Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82#include <net/mptcp.h>
  83
  84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85
  86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 103
 104#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 105#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 106#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 107#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 108
 109#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 110#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 111
 112#define REXMIT_NONE	0 /* no loss recovery to do */
 113#define REXMIT_LOST	1 /* retransmit packets marked lost */
 114#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 115
 116#if IS_ENABLED(CONFIG_TLS_DEVICE)
 117static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 118
 119void clean_acked_data_enable(struct inet_connection_sock *icsk,
 120			     void (*cad)(struct sock *sk, u32 ack_seq))
 121{
 122	icsk->icsk_clean_acked = cad;
 123	static_branch_deferred_inc(&clean_acked_data_enabled);
 124}
 125EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 126
 127void clean_acked_data_disable(struct inet_connection_sock *icsk)
 128{
 129	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 130	icsk->icsk_clean_acked = NULL;
 131}
 132EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 133
 134void clean_acked_data_flush(void)
 135{
 136	static_key_deferred_flush(&clean_acked_data_enabled);
 137}
 138EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 139#endif
 140
 141#ifdef CONFIG_CGROUP_BPF
 142static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 143{
 144	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
 145		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 146				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
 147	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 148						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
 149	struct bpf_sock_ops_kern sock_ops;
 150
 151	if (likely(!unknown_opt && !parse_all_opt))
 152		return;
 153
 154	/* The skb will be handled in the
 155	 * bpf_skops_established() or
 156	 * bpf_skops_write_hdr_opt().
 157	 */
 158	switch (sk->sk_state) {
 159	case TCP_SYN_RECV:
 160	case TCP_SYN_SENT:
 161	case TCP_LISTEN:
 162		return;
 163	}
 164
 165	sock_owned_by_me(sk);
 166
 167	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 168	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
 169	sock_ops.is_fullsock = 1;
 170	sock_ops.sk = sk;
 171	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 172
 173	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 174}
 175
 176static void bpf_skops_established(struct sock *sk, int bpf_op,
 177				  struct sk_buff *skb)
 178{
 179	struct bpf_sock_ops_kern sock_ops;
 180
 181	sock_owned_by_me(sk);
 182
 183	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 184	sock_ops.op = bpf_op;
 185	sock_ops.is_fullsock = 1;
 186	sock_ops.sk = sk;
 187	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
 188	if (skb)
 189		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
 190
 191	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
 192}
 193#else
 194static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
 195{
 196}
 197
 198static void bpf_skops_established(struct sock *sk, int bpf_op,
 199				  struct sk_buff *skb)
 200{
 201}
 202#endif
 203
 204static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 205			     unsigned int len)
 206{
 207	static bool __once __read_mostly;
 208
 209	if (!__once) {
 210		struct net_device *dev;
 211
 212		__once = true;
 213
 214		rcu_read_lock();
 215		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 216		if (!dev || len >= dev->mtu)
 217			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 218				dev ? dev->name : "Unknown driver");
 219		rcu_read_unlock();
 220	}
 221}
 222
 223/* Adapt the MSS value used to make delayed ack decision to the
 224 * real world.
 225 */
 226static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 227{
 228	struct inet_connection_sock *icsk = inet_csk(sk);
 229	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 230	unsigned int len;
 231
 232	icsk->icsk_ack.last_seg_size = 0;
 233
 234	/* skb->len may jitter because of SACKs, even if peer
 235	 * sends good full-sized frames.
 236	 */
 237	len = skb_shinfo(skb)->gso_size ? : skb->len;
 238	if (len >= icsk->icsk_ack.rcv_mss) {
 239		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 240					       tcp_sk(sk)->advmss);
 241		/* Account for possibly-removed options */
 242		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 243				   MAX_TCP_OPTION_SPACE))
 244			tcp_gro_dev_warn(sk, skb, len);
 245	} else {
 246		/* Otherwise, we make more careful check taking into account,
 247		 * that SACKs block is variable.
 248		 *
 249		 * "len" is invariant segment length, including TCP header.
 250		 */
 251		len += skb->data - skb_transport_header(skb);
 252		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 253		    /* If PSH is not set, packet should be
 254		     * full sized, provided peer TCP is not badly broken.
 255		     * This observation (if it is correct 8)) allows
 256		     * to handle super-low mtu links fairly.
 257		     */
 258		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 259		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 260			/* Subtract also invariant (if peer is RFC compliant),
 261			 * tcp header plus fixed timestamp option length.
 262			 * Resulting "len" is MSS free of SACK jitter.
 263			 */
 264			len -= tcp_sk(sk)->tcp_header_len;
 265			icsk->icsk_ack.last_seg_size = len;
 266			if (len == lss) {
 267				icsk->icsk_ack.rcv_mss = len;
 268				return;
 269			}
 270		}
 271		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 272			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 273		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 274	}
 275}
 276
 277static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 278{
 279	struct inet_connection_sock *icsk = inet_csk(sk);
 280	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 281
 282	if (quickacks == 0)
 283		quickacks = 2;
 284	quickacks = min(quickacks, max_quickacks);
 285	if (quickacks > icsk->icsk_ack.quick)
 286		icsk->icsk_ack.quick = quickacks;
 287}
 288
 289void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 290{
 291	struct inet_connection_sock *icsk = inet_csk(sk);
 292
 293	tcp_incr_quickack(sk, max_quickacks);
 294	inet_csk_exit_pingpong_mode(sk);
 295	icsk->icsk_ack.ato = TCP_ATO_MIN;
 296}
 297EXPORT_SYMBOL(tcp_enter_quickack_mode);
 298
 299/* Send ACKs quickly, if "quick" count is not exhausted
 300 * and the session is not interactive.
 301 */
 302
 303static bool tcp_in_quickack_mode(struct sock *sk)
 304{
 305	const struct inet_connection_sock *icsk = inet_csk(sk);
 306	const struct dst_entry *dst = __sk_dst_get(sk);
 307
 308	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 309		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 310}
 311
 312static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 313{
 314	if (tp->ecn_flags & TCP_ECN_OK)
 315		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 316}
 317
 318static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 319{
 320	if (tcp_hdr(skb)->cwr) {
 321		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 322
 323		/* If the sender is telling us it has entered CWR, then its
 324		 * cwnd may be very low (even just 1 packet), so we should ACK
 325		 * immediately.
 326		 */
 327		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
 328			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 329	}
 330}
 331
 332static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 333{
 334	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 335}
 336
 337static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 338{
 339	struct tcp_sock *tp = tcp_sk(sk);
 340
 341	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 342	case INET_ECN_NOT_ECT:
 343		/* Funny extension: if ECT is not set on a segment,
 344		 * and we already seen ECT on a previous segment,
 345		 * it is probably a retransmit.
 346		 */
 347		if (tp->ecn_flags & TCP_ECN_SEEN)
 348			tcp_enter_quickack_mode(sk, 2);
 349		break;
 350	case INET_ECN_CE:
 351		if (tcp_ca_needs_ecn(sk))
 352			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 353
 354		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 355			/* Better not delay acks, sender can have a very low cwnd */
 356			tcp_enter_quickack_mode(sk, 2);
 357			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 358		}
 359		tp->ecn_flags |= TCP_ECN_SEEN;
 360		break;
 361	default:
 362		if (tcp_ca_needs_ecn(sk))
 363			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 364		tp->ecn_flags |= TCP_ECN_SEEN;
 365		break;
 366	}
 367}
 368
 369static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 370{
 371	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 372		__tcp_ecn_check_ce(sk, skb);
 373}
 374
 375static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 376{
 377	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 378		tp->ecn_flags &= ~TCP_ECN_OK;
 379}
 380
 381static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 382{
 383	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 384		tp->ecn_flags &= ~TCP_ECN_OK;
 385}
 386
 387static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 388{
 389	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 390		return true;
 391	return false;
 392}
 393
 394/* Buffer size and advertised window tuning.
 395 *
 396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 397 */
 398
 399static void tcp_sndbuf_expand(struct sock *sk)
 400{
 401	const struct tcp_sock *tp = tcp_sk(sk);
 402	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 403	int sndmem, per_mss;
 404	u32 nr_segs;
 405
 406	/* Worst case is non GSO/TSO : each frame consumes one skb
 407	 * and skb->head is kmalloced using power of two area of memory
 408	 */
 409	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 410		  MAX_TCP_HEADER +
 411		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 412
 413	per_mss = roundup_pow_of_two(per_mss) +
 414		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 415
 416	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 417	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 418
 419	/* Fast Recovery (RFC 5681 3.2) :
 420	 * Cubic needs 1.7 factor, rounded to 2 to include
 421	 * extra cushion (application might react slowly to EPOLLOUT)
 422	 */
 423	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 424	sndmem *= nr_segs * per_mss;
 425
 426	if (sk->sk_sndbuf < sndmem)
 427		WRITE_ONCE(sk->sk_sndbuf,
 428			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
 429}
 430
 431/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 432 *
 433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 434 * forward and advertised in receiver window (tp->rcv_wnd) and
 435 * "application buffer", required to isolate scheduling/application
 436 * latencies from network.
 437 * window_clamp is maximal advertised window. It can be less than
 438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 439 * is reserved for "application" buffer. The less window_clamp is
 440 * the smoother our behaviour from viewpoint of network, but the lower
 441 * throughput and the higher sensitivity of the connection to losses. 8)
 442 *
 443 * rcv_ssthresh is more strict window_clamp used at "slow start"
 444 * phase to predict further behaviour of this connection.
 445 * It is used for two goals:
 446 * - to enforce header prediction at sender, even when application
 447 *   requires some significant "application buffer". It is check #1.
 448 * - to prevent pruning of receive queue because of misprediction
 449 *   of receiver window. Check #2.
 450 *
 451 * The scheme does not work when sender sends good segments opening
 452 * window and then starts to feed us spaghetti. But it should work
 453 * in common situations. Otherwise, we have to rely on queue collapsing.
 454 */
 455
 456/* Slow part of check#2. */
 457static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 458{
 459	struct tcp_sock *tp = tcp_sk(sk);
 460	/* Optimize this! */
 461	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 462	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 463
 464	while (tp->rcv_ssthresh <= window) {
 465		if (truesize <= skb->len)
 466			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 467
 468		truesize >>= 1;
 469		window >>= 1;
 470	}
 471	return 0;
 472}
 473
 474static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 475{
 476	struct tcp_sock *tp = tcp_sk(sk);
 477	int room;
 478
 479	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 480
 481	/* Check #1 */
 482	if (room > 0 && !tcp_under_memory_pressure(sk)) {
 
 
 483		int incr;
 484
 485		/* Check #2. Increase window, if skb with such overhead
 486		 * will fit to rcvbuf in future.
 487		 */
 488		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 489			incr = 2 * tp->advmss;
 490		else
 491			incr = __tcp_grow_window(sk, skb);
 492
 493		if (incr) {
 494			incr = max_t(int, incr, 2 * skb->len);
 495			tp->rcv_ssthresh += min(room, incr);
 
 496			inet_csk(sk)->icsk_ack.quick |= 1;
 497		}
 498	}
 499}
 500
 501/* 3. Try to fixup all. It is made immediately after connection enters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502 *    established state.
 503 */
 504static void tcp_init_buffer_space(struct sock *sk)
 505{
 506	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 507	struct tcp_sock *tp = tcp_sk(sk);
 508	int maxwin;
 509
 
 
 510	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 511		tcp_sndbuf_expand(sk);
 512
 
 513	tcp_mstamp_refresh(tp);
 514	tp->rcvq_space.time = tp->tcp_mstamp;
 515	tp->rcvq_space.seq = tp->copied_seq;
 516
 517	maxwin = tcp_full_space(sk);
 518
 519	if (tp->window_clamp >= maxwin) {
 520		tp->window_clamp = maxwin;
 521
 522		if (tcp_app_win && maxwin > 4 * tp->advmss)
 523			tp->window_clamp = max(maxwin -
 524					       (maxwin >> tcp_app_win),
 525					       4 * tp->advmss);
 526	}
 527
 528	/* Force reservation of one segment. */
 529	if (tcp_app_win &&
 530	    tp->window_clamp > 2 * tp->advmss &&
 531	    tp->window_clamp + tp->advmss > maxwin)
 532		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 533
 534	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 535	tp->snd_cwnd_stamp = tcp_jiffies32;
 536	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
 537				    (u32)TCP_INIT_CWND * tp->advmss);
 538}
 539
 540/* 4. Recalculate window clamp after socket hit its memory bounds. */
 541static void tcp_clamp_window(struct sock *sk)
 542{
 543	struct tcp_sock *tp = tcp_sk(sk);
 544	struct inet_connection_sock *icsk = inet_csk(sk);
 545	struct net *net = sock_net(sk);
 546
 547	icsk->icsk_ack.quick = 0;
 548
 549	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 550	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 551	    !tcp_under_memory_pressure(sk) &&
 552	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 553		WRITE_ONCE(sk->sk_rcvbuf,
 554			   min(atomic_read(&sk->sk_rmem_alloc),
 555			       net->ipv4.sysctl_tcp_rmem[2]));
 556	}
 557	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 558		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 559}
 560
 561/* Initialize RCV_MSS value.
 562 * RCV_MSS is an our guess about MSS used by the peer.
 563 * We haven't any direct information about the MSS.
 564 * It's better to underestimate the RCV_MSS rather than overestimate.
 565 * Overestimations make us ACKing less frequently than needed.
 566 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 567 */
 568void tcp_initialize_rcv_mss(struct sock *sk)
 569{
 570	const struct tcp_sock *tp = tcp_sk(sk);
 571	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 572
 573	hint = min(hint, tp->rcv_wnd / 2);
 574	hint = min(hint, TCP_MSS_DEFAULT);
 575	hint = max(hint, TCP_MIN_MSS);
 576
 577	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 578}
 579EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 580
 581/* Receiver "autotuning" code.
 582 *
 583 * The algorithm for RTT estimation w/o timestamps is based on
 584 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 585 * <https://public.lanl.gov/radiant/pubs.html#DRS>
 586 *
 587 * More detail on this code can be found at
 588 * <http://staff.psc.edu/jheffner/>,
 589 * though this reference is out of date.  A new paper
 590 * is pending.
 591 */
 592static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 593{
 594	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 595	long m = sample;
 596
 597	if (new_sample != 0) {
 598		/* If we sample in larger samples in the non-timestamp
 599		 * case, we could grossly overestimate the RTT especially
 600		 * with chatty applications or bulk transfer apps which
 601		 * are stalled on filesystem I/O.
 602		 *
 603		 * Also, since we are only going for a minimum in the
 604		 * non-timestamp case, we do not smooth things out
 605		 * else with timestamps disabled convergence takes too
 606		 * long.
 607		 */
 608		if (!win_dep) {
 609			m -= (new_sample >> 3);
 610			new_sample += m;
 611		} else {
 612			m <<= 3;
 613			if (m < new_sample)
 614				new_sample = m;
 615		}
 616	} else {
 617		/* No previous measure. */
 618		new_sample = m << 3;
 619	}
 620
 621	tp->rcv_rtt_est.rtt_us = new_sample;
 622}
 623
 624static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 625{
 626	u32 delta_us;
 627
 628	if (tp->rcv_rtt_est.time == 0)
 629		goto new_measure;
 630	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 631		return;
 632	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 633	if (!delta_us)
 634		delta_us = 1;
 635	tcp_rcv_rtt_update(tp, delta_us, 1);
 636
 637new_measure:
 638	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 639	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 640}
 641
 642static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 643					  const struct sk_buff *skb)
 644{
 645	struct tcp_sock *tp = tcp_sk(sk);
 646
 647	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 648		return;
 649	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 650
 651	if (TCP_SKB_CB(skb)->end_seq -
 652	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 653		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 654		u32 delta_us;
 655
 656		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 657			if (!delta)
 658				delta = 1;
 659			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 660			tcp_rcv_rtt_update(tp, delta_us, 0);
 661		}
 662	}
 663}
 664
 665/*
 666 * This function should be called every time data is copied to user space.
 667 * It calculates the appropriate TCP receive buffer space.
 668 */
 669void tcp_rcv_space_adjust(struct sock *sk)
 670{
 671	struct tcp_sock *tp = tcp_sk(sk);
 672	u32 copied;
 673	int time;
 674
 675	trace_tcp_rcv_space_adjust(sk);
 676
 677	tcp_mstamp_refresh(tp);
 678	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 679	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 680		return;
 681
 682	/* Number of bytes copied to user in last RTT */
 683	copied = tp->copied_seq - tp->rcvq_space.seq;
 684	if (copied <= tp->rcvq_space.space)
 685		goto new_measure;
 686
 687	/* A bit of theory :
 688	 * copied = bytes received in previous RTT, our base window
 689	 * To cope with packet losses, we need a 2x factor
 690	 * To cope with slow start, and sender growing its cwin by 100 %
 691	 * every RTT, we need a 4x factor, because the ACK we are sending
 692	 * now is for the next RTT, not the current one :
 693	 * <prev RTT . ><current RTT .. ><next RTT .... >
 694	 */
 695
 696	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 697	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 698		int rcvmem, rcvbuf;
 699		u64 rcvwin, grow;
 700
 701		/* minimal window to cope with packet losses, assuming
 702		 * steady state. Add some cushion because of small variations.
 703		 */
 704		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 705
 706		/* Accommodate for sender rate increase (eg. slow start) */
 707		grow = rcvwin * (copied - tp->rcvq_space.space);
 708		do_div(grow, tp->rcvq_space.space);
 709		rcvwin += (grow << 1);
 710
 711		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 712		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 713			rcvmem += 128;
 714
 715		do_div(rcvwin, tp->advmss);
 716		rcvbuf = min_t(u64, rcvwin * rcvmem,
 717			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 718		if (rcvbuf > sk->sk_rcvbuf) {
 719			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
 720
 721			/* Make the window clamp follow along.  */
 722			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 723		}
 724	}
 725	tp->rcvq_space.space = copied;
 726
 727new_measure:
 728	tp->rcvq_space.seq = tp->copied_seq;
 729	tp->rcvq_space.time = tp->tcp_mstamp;
 730}
 731
 732/* There is something which you must keep in mind when you analyze the
 733 * behavior of the tp->ato delayed ack timeout interval.  When a
 734 * connection starts up, we want to ack as quickly as possible.  The
 735 * problem is that "good" TCP's do slow start at the beginning of data
 736 * transmission.  The means that until we send the first few ACK's the
 737 * sender will sit on his end and only queue most of his data, because
 738 * he can only send snd_cwnd unacked packets at any given time.  For
 739 * each ACK we send, he increments snd_cwnd and transmits more of his
 740 * queue.  -DaveM
 741 */
 742static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 743{
 744	struct tcp_sock *tp = tcp_sk(sk);
 745	struct inet_connection_sock *icsk = inet_csk(sk);
 746	u32 now;
 747
 748	inet_csk_schedule_ack(sk);
 749
 750	tcp_measure_rcv_mss(sk, skb);
 751
 752	tcp_rcv_rtt_measure(tp);
 753
 754	now = tcp_jiffies32;
 755
 756	if (!icsk->icsk_ack.ato) {
 757		/* The _first_ data packet received, initialize
 758		 * delayed ACK engine.
 759		 */
 760		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 761		icsk->icsk_ack.ato = TCP_ATO_MIN;
 762	} else {
 763		int m = now - icsk->icsk_ack.lrcvtime;
 764
 765		if (m <= TCP_ATO_MIN / 2) {
 766			/* The fastest case is the first. */
 767			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 768		} else if (m < icsk->icsk_ack.ato) {
 769			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 770			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 771				icsk->icsk_ack.ato = icsk->icsk_rto;
 772		} else if (m > icsk->icsk_rto) {
 773			/* Too long gap. Apparently sender failed to
 774			 * restart window, so that we send ACKs quickly.
 775			 */
 776			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 777			sk_mem_reclaim(sk);
 778		}
 779	}
 780	icsk->icsk_ack.lrcvtime = now;
 781
 782	tcp_ecn_check_ce(sk, skb);
 783
 784	if (skb->len >= 128)
 785		tcp_grow_window(sk, skb);
 786}
 787
 788/* Called to compute a smoothed rtt estimate. The data fed to this
 789 * routine either comes from timestamps, or from segments that were
 790 * known _not_ to have been retransmitted [see Karn/Partridge
 791 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 792 * piece by Van Jacobson.
 793 * NOTE: the next three routines used to be one big routine.
 794 * To save cycles in the RFC 1323 implementation it was better to break
 795 * it up into three procedures. -- erics
 796 */
 797static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 798{
 799	struct tcp_sock *tp = tcp_sk(sk);
 800	long m = mrtt_us; /* RTT */
 801	u32 srtt = tp->srtt_us;
 802
 803	/*	The following amusing code comes from Jacobson's
 804	 *	article in SIGCOMM '88.  Note that rtt and mdev
 805	 *	are scaled versions of rtt and mean deviation.
 806	 *	This is designed to be as fast as possible
 807	 *	m stands for "measurement".
 808	 *
 809	 *	On a 1990 paper the rto value is changed to:
 810	 *	RTO = rtt + 4 * mdev
 811	 *
 812	 * Funny. This algorithm seems to be very broken.
 813	 * These formulae increase RTO, when it should be decreased, increase
 814	 * too slowly, when it should be increased quickly, decrease too quickly
 815	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 816	 * does not matter how to _calculate_ it. Seems, it was trap
 817	 * that VJ failed to avoid. 8)
 818	 */
 819	if (srtt != 0) {
 820		m -= (srtt >> 3);	/* m is now error in rtt est */
 821		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 822		if (m < 0) {
 823			m = -m;		/* m is now abs(error) */
 824			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 825			/* This is similar to one of Eifel findings.
 826			 * Eifel blocks mdev updates when rtt decreases.
 827			 * This solution is a bit different: we use finer gain
 828			 * for mdev in this case (alpha*beta).
 829			 * Like Eifel it also prevents growth of rto,
 830			 * but also it limits too fast rto decreases,
 831			 * happening in pure Eifel.
 832			 */
 833			if (m > 0)
 834				m >>= 3;
 835		} else {
 836			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 837		}
 838		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 839		if (tp->mdev_us > tp->mdev_max_us) {
 840			tp->mdev_max_us = tp->mdev_us;
 841			if (tp->mdev_max_us > tp->rttvar_us)
 842				tp->rttvar_us = tp->mdev_max_us;
 843		}
 844		if (after(tp->snd_una, tp->rtt_seq)) {
 845			if (tp->mdev_max_us < tp->rttvar_us)
 846				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 847			tp->rtt_seq = tp->snd_nxt;
 848			tp->mdev_max_us = tcp_rto_min_us(sk);
 849
 850			tcp_bpf_rtt(sk);
 851		}
 852	} else {
 853		/* no previous measure. */
 854		srtt = m << 3;		/* take the measured time to be rtt */
 855		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 856		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 857		tp->mdev_max_us = tp->rttvar_us;
 858		tp->rtt_seq = tp->snd_nxt;
 859
 860		tcp_bpf_rtt(sk);
 861	}
 862	tp->srtt_us = max(1U, srtt);
 863}
 864
 865static void tcp_update_pacing_rate(struct sock *sk)
 866{
 867	const struct tcp_sock *tp = tcp_sk(sk);
 868	u64 rate;
 869
 870	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 871	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 872
 873	/* current rate is (cwnd * mss) / srtt
 874	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 875	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 876	 *
 877	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 878	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 879	 *	 end of slow start and should slow down.
 880	 */
 881	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 882		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 883	else
 884		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 885
 886	rate *= max(tp->snd_cwnd, tp->packets_out);
 887
 888	if (likely(tp->srtt_us))
 889		do_div(rate, tp->srtt_us);
 890
 891	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 892	 * without any lock. We want to make sure compiler wont store
 893	 * intermediate values in this location.
 894	 */
 895	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 896					     sk->sk_max_pacing_rate));
 897}
 898
 899/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 900 * routine referred to above.
 901 */
 902static void tcp_set_rto(struct sock *sk)
 903{
 904	const struct tcp_sock *tp = tcp_sk(sk);
 905	/* Old crap is replaced with new one. 8)
 906	 *
 907	 * More seriously:
 908	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 909	 *    It cannot be less due to utterly erratic ACK generation made
 910	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 911	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 912	 *    is invisible. Actually, Linux-2.4 also generates erratic
 913	 *    ACKs in some circumstances.
 914	 */
 915	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 916
 917	/* 2. Fixups made earlier cannot be right.
 918	 *    If we do not estimate RTO correctly without them,
 919	 *    all the algo is pure shit and should be replaced
 920	 *    with correct one. It is exactly, which we pretend to do.
 921	 */
 922
 923	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 924	 * guarantees that rto is higher.
 925	 */
 926	tcp_bound_rto(sk);
 927}
 928
 929__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 930{
 931	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 932
 933	if (!cwnd)
 934		cwnd = TCP_INIT_CWND;
 935	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 936}
 937
 938struct tcp_sacktag_state {
 939	/* Timestamps for earliest and latest never-retransmitted segment
 940	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
 941	 * but congestion control should still get an accurate delay signal.
 942	 */
 943	u64	first_sackt;
 944	u64	last_sackt;
 945	u32	reord;
 946	u32	sack_delivered;
 947	int	flag;
 948	unsigned int mss_now;
 949	struct rate_sample *rate;
 950};
 951
 952/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
 953 * and spurious retransmission information if this DSACK is unlikely caused by
 954 * sender's action:
 955 * - DSACKed sequence range is larger than maximum receiver's window.
 956 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
 957 */
 958static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
 959			  u32 end_seq, struct tcp_sacktag_state *state)
 960{
 961	u32 seq_len, dup_segs = 1;
 962
 963	if (!before(start_seq, end_seq))
 964		return 0;
 965
 966	seq_len = end_seq - start_seq;
 967	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
 968	if (seq_len > tp->max_window)
 969		return 0;
 970	if (seq_len > tp->mss_cache)
 971		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
 972
 973	tp->dsack_dups += dup_segs;
 974	/* Skip the DSACK if dup segs weren't retransmitted by sender */
 975	if (tp->dsack_dups > tp->total_retrans)
 976		return 0;
 977
 978	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 979	tp->rack.dsack_seen = 1;
 980
 981	state->flag |= FLAG_DSACKING_ACK;
 982	/* A spurious retransmission is delivered */
 983	state->sack_delivered += dup_segs;
 984
 985	return dup_segs;
 986}
 987
 988/* It's reordering when higher sequence was delivered (i.e. sacked) before
 989 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 990 * distance is approximated in full-mss packet distance ("reordering").
 991 */
 992static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 993				      const int ts)
 994{
 995	struct tcp_sock *tp = tcp_sk(sk);
 996	const u32 mss = tp->mss_cache;
 997	u32 fack, metric;
 998
 999	fack = tcp_highest_sack_seq(tp);
1000	if (!before(low_seq, fack))
1001		return;
1002
1003	metric = fack - low_seq;
1004	if ((metric > tp->reordering * mss) && mss) {
1005#if FASTRETRANS_DEBUG > 1
1006		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1007			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1008			 tp->reordering,
1009			 0,
1010			 tp->sacked_out,
1011			 tp->undo_marker ? tp->undo_retrans : 0);
1012#endif
1013		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1014				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1015	}
1016
 
1017	/* This exciting event is worth to be remembered. 8) */
1018	tp->reord_seen++;
1019	NET_INC_STATS(sock_net(sk),
1020		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1021}
1022
1023 /* This must be called before lost_out or retrans_out are updated
1024  * on a new loss, because we want to know if all skbs previously
1025  * known to be lost have already been retransmitted, indicating
1026  * that this newly lost skb is our next skb to retransmit.
1027  */
1028static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029{
1030	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1031	    (tp->retransmit_skb_hint &&
1032	     before(TCP_SKB_CB(skb)->seq,
1033		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1034		tp->retransmit_skb_hint = skb;
1035}
1036
1037/* Sum the number of packets on the wire we have marked as lost, and
1038 * notify the congestion control module that the given skb was marked lost.
 
 
 
 
1039 */
1040static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041{
1042	tp->lost += tcp_skb_pcount(skb);
 
 
 
 
1043}
1044
1045void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046{
1047	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1048	struct tcp_sock *tp = tcp_sk(sk);
1049
1050	if (sacked & TCPCB_SACKED_ACKED)
1051		return;
1052
1053	tcp_verify_retransmit_hint(tp, skb);
1054	if (sacked & TCPCB_LOST) {
1055		if (sacked & TCPCB_SACKED_RETRANS) {
1056			/* Account for retransmits that are lost again */
1057			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1058			tp->retrans_out -= tcp_skb_pcount(skb);
1059			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1060				      tcp_skb_pcount(skb));
1061			tcp_notify_skb_loss_event(tp, skb);
1062		}
1063	} else {
1064		tp->lost_out += tcp_skb_pcount(skb);
 
1065		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1066		tcp_notify_skb_loss_event(tp, skb);
1067	}
1068}
1069
1070/* Updates the delivered and delivered_ce counts */
1071static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1072				bool ece_ack)
1073{
1074	tp->delivered += delivered;
1075	if (ece_ack)
1076		tp->delivered_ce += delivered;
 
 
 
 
1077}
1078
1079/* This procedure tags the retransmission queue when SACKs arrive.
1080 *
1081 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1082 * Packets in queue with these bits set are counted in variables
1083 * sacked_out, retrans_out and lost_out, correspondingly.
1084 *
1085 * Valid combinations are:
1086 * Tag  InFlight	Description
1087 * 0	1		- orig segment is in flight.
1088 * S	0		- nothing flies, orig reached receiver.
1089 * L	0		- nothing flies, orig lost by net.
1090 * R	2		- both orig and retransmit are in flight.
1091 * L|R	1		- orig is lost, retransmit is in flight.
1092 * S|R  1		- orig reached receiver, retrans is still in flight.
1093 * (L|S|R is logically valid, it could occur when L|R is sacked,
1094 *  but it is equivalent to plain S and code short-curcuits it to S.
1095 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1096 *
1097 * These 6 states form finite state machine, controlled by the following events:
1098 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1099 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1100 * 3. Loss detection event of two flavors:
1101 *	A. Scoreboard estimator decided the packet is lost.
1102 *	   A'. Reno "three dupacks" marks head of queue lost.
1103 *	B. SACK arrives sacking SND.NXT at the moment, when the
1104 *	   segment was retransmitted.
1105 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106 *
1107 * It is pleasant to note, that state diagram turns out to be commutative,
1108 * so that we are allowed not to be bothered by order of our actions,
1109 * when multiple events arrive simultaneously. (see the function below).
1110 *
1111 * Reordering detection.
1112 * --------------------
1113 * Reordering metric is maximal distance, which a packet can be displaced
1114 * in packet stream. With SACKs we can estimate it:
1115 *
1116 * 1. SACK fills old hole and the corresponding segment was not
1117 *    ever retransmitted -> reordering. Alas, we cannot use it
1118 *    when segment was retransmitted.
1119 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1120 *    for retransmitted and already SACKed segment -> reordering..
1121 * Both of these heuristics are not used in Loss state, when we cannot
1122 * account for retransmits accurately.
1123 *
1124 * SACK block validation.
1125 * ----------------------
1126 *
1127 * SACK block range validation checks that the received SACK block fits to
1128 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1129 * Note that SND.UNA is not included to the range though being valid because
1130 * it means that the receiver is rather inconsistent with itself reporting
1131 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1132 * perfectly valid, however, in light of RFC2018 which explicitly states
1133 * that "SACK block MUST reflect the newest segment.  Even if the newest
1134 * segment is going to be discarded ...", not that it looks very clever
1135 * in case of head skb. Due to potentional receiver driven attacks, we
1136 * choose to avoid immediate execution of a walk in write queue due to
1137 * reneging and defer head skb's loss recovery to standard loss recovery
1138 * procedure that will eventually trigger (nothing forbids us doing this).
1139 *
1140 * Implements also blockage to start_seq wrap-around. Problem lies in the
1141 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1142 * there's no guarantee that it will be before snd_nxt (n). The problem
1143 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1144 * wrap (s_w):
1145 *
1146 *         <- outs wnd ->                          <- wrapzone ->
1147 *         u     e      n                         u_w   e_w  s n_w
1148 *         |     |      |                          |     |   |  |
1149 * |<------------+------+----- TCP seqno space --------------+---------->|
1150 * ...-- <2^31 ->|                                           |<--------...
1151 * ...---- >2^31 ------>|                                    |<--------...
1152 *
1153 * Current code wouldn't be vulnerable but it's better still to discard such
1154 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1155 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1156 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1157 * equal to the ideal case (infinite seqno space without wrap caused issues).
1158 *
1159 * With D-SACK the lower bound is extended to cover sequence space below
1160 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1161 * again, D-SACK block must not to go across snd_una (for the same reason as
1162 * for the normal SACK blocks, explained above). But there all simplicity
1163 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1164 * fully below undo_marker they do not affect behavior in anyway and can
1165 * therefore be safely ignored. In rare cases (which are more or less
1166 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1167 * fragmentation and packet reordering past skb's retransmission. To consider
1168 * them correctly, the acceptable range must be extended even more though
1169 * the exact amount is rather hard to quantify. However, tp->max_window can
1170 * be used as an exaggerated estimate.
1171 */
1172static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1173				   u32 start_seq, u32 end_seq)
1174{
1175	/* Too far in future, or reversed (interpretation is ambiguous) */
1176	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1177		return false;
1178
1179	/* Nasty start_seq wrap-around check (see comments above) */
1180	if (!before(start_seq, tp->snd_nxt))
1181		return false;
1182
1183	/* In outstanding window? ...This is valid exit for D-SACKs too.
1184	 * start_seq == snd_una is non-sensical (see comments above)
1185	 */
1186	if (after(start_seq, tp->snd_una))
1187		return true;
1188
1189	if (!is_dsack || !tp->undo_marker)
1190		return false;
1191
1192	/* ...Then it's D-SACK, and must reside below snd_una completely */
1193	if (after(end_seq, tp->snd_una))
1194		return false;
1195
1196	if (!before(start_seq, tp->undo_marker))
1197		return true;
1198
1199	/* Too old */
1200	if (!after(end_seq, tp->undo_marker))
1201		return false;
1202
1203	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1204	 *   start_seq < undo_marker and end_seq >= undo_marker.
1205	 */
1206	return !before(start_seq, end_seq - tp->max_window);
1207}
1208
1209static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1210			    struct tcp_sack_block_wire *sp, int num_sacks,
1211			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1212{
1213	struct tcp_sock *tp = tcp_sk(sk);
1214	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1215	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1216	u32 dup_segs;
1217
1218	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
 
