real */
2894		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2895			tp->high_seq = tp->snd_nxt;
2896			/* Step 2.b. Try send new data (but deferred until cwnd
2897			 * is updated in tcp_ack()). Otherwise fall back to
2898			 * the conventional recovery.
2899			 */
2900			if (!tcp_write_queue_empty(sk) &&
2901			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2902				*rexmit = REXMIT_NEW;
2903				return;
2904			}
2905			tp->frto = 0;
2906		}
2907	}
2908
2909	if (recovered) {
2910		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2911		tcp_try_undo_recovery(sk);
2912		return;
2913	}
2914	if (tcp_is_reno(tp)) {
2915		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2916		 * delivered. Lower inflight to clock out (re)transmissions.
2917		 */
2918		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2919			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2920		else if (flag & FLAG_SND_UNA_ADVANCED)
2921			tcp_reset_reno_sack(tp);
2922	}
2923	*rexmit = REXMIT_LOST;
2924}
2925
2926static bool tcp_force_fast_retransmit(struct sock *sk)
2927{
2928	struct tcp_sock *tp = tcp_sk(sk);
2929
2930	return after(tcp_highest_sack_seq(tp),
2931		     tp->snd_una + tp->reordering * tp->mss_cache);
2932}
2933
2934/* Undo during fast recovery after partial ACK. */
2935static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2936				 bool *do_lost)
2937{
2938	struct tcp_sock *tp = tcp_sk(sk);
2939
2940	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2941		/* Plain luck! Hole if filled with delayed
2942		 * packet, rather than with a retransmit. Check reordering.
2943		 */
2944		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2945
2946		/* We are getting evidence that the reordering degree is higher
2947		 * than we realized. If there are no retransmits out then we
2948		 * can undo. Otherwise we clock out new packets but do not
2949		 * mark more packets lost or retransmit more.
2950		 */
2951		if (tp->retrans_out)
2952			return true;
2953
2954		if (!tcp_any_retrans_done(sk))
2955			tp->retrans_stamp = 0;
2956
2957		DBGUNDO(sk, "partial recovery");
2958		tcp_undo_cwnd_reduction(sk, true);
2959		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2960		tcp_try_keep_open(sk);
2961	} else {
2962		/* Partial ACK arrived. Force fast retransmit. */
2963		*do_lost = tcp_force_fast_retransmit(sk);
2964	}
2965	return false;
2966}
2967
2968static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2969{
2970	struct tcp_sock *tp = tcp_sk(sk);
2971
2972	if (tcp_rtx_queue_empty(sk))
2973		return;
2974
2975	if (unlikely(tcp_is_reno(tp))) {
2976		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2977	} else if (tcp_is_rack(sk)) {
2978		u32 prior_retrans = tp->retrans_out;
2979
2980		if (tcp_rack_mark_lost(sk))
2981			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2982		if (prior_retrans > tp->retrans_out)
2983			*ack_flag |= FLAG_LOST_RETRANS;
2984	}
2985}
2986
2987/* Process an event, which can update packets-in-flight not trivially.
2988 * Main goal of this function is to calculate new estimate for left_out,
2989 * taking into account both packets sitting in receiver's buffer and
2990 * packets lost by network.
2991 *
2992 * Besides that it updates the congestion state when packet loss or ECN
2993 * is detected. But it does not reduce the cwnd, it is done by the
2994 * congestion control later.
2995 *
2996 * It does _not_ decide what to send, it is made in function
2997 * tcp_xmit_retransmit_queue().
2998 */
2999static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3000				  int num_dupack, int *ack_flag, int *rexmit)
3001{
3002	struct inet_connection_sock *icsk = inet_csk(sk);
3003	struct tcp_sock *tp = tcp_sk(sk);
3004	int fast_rexmit = 0, flag = *ack_flag;
3005	bool ece_ack = flag & FLAG_ECE;
3006	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3007				      tcp_force_fast_retransmit(sk));
3008
3009	if (!tp->packets_out && tp->sacked_out)
3010		tp->sacked_out = 0;
3011
3012	/* Now state machine starts.
3013	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3014	if (ece_ack)
3015		tp->prior_ssthresh = 0;
3016
3017	/* B. In all the states check for reneging SACKs. */
3018	if (tcp_check_sack_reneging(sk, ack_flag))
3019		return;
3020
3021	/* C. Check consistency of the current state. */
3022	tcp_verify_left_out(tp);
3023
3024	/* D. Check state exit conditions. State can be terminated
3025	 *    when high_seq is ACKed. */
3026	if (icsk->icsk_ca_state == TCP_CA_Open) {
3027		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3028		tp->retrans_stamp = 0;
3029	} else if (!before(tp->snd_una, tp->high_seq)) {
3030		switch (icsk->icsk_ca_state) {
3031		case TCP_CA_CWR:
3032			/* CWR is to be held something *above* high_seq
3033			 * is ACKed for CWR bit to reach receiver. */
3034			if (tp->snd_una != tp->high_seq) {
3035				tcp_end_cwnd_reduction(sk);
3036				tcp_set_ca_state(sk, TCP_CA_Open);
3037			}
3038			break;
3039
3040		case TCP_CA_Recovery:
3041			if (tcp_is_reno(tp))
3042				tcp_reset_reno_sack(tp);
3043			if (tcp_try_undo_recovery(sk))
3044				return;
3045			tcp_end_cwnd_reduction(sk);
3046			break;
3047		}
3048	}
3049
3050	/* E. Process state. */
3051	switch (icsk->icsk_ca_state) {
3052	case TCP_CA_Recovery:
3053		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3054			if (tcp_is_reno(tp))
3055				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3056		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3057			return;
3058
3059		if (tcp_try_undo_dsack(sk))
3060			tcp_try_keep_open(sk);
3061
3062		tcp_identify_packet_loss(sk, ack_flag);
3063		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3064			if (!tcp_time_to_recover(sk, flag))
3065				return;
3066			/* Undo reverts the recovery state. If loss is evident,
3067			 * starts a new recovery (e.g. reordering then loss);
3068			 */
3069			tcp_enter_recovery(sk, ece_ack);
3070		}
3071		break;
3072	case TCP_CA_Loss:
3073		tcp_process_loss(sk, flag, num_dupack, rexmit);
3074		if (icsk->icsk_ca_state != TCP_CA_Loss)
3075			tcp_update_rto_time(tp);
3076		tcp_identify_packet_loss(sk, ack_flag);
3077		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3078		      (*ack_flag & FLAG_LOST_RETRANS)))
3079			return;
3080		/* Change state if cwnd is undone or retransmits are lost */
3081		fallthrough;
3082	default:
3083		if (tcp_is_reno(tp)) {
3084			if (flag & FLAG_SND_UNA_ADVANCED)
3085				tcp_reset_reno_sack(tp);
3086			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3087		}
3088
3089		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3090			tcp_try_undo_dsack(sk);
3091
3092		tcp_identify_packet_loss(sk, ack_flag);
3093		if (!tcp_time_to_recover(sk, flag)) {
3094			tcp_try_to_open(sk, flag);
3095			return;
3096		}
3097
3098		/* MTU probe failure: don't reduce cwnd */
3099		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3100		    icsk->icsk_mtup.probe_size &&
3101		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3102			tcp_mtup_probe_failed(sk);
3103			/* Restores the reduction we did in tcp_mtup_probe() */
3104			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3105			tcp_simple_retransmit(sk);
3106			return;
3107		}
3108
3109		/* Otherwise enter Recovery state */
3110		tcp_enter_recovery(sk, ece_ack);
3111		fast_rexmit = 1;
3112	}
3113
3114	if (!tcp_is_rack(sk) && do_lost)
3115		tcp_update_scoreboard(sk, fast_rexmit);
3116	*rexmit = REXMIT_LOST;
3117}
3118
3119static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3120{
3121	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3122	struct tcp_sock *tp = tcp_sk(sk);
3123
3124	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3125		/* If the remote keeps returning delayed ACKs, eventually
3126		 * the min filter would pick it up and overestimate the
3127		 * prop. delay when it expires. Skip suspected delayed ACKs.
3128		 */
3129		return;
3130	}
3131	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3132			   rtt_us ? : jiffies_to_usecs(1));
3133}
3134
3135static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3136			       long seq_rtt_us, long sack_rtt_us,
3137			       long ca_rtt_us, struct rate_sample *rs)
3138{
3139	const struct tcp_sock *tp = tcp_sk(sk);
3140
3141	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3142	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3143	 * Karn's algorithm forbids taking RTT if some retransmitted data
3144	 * is acked (RFC6298).
3145	 */
3146	if (seq_rtt_us < 0)
3147		seq_rtt_us = sack_rtt_us;
3148
3149	/* RTTM Rule: A TSecr value received in a segment is used to
3150	 * update the averaged RTT measurement only if the segment
3151	 * acknowledges some new data, i.e., only if it advances the
3152	 * left edge of the send window.
3153	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3154	 */
3155	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3156	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3157		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3158
 
 
 
 
 
 
 
3159	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3160	if (seq_rtt_us < 0)
3161		return false;
3162
3163	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3164	 * always taken together with ACK, SACK, or TS-opts. Any negative
3165	 * values will be skipped with the seq_rtt_us < 0 check above.
3166	 */
3167	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3168	tcp_rtt_estimator(sk, seq_rtt_us);
3169	tcp_set_rto(sk);
3170
3171	/* RFC6298: only reset backoff on valid RTT measurement. */
3172	inet_csk(sk)->icsk_backoff = 0;
3173	return true;
3174}
3175
3176/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3177void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3178{
3179	struct rate_sample rs;
3180	long rtt_us = -1L;
3181
3182	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3183		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3184
3185	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3186}
3187
3188
3189static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3190{
3191	const struct inet_connection_sock *icsk = inet_csk(sk);
3192
3193	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3194	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3195}
3196
3197/* Restart timer after forward progress on connection.
3198 * RFC2988 recommends to restart timer to now+rto.
3199 */
3200void tcp_rearm_rto(struct sock *sk)
3201{
3202	const struct inet_connection_sock *icsk = inet_csk(sk);
3203	struct tcp_sock *tp = tcp_sk(sk);
3204
3205	/* If the retrans timer is currently being used by Fast Open
3206	 * for SYN-ACK retrans purpose, stay put.
3207	 */
3208	if (rcu_access_pointer(tp->fastopen_rsk))
3209		return;
3210
3211	if (!tp->packets_out) {
3212		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213	} else {
3214		u32 rto = inet_csk(sk)->icsk_rto;
3215		/* Offset the time elapsed after installing regular RTO */
3216		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3217		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3218			s64 delta_us = tcp_rto_delta_us(sk);
3219			/* delta_us may not be positive if the socket is locked
3220			 * when the retrans timer fires and is rescheduled.
3221			 */
3222			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3223		}
3224		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3225				     TCP_RTO_MAX);
3226	}
3227}
3228
3229/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3230static void tcp_set_xmit_timer(struct sock *sk)
3231{
3232	if (!tcp_schedule_loss_probe(sk, true))
3233		tcp_rearm_rto(sk);
3234}
3235
3236/* If we get here, the whole TSO packet has not been acked. */
3237static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3238{
3239	struct tcp_sock *tp = tcp_sk(sk);
3240	u32 packets_acked;
3241
3242	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3243
3244	packets_acked = tcp_skb_pcount(skb);
3245	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3246		return 0;
3247	packets_acked -= tcp_skb_pcount(skb);
3248
3249	if (packets_acked) {
3250		BUG_ON(tcp_skb_pcount(skb) == 0);
3251		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3252	}
3253
3254	return packets_acked;
3255}
3256
3257static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3258			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3259{
3260	const struct skb_shared_info *shinfo;
3261
3262	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3263	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3264		return;
3265
3266	shinfo = skb_shinfo(skb);
3267	if (!before(shinfo->tskey, prior_snd_una) &&
3268	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3269		tcp_skb_tsorted_save(skb) {
3270			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3271		} tcp_skb_tsorted_restore(skb);
3272	}
3273}
3274
3275/* Remove acknowledged frames from the retransmission queue. If our packet
3276 * is before the ack sequence we can discard it as it's confirmed to have
3277 * arrived at the other end.
3278 */
3279static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3280			       u32 prior_fack, u32 prior_snd_una,
3281			       struct tcp_sacktag_state *sack, bool ece_ack)
3282{
3283	const struct inet_connection_sock *icsk = inet_csk(sk);
3284	u64 first_ackt, last_ackt;
3285	struct tcp_sock *tp = tcp_sk(sk);
3286	u32 prior_sacked = tp->sacked_out;
3287	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3288	struct sk_buff *skb, *next;
3289	bool fully_acked = true;
3290	long sack_rtt_us = -1L;
3291	long seq_rtt_us = -1L;
3292	long ca_rtt_us = -1L;
3293	u32 pkts_acked = 0;
 
3294	bool rtt_update;
3295	int flag = 0;
3296
3297	first_ackt = 0;
3298
3299	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3300		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301		const u32 start_seq = scb->seq;
3302		u8 sacked = scb->sacked;
3303		u32 acked_pcount;
3304
3305		/* Determine how many packets and what bytes were acked, tso and else */
3306		if (after(scb->end_seq, tp->snd_una)) {
3307			if (tcp_skb_pcount(skb) == 1 ||
3308			    !after(tp->snd_una, scb->seq))
3309				break;
3310
3311			acked_pcount = tcp_tso_acked(sk, skb);
3312			if (!acked_pcount)
3313				break;
3314			fully_acked = false;
3315		} else {
3316			acked_pcount = tcp_skb_pcount(skb);
3317		}
3318
3319		if (unlikely(sacked & TCPCB_RETRANS)) {
3320			if (sacked & TCPCB_SACKED_RETRANS)
3321				tp->retrans_out -= acked_pcount;
3322			flag |= FLAG_RETRANS_DATA_ACKED;
3323		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3324			last_ackt = tcp_skb_timestamp_us(skb);
3325			WARN_ON_ONCE(last_ackt == 0);
3326			if (!first_ackt)
3327				first_ackt = last_ackt;
3328
 
3329			if (before(start_seq, reord))
3330				reord = start_seq;
3331			if (!after(scb->end_seq, tp->high_seq))
3332				flag |= FLAG_ORIG_SACK_ACKED;
3333		}
3334
3335		if (sacked & TCPCB_SACKED_ACKED) {
3336			tp->sacked_out -= acked_pcount;
3337		} else if (tcp_is_sack(tp)) {
3338			tcp_count_delivered(tp, acked_pcount, ece_ack);
3339			if (!tcp_skb_spurious_retrans(tp, skb))
3340				tcp_rack_advance(tp, sacked, scb->end_seq,
3341						 tcp_skb_timestamp_us(skb));
3342		}
3343		if (sacked & TCPCB_LOST)
3344			tp->lost_out -= acked_pcount;
3345
3346		tp->packets_out -= acked_pcount;
3347		pkts_acked += acked_pcount;
3348		tcp_rate_skb_delivered(sk, skb, sack->rate);
3349
3350		/* Initial outgoing SYN's get put onto the write_queue
3351		 * just like anything else we transmit.  It is not
3352		 * true data, and if we misinform our callers that
3353		 * this ACK acks real data, we will erroneously exit
3354		 * connection startup slow start one packet too
3355		 * quickly.  This is severely frowned upon behavior.
3356		 */
3357		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3358			flag |= FLAG_DATA_ACKED;
3359		} else {
3360			flag |= FLAG_SYN_ACKED;
3361			tp->retrans_stamp = 0;
3362		}
3363
3364		if (!fully_acked)
3365			break;
3366
3367		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3368
3369		next = skb_rb_next(skb);
3370		if (unlikely(skb == tp->retransmit_skb_hint))
3371			tp->retransmit_skb_hint = NULL;
3372		if (unlikely(skb == tp->lost_skb_hint))
3373			tp->lost_skb_hint = NULL;
3374		tcp_highest_sack_replace(sk, skb, next);
3375		tcp_rtx_queue_unlink_and_free(skb, sk);
3376	}
3377
3378	if (!skb)
3379		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3380
3381	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3382		tp->snd_up = tp->snd_una;
3383
3384	if (skb) {
3385		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3386		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3387			flag |= FLAG_SACK_RENEGING;
3388	}
3389
3390	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3391		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3392		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3393
3394		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3395		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3396		    sack->rate->prior_delivered + 1 == tp->delivered &&
3397		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3398			/* Conservatively mark a delayed ACK. It's typically
3399			 * from a lone runt packet over the round trip to
3400			 * a receiver w/o out-of-order or CE events.
3401			 */
3402			flag |= FLAG_ACK_MAYBE_DELAYED;
3403		}
3404	}
3405	if (sack->first_sackt) {
3406		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3407		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3408	}
3409	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3410					ca_rtt_us, sack->rate);
3411
3412	if (flag & FLAG_ACKED) {
3413		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3414		if (unlikely(icsk->icsk_mtup.probe_size &&
3415			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3416			tcp_mtup_probe_success(sk);
3417		}
3418
3419		if (tcp_is_reno(tp)) {
3420			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3421
3422			/* If any of the cumulatively ACKed segments was
3423			 * retransmitted, non-SACK case cannot confirm that
3424			 * progress was due to original transmission due to
3425			 * lack of TCPCB_SACKED_ACKED bits even if some of
3426			 * the packets may have been never retransmitted.
3427			 */
3428			if (flag & FLAG_RETRANS_DATA_ACKED)
3429				flag &= ~FLAG_ORIG_SACK_ACKED;
3430		} else {
3431			int delta;
3432
3433			/* Non-retransmitted hole got filled? That's reordering */
3434			if (before(reord, prior_fack))
3435				tcp_check_sack_reordering(sk, reord, 0);
3436
3437			delta = prior_sacked - tp->sacked_out;
3438			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3439		}
3440	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3441		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3442						    tcp_skb_timestamp_us(skb))) {
3443		/* Do not re-arm RTO if the sack RTT is measured from data sent
3444		 * after when the head was last (re)transmitted. Otherwise the
3445		 * timeout may continue to extend in loss recovery.
3446		 */
3447		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3448	}
3449
3450	if (icsk->icsk_ca_ops->pkts_acked) {
3451		struct ack_sample sample = { .pkts_acked = pkts_acked,
3452					     .rtt_us = sack->rate->rtt_us };
 