 
1219		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1220	} else if (num_sacks > 1) {
1221		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1222		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223
1224		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225			return false;
1226		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1227	} else {
1228		return false;
1229	}
1230
1231	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1232	if (!dup_segs) {	/* Skip dubious DSACK */
1233		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1234		return false;
1235	}
1236
1237	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238
1239	/* D-SACK for already forgotten data... Do dumb counting. */
1240	if (tp->undo_marker && tp->undo_retrans > 0 &&
1241	    !after(end_seq_0, prior_snd_una) &&
1242	    after(end_seq_0, tp->undo_marker))
1243		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1244
1245	return true;
1246}
1247
 
 
 
 
 
 
 
 
 
 
 
 
 
1248/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1249 * the incoming SACK may not exactly match but we can find smaller MSS
1250 * aligned portion of it that matches. Therefore we might need to fragment
1251 * which may fail and creates some hassle (caller must handle error case
1252 * returns).
1253 *
1254 * FIXME: this could be merged to shift decision code
1255 */
1256static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1257				  u32 start_seq, u32 end_seq)
1258{
1259	int err;
1260	bool in_sack;
1261	unsigned int pkt_len;
1262	unsigned int mss;
1263
1264	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1265		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266
1267	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1268	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1269		mss = tcp_skb_mss(skb);
1270		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1271
1272		if (!in_sack) {
1273			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1274			if (pkt_len < mss)
1275				pkt_len = mss;
1276		} else {
1277			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1278			if (pkt_len < mss)
1279				return -EINVAL;
1280		}
1281
1282		/* Round if necessary so that SACKs cover only full MSSes
1283		 * and/or the remaining small portion (if present)
1284		 */
1285		if (pkt_len > mss) {
1286			unsigned int new_len = (pkt_len / mss) * mss;
1287			if (!in_sack && new_len < pkt_len)
1288				new_len += mss;
1289			pkt_len = new_len;
1290		}
1291
1292		if (pkt_len >= skb->len && !in_sack)
1293			return 0;
1294
1295		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1296				   pkt_len, mss, GFP_ATOMIC);
1297		if (err < 0)
1298			return err;
1299	}
1300
1301	return in_sack;
1302}
1303
1304/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1305static u8 tcp_sacktag_one(struct sock *sk,
1306			  struct tcp_sacktag_state *state, u8 sacked,
1307			  u32 start_seq, u32 end_seq,
1308			  int dup_sack, int pcount,
1309			  u64 xmit_time)
1310{
1311	struct tcp_sock *tp = tcp_sk(sk);
1312
1313	/* Account D-SACK for retransmitted packet. */
1314	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1315		if (tp->undo_marker && tp->undo_retrans > 0 &&
1316		    after(end_seq, tp->undo_marker))
1317			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1318		if ((sacked & TCPCB_SACKED_ACKED) &&
1319		    before(start_seq, state->reord))
1320				state->reord = start_seq;
1321	}
1322
1323	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1324	if (!after(end_seq, tp->snd_una))
1325		return sacked;
1326
1327	if (!(sacked & TCPCB_SACKED_ACKED)) {
1328		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329
1330		if (sacked & TCPCB_SACKED_RETRANS) {
1331			/* If the segment is not tagged as lost,
1332			 * we do not clear RETRANS, believing
1333			 * that retransmission is still in flight.
1334			 */
1335			if (sacked & TCPCB_LOST) {
1336				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1337				tp->lost_out -= pcount;
1338				tp->retrans_out -= pcount;
1339			}
1340		} else {
1341			if (!(sacked & TCPCB_RETRANS)) {
1342				/* New sack for not retransmitted frame,
1343				 * which was in hole. It is reordering.
1344				 */
1345				if (before(start_seq,
1346					   tcp_highest_sack_seq(tp)) &&
1347				    before(start_seq, state->reord))
1348					state->reord = start_seq;
1349
1350				if (!after(end_seq, tp->high_seq))
1351					state->flag |= FLAG_ORIG_SACK_ACKED;
1352				if (state->first_sackt == 0)
1353					state->first_sackt = xmit_time;
1354				state->last_sackt = xmit_time;
1355			}
1356
1357			if (sacked & TCPCB_LOST) {
1358				sacked &= ~TCPCB_LOST;
1359				tp->lost_out -= pcount;
1360			}
1361		}
1362
1363		sacked |= TCPCB_SACKED_ACKED;
1364		state->flag |= FLAG_DATA_SACKED;
1365		tp->sacked_out += pcount;
1366		/* Out-of-order packets delivered */
1367		state->sack_delivered += pcount;
1368
1369		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1370		if (tp->lost_skb_hint &&
1371		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1372			tp->lost_cnt_hint += pcount;
1373	}
1374
1375	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1376	 * frames and clear it. undo_retrans is decreased above, L|R frames
1377	 * are accounted above as well.
1378	 */
1379	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1380		sacked &= ~TCPCB_SACKED_RETRANS;
1381		tp->retrans_out -= pcount;
1382	}
1383
1384	return sacked;
1385}
1386
1387/* Shift newly-SACKed bytes from this skb to the immediately previous
1388 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389 */
1390static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1391			    struct sk_buff *skb,
1392			    struct tcp_sacktag_state *state,
1393			    unsigned int pcount, int shifted, int mss,
1394			    bool dup_sack)
1395{
1396	struct tcp_sock *tp = tcp_sk(sk);
1397	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1398	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1399
1400	BUG_ON(!pcount);
1401
1402	/* Adjust counters and hints for the newly sacked sequence
1403	 * range but discard the return value since prev is already
1404	 * marked. We must tag the range first because the seq
1405	 * advancement below implicitly advances
1406	 * tcp_highest_sack_seq() when skb is highest_sack.
1407	 */
1408	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1409			start_seq, end_seq, dup_sack, pcount,
1410			tcp_skb_timestamp_us(skb));
1411	tcp_rate_skb_delivered(sk, skb, state->rate);
1412
1413	if (skb == tp->lost_skb_hint)
1414		tp->lost_cnt_hint += pcount;
1415
1416	TCP_SKB_CB(prev)->end_seq += shifted;
1417	TCP_SKB_CB(skb)->seq += shifted;
1418
1419	tcp_skb_pcount_add(prev, pcount);
1420	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1421	tcp_skb_pcount_add(skb, -pcount);
1422
1423	/* When we're adding to gso_segs == 1, gso_size will be zero,
1424	 * in theory this shouldn't be necessary but as long as DSACK
1425	 * code can come after this skb later on it's better to keep
1426	 * setting gso_size to something.
1427	 */
1428	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1429		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430
1431	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1432	if (tcp_skb_pcount(skb) <= 1)
1433		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434
1435	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1436	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1437
1438	if (skb->len > 0) {
1439		BUG_ON(!tcp_skb_pcount(skb));
1440		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1441		return false;
1442	}
1443
1444	/* Whole SKB was eaten :-) */
1445
1446	if (skb == tp->retransmit_skb_hint)
1447		tp->retransmit_skb_hint = prev;
1448	if (skb == tp->lost_skb_hint) {
1449		tp->lost_skb_hint = prev;
1450		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1451	}
1452
1453	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1454	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1455	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1456		TCP_SKB_CB(prev)->end_seq++;
1457
1458	if (skb == tcp_highest_sack(sk))
1459		tcp_advance_highest_sack(sk, skb);
1460
1461	tcp_skb_collapse_tstamp(prev, skb);
1462	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1463		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464
1465	tcp_rtx_queue_unlink_and_free(skb, sk);
1466
1467	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1468
1469	return true;
1470}
1471
1472/* I wish gso_size would have a bit more sane initialization than
1473 * something-or-zero which complicates things
1474 */
1475static int tcp_skb_seglen(const struct sk_buff *skb)
1476{
1477	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1478}
1479
1480/* Shifting pages past head area doesn't work */
1481static int skb_can_shift(const struct sk_buff *skb)
1482{
1483	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1484}
1485
1486int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1487		  int pcount, int shiftlen)
1488{
1489	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1490	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1491	 * to make sure not storing more than 65535 * 8 bytes per skb,
1492	 * even if current MSS is bigger.
1493	 */
1494	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495		return 0;
1496	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497		return 0;
1498	return skb_shift(to, from, shiftlen);
1499}
1500
1501/* Try collapsing SACK blocks spanning across multiple skbs to a single
1502 * skb.
1503 */
1504static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1505					  struct tcp_sacktag_state *state,
1506					  u32 start_seq, u32 end_seq,
1507					  bool dup_sack)
1508{
1509	struct tcp_sock *tp = tcp_sk(sk);
1510	struct sk_buff *prev;
1511	int mss;
1512	int pcount = 0;
1513	int len;
1514	int in_sack;
1515
1516	/* Normally R but no L won't result in plain S */
1517	if (!dup_sack &&
1518	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519		goto fallback;
1520	if (!skb_can_shift(skb))
1521		goto fallback;
1522	/* This frame is about to be dropped (was ACKed). */
1523	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1524		goto fallback;
1525
1526	/* Can only happen with delayed DSACK + discard craziness */
1527	prev = skb_rb_prev(skb);
1528	if (!prev)
1529		goto fallback;
1530
1531	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1532		goto fallback;
1533
1534	if (!tcp_skb_can_collapse(prev, skb))
1535		goto fallback;
1536
1537	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1538		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1539
1540	if (in_sack) {
1541		len = skb->len;
1542		pcount = tcp_skb_pcount(skb);
1543		mss = tcp_skb_seglen(skb);
1544
1545		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1546		 * drop this restriction as unnecessary
1547		 */
1548		if (mss != tcp_skb_seglen(prev))
1549			goto fallback;
1550	} else {
1551		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552			goto noop;
1553		/* CHECKME: This is non-MSS split case only?, this will
1554		 * cause skipped skbs due to advancing loop btw, original
1555		 * has that feature too
1556		 */
1557		if (tcp_skb_pcount(skb) <= 1)
1558			goto noop;
1559
1560		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561		if (!in_sack) {
1562			/* TODO: head merge to next could be attempted here
1563			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1564			 * though it might not be worth of the additional hassle
1565			 *
1566			 * ...we can probably just fallback to what was done
1567			 * previously. We could try merging non-SACKed ones
1568			 * as well but it probably isn't going to buy off
1569			 * because later SACKs might again split them, and
1570			 * it would make skb timestamp tracking considerably
1571			 * harder problem.
1572			 */
1573			goto fallback;
1574		}
1575
1576		len = end_seq - TCP_SKB_CB(skb)->seq;
1577		BUG_ON(len < 0);
1578		BUG_ON(len > skb->len);
1579
1580		/* MSS boundaries should be honoured or else pcount will
1581		 * severely break even though it makes things bit trickier.
1582		 * Optimize common case to avoid most of the divides
1583		 */
1584		mss = tcp_skb_mss(skb);
1585
1586		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1587		 * drop this restriction as unnecessary
1588		 */
1589		if (mss != tcp_skb_seglen(prev))
1590			goto fallback;
1591
1592		if (len == mss) {
1593			pcount = 1;
1594		} else if (len < mss) {
1595			goto noop;
1596		} else {
1597			pcount = len / mss;
1598			len = pcount * mss;
1599		}
1600	}
1601
1602	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1603	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1604		goto fallback;
1605
1606	if (!tcp_skb_shift(prev, skb, pcount, len))
1607		goto fallback;
1608	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1609		goto out;
1610
1611	/* Hole filled allows collapsing with the next as well, this is very
1612	 * useful when hole on every nth skb pattern happens
1613	 */
1614	skb = skb_rb_next(prev);
1615	if (!skb)
1616		goto out;
1617
1618	if (!skb_can_shift(skb) ||
1619	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620	    (mss != tcp_skb_seglen(skb)))
1621		goto out;
1622
1623	len = skb->len;
1624	pcount = tcp_skb_pcount(skb);
1625	if (tcp_skb_shift(prev, skb, pcount, len))
1626		tcp_shifted_skb(sk, prev, skb, state, pcount,
1627				len, mss, 0);
 
1628
1629out:
1630	return prev;
1631
1632noop:
1633	return skb;
1634
1635fallback:
1636	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1637	return NULL;
1638}
1639
1640static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1641					struct tcp_sack_block *next_dup,
1642					struct tcp_sacktag_state *state,
1643					u32 start_seq, u32 end_seq,
1644					bool dup_sack_in)
1645{
1646	struct tcp_sock *tp = tcp_sk(sk);
1647	struct sk_buff *tmp;
1648
1649	skb_rbtree_walk_from(skb) {
1650		int in_sack = 0;
1651		bool dup_sack = dup_sack_in;
1652
1653		/* queue is in-order => we can short-circuit the walk early */
1654		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1655			break;
1656
1657		if (next_dup  &&
1658		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1659			in_sack = tcp_match_skb_to_sack(sk, skb,
1660							next_dup->start_seq,
1661							next_dup->end_seq);
1662			if (in_sack > 0)
1663				dup_sack = true;
1664		}
1665
1666		/* skb reference here is a bit tricky to get right, since
1667		 * shifting can eat and free both this skb and the next,
1668		 * so not even _safe variant of the loop is enough.
1669		 */
1670		if (in_sack <= 0) {
1671			tmp = tcp_shift_skb_data(sk, skb, state,
1672						 start_seq, end_seq, dup_sack);
1673			if (tmp) {
1674				if (tmp != skb) {
1675					skb = tmp;
1676					continue;
1677				}
1678
1679				in_sack = 0;
1680			} else {
1681				in_sack = tcp_match_skb_to_sack(sk, skb,
1682								start_seq,
1683								end_seq);
1684			}
1685		}
1686
1687		if (unlikely(in_sack < 0))
1688			break;
1689
1690		if (in_sack) {
1691			TCP_SKB_CB(skb)->sacked =
1692				tcp_sacktag_one(sk,
1693						state,
1694						TCP_SKB_CB(skb)->sacked,
1695						TCP_SKB_CB(skb)->seq,
1696						TCP_SKB_CB(skb)->end_seq,
1697						dup_sack,
1698						tcp_skb_pcount(skb),
1699						tcp_skb_timestamp_us(skb));
1700			tcp_rate_skb_delivered(sk, skb, state->rate);
1701			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1702				list_del_init(&skb->tcp_tsorted_anchor);
1703
1704			if (!before(TCP_SKB_CB(skb)->seq,
1705				    tcp_highest_sack_seq(tp)))
1706				tcp_advance_highest_sack(sk, skb);
1707		}
1708	}
1709	return skb;
1710}
1711
1712static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
 
 
1713{
1714	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1715	struct sk_buff *skb;
1716
1717	while (*p) {
1718		parent = *p;
1719		skb = rb_to_skb(parent);
1720		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1721			p = &parent->rb_left;
1722			continue;
1723		}
1724		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1725			p = &parent->rb_right;
1726			continue;
1727		}
1728		return skb;
1729	}
1730	return NULL;
1731}
1732
1733static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
 
1734					u32 skip_to_seq)
1735{
1736	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1737		return skb;
1738
1739	return tcp_sacktag_bsearch(sk, skip_to_seq);
1740}
1741
1742static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743						struct sock *sk,
1744						struct tcp_sack_block *next_dup,
1745						struct tcp_sacktag_state *state,
1746						u32 skip_to_seq)
1747{
1748	if (!next_dup)
1749		return skb;
1750
1751	if (before(next_dup->start_seq, skip_to_seq)) {
1752		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1753		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1754				       next_dup->start_seq, next_dup->end_seq,
1755				       1);
1756	}
1757
1758	return skb;
1759}
1760
1761static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762{
1763	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1764}
1765
1766static int
1767tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1768			u32 prior_snd_una, struct tcp_sacktag_state *state)
1769{
1770	struct tcp_sock *tp = tcp_sk(sk);
1771	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1772				    TCP_SKB_CB(ack_skb)->sacked);
1773	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1774	struct tcp_sack_block sp[TCP_NUM_SACKS];
1775	struct tcp_sack_block *cache;
1776	struct sk_buff *skb;
1777	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778	int used_sacks;
1779	bool found_dup_sack = false;
1780	int i, j;
1781	int first_sack_index;
1782
1783	state->flag = 0;
1784	state->reord = tp->snd_nxt;
1785
1786	if (!tp->sacked_out)
1787		tcp_highest_sack_reset(sk);
1788
1789	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1790					 num_sacks, prior_snd_una, state);
 
 
 
 
1791
1792	/* Eliminate too old ACKs, but take into
1793	 * account more or less fresh ones, they can
1794	 * contain valid SACK info.
1795	 */
1796	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1797		return 0;
1798
1799	if (!tp->packets_out)
1800		goto out;
1801
1802	used_sacks = 0;
1803	first_sack_index = 0;
1804	for (i = 0; i < num_sacks; i++) {
1805		bool dup_sack = !i && found_dup_sack;
1806
1807		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1808		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809
1810		if (!tcp_is_sackblock_valid(tp, dup_sack,
1811					    sp[used_sacks].start_seq,
1812					    sp[used_sacks].end_seq)) {
1813			int mib_idx;
1814
1815			if (dup_sack) {
1816				if (!tp->undo_marker)
1817					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818				else
1819					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820			} else {
1821				/* Don't count olds caused by ACK reordering */
1822				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1823				    !after(sp[used_sacks].end_seq, tp->snd_una))
1824					continue;
1825				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1826			}
1827
1828			NET_INC_STATS(sock_net(sk), mib_idx);
1829			if (i == 0)
1830				first_sack_index = -1;
1831			continue;
1832		}
1833
1834		/* Ignore very old stuff early */
1835		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836			if (i == 0)
1837				first_sack_index = -1;
1838			continue;
1839		}
1840
1841		used_sacks++;
1842	}
1843
1844	/* order SACK blocks to allow in order walk of the retrans queue */
1845	for (i = used_sacks - 1; i > 0; i--) {
1846		for (j = 0; j < i; j++) {
1847			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1848				swap(sp[j], sp[j + 1]);
1849
1850				/* Track where the first SACK block goes to */
1851				if (j == first_sack_index)
1852					first_sack_index = j + 1;
1853			}
1854		}
1855	}
1856
1857	state->mss_now = tcp_current_mss(sk);
1858	skb = NULL;
1859	i = 0;
1860
1861	if (!tp->sacked_out) {
1862		/* It's already past, so skip checking against it */
1863		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864	} else {
1865		cache = tp->recv_sack_cache;
1866		/* Skip empty blocks in at head of the cache */
1867		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1868		       !cache->end_seq)
1869			cache++;
1870	}
1871
1872	while (i < used_sacks) {
1873		u32 start_seq = sp[i].start_seq;
1874		u32 end_seq = sp[i].end_seq;
1875		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1876		struct tcp_sack_block *next_dup = NULL;
1877
1878		if (found_dup_sack && ((i + 1) == first_sack_index))
1879			next_dup = &sp[i + 1];
1880
1881		/* Skip too early cached blocks */
1882		while (tcp_sack_cache_ok(tp, cache) &&
1883		       !before(start_seq, cache->end_seq))
1884			cache++;
1885
1886		/* Can skip some work by looking recv_sack_cache? */
1887		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1888		    after(end_seq, cache->start_seq)) {
1889
1890			/* Head todo? */
1891			if (before(start_seq, cache->start_seq)) {
1892				skb = tcp_sacktag_skip(skb, sk, start_seq);
 
1893				skb = tcp_sacktag_walk(skb, sk, next_dup,
1894						       state,
1895						       start_seq,
1896						       cache->start_seq,
1897						       dup_sack);
1898			}
1899
1900			/* Rest of the block already fully processed? */
1901			if (!after(end_seq, cache->end_seq))
1902				goto advance_sp;
1903
1904			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1905						       state,
1906						       cache->end_seq);
1907
1908			/* ...tail remains todo... */
1909			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1910				/* ...but better entrypoint exists! */
1911				skb = tcp_highest_sack(sk);
1912				if (!skb)
1913					break;
1914				cache++;
1915				goto walk;
1916			}
1917
1918			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1919			/* Check overlap against next cached too (past this one already) */
1920			cache++;
1921			continue;
1922		}
1923
1924		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1925			skb = tcp_highest_sack(sk);
1926			if (!skb)
1927				break;
1928		}
1929		skb = tcp_sacktag_skip(skb, sk, start_seq);
1930
1931walk:
1932		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1933				       start_seq, end_seq, dup_sack);
1934
1935advance_sp:
1936		i++;
1937	}
1938
1939	/* Clear the head of the cache sack blocks so we can skip it next time */
1940	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1941		tp->recv_sack_cache[i].start_seq = 0;
1942		tp->recv_sack_cache[i].end_seq = 0;
1943	}
1944	for (j = 0; j < used_sacks; j++)
1945		tp->recv_sack_cache[i++] = sp[j];
1946
1947	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1948		tcp_check_sack_reordering(sk, state->reord, 0);
1949
1950	tcp_verify_left_out(tp);
1951out:
1952
1953#if FASTRETRANS_DEBUG > 0
1954	WARN_ON((int)tp->sacked_out < 0);
1955	WARN_ON((int)tp->lost_out < 0);
1956	WARN_ON((int)tp->retrans_out < 0);
1957	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1958#endif
1959	return state->flag;
1960}
1961
1962/* Limits sacked_out so that sum with lost_out isn't ever larger than
1963 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964 */
1965static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1966{
1967	u32 holes;
1968
1969	holes = max(tp->lost_out, 1U);
1970	holes = min(holes, tp->packets_out);
1971
1972	if ((tp->sacked_out + holes) > tp->packets_out) {
1973		tp->sacked_out = tp->packets_out - holes;
1974		return true;
1975	}
1976	return false;
1977}
1978
1979/* If we receive more dupacks than we expected counting segments
1980 * in assumption of absent reordering, interpret this as reordering.
1981 * The only another reason could be bug in receiver TCP.
1982 */
1983static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984{
1985	struct tcp_sock *tp = tcp_sk(sk);
1986
1987	if (!tcp_limit_reno_sacked(tp))
1988		return;
1989
1990	tp->reordering = min_t(u32, tp->packets_out + addend,
1991			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992	tp->reord_seen++;
1993	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1994}
1995
1996/* Emulate SACKs for SACKless connection: account for a new dupack. */
1997
1998static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1999{
2000	if (num_dupack) {
2001		struct tcp_sock *tp = tcp_sk(sk);
2002		u32 prior_sacked = tp->sacked_out;
2003		s32 delivered;
2004
2005		tp->sacked_out += num_dupack;
2006		tcp_check_reno_reordering(sk, 0);
2007		delivered = tp->sacked_out - prior_sacked;
2008		if (delivered > 0)
2009			tcp_count_delivered(tp, delivered, ece_ack);
2010		tcp_verify_left_out(tp);
2011	}
2012}
2013
2014/* Account for ACK, ACKing some data in Reno Recovery phase. */
2015
2016static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017{
2018	struct tcp_sock *tp = tcp_sk(sk);
2019
2020	if (acked > 0) {
2021		/* One ACK acked hole. The rest eat duplicate ACKs. */
2022		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023				    ece_ack);
2024		if (acked - 1 >= tp->sacked_out)
2025			tp->sacked_out = 0;
2026		else
2027			tp->sacked_out -= acked - 1;
2028	}
2029	tcp_check_reno_reordering(sk, acked);
2030	tcp_verify_left_out(tp);
2031}
2032
2033static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2034{
2035	tp->sacked_out = 0;
2036}
2037
2038void tcp_clear_retrans(struct tcp_sock *tp)
2039{
2040	tp->retrans_out = 0;
2041	tp->lost_out = 0;
2042	tp->undo_marker = 0;
2043	tp->undo_retrans = -1;
2044	tp->sacked_out = 0;
2045}
2046
2047static inline void tcp_init_undo(struct tcp_sock *tp)
2048{
2049	tp->undo_marker = tp->snd_una;
2050	/* Retransmission still in flight may cause DSACKs later. */
2051	tp->undo_retrans = tp->retrans_out ? : -1;
2052}
2053
2054static bool tcp_is_rack(const struct sock *sk)
2055{
2056	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2057}
2058
2059/* If we detect SACK reneging, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2062 */
2063static void tcp_timeout_mark_lost(struct sock *sk)
2064{
2065	struct tcp_sock *tp = tcp_sk(sk);
2066	struct sk_buff *skb, *head;
2067	bool is_reneg;			/* is receiver reneging on SACKs? */
2068
2069	head = tcp_rtx_queue_head(sk);
2070	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071	if (is_reneg) {
2072		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073		tp->sacked_out = 0;
2074		/* Mark SACK reneging until we recover from this loss event. */
2075		tp->is_sack_reneg = 1;
2076	} else if (tcp_is_reno(tp)) {
2077		tcp_reset_reno_sack(tp);
2078	}
2079
2080	skb = head;
2081	skb_rbtree_walk_from(skb) {
2082		if (is_reneg)
2083			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2084		else if (tcp_is_rack(sk) && skb != head &&
2085			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2086			continue; /* Don't mark recently sent ones lost yet */
2087		tcp_mark_skb_lost(sk, skb);
2088	}
2089	tcp_verify_left_out(tp);
2090	tcp_clear_all_retrans_hints(tp);
2091}
2092
2093/* Enter Loss state. */
2094void tcp_enter_loss(struct sock *sk)
2095{
2096	const struct inet_connection_sock *icsk = inet_csk(sk);
2097	struct tcp_sock *tp = tcp_sk(sk);
2098	struct net *net = sock_net(sk);
 
2099	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2100
2101	tcp_timeout_mark_lost(sk);
2102
2103	/* Reduce ssthresh if it has not yet been made inside this window. */
2104	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2105	    !after(tp->high_seq, tp->snd_una) ||
2106	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2107		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2108		tp->prior_cwnd = tp->snd_cwnd;
2109		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2110		tcp_ca_event(sk, CA_EVENT_LOSS);
2111		tcp_init_undo(tp);
2112	}
2113	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2114	tp->snd_cwnd_cnt   = 0;
2115	tp->snd_cwnd_stamp = tcp_jiffies32;
2116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117	/* Timeout in disordered state after receiving substantial DUPACKs
2118	 * suggests that the degree of reordering is over-estimated.
2119	 */
2120	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2121	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2122		tp->reordering = min_t(unsigned int, tp->reordering,
2123				       net->ipv4.sysctl_tcp_reordering);
2124	tcp_set_ca_state(sk, TCP_CA_Loss);
2125	tp->high_seq = tp->snd_nxt;
2126	tcp_ecn_queue_cwr(tp);
2127
2128	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2129	 * loss recovery is underway except recurring timeout(s) on
2130	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131	 */
2132	tp->frto = net->ipv4.sysctl_tcp_frto &&
2133		   (new_recovery || icsk->icsk_retransmits) &&
2134		   !inet_csk(sk)->icsk_mtup.probe_size;
2135}
2136
2137/* If ACK arrived pointing to a remembered SACK, it means that our
2138 * remembered SACKs do not reflect real state of receiver i.e.
2139 * receiver _host_ is heavily congested (or buggy).
2140 *
2141 * To avoid big spurious retransmission bursts due to transient SACK
2142 * scoreboard oddities that look like reneging, we give the receiver a
2143 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2144 * restore sanity to the SACK scoreboard. If the apparent reneging
2145 * persists until this RTO then we'll clear the SACK scoreboard.
2146 */
2147static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148{
2149	if (flag & FLAG_SACK_RENEGING) {
2150		struct tcp_sock *tp = tcp_sk(sk);
2151		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2152					  msecs_to_jiffies(10));
2153
2154		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2155					  delay, TCP_RTO_MAX);
2156		return true;
2157	}
2158	return false;
2159}
2160
2161/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2162 * counter when SACK is enabled (without SACK, sacked_out is used for
2163 * that purpose).
2164 *
2165 * With reordering, holes may still be in flight, so RFC3517 recovery
2166 * uses pure sacked_out (total number of SACKed segments) even though
2167 * it violates the RFC that uses duplicate ACKs, often these are equal
2168 * but when e.g. out-of-window ACKs or packet duplication occurs,
2169 * they differ. Since neither occurs due to loss, TCP should really
2170 * ignore them.
2171 */
2172static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173{
2174	return tp->sacked_out + 1;
2175}
2176
2177/* Linux NewReno/SACK/ECN state machine.
2178 * --------------------------------------
2179 *
2180 * "Open"	Normal state, no dubious events, fast path.
2181 * "Disorder"   In all the respects it is "Open",
2182 *		but requires a bit more attention. It is entered when
2183 *		we see some SACKs or dupacks. It is split of "Open"
2184 *		mainly to move some processing from fast path to slow one.
2185 * "CWR"	CWND was reduced due to some Congestion Notification event.
2186 *		It can be ECN, ICMP source quench, local device congestion.
2187 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2188 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2189 *
2190 * tcp_fastretrans_alert() is entered:
2191 * - each incoming ACK, if state is not "Open"
2192 * - when arrived ACK is unusual, namely:
2193 *	* SACK
2194 *	* Duplicate ACK.
2195 *	* ECN ECE.
2196 *
2197 * Counting packets in flight is pretty simple.
2198 *
2199 *	in_flight = packets_out - left_out + retrans_out
2200 *
2201 *	packets_out is SND.NXT-SND.UNA counted in packets.
2202 *
2203 *	retrans_out is number of retransmitted segments.
2204 *
2205 *	left_out is number of segments left network, but not ACKed yet.
2206 *
2207 *		left_out = sacked_out + lost_out
2208 *
2209 *     sacked_out: Packets, which arrived to receiver out of order
2210 *		   and hence not ACKed. With SACKs this number is simply
2211 *		   amount of SACKed data. Even without SACKs
2212 *		   it is easy to give pretty reliable estimate of this number,
2213 *		   counting duplicate ACKs.
2214 *
2215 *       lost_out: Packets lost by network. TCP has no explicit
2216 *		   "loss notification" feedback from network (for now).
2217 *		   It means that this number can be only _guessed_.
2218 *		   Actually, it is the heuristics to predict lossage that
2219 *		   distinguishes different algorithms.
2220 *
2221 *	F.e. after RTO, when all the queue is considered as lost,
2222 *	lost_out = packets_out and in_flight = retrans_out.
2223 *
2224 *		Essentially, we have now a few algorithms detecting
2225 *		lost packets.
2226 *
2227 *		If the receiver supports SACK:
2228 *
2229 *		RFC6675/3517: It is the conventional algorithm. A packet is
2230 *		considered lost if the number of higher sequence packets
2231 *		SACKed is greater than or equal the DUPACK thoreshold
2232 *		(reordering). This is implemented in tcp_mark_head_lost and
2233 *		tcp_update_scoreboard.
2234 *
2235 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2236 *		(2017-) that checks timing instead of counting DUPACKs.
2237 *		Essentially a packet is considered lost if it's not S/ACKed
2238 *		after RTT + reordering_window, where both metrics are
2239 *		dynamically measured and adjusted. This is implemented in
2240 *		tcp_rack_mark_lost.
2241 *
2242 *		If the receiver does not support SACK:
2243 *
2244 *		NewReno (RFC6582): in Recovery we assume that one segment
2245 *		is lost (classic Reno). While we are in Recovery and
2246 *		a partial ACK arrives, we assume that one more packet
2247 *		is lost (NewReno). This heuristics are the same in NewReno
2248 *		and SACK.
2249 *
2250 * Really tricky (and requiring careful tuning) part of algorithm
2251 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2252 * The first determines the moment _when_ we should reduce CWND and,
2253 * hence, slow down forward transmission. In fact, it determines the moment
2254 * when we decide that hole is caused by loss, rather than by a reorder.
2255 *
2256 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2257 * holes, caused by lost packets.
2258 *
2259 * And the most logically complicated part of algorithm is undo
2260 * heuristics. We detect false retransmits due to both too early
2261 * fast retransmit (reordering) and underestimated RTO, analyzing
2262 * timestamps and D-SACKs. When we detect that some segments were
2263 * retransmitted by mistake and CWND reduction was wrong, we undo
2264 * window reduction and abort recovery phase. This logic is hidden
2265 * inside several functions named tcp_try_undo_<something>.
2266 */
2267
2268/* This function decides, when we should leave Disordered state
2269 * and enter Recovery phase, reducing congestion window.
2270 *
2271 * Main question: may we further continue forward transmission
2272 * with the same cwnd?
2273 */
2274static bool tcp_time_to_recover(struct sock *sk, int flag)
2275{
2276	struct tcp_sock *tp = tcp_sk(sk);
2277
2278	/* Trick#1: The loss is proven. */
2279	if (tp->lost_out)
2280		return true;
2281
2282	/* Not-A-Trick#2 : Classic rule... */
2283	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2284		return true;
2285
2286	return false;
2287}
2288
2289/* Detect loss in event "A" above by marking head of queue up as lost.
2290 * For RFC3517 SACK, a segment is considered lost if it
 
2291 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2292 * the maximum SACKed segments to pass before reaching this limit.
2293 */
2294static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295{
2296	struct tcp_sock *tp = tcp_sk(sk);
2297	struct sk_buff *skb;
2298	int cnt;
 
2299	/* Use SACK to deduce losses of new sequences sent during recovery */
2300	const u32 loss_high = tp->snd_nxt;
2301
2302	WARN_ON(packets > tp->packets_out);
2303	skb = tp->lost_skb_hint;
2304	if (skb) {
2305		/* Head already handled? */
2306		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307			return;
2308		cnt = tp->lost_cnt_hint;
2309	} else {
2310		skb = tcp_rtx_queue_head(sk);
2311		cnt = 0;
2312	}
2313
2314	skb_rbtree_walk_from(skb) {
2315		/* TODO: do this better */
2316		/* this is not the most efficient way to do this... */
2317		tp->lost_skb_hint = skb;
2318		tp->lost_cnt_hint = cnt;
2319
2320		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2321			break;
2322
2323		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
 
 
2324			cnt += tcp_skb_pcount(skb);
2325
2326		if (cnt > packets)
2327			break;
 
 
 
2328
2329		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2330			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
 
 
 
2331
2332		if (mark_head)
2333			break;
2334	}
2335	tcp_verify_left_out(tp);
2336}
2337
2338/* Account newly detected lost packet(s) */
2339
2340static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341{
2342	struct tcp_sock *tp = tcp_sk(sk);
2343
2344	if (tcp_is_sack(tp)) {
 
 
2345		int sacked_upto = tp->sacked_out - tp->reordering;
2346		if (sacked_upto >= 0)
2347			tcp_mark_head_lost(sk, sacked_upto, 0);
2348		else if (fast_rexmit)
2349			tcp_mark_head_lost(sk, 1, 1);
2350	}
2351}
2352
2353static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354{
2355	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2356	       before(tp->rx_opt.rcv_tsecr, when);
2357}
2358
2359/* skb is spurious retransmitted if the returned timestamp echo
2360 * reply is prior to the skb transmission time
2361 */
2362static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2363				     const struct sk_buff *skb)
2364{
2365	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2366	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2367}
2368
2369/* Nothing was retransmitted or returned timestamp is less
2370 * than timestamp of the first retransmission.
2371 */
2372static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373{
2374	return tp->retrans_stamp &&
2375	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2376}
2377
2378/* Undo procedures. */
2379
2380/* We can clear retrans_stamp when there are no retransmissions in the
2381 * window. It would seem that it is trivially available for us in
2382 * tp->retrans_out, however, that kind of assumptions doesn't consider
2383 * what will happen if errors occur when sending retransmission for the
2384 * second time. ...It could the that such segment has only
2385 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2386 * the head skb is enough except for some reneging corner cases that
2387 * are not worth the effort.
2388 *
2389 * Main reason for all this complexity is the fact that connection dying
2390 * time now depends on the validity of the retrans_stamp, in particular,
2391 * that successive retransmissions of a segment must not advance
2392 * retrans_stamp under any conditions.
2393 */
2394static bool tcp_any_retrans_done(const struct sock *sk)
2395{
2396	const struct tcp_sock *tp = tcp_sk(sk);
2397	struct sk_buff *skb;
2398
2399	if (tp->retrans_out)
2400		return true;
2401
2402	skb = tcp_rtx_queue_head(sk);
2403	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2404		return true;
2405
2406	return false;
2407}
2408
2409static void DBGUNDO(struct sock *sk, const char *msg)
2410{
2411#if FASTRETRANS_DEBUG > 1
2412	struct tcp_sock *tp = tcp_sk(sk);
2413	struct inet_sock *inet = inet_sk(sk);
2414
2415	if (sk->sk_family == AF_INET) {
2416		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417			 msg,
2418			 &inet->inet_daddr, ntohs(inet->inet_dport),
2419			 tp->snd_cwnd, tcp_left_out(tp),
2420			 tp->snd_ssthresh, tp->prior_ssthresh,
2421			 tp->packets_out);
2422	}
2423#if IS_ENABLED(CONFIG_IPV6)
2424	else if (sk->sk_family == AF_INET6) {
2425		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426			 msg,
2427			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2428			 tp->snd_cwnd, tcp_left_out(tp),
2429			 tp->snd_ssthresh, tp->prior_ssthresh,
2430			 tp->packets_out);
2431	}
2432#endif
2433#endif
2434}
2435
2436static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437{
2438	struct tcp_sock *tp = tcp_sk(sk);
2439
2440	if (unmark_loss) {
2441		struct sk_buff *skb;
2442
2443		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2444			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2445		}
2446		tp->lost_out = 0;
2447		tcp_clear_all_retrans_hints(tp);
2448	}
2449
2450	if (tp->prior_ssthresh) {
2451		const struct inet_connection_sock *icsk = inet_csk(sk);
2452
2453		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454
2455		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2456			tp->snd_ssthresh = tp->prior_ssthresh;
2457			tcp_ecn_withdraw_cwr(tp);
2458		}
2459	}
2460	tp->snd_cwnd_stamp = tcp_jiffies32;
2461	tp->undo_marker = 0;
2462	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2463}
2464
2465static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466{
2467	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2468}
2469
2470/* People celebrate: "We love our President!" */
2471static bool tcp_try_undo_recovery(struct sock *sk)
2472{
2473	struct tcp_sock *tp = tcp_sk(sk);
2474
2475	if (tcp_may_undo(tp)) {
2476		int mib_idx;
2477
2478		/* Happy end! We did not retransmit anything
2479		 * or our original transmission succeeded.
2480		 */
2481		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2482		tcp_undo_cwnd_reduction(sk, false);
2483		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2484			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485		else
2486			mib_idx = LINUX_MIB_TCPFULLUNDO;
2487
2488		NET_INC_STATS(sock_net(sk), mib_idx);
2489	} else if (tp->rack.reo_wnd_persist) {
2490		tp->rack.reo_wnd_persist--;
2491	}
2492	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2493		/* Hold old state until something *above* high_seq
2494		 * is ACKed. For Reno it is MUST to prevent false
2495		 * fast retransmits (RFC2582). SACK TCP is safe. */
2496		if (!tcp_any_retrans_done(sk))
2497			tp->retrans_stamp = 0;
2498		return true;
2499	}
2500	tcp_set_ca_state(sk, TCP_CA_Open);
2501	tp->is_sack_reneg = 0;
2502	return false;
2503}
2504
2505/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2506static bool tcp_try_undo_dsack(struct sock *sk)
2507{
2508	struct tcp_sock *tp = tcp_sk(sk);
2509
2510	if (tp->undo_marker && !tp->undo_retrans) {
2511		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2512					       tp->rack.reo_wnd_persist + 1);
2513		DBGUNDO(sk, "D-SACK");
2514		tcp_undo_cwnd_reduction(sk, false);
2515		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2516		return true;
2517	}
2518	return false;
2519}
2520
2521/* Undo during loss recovery after partial ACK or using F-RTO. */
2522static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523{
2524	struct tcp_sock *tp = tcp_sk(sk);
2525
2526	if (frto_undo || tcp_may_undo(tp)) {
2527		tcp_undo_cwnd_reduction(sk, true);
2528
2529		DBGUNDO(sk, "partial loss");
2530		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531		if (frto_undo)
2532			NET_INC_STATS(sock_net(sk),
2533					LINUX_MIB_TCPSPURIOUSRTOS);
2534		inet_csk(sk)->icsk_retransmits = 0;
2535		if (frto_undo || tcp_is_sack(tp)) {
2536			tcp_set_ca_state(sk, TCP_CA_Open);
2537			tp->is_sack_reneg = 0;
2538		}
2539		return true;
2540	}
2541	return false;
2542}
2543
2544/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2545 * It computes the number of packets to send (sndcnt) based on packets newly
2546 * delivered:
2547 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2548 *	cwnd reductions across a full RTT.
2549 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2550 *      But when SND_UNA is acked without further losses,
2551 *      slow starts cwnd up to ssthresh to speed up the recovery.
2552 */
2553static void tcp_init_cwnd_reduction(struct sock *sk)
2554{
2555	struct tcp_sock *tp = tcp_sk(sk);
2556
2557	tp->high_seq = tp->snd_nxt;
2558	tp->tlp_high_seq = 0;
2559	tp->snd_cwnd_cnt = 0;
2560	tp->prior_cwnd = tp->snd_cwnd;
2561	tp->prr_delivered = 0;
2562	tp->prr_out = 0;
2563	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2564	tcp_ecn_queue_cwr(tp);
2565}
2566
2567void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2568{
2569	struct tcp_sock *tp = tcp_sk(sk);
2570	int sndcnt = 0;
2571	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572
2573	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2574		return;
2575
2576	tp->prr_delivered += newly_acked_sacked;
2577	if (delta < 0) {
2578		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579			       tp->prior_cwnd - 1;
2580		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2581	} else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) {
 
2582		sndcnt = min_t(int, delta,
2583			       max_t(int, tp->prr_delivered - tp->prr_out,
2584				     newly_acked_sacked) + 1);
2585	} else {
2586		sndcnt = min(delta, newly_acked_sacked);
2587	}
2588	/* Force a fast retransmit upon entering fast recovery */
2589	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2591}
2592
2593static inline void tcp_end_cwnd_reduction(struct sock *sk)
2594{
2595	struct tcp_sock *tp = tcp_sk(sk);
2596
2597	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598		return;
2599
2600	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603		tp->snd_cwnd = tp->snd_ssthresh;
2604		tp->snd_cwnd_stamp = tcp_jiffies32;
2605	}
2606	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2607}
2608
2609/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610void tcp_enter_cwr(struct sock *sk)
2611{
2612	struct tcp_sock *tp = tcp_sk(sk);
2613
2614	tp->prior_ssthresh = 0;
2615	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616		tp->undo_marker = 0;
2617		tcp_init_cwnd_reduction(sk);
2618		tcp_set_ca_state(sk, TCP_CA_CWR);
2619	}
2620}
2621EXPORT_SYMBOL(tcp_enter_cwr);
2622
2623static void tcp_try_keep_open(struct sock *sk)
2624{
2625	struct tcp_sock *tp = tcp_sk(sk);
2626	int state = TCP_CA_Open;
2627
2628	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629		state = TCP_CA_Disorder;
2630
2631	if (inet_csk(sk)->icsk_ca_state != state) {
2632		tcp_set_ca_state(sk, state);
2633		tp->high_seq = tp->snd_nxt;
2634	}
2635}
2636
2637static void tcp_try_to_open(struct sock *sk, int flag)
2638{
2639	struct tcp_sock *tp = tcp_sk(sk);
2640
2641	tcp_verify_left_out(tp);
2642
2643	if (!tcp_any_retrans_done(sk))
2644		tp->retrans_stamp = 0;
2645
2646	if (flag & FLAG_ECE)
2647		tcp_enter_cwr(sk);
2648
2649	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650		tcp_try_keep_open(sk);
2651	}
2652}
2653
2654static void tcp_mtup_probe_failed(struct sock *sk)
2655{
2656	struct inet_connection_sock *icsk = inet_csk(sk);
2657
2658	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659	icsk->icsk_mtup.probe_size = 0;
2660	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2661}
2662
2663static void tcp_mtup_probe_success(struct sock *sk)
2664{
2665	struct tcp_sock *tp = tcp_sk(sk);
2666	struct inet_connection_sock *icsk = inet_csk(sk);
2667
2668	/* FIXME: breaks with very large cwnd */
2669	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670	tp->snd_cwnd = tp->snd_cwnd *
2671		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2672		       icsk->icsk_mtup.probe_size;
2673	tp->snd_cwnd_cnt = 0;
2674	tp->snd_cwnd_stamp = tcp_jiffies32;
2675	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2676
2677	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678	icsk->icsk_mtup.probe_size = 0;
2679	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2681}
2682
2683/* Do a simple retransmit without using the backoff mechanisms in
2684 * tcp_timer. This is used for path mtu discovery.
2685 * The socket is already locked here.
2686 */
2687void tcp_simple_retransmit(struct sock *sk)
2688{
2689	const struct inet_connection_sock *icsk = inet_csk(sk);
2690	struct tcp_sock *tp = tcp_sk(sk);
2691	struct sk_buff *skb;
2692	int mss;
2693
2694	/* A fastopen SYN request is stored as two separate packets within
2695	 * the retransmit queue, this is done by tcp_send_syn_data().
2696	 * As a result simply checking the MSS of the frames in the queue
2697	 * will not work for the SYN packet.
2698	 *
2699	 * Us being here is an indication of a path MTU issue so we can
2700	 * assume that the fastopen SYN was lost and just mark all the
2701	 * frames in the retransmit queue as lost. We will use an MSS of
2702	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2703	 */
2704	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2705		mss = -1;
2706	else
2707		mss = tcp_current_mss(sk);
2708
2709	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2710		if (tcp_skb_seglen(skb) > mss)
2711			tcp_mark_skb_lost(sk, skb);
 
 
 
 
 
 
2712	}
2713
2714	tcp_clear_retrans_hints_partial(tp);
2715
2716	if (!tp->lost_out)
2717		return;
2718
2719	if (tcp_is_reno(tp))
2720		tcp_limit_reno_sacked(tp);
2721
2722	tcp_verify_left_out(tp);
2723
2724	/* Don't muck with the congestion window here.
2725	 * Reason is that we do not increase amount of _data_
2726	 * in network, but units changed and effective
2727	 * cwnd/ssthresh really reduced now.
2728	 */
2729	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2730		tp->high_seq = tp->snd_nxt;
2731		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2732		tp->prior_ssthresh = 0;
2733		tp->undo_marker = 0;
2734		tcp_set_ca_state(sk, TCP_CA_Loss);
2735	}
2736	tcp_xmit_retransmit_queue(sk);
2737}
2738EXPORT_SYMBOL(tcp_simple_retransmit);
2739
2740void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2741{
2742	struct tcp_sock *tp = tcp_sk(sk);
2743	int mib_idx;
2744
2745	if (tcp_is_reno(tp))
2746		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2747	else
2748		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2749
2750	NET_INC_STATS(sock_net(sk), mib_idx);
2751
2752	tp->prior_ssthresh = 0;
2753	tcp_init_undo(tp);
2754
2755	if (!tcp_in_cwnd_reduction(sk)) {
2756		if (!ece_ack)
2757			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2758		tcp_init_cwnd_reduction(sk);
2759	}
2760	tcp_set_ca_state(sk, TCP_CA_Recovery);
2761}
2762
2763/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2764 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2765 */
2766static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2767			     int *rexmit)
2768{
2769	struct tcp_sock *tp = tcp_sk(sk);
2770	bool recovered = !before(tp->snd_una, tp->high_seq);
2771
2772	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2773	    tcp_try_undo_loss(sk, false))
2774		return;
2775
2776	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2777		/* Step 3.b. A timeout is spurious if not all data are
2778		 * lost, i.e., never-retransmitted data are (s)acked.
2779		 */
2780		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2781		    tcp_try_undo_loss(sk, true))
2782			return;
2783
2784		if (after(tp->snd_nxt, tp->high_seq)) {
2785			if (flag & FLAG_DATA_SACKED || num_dupack)
2786				tp->frto = 0; /* Step 3.a. loss was real */
2787		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2788			tp->high_seq = tp->snd_nxt;
2789			/* Step 2.b. Try send new data (but deferred until cwnd
2790			 * is updated in tcp_ack()). Otherwise fall back to
2791			 * the conventional recovery.
2792			 */
2793			if (!tcp_write_queue_empty(sk) &&
2794			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2795				*rexmit = REXMIT_NEW;
2796				return;
2797			}
2798			tp->frto = 0;
2799		}
2800	}
2801
2802	if (recovered) {
2803		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2804		tcp_try_undo_recovery(sk);
2805		return;
2806	}
2807	if (tcp_is_reno(tp)) {
2808		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2809		 * delivered. Lower inflight to clock out (re)tranmissions.
2810		 */
2811		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2812			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2813		else if (flag & FLAG_SND_UNA_ADVANCED)
2814			tcp_reset_reno_sack(tp);
2815	}
2816	*rexmit = REXMIT_LOST;
2817}
2818
2819static bool tcp_force_fast_retransmit(struct sock *sk)
2820{
2821	struct tcp_sock *tp = tcp_sk(sk);
2822
2823	return after(tcp_highest_sack_seq(tp),
2824		     tp->snd_una + tp->reordering * tp->mss_cache);
2825}
2826
2827/* Undo during fast recovery after partial ACK. */
2828static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2829				 bool *do_lost)
2830{
2831	struct tcp_sock *tp = tcp_sk(sk);
2832
2833	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2834		/* Plain luck! Hole if filled with delayed
2835		 * packet, rather than with a retransmit. Check reordering.
2836		 */
2837		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2838
2839		/* We are getting evidence that the reordering degree is higher
2840		 * than we realized. If there are no retransmits out then we
2841		 * can undo. Otherwise we clock out new packets but do not
2842		 * mark more packets lost or retransmit more.
2843		 */
2844		if (tp->retrans_out)
2845			return true;
2846
2847		if (!tcp_any_retrans_done(sk))
2848			tp->retrans_stamp = 0;
2849
2850		DBGUNDO(sk, "partial recovery");
2851		tcp_undo_cwnd_reduction(sk, true);
2852		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2853		tcp_try_keep_open(sk);
2854	} else {
2855		/* Partial ACK arrived. Force fast retransmit. */
2856		*do_lost = tcp_force_fast_retransmit(sk);
2857	}
2858	return false;
2859}
2860
2861static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2862{
2863	struct tcp_sock *tp = tcp_sk(sk);
2864
2865	if (tcp_rtx_queue_empty(sk))
2866		return;
2867
2868	if (unlikely(tcp_is_reno(tp))) {
2869		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2870	} else if (tcp_is_rack(sk)) {
2871		u32 prior_retrans = tp->retrans_out;
2872
2873		if (tcp_rack_mark_lost(sk))
2874			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2875		if (prior_retrans > tp->retrans_out)
2876			*ack_flag |= FLAG_LOST_RETRANS;
2877	}
2878}
2879
 
 
 
 
 
 
 
 
2880/* Process an event, which can update packets-in-flight not trivially.
2881 * Main goal of this function is to calculate new estimate for left_out,
2882 * taking into account both packets sitting in receiver's buffer and
2883 * packets lost by network.
2884 *
2885 * Besides that it updates the congestion state when packet loss or ECN
2886 * is detected. But it does not reduce the cwnd, it is done by the
2887 * congestion control later.
2888 *
2889 * It does _not_ decide what to send, it is made in function
2890 * tcp_xmit_retransmit_queue().
2891 */
2892static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2893				  int num_dupack, int *ack_flag, int *rexmit)
2894{
2895	struct inet_connection_sock *icsk = inet_csk(sk);
2896	struct tcp_sock *tp = tcp_sk(sk);
2897	int fast_rexmit = 0, flag = *ack_flag;
2898	bool ece_ack = flag & FLAG_ECE;
2899	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2900				      tcp_force_fast_retransmit(sk));
2901
2902	if (!tp->packets_out && tp->sacked_out)
2903		tp->sacked_out = 0;
2904
2905	/* Now state machine starts.
2906	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2907	if (ece_ack)
2908		tp->prior_ssthresh = 0;
2909
2910	/* B. In all the states check for reneging SACKs. */
2911	if (tcp_check_sack_reneging(sk, flag))
2912		return;
2913
2914	/* C. Check consistency of the current state. */
2915	tcp_verify_left_out(tp);
2916
2917	/* D. Check state exit conditions. State can be terminated
2918	 *    when high_seq is ACKed. */
2919	if (icsk->icsk_ca_state == TCP_CA_Open) {
2920		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2921		tp->retrans_stamp = 0;
2922	} else if (!before(tp->snd_una, tp->high_seq)) {
2923		switch (icsk->icsk_ca_state) {
2924		case TCP_CA_CWR:
2925			/* CWR is to be held something *above* high_seq
2926			 * is ACKed for CWR bit to reach receiver. */
2927			if (tp->snd_una != tp->high_seq) {
2928				tcp_end_cwnd_reduction(sk);
2929				tcp_set_ca_state(sk, TCP_CA_Open);
2930			}
2931			break;
2932
2933		case TCP_CA_Recovery:
2934			if (tcp_is_reno(tp))
2935				tcp_reset_reno_sack(tp);
2936			if (tcp_try_undo_recovery(sk))
2937				return;
2938			tcp_end_cwnd_reduction(sk);
2939			break;
2940		}
2941	}
2942
2943	/* E. Process state. */
2944	switch (icsk->icsk_ca_state) {
2945	case TCP_CA_Recovery:
2946		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2947			if (tcp_is_reno(tp))
2948				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2949		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2950			return;
2951
2952		if (tcp_try_undo_dsack(sk))
2953			tcp_try_keep_open(sk);
2954
2955		tcp_identify_packet_loss(sk, ack_flag);
2956		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2957			if (!tcp_time_to_recover(sk, flag))
2958				return;
2959			/* Undo reverts the recovery state. If loss is evident,
2960			 * starts a new recovery (e.g. reordering then loss);
2961			 */
2962			tcp_enter_recovery(sk, ece_ack);
2963		}
 
 
 
 
 
2964		break;
2965	case TCP_CA_Loss:
2966		tcp_process_loss(sk, flag, num_dupack, rexmit);
2967		tcp_identify_packet_loss(sk, ack_flag);
2968		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2969		      (*ack_flag & FLAG_LOST_RETRANS)))
2970			return;
2971		/* Change state if cwnd is undone or retransmits are lost */
2972		fallthrough;
2973	default:
2974		if (tcp_is_reno(tp)) {
2975			if (flag & FLAG_SND_UNA_ADVANCED)
2976				tcp_reset_reno_sack(tp);
2977			tcp_add_reno_sack(sk, num_dupack, ece_ack);
 
2978		}
2979
2980		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2981			tcp_try_undo_dsack(sk);
2982
2983		tcp_identify_packet_loss(sk, ack_flag);
2984		if (!tcp_time_to_recover(sk, flag)) {
2985			tcp_try_to_open(sk, flag);
2986			return;
2987		}
2988
2989		/* MTU probe failure: don't reduce cwnd */
2990		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2991		    icsk->icsk_mtup.probe_size &&
2992		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2993			tcp_mtup_probe_failed(sk);
2994			/* Restores the reduction we did in tcp_mtup_probe() */
2995			tp->snd_cwnd++;
2996			tcp_simple_retransmit(sk);
2997			return;
2998		}
2999
3000		/* Otherwise enter Recovery state */
3001		tcp_enter_recovery(sk, ece_ack);
3002		fast_rexmit = 1;
3003	}
3004
3005	if (!tcp_is_rack(sk) && do_lost)
3006		tcp_update_scoreboard(sk, fast_rexmit);
3007	*rexmit = REXMIT_LOST;
3008}
3009
3010static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3011{
3012	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
3013	struct tcp_sock *tp = tcp_sk(sk);
3014
3015	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3016		/* If the remote keeps returning delayed ACKs, eventually
3017		 * the min filter would pick it up and overestimate the
3018		 * prop. delay when it expires. Skip suspected delayed ACKs.
3019		 */
3020		return;
3021	}
3022	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3023			   rtt_us ? : jiffies_to_usecs(1));
3024}
3025
3026static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3027			       long seq_rtt_us, long sack_rtt_us,
3028			       long ca_rtt_us, struct rate_sample *rs)
3029{
3030	const struct tcp_sock *tp = tcp_sk(sk);
3031
3032	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3033	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3034	 * Karn's algorithm forbids taking RTT if some retransmitted data
3035	 * is acked (RFC6298).
3036	 */
3037	if (seq_rtt_us < 0)
3038		seq_rtt_us = sack_rtt_us;
3039
3040	/* RTTM Rule: A TSecr value received in a segment is used to
3041	 * update the averaged RTT measurement only if the segment
3042	 * acknowledges some new data, i.e., only if it advances the
3043	 * left edge of the send window.
3044	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3045	 */
3046	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3047	    flag & FLAG_ACKED) {
3048		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 
3049
3050		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3051			if (!delta)
3052				delta = 1;
3053			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3054			ca_rtt_us = seq_rtt_us;
3055		}
3056	}
3057	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3058	if (seq_rtt_us < 0)
3059		return false;
3060
3061	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3062	 * always taken together with ACK, SACK, or TS-opts. Any negative
3063	 * values will be skipped with the seq_rtt_us < 0 check above.
3064	 */
3065	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3066	tcp_rtt_estimator(sk, seq_rtt_us);
3067	tcp_set_rto(sk);
3068
3069	/* RFC6298: only reset backoff on valid RTT measurement. */
3070	inet_csk(sk)->icsk_backoff = 0;
3071	return true;
3072}
3073
3074/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3075void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3076{
3077	struct rate_sample rs;
3078	long rtt_us = -1L;
3079
3080	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3081		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3082
3083	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3084}
3085
3086
3087static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3088{
3089	const struct inet_connection_sock *icsk = inet_csk(sk);
3090
3091	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3092	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3093}
3094
3095/* Restart timer after forward progress on connection.
3096 * RFC2988 recommends to restart timer to now+rto.
3097 */
3098void tcp_rearm_rto(struct sock *sk)
3099{
3100	const struct inet_connection_sock *icsk = inet_csk(sk);
3101	struct tcp_sock *tp = tcp_sk(sk);
3102
3103	/* If the retrans timer is currently being used by Fast Open
3104	 * for SYN-ACK retrans purpose, stay put.
3105	 */
3106	if (rcu_access_pointer(tp->fastopen_rsk))
3107		return;
3108
3109	if (!tp->packets_out) {
3110		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3111	} else {
3112		u32 rto = inet_csk(sk)->icsk_rto;
3113		/* Offset the time elapsed after installing regular RTO */
3114		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3115		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3116			s64 delta_us = tcp_rto_delta_us(sk);
3117			/* delta_us may not be positive if the socket is locked
3118			 * when the retrans timer fires and is rescheduled.
3119			 */
3120			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3121		}
3122		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3123				     TCP_RTO_MAX);
3124	}
3125}
3126
3127/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3128static void tcp_set_xmit_timer(struct sock *sk)
3129{
3130	if (!tcp_schedule_loss_probe(sk, true))
3131		tcp_rearm_rto(sk);
3132}
3133
3134/* If we get here, the whole TSO packet has not been acked. */
3135static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3136{
3137	struct tcp_sock *tp = tcp_sk(sk);
3138	u32 packets_acked;
3139
3140	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3141
3142	packets_acked = tcp_skb_pcount(skb);
3143	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3144		return 0;
3145	packets_acked -= tcp_skb_pcount(skb);
3146
3147	if (packets_acked) {
3148		BUG_ON(tcp_skb_pcount(skb) == 0);
3149		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3150	}
3151
3152	return packets_acked;
3153}
3154
3155static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3156			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3157{
3158	const struct skb_shared_info *shinfo;
3159
3160	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3161	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3162		return;
3163
3164	shinfo = skb_shinfo(skb);
3165	if (!before(shinfo->tskey, prior_snd_una) &&
3166	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3167		tcp_skb_tsorted_save(skb) {
3168			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3169		} tcp_skb_tsorted_restore(skb);
3170	}
3171}
3172
3173/* Remove acknowledged frames from the retransmission queue. If our packet
3174 * is before the ack sequence we can discard it as it's confirmed to have
3175 * arrived at the other end.
3176 */
3177static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3178			       u32 prior_fack, u32 prior_snd_una,
3179			       struct tcp_sacktag_state *sack, bool ece_ack)
3180{
3181	const struct inet_connection_sock *icsk = inet_csk(sk);
3182	u64 first_ackt, last_ackt;
3183	struct tcp_sock *tp = tcp_sk(sk);
3184	u32 prior_sacked = tp->sacked_out;
3185	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3186	struct sk_buff *skb, *next;
3187	bool fully_acked = true;
3188	long sack_rtt_us = -1L;
3189	long seq_rtt_us = -1L;
3190	long ca_rtt_us = -1L;
3191	u32 pkts_acked = 0;
3192	u32 last_in_flight = 0;
3193	bool rtt_update;
3194	int flag = 0;
3195
3196	first_ackt = 0;
3197
3198	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3199		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3200		const u32 start_seq = scb->seq;
3201		u8 sacked = scb->sacked;
3202		u32 acked_pcount;
3203
 
 
3204		/* Determine how many packets and what bytes were acked, tso and else */
3205		if (after(scb->end_seq, tp->snd_una)) {
3206			if (tcp_skb_pcount(skb) == 1 ||
3207			    !after(tp->snd_una, scb->seq))
3208				break;
3209
3210			acked_pcount = tcp_tso_acked(sk, skb);
3211			if (!acked_pcount)
3212				break;
3213			fully_acked = false;
3214		} else {
3215			acked_pcount = tcp_skb_pcount(skb);
3216		}
3217
3218		if (unlikely(sacked & TCPCB_RETRANS)) {
3219			if (sacked & TCPCB_SACKED_RETRANS)
3220				tp->retrans_out -= acked_pcount;
3221			flag |= FLAG_RETRANS_DATA_ACKED;
3222		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3223			last_ackt = tcp_skb_timestamp_us(skb);
3224			WARN_ON_ONCE(last_ackt == 0);
3225			if (!first_ackt)
3226				first_ackt = last_ackt;
3227
3228			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3229			if (before(start_seq, reord))
3230				reord = start_seq;
3231			if (!after(scb->end_seq, tp->high_seq))
3232				flag |= FLAG_ORIG_SACK_ACKED;
3233		}
3234
3235		if (sacked & TCPCB_SACKED_ACKED) {
3236			tp->sacked_out -= acked_pcount;
3237		} else if (tcp_is_sack(tp)) {
3238			tcp_count_delivered(tp, acked_pcount, ece_ack);
3239			if (!tcp_skb_spurious_retrans(tp, skb))
3240				tcp_rack_advance(tp, sacked, scb->end_seq,
3241						 tcp_skb_timestamp_us(skb));
3242		}
3243		if (sacked & TCPCB_LOST)
3244			tp->lost_out -= acked_pcount;
3245
3246		tp->packets_out -= acked_pcount;
3247		pkts_acked += acked_pcount;
3248		tcp_rate_skb_delivered(sk, skb, sack->rate);
3249
3250		/* Initial outgoing SYN's get put onto the write_queue
3251		 * just like anything else we transmit.  It is not
3252		 * true data, and if we misinform our callers that
3253		 * this ACK acks real data, we will erroneously exit
3254		 * connection startup slow start one packet too
3255		 * quickly.  This is severely frowned upon behavior.
3256		 */
3257		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3258			flag |= FLAG_DATA_ACKED;
3259		} else {
3260			flag |= FLAG_SYN_ACKED;
3261			tp->retrans_stamp = 0;
3262		}
3263
3264		if (!fully_acked)
3265			break;
3266
3267		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3268
3269		next = skb_rb_next(skb);
3270		if (unlikely(skb == tp->retransmit_skb_hint))
3271			tp->retransmit_skb_hint = NULL;
3272		if (unlikely(skb == tp->lost_skb_hint))
3273			tp->lost_skb_hint = NULL;
3274		tcp_highest_sack_replace(sk, skb, next);
3275		tcp_rtx_queue_unlink_and_free(skb, sk);
3276	}
3277
3278	if (!skb)
3279		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3280
3281	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3282		tp->snd_up = tp->snd_una;
3283
3284	if (skb) {
3285		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3286		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3287			flag |= FLAG_SACK_RENEGING;
3288	}
3289
3290	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3291		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3292		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3293
3294		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3295		    last_in_flight && !prior_sacked && fully_acked &&
3296		    sack->rate->prior_delivered + 1 == tp->delivered &&
3297		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3298			/* Conservatively mark a delayed ACK. It's typically
3299			 * from a lone runt packet over the round trip to
3300			 * a receiver w/o out-of-order or CE events.
3301			 */
3302			flag |= FLAG_ACK_MAYBE_DELAYED;
3303		}
3304	}
3305	if (sack->first_sackt) {
3306		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3307		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3308	}
3309	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3310					ca_rtt_us, sack->rate);
3311
3312	if (flag & FLAG_ACKED) {
3313		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3314		if (unlikely(icsk->icsk_mtup.probe_size &&
3315			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3316			tcp_mtup_probe_success(sk);
3317		}
3318
3319		if (tcp_is_reno(tp)) {
3320			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3321
3322			/* If any of the cumulatively ACKed segments was
3323			 * retransmitted, non-SACK case cannot confirm that
3324			 * progress was due to original transmission due to
3325			 * lack of TCPCB_SACKED_ACKED bits even if some of
3326			 * the packets may have been never retransmitted.
3327			 */
3328			if (flag & FLAG_RETRANS_DATA_ACKED)
3329				flag &= ~FLAG_ORIG_SACK_ACKED;
3330		} else {
3331			int delta;
3332
3333			/* Non-retransmitted hole got filled? That's reordering */
3334			if (before(reord, prior_fack))
3335				tcp_check_sack_reordering(sk, reord, 0);
3336
3337			delta = prior_sacked - tp->sacked_out;
3338			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339		}
3340	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3341		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3342						    tcp_skb_timestamp_us(skb))) {
3343		/* Do not re-arm RTO if the sack RTT is measured from data sent
3344		 * after when the head was last (re)transmitted. Otherwise the
3345		 * timeout may continue to extend in loss recovery.
3346		 */
3347		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3348	}
3349
3350	if (icsk->icsk_ca_ops->pkts_acked) {
3351		struct ack_sample sample = { .pkts_acked = pkts_acked,
3352					     .rtt_us = sack->rate->rtt_us,
3353					     .in_flight = last_in_flight };
3354
3355		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3356	}
3357
3358#if FASTRETRANS_DEBUG > 0
3359	WARN_ON((int)tp->sacked_out < 0);
3360	WARN_ON((int)tp->lost_out < 0);
3361	WARN_ON((int)tp->retrans_out < 0);
3362	if (!tp->packets_out && tcp_is_sack(tp)) {
3363		icsk = inet_csk(sk);
3364		if (tp->lost_out) {
3365			pr_debug("Leak l=%u %d\n",
3366				 tp->lost_out, icsk->icsk_ca_state);
3367			tp->lost_out = 0;
3368		}
3369		if (tp->sacked_out) {
3370			pr_debug("Leak s=%u %d\n",
3371				 tp->sacked_out, icsk->icsk_ca_state);
3372			tp->sacked_out = 0;
3373		}
3374		if (tp->retrans_out) {
3375			pr_debug("Leak r=%u %d\n",
3376				 tp->retrans_out, icsk->icsk_ca_state);
3377			tp->retrans_out = 0;
3378		}
3379	}
3380#endif
3381	return flag;
3382}
3383
3384static void tcp_ack_probe(struct sock *sk)
3385{
3386	struct inet_connection_sock *icsk = inet_csk(sk);
3387	struct sk_buff *head = tcp_send_head(sk);
3388	const struct tcp_sock *tp = tcp_sk(sk);
3389
3390	/* Was it a usable window open? */
3391	if (!head)
3392		return;
3393	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3394		icsk->icsk_backoff = 0;
3395		icsk->icsk_probes_tstamp = 0;
3396		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397		/* Socket must be waked up by subsequent tcp_data_snd_check().
3398		 * This function is not for random using!
3399		 */
3400	} else {
3401		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3402
3403		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3404		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3405	}
3406}
3407
3408static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3409{
3410	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3411		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3412}
3413
3414/* Decide wheather to run the increase function of congestion control. */
3415static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3416{
3417	/* If reordering is high then always grow cwnd whenever data is
3418	 * delivered regardless of its ordering. Otherwise stay conservative
3419	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3420	 * new SACK or ECE mark may first advance cwnd here and later reduce
3421	 * cwnd in tcp_fastretrans_alert() based on more states.
3422	 */
3423	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3424		return flag & FLAG_FORWARD_PROGRESS;
3425
3426	return flag & FLAG_DATA_ACKED;
3427}
3428
3429/* The "ultimate" congestion control function that aims to replace the rigid
3430 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3431 * It's called toward the end of processing an ACK with precise rate
3432 * information. All transmission or retransmission are delayed afterwards.
3433 */
3434static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3435			     int flag, const struct rate_sample *rs)
3436{
3437	const struct inet_connection_sock *icsk = inet_csk(sk);
3438
3439	if (icsk->icsk_ca_ops->cong_control) {
3440		icsk->icsk_ca_ops->cong_control(sk, rs);
3441		return;
3442	}
3443
3444	if (tcp_in_cwnd_reduction(sk)) {
3445		/* Reduce cwnd if state mandates */
3446		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3447	} else if (tcp_may_raise_cwnd(sk, flag)) {
3448		/* Advance cwnd if state allows */
3449		tcp_cong_avoid(sk, ack, acked_sacked);
3450	}
3451	tcp_update_pacing_rate(sk);
3452}
3453
3454/* Check that window update is acceptable.
3455 * The function assumes that snd_una<=ack<=snd_next.
3456 */
3457static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3458					const u32 ack, const u32 ack_seq,
3459					const u32 nwin)
3460{
3461	return	after(ack, tp->snd_una) ||
3462		after(ack_seq, tp->snd_wl1) ||
3463		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3464}
3465
3466/* If we update tp->snd_una, also update tp->bytes_acked */
3467static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3468{
3469	u32 delta = ack - tp->snd_una;
3470
3471	sock_owned_by_me((struct sock *)tp);
3472	tp->bytes_acked += delta;
3473	tp->snd_una = ack;
3474}
3475
3476/* If we update tp->rcv_nxt, also update tp->bytes_received */
3477static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3478{
3479	u32 delta = seq - tp->rcv_nxt;
3480
3481	sock_owned_by_me((struct sock *)tp);
3482	tp->bytes_received += delta;
3483	WRITE_ONCE(tp->rcv_nxt, seq);
3484}
3485
3486/* Update our send window.
3487 *
3488 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3489 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3490 */
3491static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3492				 u32 ack_seq)
3493{
3494	struct tcp_sock *tp = tcp_sk(sk);
3495	int flag = 0;
3496	u32 nwin = ntohs(tcp_hdr(skb)->window);
3497
3498	if (likely(!tcp_hdr(skb)->syn))
3499		nwin <<= tp->rx_opt.snd_wscale;
3500
3501	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3502		flag |= FLAG_WIN_UPDATE;
3503		tcp_update_wl(tp, ack_seq);
3504
3505		if (tp->snd_wnd != nwin) {
3506			tp->snd_wnd = nwin;
3507
3508			/* Note, it is the only place, where
3509			 * fast path is recovered for sending TCP.
3510			 */
3511			tp->pred_flags = 0;
3512			tcp_fast_path_check(sk);
3513
3514			if (!tcp_write_queue_empty(sk))
3515				tcp_slow_start_after_idle_check(sk);
3516
3517			if (nwin > tp->max_window) {
3518				tp->max_window = nwin;
3519				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3520			}
3521		}
3522	}
3523
3524	tcp_snd_una_update(tp, ack);
3525
3526	return flag;
3527}
3528
3529static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3530				   u32 *last_oow_ack_time)
3531{
3532	if (*last_oow_ack_time) {
3533		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3534
3535		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3536			NET_INC_STATS(net, mib_idx);
3537			return true;	/* rate-limited: don't send yet! */
3538		}
3539	}
3540
3541	*last_oow_ack_time = tcp_jiffies32;
3542
3543	return false;	/* not rate-limited: go ahead, send dupack now! */
3544}
3545
3546/* Return true if we're currently rate-limiting out-of-window ACKs and
3547 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3548 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3549 * attacks that send repeated SYNs or ACKs for the same connection. To
3550 * do this, we do not send a duplicate SYNACK or ACK if the remote
3551 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3552 */
3553bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3554			  int mib_idx, u32 *last_oow_ack_time)
3555{
3556	/* Data packets without SYNs are not likely part of an ACK loop. */
3557	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3558	    !tcp_hdr(skb)->syn)
3559		return false;
3560
3561	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3562}
3563
3564/* RFC 5961 7 [ACK Throttling] */
3565static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3566{
3567	/* unprotected vars, we dont care of overwrites */
3568	static u32 challenge_timestamp;
3569	static unsigned int challenge_count;
3570	struct tcp_sock *tp = tcp_sk(sk);
3571	struct net *net = sock_net(sk);
3572	u32 count, now;
3573
3574	/* First check our per-socket dupack rate limit. */
3575	if (__tcp_oow_rate_limited(net,
3576				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3577				   &tp->last_oow_ack_time))
3578		return;
3579
3580	/* Then check host-wide RFC 5961 rate limit. */
3581	now = jiffies / HZ;
3582	if (now != challenge_timestamp) {
3583		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3584		u32 half = (ack_limit + 1) >> 1;
3585
3586		challenge_timestamp = now;
3587		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3588	}
3589	count = READ_ONCE(challenge_count);
3590	if (count > 0) {
3591		WRITE_ONCE(challenge_count, count - 1);
3592		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3593		tcp_send_ack(sk);
3594	}
3595}
3596
3597static void tcp_store_ts_recent(struct tcp_sock *tp)
3598{
3599	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3600	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3601}
3602
3603static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3604{
3605	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3606		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3607		 * extra check below makes sure this can only happen
3608		 * for pure ACK frames.  -DaveM
3609		 *
3610		 * Not only, also it occurs for expired timestamps.
3611		 */
3612
3613		if (tcp_paws_check(&tp->rx_opt, 0))
3614			tcp_store_ts_recent(tp);
3615	}
3616}
3617
3618/* This routine deals with acks during a TLP episode and ends an episode by
3619 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
 