3453
3454		sample.in_flight = tp->mss_cache *
3455			(tp->delivered - sack->rate->prior_delivered);
3456		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3457	}
3458
3459#if FASTRETRANS_DEBUG > 0
3460	WARN_ON((int)tp->sacked_out < 0);
3461	WARN_ON((int)tp->lost_out < 0);
3462	WARN_ON((int)tp->retrans_out < 0);
3463	if (!tp->packets_out && tcp_is_sack(tp)) {
3464		icsk = inet_csk(sk);
3465		if (tp->lost_out) {
3466			pr_debug("Leak l=%u %d\n",
3467				 tp->lost_out, icsk->icsk_ca_state);
3468			tp->lost_out = 0;
3469		}
3470		if (tp->sacked_out) {
3471			pr_debug("Leak s=%u %d\n",
3472				 tp->sacked_out, icsk->icsk_ca_state);
3473			tp->sacked_out = 0;
3474		}
3475		if (tp->retrans_out) {
3476			pr_debug("Leak r=%u %d\n",
3477				 tp->retrans_out, icsk->icsk_ca_state);
3478			tp->retrans_out = 0;
3479		}
3480	}
3481#endif
3482	return flag;
3483}
3484
3485static void tcp_ack_probe(struct sock *sk)
3486{
3487	struct inet_connection_sock *icsk = inet_csk(sk);
3488	struct sk_buff *head = tcp_send_head(sk);
3489	const struct tcp_sock *tp = tcp_sk(sk);
3490
3491	/* Was it a usable window open? */
3492	if (!head)
3493		return;
3494	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3495		icsk->icsk_backoff = 0;
3496		icsk->icsk_probes_tstamp = 0;
3497		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3498		/* Socket must be waked up by subsequent tcp_data_snd_check().
3499		 * This function is not for random using!
3500		 */
3501	} else {
3502		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3503
3504		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3505		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3506	}
3507}
3508
3509static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3510{
3511	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3512		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3513}
3514
3515/* Decide wheather to run the increase function of congestion control. */
3516static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3517{
3518	/* If reordering is high then always grow cwnd whenever data is
3519	 * delivered regardless of its ordering. Otherwise stay conservative
3520	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3521	 * new SACK or ECE mark may first advance cwnd here and later reduce
3522	 * cwnd in tcp_fastretrans_alert() based on more states.
3523	 */
3524	if (tcp_sk(sk)->reordering >
3525	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3526		return flag & FLAG_FORWARD_PROGRESS;
3527
3528	return flag & FLAG_DATA_ACKED;
3529}
3530
3531/* The "ultimate" congestion control function that aims to replace the rigid
3532 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3533 * It's called toward the end of processing an ACK with precise rate
3534 * information. All transmission or retransmission are delayed afterwards.
3535 */
3536static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3537			     int flag, const struct rate_sample *rs)
3538{
3539	const struct inet_connection_sock *icsk = inet_csk(sk);
3540
3541	if (icsk->icsk_ca_ops->cong_control) {
3542		icsk->icsk_ca_ops->cong_control(sk, rs);
3543		return;
3544	}
3545
3546	if (tcp_in_cwnd_reduction(sk)) {
3547		/* Reduce cwnd if state mandates */
3548		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3549	} else if (tcp_may_raise_cwnd(sk, flag)) {
3550		/* Advance cwnd if state allows */
3551		tcp_cong_avoid(sk, ack, acked_sacked);
3552	}
3553	tcp_update_pacing_rate(sk);
3554}
3555
3556/* Check that window update is acceptable.
3557 * The function assumes that snd_una<=ack<=snd_next.
3558 */
3559static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3560					const u32 ack, const u32 ack_seq,
3561					const u32 nwin)
3562{
3563	return	after(ack, tp->snd_una) ||
3564		after(ack_seq, tp->snd_wl1) ||
3565		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3566}
3567
3568static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3569{
3570#ifdef CONFIG_TCP_AO
3571	struct tcp_ao_info *ao;
3572
3573	if (!static_branch_unlikely(&tcp_ao_needed.key))
3574		return;
3575
3576	ao = rcu_dereference_protected(tp->ao_info,
3577				       lockdep_sock_is_held((struct sock *)tp));
3578	if (ao && ack < tp->snd_una)
3579		ao->snd_sne++;
3580#endif
3581}
3582
3583/* If we update tp->snd_una, also update tp->bytes_acked */
3584static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3585{
3586	u32 delta = ack - tp->snd_una;
3587
3588	sock_owned_by_me((struct sock *)tp);
3589	tp->bytes_acked += delta;
3590	tcp_snd_sne_update(tp, ack);
3591	tp->snd_una = ack;
3592}
3593
3594static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3595{
3596#ifdef CONFIG_TCP_AO
3597	struct tcp_ao_info *ao;
3598
3599	if (!static_branch_unlikely(&tcp_ao_needed.key))
3600		return;
3601
3602	ao = rcu_dereference_protected(tp->ao_info,
3603				       lockdep_sock_is_held((struct sock *)tp));
3604	if (ao && seq < tp->rcv_nxt)
3605		ao->rcv_sne++;
3606#endif
3607}
3608
3609/* If we update tp->rcv_nxt, also update tp->bytes_received */
3610static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3611{
3612	u32 delta = seq - tp->rcv_nxt;
3613
3614	sock_owned_by_me((struct sock *)tp);
3615	tp->bytes_received += delta;
3616	tcp_rcv_sne_update(tp, seq);
3617	WRITE_ONCE(tp->rcv_nxt, seq);
3618}
3619
3620/* Update our send window.
3621 *
3622 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3623 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3624 */
3625static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3626				 u32 ack_seq)
3627{
3628	struct tcp_sock *tp = tcp_sk(sk);
3629	int flag = 0;
3630	u32 nwin = ntohs(tcp_hdr(skb)->window);
3631
3632	if (likely(!tcp_hdr(skb)->syn))
3633		nwin <<= tp->rx_opt.snd_wscale;
3634
3635	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3636		flag |= FLAG_WIN_UPDATE;
3637		tcp_update_wl(tp, ack_seq);
3638
3639		if (tp->snd_wnd != nwin) {
3640			tp->snd_wnd = nwin;
3641
3642			/* Note, it is the only place, where
3643			 * fast path is recovered for sending TCP.
3644			 */
3645			tp->pred_flags = 0;
3646			tcp_fast_path_check(sk);
3647
3648			if (!tcp_write_queue_empty(sk))
3649				tcp_slow_start_after_idle_check(sk);
3650
3651			if (nwin > tp->max_window) {
3652				tp->max_window = nwin;
3653				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3654			}
3655		}
3656	}
3657
3658	tcp_snd_una_update(tp, ack);
3659
3660	return flag;
3661}
3662
3663static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3664				   u32 *last_oow_ack_time)
3665{
3666	/* Paired with the WRITE_ONCE() in this function. */
3667	u32 val = READ_ONCE(*last_oow_ack_time);
3668
3669	if (val) {
3670		s32 elapsed = (s32)(tcp_jiffies32 - val);
3671
3672		if (0 <= elapsed &&
3673		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3674			NET_INC_STATS(net, mib_idx);
3675			return true;	/* rate-limited: don't send yet! */
3676		}
3677	}
3678
3679	/* Paired with the prior READ_ONCE() and with itself,
3680	 * as we might be lockless.
3681	 */
3682	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3683
3684	return false;	/* not rate-limited: go ahead, send dupack now! */
3685}
3686
3687/* Return true if we're currently rate-limiting out-of-window ACKs and
3688 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3689 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3690 * attacks that send repeated SYNs or ACKs for the same connection. To
3691 * do this, we do not send a duplicate SYNACK or ACK if the remote
3692 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3693 */
3694bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3695			  int mib_idx, u32 *last_oow_ack_time)
3696{
3697	/* Data packets without SYNs are not likely part of an ACK loop. */
3698	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3699	    !tcp_hdr(skb)->syn)
3700		return false;
3701
3702	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3703}
3704
3705/* RFC 5961 7 [ACK Throttling] */
3706static void tcp_send_challenge_ack(struct sock *sk)
3707{
 
 
 
3708	struct tcp_sock *tp = tcp_sk(sk);
3709	struct net *net = sock_net(sk);
3710	u32 count, now, ack_limit;
3711
3712	/* First check our per-socket dupack rate limit. */
3713	if (__tcp_oow_rate_limited(net,
3714				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3715				   &tp->last_oow_ack_time))
3716		return;
3717
3718	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3719	if (ack_limit == INT_MAX)
3720		goto send_ack;
3721
3722	/* Then check host-wide RFC 5961 rate limit. */
3723	now = jiffies / HZ;
3724	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
 