 
3620 */
3621static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3622{
3623	struct tcp_sock *tp = tcp_sk(sk);
3624
3625	if (before(ack, tp->tlp_high_seq))
3626		return;
3627
3628	if (!tp->tlp_retrans) {
3629		/* TLP of new data has been acknowledged */
3630		tp->tlp_high_seq = 0;
3631	} else if (flag & FLAG_DSACKING_ACK) {
3632		/* This DSACK means original and TLP probe arrived; no loss */
3633		tp->tlp_high_seq = 0;
3634	} else if (after(ack, tp->tlp_high_seq)) {
3635		/* ACK advances: there was a loss, so reduce cwnd. Reset
3636		 * tlp_high_seq in tcp_init_cwnd_reduction()
3637		 */
3638		tcp_init_cwnd_reduction(sk);
3639		tcp_set_ca_state(sk, TCP_CA_CWR);
3640		tcp_end_cwnd_reduction(sk);
3641		tcp_try_keep_open(sk);
3642		NET_INC_STATS(sock_net(sk),
3643				LINUX_MIB_TCPLOSSPROBERECOVERY);
3644	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3645			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3646		/* Pure dupack: original and TLP probe arrived; no loss */
3647		tp->tlp_high_seq = 0;
3648	}
3649}
3650
3651static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3652{
3653	const struct inet_connection_sock *icsk = inet_csk(sk);
3654
3655	if (icsk->icsk_ca_ops->in_ack_event)
3656		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3657}
3658
3659/* Congestion control has updated the cwnd already. So if we're in
3660 * loss recovery then now we do any new sends (for FRTO) or
3661 * retransmits (for CA_Loss or CA_recovery) that make sense.
3662 */
3663static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3664{
3665	struct tcp_sock *tp = tcp_sk(sk);
3666
3667	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3668		return;
3669
3670	if (unlikely(rexmit == REXMIT_NEW)) {
3671		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3672					  TCP_NAGLE_OFF);
3673		if (after(tp->snd_nxt, tp->high_seq))
3674			return;
3675		tp->frto = 0;
3676	}
3677	tcp_xmit_retransmit_queue(sk);
3678}
3679
3680/* Returns the number of packets newly acked or sacked by the current ACK */
3681static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3682{
3683	const struct net *net = sock_net(sk);
3684	struct tcp_sock *tp = tcp_sk(sk);
3685	u32 delivered;
3686
3687	delivered = tp->delivered - prior_delivered;
3688	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3689	if (flag & FLAG_ECE)
3690		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3691
3692	return delivered;
3693}
3694
3695/* This routine deals with incoming acks, but not outgoing ones. */
3696static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3697{
3698	struct inet_connection_sock *icsk = inet_csk(sk);
3699	struct tcp_sock *tp = tcp_sk(sk);
3700	struct tcp_sacktag_state sack_state;
3701	struct rate_sample rs = { .prior_delivered = 0 };
3702	u32 prior_snd_una = tp->snd_una;
3703	bool is_sack_reneg = tp->is_sack_reneg;
3704	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3705	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3706	int num_dupack = 0;
3707	int prior_packets = tp->packets_out;
3708	u32 delivered = tp->delivered;
3709	u32 lost = tp->lost;
3710	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3711	u32 prior_fack;
3712
3713	sack_state.first_sackt = 0;
3714	sack_state.rate = &rs;
3715	sack_state.sack_delivered = 0;
3716
3717	/* We very likely will need to access rtx queue. */
3718	prefetch(sk->tcp_rtx_queue.rb_node);
3719
3720	/* If the ack is older than previous acks
3721	 * then we can probably ignore it.
3722	 */
3723	if (before(ack, prior_snd_una)) {
3724		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3725		if (before(ack, prior_snd_una - tp->max_window)) {
3726			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3727				tcp_send_challenge_ack(sk, skb);
3728			return -1;
3729		}
3730		goto old_ack;
3731	}
3732
3733	/* If the ack includes data we haven't sent yet, discard
3734	 * this segment (RFC793 Section 3.9).
3735	 */
3736	if (after(ack, tp->snd_nxt))
3737		return -1;
3738
3739	if (after(ack, prior_snd_una)) {
3740		flag |= FLAG_SND_UNA_ADVANCED;
3741		icsk->icsk_retransmits = 0;
3742
3743#if IS_ENABLED(CONFIG_TLS_DEVICE)
3744		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3745			if (icsk->icsk_clean_acked)
3746				icsk->icsk_clean_acked(sk, ack);
3747#endif
3748	}
3749
3750	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3751	rs.prior_in_flight = tcp_packets_in_flight(tp);
3752
3753	/* ts_recent update must be made after we are sure that the packet
3754	 * is in window.
3755	 */
3756	if (flag & FLAG_UPDATE_TS_RECENT)
3757		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3758
3759	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3760	    FLAG_SND_UNA_ADVANCED) {
3761		/* Window is constant, pure forward advance.
3762		 * No more checks are required.
3763		 * Note, we use the fact that SND.UNA>=SND.WL2.
3764		 */
3765		tcp_update_wl(tp, ack_seq);
3766		tcp_snd_una_update(tp, ack);
3767		flag |= FLAG_WIN_UPDATE;
3768
3769		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3770
3771		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3772	} else {
3773		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3774
3775		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3776			flag |= FLAG_DATA;
3777		else
3778			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3779
3780		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3781
3782		if (TCP_SKB_CB(skb)->sacked)
3783			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3784							&sack_state);
3785
3786		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3787			flag |= FLAG_ECE;
3788			ack_ev_flags |= CA_ACK_ECE;
3789		}
3790
3791		if (sack_state.sack_delivered)
3792			tcp_count_delivered(tp, sack_state.sack_delivered,
3793					    flag & FLAG_ECE);
3794
3795		if (flag & FLAG_WIN_UPDATE)
3796			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3797
3798		tcp_in_ack_event(sk, ack_ev_flags);
3799	}
3800
3801	/* This is a deviation from RFC3168 since it states that:
3802	 * "When the TCP data sender is ready to set the CWR bit after reducing
3803	 * the congestion window, it SHOULD set the CWR bit only on the first
3804	 * new data packet that it transmits."
3805	 * We accept CWR on pure ACKs to be more robust
3806	 * with widely-deployed TCP implementations that do this.
3807	 */
3808	tcp_ecn_accept_cwr(sk, skb);
3809
3810	/* We passed data and got it acked, remove any soft error
3811	 * log. Something worked...
3812	 */
3813	sk->sk_err_soft = 0;
3814	icsk->icsk_probes_out = 0;
3815	tp->rcv_tstamp = tcp_jiffies32;
3816	if (!prior_packets)
3817		goto no_queue;
3818
3819	/* See if we can take anything off of the retransmit queue. */
3820	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3821				    &sack_state, flag & FLAG_ECE);
3822
3823	tcp_rack_update_reo_wnd(sk, &rs);
3824
3825	if (tp->tlp_high_seq)
3826		tcp_process_tlp_ack(sk, ack, flag);
 
 
 
3827
3828	if (tcp_ack_is_dubious(sk, flag)) {
3829		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3830			num_dupack = 1;
3831			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3832			if (!(flag & FLAG_DATA))
3833				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3834		}
3835		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3836				      &rexmit);
3837	}
3838
3839	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3840	if (flag & FLAG_SET_XMIT_TIMER)
3841		tcp_set_xmit_timer(sk);
3842
3843	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3844		sk_dst_confirm(sk);
3845
3846	delivered = tcp_newly_delivered(sk, delivered, flag);
3847	lost = tp->lost - lost;			/* freshly marked lost */
3848	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3849	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3850	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3851	tcp_xmit_recovery(sk, rexmit);
3852	return 1;
3853
3854no_queue:
3855	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3856	if (flag & FLAG_DSACKING_ACK) {
3857		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3858				      &rexmit);
3859		tcp_newly_delivered(sk, delivered, flag);
3860	}
3861	/* If this ack opens up a zero window, clear backoff.  It was
3862	 * being used to time the probes, and is probably far higher than
3863	 * it needs to be for normal retransmission.
3864	 */
3865	tcp_ack_probe(sk);
3866
3867	if (tp->tlp_high_seq)
3868		tcp_process_tlp_ack(sk, ack, flag);
3869	return 1;
3870
 
 
 
 
3871old_ack:
3872	/* If data was SACKed, tag it and see if we should send more data.
3873	 * If data was DSACKed, see if we can undo a cwnd reduction.
3874	 */
3875	if (TCP_SKB_CB(skb)->sacked) {
3876		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3877						&sack_state);
3878		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3879				      &rexmit);
3880		tcp_newly_delivered(sk, delivered, flag);
3881		tcp_xmit_recovery(sk, rexmit);
3882	}
3883
 
3884	return 0;
3885}
3886
3887static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3888				      bool syn, struct tcp_fastopen_cookie *foc,
3889				      bool exp_opt)
3890{
3891	/* Valid only in SYN or SYN-ACK with an even length.  */
3892	if (!foc || !syn || len < 0 || (len & 1))
3893		return;
3894
3895	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3896	    len <= TCP_FASTOPEN_COOKIE_MAX)
3897		memcpy(foc->val, cookie, len);
3898	else if (len != 0)
3899		len = -1;
3900	foc->len = len;
3901	foc->exp = exp_opt;
3902}
3903
3904static bool smc_parse_options(const struct tcphdr *th,
3905			      struct tcp_options_received *opt_rx,
3906			      const unsigned char *ptr,
3907			      int opsize)
3908{
3909#if IS_ENABLED(CONFIG_SMC)
3910	if (static_branch_unlikely(&tcp_have_smc)) {
3911		if (th->syn && !(opsize & 1) &&
3912		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3913		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3914			opt_rx->smc_ok = 1;
3915			return true;
3916		}
3917	}
3918#endif
3919	return false;
3920}
3921
3922/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3923 * value on success.
3924 */
3925static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3926{
3927	const unsigned char *ptr = (const unsigned char *)(th + 1);
3928	int length = (th->doff * 4) - sizeof(struct tcphdr);
3929	u16 mss = 0;
3930
3931	while (length > 0) {
3932		int opcode = *ptr++;
3933		int opsize;
3934
3935		switch (opcode) {
3936		case TCPOPT_EOL:
3937			return mss;
3938		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3939			length--;
3940			continue;
3941		default:
3942			if (length < 2)
3943				return mss;
3944			opsize = *ptr++;
3945			if (opsize < 2) /* "silly options" */
3946				return mss;
3947			if (opsize > length)
3948				return mss;	/* fail on partial options */
3949			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3950				u16 in_mss = get_unaligned_be16(ptr);
3951
3952				if (in_mss) {
3953					if (user_mss && user_mss < in_mss)
3954						in_mss = user_mss;
3955					mss = in_mss;
3956				}
3957			}
3958			ptr += opsize - 2;
3959			length -= opsize;
3960		}
3961	}
3962	return mss;
3963}
3964
3965/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3966 * But, this can also be called on packets in the established flow when
3967 * the fast version below fails.
3968 */
3969void tcp_parse_options(const struct net *net,
3970		       const struct sk_buff *skb,
3971		       struct tcp_options_received *opt_rx, int estab,
3972		       struct tcp_fastopen_cookie *foc)
3973{
3974	const unsigned char *ptr;
3975	const struct tcphdr *th = tcp_hdr(skb);
3976	int length = (th->doff * 4) - sizeof(struct tcphdr);
3977
3978	ptr = (const unsigned char *)(th + 1);
3979	opt_rx->saw_tstamp = 0;
3980	opt_rx->saw_unknown = 0;
3981
3982	while (length > 0) {
3983		int opcode = *ptr++;
3984		int opsize;
3985
3986		switch (opcode) {
3987		case TCPOPT_EOL:
3988			return;
3989		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3990			length--;
3991			continue;
3992		default:
3993			if (length < 2)
3994				return;
3995			opsize = *ptr++;
3996			if (opsize < 2) /* "silly options" */
3997				return;
3998			if (opsize > length)
3999				return;	/* don't parse partial options */
4000			switch (opcode) {
4001			case TCPOPT_MSS:
4002				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4003					u16 in_mss = get_unaligned_be16(ptr);
4004					if (in_mss) {
4005						if (opt_rx->user_mss &&
4006						    opt_rx->user_mss < in_mss)
4007							in_mss = opt_rx->user_mss;
4008						opt_rx->mss_clamp = in_mss;
4009					}
4010				}
4011				break;
4012			case TCPOPT_WINDOW:
4013				if (opsize == TCPOLEN_WINDOW && th->syn &&
4014				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
4015					__u8 snd_wscale = *(__u8 *)ptr;
4016					opt_rx->wscale_ok = 1;
4017					if (snd_wscale > TCP_MAX_WSCALE) {
4018						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4019								     __func__,
4020								     snd_wscale,
4021								     TCP_MAX_WSCALE);
4022						snd_wscale = TCP_MAX_WSCALE;
4023					}
4024					opt_rx->snd_wscale = snd_wscale;
4025				}
4026				break;
4027			case TCPOPT_TIMESTAMP:
4028				if ((opsize == TCPOLEN_TIMESTAMP) &&
4029				    ((estab && opt_rx->tstamp_ok) ||
4030				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4031					opt_rx->saw_tstamp = 1;
4032					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4033					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4034				}
4035				break;
4036			case TCPOPT_SACK_PERM:
4037				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4038				    !estab && net->ipv4.sysctl_tcp_sack) {
4039					opt_rx->sack_ok = TCP_SACK_SEEN;
4040					tcp_sack_reset(opt_rx);
4041				}
4042				break;
4043
4044			case TCPOPT_SACK:
4045				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4046				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4047				   opt_rx->sack_ok) {
4048					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4049				}
4050				break;
4051#ifdef CONFIG_TCP_MD5SIG
4052			case TCPOPT_MD5SIG:
4053				/*
4054				 * The MD5 Hash has already been
4055				 * checked (see tcp_v{4,6}_do_rcv()).
4056				 */
4057				break;
4058#endif
4059			case TCPOPT_FASTOPEN:
4060				tcp_parse_fastopen_option(
4061					opsize - TCPOLEN_FASTOPEN_BASE,
4062					ptr, th->syn, foc, false);
4063				break;
4064
4065			case TCPOPT_EXP:
4066				/* Fast Open option shares code 254 using a
4067				 * 16 bits magic number.
4068				 */
4069				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4070				    get_unaligned_be16(ptr) ==
4071				    TCPOPT_FASTOPEN_MAGIC) {
4072					tcp_parse_fastopen_option(opsize -
4073						TCPOLEN_EXP_FASTOPEN_BASE,
4074						ptr + 2, th->syn, foc, true);
4075					break;
4076				}
4077
4078				if (smc_parse_options(th, opt_rx, ptr, opsize))
4079					break;
4080
4081				opt_rx->saw_unknown = 1;
4082				break;
4083
4084			default:
4085				opt_rx->saw_unknown = 1;
4086			}
4087			ptr += opsize-2;
4088			length -= opsize;
4089		}
4090	}
4091}
4092EXPORT_SYMBOL(tcp_parse_options);
4093
4094static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4095{
4096	const __be32 *ptr = (const __be32 *)(th + 1);
4097
4098	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4099			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4100		tp->rx_opt.saw_tstamp = 1;
4101		++ptr;
4102		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4103		++ptr;
4104		if (*ptr)
4105			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4106		else
4107			tp->rx_opt.rcv_tsecr = 0;
4108		return true;
4109	}
4110	return false;
4111}
4112
4113/* Fast parse options. This hopes to only see timestamps.
4114 * If it is wrong it falls back on tcp_parse_options().
4115 */
4116static bool tcp_fast_parse_options(const struct net *net,
4117				   const struct sk_buff *skb,
4118				   const struct tcphdr *th, struct tcp_sock *tp)
4119{
4120	/* In the spirit of fast parsing, compare doff directly to constant
4121	 * values.  Because equality is used, short doff can be ignored here.
4122	 */
4123	if (th->doff == (sizeof(*th) / 4)) {
4124		tp->rx_opt.saw_tstamp = 0;
4125		return false;
4126	} else if (tp->rx_opt.tstamp_ok &&
4127		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4128		if (tcp_parse_aligned_timestamp(tp, th))
4129			return true;
4130	}
4131
4132	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4133	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4134		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4135
4136	return true;
4137}
4138
4139#ifdef CONFIG_TCP_MD5SIG
4140/*
4141 * Parse MD5 Signature option
4142 */
4143const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4144{
4145	int length = (th->doff << 2) - sizeof(*th);
4146	const u8 *ptr = (const u8 *)(th + 1);
4147
4148	/* If not enough data remaining, we can short cut */
4149	while (length >= TCPOLEN_MD5SIG) {
4150		int opcode = *ptr++;
4151		int opsize;
4152
4153		switch (opcode) {
4154		case TCPOPT_EOL:
4155			return NULL;
4156		case TCPOPT_NOP:
4157			length--;
4158			continue;
4159		default:
4160			opsize = *ptr++;
4161			if (opsize < 2 || opsize > length)
4162				return NULL;
4163			if (opcode == TCPOPT_MD5SIG)
4164				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4165		}
4166		ptr += opsize - 2;
4167		length -= opsize;
4168	}
4169	return NULL;
4170}
4171EXPORT_SYMBOL(tcp_parse_md5sig_option);
4172#endif
4173
4174/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4175 *
4176 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4177 * it can pass through stack. So, the following predicate verifies that
4178 * this segment is not used for anything but congestion avoidance or
4179 * fast retransmit. Moreover, we even are able to eliminate most of such
4180 * second order effects, if we apply some small "replay" window (~RTO)
4181 * to timestamp space.
4182 *
4183 * All these measures still do not guarantee that we reject wrapped ACKs
4184 * on networks with high bandwidth, when sequence space is recycled fastly,
4185 * but it guarantees that such events will be very rare and do not affect
4186 * connection seriously. This doesn't look nice, but alas, PAWS is really
4187 * buggy extension.
4188 *
4189 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4190 * states that events when retransmit arrives after original data are rare.
4191 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4192 * the biggest problem on large power networks even with minor reordering.
4193 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4194 * up to bandwidth of 18Gigabit/sec. 8) ]
4195 */
4196
4197static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4198{
4199	const struct tcp_sock *tp = tcp_sk(sk);
4200	const struct tcphdr *th = tcp_hdr(skb);
4201	u32 seq = TCP_SKB_CB(skb)->seq;
4202	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4203
4204	return (/* 1. Pure ACK with correct sequence number. */
4205		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4206
4207		/* 2. ... and duplicate ACK. */
4208		ack == tp->snd_una &&
4209
4210		/* 3. ... and does not update window. */
4211		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4212
4213		/* 4. ... and sits in replay window. */
4214		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4215}
4216
4217static inline bool tcp_paws_discard(const struct sock *sk,
4218				   const struct sk_buff *skb)
4219{
4220	const struct tcp_sock *tp = tcp_sk(sk);
4221
4222	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4223	       !tcp_disordered_ack(sk, skb);
4224}
4225
4226/* Check segment sequence number for validity.
4227 *
4228 * Segment controls are considered valid, if the segment
4229 * fits to the window after truncation to the window. Acceptability
4230 * of data (and SYN, FIN, of course) is checked separately.
4231 * See tcp_data_queue(), for example.
4232 *
4233 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4234 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4235 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4236 * (borrowed from freebsd)
4237 */
4238
4239static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4240{
4241	return	!before(end_seq, tp->rcv_wup) &&
4242		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4243}
4244
4245/* When we get a reset we do this. */
4246void tcp_reset(struct sock *sk, struct sk_buff *skb)
4247{
4248	trace_tcp_receive_reset(sk);
4249
4250	/* mptcp can't tell us to ignore reset pkts,
4251	 * so just ignore the return value of mptcp_incoming_options().
4252	 */
4253	if (sk_is_mptcp(sk))
4254		mptcp_incoming_options(sk, skb);
4255
4256	/* We want the right error as BSD sees it (and indeed as we do). */
4257	switch (sk->sk_state) {
4258	case TCP_SYN_SENT:
4259		sk->sk_err = ECONNREFUSED;
4260		break;
4261	case TCP_CLOSE_WAIT:
4262		sk->sk_err = EPIPE;
4263		break;
4264	case TCP_CLOSE:
4265		return;
4266	default:
4267		sk->sk_err = ECONNRESET;
4268	}
4269	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4270	smp_wmb();
4271
4272	tcp_write_queue_purge(sk);
4273	tcp_done(sk);
4274
4275	if (!sock_flag(sk, SOCK_DEAD))
4276		sk_error_report(sk);
4277}
4278
4279/*
4280 * 	Process the FIN bit. This now behaves as it is supposed to work
4281 *	and the FIN takes effect when it is validly part of sequence
4282 *	space. Not before when we get holes.
4283 *
4284 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4285 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4286 *	TIME-WAIT)
4287 *
4288 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4289 *	close and we go into CLOSING (and later onto TIME-WAIT)
4290 *
4291 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4292 */
4293void tcp_fin(struct sock *sk)
4294{
4295	struct tcp_sock *tp = tcp_sk(sk);
4296
4297	inet_csk_schedule_ack(sk);
4298
4299	sk->sk_shutdown |= RCV_SHUTDOWN;
4300	sock_set_flag(sk, SOCK_DONE);
4301
4302	switch (sk->sk_state) {
4303	case TCP_SYN_RECV:
4304	case TCP_ESTABLISHED:
4305		/* Move to CLOSE_WAIT */
4306		tcp_set_state(sk, TCP_CLOSE_WAIT);
4307		inet_csk_enter_pingpong_mode(sk);
4308		break;
4309
4310	case TCP_CLOSE_WAIT:
4311	case TCP_CLOSING:
4312		/* Received a retransmission of the FIN, do
4313		 * nothing.
4314		 */
4315		break;
4316	case TCP_LAST_ACK:
4317		/* RFC793: Remain in the LAST-ACK state. */
4318		break;
4319
4320	case TCP_FIN_WAIT1:
4321		/* This case occurs when a simultaneous close
4322		 * happens, we must ack the received FIN and
4323		 * enter the CLOSING state.
4324		 */
4325		tcp_send_ack(sk);
4326		tcp_set_state(sk, TCP_CLOSING);
4327		break;
4328	case TCP_FIN_WAIT2:
4329		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4330		tcp_send_ack(sk);
4331		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4332		break;
4333	default:
4334		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4335		 * cases we should never reach this piece of code.
4336		 */
4337		pr_err("%s: Impossible, sk->sk_state=%d\n",
4338		       __func__, sk->sk_state);
4339		break;
4340	}
4341
4342	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4343	 * Probably, we should reset in this case. For now drop them.
4344	 */
4345	skb_rbtree_purge(&tp->out_of_order_queue);
4346	if (tcp_is_sack(tp))
4347		tcp_sack_reset(&tp->rx_opt);
4348	sk_mem_reclaim(sk);
4349
4350	if (!sock_flag(sk, SOCK_DEAD)) {
4351		sk->sk_state_change(sk);
4352
4353		/* Do not send POLL_HUP for half duplex close. */
4354		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4355		    sk->sk_state == TCP_CLOSE)
4356			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4357		else
4358			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4359	}
4360}
4361
4362static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4363				  u32 end_seq)
4364{
4365	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4366		if (before(seq, sp->start_seq))
4367			sp->start_seq = seq;
4368		if (after(end_seq, sp->end_seq))
4369			sp->end_seq = end_seq;
4370		return true;
4371	}
4372	return false;
4373}
4374
4375static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4376{
4377	struct tcp_sock *tp = tcp_sk(sk);
4378
4379	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4380		int mib_idx;
4381
4382		if (before(seq, tp->rcv_nxt))
4383			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4384		else
4385			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4386
4387		NET_INC_STATS(sock_net(sk), mib_idx);
4388
4389		tp->rx_opt.dsack = 1;
4390		tp->duplicate_sack[0].start_seq = seq;
4391		tp->duplicate_sack[0].end_seq = end_seq;
4392	}
4393}
4394
4395static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4396{
4397	struct tcp_sock *tp = tcp_sk(sk);
4398
4399	if (!tp->rx_opt.dsack)
4400		tcp_dsack_set(sk, seq, end_seq);
4401	else
4402		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4403}
4404
4405static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4406{
4407	/* When the ACK path fails or drops most ACKs, the sender would
4408	 * timeout and spuriously retransmit the same segment repeatedly.
4409	 * The receiver remembers and reflects via DSACKs. Leverage the
4410	 * DSACK state and change the txhash to re-route speculatively.
4411	 */
4412	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4413	    sk_rethink_txhash(sk))
4414		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4415}
4416
4417static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4418{
4419	struct tcp_sock *tp = tcp_sk(sk);
4420
4421	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4422	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4423		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4424		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4425
4426		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4427			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4428
4429			tcp_rcv_spurious_retrans(sk, skb);
4430			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4431				end_seq = tp->rcv_nxt;
4432			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4433		}
4434	}
4435
4436	tcp_send_ack(sk);
4437}
4438
4439/* These routines update the SACK block as out-of-order packets arrive or
4440 * in-order packets close up the sequence space.
4441 */
4442static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4443{
4444	int this_sack;
4445	struct tcp_sack_block *sp = &tp->selective_acks[0];
4446	struct tcp_sack_block *swalk = sp + 1;
4447
4448	/* See if the recent change to the first SACK eats into
4449	 * or hits the sequence space of other SACK blocks, if so coalesce.
4450	 */
4451	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4452		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4453			int i;
4454
4455			/* Zap SWALK, by moving every further SACK up by one slot.
4456			 * Decrease num_sacks.
4457			 */
4458			tp->rx_opt.num_sacks--;
4459			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4460				sp[i] = sp[i + 1];
4461			continue;
4462		}
4463		this_sack++;
4464		swalk++;
4465	}
4466}
4467
4468static void tcp_sack_compress_send_ack(struct sock *sk)
4469{
4470	struct tcp_sock *tp = tcp_sk(sk);
4471
4472	if (!tp->compressed_ack)
4473		return;
4474
4475	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4476		__sock_put(sk);
4477
4478	/* Since we have to send one ack finally,
4479	 * substract one from tp->compressed_ack to keep
4480	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4481	 */
4482	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4483		      tp->compressed_ack - 1);
4484
4485	tp->compressed_ack = 0;
4486	tcp_send_ack(sk);
4487}
4488
4489/* Reasonable amount of sack blocks included in TCP SACK option
4490 * The max is 4, but this becomes 3 if TCP timestamps are there.
4491 * Given that SACK packets might be lost, be conservative and use 2.
4492 */
4493#define TCP_SACK_BLOCKS_EXPECTED 2
4494
4495static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4496{
4497	struct tcp_sock *tp = tcp_sk(sk);
4498	struct tcp_sack_block *sp = &tp->selective_acks[0];
4499	int cur_sacks = tp->rx_opt.num_sacks;
4500	int this_sack;
4501
4502	if (!cur_sacks)
4503		goto new_sack;
4504
4505	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4506		if (tcp_sack_extend(sp, seq, end_seq)) {
4507			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4508				tcp_sack_compress_send_ack(sk);
4509			/* Rotate this_sack to the first one. */
4510			for (; this_sack > 0; this_sack--, sp--)
4511				swap(*sp, *(sp - 1));
4512			if (cur_sacks > 1)
4513				tcp_sack_maybe_coalesce(tp);
4514			return;
4515		}
4516	}
4517
4518	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4519		tcp_sack_compress_send_ack(sk);
4520
4521	/* Could not find an adjacent existing SACK, build a new one,
4522	 * put it at the front, and shift everyone else down.  We
4523	 * always know there is at least one SACK present already here.
4524	 *
4525	 * If the sack array is full, forget about the last one.
4526	 */
4527	if (this_sack >= TCP_NUM_SACKS) {
4528		this_sack--;
4529		tp->rx_opt.num_sacks--;
4530		sp--;
4531	}
4532	for (; this_sack > 0; this_sack--, sp--)
4533		*sp = *(sp - 1);
4534
4535new_sack:
4536	/* Build the new head SACK, and we're done. */
4537	sp->start_seq = seq;
4538	sp->end_seq = end_seq;
4539	tp->rx_opt.num_sacks++;
4540}
4541
4542/* RCV.NXT advances, some SACKs should be eaten. */
4543
4544static void tcp_sack_remove(struct tcp_sock *tp)
4545{
4546	struct tcp_sack_block *sp = &tp->selective_acks[0];
4547	int num_sacks = tp->rx_opt.num_sacks;
4548	int this_sack;
4549
4550	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4551	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4552		tp->rx_opt.num_sacks = 0;
4553		return;
4554	}
4555
4556	for (this_sack = 0; this_sack < num_sacks;) {
4557		/* Check if the start of the sack is covered by RCV.NXT. */
4558		if (!before(tp->rcv_nxt, sp->start_seq)) {
4559			int i;
4560
4561			/* RCV.NXT must cover all the block! */
4562			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4563
4564			/* Zap this SACK, by moving forward any other SACKS. */
4565			for (i = this_sack+1; i < num_sacks; i++)
4566				tp->selective_acks[i-1] = tp->selective_acks[i];
4567			num_sacks--;
4568			continue;
4569		}
4570		this_sack++;
4571		sp++;
4572	}
4573	tp->rx_opt.num_sacks = num_sacks;
4574}
4575
4576/**
4577 * tcp_try_coalesce - try to merge skb to prior one
4578 * @sk: socket
 