3725		u32 half = (ack_limit + 1) >> 1;
3726
3727		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3728		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3729			   get_random_u32_inclusive(half, ack_limit + half - 1));
3730	}
3731	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3732	if (count > 0) {
3733		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3734send_ack:
3735		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3736		tcp_send_ack(sk);
3737	}
3738}
3739
3740static void tcp_store_ts_recent(struct tcp_sock *tp)
3741{
3742	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3743	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3744}
3745
3746static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3747{
3748	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3749		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3750		 * extra check below makes sure this can only happen
3751		 * for pure ACK frames.  -DaveM
3752		 *
3753		 * Not only, also it occurs for expired timestamps.
3754		 */
3755
3756		if (tcp_paws_check(&tp->rx_opt, 0))
3757			tcp_store_ts_recent(tp);
3758	}
3759}
3760
3761/* This routine deals with acks during a TLP episode and ends an episode by
3762 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3763 */
3764static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3765{
3766	struct tcp_sock *tp = tcp_sk(sk);
3767
3768	if (before(ack, tp->tlp_high_seq))
3769		return;
3770
3771	if (!tp->tlp_retrans) {
3772		/* TLP of new data has been acknowledged */
3773		tp->tlp_high_seq = 0;
3774	} else if (flag & FLAG_DSACK_TLP) {
3775		/* This DSACK means original and TLP probe arrived; no loss */
3776		tp->tlp_high_seq = 0;
3777	} else if (after(ack, tp->tlp_high_seq)) {
3778		/* ACK advances: there was a loss, so reduce cwnd. Reset
3779		 * tlp_high_seq in tcp_init_cwnd_reduction()
3780		 */
3781		tcp_init_cwnd_reduction(sk);
3782		tcp_set_ca_state(sk, TCP_CA_CWR);
3783		tcp_end_cwnd_reduction(sk);
3784		tcp_try_keep_open(sk);
3785		NET_INC_STATS(sock_net(sk),
3786				LINUX_MIB_TCPLOSSPROBERECOVERY);
3787	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3788			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3789		/* Pure dupack: original and TLP probe arrived; no loss */
3790		tp->tlp_high_seq = 0;
3791	}
3792}
3793
3794static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3795{
3796	const struct inet_connection_sock *icsk = inet_csk(sk);
3797
3798	if (icsk->icsk_ca_ops->in_ack_event)
3799		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3800}
3801
3802/* Congestion control has updated the cwnd already. So if we're in
3803 * loss recovery then now we do any new sends (for FRTO) or
3804 * retransmits (for CA_Loss or CA_recovery) that make sense.
3805 */
3806static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3807{
3808	struct tcp_sock *tp = tcp_sk(sk);
3809
3810	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3811		return;
3812
3813	if (unlikely(rexmit == REXMIT_NEW)) {
3814		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3815					  TCP_NAGLE_OFF);
3816		if (after(tp->snd_nxt, tp->high_seq))
3817			return;
3818		tp->frto = 0;
3819	}
3820	tcp_xmit_retransmit_queue(sk);
3821}
3822
3823/* Returns the number of packets newly acked or sacked by the current ACK */
3824static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3825{
3826	const struct net *net = sock_net(sk);
3827	struct tcp_sock *tp = tcp_sk(sk);
3828	u32 delivered;
3829
3830	delivered = tp->delivered - prior_delivered;
3831	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3832	if (flag & FLAG_ECE)
3833		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3834
3835	return delivered;
3836}
3837
3838/* This routine deals with incoming acks, but not outgoing ones. */
3839static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3840{
3841	struct inet_connection_sock *icsk = inet_csk(sk);
3842	struct tcp_sock *tp = tcp_sk(sk);
3843	struct tcp_sacktag_state sack_state;
3844	struct rate_sample rs = { .prior_delivered = 0 };
3845	u32 prior_snd_una = tp->snd_una;
3846	bool is_sack_reneg = tp->is_sack_reneg;
3847	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3848	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3849	int num_dupack = 0;
3850	int prior_packets = tp->packets_out;
3851	u32 delivered = tp->delivered;
3852	u32 lost = tp->lost;
3853	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3854	u32 prior_fack;
3855
3856	sack_state.first_sackt = 0;
3857	sack_state.rate = &rs;
3858	sack_state.sack_delivered = 0;
3859
3860	/* We very likely will need to access rtx queue. */
3861	prefetch(sk->tcp_rtx_queue.rb_node);
3862
3863	/* If the ack is older than previous acks
3864	 * then we can probably ignore it.
3865	 */
3866	if (before(ack, prior_snd_una)) {
3867		u32 max_window;
3868
3869		/* do not accept ACK for bytes we never sent. */
3870		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3871		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3872		if (before(ack, prior_snd_una - max_window)) {
3873			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3874				tcp_send_challenge_ack(sk);
3875			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3876		}
3877		goto old_ack;
3878	}
3879
3880	/* If the ack includes data we haven't sent yet, discard
3881	 * this segment (RFC793 Section 3.9).
3882	 */
3883	if (after(ack, tp->snd_nxt))
3884		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3885
3886	if (after(ack, prior_snd_una)) {
3887		flag |= FLAG_SND_UNA_ADVANCED;
3888		icsk->icsk_retransmits = 0;
3889
3890#if IS_ENABLED(CONFIG_TLS_DEVICE)
3891		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3892			if (icsk->icsk_clean_acked)
3893				icsk->icsk_clean_acked(sk, ack);
3894#endif
3895	}
3896
3897	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3898	rs.prior_in_flight = tcp_packets_in_flight(tp);
3899
3900	/* ts_recent update must be made after we are sure that the packet
3901	 * is in window.
3902	 */
3903	if (flag & FLAG_UPDATE_TS_RECENT)
3904		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3905
3906	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3907	    FLAG_SND_UNA_ADVANCED) {
3908		/* Window is constant, pure forward advance.
3909		 * No more checks are required.
3910		 * Note, we use the fact that SND.UNA>=SND.WL2.
3911		 */
3912		tcp_update_wl(tp, ack_seq);
3913		tcp_snd_una_update(tp, ack);
3914		flag |= FLAG_WIN_UPDATE;
3915
3916		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3917
3918		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3919	} else {
3920		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3921
3922		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3923			flag |= FLAG_DATA;
3924		else
3925			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3926
3927		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3928
3929		if (TCP_SKB_CB(skb)->sacked)
3930			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3931							&sack_state);
3932
3933		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3934			flag |= FLAG_ECE;
3935			ack_ev_flags |= CA_ACK_ECE;
3936		}
3937
3938		if (sack_state.sack_delivered)
3939			tcp_count_delivered(tp, sack_state.sack_delivered,
3940					    flag & FLAG_ECE);
3941
3942		if (flag & FLAG_WIN_UPDATE)
3943			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3944
3945		tcp_in_ack_event(sk, ack_ev_flags);
3946	}
3947
3948	/* This is a deviation from RFC3168 since it states that:
3949	 * "When the TCP data sender is ready to set the CWR bit after reducing
3950	 * the congestion window, it SHOULD set the CWR bit only on the first
3951	 * new data packet that it transmits."
3952	 * We accept CWR on pure ACKs to be more robust
3953	 * with widely-deployed TCP implementations that do this.
3954	 */
3955	tcp_ecn_accept_cwr(sk, skb);
3956
3957	/* We passed data and got it acked, remove any soft error
3958	 * log. Something worked...
3959	 */
3960	WRITE_ONCE(sk->sk_err_soft, 0);
3961	icsk->icsk_probes_out = 0;
3962	tp->rcv_tstamp = tcp_jiffies32;
3963	if (!prior_packets)
3964		goto no_queue;
3965
3966	/* See if we can take anything off of the retransmit queue. */
3967	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3968				    &sack_state, flag & FLAG_ECE);
3969
3970	tcp_rack_update_reo_wnd(sk, &rs);
3971
3972	if (tp->tlp_high_seq)
3973		tcp_process_tlp_ack(sk, ack, flag);
3974
3975	if (tcp_ack_is_dubious(sk, flag)) {
3976		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3977			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3978			num_dupack = 1;
3979			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3980			if (!(flag & FLAG_DATA))
3981				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3982		}
3983		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3984				      &rexmit);
3985	}
3986
3987	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3988	if (flag & FLAG_SET_XMIT_TIMER)
3989		tcp_set_xmit_timer(sk);
3990
3991	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3992		sk_dst_confirm(sk);
3993
3994	delivered = tcp_newly_delivered(sk, delivered, flag);
3995	lost = tp->lost - lost;			/* freshly marked lost */
3996	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3997	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3998	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3999	tcp_xmit_recovery(sk, rexmit);
4000	return 1;
4001
4002no_queue:
4003	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4004	if (flag & FLAG_DSACKING_ACK) {
4005		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4006				      &rexmit);
4007		tcp_newly_delivered(sk, delivered, flag);
4008	}
4009	/* If this ack opens up a zero window, clear backoff.  It was
4010	 * being used to time the probes, and is probably far higher than
4011	 * it needs to be for normal retransmission.
4012	 */
4013	tcp_ack_probe(sk);
4014
4015	if (tp->tlp_high_seq)
4016		tcp_process_tlp_ack(sk, ack, flag);
4017	return 1;
4018
4019old_ack:
4020	/* If data was SACKed, tag it and see if we should send more data.
4021	 * If data was DSACKed, see if we can undo a cwnd reduction.
4022	 */
4023	if (TCP_SKB_CB(skb)->sacked) {
4024		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4025						&sack_state);
4026		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4027				      &rexmit);
4028		tcp_newly_delivered(sk, delivered, flag);
4029		tcp_xmit_recovery(sk, rexmit);
4030	}
4031
4032	return 0;
4033}
4034
4035static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4036				      bool syn, struct tcp_fastopen_cookie *foc,
4037				      bool exp_opt)
4038{
4039	/* Valid only in SYN or SYN-ACK with an even length.  */
4040	if (!foc || !syn || len < 0 || (len & 1))
4041		return;
4042
4043	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4044	    len <= TCP_FASTOPEN_COOKIE_MAX)
4045		memcpy(foc->val, cookie, len);
4046	else if (len != 0)
4047		len = -1;
4048	foc->len = len;
4049	foc->exp = exp_opt;
4050}
4051
4052static bool smc_parse_options(const struct tcphdr *th,
4053			      struct tcp_options_received *opt_rx,
4054			      const unsigned char *ptr,
4055			      int opsize)
4056{
4057#if IS_ENABLED(CONFIG_SMC)
4058	if (static_branch_unlikely(&tcp_have_smc)) {
4059		if (th->syn && !(opsize & 1) &&
4060		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4061		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4062			opt_rx->smc_ok = 1;
4063			return true;
4064		}
4065	}
4066#endif
4067	return false;
4068}
4069
4070/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4071 * value on success.
4072 */
4073u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4074{
4075	const unsigned char *ptr = (const unsigned char *)(th + 1);
4076	int length = (th->doff * 4) - sizeof(struct tcphdr);
4077	u16 mss = 0;
4078
4079	while (length > 0) {
4080		int opcode = *ptr++;
4081		int opsize;
4082
4083		switch (opcode) {
4084		case TCPOPT_EOL:
4085			return mss;
4086		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4087			length--;
4088			continue;
4089		default:
4090			if (length < 2)
4091				return mss;
4092			opsize = *ptr++;
4093			if (opsize < 2) /* "silly options" */
4094				return mss;
4095			if (opsize > length)
4096				return mss;	/* fail on partial options */
4097			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4098				u16 in_mss = get_unaligned_be16(ptr);
4099
4100				if (in_mss) {
4101					if (user_mss && user_mss < in_mss)
4102						in_mss = user_mss;
4103					mss = in_mss;
4104				}
4105			}
4106			ptr += opsize - 2;
4107			length -= opsize;
4108		}
4109	}
4110	return mss;
4111}
4112EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4113
4114/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4115 * But, this can also be called on packets in the established flow when
4116 * the fast version below fails.
4117 */
4118void tcp_parse_options(const struct net *net,
4119		       const struct sk_buff *skb,
4120		       struct tcp_options_received *opt_rx, int estab,
4121		       struct tcp_fastopen_cookie *foc)
4122{
4123	const unsigned char *ptr;
4124	const struct tcphdr *th = tcp_hdr(skb);
4125	int length = (th->doff * 4) - sizeof(struct tcphdr);
4126
4127	ptr = (const unsigned char *)(th + 1);
4128	opt_rx->saw_tstamp = 0;
4129	opt_rx->saw_unknown = 0;
4130
4131	while (length > 0) {
4132		int opcode = *ptr++;
4133		int opsize;
4134
4135		switch (opcode) {
4136		case TCPOPT_EOL:
4137			return;
4138		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4139			length--;
4140			continue;
4141		default:
4142			if (length < 2)
4143				return;
4144			opsize = *ptr++;
4145			if (opsize < 2) /* "silly options" */
4146				return;
4147			if (opsize > length)
4148				return;	/* don't parse partial options */
4149			switch (opcode) {
4150			case TCPOPT_MSS:
4151				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4152					u16 in_mss = get_unaligned_be16(ptr);
4153					if (in_mss) {
4154						if (opt_rx->user_mss &&
4155						    opt_rx->user_mss < in_mss)
4156							in_mss = opt_rx->user_mss;
4157						opt_rx->mss_clamp = in_mss;
4158					}
4159				}
4160				break;
4161			case TCPOPT_WINDOW:
4162				if (opsize == TCPOLEN_WINDOW && th->syn &&
4163				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4164					__u8 snd_wscale = *(__u8 *)ptr;
4165					opt_rx->wscale_ok = 1;
4166					if (snd_wscale > TCP_MAX_WSCALE) {
4167						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4168								     __func__,
4169								     snd_wscale,
4170								     TCP_MAX_WSCALE);
4171						snd_wscale = TCP_MAX_WSCALE;
4172					}
4173					opt_rx->snd_wscale = snd_wscale;
4174				}
4175				break;
4176			case TCPOPT_TIMESTAMP:
4177				if ((opsize == TCPOLEN_TIMESTAMP) &&
4178				    ((estab && opt_rx->tstamp_ok) ||
4179				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4180					opt_rx->saw_tstamp = 1;
4181					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4182					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4183				}
4184				break;
4185			case TCPOPT_SACK_PERM:
4186				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4187				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4188					opt_rx->sack_ok = TCP_SACK_SEEN;
4189					tcp_sack_reset(opt_rx);
4190				}
4191				break;
4192
4193			case TCPOPT_SACK:
4194				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4195				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4196				   opt_rx->sack_ok) {
4197					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4198				}
4199				break;
4200#ifdef CONFIG_TCP_MD5SIG
4201			case TCPOPT_MD5SIG:
4202				/* The MD5 Hash has already been
4203				 * checked (see tcp_v{4,6}_rcv()).
 
4204				 */
4205				break;
4206#endif
4207			case TCPOPT_FASTOPEN:
4208				tcp_parse_fastopen_option(
4209					opsize - TCPOLEN_FASTOPEN_BASE,
4210					ptr, th->syn, foc, false);
4211				break;
4212
4213			case TCPOPT_EXP:
4214				/* Fast Open option shares code 254 using a
4215				 * 16 bits magic number.
4216				 */
4217				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4218				    get_unaligned_be16(ptr) ==
4219				    TCPOPT_FASTOPEN_MAGIC) {
4220					tcp_parse_fastopen_option(opsize -
4221						TCPOLEN_EXP_FASTOPEN_BASE,
4222						ptr + 2, th->syn, foc, true);
4223					break;
4224				}
4225
4226				if (smc_parse_options(th, opt_rx, ptr, opsize))
4227					break;
4228
4229				opt_rx->saw_unknown = 1;
4230				break;
4231
4232			default:
4233				opt_rx->saw_unknown = 1;
4234			}
4235			ptr += opsize-2;
4236			length -= opsize;
4237		}
4238	}
4239}
4240EXPORT_SYMBOL(tcp_parse_options);
4241
4242static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4243{
4244	const __be32 *ptr = (const __be32 *)(th + 1);
4245
4246	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4247			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4248		tp->rx_opt.saw_tstamp = 1;
4249		++ptr;
4250		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4251		++ptr;
4252		if (*ptr)
4253			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4254		else
4255			tp->rx_opt.rcv_tsecr = 0;
4256		return true;
4257	}
4258	return false;
4259}
4260
4261/* Fast parse options. This hopes to only see timestamps.
4262 * If it is wrong it falls back on tcp_parse_options().
4263 */
4264static bool tcp_fast_parse_options(const struct net *net,
4265				   const struct sk_buff *skb,
4266				   const struct tcphdr *th, struct tcp_sock *tp)
4267{
4268	/* In the spirit of fast parsing, compare doff directly to constant
4269	 * values.  Because equality is used, short doff can be ignored here.
4270	 */
4271	if (th->doff == (sizeof(*th) / 4)) {
4272		tp->rx_opt.saw_tstamp = 0;
4273		return false;
4274	} else if (tp->rx_opt.tstamp_ok &&
4275		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4276		if (tcp_parse_aligned_timestamp(tp, th))
4277			return true;
4278	}
4279
4280	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4281	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4282		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4283
4284	return true;
4285}
4286
4287#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4288/*
4289 * Parse Signature options
4290 */
4291int tcp_do_parse_auth_options(const struct tcphdr *th,
4292			      const u8 **md5_hash, const u8 **ao_hash)
4293{
4294	int length = (th->doff << 2) - sizeof(*th);
4295	const u8 *ptr = (const u8 *)(th + 1);
4296	unsigned int minlen = TCPOLEN_MD5SIG;
4297
4298	if (IS_ENABLED(CONFIG_TCP_AO))
4299		minlen = sizeof(struct tcp_ao_hdr) + 1;
4300
4301	*md5_hash = NULL;
4302	*ao_hash = NULL;
4303
4304	/* If not enough data remaining, we can short cut */
4305	while (length >= minlen) {
4306		int opcode = *ptr++;
4307		int opsize;
4308
4309		switch (opcode) {
4310		case TCPOPT_EOL:
4311			return 0;
4312		case TCPOPT_NOP:
4313			length--;
4314			continue;
4315		default:
4316			opsize = *ptr++;
4317			if (opsize < 2 || opsize > length)
4318				return -EINVAL;
4319			if (opcode == TCPOPT_MD5SIG) {
4320				if (opsize != TCPOLEN_MD5SIG)
4321					return -EINVAL;
4322				if (unlikely(*md5_hash || *ao_hash))
4323					return -EEXIST;
4324				*md5_hash = ptr;
4325			} else if (opcode == TCPOPT_AO) {
4326				if (opsize <= sizeof(struct tcp_ao_hdr))
4327					return -EINVAL;
4328				if (unlikely(*md5_hash || *ao_hash))
4329					return -EEXIST;
4330				*ao_hash = ptr;
4331			}
4332		}
4333		ptr += opsize - 2;
4334		length -= opsize;
4335	}
4336	return 0;
4337}
4338EXPORT_SYMBOL(tcp_do_parse_auth_options);
4339#endif
4340
4341/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4342 *
4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4344 * it can pass through stack. So, the following predicate verifies that
4345 * this segment is not used for anything but congestion avoidance or
4346 * fast retransmit. Moreover, we even are able to eliminate most of such
4347 * second order effects, if we apply some small "replay" window (~RTO)
4348 * to timestamp space.
4349 *
4350 * All these measures still do not guarantee that we reject wrapped ACKs
4351 * on networks with high bandwidth, when sequence space is recycled fastly,
4352 * but it guarantees that such events will be very rare and do not affect
4353 * connection seriously. This doesn't look nice, but alas, PAWS is really
4354 * buggy extension.
4355 *
4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4357 * states that events when retransmit arrives after original data are rare.
4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4359 * the biggest problem on large power networks even with minor reordering.
4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4361 * up to bandwidth of 18Gigabit/sec. 8) ]
4362 */
4363
4364/* Estimates max number of increments of remote peer TSval in
4365 * a replay window (based on our current RTO estimation).
4366 */
4367static u32 tcp_tsval_replay(const struct sock *sk)
4368{
4369	/* If we use usec TS resolution,
4370	 * then expect the remote peer to use the same resolution.
4371	 */
4372	if (tcp_sk(sk)->tcp_usec_ts)
4373		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4374
4375	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4376	 * We know that some OS (including old linux) can use 1200 Hz.
4377	 */
4378	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4379}
4380
4381static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4382{
4383	const struct tcp_sock *tp = tcp_sk(sk);
4384	const struct tcphdr *th = tcp_hdr(skb);
4385	u32 seq = TCP_SKB_CB(skb)->seq;
4386	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4387
4388	return	/* 1. Pure ACK with correct sequence number. */
4389		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4390
4391		/* 2. ... and duplicate ACK. */
4392		ack == tp->snd_una &&
4393
4394		/* 3. ... and does not update window. */
4395		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4396
4397		/* 4. ... and sits in replay window. */
4398		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4399		tcp_tsval_replay(sk);
4400}
4401
4402static inline bool tcp_paws_discard(const struct sock *sk,
4403				   const struct sk_buff *skb)
4404{
4405	const struct tcp_sock *tp = tcp_sk(sk);
4406
4407	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4408	       !tcp_disordered_ack(sk, skb);
4409}
4410
4411/* Check segment sequence number for validity.
4412 *
4413 * Segment controls are considered valid, if the segment
4414 * fits to the window after truncation to the window. Acceptability
4415 * of data (and SYN, FIN, of course) is checked separately.
4416 * See tcp_data_queue(), for example.
4417 *
4418 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4419 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4420 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4421 * (borrowed from freebsd)
4422 */
4423
4424static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4425					 u32 seq, u32 end_seq)
4426{
4427	if (before(end_seq, tp->rcv_wup))
4428		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4429
4430	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4431		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4432
4433	return SKB_NOT_DROPPED_YET;
4434}
4435
4436/* When we get a reset we do this. */
4437void tcp_reset(struct sock *sk, struct sk_buff *skb)
4438{
4439	trace_tcp_receive_reset(sk);
4440
4441	/* mptcp can't tell us to ignore reset pkts,
4442	 * so just ignore the return value of mptcp_incoming_options().
4443	 */
4444	if (sk_is_mptcp(sk))
4445		mptcp_incoming_options(sk, skb);
4446
4447	/* We want the right error as BSD sees it (and indeed as we do). */
4448	switch (sk->sk_state) {
4449	case TCP_SYN_SENT:
4450		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4451		break;
4452	case TCP_CLOSE_WAIT:
4453		WRITE_ONCE(sk->sk_err, EPIPE);
4454		break;
4455	case TCP_CLOSE:
4456		return;
4457	default:
4458		WRITE_ONCE(sk->sk_err, ECONNRESET);
4459	}
4460	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4461	smp_wmb();
4462
4463	tcp_write_queue_purge(sk);
4464	tcp_done(sk);
4465
4466	if (!sock_flag(sk, SOCK_DEAD))
4467		sk_error_report(sk);
4468}
4469
4470/*
4471 * 	Process the FIN bit. This now behaves as it is supposed to work
4472 *	and the FIN takes effect when it is validly part of sequence
4473 *	space. Not before when we get holes.
4474 *
4475 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4476 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4477 *	TIME-WAIT)
4478 *
4479 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4480 *	close and we go into CLOSING (and later onto TIME-WAIT)
4481 *
4482 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4483 */
4484void tcp_fin(struct sock *sk)
4485{
4486	struct tcp_sock *tp = tcp_sk(sk);
4487
4488	inet_csk_schedule_ack(sk);
4489
4490	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4491	sock_set_flag(sk, SOCK_DONE);
4492
4493	switch (sk->sk_state) {
4494	case TCP_SYN_RECV:
4495	case TCP_ESTABLISHED:
4496		/* Move to CLOSE_WAIT */
4497		tcp_set_state(sk, TCP_CLOSE_WAIT);
4498		inet_csk_enter_pingpong_mode(sk);
4499		break;
4500
4501	case TCP_CLOSE_WAIT:
4502	case TCP_CLOSING:
4503		/* Received a retransmission of the FIN, do
4504		 * nothing.
4505		 */
4506		break;
4507	case TCP_LAST_ACK:
4508		/* RFC793: Remain in the LAST-ACK state. */
4509		break;
4510
4511	case TCP_FIN_WAIT1:
4512		/* This case occurs when a simultaneous close
4513		 * happens, we must ack the received FIN and
4514		 * enter the CLOSING state.
4515		 */
4516		tcp_send_ack(sk);
4517		tcp_set_state(sk, TCP_CLOSING);
4518		break;
4519	case TCP_FIN_WAIT2:
4520		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4521		tcp_send_ack(sk);
4522		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4523		break;
4524	default:
4525		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4526		 * cases we should never reach this piece of code.
4527		 */
4528		pr_err("%s: Impossible, sk->sk_state=%d\n",
4529		       __func__, sk->sk_state);
4530		break;
4531	}
4532
4533	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4534	 * Probably, we should reset in this case. For now drop them.
4535	 */
4536	skb_rbtree_purge(&tp->out_of_order_queue);
4537	if (tcp_is_sack(tp))
4538		tcp_sack_reset(&tp->rx_opt);
 