4579 * @to: prior buffer
4580 * @from: buffer to add in queue
4581 * @fragstolen: pointer to boolean
4582 *
4583 * Before queueing skb @from after @to, try to merge them
4584 * to reduce overall memory use and queue lengths, if cost is small.
4585 * Packets in ofo or receive queues can stay a long time.
4586 * Better try to coalesce them right now to avoid future collapses.
4587 * Returns true if caller should free @from instead of queueing it
4588 */
4589static bool tcp_try_coalesce(struct sock *sk,
4590			     struct sk_buff *to,
4591			     struct sk_buff *from,
4592			     bool *fragstolen)
4593{
4594	int delta;
4595
4596	*fragstolen = false;
4597
4598	/* Its possible this segment overlaps with prior segment in queue */
4599	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4600		return false;
4601
4602	if (!mptcp_skb_can_collapse(to, from))
4603		return false;
4604
4605#ifdef CONFIG_TLS_DEVICE
4606	if (from->decrypted != to->decrypted)
4607		return false;
4608#endif
4609
4610	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4611		return false;
4612
4613	atomic_add(delta, &sk->sk_rmem_alloc);
4614	sk_mem_charge(sk, delta);
4615	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4616	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4617	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4618	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4619
4620	if (TCP_SKB_CB(from)->has_rxtstamp) {
4621		TCP_SKB_CB(to)->has_rxtstamp = true;
4622		to->tstamp = from->tstamp;
4623		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4624	}
4625
4626	return true;
4627}
4628
4629static bool tcp_ooo_try_coalesce(struct sock *sk,
4630			     struct sk_buff *to,
4631			     struct sk_buff *from,
4632			     bool *fragstolen)
4633{
4634	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4635
4636	/* In case tcp_drop() is called later, update to->gso_segs */
4637	if (res) {
4638		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4639			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4640
4641		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4642	}
4643	return res;
4644}
4645
4646static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4647{
4648	sk_drops_add(sk, skb);
4649	__kfree_skb(skb);
4650}
4651
4652/* This one checks to see if we can put data from the
4653 * out_of_order queue into the receive_queue.
4654 */
4655static void tcp_ofo_queue(struct sock *sk)
4656{
4657	struct tcp_sock *tp = tcp_sk(sk);
4658	__u32 dsack_high = tp->rcv_nxt;
4659	bool fin, fragstolen, eaten;
4660	struct sk_buff *skb, *tail;
4661	struct rb_node *p;
4662
4663	p = rb_first(&tp->out_of_order_queue);
4664	while (p) {
4665		skb = rb_to_skb(p);
4666		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4667			break;
4668
4669		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4670			__u32 dsack = dsack_high;
4671			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4672				dsack_high = TCP_SKB_CB(skb)->end_seq;
4673			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4674		}
4675		p = rb_next(p);
4676		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4677
4678		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
 
4679			tcp_drop(sk, skb);
4680			continue;
4681		}
 
 
 
4682
4683		tail = skb_peek_tail(&sk->sk_receive_queue);
4684		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4685		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4686		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4687		if (!eaten)
4688			__skb_queue_tail(&sk->sk_receive_queue, skb);
4689		else
4690			kfree_skb_partial(skb, fragstolen);
4691
4692		if (unlikely(fin)) {
4693			tcp_fin(sk);
4694			/* tcp_fin() purges tp->out_of_order_queue,
4695			 * so we must end this loop right now.
4696			 */
4697			break;
4698		}
4699	}
4700}
4701
4702static bool tcp_prune_ofo_queue(struct sock *sk);
4703static int tcp_prune_queue(struct sock *sk);
4704
4705static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4706				 unsigned int size)
4707{
4708	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4709	    !sk_rmem_schedule(sk, skb, size)) {
4710
4711		if (tcp_prune_queue(sk) < 0)
4712			return -1;
4713
4714		while (!sk_rmem_schedule(sk, skb, size)) {
4715			if (!tcp_prune_ofo_queue(sk))
4716				return -1;
4717		}
4718	}
4719	return 0;
4720}
4721
4722static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4723{
4724	struct tcp_sock *tp = tcp_sk(sk);
4725	struct rb_node **p, *parent;
4726	struct sk_buff *skb1;
4727	u32 seq, end_seq;
4728	bool fragstolen;
4729
4730	tcp_ecn_check_ce(sk, skb);
4731
4732	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4733		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4734		sk->sk_data_ready(sk);
4735		tcp_drop(sk, skb);
4736		return;
4737	}
4738
4739	/* Disable header prediction. */
4740	tp->pred_flags = 0;
4741	inet_csk_schedule_ack(sk);
4742
4743	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4744	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4745	seq = TCP_SKB_CB(skb)->seq;
4746	end_seq = TCP_SKB_CB(skb)->end_seq;
 
 
4747
4748	p = &tp->out_of_order_queue.rb_node;
4749	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4750		/* Initial out of order segment, build 1 SACK. */
4751		if (tcp_is_sack(tp)) {
4752			tp->rx_opt.num_sacks = 1;
4753			tp->selective_acks[0].start_seq = seq;
4754			tp->selective_acks[0].end_seq = end_seq;
4755		}
4756		rb_link_node(&skb->rbnode, NULL, p);
4757		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4758		tp->ooo_last_skb = skb;
4759		goto end;
4760	}
4761
4762	/* In the typical case, we are adding an skb to the end of the list.
4763	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4764	 */
4765	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4766				 skb, &fragstolen)) {
4767coalesce_done:
4768		/* For non sack flows, do not grow window to force DUPACK
4769		 * and trigger fast retransmit.
4770		 */
4771		if (tcp_is_sack(tp))
4772			tcp_grow_window(sk, skb);
4773		kfree_skb_partial(skb, fragstolen);
4774		skb = NULL;
4775		goto add_sack;
4776	}
4777	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4778	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4779		parent = &tp->ooo_last_skb->rbnode;
4780		p = &parent->rb_right;
4781		goto insert;
4782	}
4783
4784	/* Find place to insert this segment. Handle overlaps on the way. */
4785	parent = NULL;
4786	while (*p) {
4787		parent = *p;
4788		skb1 = rb_to_skb(parent);
4789		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4790			p = &parent->rb_left;
4791			continue;
4792		}
4793		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4794			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4795				/* All the bits are present. Drop. */
4796				NET_INC_STATS(sock_net(sk),
4797					      LINUX_MIB_TCPOFOMERGE);
4798				tcp_drop(sk, skb);
4799				skb = NULL;
4800				tcp_dsack_set(sk, seq, end_seq);
4801				goto add_sack;
4802			}
4803			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4804				/* Partial overlap. */
4805				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4806			} else {
4807				/* skb's seq == skb1's seq and skb covers skb1.
4808				 * Replace skb1 with skb.
4809				 */
4810				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4811						&tp->out_of_order_queue);
4812				tcp_dsack_extend(sk,
4813						 TCP_SKB_CB(skb1)->seq,
4814						 TCP_SKB_CB(skb1)->end_seq);
4815				NET_INC_STATS(sock_net(sk),
4816					      LINUX_MIB_TCPOFOMERGE);
4817				tcp_drop(sk, skb1);
4818				goto merge_right;
4819			}
4820		} else if (tcp_ooo_try_coalesce(sk, skb1,
4821						skb, &fragstolen)) {
4822			goto coalesce_done;
4823		}
4824		p = &parent->rb_right;
4825	}
4826insert:
4827	/* Insert segment into RB tree. */
4828	rb_link_node(&skb->rbnode, parent, p);
4829	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4830
4831merge_right:
4832	/* Remove other segments covered by skb. */
4833	while ((skb1 = skb_rb_next(skb)) != NULL) {
4834		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4835			break;
4836		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4837			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4838					 end_seq);
4839			break;
4840		}
4841		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4842		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4843				 TCP_SKB_CB(skb1)->end_seq);
4844		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4845		tcp_drop(sk, skb1);
4846	}
4847	/* If there is no skb after us, we are the last_skb ! */
4848	if (!skb1)
4849		tp->ooo_last_skb = skb;
4850
4851add_sack:
4852	if (tcp_is_sack(tp))
4853		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4854end:
4855	if (skb) {
4856		/* For non sack flows, do not grow window to force DUPACK
4857		 * and trigger fast retransmit.
4858		 */
4859		if (tcp_is_sack(tp))
4860			tcp_grow_window(sk, skb);
4861		skb_condense(skb);
4862		skb_set_owner_r(skb, sk);
4863	}
4864}
4865
4866static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4867				      bool *fragstolen)
4868{
4869	int eaten;
4870	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4871
 
4872	eaten = (tail &&
4873		 tcp_try_coalesce(sk, tail,
4874				  skb, fragstolen)) ? 1 : 0;
4875	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4876	if (!eaten) {
4877		__skb_queue_tail(&sk->sk_receive_queue, skb);
4878		skb_set_owner_r(skb, sk);
4879	}
4880	return eaten;
4881}
4882
4883int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4884{
4885	struct sk_buff *skb;
4886	int err = -ENOMEM;
4887	int data_len = 0;
4888	bool fragstolen;
4889
4890	if (size == 0)
4891		return 0;
4892
4893	if (size > PAGE_SIZE) {
4894		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4895
4896		data_len = npages << PAGE_SHIFT;
4897		size = data_len + (size & ~PAGE_MASK);
4898	}
4899	skb = alloc_skb_with_frags(size - data_len, data_len,
4900				   PAGE_ALLOC_COSTLY_ORDER,
4901				   &err, sk->sk_allocation);
4902	if (!skb)
4903		goto err;
4904
4905	skb_put(skb, size - data_len);
4906	skb->data_len = data_len;
4907	skb->len = size;
4908
4909	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4910		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4911		goto err_free;
4912	}
4913
4914	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4915	if (err)
4916		goto err_free;
4917
4918	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4919	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4920	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4921
4922	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4923		WARN_ON_ONCE(fragstolen); /* should not happen */
4924		__kfree_skb(skb);
4925	}
4926	return size;
4927
4928err_free:
4929	kfree_skb(skb);
4930err:
4931	return err;
4932
4933}
4934
4935void tcp_data_ready(struct sock *sk)
4936{
4937	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
4938		sk->sk_data_ready(sk);
4939}
4940
4941static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4942{
4943	struct tcp_sock *tp = tcp_sk(sk);
4944	bool fragstolen;
4945	int eaten;
4946
4947	/* If a subflow has been reset, the packet should not continue
4948	 * to be processed, drop the packet.
4949	 */
4950	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
4951		__kfree_skb(skb);
4952		return;
4953	}
4954
4955	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4956		__kfree_skb(skb);
4957		return;
4958	}
4959	skb_dst_drop(skb);
4960	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4961
 
 
4962	tp->rx_opt.dsack = 0;
4963
4964	/*  Queue data for delivery to the user.
4965	 *  Packets in sequence go to the receive queue.
4966	 *  Out of sequence packets to the out_of_order_queue.
4967	 */
4968	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4969		if (tcp_receive_window(tp) == 0) {
4970			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4971			goto out_of_window;
4972		}
4973
4974		/* Ok. In sequence. In window. */
4975queue_and_out:
4976		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4977			sk_forced_mem_schedule(sk, skb->truesize);
4978		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4979			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4980			sk->sk_data_ready(sk);
4981			goto drop;
4982		}
4983
4984		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
 
4985		if (skb->len)
4986			tcp_event_data_recv(sk, skb);
4987		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4988			tcp_fin(sk);
4989
4990		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4991			tcp_ofo_queue(sk);
4992
4993			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4994			 * gap in queue is filled.
4995			 */
4996			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4997				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4998		}
4999
5000		if (tp->rx_opt.num_sacks)
5001			tcp_sack_remove(tp);
5002
5003		tcp_fast_path_check(sk);
5004
5005		if (eaten > 0)
5006			kfree_skb_partial(skb, fragstolen);
5007		if (!sock_flag(sk, SOCK_DEAD))
5008			tcp_data_ready(sk);
5009		return;
5010	}
5011
5012	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5013		tcp_rcv_spurious_retrans(sk, skb);
5014		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5015		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5016		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5017
5018out_of_window:
5019		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5020		inet_csk_schedule_ack(sk);
5021drop:
5022		tcp_drop(sk, skb);
5023		return;
5024	}
5025
5026	/* Out of window. F.e. zero window probe. */
5027	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5028		goto out_of_window;
5029
 
 
5030	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5031		/* Partial packet, seq < rcv_next < end_seq */
 
 
 
 
5032		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5033
5034		/* If window is closed, drop tail of packet. But after
5035		 * remembering D-SACK for its head made in previous line.
5036		 */
5037		if (!tcp_receive_window(tp)) {
5038			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5039			goto out_of_window;
5040		}
5041		goto queue_and_out;
5042	}
5043
5044	tcp_data_queue_ofo(sk, skb);
5045}
5046
5047static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5048{
5049	if (list)
5050		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5051
5052	return skb_rb_next(skb);
5053}
5054
5055static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5056					struct sk_buff_head *list,
5057					struct rb_root *root)
5058{
5059	struct sk_buff *next = tcp_skb_next(skb, list);
5060
5061	if (list)
5062		__skb_unlink(skb, list);
5063	else
5064		rb_erase(&skb->rbnode, root);
5065
5066	__kfree_skb(skb);
5067	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5068
5069	return next;
5070}
5071
5072/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5073void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5074{
5075	struct rb_node **p = &root->rb_node;
5076	struct rb_node *parent = NULL;
5077	struct sk_buff *skb1;
5078
5079	while (*p) {
5080		parent = *p;
5081		skb1 = rb_to_skb(parent);
5082		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5083			p = &parent->rb_left;
5084		else
5085			p = &parent->rb_right;
5086	}
5087	rb_link_node(&skb->rbnode, parent, p);
5088	rb_insert_color(&skb->rbnode, root);
5089}
5090
5091/* Collapse contiguous sequence of skbs head..tail with
5092 * sequence numbers start..end.
5093 *
5094 * If tail is NULL, this means until the end of the queue.
5095 *
5096 * Segments with FIN/SYN are not collapsed (only because this
5097 * simplifies code)
5098 */
5099static void
5100tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5101	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5102{
5103	struct sk_buff *skb = head, *n;
5104	struct sk_buff_head tmp;
5105	bool end_of_skbs;
5106
5107	/* First, check that queue is collapsible and find
5108	 * the point where collapsing can be useful.
5109	 */
5110restart:
5111	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5112		n = tcp_skb_next(skb, list);
5113
5114		/* No new bits? It is possible on ofo queue. */
5115		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5116			skb = tcp_collapse_one(sk, skb, list, root);
5117			if (!skb)
5118				break;
5119			goto restart;
5120		}
5121
5122		/* The first skb to collapse is:
5123		 * - not SYN/FIN and
5124		 * - bloated or contains data before "start" or
5125		 *   overlaps to the next one and mptcp allow collapsing.
5126		 */
5127		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5128		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5129		     before(TCP_SKB_CB(skb)->seq, start))) {
5130			end_of_skbs = false;
5131			break;
5132		}
5133
5134		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5135		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5136			end_of_skbs = false;
5137			break;
5138		}
5139
5140		/* Decided to skip this, advance start seq. */
5141		start = TCP_SKB_CB(skb)->end_seq;
5142	}
5143	if (end_of_skbs ||
5144	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5145		return;
5146
5147	__skb_queue_head_init(&tmp);
5148
5149	while (before(start, end)) {
5150		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5151		struct sk_buff *nskb;
5152
5153		nskb = alloc_skb(copy, GFP_ATOMIC);
5154		if (!nskb)
5155			break;
5156
5157		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5158#ifdef CONFIG_TLS_DEVICE
5159		nskb->decrypted = skb->decrypted;
5160#endif
5161		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5162		if (list)
5163			__skb_queue_before(list, skb, nskb);
5164		else
5165			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5166		skb_set_owner_r(nskb, sk);
5167		mptcp_skb_ext_move(nskb, skb);
5168
5169		/* Copy data, releasing collapsed skbs. */
5170		while (copy > 0) {
5171			int offset = start - TCP_SKB_CB(skb)->seq;
5172			int size = TCP_SKB_CB(skb)->end_seq - start;
5173
5174			BUG_ON(offset < 0);
5175			if (size > 0) {
5176				size = min(copy, size);
5177				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5178					BUG();
5179				TCP_SKB_CB(nskb)->end_seq += size;
5180				copy -= size;
5181				start += size;
5182			}
5183			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5184				skb = tcp_collapse_one(sk, skb, list, root);
5185				if (!skb ||
5186				    skb == tail ||
5187				    !mptcp_skb_can_collapse(nskb, skb) ||
5188				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5189					goto end;
5190#ifdef CONFIG_TLS_DEVICE
5191				if (skb->decrypted != nskb->decrypted)
5192					goto end;
5193#endif
5194			}
5195		}
5196	}
5197end:
5198	skb_queue_walk_safe(&tmp, skb, n)
5199		tcp_rbtree_insert(root, skb);
5200}
5201
5202/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5203 * and tcp_collapse() them until all the queue is collapsed.
5204 */
5205static void tcp_collapse_ofo_queue(struct sock *sk)
5206{
5207	struct tcp_sock *tp = tcp_sk(sk);
5208	u32 range_truesize, sum_tiny = 0;
5209	struct sk_buff *skb, *head;
5210	u32 start, end;
5211
5212	skb = skb_rb_first(&tp->out_of_order_queue);
5213new_range:
5214	if (!skb) {
5215		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5216		return;
5217	}
5218	start = TCP_SKB_CB(skb)->seq;
5219	end = TCP_SKB_CB(skb)->end_seq;
5220	range_truesize = skb->truesize;
5221
5222	for (head = skb;;) {
5223		skb = skb_rb_next(skb);
5224
5225		/* Range is terminated when we see a gap or when
5226		 * we are at the queue end.
5227		 */
5228		if (!skb ||
5229		    after(TCP_SKB_CB(skb)->seq, end) ||
5230		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5231			/* Do not attempt collapsing tiny skbs */
5232			if (range_truesize != head->truesize ||
5233			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5234				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5235					     head, skb, start, end);
5236			} else {
5237				sum_tiny += range_truesize;
5238				if (sum_tiny > sk->sk_rcvbuf >> 3)
5239					return;
5240			}
5241			goto new_range;
5242		}
5243
5244		range_truesize += skb->truesize;
5245		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5246			start = TCP_SKB_CB(skb)->seq;
5247		if (after(TCP_SKB_CB(skb)->end_seq, end))
5248			end = TCP_SKB_CB(skb)->end_seq;
5249	}
5250}
5251
5252/*
5253 * Clean the out-of-order queue to make room.
5254 * We drop high sequences packets to :
5255 * 1) Let a chance for holes to be filled.
5256 * 2) not add too big latencies if thousands of packets sit there.
5257 *    (But if application shrinks SO_RCVBUF, we could still end up
5258 *     freeing whole queue here)
5259 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5260 *
5261 * Return true if queue has shrunk.
5262 */
5263static bool tcp_prune_ofo_queue(struct sock *sk)
5264{
5265	struct tcp_sock *tp = tcp_sk(sk);
5266	struct rb_node *node, *prev;
5267	int goal;
5268
5269	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5270		return false;
5271
5272	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5273	goal = sk->sk_rcvbuf >> 3;
5274	node = &tp->ooo_last_skb->rbnode;
5275	do {
5276		prev = rb_prev(node);
5277		rb_erase(node, &tp->out_of_order_queue);
5278		goal -= rb_to_skb(node)->truesize;
5279		tcp_drop(sk, rb_to_skb(node));
5280		if (!prev || goal <= 0) {
5281			sk_mem_reclaim(sk);
5282			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5283			    !tcp_under_memory_pressure(sk))
5284				break;
5285			goal = sk->sk_rcvbuf >> 3;
5286		}
5287		node = prev;
5288	} while (node);
5289	tp->ooo_last_skb = rb_to_skb(prev);
5290
5291	/* Reset SACK state.  A conforming SACK implementation will
5292	 * do the same at a timeout based retransmit.  When a connection
5293	 * is in a sad state like this, we care only about integrity
5294	 * of the connection not performance.
5295	 */
5296	if (tp->rx_opt.sack_ok)
5297		tcp_sack_reset(&tp->rx_opt);
5298	return true;
5299}
5300
5301/* Reduce allocated memory if we can, trying to get
5302 * the socket within its memory limits again.
5303 *
5304 * Return less than zero if we should start dropping frames
5305 * until the socket owning process reads some of the data
5306 * to stabilize the situation.
5307 */
5308static int tcp_prune_queue(struct sock *sk)
5309{
5310	struct tcp_sock *tp = tcp_sk(sk);
5311
 
 
5312	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5313
5314	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5315		tcp_clamp_window(sk);
5316	else if (tcp_under_memory_pressure(sk))
5317		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5318
5319	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5320		return 0;
5321
5322	tcp_collapse_ofo_queue(sk);
5323	if (!skb_queue_empty(&sk->sk_receive_queue))
5324		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5325			     skb_peek(&sk->sk_receive_queue),
5326			     NULL,
5327			     tp->copied_seq, tp->rcv_nxt);
5328	sk_mem_reclaim(sk);
5329
5330	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5331		return 0;
5332
5333	/* Collapsing did not help, destructive actions follow.
5334	 * This must not ever occur. */
5335
5336	tcp_prune_ofo_queue(sk);
5337
5338	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5339		return 0;
5340
5341	/* If we are really being abused, tell the caller to silently
5342	 * drop receive data on the floor.  It will get retransmitted
5343	 * and hopefully then we'll have sufficient space.
5344	 */
5345	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5346
5347	/* Massive buffer overcommit. */
5348	tp->pred_flags = 0;
5349	return -1;
5350}
5351
5352static bool tcp_should_expand_sndbuf(const struct sock *sk)
5353{
5354	const struct tcp_sock *tp = tcp_sk(sk);
5355
5356	/* If the user specified a specific send buffer setting, do
5357	 * not modify it.
5358	 */
5359	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5360		return false;
5361
5362	/* If we are under global TCP memory pressure, do not expand.  */
5363	if (tcp_under_memory_pressure(sk))
5364		return false;
5365
5366	/* If we are under soft global TCP memory pressure, do not expand.  */
5367	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5368		return false;
5369
5370	/* If we filled the congestion window, do not expand.  */
5371	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5372		return false;
5373
5374	return true;
5375}
5376
 
 
 
 
 
 
5377static void tcp_new_space(struct sock *sk)
5378{
5379	struct tcp_sock *tp = tcp_sk(sk);
5380
5381	if (tcp_should_expand_sndbuf(sk)) {
5382		tcp_sndbuf_expand(sk);
5383		tp->snd_cwnd_stamp = tcp_jiffies32;
5384	}
5385
5386	sk->sk_write_space(sk);
5387}
5388
5389static void tcp_check_space(struct sock *sk)
5390{
5391	/* pairs with tcp_poll() */
5392	smp_mb();
5393	if (sk->sk_socket &&
5394	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5395		tcp_new_space(sk);
5396		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5397			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
 
 
 
5398	}
5399}
5400
5401static inline void tcp_data_snd_check(struct sock *sk)
5402{
5403	tcp_push_pending_frames(sk);
5404	tcp_check_space(sk);
5405}
5406
5407/*
5408 * Check if sending an ack is needed.
5409 */
5410static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5411{
5412	struct tcp_sock *tp = tcp_sk(sk);
5413	unsigned long rtt, delay;
5414
5415	    /* More than one full frame received... */
5416	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5417	     /* ... and right edge of window advances far enough.
5418	      * (tcp_recvmsg() will send ACK otherwise).
5419	      * If application uses SO_RCVLOWAT, we want send ack now if
5420	      * we have not received enough bytes to satisfy the condition.
5421	      */
5422	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5423	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5424	    /* We ACK each frame or... */
5425	    tcp_in_quickack_mode(sk) ||
5426	    /* Protocol state mandates a one-time immediate ACK */
5427	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5428send_now:
5429		tcp_send_ack(sk);
5430		return;
5431	}
5432
5433	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5434		tcp_send_delayed_ack(sk);
5435		return;
5436	}
5437
5438	if (!tcp_is_sack(tp) ||
5439	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5440		goto send_now;
5441
5442	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5443		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5444		tp->dup_ack_counter = 0;
5445	}
5446	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5447		tp->dup_ack_counter++;
5448		goto send_now;
5449	}
5450	tp->compressed_ack++;
5451	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5452		return;
5453
5454	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5455
5456	rtt = tp->rcv_rtt_est.rtt_us;
5457	if (tp->srtt_us && tp->srtt_us < rtt)
5458		rtt = tp->srtt_us;
5459
5460	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5461		      rtt * (NSEC_PER_USEC >> 3)/20);
5462	sock_hold(sk);
5463	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5464			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5465			       HRTIMER_MODE_REL_PINNED_SOFT);
5466}
5467
5468static inline void tcp_ack_snd_check(struct sock *sk)
5469{
5470	if (!inet_csk_ack_scheduled(sk)) {
5471		/* We sent a data segment already. */
5472		return;
5473	}
5474	__tcp_ack_snd_check(sk, 1);
5475}
5476
5477/*
5478 *	This routine is only called when we have urgent data
5479 *	signaled. Its the 'slow' part of tcp_urg. It could be
5480 *	moved inline now as tcp_urg is only called from one
5481 *	place. We handle URGent data wrong. We have to - as
5482 *	BSD still doesn't use the correction from RFC961.
5483 *	For 1003.1g we should support a new option TCP_STDURG to permit
5484 *	either form (or just set the sysctl tcp_stdurg).
5485 */
5486
5487static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5488{
5489	struct tcp_sock *tp = tcp_sk(sk);
5490	u32 ptr = ntohs(th->urg_ptr);
5491
5492	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5493		ptr--;
5494	ptr += ntohl(th->seq);
5495
5496	/* Ignore urgent data that we've already seen and read. */
5497	if (after(tp->copied_seq, ptr))
5498		return;
5499
5500	/* Do not replay urg ptr.
5501	 *
5502	 * NOTE: interesting situation not covered by specs.
5503	 * Misbehaving sender may send urg ptr, pointing to segment,
5504	 * which we already have in ofo queue. We are not able to fetch
5505	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5506	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5507	 * situations. But it is worth to think about possibility of some
5508	 * DoSes using some hypothetical application level deadlock.
5509	 */
5510	if (before(ptr, tp->rcv_nxt))
5511		return;
5512
5513	/* Do we already have a newer (or duplicate) urgent pointer? */
5514	if (tp->urg_data && !after(ptr, tp->urg_seq))
5515		return;
5516
5517	/* Tell the world about our new urgent pointer. */
5518	sk_send_sigurg(sk);
5519
5520	/* We may be adding urgent data when the last byte read was
5521	 * urgent. To do this requires some care. We cannot just ignore
5522	 * tp->copied_seq since we would read the last urgent byte again
5523	 * as data, nor can we alter copied_seq until this data arrives
5524	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5525	 *
5526	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5527	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5528	 * and expect that both A and B disappear from stream. This is _wrong_.
5529	 * Though this happens in BSD with high probability, this is occasional.
5530	 * Any application relying on this is buggy. Note also, that fix "works"
5531	 * only in this artificial test. Insert some normal data between A and B and we will
5532	 * decline of BSD again. Verdict: it is better to remove to trap
5533	 * buggy users.
5534	 */
5535	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5536	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5537		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5538		tp->copied_seq++;
5539		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5540			__skb_unlink(skb, &sk->sk_receive_queue);
5541			__kfree_skb(skb);
5542		}
5543	}
5544
5545	tp->urg_data = TCP_URG_NOTYET;
5546	WRITE_ONCE(tp->urg_seq, ptr);
5547
5548	/* Disable header prediction. */
5549	tp->pred_flags = 0;
5550}
5551
5552/* This is the 'fast' part of urgent handling. */
5553static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5554{
5555	struct tcp_sock *tp = tcp_sk(sk);
5556
5557	/* Check if we get a new urgent pointer - normally not. */
5558	if (th->urg)
5559		tcp_check_urg(sk, th);
5560
5561	/* Do we wait for any urgent data? - normally not... */
5562	if (tp->urg_data == TCP_URG_NOTYET) {
5563		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5564			  th->syn;
5565
5566		/* Is the urgent pointer pointing into this packet? */
5567		if (ptr < skb->len) {
5568			u8 tmp;
5569			if (skb_copy_bits(skb, ptr, &tmp, 1))
5570				BUG();
5571			tp->urg_data = TCP_URG_VALID | tmp;
5572			if (!sock_flag(sk, SOCK_DEAD))
5573				sk->sk_data_ready(sk);
5574		}
5575	}
5576}
5577
5578/* Accept RST for rcv_nxt - 1 after a FIN.
5579 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5580 * FIN is sent followed by a RST packet. The RST is sent with the same
5581 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5582 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5583 * ACKs on the closed socket. In addition middleboxes can drop either the
5584 * challenge ACK or a subsequent RST.
5585 */
5586static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5587{
5588	struct tcp_sock *tp = tcp_sk(sk);
5589
5590	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5591			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5592					       TCPF_CLOSING));
5593}
5594
5595/* Does PAWS and seqno based validation of an incoming segment, flags will
5596 * play significant role here.
5597 */
5598static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5599				  const struct tcphdr *th, int syn_inerr)
5600{
5601	struct tcp_sock *tp = tcp_sk(sk);
5602	bool rst_seq_match = false;
5603
5604	/* RFC1323: H1. Apply PAWS check first. */
5605	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5606	    tp->rx_opt.saw_tstamp &&
5607	    tcp_paws_discard(sk, skb)) {
5608		if (!th->rst) {
5609			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5610			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5611						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5612						  &tp->last_oow_ack_time))
5613				tcp_send_dupack(sk, skb);
5614			goto discard;
5615		}
5616		/* Reset is accepted even if it did not pass PAWS. */
5617	}
5618
5619	/* Step 1: check sequence number */
5620	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5621		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5622		 * (RST) segments are validated by checking their SEQ-fields."
5623		 * And page 69: "If an incoming segment is not acceptable,
5624		 * an acknowledgment should be sent in reply (unless the RST
5625		 * bit is set, if so drop the segment and return)".
5626		 */
5627		if (!th->rst) {
5628			if (th->syn)
5629				goto syn_challenge;
5630			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5631						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5632						  &tp->last_oow_ack_time))
5633				tcp_send_dupack(sk, skb);
5634		} else if (tcp_reset_check(sk, skb)) {
5635			tcp_reset(sk, skb);
5636		}
5637		goto discard;
5638	}
5639
5640	/* Step 2: check RST bit */
5641	if (th->rst) {
5642		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5643		 * FIN and SACK too if available):
5644		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5645		 * the right-most SACK block,
5646		 * then
5647		 *     RESET the connection
5648		 * else
5649		 *     Send a challenge ACK
5650		 */
5651		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5652		    tcp_reset_check(sk, skb)) {
5653			rst_seq_match = true;
5654		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5655			struct tcp_sack_block *sp = &tp->selective_acks[0];
5656			int max_sack = sp[0].end_seq;
5657			int this_sack;
5658
5659			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5660			     ++this_sack) {
5661				max_sack = after(sp[this_sack].end_seq,
5662						 max_sack) ?
5663					sp[this_sack].end_seq : max_sack;
5664			}
5665
5666			if (TCP_SKB_CB(skb)->seq == max_sack)
5667				rst_seq_match = true;
5668		}
5669
5670		if (rst_seq_match)
5671			tcp_reset(sk, skb);
5672		else {
5673			/* Disable TFO if RST is out-of-order
5674			 * and no data has been received
5675			 * for current active TFO socket
5676			 */
5677			if (tp->syn_fastopen && !tp->data_segs_in &&
5678			    sk->sk_state == TCP_ESTABLISHED)
5679				tcp_fastopen_active_disable(sk);
5680			tcp_send_challenge_ack(sk, skb);
5681		}
5682		goto discard;
5683	}
5684
5685	/* step 3: check security and precedence [ignored] */
5686
5687	/* step 4: Check for a SYN
5688	 * RFC 5961 4.2 : Send a challenge ack
5689	 */
5690	if (th->syn) {
5691syn_challenge:
5692		if (syn_inerr)
5693			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5694		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5695		tcp_send_challenge_ack(sk, skb);
5696		goto discard;
5697	}
5698
5699	bpf_skops_parse_hdr(sk, skb);
5700
5701	return true;
5702
5703discard:
5704	tcp_drop(sk, skb);
5705	return false;
5706}
5707
5708/*
5709 *	TCP receive function for the ESTABLISHED state.
5710 *
5711 *	It is split into a fast path and a slow path. The fast path is
5712 * 	disabled when:
5713 *	- A zero window was announced from us - zero window probing
5714 *        is only handled properly in the slow path.
5715 *	- Out of order segments arrived.
5716 *	- Urgent data is expected.
5717 *	- There is no buffer space left
5718 *	- Unexpected TCP flags/window values/header lengths are received
5719 *	  (detected by checking the TCP header against pred_flags)
5720 *	- Data is sent in both directions. Fast path only supports pure senders
5721 *	  or pure receivers (this means either the sequence number or the ack
5722 *	  value must stay constant)
5723 *	- Unexpected TCP option.
5724 *
5725 *	When these conditions are not satisfied it drops into a standard
5726 *	receive procedure patterned after RFC793 to handle all cases.
5727 *	The first three cases are guaranteed by proper pred_flags setting,
5728 *	the rest is checked inline. Fast processing is turned on in
5729 *	tcp_data_queue when everything is OK.
5730 */
5731void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
 
5732{
5733	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5734	struct tcp_sock *tp = tcp_sk(sk);
5735	unsigned int len = skb->len;
 
5736
5737	/* TCP congestion window tracking */
5738	trace_tcp_probe(sk, skb);
5739
5740	tcp_mstamp_refresh(tp);
5741	if (unlikely(!sk->sk_rx_dst))
5742		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5743	/*
5744	 *	Header prediction.
5745	 *	The code loosely follows the one in the famous
5746	 *	"30 instruction TCP receive" Van Jacobson mail.
5747	 *
5748	 *	Van's trick is to deposit buffers into socket queue
5749	 *	on a device interrupt, to call tcp_recv function
5750	 *	on the receive process context and checksum and copy
5751	 *	the buffer to user space. smart...
5752	 *
5753	 *	Our current scheme is not silly either but we take the
5754	 *	extra cost of the net_bh soft interrupt processing...
5755	 *	We do checksum and copy also but from device to kernel.
5756	 */
5757
5758	tp->rx_opt.saw_tstamp = 0;
5759
5760	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5761	 *	if header_prediction is to be made
5762	 *	'S' will always be tp->tcp_header_len >> 2
5763	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5764	 *  turn it off	(when there are holes in the receive
5765	 *	 space for instance)
5766	 *	PSH flag is ignored.
5767	 */
5768
5769	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5770	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5771	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5772		int tcp_header_len = tp->tcp_header_len;
5773
5774		/* Timestamp header prediction: tcp_header_len
5775		 * is automatically equal to th->doff*4 due to pred_flags
5776		 * match.
5777		 */
5778
5779		/* Check timestamp */
5780		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5781			/* No? Slow path! */
5782			if (!tcp_parse_aligned_timestamp(tp, th))
5783				goto slow_path;
5784
5785			/* If PAWS failed, check it more carefully in slow path */
5786			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5787				goto slow_path;
5788
5789			/* DO NOT update ts_recent here, if checksum fails
5790			 * and timestamp was corrupted part, it will result
5791			 * in a hung connection since we will drop all
5792			 * future packets due to the PAWS test.
5793			 */
5794		}
5795
5796		if (len <= tcp_header_len) {
5797			/* Bulk data transfer: sender */
5798			if (len == tcp_header_len) {
5799				/* Predicted packet is in window by definition.
5800				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5801				 * Hence, check seq<=rcv_wup reduces to:
5802				 */
5803				if (tcp_header_len ==
5804				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5805				    tp->rcv_nxt == tp->rcv_wup)
5806					tcp_store_ts_recent(tp);
5807
5808				/* We know that such packets are checksummed
5809				 * on entry.
5810				 */
5811				tcp_ack(sk, skb, 0);
5812				__kfree_skb(skb);
5813				tcp_data_snd_check(sk);
5814				/* When receiving pure ack in fast path, update
5815				 * last ts ecr directly instead of calling
5816				 * tcp_rcv_rtt_measure_ts()
5817				 */
5818				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5819				return;
5820			} else { /* Header too small */
5821				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5822				goto discard;
5823			}
5824		} else {
5825			int eaten = 0;
5826			bool fragstolen = false;
5827
5828			if (tcp_checksum_complete(skb))
5829				goto csum_error;
5830
5831			if ((int)skb->truesize > sk->sk_forward_alloc)
5832				goto step5;
5833
5834			/* Predicted packet is in window by definition.
5835			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5836			 * Hence, check seq<=rcv_wup reduces to:
5837			 */
5838			if (tcp_header_len ==
5839			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5840			    tp->rcv_nxt == tp->rcv_wup)
5841				tcp_store_ts_recent(tp);
5842
5843			tcp_rcv_rtt_measure_ts(sk, skb);
5844
5845			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5846
5847			/* Bulk data transfer: receiver */
5848			__skb_pull(skb, tcp_header_len);
5849			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5850
5851			tcp_event_data_recv(sk, skb);
5852
5853			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5854				/* Well, only one small jumplet in fast path... */
5855				tcp_ack(sk, skb, FLAG_DATA);
5856				tcp_data_snd_check(sk);
5857				if (!inet_csk_ack_scheduled(sk))
5858					goto no_ack;
5859			} else {
5860				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5861			}
5862
5863			__tcp_ack_snd_check(sk, 0);
5864no_ack:
5865			if (eaten)
5866				kfree_skb_partial(skb, fragstolen);
5867			tcp_data_ready(sk);
5868			return;
5869		}
5870	}
5871
5872slow_path:
5873	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5874		goto csum_error;
5875
5876	if (!th->ack && !th->rst && !th->syn)
5877		goto discard;
5878
5879	/*
5880	 *	Standard slow path.
5881	 */
5882
5883	if (!tcp_validate_incoming(sk, skb, th, 1))
5884		return;
5885
5886step5:
5887	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5888		goto discard;
5889
5890	tcp_rcv_rtt_measure_ts(sk, skb);
5891
5892	/* Process urgent data. */
5893	tcp_urg(sk, skb, th);
5894
5895	/* step 7: process the segment text */
5896	tcp_data_queue(sk, skb);
5897
5898	tcp_data_snd_check(sk);
5899	tcp_ack_snd_check(sk);
5900	return;
5901
5902csum_error:
5903	trace_tcp_bad_csum(skb);
5904	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5905	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5906
5907discard:
5908	tcp_drop(sk, skb);
5909}
5910EXPORT_SYMBOL(tcp_rcv_established);
5911
5912void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5913{
5914	struct inet_connection_sock *icsk = inet_csk(sk);
5915	struct tcp_sock *tp = tcp_sk(sk);
5916
5917	tcp_mtup_init(sk);
5918	icsk->icsk_af_ops->rebuild_header(sk);
5919	tcp_init_metrics(sk);
5920
5921	/* Initialize the congestion window to start the transfer.
5922	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5923	 * retransmitted. In light of RFC6298 more aggressive 1sec
5924	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5925	 * retransmission has occurred.
5926	 */
5927	if (tp->total_retrans > 1 && tp->undo_marker)
5928		tp->snd_cwnd = 1;
5929	else
5930		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5931	tp->snd_cwnd_stamp = tcp_jiffies32;
5932
5933	bpf_skops_established(sk, bpf_op, skb);
5934	/* Initialize congestion control unless BPF initialized it already: */
5935	if (!icsk->icsk_ca_initialized)
5936		tcp_init_congestion_control(sk);
5937	tcp_init_buffer_space(sk);
5938}
5939
5940void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5941{
5942	struct tcp_sock *tp = tcp_sk(sk);
5943	struct inet_connection_sock *icsk = inet_csk(sk);
5944
5945	tcp_set_state(sk, TCP_ESTABLISHED);
5946	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5947
5948	if (skb) {
5949		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5950		security_inet_conn_established(sk, skb);
5951		sk_mark_napi_id(sk, skb);
5952	}
5953
5954	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5955
5956	/* Prevent spurious tcp_cwnd_restart() on first data
5957	 * packet.
5958	 */
5959	tp->lsndtime = tcp_jiffies32;
5960
5961	if (sock_flag(sk, SOCK_KEEPOPEN))
5962		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5963
5964	if (!tp->rx_opt.snd_wscale)
5965		__tcp_fast_path_on(tp, tp->snd_wnd);
5966	else
5967		tp->pred_flags = 0;
5968}
5969
5970static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5971				    struct tcp_fastopen_cookie *cookie)
5972{
5973	struct tcp_sock *tp = tcp_sk(sk);
5974	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5975	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5976	bool syn_drop = false;
5977
5978	if (mss == tp->rx_opt.user_mss) {
5979		struct tcp_options_received opt;
5980
5981		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5982		tcp_clear_options(&opt);
5983		opt.user_mss = opt.mss_clamp = 0;
5984		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5985		mss = opt.mss_clamp;
5986	}
5987
5988	if (!tp->syn_fastopen) {
5989		/* Ignore an unsolicited cookie */
5990		cookie->len = -1;
5991	} else if (tp->total_retrans) {
5992		/* SYN timed out and the SYN-ACK neither has a cookie nor
5993		 * acknowledges data. Presumably the remote received only
5994		 * the retransmitted (regular) SYNs: either the original
5995		 * SYN-data or the corresponding SYN-ACK was dropped.
5996		 */
5997		syn_drop = (cookie->len < 0 && data);
5998	} else if (cookie->len < 0 && !tp->syn_data) {
5999		/* We requested a cookie but didn't get it. If we did not use
6000		 * the (old) exp opt format then try so next time (try_exp=1).
6001		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6002		 */
6003		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6004	}
6005
6006	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6007
6008	if (data) { /* Retransmit unacked data in SYN */
6009		if (tp->total_retrans)
6010			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6011		else
6012			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6013		skb_rbtree_walk_from(data)
6014			 tcp_mark_skb_lost(sk, data);
6015		tcp_xmit_retransmit_queue(sk);
6016		NET_INC_STATS(sock_net(sk),
6017				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6018		return true;
6019	}
6020	tp->syn_data_acked = tp->syn_data;
6021	if (tp->syn_data_acked) {
6022		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6023		/* SYN-data is counted as two separate packets in tcp_ack() */
6024		if (tp->delivered > 1)
6025			--tp->delivered;
6026	}
6027
6028	tcp_fastopen_add_skb(sk, synack);
6029
6030	return false;
6031}
6032
6033static void smc_check_reset_syn(struct tcp_sock *tp)
6034{
6035#if IS_ENABLED(CONFIG_SMC)
6036	if (static_branch_unlikely(&tcp_have_smc)) {
6037		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6038			tp->syn_smc = 0;
6039	}
6040#endif
6041}
6042
6043static void tcp_try_undo_spurious_syn(struct sock *sk)
6044{
6045	struct tcp_sock *tp = tcp_sk(sk);
6046	u32 syn_stamp;
6047
6048	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6049	 * spurious if the ACK's timestamp option echo value matches the
6050	 * original SYN timestamp.
6051	 */
6052	syn_stamp = tp->retrans_stamp;
6053	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6054	    syn_stamp == tp->rx_opt.rcv_tsecr)
6055		tp->undo_marker = 0;
6056}
6057
6058static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6059					 const struct tcphdr *th)
6060{
6061	struct inet_connection_sock *icsk = inet_csk(sk);
6062	struct tcp_sock *tp = tcp_sk(sk);
6063	struct tcp_fastopen_cookie foc = { .len = -1 };
6064	int saved_clamp = tp->rx_opt.mss_clamp;
6065	bool fastopen_fail;
6066
6067	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6068	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6069		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6070
6071	if (th->ack) {
6072		/* rfc793:
6073		 * "If the state is SYN-SENT then
6074		 *    first check the ACK bit
6075		 *      If the ACK bit is set
6076		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6077		 *        a reset (unless the RST bit is set, if so drop
6078		 *        the segment and return)"
6079		 */
6080		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6081		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6082			/* Previous FIN/ACK or RST/ACK might be ignored. */
6083			if (icsk->icsk_retransmits == 0)
6084				inet_csk_reset_xmit_timer(sk,
6085						ICSK_TIME_RETRANS,
6086						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6087			goto reset_and_undo;
6088		}
6089
6090		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6091		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6092			     tcp_time_stamp(tp))) {
6093			NET_INC_STATS(sock_net(sk),
6094					LINUX_MIB_PAWSACTIVEREJECTED);
6095			goto reset_and_undo;
6096		}
6097
6098		/* Now ACK is acceptable.
6099		 *
6100		 * "If the RST bit is set
6101		 *    If the ACK was acceptable then signal the user "error:
6102		 *    connection reset", drop the segment, enter CLOSED state,
6103		 *    delete TCB, and return."
6104		 */
6105
6106		if (th->rst) {
6107			tcp_reset(sk, skb);
6108			goto discard;
6109		}
6110
6111		/* rfc793:
6112		 *   "fifth, if neither of the SYN or RST bits is set then
6113		 *    drop the segment and return."
6114		 *
6115		 *    See note below!
6116		 *                                        --ANK(990513)
6117		 */
6118		if (!th->syn)
6119			goto discard_and_undo;
6120
6121		/* rfc793:
6122		 *   "If the SYN bit is on ...
6123		 *    are acceptable then ...
6124		 *    (our SYN has been ACKed), change the connection
6125		 *    state to ESTABLISHED..."
6126		 */
6127
6128		tcp_ecn_rcv_synack(tp, th);
6129
6130		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6131		tcp_try_undo_spurious_syn(sk);
6132		tcp_ack(sk, skb, FLAG_SLOWPATH);
6133
6134		/* Ok.. it's good. Set up sequence numbers and
6135		 * move to established.
6136		 */
6137		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6138		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6139
6140		/* RFC1323: The window in SYN & SYN/ACK segments is
6141		 * never scaled.
6142		 */
6143		tp->snd_wnd = ntohs(th->window);
6144
6145		if (!tp->rx_opt.wscale_ok) {
6146			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6147			tp->window_clamp = min(tp->window_clamp, 65535U);
6148		}
6149
6150		if (tp->rx_opt.saw_tstamp) {
6151			tp->rx_opt.tstamp_ok	   = 1;
6152			tp->tcp_header_len =
6153				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6154			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6155			tcp_store_ts_recent(tp);
6156		} else {
6157			tp->tcp_header_len = sizeof(struct tcphdr);
6158		}
6159
6160		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6161		tcp_initialize_rcv_mss(sk);
6162
6163		/* Remember, tcp_poll() does not lock socket!
6164		 * Change state from SYN-SENT only after copied_seq
6165		 * is initialized. */
6166		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6167
6168		smc_check_reset_syn(tp);
6169
6170		smp_mb();
6171
6172		tcp_finish_connect(sk, skb);
6173
6174		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6175				tcp_rcv_fastopen_synack(sk, skb, &foc);
6176
6177		if (!sock_flag(sk, SOCK_DEAD)) {
6178			sk->sk_state_change(sk);
6179			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6180		}
6181		if (fastopen_fail)
6182			return -1;
6183		if (sk->sk_write_pending ||
6184		    icsk->icsk_accept_queue.rskq_defer_accept ||
6185		    inet_csk_in_pingpong_mode(sk)) {
6186			/* Save one ACK. Data will be ready after
6187			 * several ticks, if write_pending is set.
6188			 *
6189			 * It may be deleted, but with this feature tcpdumps
6190			 * look so _wonderfully_ clever, that I was not able
6191			 * to stand against the temptation 8)     --ANK
6192			 */
6193			inet_csk_schedule_ack(sk);
6194			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6195			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6196						  TCP_DELACK_MAX, TCP_RTO_MAX);
6197
6198discard:
6199			tcp_drop(sk, skb);
6200			return 0;
6201		} else {
6202			tcp_send_ack(sk);
6203		}
6204		return -1;
6205	}
6206
6207	/* No ACK in the segment */
6208
6209	if (th->rst) {
6210		/* rfc793:
6211		 * "If the RST bit is set
6212		 *
6213		 *      Otherwise (no ACK) drop the segment and return."
6214		 */
6215
6216		goto discard_and_undo;
6217	}
6218
6219	/* PAWS check. */
6220	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6221	    tcp_paws_reject(&tp->rx_opt, 0))
6222		goto discard_and_undo;
6223
6224	if (th->syn) {
6225		/* We see SYN without ACK. It is attempt of
6226		 * simultaneous connect with crossed SYNs.
6227		 * Particularly, it can be connect to self.
6228		 */
6229		tcp_set_state(sk, TCP_SYN_RECV);
6230
6231		if (tp->rx_opt.saw_tstamp) {
6232			tp->rx_opt.tstamp_ok = 1;
6233			tcp_store_ts_recent(tp);
6234			tp->tcp_header_len =
6235				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6236		} else {
6237			tp->tcp_header_len = sizeof(struct tcphdr);
6238		}
6239
6240		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6241		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6242		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6243
6244		/* RFC1323: The window in SYN & SYN/ACK segments is
6245		 * never scaled.
6246		 */
6247		tp->snd_wnd    = ntohs(th->window);
6248		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6249		tp->max_window = tp->snd_wnd;
6250
6251		tcp_ecn_rcv_syn(tp, th);
6252
6253		tcp_mtup_init(sk);
6254		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6255		tcp_initialize_rcv_mss(sk);
6256
6257		tcp_send_synack(sk);
6258#if 0
6259		/* Note, we could accept data and URG from this segment.
6260		 * There are no obstacles to make this (except that we must
6261		 * either change tcp_recvmsg() to prevent it from returning data
6262		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6263		 *
6264		 * However, if we ignore data in ACKless segments sometimes,
6265		 * we have no reasons to accept it sometimes.
6266		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6267		 * is not flawless. So, discard packet for sanity.
6268		 * Uncomment this return to process the data.
6269		 */
6270		return -1;
6271#else
6272		goto discard;
6273#endif
6274	}
6275	/* "fifth, if neither of the SYN or RST bits is set then
6276	 * drop the segment and return."
6277	 */
6278
6279discard_and_undo:
6280	tcp_clear_options(&tp->rx_opt);
6281	tp->rx_opt.mss_clamp = saved_clamp;
6282	goto discard;
6283
6284reset_and_undo:
6285	tcp_clear_options(&tp->rx_opt);
6286	tp->rx_opt.mss_clamp = saved_clamp;
6287	return 1;
6288}
6289
6290static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6291{
6292	struct request_sock *req;
6293
6294	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6295	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6296	 */
6297	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6298		tcp_try_undo_loss(sk, false);
6299
6300	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6301	tcp_sk(sk)->retrans_stamp = 0;
6302	inet_csk(sk)->icsk_retransmits = 0;
6303
6304	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6305	 * we no longer need req so release it.
6306	 */
6307	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6308					lockdep_sock_is_held(sk));
6309	reqsk_fastopen_remove(sk, req, false);
6310
6311	/* Re-arm the timer because data may have been sent out.
6312	 * This is similar to the regular data transmission case
6313	 * when new data has just been ack'ed.
6314	 *
6315	 * (TFO) - we could try to be more aggressive and
6316	 * retransmitting any data sooner based on when they
6317	 * are sent out.
6318	 */
6319	tcp_rearm_rto(sk);
6320}
6321
6322/*
6323 *	This function implements the receiving procedure of RFC 793 for
6324 *	all states except ESTABLISHED and TIME_WAIT.
6325 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6326 *	address independent.
6327 */
6328
6329int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6330{
6331	struct tcp_sock *tp = tcp_sk(sk);
6332	struct inet_connection_sock *icsk = inet_csk(sk);
6333	const struct tcphdr *th = tcp_hdr(skb);
6334	struct request_sock *req;
6335	int queued = 0;
6336	bool acceptable;
6337
6338	switch (sk->sk_state) {
6339	case TCP_CLOSE:
6340		goto discard;
6341
6342	case TCP_LISTEN:
6343		if (th->ack)
6344			return 1;
6345
6346		if (th->rst)
6347			goto discard;
6348
6349		if (th->syn) {
6350			if (th->fin)
6351				goto discard;
6352			/* It is possible that we process SYN packets from backlog,
6353			 * so we need to make sure to disable BH and RCU right there.
6354			 */
6355			rcu_read_lock();
6356			local_bh_disable();
6357			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6358			local_bh_enable();
6359			rcu_read_unlock();
6360
6361			if (!acceptable)
6362				return 1;
6363			consume_skb(skb);
6364			return 0;
6365		}
6366		goto discard;
6367
6368	case TCP_SYN_SENT:
6369		tp->rx_opt.saw_tstamp = 0;
6370		tcp_mstamp_refresh(tp);
6371		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6372		if (queued >= 0)
6373			return queued;
6374
6375		/* Do step6 onward by hand. */
6376		tcp_urg(sk, skb, th);
6377		__kfree_skb(skb);
6378		tcp_data_snd_check(sk);
6379		return 0;
6380	}
6381
6382	tcp_mstamp_refresh(tp);
6383	tp->rx_opt.saw_tstamp = 0;
6384	req = rcu_dereference_protected(tp->fastopen_rsk,
6385					lockdep_sock_is_held(sk));
6386	if (req) {
6387		bool req_stolen;
6388
6389		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6390		    sk->sk_state != TCP_FIN_WAIT1);
6391
6392		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6393			goto discard;
6394	}
6395
6396	if (!th->ack && !th->rst && !th->syn)
6397		goto discard;
6398
6399	if (!tcp_validate_incoming(sk, skb, th, 0))
6400		return 0;
6401
6402	/* step 5: check the ACK field */
6403	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6404				      FLAG_UPDATE_TS_RECENT |
6405				      FLAG_NO_CHALLENGE_ACK) > 0;
6406
6407	if (!acceptable) {
6408		if (sk->sk_state == TCP_SYN_RECV)
6409			return 1;	/* send one RST */
6410		tcp_send_challenge_ack(sk, skb);
6411		goto discard;
6412	}
6413	switch (sk->sk_state) {
6414	case TCP_SYN_RECV:
6415		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6416		if (!tp->srtt_us)
6417			tcp_synack_rtt_meas(sk, req);
6418
 
 
 
6419		if (req) {
6420			tcp_rcv_synrecv_state_fastopen(sk);
 
 
 
 
 
 
 
 
 
 
6421		} else {
6422			tcp_try_undo_spurious_syn(sk);
6423			tp->retrans_stamp = 0;
6424			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6425					  skb);
6426			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6427		}
6428		smp_mb();
6429		tcp_set_state(sk, TCP_ESTABLISHED);
6430		sk->sk_state_change(sk);
6431
6432		/* Note, that this wakeup is only for marginal crossed SYN case.
6433		 * Passively open sockets are not waked up, because
6434		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6435		 */
6436		if (sk->sk_socket)
6437			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6438
6439		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6440		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6441		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6442
6443		if (tp->rx_opt.tstamp_ok)
6444			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6445
6446		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6447			tcp_update_pacing_rate(sk);
6448
6449		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6450		tp->lsndtime = tcp_jiffies32;
6451
6452		tcp_initialize_rcv_mss(sk);
6453		tcp_fast_path_on(tp);
6454		break;
6455
6456	case TCP_FIN_WAIT1: {
6457		int tmo;
6458
6459		if (req)
6460			tcp_rcv_synrecv_state_fastopen(sk);
6461
 
 
 
 
 
 
 
6462		if (tp->snd_una != tp->write_seq)
6463			break;
6464
6465		tcp_set_state(sk, TCP_FIN_WAIT2);
6466		sk->sk_shutdown |= SEND_SHUTDOWN;
6467
6468		sk_dst_confirm(sk);
6469
6470		if (!sock_flag(sk, SOCK_DEAD)) {
6471			/* Wake up lingering close() */
6472			sk->sk_state_change(sk);
6473			break;
6474		}
6475
6476		if (tp->linger2 < 0) {
6477			tcp_done(sk);
6478			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6479			return 1;
6480		}
6481		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6482		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6483			/* Receive out of order FIN after close() */
6484			if (tp->syn_fastopen && th->fin)
6485				tcp_fastopen_active_disable(sk);
6486			tcp_done(sk);
6487			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6488			return 1;
6489		}
6490
6491		tmo = tcp_fin_time(sk);
6492		if (tmo > TCP_TIMEWAIT_LEN) {
6493			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6494		} else if (th->fin || sock_owned_by_user(sk)) {
6495			/* Bad case. We could lose such FIN otherwise.
6496			 * It is not a big problem, but it looks confusing
6497			 * and not so rare event. We still can lose it now,
6498			 * if it spins in bh_lock_sock(), but it is really
6499			 * marginal case.
6500			 */
6501			inet_csk_reset_keepalive_timer(sk, tmo);
6502		} else {
6503			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6504			goto discard;
6505		}
6506		break;
6507	}
6508
6509	case TCP_CLOSING:
6510		if (tp->snd_una == tp->write_seq) {
6511			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6512			goto discard;
6513		}
6514		break;
6515
6516	case TCP_LAST_ACK:
6517		if (tp->snd_una == tp->write_seq) {
6518			tcp_update_metrics(sk);
6519			tcp_done(sk);
6520			goto discard;
6521		}
6522		break;
6523	}
6524
6525	/* step 6: check the URG bit */
6526	tcp_urg(sk, skb, th);
6527
6528	/* step 7: process the segment text */
6529	switch (sk->sk_state) {
6530	case TCP_CLOSE_WAIT:
6531	case TCP_CLOSING:
6532	case TCP_LAST_ACK:
6533		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6534			/* If a subflow has been reset, the packet should not
6535			 * continue to be processed, drop the packet.
6536			 */
6537			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6538				goto discard;
6539			break;
6540		}
6541		fallthrough;
6542	case TCP_FIN_WAIT1:
6543	case TCP_FIN_WAIT2:
6544		/* RFC 793 says to queue data in these states,
6545		 * RFC 1122 says we MUST send a reset.
6546		 * BSD 4.4 also does reset.
6547		 */
6548		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6549			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6550			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6551				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6552				tcp_reset(sk, skb);
6553				return 1;
6554			}
6555		}
6556		fallthrough;
6557	case TCP_ESTABLISHED:
6558		tcp_data_queue(sk, skb);
6559		queued = 1;
6560		break;
6561	}
6562
6563	/* tcp_data could move socket to TIME-WAIT */
6564	if (sk->sk_state != TCP_CLOSE) {
6565		tcp_data_snd_check(sk);
6566		tcp_ack_snd_check(sk);
6567	}
6568
6569	if (!queued) {
6570discard:
6571		tcp_drop(sk, skb);
6572	}
6573	return 0;
6574}
6575EXPORT_SYMBOL(tcp_rcv_state_process);
6576
6577static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6578{
6579	struct inet_request_sock *ireq = inet_rsk(req);
6580
6581	if (family == AF_INET)
6582		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6583				    &ireq->ir_rmt_addr, port);
6584#if IS_ENABLED(CONFIG_IPV6)
6585	else if (family == AF_INET6)
6586		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6587				    &ireq->ir_v6_rmt_addr, port);
6588#endif
6589}
6590
6591/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6592 *
6593 * If we receive a SYN packet with these bits set, it means a
6594 * network is playing bad games with TOS bits. In order to
6595 * avoid possible false congestion notifications, we disable
6596 * TCP ECN negotiation.
6597 *
6598 * Exception: tcp_ca wants ECN. This is required for DCTCP
6599 * congestion control: Linux DCTCP asserts ECT on all packets,
6600 * including SYN, which is most optimal solution; however,
6601 * others, such as FreeBSD do not.
6602 *
6603 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6604 * set, indicating the use of a future TCP extension (such as AccECN). See
6605 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6606 * extensions.
6607 */
6608static void tcp_ecn_create_request(struct request_sock *req,
6609				   const struct sk_buff *skb,
6610				   const struct sock *listen_sk,
6611				   const struct dst_entry *dst)
6612{
6613	const struct tcphdr *th = tcp_hdr(skb);
6614	const struct net *net = sock_net(listen_sk);
6615	bool th_ecn = th->ece && th->cwr;
6616	bool ect, ecn_ok;
6617	u32 ecn_ok_dst;
6618
6619	if (!th_ecn)
6620		return;
6621
6622	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6623	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6624	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6625
6626	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6627	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6628	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6629		inet_rsk(req)->ecn_ok = 1;
6630}
6631
6632static void tcp_openreq_init(struct request_sock *req,
6633			     const struct tcp_options_received *rx_opt,
6634			     struct sk_buff *skb, const struct sock *sk)
6635{
6636	struct inet_request_sock *ireq = inet_rsk(req);
6637
6638	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
 
6639	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6640	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6641	tcp_rsk(req)->snt_synack = 0;
6642	tcp_rsk(req)->last_oow_ack_time = 0;
6643	req->mss = rx_opt->mss_clamp;
6644	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6645	ireq->tstamp_ok = rx_opt->tstamp_ok;
6646	ireq->sack_ok = rx_opt->sack_ok;
6647	ireq->snd_wscale = rx_opt->snd_wscale;
6648	ireq->wscale_ok = rx_opt->wscale_ok;
6649	ireq->acked = 0;
6650	ireq->ecn_ok = 0;
6651	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6652	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6653	ireq->ir_mark = inet_request_mark(sk, skb);
6654#if IS_ENABLED(CONFIG_SMC)
6655	ireq->smc_ok = rx_opt->smc_ok;
6656#endif
6657}
6658
6659struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6660				      struct sock *sk_listener,
6661				      bool attach_listener)
6662{
6663	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6664					       attach_listener);
6665
6666	if (req) {
6667		struct inet_request_sock *ireq = inet_rsk(req);
6668
6669		ireq->ireq_opt = NULL;
6670#if IS_ENABLED(CONFIG_IPV6)
6671		ireq->pktopts = NULL;
6672#endif
6673		atomic64_set(&ireq->ir_cookie, 0);
6674		ireq->ireq_state = TCP_NEW_SYN_RECV;
6675		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6676		ireq->ireq_family = sk_listener->sk_family;
6677	}
6678
6679	return req;
6680}
6681EXPORT_SYMBOL(inet_reqsk_alloc);
6682
6683/*
6684 * Return true if a syncookie should be sent
6685 */
6686static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
 
 
6687{
6688	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6689	const char *msg = "Dropping request";
6690	bool want_cookie = false;
6691	struct net *net = sock_net(sk);
6692
6693#ifdef CONFIG_SYN_COOKIES
6694	if (net->ipv4.sysctl_tcp_syncookies) {
6695		msg = "Sending cookies";
6696		want_cookie = true;
6697		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6698	} else
6699#endif
6700		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6701
6702	if (!queue->synflood_warned &&
6703	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6704	    xchg(&queue->synflood_warned, 1) == 0)
6705		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6706				     proto, sk->sk_num, msg);
6707
6708	return want_cookie;
6709}
6710
6711static void tcp_reqsk_record_syn(const struct sock *sk,
6712				 struct request_sock *req,
6713				 const struct sk_buff *skb)
6714{
6715	if (tcp_sk(sk)->save_syn) {
6716		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6717		struct saved_syn *saved_syn;
6718		u32 mac_hdrlen;
6719		void *base;
6720
6721		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6722			base = skb_mac_header(skb);
6723			mac_hdrlen = skb_mac_header_len(skb);
6724			len += mac_hdrlen;
6725		} else {
6726			base = skb_network_header(skb);
6727			mac_hdrlen = 0;
6728		}
6729
6730		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6731				    GFP_ATOMIC);
6732		if (saved_syn) {
6733			saved_syn->mac_hdrlen = mac_hdrlen;
6734			saved_syn->network_hdrlen = skb_network_header_len(skb);
6735			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6736			memcpy(saved_syn->data, base, len);
6737			req->saved_syn = saved_syn;
6738		}
6739	}
6740}
6741
6742/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6743 * used for SYN cookie generation.
6744 */
6745u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6746			  const struct tcp_request_sock_ops *af_ops,
6747			  struct sock *sk, struct tcphdr *th)
6748{
6749	struct tcp_sock *tp = tcp_sk(sk);
6750	u16 mss;
6751
6752	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6753	    !inet_csk_reqsk_queue_is_full(sk))
6754		return 0;
6755
6756	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6757		return 0;
6758
6759	if (sk_acceptq_is_full(sk)) {
6760		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6761		return 0;
6762	}
6763
6764	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6765	if (!mss)
6766		mss = af_ops->mss_clamp;
6767
6768	return mss;
6769}
6770EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6771
6772int tcp_conn_request(struct request_sock_ops *rsk_ops,
6773		     const struct tcp_request_sock_ops *af_ops,
6774		     struct sock *sk, struct sk_buff *skb)
6775{
6776	struct tcp_fastopen_cookie foc = { .len = -1 };
6777	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6778	struct tcp_options_received tmp_opt;
6779	struct tcp_sock *tp = tcp_sk(sk);
6780	struct net *net = sock_net(sk);
6781	struct sock *fastopen_sk = NULL;
6782	struct request_sock *req;
6783	bool want_cookie = false;
6784	struct dst_entry *dst;
6785	struct flowi fl;
6786
6787	/* TW buckets are converted to open requests without
6788	 * limitations, they conserve resources and peer is
6789	 * evidently real one.
6790	 */
6791	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6792	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6793		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6794		if (!want_cookie)
6795			goto drop;
6796	}
6797
6798	if (sk_acceptq_is_full(sk)) {
6799		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6800		goto drop;
6801	}
6802
6803	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6804	if (!req)
6805		goto drop;
6806
6807	req->syncookie = want_cookie;
6808	tcp_rsk(req)->af_specific = af_ops;
6809	tcp_rsk(req)->ts_off = 0;
6810#if IS_ENABLED(CONFIG_MPTCP)
6811	tcp_rsk(req)->is_mptcp = 0;
6812#endif
6813
6814	tcp_clear_options(&tmp_opt);
6815	tmp_opt.mss_clamp = af_ops->mss_clamp;
6816	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6817	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6818			  want_cookie ? NULL : &foc);
6819
6820	if (want_cookie && !tmp_opt.saw_tstamp)
6821		tcp_clear_options(&tmp_opt);
6822
6823	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6824		tmp_opt.smc_ok = 0;
6825
6826	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6827	tcp_openreq_init(req, &tmp_opt, skb, sk);
6828	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6829
6830	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6831	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6832
6833	dst = af_ops->route_req(sk, skb, &fl, req);
6834	if (!dst)
 
6835		goto drop_and_free;
6836
6837	if (tmp_opt.tstamp_ok)
6838		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6839
 
 
 
 
6840	if (!want_cookie && !isn) {
6841		/* Kill the following clause, if you dislike this way. */
6842		if (!net->ipv4.sysctl_tcp_syncookies &&
6843		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6844		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6845		    !tcp_peer_is_proven(req, dst)) {
6846			/* Without syncookies last quarter of
6847			 * backlog is filled with destinations,
6848			 * proven to be alive.
6849			 * It means that we continue to communicate
6850			 * to destinations, already remembered
6851			 * to the moment of synflood.
6852			 */
6853			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6854				    rsk_ops->family);
6855			goto drop_and_release;
6856		}
6857
6858		isn = af_ops->init_seq(skb);
6859	}
6860
6861	tcp_ecn_create_request(req, skb, sk, dst);
6862
6863	if (want_cookie) {
6864		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
 
6865		if (!tmp_opt.tstamp_ok)
6866			inet_rsk(req)->ecn_ok = 0;
6867	}
6868
6869	tcp_rsk(req)->snt_isn = isn;
6870	tcp_rsk(req)->txhash = net_tx_rndhash();
6871	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6872	tcp_openreq_init_rwin(req, sk, dst);
6873	sk_rx_queue_set(req_to_sk(req), skb);
6874	if (!want_cookie) {
6875		tcp_reqsk_record_syn(sk, req, skb);
6876		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6877	}
6878	if (fastopen_sk) {
6879		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6880				    &foc, TCP_SYNACK_FASTOPEN, skb);
6881		/* Add the child socket directly into the accept queue */
6882		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6883			reqsk_fastopen_remove(fastopen_sk, req, false);
6884			bh_unlock_sock(fastopen_sk);
6885			sock_put(fastopen_sk);
6886			goto drop_and_free;
6887		}
6888		sk->sk_data_ready(sk);
6889		bh_unlock_sock(fastopen_sk);
6890		sock_put(fastopen_sk);
6891	} else {
6892		tcp_rsk(req)->tfo_listener = false;
6893		if (!want_cookie)
6894			inet_csk_reqsk_queue_hash_add(sk, req,
6895				tcp_timeout_init((struct sock *)req));
6896		af_ops->send_synack(sk, dst, &fl, req, &foc,
6897				    !want_cookie ? TCP_SYNACK_NORMAL :
6898						   TCP_SYNACK_COOKIE,
6899				    skb);
6900		if (want_cookie) {
6901			reqsk_free(req);
6902			return 0;
6903		}
6904	}
6905	reqsk_put(req);
6906	return 0;
6907
6908drop_and_release:
6909	dst_release(dst);
6910drop_and_free:
6911	__reqsk_free(req);
6912drop:
6913	tcp_listendrop(sk);
6914	return 0;
6915}
6916EXPORT_SYMBOL(tcp_conn_request);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *		Pedro Roque	:	Fast Retransmit/Recovery.
  25 *					Two receive queues.
  26 *					Retransmit queue handled by TCP.
  27 *					Better retransmit timer handling.
  28 *					New congestion avoidance.
  29 *					Header prediction.
  30 *					Variable renaming.
  31 *
  32 *		Eric		:	Fast Retransmit.
  33 *		Randy Scott	:	MSS option defines.
  34 *		Eric Schenk	:	Fixes to slow start algorithm.
  35 *		Eric Schenk	:	Yet another double ACK bug.
  36 *		Eric Schenk	:	Delayed ACK bug fixes.
  37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  38 *		David S. Miller	:	Don't allow zero congestion window.
  39 *		Eric Schenk	:	Fix retransmitter so that it sends
  40 *					next packet on ack of previous packet.
  41 *		Andi Kleen	:	Moved open_request checking here
  42 *					and process RSTs for open_requests.
  43 *		Andi Kleen	:	Better prune_queue, and other fixes.
  44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  45 *					timestamps.
  46 *		Andrey Savochkin:	Check sequence numbers correctly when
  47 *					removing SACKs due to in sequence incoming
  48 *					data segments.
  49 *		Andi Kleen:		Make sure we never ack data there is not
  50 *					enough room for. Also make this condition
  51 *					a fatal error if it might still happen.
  52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  53 *					connections with MSS<min(MTU,ann. MSS)
  54 *					work without delayed acks.
  55 *		Andi Kleen:		Process packets with PSH set in the
  56 *					fast path.
  57 *		J Hadi Salim:		ECN support
  58 *	 	Andrei Gurtov,
  59 *		Pasi Sarolahti,
  60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  61 *					engine. Lots of bugs are found.
  62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/static_key.h>
 