4539
4540	if (!sock_flag(sk, SOCK_DEAD)) {
4541		sk->sk_state_change(sk);
4542
4543		/* Do not send POLL_HUP for half duplex close. */
4544		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4545		    sk->sk_state == TCP_CLOSE)
4546			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4547		else
4548			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4549	}
4550}
4551
4552static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4553				  u32 end_seq)
4554{
4555	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4556		if (before(seq, sp->start_seq))
4557			sp->start_seq = seq;
4558		if (after(end_seq, sp->end_seq))
4559			sp->end_seq = end_seq;
4560		return true;
4561	}
4562	return false;
4563}
4564
4565static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4566{
4567	struct tcp_sock *tp = tcp_sk(sk);
4568
4569	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4570		int mib_idx;
4571
4572		if (before(seq, tp->rcv_nxt))
4573			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4574		else
4575			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4576
4577		NET_INC_STATS(sock_net(sk), mib_idx);
4578
4579		tp->rx_opt.dsack = 1;
4580		tp->duplicate_sack[0].start_seq = seq;
4581		tp->duplicate_sack[0].end_seq = end_seq;
4582	}
4583}
4584
4585static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4586{
4587	struct tcp_sock *tp = tcp_sk(sk);
4588
4589	if (!tp->rx_opt.dsack)
4590		tcp_dsack_set(sk, seq, end_seq);
4591	else
4592		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4593}
4594
4595static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4596{
4597	/* When the ACK path fails or drops most ACKs, the sender would
4598	 * timeout and spuriously retransmit the same segment repeatedly.
4599	 * If it seems our ACKs are not reaching the other side,
4600	 * based on receiving a duplicate data segment with new flowlabel
4601	 * (suggesting the sender suffered an RTO), and we are not already
4602	 * repathing due to our own RTO, then rehash the socket to repath our
4603	 * packets.
4604	 */
4605#if IS_ENABLED(CONFIG_IPV6)
4606	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4607	    skb->protocol == htons(ETH_P_IPV6) &&
4608	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4609	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4610	    sk_rethink_txhash(sk))
4611		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4612
4613	/* Save last flowlabel after a spurious retrans. */
4614	tcp_save_lrcv_flowlabel(sk, skb);
4615#endif
4616}
4617
4618static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4619{
4620	struct tcp_sock *tp = tcp_sk(sk);
4621
4622	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4623	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4624		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4625		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4626
4627		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4628			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4629
4630			tcp_rcv_spurious_retrans(sk, skb);
4631			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4632				end_seq = tp->rcv_nxt;
4633			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4634		}
4635	}
4636
4637	tcp_send_ack(sk);
4638}
4639
4640/* These routines update the SACK block as out-of-order packets arrive or
4641 * in-order packets close up the sequence space.
4642 */
4643static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4644{
4645	int this_sack;
4646	struct tcp_sack_block *sp = &tp->selective_acks[0];
4647	struct tcp_sack_block *swalk = sp + 1;
4648
4649	/* See if the recent change to the first SACK eats into
4650	 * or hits the sequence space of other SACK blocks, if so coalesce.
4651	 */
4652	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4653		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4654			int i;
4655
4656			/* Zap SWALK, by moving every further SACK up by one slot.
4657			 * Decrease num_sacks.
4658			 */
4659			tp->rx_opt.num_sacks--;
4660			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4661				sp[i] = sp[i + 1];
4662			continue;
4663		}
4664		this_sack++;
4665		swalk++;
4666	}
4667}
4668
4669void tcp_sack_compress_send_ack(struct sock *sk)
4670{
4671	struct tcp_sock *tp = tcp_sk(sk);
4672
4673	if (!tp->compressed_ack)
4674		return;
4675
4676	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4677		__sock_put(sk);
4678
4679	/* Since we have to send one ack finally,
4680	 * substract one from tp->compressed_ack to keep
4681	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4682	 */
4683	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4684		      tp->compressed_ack - 1);
4685
4686	tp->compressed_ack = 0;
4687	tcp_send_ack(sk);
4688}
4689
4690/* Reasonable amount of sack blocks included in TCP SACK option
4691 * The max is 4, but this becomes 3 if TCP timestamps are there.
4692 * Given that SACK packets might be lost, be conservative and use 2.
4693 */
4694#define TCP_SACK_BLOCKS_EXPECTED 2
4695
4696static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4697{
4698	struct tcp_sock *tp = tcp_sk(sk);
4699	struct tcp_sack_block *sp = &tp->selective_acks[0];
4700	int cur_sacks = tp->rx_opt.num_sacks;
4701	int this_sack;
4702
4703	if (!cur_sacks)
4704		goto new_sack;
4705
4706	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4707		if (tcp_sack_extend(sp, seq, end_seq)) {
4708			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4709				tcp_sack_compress_send_ack(sk);
4710			/* Rotate this_sack to the first one. */
4711			for (; this_sack > 0; this_sack--, sp--)
4712				swap(*sp, *(sp - 1));
4713			if (cur_sacks > 1)
4714				tcp_sack_maybe_coalesce(tp);
4715			return;
4716		}
4717	}
4718
4719	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4720		tcp_sack_compress_send_ack(sk);
4721
4722	/* Could not find an adjacent existing SACK, build a new one,
4723	 * put it at the front, and shift everyone else down.  We
4724	 * always know there is at least one SACK present already here.
4725	 *
4726	 * If the sack array is full, forget about the last one.
4727	 */
4728	if (this_sack >= TCP_NUM_SACKS) {
4729		this_sack--;
4730		tp->rx_opt.num_sacks--;
4731		sp--;
4732	}
4733	for (; this_sack > 0; this_sack--, sp--)
4734		*sp = *(sp - 1);
4735
4736new_sack:
4737	/* Build the new head SACK, and we're done. */
4738	sp->start_seq = seq;
4739	sp->end_seq = end_seq;
4740	tp->rx_opt.num_sacks++;
4741}
4742
4743/* RCV.NXT advances, some SACKs should be eaten. */
4744
4745static void tcp_sack_remove(struct tcp_sock *tp)
4746{
4747	struct tcp_sack_block *sp = &tp->selective_acks[0];
4748	int num_sacks = tp->rx_opt.num_sacks;
4749	int this_sack;
4750
4751	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4752	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4753		tp->rx_opt.num_sacks = 0;
4754		return;
4755	}
4756
4757	for (this_sack = 0; this_sack < num_sacks;) {
4758		/* Check if the start of the sack is covered by RCV.NXT. */
4759		if (!before(tp->rcv_nxt, sp->start_seq)) {
4760			int i;
4761
4762			/* RCV.NXT must cover all the block! */
4763			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4764
4765			/* Zap this SACK, by moving forward any other SACKS. */
4766			for (i = this_sack+1; i < num_sacks; i++)
4767				tp->selective_acks[i-1] = tp->selective_acks[i];
4768			num_sacks--;
4769			continue;
4770		}
4771		this_sack++;
4772		sp++;
4773	}
4774	tp->rx_opt.num_sacks = num_sacks;
4775}
4776
4777/**
4778 * tcp_try_coalesce - try to merge skb to prior one
4779 * @sk: socket
4780 * @to: prior buffer
4781 * @from: buffer to add in queue
4782 * @fragstolen: pointer to boolean
4783 *
4784 * Before queueing skb @from after @to, try to merge them
4785 * to reduce overall memory use and queue lengths, if cost is small.
4786 * Packets in ofo or receive queues can stay a long time.
4787 * Better try to coalesce them right now to avoid future collapses.
4788 * Returns true if caller should free @from instead of queueing it
4789 */
4790static bool tcp_try_coalesce(struct sock *sk,
4791			     struct sk_buff *to,
4792			     struct sk_buff *from,
4793			     bool *fragstolen)
4794{
4795	int delta;
4796
4797	*fragstolen = false;
4798
4799	/* Its possible this segment overlaps with prior segment in queue */
4800	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4801		return false;
4802
4803	if (!mptcp_skb_can_collapse(to, from))
4804		return false;
4805
4806#ifdef CONFIG_TLS_DEVICE
4807	if (from->decrypted != to->decrypted)
4808		return false;
4809#endif
4810
4811	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4812		return false;
4813
4814	atomic_add(delta, &sk->sk_rmem_alloc);
4815	sk_mem_charge(sk, delta);
4816	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4817	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4818	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4819	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4820
4821	if (TCP_SKB_CB(from)->has_rxtstamp) {
4822		TCP_SKB_CB(to)->has_rxtstamp = true;
4823		to->tstamp = from->tstamp;
4824		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4825	}
4826
4827	return true;
4828}
4829
4830static bool tcp_ooo_try_coalesce(struct sock *sk,
4831			     struct sk_buff *to,
4832			     struct sk_buff *from,
4833			     bool *fragstolen)
4834{
4835	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4836
4837	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4838	if (res) {
4839		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4840			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4841
4842		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4843	}
4844	return res;
4845}
4846
4847static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4848			    enum skb_drop_reason reason)
4849{
4850	sk_drops_add(sk, skb);
4851	kfree_skb_reason(skb, reason);
4852}
4853
4854/* This one checks to see if we can put data from the
4855 * out_of_order queue into the receive_queue.
4856 */
4857static void tcp_ofo_queue(struct sock *sk)
4858{
4859	struct tcp_sock *tp = tcp_sk(sk);
4860	__u32 dsack_high = tp->rcv_nxt;
4861	bool fin, fragstolen, eaten;
4862	struct sk_buff *skb, *tail;
4863	struct rb_node *p;
4864
4865	p = rb_first(&tp->out_of_order_queue);
4866	while (p) {
4867		skb = rb_to_skb(p);
4868		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4869			break;
4870
4871		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4872			__u32 dsack = dsack_high;
4873			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4874				dsack_high = TCP_SKB_CB(skb)->end_seq;
4875			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4876		}
4877		p = rb_next(p);
4878		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4879
4880		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4881			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4882			continue;
4883		}
4884
4885		tail = skb_peek_tail(&sk->sk_receive_queue);
4886		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4887		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4888		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4889		if (!eaten)
4890			__skb_queue_tail(&sk->sk_receive_queue, skb);
4891		else
4892			kfree_skb_partial(skb, fragstolen);
4893
4894		if (unlikely(fin)) {
4895			tcp_fin(sk);
4896			/* tcp_fin() purges tp->out_of_order_queue,
4897			 * so we must end this loop right now.
4898			 */
4899			break;
4900		}
4901	}
4902}
4903
4904static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4905static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4906
4907static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4908				 unsigned int size)
4909{
4910	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4911	    !sk_rmem_schedule(sk, skb, size)) {
4912
4913		if (tcp_prune_queue(sk, skb) < 0)
4914			return -1;
4915
4916		while (!sk_rmem_schedule(sk, skb, size)) {
4917			if (!tcp_prune_ofo_queue(sk, skb))
4918				return -1;
4919		}
4920	}
4921	return 0;
4922}
4923
4924static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4925{
4926	struct tcp_sock *tp = tcp_sk(sk);
4927	struct rb_node **p, *parent;
4928	struct sk_buff *skb1;
4929	u32 seq, end_seq;
4930	bool fragstolen;
4931
4932	tcp_save_lrcv_flowlabel(sk, skb);
4933	tcp_ecn_check_ce(sk, skb);
4934
4935	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4936		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4937		sk->sk_data_ready(sk);
4938		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4939		return;
4940	}
4941
4942	/* Disable header prediction. */
4943	tp->pred_flags = 0;
4944	inet_csk_schedule_ack(sk);
4945
4946	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4947	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4948	seq = TCP_SKB_CB(skb)->seq;
4949	end_seq = TCP_SKB_CB(skb)->end_seq;
4950
4951	p = &tp->out_of_order_queue.rb_node;
4952	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4953		/* Initial out of order segment, build 1 SACK. */
4954		if (tcp_is_sack(tp)) {
4955			tp->rx_opt.num_sacks = 1;
4956			tp->selective_acks[0].start_seq = seq;
4957			tp->selective_acks[0].end_seq = end_seq;
4958		}
4959		rb_link_node(&skb->rbnode, NULL, p);
4960		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4961		tp->ooo_last_skb = skb;
4962		goto end;
4963	}
4964
4965	/* In the typical case, we are adding an skb to the end of the list.
4966	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4967	 */
4968	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4969				 skb, &fragstolen)) {
4970coalesce_done:
4971		/* For non sack flows, do not grow window to force DUPACK
4972		 * and trigger fast retransmit.
4973		 */
4974		if (tcp_is_sack(tp))
4975			tcp_grow_window(sk, skb, true);
4976		kfree_skb_partial(skb, fragstolen);
4977		skb = NULL;
4978		goto add_sack;
4979	}
4980	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4981	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4982		parent = &tp->ooo_last_skb->rbnode;
4983		p = &parent->rb_right;
4984		goto insert;
4985	}
4986
4987	/* Find place to insert this segment. Handle overlaps on the way. */
4988	parent = NULL;
4989	while (*p) {
4990		parent = *p;
4991		skb1 = rb_to_skb(parent);
4992		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4993			p = &parent->rb_left;
4994			continue;
4995		}
4996		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4997			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4998				/* All the bits are present. Drop. */
4999				NET_INC_STATS(sock_net(sk),
5000					      LINUX_MIB_TCPOFOMERGE);
5001				tcp_drop_reason(sk, skb,
5002						SKB_DROP_REASON_TCP_OFOMERGE);
5003				skb = NULL;
5004				tcp_dsack_set(sk, seq, end_seq);
5005				goto add_sack;
5006			}
5007			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5008				/* Partial overlap. */
5009				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5010			} else {
5011				/* skb's seq == skb1's seq and skb covers skb1.
5012				 * Replace skb1 with skb.
5013				 */
5014				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5015						&tp->out_of_order_queue);
5016				tcp_dsack_extend(sk,
5017						 TCP_SKB_CB(skb1)->seq,
5018						 TCP_SKB_CB(skb1)->end_seq);
5019				NET_INC_STATS(sock_net(sk),
5020					      LINUX_MIB_TCPOFOMERGE);
5021				tcp_drop_reason(sk, skb1,
5022						SKB_DROP_REASON_TCP_OFOMERGE);
5023				goto merge_right;
5024			}
5025		} else if (tcp_ooo_try_coalesce(sk, skb1,
5026						skb, &fragstolen)) {
5027			goto coalesce_done;
5028		}
5029		p = &parent->rb_right;
5030	}
5031insert:
5032	/* Insert segment into RB tree. */
5033	rb_link_node(&skb->rbnode, parent, p);
5034	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5035
5036merge_right:
5037	/* Remove other segments covered by skb. */
5038	while ((skb1 = skb_rb_next(skb)) != NULL) {
5039		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5040			break;
5041		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5042			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043					 end_seq);
5044			break;
5045		}
5046		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5047		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5048				 TCP_SKB_CB(skb1)->end_seq);
5049		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5050		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5051	}
5052	/* If there is no skb after us, we are the last_skb ! */
5053	if (!skb1)
5054		tp->ooo_last_skb = skb;
5055
5056add_sack:
5057	if (tcp_is_sack(tp))
5058		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5059end:
5060	if (skb) {
5061		/* For non sack flows, do not grow window to force DUPACK
5062		 * and trigger fast retransmit.
5063		 */
5064		if (tcp_is_sack(tp))
5065			tcp_grow_window(sk, skb, false);
5066		skb_condense(skb);
5067		skb_set_owner_r(skb, sk);
5068	}
5069}
5070
5071static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5072				      bool *fragstolen)
5073{
5074	int eaten;
5075	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5076
5077	eaten = (tail &&
5078		 tcp_try_coalesce(sk, tail,
5079				  skb, fragstolen)) ? 1 : 0;
5080	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5081	if (!eaten) {
5082		__skb_queue_tail(&sk->sk_receive_queue, skb);
5083		skb_set_owner_r(skb, sk);
5084	}
5085	return eaten;
5086}
5087
5088int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5089{
5090	struct sk_buff *skb;
5091	int err = -ENOMEM;
5092	int data_len = 0;
5093	bool fragstolen;
5094
5095	if (size == 0)
5096		return 0;
5097
5098	if (size > PAGE_SIZE) {
5099		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5100
5101		data_len = npages << PAGE_SHIFT;
5102		size = data_len + (size & ~PAGE_MASK);
5103	}
5104	skb = alloc_skb_with_frags(size - data_len, data_len,
5105				   PAGE_ALLOC_COSTLY_ORDER,
5106				   &err, sk->sk_allocation);
5107	if (!skb)
5108		goto err;
5109
5110	skb_put(skb, size - data_len);
5111	skb->data_len = data_len;
5112	skb->len = size;
5113
5114	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5115		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5116		goto err_free;
5117	}
5118
5119	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5120	if (err)
5121		goto err_free;
5122
5123	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5124	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5125	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5126
5127	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5128		WARN_ON_ONCE(fragstolen); /* should not happen */
5129		__kfree_skb(skb);
5130	}
5131	return size;
5132
5133err_free:
5134	kfree_skb(skb);
5135err:
5136	return err;
5137
5138}
5139
5140void tcp_data_ready(struct sock *sk)
5141{
5142	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5143		sk->sk_data_ready(sk);
5144}
5145
5146static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5147{
5148	struct tcp_sock *tp = tcp_sk(sk);
5149	enum skb_drop_reason reason;
5150	bool fragstolen;
5151	int eaten;
5152
5153	/* If a subflow has been reset, the packet should not continue
5154	 * to be processed, drop the packet.
5155	 */
5156	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5157		__kfree_skb(skb);
5158		return;
5159	}
5160
5161	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5162		__kfree_skb(skb);
5163		return;
5164	}
5165	skb_dst_drop(skb);
5166	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5167
5168	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5169	tp->rx_opt.dsack = 0;
5170
5171	/*  Queue data for delivery to the user.
5172	 *  Packets in sequence go to the receive queue.
5173	 *  Out of sequence packets to the out_of_order_queue.
5174	 */
5175	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5176		if (tcp_receive_window(tp) == 0) {
5177			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5178			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5179			goto out_of_window;
5180		}
5181
5182		/* Ok. In sequence. In window. */
5183queue_and_out:
5184		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5185			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5186			inet_csk(sk)->icsk_ack.pending |=
5187					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5188			inet_csk_schedule_ack(sk);
5189			sk->sk_data_ready(sk);
5190
5191			if (skb_queue_len(&sk->sk_receive_queue)) {
5192				reason = SKB_DROP_REASON_PROTO_MEM;
5193				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5194				goto drop;
5195			}
5196			sk_forced_mem_schedule(sk, skb->truesize);
5197		}
5198
5199		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5200		if (skb->len)
5201			tcp_event_data_recv(sk, skb);
5202		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5203			tcp_fin(sk);
5204
5205		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5206			tcp_ofo_queue(sk);
5207
5208			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5209			 * gap in queue is filled.
5210			 */
5211			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5212				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5213		}
5214
5215		if (tp->rx_opt.num_sacks)
5216			tcp_sack_remove(tp);
5217
5218		tcp_fast_path_check(sk);
5219
5220		if (eaten > 0)
5221			kfree_skb_partial(skb, fragstolen);
5222		if (!sock_flag(sk, SOCK_DEAD))
5223			tcp_data_ready(sk);
5224		return;
5225	}
5226
5227	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5228		tcp_rcv_spurious_retrans(sk, skb);
5229		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5230		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5231		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5232		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5233
5234out_of_window:
5235		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5236		inet_csk_schedule_ack(sk);
5237drop:
5238		tcp_drop_reason(sk, skb, reason);
5239		return;
5240	}
5241
5242	/* Out of window. F.e. zero window probe. */
5243	if (!before(TCP_SKB_CB(skb)->seq,
5244		    tp->rcv_nxt + tcp_receive_window(tp))) {
5245		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5246		goto out_of_window;
5247	}
5248
5249	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5250		/* Partial packet, seq < rcv_next < end_seq */
5251		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5252
5253		/* If window is closed, drop tail of packet. But after
5254		 * remembering D-SACK for its head made in previous line.
5255		 */
5256		if (!tcp_receive_window(tp)) {
5257			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5258			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5259			goto out_of_window;
5260		}
5261		goto queue_and_out;
5262	}
5263
5264	tcp_data_queue_ofo(sk, skb);
5265}
5266
5267static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5268{
5269	if (list)
5270		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5271
5272	return skb_rb_next(skb);
5273}
5274
5275static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5276					struct sk_buff_head *list,
5277					struct rb_root *root)
5278{
5279	struct sk_buff *next = tcp_skb_next(skb, list);
5280
5281	if (list)
5282		__skb_unlink(skb, list);
5283	else
5284		rb_erase(&skb->rbnode, root);
5285
5286	__kfree_skb(skb);
5287	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5288
5289	return next;
5290}
5291
5292/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5293void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5294{
5295	struct rb_node **p = &root->rb_node;
5296	struct rb_node *parent = NULL;
5297	struct sk_buff *skb1;
5298
5299	while (*p) {
5300		parent = *p;
5301		skb1 = rb_to_skb(parent);
5302		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5303			p = &parent->rb_left;
5304		else
5305			p = &parent->rb_right;
5306	}
5307	rb_link_node(&skb->rbnode, parent, p);
5308	rb_insert_color(&skb->rbnode, root);
5309}
5310
5311/* Collapse contiguous sequence of skbs head..tail with
5312 * sequence numbers start..end.
5313 *
5314 * If tail is NULL, this means until the end of the queue.
5315 *
5316 * Segments with FIN/SYN are not collapsed (only because this
5317 * simplifies code)
5318 */
5319static void
5320tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5321	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5322{
5323	struct sk_buff *skb = head, *n;
5324	struct sk_buff_head tmp;
5325	bool end_of_skbs;
5326
5327	/* First, check that queue is collapsible and find
5328	 * the point where collapsing can be useful.
5329	 */
5330restart:
5331	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5332		n = tcp_skb_next(skb, list);
5333
5334		/* No new bits? It is possible on ofo queue. */
5335		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5336			skb = tcp_collapse_one(sk, skb, list, root);
5337			if (!skb)
5338				break;
5339			goto restart;
5340		}
5341
5342		/* The first skb to collapse is:
5343		 * - not SYN/FIN and
5344		 * - bloated or contains data before "start" or
5345		 *   overlaps to the next one and mptcp allow collapsing.
5346		 */
5347		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5348		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5349		     before(TCP_SKB_CB(skb)->seq, start))) {
5350			end_of_skbs = false;
5351			break;
5352		}
5353
5354		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5355		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5356			end_of_skbs = false;
5357			break;
5358		}
5359
5360		/* Decided to skip this, advance start seq. */
5361		start = TCP_SKB_CB(skb)->end_seq;
5362	}
5363	if (end_of_skbs ||
5364	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5365		return;
5366
5367	__skb_queue_head_init(&tmp);
5368
5369	while (before(start, end)) {
5370		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5371		struct sk_buff *nskb;
5372
5373		nskb = alloc_skb(copy, GFP_ATOMIC);
5374		if (!nskb)
5375			break;
5376
5377		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5378#ifdef CONFIG_TLS_DEVICE
5379		nskb->decrypted = skb->decrypted;
5380#endif
5381		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5382		if (list)
5383			__skb_queue_before(list, skb, nskb);
5384		else
5385			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5386		skb_set_owner_r(nskb, sk);
5387		mptcp_skb_ext_move(nskb, skb);
5388
5389		/* Copy data, releasing collapsed skbs. */
5390		while (copy > 0) {
5391			int offset = start - TCP_SKB_CB(skb)->seq;
5392			int size = TCP_SKB_CB(skb)->end_seq - start;
5393
5394			BUG_ON(offset < 0);
5395			if (size > 0) {
5396				size = min(copy, size);
5397				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5398					BUG();
5399				TCP_SKB_CB(nskb)->end_seq += size;
5400				copy -= size;
5401				start += size;
5402			}
5403			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5404				skb = tcp_collapse_one(sk, skb, list, root);
5405				if (!skb ||
5406				    skb == tail ||
5407				    !mptcp_skb_can_collapse(nskb, skb) ||
5408				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5409					goto end;
5410#ifdef CONFIG_TLS_DEVICE
5411				if (skb->decrypted != nskb->decrypted)
5412					goto end;
5413#endif
5414			}
5415		}
5416	}
5417end:
5418	skb_queue_walk_safe(&tmp, skb, n)
5419		tcp_rbtree_insert(root, skb);
5420}
5421
5422/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5423 * and tcp_collapse() them until all the queue is collapsed.
5424 */
5425static void tcp_collapse_ofo_queue(struct sock *sk)
5426{
5427	struct tcp_sock *tp = tcp_sk(sk);
5428	u32 range_truesize, sum_tiny = 0;
5429	struct sk_buff *skb, *head;
5430	u32 start, end;
5431
5432	skb = skb_rb_first(&tp->out_of_order_queue);
5433new_range:
5434	if (!skb) {
5435		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5436		return;
5437	}
5438	start = TCP_SKB_CB(skb)->seq;
5439	end = TCP_SKB_CB(skb)->end_seq;
5440	range_truesize = skb->truesize;
5441
5442	for (head = skb;;) {
5443		skb = skb_rb_next(skb);
5444
5445		/* Range is terminated when we see a gap or when
5446		 * we are at the queue end.
5447		 */
5448		if (!skb ||
5449		    after(TCP_SKB_CB(skb)->seq, end) ||
5450		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5451			/* Do not attempt collapsing tiny skbs */
5452			if (range_truesize != head->truesize ||
5453			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5454				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5455					     head, skb, start, end);
5456			} else {
5457				sum_tiny += range_truesize;
5458				if (sum_tiny > sk->sk_rcvbuf >> 3)
5459					return;
5460			}
5461			goto new_range;
5462		}
5463
5464		range_truesize += skb->truesize;
5465		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5466			start = TCP_SKB_CB(skb)->seq;
5467		if (after(TCP_SKB_CB(skb)->end_seq, end))
5468			end = TCP_SKB_CB(skb)->end_seq;
5469	}
5470}
5471
5472/*
5473 * Clean the out-of-order queue to make room.
5474 * We drop high sequences packets to :
5475 * 1) Let a chance for holes to be filled.
5476 *    This means we do not drop packets from ooo queue if their sequence
5477 *    is before incoming packet sequence.
5478 * 2) not add too big latencies if thousands of packets sit there.
5479 *    (But if application shrinks SO_RCVBUF, we could still end up
5480 *     freeing whole queue here)
5481 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5482 *
5483 * Return true if queue has shrunk.
5484 */
5485static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5486{
5487	struct tcp_sock *tp = tcp_sk(sk);
5488	struct rb_node *node, *prev;
5489	bool pruned = false;
5490	int goal;
5491
5492	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5493		return false;
5494
 