 
  81
  82int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  83
  84#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
  85#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
  86#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
  87#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
  88#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
  89#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
  90#define FLAG_ECE		0x40 /* ECE in this ACK				*/
  91#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
  92#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
  93#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
  94#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  95#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
  96#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
  97#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
  98#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
  99#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
 100#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
 101
 102#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 103#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 104#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 105#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 106
 107#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 108#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 109
 110#define REXMIT_NONE	0 /* no loss recovery to do */
 111#define REXMIT_LOST	1 /* retransmit packets marked lost */
 112#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 115			     unsigned int len)
 116{
 117	static bool __once __read_mostly;
 118
 119	if (!__once) {
 120		struct net_device *dev;
 121
 122		__once = true;
 123
 124		rcu_read_lock();
 125		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 126		if (!dev || len >= dev->mtu)
 127			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 128				dev ? dev->name : "Unknown driver");
 129		rcu_read_unlock();
 130	}
 131}
 132
 133/* Adapt the MSS value used to make delayed ack decision to the
 134 * real world.
 135 */
 136static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 137{
 138	struct inet_connection_sock *icsk = inet_csk(sk);
 139	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 140	unsigned int len;
 141
 142	icsk->icsk_ack.last_seg_size = 0;
 143
 144	/* skb->len may jitter because of SACKs, even if peer
 145	 * sends good full-sized frames.
 146	 */
 147	len = skb_shinfo(skb)->gso_size ? : skb->len;
 148	if (len >= icsk->icsk_ack.rcv_mss) {
 149		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 150					       tcp_sk(sk)->advmss);
 151		/* Account for possibly-removed options */
 152		if (unlikely(len > icsk->icsk_ack.rcv_mss +
 153				   MAX_TCP_OPTION_SPACE))
 154			tcp_gro_dev_warn(sk, skb, len);
 155	} else {
 156		/* Otherwise, we make more careful check taking into account,
 157		 * that SACKs block is variable.
 158		 *
 159		 * "len" is invariant segment length, including TCP header.
 160		 */
 161		len += skb->data - skb_transport_header(skb);
 162		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 163		    /* If PSH is not set, packet should be
 164		     * full sized, provided peer TCP is not badly broken.
 165		     * This observation (if it is correct 8)) allows
 166		     * to handle super-low mtu links fairly.
 167		     */
 168		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 169		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 170			/* Subtract also invariant (if peer is RFC compliant),
 171			 * tcp header plus fixed timestamp option length.
 172			 * Resulting "len" is MSS free of SACK jitter.
 173			 */
 174			len -= tcp_sk(sk)->tcp_header_len;
 175			icsk->icsk_ack.last_seg_size = len;
 176			if (len == lss) {
 177				icsk->icsk_ack.rcv_mss = len;
 178				return;
 179			}
 180		}
 181		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 182			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 183		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 184	}
 185}
 186
 187static void tcp_incr_quickack(struct sock *sk)
 188{
 189	struct inet_connection_sock *icsk = inet_csk(sk);
 190	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 191
 192	if (quickacks == 0)
 193		quickacks = 2;
 
 194	if (quickacks > icsk->icsk_ack.quick)
 195		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 196}
 197
 198static void tcp_enter_quickack_mode(struct sock *sk)
 199{
 200	struct inet_connection_sock *icsk = inet_csk(sk);
 201	tcp_incr_quickack(sk);
 202	icsk->icsk_ack.pingpong = 0;
 
 203	icsk->icsk_ack.ato = TCP_ATO_MIN;
 204}
 
 205
 206/* Send ACKs quickly, if "quick" count is not exhausted
 207 * and the session is not interactive.
 208 */
 209
 210static bool tcp_in_quickack_mode(struct sock *sk)
 211{
 212	const struct inet_connection_sock *icsk = inet_csk(sk);
 213	const struct dst_entry *dst = __sk_dst_get(sk);
 214
 215	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 216		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 217}
 218
 219static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 220{
 221	if (tp->ecn_flags & TCP_ECN_OK)
 222		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 223}
 224
 225static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 226{
 227	if (tcp_hdr(skb)->cwr)
 228		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 
 
 
 
 
 
 
 
 229}
 230
 231static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 232{
 233	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 234}
 235
 236static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 237{
 
 
 238	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 239	case INET_ECN_NOT_ECT:
 240		/* Funny extension: if ECT is not set on a segment,
 241		 * and we already seen ECT on a previous segment,
 242		 * it is probably a retransmit.
 243		 */
 244		if (tp->ecn_flags & TCP_ECN_SEEN)
 245			tcp_enter_quickack_mode((struct sock *)tp);
 246		break;
 247	case INET_ECN_CE:
 248		if (tcp_ca_needs_ecn((struct sock *)tp))
 249			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 250
 251		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 252			/* Better not delay acks, sender can have a very low cwnd */
 253			tcp_enter_quickack_mode((struct sock *)tp);
 254			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 255		}
 256		tp->ecn_flags |= TCP_ECN_SEEN;
 257		break;
 258	default:
 259		if (tcp_ca_needs_ecn((struct sock *)tp))
 260			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 261		tp->ecn_flags |= TCP_ECN_SEEN;
 262		break;
 263	}
 264}
 265
 266static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 267{
 268	if (tp->ecn_flags & TCP_ECN_OK)
 269		__tcp_ecn_check_ce(tp, skb);
 270}
 271
 272static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 273{
 274	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 275		tp->ecn_flags &= ~TCP_ECN_OK;
 276}
 277
 278static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 279{
 280	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 281		tp->ecn_flags &= ~TCP_ECN_OK;
 282}
 283
 284static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 285{
 286	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 287		return true;
 288	return false;
 289}
 290
 291/* Buffer size and advertised window tuning.
 292 *
 293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 294 */
 295
 296static void tcp_sndbuf_expand(struct sock *sk)
 297{
 298	const struct tcp_sock *tp = tcp_sk(sk);
 299	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 300	int sndmem, per_mss;
 301	u32 nr_segs;
 302
 303	/* Worst case is non GSO/TSO : each frame consumes one skb
 304	 * and skb->head is kmalloced using power of two area of memory
 305	 */
 306	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 307		  MAX_TCP_HEADER +
 308		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 309
 310	per_mss = roundup_pow_of_two(per_mss) +
 311		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 312
 313	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 314	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 315
 316	/* Fast Recovery (RFC 5681 3.2) :
 317	 * Cubic needs 1.7 factor, rounded to 2 to include
 318	 * extra cushion (application might react slowly to EPOLLOUT)
 319	 */
 320	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 321	sndmem *= nr_segs * per_mss;
 322
 323	if (sk->sk_sndbuf < sndmem)
 324		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
 
 325}
 326
 327/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 328 *
 329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 330 * forward and advertised in receiver window (tp->rcv_wnd) and
 331 * "application buffer", required to isolate scheduling/application
 332 * latencies from network.
 333 * window_clamp is maximal advertised window. It can be less than
 334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 335 * is reserved for "application" buffer. The less window_clamp is
 336 * the smoother our behaviour from viewpoint of network, but the lower
 337 * throughput and the higher sensitivity of the connection to losses. 8)
 338 *
 339 * rcv_ssthresh is more strict window_clamp used at "slow start"
 340 * phase to predict further behaviour of this connection.
 341 * It is used for two goals:
 342 * - to enforce header prediction at sender, even when application
 343 *   requires some significant "application buffer". It is check #1.
 344 * - to prevent pruning of receive queue because of misprediction
 345 *   of receiver window. Check #2.
 346 *
 347 * The scheme does not work when sender sends good segments opening
 348 * window and then starts to feed us spaghetti. But it should work
 349 * in common situations. Otherwise, we have to rely on queue collapsing.
 350 */
 351
 352/* Slow part of check#2. */
 353static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 354{
 355	struct tcp_sock *tp = tcp_sk(sk);
 356	/* Optimize this! */
 357	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 358	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 359
 360	while (tp->rcv_ssthresh <= window) {
 361		if (truesize <= skb->len)
 362			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 363
 364		truesize >>= 1;
 365		window >>= 1;
 366	}
 367	return 0;
 368}
 369
 370static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 371{
 372	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 373
 374	/* Check #1 */
 375	if (tp->rcv_ssthresh < tp->window_clamp &&
 376	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 377	    !tcp_under_memory_pressure(sk)) {
 378		int incr;
 379
 380		/* Check #2. Increase window, if skb with such overhead
 381		 * will fit to rcvbuf in future.
 382		 */
 383		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 384			incr = 2 * tp->advmss;
 385		else
 386			incr = __tcp_grow_window(sk, skb);
 387
 388		if (incr) {
 389			incr = max_t(int, incr, 2 * skb->len);
 390			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 391					       tp->window_clamp);
 392			inet_csk(sk)->icsk_ack.quick |= 1;
 393		}
 394	}
 395}
 396
 397/* 3. Tuning rcvbuf, when connection enters established state. */
 398static void tcp_fixup_rcvbuf(struct sock *sk)
 399{
 400	u32 mss = tcp_sk(sk)->advmss;
 401	int rcvmem;
 402
 403	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 404		 tcp_default_init_rwnd(mss);
 405
 406	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 407	 * Allow enough cushion so that sender is not limited by our window
 408	 */
 409	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
 410		rcvmem <<= 2;
 411
 412	if (sk->sk_rcvbuf < rcvmem)
 413		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 414}
 415
 416/* 4. Try to fixup all. It is made immediately after connection enters
 417 *    established state.
 418 */
 419void tcp_init_buffer_space(struct sock *sk)
 420{
 421	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 422	struct tcp_sock *tp = tcp_sk(sk);
 423	int maxwin;
 424
 425	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 426		tcp_fixup_rcvbuf(sk);
 427	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 428		tcp_sndbuf_expand(sk);
 429
 430	tp->rcvq_space.space = tp->rcv_wnd;
 431	tcp_mstamp_refresh(tp);
 432	tp->rcvq_space.time = tp->tcp_mstamp;
 433	tp->rcvq_space.seq = tp->copied_seq;
 434
 435	maxwin = tcp_full_space(sk);
 436
 437	if (tp->window_clamp >= maxwin) {
 438		tp->window_clamp = maxwin;
 439
 440		if (tcp_app_win && maxwin > 4 * tp->advmss)
 441			tp->window_clamp = max(maxwin -
 442					       (maxwin >> tcp_app_win),
 443					       4 * tp->advmss);
 444	}
 445
 446	/* Force reservation of one segment. */
 447	if (tcp_app_win &&
 448	    tp->window_clamp > 2 * tp->advmss &&
 449	    tp->window_clamp + tp->advmss > maxwin)
 450		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 451
 452	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 453	tp->snd_cwnd_stamp = tcp_jiffies32;
 
 
 454}
 455
 456/* 5. Recalculate window clamp after socket hit its memory bounds. */
 457static void tcp_clamp_window(struct sock *sk)
 458{
 459	struct tcp_sock *tp = tcp_sk(sk);
 460	struct inet_connection_sock *icsk = inet_csk(sk);
 461	struct net *net = sock_net(sk);
 462
 463	icsk->icsk_ack.quick = 0;
 464
 465	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 466	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 467	    !tcp_under_memory_pressure(sk) &&
 468	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 469		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 470				    net->ipv4.sysctl_tcp_rmem[2]);
 
 471	}
 472	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 473		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 474}
 475
 476/* Initialize RCV_MSS value.
 477 * RCV_MSS is an our guess about MSS used by the peer.
 478 * We haven't any direct information about the MSS.
 479 * It's better to underestimate the RCV_MSS rather than overestimate.
 480 * Overestimations make us ACKing less frequently than needed.
 481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 482 */
 483void tcp_initialize_rcv_mss(struct sock *sk)
 484{
 485	const struct tcp_sock *tp = tcp_sk(sk);
 486	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 487
 488	hint = min(hint, tp->rcv_wnd / 2);
 489	hint = min(hint, TCP_MSS_DEFAULT);
 490	hint = max(hint, TCP_MIN_MSS);
 491
 492	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 493}
 494EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 495
 496/* Receiver "autotuning" code.
 497 *
 498 * The algorithm for RTT estimation w/o timestamps is based on
 499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 501 *
 502 * More detail on this code can be found at
 503 * <http://staff.psc.edu/jheffner/>,
 504 * though this reference is out of date.  A new paper
 505 * is pending.
 506 */
 507static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 508{
 509	u32 new_sample = tp->rcv_rtt_est.rtt_us;
 510	long m = sample;
 511
 512	if (new_sample != 0) {
 513		/* If we sample in larger samples in the non-timestamp
 514		 * case, we could grossly overestimate the RTT especially
 515		 * with chatty applications or bulk transfer apps which
 516		 * are stalled on filesystem I/O.
 517		 *
 518		 * Also, since we are only going for a minimum in the
 519		 * non-timestamp case, we do not smooth things out
 520		 * else with timestamps disabled convergence takes too
 521		 * long.
 522		 */
 523		if (!win_dep) {
 524			m -= (new_sample >> 3);
 525			new_sample += m;
 526		} else {
 527			m <<= 3;
 528			if (m < new_sample)
 529				new_sample = m;
 530		}
 531	} else {
 532		/* No previous measure. */
 533		new_sample = m << 3;
 534	}
 535
 536	tp->rcv_rtt_est.rtt_us = new_sample;
 537}
 538
 539static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 540{
 541	u32 delta_us;
 542
 543	if (tp->rcv_rtt_est.time == 0)
 544		goto new_measure;
 545	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 546		return;
 547	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 548	if (!delta_us)
 549		delta_us = 1;
 550	tcp_rcv_rtt_update(tp, delta_us, 1);
 551
 552new_measure:
 553	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 554	tp->rcv_rtt_est.time = tp->tcp_mstamp;
 555}
 556
 557static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 558					  const struct sk_buff *skb)
 559{
 560	struct tcp_sock *tp = tcp_sk(sk);
 561
 562	if (tp->rx_opt.rcv_tsecr &&
 563	    (TCP_SKB_CB(skb)->end_seq -
 564	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
 
 
 
 565		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 566		u32 delta_us;
 567
 568		if (!delta)
 569			delta = 1;
 570		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 571		tcp_rcv_rtt_update(tp, delta_us, 0);
 
 
 572	}
 573}
 574
 575/*
 576 * This function should be called every time data is copied to user space.
 577 * It calculates the appropriate TCP receive buffer space.
 578 */
 579void tcp_rcv_space_adjust(struct sock *sk)
 580{
 581	struct tcp_sock *tp = tcp_sk(sk);
 582	u32 copied;
 583	int time;
 584
 
 
 585	tcp_mstamp_refresh(tp);
 586	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 587	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 588		return;
 589
 590	/* Number of bytes copied to user in last RTT */
 591	copied = tp->copied_seq - tp->rcvq_space.seq;
 592	if (copied <= tp->rcvq_space.space)
 593		goto new_measure;
 594
 595	/* A bit of theory :
 596	 * copied = bytes received in previous RTT, our base window
 597	 * To cope with packet losses, we need a 2x factor
 598	 * To cope with slow start, and sender growing its cwin by 100 %
 599	 * every RTT, we need a 4x factor, because the ACK we are sending
 600	 * now is for the next RTT, not the current one :
 601	 * <prev RTT . ><current RTT .. ><next RTT .... >
 602	 */
 603
 604	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 605	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 606		int rcvmem, rcvbuf;
 607		u64 rcvwin, grow;
 608
 609		/* minimal window to cope with packet losses, assuming
 610		 * steady state. Add some cushion because of small variations.
 611		 */
 612		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 613
 614		/* Accommodate for sender rate increase (eg. slow start) */
 615		grow = rcvwin * (copied - tp->rcvq_space.space);
 616		do_div(grow, tp->rcvq_space.space);
 617		rcvwin += (grow << 1);
 618
 619		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 620		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 621			rcvmem += 128;
 622
 623		do_div(rcvwin, tp->advmss);
 624		rcvbuf = min_t(u64, rcvwin * rcvmem,
 625			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 626		if (rcvbuf > sk->sk_rcvbuf) {
 627			sk->sk_rcvbuf = rcvbuf;
 628
 629			/* Make the window clamp follow along.  */
 630			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 631		}
 632	}
 633	tp->rcvq_space.space = copied;
 634
 635new_measure:
 636	tp->rcvq_space.seq = tp->copied_seq;
 637	tp->rcvq_space.time = tp->tcp_mstamp;
 638}
 639
 640/* There is something which you must keep in mind when you analyze the
 641 * behavior of the tp->ato delayed ack timeout interval.  When a
 642 * connection starts up, we want to ack as quickly as possible.  The
 643 * problem is that "good" TCP's do slow start at the beginning of data
 644 * transmission.  The means that until we send the first few ACK's the
 645 * sender will sit on his end and only queue most of his data, because
 646 * he can only send snd_cwnd unacked packets at any given time.  For
 647 * each ACK we send, he increments snd_cwnd and transmits more of his
 648 * queue.  -DaveM
 649 */
 650static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 651{
 652	struct tcp_sock *tp = tcp_sk(sk);
 653	struct inet_connection_sock *icsk = inet_csk(sk);
 654	u32 now;
 655
 656	inet_csk_schedule_ack(sk);
 657
 658	tcp_measure_rcv_mss(sk, skb);
 659
 660	tcp_rcv_rtt_measure(tp);
 661
 662	now = tcp_jiffies32;
 663
 664	if (!icsk->icsk_ack.ato) {
 665		/* The _first_ data packet received, initialize
 666		 * delayed ACK engine.
 667		 */
 668		tcp_incr_quickack(sk);
 669		icsk->icsk_ack.ato = TCP_ATO_MIN;
 670	} else {
 671		int m = now - icsk->icsk_ack.lrcvtime;
 672
 673		if (m <= TCP_ATO_MIN / 2) {
 674			/* The fastest case is the first. */
 675			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 676		} else if (m < icsk->icsk_ack.ato) {
 677			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 678			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 679				icsk->icsk_ack.ato = icsk->icsk_rto;
 680		} else if (m > icsk->icsk_rto) {
 681			/* Too long gap. Apparently sender failed to
 682			 * restart window, so that we send ACKs quickly.
 683			 */
 684			tcp_incr_quickack(sk);
 685			sk_mem_reclaim(sk);
 686		}
 687	}
 688	icsk->icsk_ack.lrcvtime = now;
 689
 690	tcp_ecn_check_ce(tp, skb);
 691
 692	if (skb->len >= 128)
 693		tcp_grow_window(sk, skb);
 694}
 695
 696/* Called to compute a smoothed rtt estimate. The data fed to this
 697 * routine either comes from timestamps, or from segments that were
 698 * known _not_ to have been retransmitted [see Karn/Partridge
 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 700 * piece by Van Jacobson.
 701 * NOTE: the next three routines used to be one big routine.
 702 * To save cycles in the RFC 1323 implementation it was better to break
 703 * it up into three procedures. -- erics
 704 */
 705static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 706{
 707	struct tcp_sock *tp = tcp_sk(sk);
 708	long m = mrtt_us; /* RTT */
 709	u32 srtt = tp->srtt_us;
 710
 711	/*	The following amusing code comes from Jacobson's
 712	 *	article in SIGCOMM '88.  Note that rtt and mdev
 713	 *	are scaled versions of rtt and mean deviation.
 714	 *	This is designed to be as fast as possible
 715	 *	m stands for "measurement".
 716	 *
 717	 *	On a 1990 paper the rto value is changed to:
 718	 *	RTO = rtt + 4 * mdev
 719	 *
 720	 * Funny. This algorithm seems to be very broken.
 721	 * These formulae increase RTO, when it should be decreased, increase
 722	 * too slowly, when it should be increased quickly, decrease too quickly
 723	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 724	 * does not matter how to _calculate_ it. Seems, it was trap
 725	 * that VJ failed to avoid. 8)
 726	 */
 727	if (srtt != 0) {
 728		m -= (srtt >> 3);	/* m is now error in rtt est */
 729		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 730		if (m < 0) {
 731			m = -m;		/* m is now abs(error) */
 732			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 733			/* This is similar to one of Eifel findings.
 734			 * Eifel blocks mdev updates when rtt decreases.
 735			 * This solution is a bit different: we use finer gain
 736			 * for mdev in this case (alpha*beta).
 737			 * Like Eifel it also prevents growth of rto,
 738			 * but also it limits too fast rto decreases,
 739			 * happening in pure Eifel.
 740			 */
 741			if (m > 0)
 742				m >>= 3;
 743		} else {
 744			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 745		}
 746		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 747		if (tp->mdev_us > tp->mdev_max_us) {
 748			tp->mdev_max_us = tp->mdev_us;
 749			if (tp->mdev_max_us > tp->rttvar_us)
 750				tp->rttvar_us = tp->mdev_max_us;
 751		}
 752		if (after(tp->snd_una, tp->rtt_seq)) {
 753			if (tp->mdev_max_us < tp->rttvar_us)
 754				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 755			tp->rtt_seq = tp->snd_nxt;
 756			tp->mdev_max_us = tcp_rto_min_us(sk);
 
 
 757		}
 758	} else {
 759		/* no previous measure. */
 760		srtt = m << 3;		/* take the measured time to be rtt */
 761		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 762		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 763		tp->mdev_max_us = tp->rttvar_us;
 764		tp->rtt_seq = tp->snd_nxt;
 
 
 765	}
 766	tp->srtt_us = max(1U, srtt);
 767}
 768
 769static void tcp_update_pacing_rate(struct sock *sk)
 770{
 771	const struct tcp_sock *tp = tcp_sk(sk);
 772	u64 rate;
 773
 774	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 775	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 776
 777	/* current rate is (cwnd * mss) / srtt
 778	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 779	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 780	 *
 781	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 782	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 783	 *	 end of slow start and should slow down.
 784	 */
 785	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 786		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 787	else
 788		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 789
 790	rate *= max(tp->snd_cwnd, tp->packets_out);
 791
 792	if (likely(tp->srtt_us))
 793		do_div(rate, tp->srtt_us);
 794
 795	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 796	 * without any lock. We want to make sure compiler wont store
 797	 * intermediate values in this location.
 798	 */
 799	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 800					     sk->sk_max_pacing_rate));
 801}
 802
 803/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 804 * routine referred to above.
 805 */
 806static void tcp_set_rto(struct sock *sk)
 807{
 808	const struct tcp_sock *tp = tcp_sk(sk);
 809	/* Old crap is replaced with new one. 8)
 810	 *
 811	 * More seriously:
 812	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 813	 *    It cannot be less due to utterly erratic ACK generation made
 814	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 815	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 816	 *    is invisible. Actually, Linux-2.4 also generates erratic
 817	 *    ACKs in some circumstances.
 818	 */
 819	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 820
 821	/* 2. Fixups made earlier cannot be right.
 822	 *    If we do not estimate RTO correctly without them,
 823	 *    all the algo is pure shit and should be replaced
 824	 *    with correct one. It is exactly, which we pretend to do.
 825	 */
 826
 827	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 828	 * guarantees that rto is higher.
 829	 */
 830	tcp_bound_rto(sk);
 831}
 832
 833__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 834{
 835	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 836
 837	if (!cwnd)
 838		cwnd = TCP_INIT_CWND;
 839	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 840}
 841
 842/* Take a notice that peer is sending D-SACKs */
 843static void tcp_dsack_seen(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 846	tp->rack.dsack_seen = 1;
 
 
 
 
 
 
 847}
 848
 849/* It's reordering when higher sequence was delivered (i.e. sacked) before
 850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 851 * distance is approximated in full-mss packet distance ("reordering").
 852 */
 853static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 854				      const int ts)
 855{
 856	struct tcp_sock *tp = tcp_sk(sk);
 857	const u32 mss = tp->mss_cache;
 858	u32 fack, metric;
 859
 860	fack = tcp_highest_sack_seq(tp);
 861	if (!before(low_seq, fack))
 862		return;
 863
 864	metric = fack - low_seq;
 865	if ((metric > tp->reordering * mss) && mss) {
 866#if FASTRETRANS_DEBUG > 1
 867		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 868			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 869			 tp->reordering,
 870			 0,
 871			 tp->sacked_out,
 872			 tp->undo_marker ? tp->undo_retrans : 0);
 873#endif
 874		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 875				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 876	}
 877
 878	tp->rack.reord = 1;
 879	/* This exciting event is worth to be remembered. 8) */
 
 880	NET_INC_STATS(sock_net(sk),
 881		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 882}
 883
 884/* This must be called before lost_out is incremented */
 
 
 
 
 885static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 886{
 887	if (!tp->retransmit_skb_hint ||
 888	    before(TCP_SKB_CB(skb)->seq,
 889		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 
 890		tp->retransmit_skb_hint = skb;
 891}
 892
 893/* Sum the number of packets on the wire we have marked as lost.
 894 * There are two cases we care about here:
 895 * a) Packet hasn't been marked lost (nor retransmitted),
 896 *    and this is the first loss.
 897 * b) Packet has been marked both lost and retransmitted,
 898 *    and this means we think it was lost again.
 899 */
 900static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 901{
 902	__u8 sacked = TCP_SKB_CB(skb)->sacked;
 903
 904	if (!(sacked & TCPCB_LOST) ||
 905	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 906		tp->lost += tcp_skb_pcount(skb);
 907}
 908
 909static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 910{
 911	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 912		tcp_verify_retransmit_hint(tp, skb);
 
 
 
 913
 
 
 
 
 
 
 
 
 
 
 
 914		tp->lost_out += tcp_skb_pcount(skb);
 915		tcp_sum_lost(tp, skb);
 916		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 
 917	}
 918}
 919
 920void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 
 921{
 922	tcp_verify_retransmit_hint(tp, skb);
 923
 924	tcp_sum_lost(tp, skb);
 925	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 926		tp->lost_out += tcp_skb_pcount(skb);
 927		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 928	}
 929}
 930
 931/* This procedure tags the retransmission queue when SACKs arrive.
 932 *
 933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 934 * Packets in queue with these bits set are counted in variables
 935 * sacked_out, retrans_out and lost_out, correspondingly.
 936 *
 937 * Valid combinations are:
 938 * Tag  InFlight	Description
 939 * 0	1		- orig segment is in flight.
 940 * S	0		- nothing flies, orig reached receiver.
 941 * L	0		- nothing flies, orig lost by net.
 942 * R	2		- both orig and retransmit are in flight.
 943 * L|R	1		- orig is lost, retransmit is in flight.
 944 * S|R  1		- orig reached receiver, retrans is still in flight.
 945 * (L|S|R is logically valid, it could occur when L|R is sacked,
 946 *  but it is equivalent to plain S and code short-curcuits it to S.
 947 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 948 *
 949 * These 6 states form finite state machine, controlled by the following events:
 950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 952 * 3. Loss detection event of two flavors:
 953 *	A. Scoreboard estimator decided the packet is lost.
 954 *	   A'. Reno "three dupacks" marks head of queue lost.
 955 *	B. SACK arrives sacking SND.NXT at the moment, when the
 956 *	   segment was retransmitted.
 957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 958 *
 959 * It is pleasant to note, that state diagram turns out to be commutative,
 960 * so that we are allowed not to be bothered by order of our actions,
 961 * when multiple events arrive simultaneously. (see the function below).
 962 *
 963 * Reordering detection.
 964 * --------------------
 965 * Reordering metric is maximal distance, which a packet can be displaced
 966 * in packet stream. With SACKs we can estimate it:
 967 *
 968 * 1. SACK fills old hole and the corresponding segment was not
 969 *    ever retransmitted -> reordering. Alas, we cannot use it
 970 *    when segment was retransmitted.
 971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 972 *    for retransmitted and already SACKed segment -> reordering..
 973 * Both of these heuristics are not used in Loss state, when we cannot
 974 * account for retransmits accurately.
 975 *
 976 * SACK block validation.
 977 * ----------------------
 978 *
 979 * SACK block range validation checks that the received SACK block fits to
 980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 981 * Note that SND.UNA is not included to the range though being valid because
 982 * it means that the receiver is rather inconsistent with itself reporting
 983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 984 * perfectly valid, however, in light of RFC2018 which explicitly states
 985 * that "SACK block MUST reflect the newest segment.  Even if the newest
 986 * segment is going to be discarded ...", not that it looks very clever
 987 * in case of head skb. Due to potentional receiver driven attacks, we
 988 * choose to avoid immediate execution of a walk in write queue due to
 989 * reneging and defer head skb's loss recovery to standard loss recovery
 990 * procedure that will eventually trigger (nothing forbids us doing this).
 991 *
 992 * Implements also blockage to start_seq wrap-around. Problem lies in the
 993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 994 * there's no guarantee that it will be before snd_nxt (n). The problem
 995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 996 * wrap (s_w):
 997 *
 998 *         <- outs wnd ->                          <- wrapzone ->
 999 *         u     e      n                         u_w   e_w  s n_w
1000 *         |     |      |                          |     |   |  |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->|                                           |<--------...
1003 * ...---- >2^31 ------>|                                    |<--------...
1004 *
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1010 *
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1023 */
1024static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025				   u32 start_seq, u32 end_seq)
1026{
1027	/* Too far in future, or reversed (interpretation is ambiguous) */
1028	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029		return false;
1030
1031	/* Nasty start_seq wrap-around check (see comments above) */
1032	if (!before(start_seq, tp->snd_nxt))
1033		return false;
1034
1035	/* In outstanding window? ...This is valid exit for D-SACKs too.
1036	 * start_seq == snd_una is non-sensical (see comments above)
1037	 */
1038	if (after(start_seq, tp->snd_una))
1039		return true;
1040
1041	if (!is_dsack || !tp->undo_marker)
1042		return false;
1043
1044	/* ...Then it's D-SACK, and must reside below snd_una completely */
1045	if (after(end_seq, tp->snd_una))
1046		return false;
1047
1048	if (!before(start_seq, tp->undo_marker))
1049		return true;
1050
1051	/* Too old */
1052	if (!after(end_seq, tp->undo_marker))
1053		return false;
1054
1055	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1056	 *   start_seq < undo_marker and end_seq >= undo_marker.
1057	 */
1058	return !before(start_seq, end_seq - tp->max_window);
1059}
1060
1061static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062			    struct tcp_sack_block_wire *sp, int num_sacks,
1063			    u32 prior_snd_una)
1064{
1065	struct tcp_sock *tp = tcp_sk(sk);
1066	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068	bool dup_sack = false;
1069
1070	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071		dup_sack = true;
1072		tcp_dsack_seen(tp);
1073		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074	} else if (num_sacks > 1) {
1075		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1077
1078		if (!after(end_seq_0, end_seq_1) &&
1079		    !before(start_seq_0, start_seq_1)) {
1080			dup_sack = true;
1081			tcp_dsack_seen(tp);
1082			NET_INC_STATS(sock_net(sk),
1083					LINUX_MIB_TCPDSACKOFORECV);
1084		}
 
 
 
 
1085	}
1086
 
 
1087	/* D-SACK for already forgotten data... Do dumb counting. */
1088	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089	    !after(end_seq_0, prior_snd_una) &&
1090	    after(end_seq_0, tp->undo_marker))
1091		tp->undo_retrans--;
1092
1093	return dup_sack;
1094}
1095
1096struct tcp_sacktag_state {
1097	u32	reord;
1098	/* Timestamps for earliest and latest never-retransmitted segment
1099	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100	 * but congestion control should still get an accurate delay signal.
1101	 */
1102	u64	first_sackt;
1103	u64	last_sackt;
1104	struct rate_sample *rate;
1105	int	flag;
1106	unsigned int mss_now;
1107};
1108
1109/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1113 * returns).
1114 *
1115 * FIXME: this could be merged to shift decision code
1116 */
1117static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1118				  u32 start_seq, u32 end_seq)
1119{
1120	int err;
1121	bool in_sack;
1122	unsigned int pkt_len;
1123	unsigned int mss;
1124
1125	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1127
1128	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1130		mss = tcp_skb_mss(skb);
1131		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1132
1133		if (!in_sack) {
1134			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1135			if (pkt_len < mss)
1136				pkt_len = mss;
1137		} else {
1138			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1139			if (pkt_len < mss)
1140				return -EINVAL;
1141		}
1142
1143		/* Round if necessary so that SACKs cover only full MSSes
1144		 * and/or the remaining small portion (if present)
1145		 */
1146		if (pkt_len > mss) {
1147			unsigned int new_len = (pkt_len / mss) * mss;
1148			if (!in_sack && new_len < pkt_len)
1149				new_len += mss;
1150			pkt_len = new_len;
1151		}
1152
1153		if (pkt_len >= skb->len && !in_sack)
1154			return 0;
1155
1156		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157				   pkt_len, mss, GFP_ATOMIC);
1158		if (err < 0)
1159			return err;
1160	}
1161
1162	return in_sack;
1163}
1164
1165/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166static u8 tcp_sacktag_one(struct sock *sk,
1167			  struct tcp_sacktag_state *state, u8 sacked,
1168			  u32 start_seq, u32 end_seq,
1169			  int dup_sack, int pcount,
1170			  u64 xmit_time)
1171{
1172	struct tcp_sock *tp = tcp_sk(sk);
1173
1174	/* Account D-SACK for retransmitted packet. */
1175	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1176		if (tp->undo_marker && tp->undo_retrans > 0 &&
1177		    after(end_seq, tp->undo_marker))
1178			tp->undo_retrans--;
1179		if ((sacked & TCPCB_SACKED_ACKED) &&
1180		    before(start_seq, state->reord))
1181				state->reord = start_seq;
1182	}
1183
1184	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185	if (!after(end_seq, tp->snd_una))
1186		return sacked;
1187
1188	if (!(sacked & TCPCB_SACKED_ACKED)) {
1189		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1190
1191		if (sacked & TCPCB_SACKED_RETRANS) {
1192			/* If the segment is not tagged as lost,
1193			 * we do not clear RETRANS, believing
1194			 * that retransmission is still in flight.
1195			 */
1196			if (sacked & TCPCB_LOST) {
1197				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1198				tp->lost_out -= pcount;
1199				tp->retrans_out -= pcount;
1200			}
1201		} else {
1202			if (!(sacked & TCPCB_RETRANS)) {
1203				/* New sack for not retransmitted frame,
1204				 * which was in hole. It is reordering.
1205				 */
1206				if (before(start_seq,
1207					   tcp_highest_sack_seq(tp)) &&
1208				    before(start_seq, state->reord))
1209					state->reord = start_seq;
1210
1211				if (!after(end_seq, tp->high_seq))
1212					state->flag |= FLAG_ORIG_SACK_ACKED;
1213				if (state->first_sackt == 0)
1214					state->first_sackt = xmit_time;
1215				state->last_sackt = xmit_time;
1216			}
1217
1218			if (sacked & TCPCB_LOST) {
1219				sacked &= ~TCPCB_LOST;
1220				tp->lost_out -= pcount;
1221			}
1222		}
1223
1224		sacked |= TCPCB_SACKED_ACKED;
1225		state->flag |= FLAG_DATA_SACKED;
1226		tp->sacked_out += pcount;
1227		tp->delivered += pcount;  /* Out-of-order packets delivered */
 