5495	goal = sk->sk_rcvbuf >> 3;
5496	node = &tp->ooo_last_skb->rbnode;
5497
5498	do {
5499		struct sk_buff *skb = rb_to_skb(node);
5500
5501		/* If incoming skb would land last in ofo queue, stop pruning. */
5502		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5503			break;
5504		pruned = true;
5505		prev = rb_prev(node);
5506		rb_erase(node, &tp->out_of_order_queue);
5507		goal -= skb->truesize;
5508		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5509		tp->ooo_last_skb = rb_to_skb(prev);
5510		if (!prev || goal <= 0) {
 
5511			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5512			    !tcp_under_memory_pressure(sk))
5513				break;
5514			goal = sk->sk_rcvbuf >> 3;
5515		}
5516		node = prev;
5517	} while (node);
 
5518
5519	if (pruned) {
5520		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5521		/* Reset SACK state.  A conforming SACK implementation will
5522		 * do the same at a timeout based retransmit.  When a connection
5523		 * is in a sad state like this, we care only about integrity
5524		 * of the connection not performance.
5525		 */
5526		if (tp->rx_opt.sack_ok)
5527			tcp_sack_reset(&tp->rx_opt);
5528	}
5529	return pruned;
5530}
5531
5532/* Reduce allocated memory if we can, trying to get
5533 * the socket within its memory limits again.
5534 *
5535 * Return less than zero if we should start dropping frames
5536 * until the socket owning process reads some of the data
5537 * to stabilize the situation.
5538 */
5539static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5540{
5541	struct tcp_sock *tp = tcp_sk(sk);
5542
5543	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5544
5545	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5546		tcp_clamp_window(sk);
5547	else if (tcp_under_memory_pressure(sk))
5548		tcp_adjust_rcv_ssthresh(sk);
5549
5550	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5551		return 0;
5552
5553	tcp_collapse_ofo_queue(sk);
5554	if (!skb_queue_empty(&sk->sk_receive_queue))
5555		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5556			     skb_peek(&sk->sk_receive_queue),
5557			     NULL,
5558			     tp->copied_seq, tp->rcv_nxt);
 
5559
5560	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5561		return 0;
5562
5563	/* Collapsing did not help, destructive actions follow.
5564	 * This must not ever occur. */
5565
5566	tcp_prune_ofo_queue(sk, in_skb);
5567
5568	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5569		return 0;
5570
5571	/* If we are really being abused, tell the caller to silently
5572	 * drop receive data on the floor.  It will get retransmitted
5573	 * and hopefully then we'll have sufficient space.
5574	 */
5575	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5576
5577	/* Massive buffer overcommit. */
5578	tp->pred_flags = 0;
5579	return -1;
5580}
5581
5582static bool tcp_should_expand_sndbuf(struct sock *sk)
5583{
5584	const struct tcp_sock *tp = tcp_sk(sk);
5585
5586	/* If the user specified a specific send buffer setting, do
5587	 * not modify it.
5588	 */
5589	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5590		return false;
5591
5592	/* If we are under global TCP memory pressure, do not expand.  */
5593	if (tcp_under_memory_pressure(sk)) {
5594		int unused_mem = sk_unused_reserved_mem(sk);
5595
5596		/* Adjust sndbuf according to reserved mem. But make sure
5597		 * it never goes below SOCK_MIN_SNDBUF.
5598		 * See sk_stream_moderate_sndbuf() for more details.
5599		 */
5600		if (unused_mem > SOCK_MIN_SNDBUF)
5601			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5602
5603		return false;
5604	}
5605
5606	/* If we are under soft global TCP memory pressure, do not expand.  */
5607	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5608		return false;
5609
5610	/* If we filled the congestion window, do not expand.  */
5611	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5612		return false;
5613
5614	return true;
5615}
5616
5617static void tcp_new_space(struct sock *sk)
5618{
5619	struct tcp_sock *tp = tcp_sk(sk);
5620
5621	if (tcp_should_expand_sndbuf(sk)) {
5622		tcp_sndbuf_expand(sk);
5623		tp->snd_cwnd_stamp = tcp_jiffies32;
5624	}
5625
5626	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5627}
5628
5629/* Caller made space either from:
5630 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5631 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5632 *
5633 * We might be able to generate EPOLLOUT to the application if:
5634 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5635 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5636 *    small enough that tcp_stream_memory_free() decides it
5637 *    is time to generate EPOLLOUT.
5638 */
5639void tcp_check_space(struct sock *sk)
5640{
5641	/* pairs with tcp_poll() */
5642	smp_mb();
5643	if (sk->sk_socket &&
5644	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5645		tcp_new_space(sk);
5646		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5647			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5648	}
5649}
5650
5651static inline void tcp_data_snd_check(struct sock *sk)
5652{
5653	tcp_push_pending_frames(sk);
5654	tcp_check_space(sk);
5655}
5656
5657/*
5658 * Check if sending an ack is needed.
5659 */
5660static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5661{
5662	struct tcp_sock *tp = tcp_sk(sk);
5663	unsigned long rtt, delay;
5664
5665	    /* More than one full frame received... */
5666	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5667	     /* ... and right edge of window advances far enough.
5668	      * (tcp_recvmsg() will send ACK otherwise).
5669	      * If application uses SO_RCVLOWAT, we want send ack now if
5670	      * we have not received enough bytes to satisfy the condition.
5671	      */
5672	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5673	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5674	    /* We ACK each frame or... */
5675	    tcp_in_quickack_mode(sk) ||
5676	    /* Protocol state mandates a one-time immediate ACK */
5677	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5678		/* If we are running from __release_sock() in user context,
5679		 * Defer the ack until tcp_release_cb().
5680		 */
5681		if (sock_owned_by_user_nocheck(sk) &&
5682		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5683			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5684			return;
5685		}
5686send_now:
5687		tcp_send_ack(sk);
5688		return;
5689	}
5690
5691	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5692		tcp_send_delayed_ack(sk);
5693		return;
5694	}
5695
5696	if (!tcp_is_sack(tp) ||
5697	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5698		goto send_now;
5699
5700	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5701		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5702		tp->dup_ack_counter = 0;
5703	}
5704	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5705		tp->dup_ack_counter++;
5706		goto send_now;
5707	}
5708	tp->compressed_ack++;
5709	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5710		return;
5711
5712	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5713
5714	rtt = tp->rcv_rtt_est.rtt_us;
5715	if (tp->srtt_us && tp->srtt_us < rtt)
5716		rtt = tp->srtt_us;
5717
5718	delay = min_t(unsigned long,
5719		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5720		      rtt * (NSEC_PER_USEC >> 3)/20);
5721	sock_hold(sk);
5722	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5723			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5724			       HRTIMER_MODE_REL_PINNED_SOFT);
5725}
5726
5727static inline void tcp_ack_snd_check(struct sock *sk)
5728{
5729	if (!inet_csk_ack_scheduled(sk)) {
5730		/* We sent a data segment already. */
5731		return;
5732	}
5733	__tcp_ack_snd_check(sk, 1);
5734}
5735
5736/*
5737 *	This routine is only called when we have urgent data
5738 *	signaled. Its the 'slow' part of tcp_urg. It could be
5739 *	moved inline now as tcp_urg is only called from one
5740 *	place. We handle URGent data wrong. We have to - as
5741 *	BSD still doesn't use the correction from RFC961.
5742 *	For 1003.1g we should support a new option TCP_STDURG to permit
5743 *	either form (or just set the sysctl tcp_stdurg).
5744 */
5745
5746static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5747{
5748	struct tcp_sock *tp = tcp_sk(sk);
5749	u32 ptr = ntohs(th->urg_ptr);
5750
5751	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5752		ptr--;
5753	ptr += ntohl(th->seq);
5754
5755	/* Ignore urgent data that we've already seen and read. */
5756	if (after(tp->copied_seq, ptr))
5757		return;
5758
5759	/* Do not replay urg ptr.
5760	 *
5761	 * NOTE: interesting situation not covered by specs.
5762	 * Misbehaving sender may send urg ptr, pointing to segment,
5763	 * which we already have in ofo queue. We are not able to fetch
5764	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5765	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5766	 * situations. But it is worth to think about possibility of some
5767	 * DoSes using some hypothetical application level deadlock.
5768	 */
5769	if (before(ptr, tp->rcv_nxt))
5770		return;
5771
5772	/* Do we already have a newer (or duplicate) urgent pointer? */
5773	if (tp->urg_data && !after(ptr, tp->urg_seq))
5774		return;
5775
5776	/* Tell the world about our new urgent pointer. */
5777	sk_send_sigurg(sk);
5778
5779	/* We may be adding urgent data when the last byte read was
5780	 * urgent. To do this requires some care. We cannot just ignore
5781	 * tp->copied_seq since we would read the last urgent byte again
5782	 * as data, nor can we alter copied_seq until this data arrives
5783	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5784	 *
5785	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5786	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5787	 * and expect that both A and B disappear from stream. This is _wrong_.
5788	 * Though this happens in BSD with high probability, this is occasional.
5789	 * Any application relying on this is buggy. Note also, that fix "works"
5790	 * only in this artificial test. Insert some normal data between A and B and we will
5791	 * decline of BSD again. Verdict: it is better to remove to trap
5792	 * buggy users.
5793	 */
5794	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5795	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5796		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5797		tp->copied_seq++;
5798		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5799			__skb_unlink(skb, &sk->sk_receive_queue);
5800			__kfree_skb(skb);
5801		}
5802	}
5803
5804	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5805	WRITE_ONCE(tp->urg_seq, ptr);
5806
5807	/* Disable header prediction. */
5808	tp->pred_flags = 0;
5809}
5810
5811/* This is the 'fast' part of urgent handling. */
5812static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5813{
5814	struct tcp_sock *tp = tcp_sk(sk);
5815
5816	/* Check if we get a new urgent pointer - normally not. */
5817	if (unlikely(th->urg))
5818		tcp_check_urg(sk, th);
5819
5820	/* Do we wait for any urgent data? - normally not... */
5821	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5822		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5823			  th->syn;
5824
5825		/* Is the urgent pointer pointing into this packet? */
5826		if (ptr < skb->len) {
5827			u8 tmp;
5828			if (skb_copy_bits(skb, ptr, &tmp, 1))
5829				BUG();
5830			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5831			if (!sock_flag(sk, SOCK_DEAD))
5832				sk->sk_data_ready(sk);
5833		}
5834	}
5835}
5836
5837/* Accept RST for rcv_nxt - 1 after a FIN.
5838 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5839 * FIN is sent followed by a RST packet. The RST is sent with the same
5840 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5841 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5842 * ACKs on the closed socket. In addition middleboxes can drop either the
5843 * challenge ACK or a subsequent RST.
5844 */
5845static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5846{
5847	const struct tcp_sock *tp = tcp_sk(sk);
5848
5849	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5850			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5851					       TCPF_CLOSING));
5852}
5853
5854/* Does PAWS and seqno based validation of an incoming segment, flags will
5855 * play significant role here.
5856 */
5857static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5858				  const struct tcphdr *th, int syn_inerr)
5859{
5860	struct tcp_sock *tp = tcp_sk(sk);
5861	SKB_DR(reason);
5862
5863	/* RFC1323: H1. Apply PAWS check first. */
5864	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5865	    tp->rx_opt.saw_tstamp &&
5866	    tcp_paws_discard(sk, skb)) {
5867		if (!th->rst) {
5868			if (unlikely(th->syn))
5869				goto syn_challenge;
5870			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5871			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5873						  &tp->last_oow_ack_time))
5874				tcp_send_dupack(sk, skb);
5875			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5876			goto discard;
5877		}
5878		/* Reset is accepted even if it did not pass PAWS. */
5879	}
5880
5881	/* Step 1: check sequence number */
5882	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5883	if (reason) {
5884		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5885		 * (RST) segments are validated by checking their SEQ-fields."
5886		 * And page 69: "If an incoming segment is not acceptable,
5887		 * an acknowledgment should be sent in reply (unless the RST
5888		 * bit is set, if so drop the segment and return)".
5889		 */
5890		if (!th->rst) {
5891			if (th->syn)
5892				goto syn_challenge;
5893			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5894						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5895						  &tp->last_oow_ack_time))
5896				tcp_send_dupack(sk, skb);
5897		} else if (tcp_reset_check(sk, skb)) {
5898			goto reset;
5899		}
5900		goto discard;
5901	}
5902
5903	/* Step 2: check RST bit */
5904	if (th->rst) {
5905		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5906		 * FIN and SACK too if available):
5907		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5908		 * the right-most SACK block,
5909		 * then
5910		 *     RESET the connection
5911		 * else
5912		 *     Send a challenge ACK
5913		 */
5914		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5915		    tcp_reset_check(sk, skb))
5916			goto reset;
5917
5918		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5919			struct tcp_sack_block *sp = &tp->selective_acks[0];
5920			int max_sack = sp[0].end_seq;
5921			int this_sack;
5922
5923			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5924			     ++this_sack) {
5925				max_sack = after(sp[this_sack].end_seq,
5926						 max_sack) ?
5927					sp[this_sack].end_seq : max_sack;
5928			}
5929
5930			if (TCP_SKB_CB(skb)->seq == max_sack)
5931				goto reset;
5932		}
5933
5934		/* Disable TFO if RST is out-of-order
5935		 * and no data has been received
5936		 * for current active TFO socket
5937		 */
5938		if (tp->syn_fastopen && !tp->data_segs_in &&
5939		    sk->sk_state == TCP_ESTABLISHED)
5940			tcp_fastopen_active_disable(sk);
5941		tcp_send_challenge_ack(sk);
5942		SKB_DR_SET(reason, TCP_RESET);
 
 
 
5943		goto discard;
5944	}
5945
5946	/* step 3: check security and precedence [ignored] */
5947
5948	/* step 4: Check for a SYN
5949	 * RFC 5961 4.2 : Send a challenge ack
5950	 */
5951	if (th->syn) {
5952syn_challenge:
5953		if (syn_inerr)
5954			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5955		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5956		tcp_send_challenge_ack(sk);
5957		SKB_DR_SET(reason, TCP_INVALID_SYN);
5958		goto discard;
5959	}
5960
5961	bpf_skops_parse_hdr(sk, skb);
5962
5963	return true;
5964
5965discard:
5966	tcp_drop_reason(sk, skb, reason);
5967	return false;
5968
5969reset:
5970	tcp_reset(sk, skb);
5971	__kfree_skb(skb);
5972	return false;
5973}
5974
5975/*
5976 *	TCP receive function for the ESTABLISHED state.
5977 *
5978 *	It is split into a fast path and a slow path. The fast path is
5979 * 	disabled when:
5980 *	- A zero window was announced from us - zero window probing
5981 *        is only handled properly in the slow path.
5982 *	- Out of order segments arrived.
5983 *	- Urgent data is expected.
5984 *	- There is no buffer space left
5985 *	- Unexpected TCP flags/window values/header lengths are received
5986 *	  (detected by checking the TCP header against pred_flags)
5987 *	- Data is sent in both directions. Fast path only supports pure senders
5988 *	  or pure receivers (this means either the sequence number or the ack
5989 *	  value must stay constant)
5990 *	- Unexpected TCP option.
5991 *
5992 *	When these conditions are not satisfied it drops into a standard
5993 *	receive procedure patterned after RFC793 to handle all cases.
5994 *	The first three cases are guaranteed by proper pred_flags setting,
5995 *	the rest is checked inline. Fast processing is turned on in
5996 *	tcp_data_queue when everything is OK.
5997 */
5998void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5999{
6000	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6001	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6002	struct tcp_sock *tp = tcp_sk(sk);
6003	unsigned int len = skb->len;
6004
6005	/* TCP congestion window tracking */
6006	trace_tcp_probe(sk, skb);
6007
6008	tcp_mstamp_refresh(tp);
6009	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6010		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6011	/*
6012	 *	Header prediction.
6013	 *	The code loosely follows the one in the famous
6014	 *	"30 instruction TCP receive" Van Jacobson mail.
6015	 *
6016	 *	Van's trick is to deposit buffers into socket queue
6017	 *	on a device interrupt, to call tcp_recv function
6018	 *	on the receive process context and checksum and copy
6019	 *	the buffer to user space. smart...
6020	 *
6021	 *	Our current scheme is not silly either but we take the
6022	 *	extra cost of the net_bh soft interrupt processing...
6023	 *	We do checksum and copy also but from device to kernel.
6024	 */
6025
6026	tp->rx_opt.saw_tstamp = 0;
6027
6028	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6029	 *	if header_prediction is to be made
6030	 *	'S' will always be tp->tcp_header_len >> 2
6031	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6032	 *  turn it off	(when there are holes in the receive
6033	 *	 space for instance)
6034	 *	PSH flag is ignored.
6035	 */
6036
6037	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6038	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6039	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6040		int tcp_header_len = tp->tcp_header_len;
6041
6042		/* Timestamp header prediction: tcp_header_len
6043		 * is automatically equal to th->doff*4 due to pred_flags
6044		 * match.
6045		 */
6046
6047		/* Check timestamp */
6048		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6049			/* No? Slow path! */
6050			if (!tcp_parse_aligned_timestamp(tp, th))
6051				goto slow_path;
6052
6053			/* If PAWS failed, check it more carefully in slow path */
6054			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6055				goto slow_path;
6056
6057			/* DO NOT update ts_recent here, if checksum fails
6058			 * and timestamp was corrupted part, it will result
6059			 * in a hung connection since we will drop all
6060			 * future packets due to the PAWS test.
6061			 */
6062		}
6063
6064		if (len <= tcp_header_len) {
6065			/* Bulk data transfer: sender */
6066			if (len == tcp_header_len) {
6067				/* Predicted packet is in window by definition.
6068				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6069				 * Hence, check seq<=rcv_wup reduces to:
6070				 */
6071				if (tcp_header_len ==
6072				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6073				    tp->rcv_nxt == tp->rcv_wup)
6074					tcp_store_ts_recent(tp);
6075
6076				/* We know that such packets are checksummed
6077				 * on entry.
6078				 */
6079				tcp_ack(sk, skb, 0);
6080				__kfree_skb(skb);
6081				tcp_data_snd_check(sk);
6082				/* When receiving pure ack in fast path, update
6083				 * last ts ecr directly instead of calling
6084				 * tcp_rcv_rtt_measure_ts()
6085				 */
6086				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6087				return;
6088			} else { /* Header too small */
6089				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6090				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6091				goto discard;
6092			}
6093		} else {
6094			int eaten = 0;
6095			bool fragstolen = false;
6096
6097			if (tcp_checksum_complete(skb))
6098				goto csum_error;
6099
6100			if ((int)skb->truesize > sk->sk_forward_alloc)
6101				goto step5;
6102
6103			/* Predicted packet is in window by definition.
6104			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6105			 * Hence, check seq<=rcv_wup reduces to:
6106			 */
6107			if (tcp_header_len ==
6108			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6109			    tp->rcv_nxt == tp->rcv_wup)
6110				tcp_store_ts_recent(tp);
6111
6112			tcp_rcv_rtt_measure_ts(sk, skb);
6113
6114			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6115
6116			/* Bulk data transfer: receiver */
6117			skb_dst_drop(skb);
6118			__skb_pull(skb, tcp_header_len);
6119			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6120
6121			tcp_event_data_recv(sk, skb);
6122
6123			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6124				/* Well, only one small jumplet in fast path... */
6125				tcp_ack(sk, skb, FLAG_DATA);
6126				tcp_data_snd_check(sk);
6127				if (!inet_csk_ack_scheduled(sk))
6128					goto no_ack;
6129			} else {
6130				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6131			}
6132
6133			__tcp_ack_snd_check(sk, 0);
6134no_ack:
6135			if (eaten)
6136				kfree_skb_partial(skb, fragstolen);
6137			tcp_data_ready(sk);
6138			return;
6139		}
6140	}
6141
6142slow_path:
6143	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6144		goto csum_error;
6145
6146	if (!th->ack && !th->rst && !th->syn) {
6147		reason = SKB_DROP_REASON_TCP_FLAGS;
6148		goto discard;
6149	}
6150
6151	/*
6152	 *	Standard slow path.
6153	 */
6154
6155	if (!tcp_validate_incoming(sk, skb, th, 1))
6156		return;
6157
6158step5:
6159	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6160	if ((int)reason < 0) {
6161		reason = -reason;
6162		goto discard;
6163	}
6164	tcp_rcv_rtt_measure_ts(sk, skb);
6165
6166	/* Process urgent data. */
6167	tcp_urg(sk, skb, th);
6168
6169	/* step 7: process the segment text */
6170	tcp_data_queue(sk, skb);
6171
6172	tcp_data_snd_check(sk);
6173	tcp_ack_snd_check(sk);
6174	return;
6175
6176csum_error:
6177	reason = SKB_DROP_REASON_TCP_CSUM;
6178	trace_tcp_bad_csum(skb);
6179	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6180	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6181
6182discard:
6183	tcp_drop_reason(sk, skb, reason);
6184}
6185EXPORT_SYMBOL(tcp_rcv_established);
6186
6187void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6188{
6189	struct inet_connection_sock *icsk = inet_csk(sk);
6190	struct tcp_sock *tp = tcp_sk(sk);
6191
6192	tcp_mtup_init(sk);
6193	icsk->icsk_af_ops->rebuild_header(sk);
6194	tcp_init_metrics(sk);
6195
6196	/* Initialize the congestion window to start the transfer.
6197	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6198	 * retransmitted. In light of RFC6298 more aggressive 1sec
6199	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6200	 * retransmission has occurred.
6201	 */
6202	if (tp->total_retrans > 1 && tp->undo_marker)
6203		tcp_snd_cwnd_set(tp, 1);
6204	else
6205		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6206	tp->snd_cwnd_stamp = tcp_jiffies32;
6207
6208	bpf_skops_established(sk, bpf_op, skb);
6209	/* Initialize congestion control unless BPF initialized it already: */
6210	if (!icsk->icsk_ca_initialized)
6211		tcp_init_congestion_control(sk);
6212	tcp_init_buffer_space(sk);
6213}
6214
6215void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6216{
6217	struct tcp_sock *tp = tcp_sk(sk);
6218	struct inet_connection_sock *icsk = inet_csk(sk);
6219
6220	tcp_ao_finish_connect(sk, skb);
6221	tcp_set_state(sk, TCP_ESTABLISHED);
6222	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6223
6224	if (skb) {
6225		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6226		security_inet_conn_established(sk, skb);
6227		sk_mark_napi_id(sk, skb);
6228	}
6229
6230	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6231
6232	/* Prevent spurious tcp_cwnd_restart() on first data
6233	 * packet.
6234	 */
6235	tp->lsndtime = tcp_jiffies32;
6236
6237	if (sock_flag(sk, SOCK_KEEPOPEN))
6238		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6239
6240	if (!tp->rx_opt.snd_wscale)
6241		__tcp_fast_path_on(tp, tp->snd_wnd);
6242	else
6243		tp->pred_flags = 0;
6244}
6245
6246static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6247				    struct tcp_fastopen_cookie *cookie)
6248{
6249	struct tcp_sock *tp = tcp_sk(sk);
6250	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6251	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6252	bool syn_drop = false;
6253
6254	if (mss == tp->rx_opt.user_mss) {
6255		struct tcp_options_received opt;
6256
6257		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6258		tcp_clear_options(&opt);
6259		opt.user_mss = opt.mss_clamp = 0;
6260		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6261		mss = opt.mss_clamp;
6262	}
6263
6264	if (!tp->syn_fastopen) {
6265		/* Ignore an unsolicited cookie */
6266		cookie->len = -1;
6267	} else if (tp->total_retrans) {
6268		/* SYN timed out and the SYN-ACK neither has a cookie nor
6269		 * acknowledges data. Presumably the remote received only
6270		 * the retransmitted (regular) SYNs: either the original
6271		 * SYN-data or the corresponding SYN-ACK was dropped.
6272		 */
6273		syn_drop = (cookie->len < 0 && data);
6274	} else if (cookie->len < 0 && !tp->syn_data) {
6275		/* We requested a cookie but didn't get it. If we did not use
6276		 * the (old) exp opt format then try so next time (try_exp=1).
6277		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6278		 */
6279		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6280	}
6281
6282	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6283
6284	if (data) { /* Retransmit unacked data in SYN */
6285		if (tp->total_retrans)
6286			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6287		else
6288			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6289		skb_rbtree_walk_from(data)
6290			 tcp_mark_skb_lost(sk, data);
6291		tcp_xmit_retransmit_queue(sk);
6292		NET_INC_STATS(sock_net(sk),
6293				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6294		return true;
6295	}
6296	tp->syn_data_acked = tp->syn_data;
6297	if (tp->syn_data_acked) {
6298		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6299		/* SYN-data is counted as two separate packets in tcp_ack() */
6300		if (tp->delivered > 1)
6301			--tp->delivered;
6302	}
6303
6304	tcp_fastopen_add_skb(sk, synack);
6305
6306	return false;
6307}
6308
6309static void smc_check_reset_syn(struct tcp_sock *tp)
6310{
6311#if IS_ENABLED(CONFIG_SMC)
6312	if (static_branch_unlikely(&tcp_have_smc)) {
6313		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6314			tp->syn_smc = 0;
6315	}
6316#endif
6317}
6318
6319static void tcp_try_undo_spurious_syn(struct sock *sk)
6320{
6321	struct tcp_sock *tp = tcp_sk(sk);
6322	u32 syn_stamp;
6323
6324	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6325	 * spurious if the ACK's timestamp option echo value matches the
6326	 * original SYN timestamp.
6327	 */
6328	syn_stamp = tp->retrans_stamp;
6329	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6330	    syn_stamp == tp->rx_opt.rcv_tsecr)
6331		tp->undo_marker = 0;
6332}
6333
6334static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6335					 const struct tcphdr *th)
6336{
6337	struct inet_connection_sock *icsk = inet_csk(sk);
6338	struct tcp_sock *tp = tcp_sk(sk);
6339	struct tcp_fastopen_cookie foc = { .len = -1 };
6340	int saved_clamp = tp->rx_opt.mss_clamp;
6341	bool fastopen_fail;
6342	SKB_DR(reason);
6343
6344	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6345	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6346		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6347
6348	if (th->ack) {
6349		/* rfc793:
6350		 * "If the state is SYN-SENT then
6351		 *    first check the ACK bit
6352		 *      If the ACK bit is set
6353		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6354		 *        a reset (unless the RST bit is set, if so drop
6355		 *        the segment and return)"
6356		 */
6357		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6358		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6359			/* Previous FIN/ACK or RST/ACK might be ignored. */
6360			if (icsk->icsk_retransmits == 0)
6361				inet_csk_reset_xmit_timer(sk,
6362						ICSK_TIME_RETRANS,
6363						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6364			goto reset_and_undo;
6365		}
6366
6367		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6368		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6369			     tcp_time_stamp_ts(tp))) {
6370			NET_INC_STATS(sock_net(sk),
6371					LINUX_MIB_PAWSACTIVEREJECTED);
6372			goto reset_and_undo;
6373		}
6374
6375		/* Now ACK is acceptable.
6376		 *
6377		 * "If the RST bit is set
6378		 *    If the ACK was acceptable then signal the user "error:
6379		 *    connection reset", drop the segment, enter CLOSED state,
6380		 *    delete TCB, and return."
6381		 */
6382
6383		if (th->rst) {
6384			tcp_reset(sk, skb);
6385consume:
6386			__kfree_skb(skb);
6387			return 0;
6388		}
6389
6390		/* rfc793:
6391		 *   "fifth, if neither of the SYN or RST bits is set then
6392		 *    drop the segment and return."
6393		 *
6394		 *    See note below!
6395		 *                                        --ANK(990513)
6396		 */
6397		if (!th->syn) {
6398			SKB_DR_SET(reason, TCP_FLAGS);
6399			goto discard_and_undo;
6400		}
6401		/* rfc793:
6402		 *   "If the SYN bit is on ...
6403		 *    are acceptable then ...
6404		 *    (our SYN has been ACKed), change the connection
6405		 *    state to ESTABLISHED..."
6406		 */
6407
6408		tcp_ecn_rcv_synack(tp, th);
6409
6410		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6411		tcp_try_undo_spurious_syn(sk);
6412		tcp_ack(sk, skb, FLAG_SLOWPATH);
6413
6414		/* Ok.. it's good. Set up sequence numbers and
6415		 * move to established.
6416		 */
6417		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6418		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6419
6420		/* RFC1323: The window in SYN & SYN/ACK segments is
6421		 * never scaled.
6422		 */
6423		tp->snd_wnd = ntohs(th->window);
6424
6425		if (!tp->rx_opt.wscale_ok) {
6426			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6427			tp->window_clamp = min(tp->window_clamp, 65535U);
6428		}
6429
6430		if (tp->rx_opt.saw_tstamp) {
6431			tp->rx_opt.tstamp_ok	   = 1;
6432			tp->tcp_header_len =
6433				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6434			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6435			tcp_store_ts_recent(tp);
6436		} else {
6437			tp->tcp_header_len = sizeof(struct tcphdr);
6438		}
6439
6440		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6441		tcp_initialize_rcv_mss(sk);
6442
6443		/* Remember, tcp_poll() does not lock socket!
6444		 * Change state from SYN-SENT only after copied_seq
6445		 * is initialized. */
6446		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6447
6448		smc_check_reset_syn(tp);
6449
6450		smp_mb();
6451
6452		tcp_finish_connect(sk, skb);
6453
6454		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6455				tcp_rcv_fastopen_synack(sk, skb, &foc);
6456
6457		if (!sock_flag(sk, SOCK_DEAD)) {
6458			sk->sk_state_change(sk);
6459			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6460		}
6461		if (fastopen_fail)
6462			return -1;
6463		if (sk->sk_write_pending ||
6464		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6465		    inet_csk_in_pingpong_mode(sk)) {
6466			/* Save one ACK. Data will be ready after
6467			 * several ticks, if write_pending is set.
6468			 *
6469			 * It may be deleted, but with this feature tcpdumps
6470			 * look so _wonderfully_ clever, that I was not able
6471			 * to stand against the temptation 8)     --ANK
6472			 */
6473			inet_csk_schedule_ack(sk);
6474			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6475			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6476						  TCP_DELACK_MAX, TCP_RTO_MAX);
6477			goto consume;
 
 
 
 
 
6478		}
6479		tcp_send_ack(sk);
6480		return -1;
6481	}
6482
6483	/* No ACK in the segment */
6484
6485	if (th->rst) {
6486		/* rfc793:
6487		 * "If the RST bit is set
6488		 *
6489		 *      Otherwise (no ACK) drop the segment and return."
6490		 */
6491		SKB_DR_SET(reason, TCP_RESET);
6492		goto discard_and_undo;
6493	}
6494
6495	/* PAWS check. */
6496	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6497	    tcp_paws_reject(&tp->rx_opt, 0)) {
6498		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6499		goto discard_and_undo;
6500	}
6501	if (th->syn) {
6502		/* We see SYN without ACK. It is attempt of
6503		 * simultaneous connect with crossed SYNs.
6504		 * Particularly, it can be connect to self.
6505		 */
6506#ifdef CONFIG_TCP_AO
6507		struct tcp_ao_info *ao;
6508
6509		ao = rcu_dereference_protected(tp->ao_info,
6510					       lockdep_sock_is_held(sk));
6511		if (ao) {
6512			WRITE_ONCE(ao->risn, th->seq);
6513			ao->rcv_sne = 0;
6514		}
6515#endif
6516		tcp_set_state(sk, TCP_SYN_RECV);
6517
6518		if (tp->rx_opt.saw_tstamp) {
6519			tp->rx_opt.tstamp_ok = 1;
6520			tcp_store_ts_recent(tp);
6521			tp->tcp_header_len =
6522				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6523		} else {
6524			tp->tcp_header_len = sizeof(struct tcphdr);
6525		}
6526
6527		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6528		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6529		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6530
6531		/* RFC1323: The window in SYN & SYN/ACK segments is
6532		 * never scaled.
6533		 */
6534		tp->snd_wnd    = ntohs(th->window);
6535		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6536		tp->max_window = tp->snd_wnd;
6537
6538		tcp_ecn_rcv_syn(tp, th);
6539
6540		tcp_mtup_init(sk);
6541		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6542		tcp_initialize_rcv_mss(sk);
6543
6544		tcp_send_synack(sk);
6545#if 0
6546		/* Note, we could accept data and URG from this segment.
6547		 * There are no obstacles to make this (except that we must
6548		 * either change tcp_recvmsg() to prevent it from returning data
6549		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6550		 *
6551		 * However, if we ignore data in ACKless segments sometimes,
6552		 * we have no reasons to accept it sometimes.
6553		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6554		 * is not flawless. So, discard packet for sanity.
6555		 * Uncomment this return to process the data.
6556		 */
6557		return -1;
6558#else
6559		goto consume;
6560#endif
6561	}
6562	/* "fifth, if neither of the SYN or RST bits is set then
6563	 * drop the segment and return."
6564	 */
6565
6566discard_and_undo:
6567	tcp_clear_options(&tp->rx_opt);
6568	tp->rx_opt.mss_clamp = saved_clamp;
6569	tcp_drop_reason(sk, skb, reason);
6570	return 0;
6571
6572reset_and_undo:
6573	tcp_clear_options(&tp->rx_opt);
6574	tp->rx_opt.mss_clamp = saved_clamp;
6575	return 1;
6576}
6577
6578static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6579{
6580	struct tcp_sock *tp = tcp_sk(sk);
6581	struct request_sock *req;
6582
6583	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6584	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6585	 */
6586	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6587		tcp_try_undo_recovery(sk);
6588
6589	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6590	tcp_update_rto_time(tp);
6591	tp->retrans_stamp = 0;
6592	inet_csk(sk)->icsk_retransmits = 0;
6593
6594	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6595	 * we no longer need req so release it.
6596	 */
6597	req = rcu_dereference_protected(tp->fastopen_rsk,
6598					lockdep_sock_is_held(sk));
6599	reqsk_fastopen_remove(sk, req, false);
6600
6601	/* Re-arm the timer because data may have been sent out.
6602	 * This is similar to the regular data transmission case
6603	 * when new data has just been ack'ed.
6604	 *
6605	 * (TFO) - we could try to be more aggressive and
6606	 * retransmitting any data sooner based on when they
6607	 * are sent out.
6608	 */
6609	tcp_rearm_rto(sk);
6610}
6611
6612/*
6613 *	This function implements the receiving procedure of RFC 793 for
6614 *	all states except ESTABLISHED and TIME_WAIT.
6615 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6616 *	address independent.
6617 */
6618
6619int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6620{
6621	struct tcp_sock *tp = tcp_sk(sk);
6622	struct inet_connection_sock *icsk = inet_csk(sk);
6623	const struct tcphdr *th = tcp_hdr(skb);
6624	struct request_sock *req;
6625	int queued = 0;
6626	bool acceptable;
6627	SKB_DR(reason);
6628
6629	switch (sk->sk_state) {
6630	case TCP_CLOSE:
6631		SKB_DR_SET(reason, TCP_CLOSE);
6632		goto discard;
6633
6634	case TCP_LISTEN:
6635		if (th->ack)
6636			return 1;
6637
6638		if (th->rst) {
6639			SKB_DR_SET(reason, TCP_RESET);
6640			goto discard;
6641		}
6642		if (th->syn) {
6643			if (th->fin) {
6644				SKB_DR_SET(reason, TCP_FLAGS);
6645				goto discard;
6646			}
6647			/* It is possible that we process SYN packets from backlog,
6648			 * so we need to make sure to disable BH and RCU right there.
6649			 */
6650			rcu_read_lock();
6651			local_bh_disable();
6652			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6653			local_bh_enable();
6654			rcu_read_unlock();
6655
6656			if (!acceptable)
6657				return 1;
6658			consume_skb(skb);
6659			return 0;
6660		}
6661		SKB_DR_SET(reason, TCP_FLAGS);
6662		goto discard;
6663
6664	case TCP_SYN_SENT:
6665		tp->rx_opt.saw_tstamp = 0;
6666		tcp_mstamp_refresh(tp);
6667		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6668		if (queued >= 0)
6669			return queued;
6670
6671		/* Do step6 onward by hand. */
6672		tcp_urg(sk, skb, th);
6673		__kfree_skb(skb);
6674		tcp_data_snd_check(sk);
6675		return 0;
6676	}
6677
6678	tcp_mstamp_refresh(tp);
6679	tp->rx_opt.saw_tstamp = 0;
6680	req = rcu_dereference_protected(tp->fastopen_rsk,
6681					lockdep_sock_is_held(sk));
6682	if (req) {
6683		bool req_stolen;
6684
6685		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6686		    sk->sk_state != TCP_FIN_WAIT1);
6687
6688		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6689			SKB_DR_SET(reason, TCP_FASTOPEN);
6690			goto discard;
6691		}
6692	}
6693
6694	if (!th->ack && !th->rst && !th->syn) {
6695		SKB_DR_SET(reason, TCP_FLAGS);
6696		goto discard;
6697	}
6698	if (!tcp_validate_incoming(sk, skb, th, 0))
6699		return 0;
6700
6701	/* step 5: check the ACK field */
6702	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6703				      FLAG_UPDATE_TS_RECENT |
6704				      FLAG_NO_CHALLENGE_ACK) > 0;
6705
6706	if (!acceptable) {
6707		if (sk->sk_state == TCP_SYN_RECV)
6708			return 1;	/* send one RST */
6709		tcp_send_challenge_ack(sk);
6710		SKB_DR_SET(reason, TCP_OLD_ACK);
6711		goto discard;
6712	}
6713	switch (sk->sk_state) {
6714	case TCP_SYN_RECV:
6715		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6716		if (!tp->srtt_us)
6717			tcp_synack_rtt_meas(sk, req);
6718
6719		if (req) {
6720			tcp_rcv_synrecv_state_fastopen(sk);
6721		} else {
6722			tcp_try_undo_spurious_syn(sk);
6723			tp->retrans_stamp = 0;
6724			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6725					  skb);
6726			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6727		}
6728		tcp_ao_established(sk);
6729		smp_mb();
6730		tcp_set_state(sk, TCP_ESTABLISHED);
6731		sk->sk_state_change(sk);
6732
6733		/* Note, that this wakeup is only for marginal crossed SYN case.
6734		 * Passively open sockets are not waked up, because
6735		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6736		 */
6737		if (sk->sk_socket)
6738			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6739
6740		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6741		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6742		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6743
6744		if (tp->rx_opt.tstamp_ok)
6745			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6746
6747		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6748			tcp_update_pacing_rate(sk);
6749
6750		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6751		tp->lsndtime = tcp_jiffies32;
6752
6753		tcp_initialize_rcv_mss(sk);
6754		tcp_fast_path_on(tp);
6755		break;
6756
6757	case TCP_FIN_WAIT1: {
6758		int tmo;
6759
6760		if (req)
6761			tcp_rcv_synrecv_state_fastopen(sk);
6762
6763		if (tp->snd_una != tp->write_seq)
6764			break;
6765
6766		tcp_set_state(sk, TCP_FIN_WAIT2);
6767		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6768
6769		sk_dst_confirm(sk);
6770
6771		if (!sock_flag(sk, SOCK_DEAD)) {
6772			/* Wake up lingering close() */
6773			sk->sk_state_change(sk);
6774			break;
6775		}
6776
6777		if (READ_ONCE(tp->linger2) < 0) {
6778			tcp_done(sk);
6779			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6780			return 1;
6781		}
6782		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6783		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6784			/* Receive out of order FIN after close() */
6785			if (tp->syn_fastopen && th->fin)
6786				tcp_fastopen_active_disable(sk);
6787			tcp_done(sk);
6788			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6789			return 1;
6790		}
6791
6792		tmo = tcp_fin_time(sk);
6793		if (tmo > TCP_TIMEWAIT_LEN) {
6794			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6795		} else if (th->fin || sock_owned_by_user(sk)) {
6796			/* Bad case. We could lose such FIN otherwise.
6797			 * It is not a big problem, but it looks confusing
6798			 * and not so rare event. We still can lose it now,
6799			 * if it spins in bh_lock_sock(), but it is really
6800			 * marginal case.
6801			 */
6802			inet_csk_reset_keepalive_timer(sk, tmo);
6803		} else {
6804			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6805			goto consume;
6806		}
6807		break;
6808	}
6809
6810	case TCP_CLOSING:
6811		if (tp->snd_una == tp->write_seq) {
6812			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6813			goto consume;
6814		}
6815		break;
6816
6817	case TCP_LAST_ACK:
6818		if (tp->snd_una == tp->write_seq) {
6819			tcp_update_metrics(sk);
6820			tcp_done(sk);
6821			goto consume;
6822		}
6823		break;
6824	}
6825
6826	/* step 6: check the URG bit */
6827	tcp_urg(sk, skb, th);
6828
6829	/* step 7: process the segment text */
6830	switch (sk->sk_state) {
6831	case TCP_CLOSE_WAIT:
6832	case TCP_CLOSING:
6833	case TCP_LAST_ACK:
6834		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6835			/* If a subflow has been reset, the packet should not
6836			 * continue to be processed, drop the packet.
6837			 */
6838			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6839				goto discard;
6840			break;
6841		}
6842		fallthrough;
6843	case TCP_FIN_WAIT1:
6844	case TCP_FIN_WAIT2:
6845		/* RFC 793 says to queue data in these states,
6846		 * RFC 1122 says we MUST send a reset.
6847		 * BSD 4.4 also does reset.
6848		 */
6849		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6850			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6851			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6852				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6853				tcp_reset(sk, skb);
6854				return 1;
6855			}
6856		}
6857		fallthrough;
6858	case TCP_ESTABLISHED:
6859		tcp_data_queue(sk, skb);
6860		queued = 1;
6861		break;
6862	}
6863
6864	/* tcp_data could move socket to TIME-WAIT */
6865	if (sk->sk_state != TCP_CLOSE) {
6866		tcp_data_snd_check(sk);
6867		tcp_ack_snd_check(sk);
6868	}
6869
6870	if (!queued) {
6871discard:
6872		tcp_drop_reason(sk, skb, reason);
6873	}
6874	return 0;
6875
6876consume:
6877	__kfree_skb(skb);
6878	return 0;
6879}
6880EXPORT_SYMBOL(tcp_rcv_state_process);
6881
6882static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6883{
6884	struct inet_request_sock *ireq = inet_rsk(req);
6885
6886	if (family == AF_INET)
6887		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6888				    &ireq->ir_rmt_addr, port);
6889#if IS_ENABLED(CONFIG_IPV6)
6890	else if (family == AF_INET6)
6891		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6892				    &ireq->ir_v6_rmt_addr, port);
6893#endif
6894}
6895
6896/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6897 *
6898 * If we receive a SYN packet with these bits set, it means a
6899 * network is playing bad games with TOS bits. In order to
6900 * avoid possible false congestion notifications, we disable
6901 * TCP ECN negotiation.
6902 *
6903 * Exception: tcp_ca wants ECN. This is required for DCTCP
6904 * congestion control: Linux DCTCP asserts ECT on all packets,
6905 * including SYN, which is most optimal solution; however,
6906 * others, such as FreeBSD do not.
6907 *
6908 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6909 * set, indicating the use of a future TCP extension (such as AccECN). See
6910 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6911 * extensions.
6912 */
6913static void tcp_ecn_create_request(struct request_sock *req,
6914				   const struct sk_buff *skb,
6915				   const struct sock *listen_sk,
6916				   const struct dst_entry *dst)
6917{
6918	const struct tcphdr *th = tcp_hdr(skb);
6919	const struct net *net = sock_net(listen_sk);
6920	bool th_ecn = th->ece && th->cwr;
6921	bool ect, ecn_ok;
6922	u32 ecn_ok_dst;
6923
6924	if (!th_ecn)
6925		return;
6926
6927	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6928	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6929	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6930
6931	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6932	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6933	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6934		inet_rsk(req)->ecn_ok = 1;
6935}
6936
6937static void tcp_openreq_init(struct request_sock *req,
6938			     const struct tcp_options_received *rx_opt,
6939			     struct sk_buff *skb, const struct sock *sk)
6940{
6941	struct inet_request_sock *ireq = inet_rsk(req);
6942
6943	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6944	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6945	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6946	tcp_rsk(req)->snt_synack = 0;
6947	tcp_rsk(req)->last_oow_ack_time = 0;
6948	req->mss = rx_opt->mss_clamp;
6949	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6950	ireq->tstamp_ok = rx_opt->tstamp_ok;
6951	ireq->sack_ok = rx_opt->sack_ok;
6952	ireq->snd_wscale = rx_opt->snd_wscale;
6953	ireq->wscale_ok = rx_opt->wscale_ok;
6954	ireq->acked = 0;
6955	ireq->ecn_ok = 0;
6956	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6957	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6958	ireq->ir_mark = inet_request_mark(sk, skb);
6959#if IS_ENABLED(CONFIG_SMC)
6960	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6961			tcp_sk(sk)->smc_hs_congested(sk));
6962#endif
6963}
6964
6965struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6966				      struct sock *sk_listener,
6967				      bool attach_listener)
6968{
6969	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6970					       attach_listener);
6971
6972	if (req) {
6973		struct inet_request_sock *ireq = inet_rsk(req);
6974
6975		ireq->ireq_opt = NULL;
6976#if IS_ENABLED(CONFIG_IPV6)
6977		ireq->pktopts = NULL;
6978#endif
6979		atomic64_set(&ireq->ir_cookie, 0);
6980		ireq->ireq_state = TCP_NEW_SYN_RECV;
6981		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6982		ireq->ireq_family = sk_listener->sk_family;
6983		req->timeout = TCP_TIMEOUT_INIT;
6984	}
6985
6986	return req;
6987}
6988EXPORT_SYMBOL(inet_reqsk_alloc);
6989
6990/*
6991 * Return true if a syncookie should be sent
6992 */
6993static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6994{
6995	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6996	const char *msg = "Dropping request";
 
6997	struct net *net = sock_net(sk);
6998	bool want_cookie = false;
6999	u8 syncookies;
7000
7001	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7002
7003#ifdef CONFIG_SYN_COOKIES
7004	if (syncookies) {
7005		msg = "Sending cookies";
7006		want_cookie = true;
7007		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7008	} else
7009#endif
7010		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7011
7012	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7013	    xchg(&queue->synflood_warned, 1) == 0) {
7014		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7015			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7016					proto, inet6_rcv_saddr(sk),
7017					sk->sk_num, msg);
7018		} else {
7019			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7020					proto, &sk->sk_rcv_saddr,
7021					sk->sk_num, msg);
7022		}
7023	}
7024
7025	return want_cookie;
7026}
7027
7028static void tcp_reqsk_record_syn(const struct sock *sk,
7029				 struct request_sock *req,
7030				 const struct sk_buff *skb)
7031{
7032	if (tcp_sk(sk)->save_syn) {
7033		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7034		struct saved_syn *saved_syn;
7035		u32 mac_hdrlen;
7036		void *base;
7037
7038		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7039			base = skb_mac_header(skb);
7040			mac_hdrlen = skb_mac_header_len(skb);
7041			len += mac_hdrlen;
7042		} else {
7043			base = skb_network_header(skb);
7044			mac_hdrlen = 0;
7045		}
7046
7047		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7048				    GFP_ATOMIC);
7049		if (saved_syn) {
7050			saved_syn->mac_hdrlen = mac_hdrlen;
7051			saved_syn->network_hdrlen = skb_network_header_len(skb);
7052			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7053			memcpy(saved_syn->data, base, len);
7054			req->saved_syn = saved_syn;
7055		}
7056	}
7057}
7058
7059/* If a SYN cookie is required and supported, returns a clamped MSS value to be
7060 * used for SYN cookie generation.
7061 */
7062u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7063			  const struct tcp_request_sock_ops *af_ops,
7064			  struct sock *sk, struct tcphdr *th)
7065{
7066	struct tcp_sock *tp = tcp_sk(sk);
7067	u16 mss;
7068
7069	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7070	    !inet_csk_reqsk_queue_is_full(sk))
7071		return 0;
7072
7073	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7074		return 0;
7075
7076	if (sk_acceptq_is_full(sk)) {
7077		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7078		return 0;
7079	}
7080
7081	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7082	if (!mss)
7083		mss = af_ops->mss_clamp;
7084
7085	return mss;
7086}
7087EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7088
7089int tcp_conn_request(struct request_sock_ops *rsk_ops,
7090		     const struct tcp_request_sock_ops *af_ops,
7091		     struct sock *sk, struct sk_buff *skb)
7092{
7093	struct tcp_fastopen_cookie foc = { .len = -1 };
7094	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7095	struct tcp_options_received tmp_opt;
7096	struct tcp_sock *tp = tcp_sk(sk);
7097	struct net *net = sock_net(sk);
7098	struct sock *fastopen_sk = NULL;
7099	struct request_sock *req;
7100	bool want_cookie = false;
7101	struct dst_entry *dst;
7102	struct flowi fl;
7103	u8 syncookies;
7104
7105#ifdef CONFIG_TCP_AO
7106	const struct tcp_ao_hdr *aoh;
7107#endif
7108
7109	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7110
7111	/* TW buckets are converted to open requests without
7112	 * limitations, they conserve resources and peer is
7113	 * evidently real one.
7114	 */
7115	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
 
7116		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7117		if (!want_cookie)
7118			goto drop;
7119	}
7120
7121	if (sk_acceptq_is_full(sk)) {
7122		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7123		goto drop;
7124	}
7125
7126	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7127	if (!req)
7128		goto drop;
7129
7130	req->syncookie = want_cookie;
7131	tcp_rsk(req)->af_specific = af_ops;
7132	tcp_rsk(req)->ts_off = 0;
7133	tcp_rsk(req)->req_usec_ts = false;
7134#if IS_ENABLED(CONFIG_MPTCP)
7135	tcp_rsk(req)->is_mptcp = 0;
7136#endif
7137
7138	tcp_clear_options(&tmp_opt);
7139	tmp_opt.mss_clamp = af_ops->mss_clamp;
7140	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7141	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7142			  want_cookie ? NULL : &foc);
7143
7144	if (want_cookie && !tmp_opt.saw_tstamp)
7145		tcp_clear_options(&tmp_opt);
7146
7147	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7148		tmp_opt.smc_ok = 0;
7149
7150	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7151	tcp_openreq_init(req, &tmp_opt, skb, sk);
7152	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7153
7154	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7155	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7156
7157	dst = af_ops->route_req(sk, skb, &fl, req);
7158	if (!dst)
7159		goto drop_and_free;
7160
7161	if (tmp_opt.tstamp_ok) {
7162		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7163		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7164	}
7165	if (!want_cookie && !isn) {
7166		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7167
7168		/* Kill the following clause, if you dislike this way. */
7169		if (!syncookies &&
7170		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7171		     (max_syn_backlog >> 2)) &&
7172		    !tcp_peer_is_proven(req, dst)) {
7173			/* Without syncookies last quarter of
7174			 * backlog is filled with destinations,
7175			 * proven to be alive.
7176			 * It means that we continue to communicate
7177			 * to destinations, already remembered
7178			 * to the moment of synflood.
7179			 */
7180			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7181				    rsk_ops->family);
7182			goto drop_and_release;
7183		}
7184
7185		isn = af_ops->init_seq(skb);
7186	}
7187
7188	tcp_ecn_create_request(req, skb, sk, dst);
7189
7190	if (want_cookie) {
7191		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7192		if (!tmp_opt.tstamp_ok)
7193			inet_rsk(req)->ecn_ok = 0;
7194	}
7195
7196#ifdef CONFIG_TCP_AO
7197	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7198		goto drop_and_release; /* Invalid TCP options */
7199	if (aoh) {
7200		tcp_rsk(req)->used_tcp_ao = true;
7201		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7202		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7203
7204	} else {
7205		tcp_rsk(req)->used_tcp_ao = false;
7206	}
7207#endif
7208	tcp_rsk(req)->snt_isn = isn;
7209	tcp_rsk(req)->txhash = net_tx_rndhash();
7210	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7211	tcp_openreq_init_rwin(req, sk, dst);
7212	sk_rx_queue_set(req_to_sk(req), skb);
7213	if (!want_cookie) {
7214		tcp_reqsk_record_syn(sk, req, skb);
7215		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7216	}
7217	if (fastopen_sk) {
7218		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7219				    &foc, TCP_SYNACK_FASTOPEN, skb);
7220		/* Add the child socket directly into the accept queue */
7221		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7222			reqsk_fastopen_remove(fastopen_sk, req, false);
7223			bh_unlock_sock(fastopen_sk);
7224			sock_put(fastopen_sk);
7225			goto drop_and_free;
7226		}
7227		sk->sk_data_ready(sk);
7228		bh_unlock_sock(fastopen_sk);
7229		sock_put(fastopen_sk);
7230	} else {
7231		tcp_rsk(req)->tfo_listener = false;
7232		if (!want_cookie) {
7233			req->timeout = tcp_timeout_init((struct sock *)req);
7234			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7235		}
7236		af_ops->send_synack(sk, dst, &fl, req, &foc,
7237				    !want_cookie ? TCP_SYNACK_NORMAL :
7238						   TCP_SYNACK_COOKIE,
7239				    skb);
7240		if (want_cookie) {
7241			reqsk_free(req);
7242			return 0;
7243		}
7244	}
7245	reqsk_put(req);
7246	return 0;
7247
7248drop_and_release:
7249	dst_release(dst);
7250drop_and_free:
7251	__reqsk_free(req);
7252drop:
7253	tcp_listendrop(sk);
7254	return 0;
7255}
7256EXPORT_SYMBOL(tcp_conn_request);