1228
1229		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230		if (tp->lost_skb_hint &&
1231		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1232			tp->lost_cnt_hint += pcount;
1233	}
1234
1235	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1236	 * frames and clear it. undo_retrans is decreased above, L|R frames
1237	 * are accounted above as well.
1238	 */
1239	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240		sacked &= ~TCPCB_SACKED_RETRANS;
1241		tp->retrans_out -= pcount;
1242	}
1243
1244	return sacked;
1245}
1246
1247/* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1249 */
1250static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251			    struct sk_buff *skb,
1252			    struct tcp_sacktag_state *state,
1253			    unsigned int pcount, int shifted, int mss,
1254			    bool dup_sack)
1255{
1256	struct tcp_sock *tp = tcp_sk(sk);
1257	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1258	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1259
1260	BUG_ON(!pcount);
1261
1262	/* Adjust counters and hints for the newly sacked sequence
1263	 * range but discard the return value since prev is already
1264	 * marked. We must tag the range first because the seq
1265	 * advancement below implicitly advances
1266	 * tcp_highest_sack_seq() when skb is highest_sack.
1267	 */
1268	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1269			start_seq, end_seq, dup_sack, pcount,
1270			skb->skb_mstamp);
1271	tcp_rate_skb_delivered(sk, skb, state->rate);
1272
1273	if (skb == tp->lost_skb_hint)
1274		tp->lost_cnt_hint += pcount;
1275
1276	TCP_SKB_CB(prev)->end_seq += shifted;
1277	TCP_SKB_CB(skb)->seq += shifted;
1278
1279	tcp_skb_pcount_add(prev, pcount);
1280	BUG_ON(tcp_skb_pcount(skb) < pcount);
1281	tcp_skb_pcount_add(skb, -pcount);
1282
1283	/* When we're adding to gso_segs == 1, gso_size will be zero,
1284	 * in theory this shouldn't be necessary but as long as DSACK
1285	 * code can come after this skb later on it's better to keep
1286	 * setting gso_size to something.
1287	 */
1288	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1290
1291	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292	if (tcp_skb_pcount(skb) <= 1)
1293		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1294
1295	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1297
1298	if (skb->len > 0) {
1299		BUG_ON(!tcp_skb_pcount(skb));
1300		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301		return false;
1302	}
1303
1304	/* Whole SKB was eaten :-) */
1305
1306	if (skb == tp->retransmit_skb_hint)
1307		tp->retransmit_skb_hint = prev;
1308	if (skb == tp->lost_skb_hint) {
1309		tp->lost_skb_hint = prev;
1310		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1311	}
1312
1313	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1315	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316		TCP_SKB_CB(prev)->end_seq++;
1317
1318	if (skb == tcp_highest_sack(sk))
1319		tcp_advance_highest_sack(sk, skb);
1320
1321	tcp_skb_collapse_tstamp(prev, skb);
1322	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1324
1325	tcp_rtx_queue_unlink_and_free(skb, sk);
1326
1327	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1328
1329	return true;
1330}
1331
1332/* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1334 */
1335static int tcp_skb_seglen(const struct sk_buff *skb)
1336{
1337	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1338}
1339
1340/* Shifting pages past head area doesn't work */
1341static int skb_can_shift(const struct sk_buff *skb)
1342{
1343	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1344}
1345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346/* Try collapsing SACK blocks spanning across multiple skbs to a single
1347 * skb.
1348 */
1349static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1350					  struct tcp_sacktag_state *state,
1351					  u32 start_seq, u32 end_seq,
1352					  bool dup_sack)
1353{
1354	struct tcp_sock *tp = tcp_sk(sk);
1355	struct sk_buff *prev;
1356	int mss;
1357	int pcount = 0;
1358	int len;
1359	int in_sack;
1360
1361	/* Normally R but no L won't result in plain S */
1362	if (!dup_sack &&
1363	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1364		goto fallback;
1365	if (!skb_can_shift(skb))
1366		goto fallback;
1367	/* This frame is about to be dropped (was ACKed). */
1368	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1369		goto fallback;
1370
1371	/* Can only happen with delayed DSACK + discard craziness */
1372	prev = skb_rb_prev(skb);
1373	if (!prev)
1374		goto fallback;
1375
1376	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1377		goto fallback;
1378
1379	if (!tcp_skb_can_collapse_to(prev))
1380		goto fallback;
1381
1382	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1383		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1384
1385	if (in_sack) {
1386		len = skb->len;
1387		pcount = tcp_skb_pcount(skb);
1388		mss = tcp_skb_seglen(skb);
1389
1390		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1391		 * drop this restriction as unnecessary
1392		 */
1393		if (mss != tcp_skb_seglen(prev))
1394			goto fallback;
1395	} else {
1396		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1397			goto noop;
1398		/* CHECKME: This is non-MSS split case only?, this will
1399		 * cause skipped skbs due to advancing loop btw, original
1400		 * has that feature too
1401		 */
1402		if (tcp_skb_pcount(skb) <= 1)
1403			goto noop;
1404
1405		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1406		if (!in_sack) {
1407			/* TODO: head merge to next could be attempted here
1408			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1409			 * though it might not be worth of the additional hassle
1410			 *
1411			 * ...we can probably just fallback to what was done
1412			 * previously. We could try merging non-SACKed ones
1413			 * as well but it probably isn't going to buy off
1414			 * because later SACKs might again split them, and
1415			 * it would make skb timestamp tracking considerably
1416			 * harder problem.
1417			 */
1418			goto fallback;
1419		}
1420
1421		len = end_seq - TCP_SKB_CB(skb)->seq;
1422		BUG_ON(len < 0);
1423		BUG_ON(len > skb->len);
1424
1425		/* MSS boundaries should be honoured or else pcount will
1426		 * severely break even though it makes things bit trickier.
1427		 * Optimize common case to avoid most of the divides
1428		 */
1429		mss = tcp_skb_mss(skb);
1430
1431		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1432		 * drop this restriction as unnecessary
1433		 */
1434		if (mss != tcp_skb_seglen(prev))
1435			goto fallback;
1436
1437		if (len == mss) {
1438			pcount = 1;
1439		} else if (len < mss) {
1440			goto noop;
1441		} else {
1442			pcount = len / mss;
1443			len = pcount * mss;
1444		}
1445	}
1446
1447	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1448	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1449		goto fallback;
1450
1451	if (!skb_shift(prev, skb, len))
1452		goto fallback;
1453	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1454		goto out;
1455
1456	/* Hole filled allows collapsing with the next as well, this is very
1457	 * useful when hole on every nth skb pattern happens
1458	 */
1459	skb = skb_rb_next(prev);
1460	if (!skb)
1461		goto out;
1462
1463	if (!skb_can_shift(skb) ||
1464	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1465	    (mss != tcp_skb_seglen(skb)))
1466		goto out;
1467
1468	len = skb->len;
1469	if (skb_shift(prev, skb, len)) {
1470		pcount += tcp_skb_pcount(skb);
1471		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1472				len, mss, 0);
1473	}
1474
1475out:
1476	return prev;
1477
1478noop:
1479	return skb;
1480
1481fallback:
1482	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1483	return NULL;
1484}
1485
1486static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1487					struct tcp_sack_block *next_dup,
1488					struct tcp_sacktag_state *state,
1489					u32 start_seq, u32 end_seq,
1490					bool dup_sack_in)
1491{
1492	struct tcp_sock *tp = tcp_sk(sk);
1493	struct sk_buff *tmp;
1494
1495	skb_rbtree_walk_from(skb) {
1496		int in_sack = 0;
1497		bool dup_sack = dup_sack_in;
1498
1499		/* queue is in-order => we can short-circuit the walk early */
1500		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1501			break;
1502
1503		if (next_dup  &&
1504		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1505			in_sack = tcp_match_skb_to_sack(sk, skb,
1506							next_dup->start_seq,
1507							next_dup->end_seq);
1508			if (in_sack > 0)
1509				dup_sack = true;
1510		}
1511
1512		/* skb reference here is a bit tricky to get right, since
1513		 * shifting can eat and free both this skb and the next,
1514		 * so not even _safe variant of the loop is enough.
1515		 */
1516		if (in_sack <= 0) {
1517			tmp = tcp_shift_skb_data(sk, skb, state,
1518						 start_seq, end_seq, dup_sack);
1519			if (tmp) {
1520				if (tmp != skb) {
1521					skb = tmp;
1522					continue;
1523				}
1524
1525				in_sack = 0;
1526			} else {
1527				in_sack = tcp_match_skb_to_sack(sk, skb,
1528								start_seq,
1529								end_seq);
1530			}
1531		}
1532
1533		if (unlikely(in_sack < 0))
1534			break;
1535
1536		if (in_sack) {
1537			TCP_SKB_CB(skb)->sacked =
1538				tcp_sacktag_one(sk,
1539						state,
1540						TCP_SKB_CB(skb)->sacked,
1541						TCP_SKB_CB(skb)->seq,
1542						TCP_SKB_CB(skb)->end_seq,
1543						dup_sack,
1544						tcp_skb_pcount(skb),
1545						skb->skb_mstamp);
1546			tcp_rate_skb_delivered(sk, skb, state->rate);
1547			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1548				list_del_init(&skb->tcp_tsorted_anchor);
1549
1550			if (!before(TCP_SKB_CB(skb)->seq,
1551				    tcp_highest_sack_seq(tp)))
1552				tcp_advance_highest_sack(sk, skb);
1553		}
1554	}
1555	return skb;
1556}
1557
1558static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1559					   struct tcp_sacktag_state *state,
1560					   u32 seq)
1561{
1562	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1563	struct sk_buff *skb;
1564
1565	while (*p) {
1566		parent = *p;
1567		skb = rb_to_skb(parent);
1568		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1569			p = &parent->rb_left;
1570			continue;
1571		}
1572		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1573			p = &parent->rb_right;
1574			continue;
1575		}
1576		return skb;
1577	}
1578	return NULL;
1579}
1580
1581static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1582					struct tcp_sacktag_state *state,
1583					u32 skip_to_seq)
1584{
1585	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1586		return skb;
1587
1588	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1589}
1590
1591static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1592						struct sock *sk,
1593						struct tcp_sack_block *next_dup,
1594						struct tcp_sacktag_state *state,
1595						u32 skip_to_seq)
1596{
1597	if (!next_dup)
1598		return skb;
1599
1600	if (before(next_dup->start_seq, skip_to_seq)) {
1601		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1602		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1603				       next_dup->start_seq, next_dup->end_seq,
1604				       1);
1605	}
1606
1607	return skb;
1608}
1609
1610static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1611{
1612	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1613}
1614
1615static int
1616tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1617			u32 prior_snd_una, struct tcp_sacktag_state *state)
1618{
1619	struct tcp_sock *tp = tcp_sk(sk);
1620	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1621				    TCP_SKB_CB(ack_skb)->sacked);
1622	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1623	struct tcp_sack_block sp[TCP_NUM_SACKS];
1624	struct tcp_sack_block *cache;
1625	struct sk_buff *skb;
1626	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1627	int used_sacks;
1628	bool found_dup_sack = false;
1629	int i, j;
1630	int first_sack_index;
1631
1632	state->flag = 0;
1633	state->reord = tp->snd_nxt;
1634
1635	if (!tp->sacked_out)
1636		tcp_highest_sack_reset(sk);
1637
1638	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1639					 num_sacks, prior_snd_una);
1640	if (found_dup_sack) {
1641		state->flag |= FLAG_DSACKING_ACK;
1642		tp->delivered++; /* A spurious retransmission is delivered */
1643	}
1644
1645	/* Eliminate too old ACKs, but take into
1646	 * account more or less fresh ones, they can
1647	 * contain valid SACK info.
1648	 */
1649	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1650		return 0;
1651
1652	if (!tp->packets_out)
1653		goto out;
1654
1655	used_sacks = 0;
1656	first_sack_index = 0;
1657	for (i = 0; i < num_sacks; i++) {
1658		bool dup_sack = !i && found_dup_sack;
1659
1660		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1661		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1662
1663		if (!tcp_is_sackblock_valid(tp, dup_sack,
1664					    sp[used_sacks].start_seq,
1665					    sp[used_sacks].end_seq)) {
1666			int mib_idx;
1667
1668			if (dup_sack) {
1669				if (!tp->undo_marker)
1670					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1671				else
1672					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1673			} else {
1674				/* Don't count olds caused by ACK reordering */
1675				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1676				    !after(sp[used_sacks].end_seq, tp->snd_una))
1677					continue;
1678				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1679			}
1680
1681			NET_INC_STATS(sock_net(sk), mib_idx);
1682			if (i == 0)
1683				first_sack_index = -1;
1684			continue;
1685		}
1686
1687		/* Ignore very old stuff early */
1688		if (!after(sp[used_sacks].end_seq, prior_snd_una))
 
 
1689			continue;
 
1690
1691		used_sacks++;
1692	}
1693
1694	/* order SACK blocks to allow in order walk of the retrans queue */
1695	for (i = used_sacks - 1; i > 0; i--) {
1696		for (j = 0; j < i; j++) {
1697			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1698				swap(sp[j], sp[j + 1]);
1699
1700				/* Track where the first SACK block goes to */
1701				if (j == first_sack_index)
1702					first_sack_index = j + 1;
1703			}
1704		}
1705	}
1706
1707	state->mss_now = tcp_current_mss(sk);
1708	skb = NULL;
1709	i = 0;
1710
1711	if (!tp->sacked_out) {
1712		/* It's already past, so skip checking against it */
1713		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1714	} else {
1715		cache = tp->recv_sack_cache;
1716		/* Skip empty blocks in at head of the cache */
1717		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1718		       !cache->end_seq)
1719			cache++;
1720	}
1721
1722	while (i < used_sacks) {
1723		u32 start_seq = sp[i].start_seq;
1724		u32 end_seq = sp[i].end_seq;
1725		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1726		struct tcp_sack_block *next_dup = NULL;
1727
1728		if (found_dup_sack && ((i + 1) == first_sack_index))
1729			next_dup = &sp[i + 1];
1730
1731		/* Skip too early cached blocks */
1732		while (tcp_sack_cache_ok(tp, cache) &&
1733		       !before(start_seq, cache->end_seq))
1734			cache++;
1735
1736		/* Can skip some work by looking recv_sack_cache? */
1737		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1738		    after(end_seq, cache->start_seq)) {
1739
1740			/* Head todo? */
1741			if (before(start_seq, cache->start_seq)) {
1742				skb = tcp_sacktag_skip(skb, sk, state,
1743						       start_seq);
1744				skb = tcp_sacktag_walk(skb, sk, next_dup,
1745						       state,
1746						       start_seq,
1747						       cache->start_seq,
1748						       dup_sack);
1749			}
1750
1751			/* Rest of the block already fully processed? */
1752			if (!after(end_seq, cache->end_seq))
1753				goto advance_sp;
1754
1755			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1756						       state,
1757						       cache->end_seq);
1758
1759			/* ...tail remains todo... */
1760			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1761				/* ...but better entrypoint exists! */
1762				skb = tcp_highest_sack(sk);
1763				if (!skb)
1764					break;
1765				cache++;
1766				goto walk;
1767			}
1768
1769			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1770			/* Check overlap against next cached too (past this one already) */
1771			cache++;
1772			continue;
1773		}
1774
1775		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1776			skb = tcp_highest_sack(sk);
1777			if (!skb)
1778				break;
1779		}
1780		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1781
1782walk:
1783		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1784				       start_seq, end_seq, dup_sack);
1785
1786advance_sp:
1787		i++;
1788	}
1789
1790	/* Clear the head of the cache sack blocks so we can skip it next time */
1791	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1792		tp->recv_sack_cache[i].start_seq = 0;
1793		tp->recv_sack_cache[i].end_seq = 0;
1794	}
1795	for (j = 0; j < used_sacks; j++)
1796		tp->recv_sack_cache[i++] = sp[j];
1797
1798	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1799		tcp_check_sack_reordering(sk, state->reord, 0);
1800
1801	tcp_verify_left_out(tp);
1802out:
1803
1804#if FASTRETRANS_DEBUG > 0
1805	WARN_ON((int)tp->sacked_out < 0);
1806	WARN_ON((int)tp->lost_out < 0);
1807	WARN_ON((int)tp->retrans_out < 0);
1808	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1809#endif
1810	return state->flag;
1811}
1812
1813/* Limits sacked_out so that sum with lost_out isn't ever larger than
1814 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1815 */
1816static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1817{
1818	u32 holes;
1819
1820	holes = max(tp->lost_out, 1U);
1821	holes = min(holes, tp->packets_out);
1822
1823	if ((tp->sacked_out + holes) > tp->packets_out) {
1824		tp->sacked_out = tp->packets_out - holes;
1825		return true;
1826	}
1827	return false;
1828}
1829
1830/* If we receive more dupacks than we expected counting segments
1831 * in assumption of absent reordering, interpret this as reordering.
1832 * The only another reason could be bug in receiver TCP.
1833 */
1834static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1835{
1836	struct tcp_sock *tp = tcp_sk(sk);
1837
1838	if (!tcp_limit_reno_sacked(tp))
1839		return;
1840
1841	tp->reordering = min_t(u32, tp->packets_out + addend,
1842			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 
1843	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1844}
1845
1846/* Emulate SACKs for SACKless connection: account for a new dupack. */
1847
1848static void tcp_add_reno_sack(struct sock *sk)
1849{
1850	struct tcp_sock *tp = tcp_sk(sk);
1851	u32 prior_sacked = tp->sacked_out;
 
 
1852
1853	tp->sacked_out++;
1854	tcp_check_reno_reordering(sk, 0);
1855	if (tp->sacked_out > prior_sacked)
1856		tp->delivered++; /* Some out-of-order packet is delivered */
1857	tcp_verify_left_out(tp);
 
 
1858}
1859
1860/* Account for ACK, ACKing some data in Reno Recovery phase. */
1861
1862static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1863{
1864	struct tcp_sock *tp = tcp_sk(sk);
1865
1866	if (acked > 0) {
1867		/* One ACK acked hole. The rest eat duplicate ACKs. */
1868		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
 
1869		if (acked - 1 >= tp->sacked_out)
1870			tp->sacked_out = 0;
1871		else
1872			tp->sacked_out -= acked - 1;
1873	}
1874	tcp_check_reno_reordering(sk, acked);
1875	tcp_verify_left_out(tp);
1876}
1877
1878static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1879{
1880	tp->sacked_out = 0;
1881}
1882
1883void tcp_clear_retrans(struct tcp_sock *tp)
1884{
1885	tp->retrans_out = 0;
1886	tp->lost_out = 0;
1887	tp->undo_marker = 0;
1888	tp->undo_retrans = -1;
1889	tp->sacked_out = 0;
1890}
1891
1892static inline void tcp_init_undo(struct tcp_sock *tp)
1893{
1894	tp->undo_marker = tp->snd_una;
1895	/* Retransmission still in flight may cause DSACKs later. */
1896	tp->undo_retrans = tp->retrans_out ? : -1;
1897}
1898
1899/* Enter Loss state. If we detect SACK reneging, forget all SACK information
 
 
 
 
 
1900 * and reset tags completely, otherwise preserve SACKs. If receiver
1901 * dropped its ofo queue, we will know this due to reneging detection.
1902 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903void tcp_enter_loss(struct sock *sk)
1904{
1905	const struct inet_connection_sock *icsk = inet_csk(sk);
1906	struct tcp_sock *tp = tcp_sk(sk);
1907	struct net *net = sock_net(sk);
1908	struct sk_buff *skb;
1909	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1910	bool is_reneg;			/* is receiver reneging on SACKs? */
1911	bool mark_lost;
1912
1913	/* Reduce ssthresh if it has not yet been made inside this window. */
1914	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1915	    !after(tp->high_seq, tp->snd_una) ||
1916	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1917		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1918		tp->prior_cwnd = tp->snd_cwnd;
1919		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1920		tcp_ca_event(sk, CA_EVENT_LOSS);
1921		tcp_init_undo(tp);
1922	}
1923	tp->snd_cwnd	   = 1;
1924	tp->snd_cwnd_cnt   = 0;
1925	tp->snd_cwnd_stamp = tcp_jiffies32;
1926
1927	tp->retrans_out = 0;
1928	tp->lost_out = 0;
1929
1930	if (tcp_is_reno(tp))
1931		tcp_reset_reno_sack(tp);
1932
1933	skb = tcp_rtx_queue_head(sk);
1934	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1935	if (is_reneg) {
1936		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1937		tp->sacked_out = 0;
1938		/* Mark SACK reneging until we recover from this loss event. */
1939		tp->is_sack_reneg = 1;
1940	}
1941	tcp_clear_all_retrans_hints(tp);
1942
1943	skb_rbtree_walk_from(skb) {
1944		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1945			     is_reneg);
1946		if (mark_lost)
1947			tcp_sum_lost(tp, skb);
1948		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1949		if (mark_lost) {
1950			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1951			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1952			tp->lost_out += tcp_skb_pcount(skb);
1953		}
1954	}
1955	tcp_verify_left_out(tp);
1956
1957	/* Timeout in disordered state after receiving substantial DUPACKs
1958	 * suggests that the degree of reordering is over-estimated.
1959	 */
1960	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1961	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1962		tp->reordering = min_t(unsigned int, tp->reordering,
1963				       net->ipv4.sysctl_tcp_reordering);
1964	tcp_set_ca_state(sk, TCP_CA_Loss);
1965	tp->high_seq = tp->snd_nxt;
1966	tcp_ecn_queue_cwr(tp);
1967
1968	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1969	 * loss recovery is underway except recurring timeout(s) on
1970	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1971	 */
1972	tp->frto = net->ipv4.sysctl_tcp_frto &&
1973		   (new_recovery || icsk->icsk_retransmits) &&
1974		   !inet_csk(sk)->icsk_mtup.probe_size;
1975}
1976
1977/* If ACK arrived pointing to a remembered SACK, it means that our
1978 * remembered SACKs do not reflect real state of receiver i.e.
1979 * receiver _host_ is heavily congested (or buggy).
1980 *
1981 * To avoid big spurious retransmission bursts due to transient SACK
1982 * scoreboard oddities that look like reneging, we give the receiver a
1983 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1984 * restore sanity to the SACK scoreboard. If the apparent reneging
1985 * persists until this RTO then we'll clear the SACK scoreboard.
1986 */
1987static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1988{
1989	if (flag & FLAG_SACK_RENEGING) {
1990		struct tcp_sock *tp = tcp_sk(sk);
1991		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1992					  msecs_to_jiffies(10));
1993
1994		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1995					  delay, TCP_RTO_MAX);
1996		return true;
1997	}
1998	return false;
1999}
2000
2001/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2002 * counter when SACK is enabled (without SACK, sacked_out is used for
2003 * that purpose).
2004 *
2005 * With reordering, holes may still be in flight, so RFC3517 recovery
2006 * uses pure sacked_out (total number of SACKed segments) even though
2007 * it violates the RFC that uses duplicate ACKs, often these are equal
2008 * but when e.g. out-of-window ACKs or packet duplication occurs,
2009 * they differ. Since neither occurs due to loss, TCP should really
2010 * ignore them.
2011 */
2012static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2013{
2014	return tp->sacked_out + 1;
2015}
2016
2017/* Linux NewReno/SACK/ECN state machine.
2018 * --------------------------------------
2019 *
2020 * "Open"	Normal state, no dubious events, fast path.
2021 * "Disorder"   In all the respects it is "Open",
2022 *		but requires a bit more attention. It is entered when
2023 *		we see some SACKs or dupacks. It is split of "Open"
2024 *		mainly to move some processing from fast path to slow one.
2025 * "CWR"	CWND was reduced due to some Congestion Notification event.
2026 *		It can be ECN, ICMP source quench, local device congestion.
2027 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2028 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2029 *
2030 * tcp_fastretrans_alert() is entered:
2031 * - each incoming ACK, if state is not "Open"
2032 * - when arrived ACK is unusual, namely:
2033 *	* SACK
2034 *	* Duplicate ACK.
2035 *	* ECN ECE.
2036 *
2037 * Counting packets in flight is pretty simple.
2038 *
2039 *	in_flight = packets_out - left_out + retrans_out
2040 *
2041 *	packets_out is SND.NXT-SND.UNA counted in packets.
2042 *
2043 *	retrans_out is number of retransmitted segments.
2044 *
2045 *	left_out is number of segments left network, but not ACKed yet.
2046 *
2047 *		left_out = sacked_out + lost_out
2048 *
2049 *     sacked_out: Packets, which arrived to receiver out of order
2050 *		   and hence not ACKed. With SACKs this number is simply
2051 *		   amount of SACKed data. Even without SACKs
2052 *		   it is easy to give pretty reliable estimate of this number,
2053 *		   counting duplicate ACKs.
2054 *
2055 *       lost_out: Packets lost by network. TCP has no explicit
2056 *		   "loss notification" feedback from network (for now).
2057 *		   It means that this number can be only _guessed_.
2058 *		   Actually, it is the heuristics to predict lossage that
2059 *		   distinguishes different algorithms.
2060 *
2061 *	F.e. after RTO, when all the queue is considered as lost,
2062 *	lost_out = packets_out and in_flight = retrans_out.
2063 *
2064 *		Essentially, we have now a few algorithms detecting
2065 *		lost packets.
2066 *
2067 *		If the receiver supports SACK:
2068 *
2069 *		RFC6675/3517: It is the conventional algorithm. A packet is
2070 *		considered lost if the number of higher sequence packets
2071 *		SACKed is greater than or equal the DUPACK thoreshold
2072 *		(reordering). This is implemented in tcp_mark_head_lost and
2073 *		tcp_update_scoreboard.
2074 *
2075 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2076 *		(2017-) that checks timing instead of counting DUPACKs.
2077 *		Essentially a packet is considered lost if it's not S/ACKed
2078 *		after RTT + reordering_window, where both metrics are
2079 *		dynamically measured and adjusted. This is implemented in
2080 *		tcp_rack_mark_lost.
2081 *
2082 *		If the receiver does not support SACK:
2083 *
2084 *		NewReno (RFC6582): in Recovery we assume that one segment
2085 *		is lost (classic Reno). While we are in Recovery and
2086 *		a partial ACK arrives, we assume that one more packet
2087 *		is lost (NewReno). This heuristics are the same in NewReno
2088 *		and SACK.
2089 *
2090 * Really tricky (and requiring careful tuning) part of algorithm
2091 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2092 * The first determines the moment _when_ we should reduce CWND and,
2093 * hence, slow down forward transmission. In fact, it determines the moment
2094 * when we decide that hole is caused by loss, rather than by a reorder.
2095 *
2096 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2097 * holes, caused by lost packets.
2098 *
2099 * And the most logically complicated part of algorithm is undo
2100 * heuristics. We detect false retransmits due to both too early
2101 * fast retransmit (reordering) and underestimated RTO, analyzing
2102 * timestamps and D-SACKs. When we detect that some segments were
2103 * retransmitted by mistake and CWND reduction was wrong, we undo
2104 * window reduction and abort recovery phase. This logic is hidden
2105 * inside several functions named tcp_try_undo_<something>.
2106 */
2107
2108/* This function decides, when we should leave Disordered state
2109 * and enter Recovery phase, reducing congestion window.
2110 *
2111 * Main question: may we further continue forward transmission
2112 * with the same cwnd?
2113 */
2114static bool tcp_time_to_recover(struct sock *sk, int flag)
2115{
2116	struct tcp_sock *tp = tcp_sk(sk);
2117
2118	/* Trick#1: The loss is proven. */
2119	if (tp->lost_out)
2120		return true;
2121
2122	/* Not-A-Trick#2 : Classic rule... */
2123	if (tcp_dupack_heuristics(tp) > tp->reordering)
2124		return true;
2125
2126	return false;
2127}
2128
2129/* Detect loss in event "A" above by marking head of queue up as lost.
2130 * For non-SACK(Reno) senders, the first "packets" number of segments
2131 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2132 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2133 * the maximum SACKed segments to pass before reaching this limit.
2134 */
2135static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2136{
2137	struct tcp_sock *tp = tcp_sk(sk);
2138	struct sk_buff *skb;
2139	int cnt, oldcnt, lost;
2140	unsigned int mss;
2141	/* Use SACK to deduce losses of new sequences sent during recovery */
2142	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2143
2144	WARN_ON(packets > tp->packets_out);
2145	skb = tp->lost_skb_hint;
2146	if (skb) {
2147		/* Head already handled? */
2148		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2149			return;
2150		cnt = tp->lost_cnt_hint;
2151	} else {
2152		skb = tcp_rtx_queue_head(sk);
2153		cnt = 0;
2154	}
2155
2156	skb_rbtree_walk_from(skb) {
2157		/* TODO: do this better */
2158		/* this is not the most efficient way to do this... */
2159		tp->lost_skb_hint = skb;
2160		tp->lost_cnt_hint = cnt;
2161
2162		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2163			break;
2164
2165		oldcnt = cnt;
2166		if (tcp_is_reno(tp) ||
2167		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2168			cnt += tcp_skb_pcount(skb);
2169
2170		if (cnt > packets) {
2171			if (tcp_is_sack(tp) ||
2172			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2173			    (oldcnt >= packets))
2174				break;
2175
2176			mss = tcp_skb_mss(skb);
2177			/* If needed, chop off the prefix to mark as lost. */
2178			lost = (packets - oldcnt) * mss;
2179			if (lost < skb->len &&
2180			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2181					 lost, mss, GFP_ATOMIC) < 0)
2182				break;
2183			cnt = packets;
2184		}
2185
2186		tcp_skb_mark_lost(tp, skb);
2187
2188		if (mark_head)
2189			break;
2190	}
2191	tcp_verify_left_out(tp);
2192}
2193
2194/* Account newly detected lost packet(s) */
2195
2196static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2197{
2198	struct tcp_sock *tp = tcp_sk(sk);
2199
2200	if (tcp_is_reno(tp)) {
2201		tcp_mark_head_lost(sk, 1, 1);
2202	} else {
2203		int sacked_upto = tp->sacked_out - tp->reordering;
2204		if (sacked_upto >= 0)
2205			tcp_mark_head_lost(sk, sacked_upto, 0);
2206		else if (fast_rexmit)
2207			tcp_mark_head_lost(sk, 1, 1);
2208	}
2209}
2210
2211static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2212{
2213	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2214	       before(tp->rx_opt.rcv_tsecr, when);
2215}
2216
2217/* skb is spurious retransmitted if the returned timestamp echo
2218 * reply is prior to the skb transmission time
2219 */
2220static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2221				     const struct sk_buff *skb)
2222{
2223	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2224	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2225}
2226
2227/* Nothing was retransmitted or returned timestamp is less
2228 * than timestamp of the first retransmission.
2229 */
2230static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2231{
2232	return !tp->retrans_stamp ||
2233	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2234}
2235
2236/* Undo procedures. */
2237
2238/* We can clear retrans_stamp when there are no retransmissions in the
2239 * window. It would seem that it is trivially available for us in
2240 * tp->retrans_out, however, that kind of assumptions doesn't consider
2241 * what will happen if errors occur when sending retransmission for the
2242 * second time. ...It could the that such segment has only
2243 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2244 * the head skb is enough except for some reneging corner cases that
2245 * are not worth the effort.
2246 *
2247 * Main reason for all this complexity is the fact that connection dying
2248 * time now depends on the validity of the retrans_stamp, in particular,
2249 * that successive retransmissions of a segment must not advance
2250 * retrans_stamp under any conditions.
2251 */
2252static bool tcp_any_retrans_done(const struct sock *sk)
2253{
2254	const struct tcp_sock *tp = tcp_sk(sk);
2255	struct sk_buff *skb;
2256
2257	if (tp->retrans_out)
2258		return true;
2259
2260	skb = tcp_rtx_queue_head(sk);
2261	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2262		return true;
2263
2264	return false;
2265}
2266
2267static void DBGUNDO(struct sock *sk, const char *msg)
2268{
2269#if FASTRETRANS_DEBUG > 1
2270	struct tcp_sock *tp = tcp_sk(sk);
2271	struct inet_sock *inet = inet_sk(sk);
2272
2273	if (sk->sk_family == AF_INET) {
2274		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2275			 msg,
2276			 &inet->inet_daddr, ntohs(inet->inet_dport),
2277			 tp->snd_cwnd, tcp_left_out(tp),
2278			 tp->snd_ssthresh, tp->prior_ssthresh,
2279			 tp->packets_out);
2280	}
2281#if IS_ENABLED(CONFIG_IPV6)
2282	else if (sk->sk_family == AF_INET6) {
2283		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2284			 msg,
2285			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2286			 tp->snd_cwnd, tcp_left_out(tp),
2287			 tp->snd_ssthresh, tp->prior_ssthresh,
2288			 tp->packets_out);
2289	}
2290#endif
2291#endif
2292}
2293
2294static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2295{
2296	struct tcp_sock *tp = tcp_sk(sk);
2297
2298	if (unmark_loss) {
2299		struct sk_buff *skb;
2300
2301		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2302			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2303		}
2304		tp->lost_out = 0;
2305		tcp_clear_all_retrans_hints(tp);
2306	}
2307
2308	if (tp->prior_ssthresh) {
2309		const struct inet_connection_sock *icsk = inet_csk(sk);
2310
2311		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2312
2313		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2314			tp->snd_ssthresh = tp->prior_ssthresh;
2315			tcp_ecn_withdraw_cwr(tp);
2316		}
2317	}
2318	tp->snd_cwnd_stamp = tcp_jiffies32;
2319	tp->undo_marker = 0;
2320	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2321}
2322
2323static inline bool tcp_may_undo(const struct tcp_sock *tp)
2324{
2325	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2326}
2327
2328/* People celebrate: "We love our President!" */
2329static bool tcp_try_undo_recovery(struct sock *sk)
2330{
2331	struct tcp_sock *tp = tcp_sk(sk);
2332
2333	if (tcp_may_undo(tp)) {
2334		int mib_idx;
2335
2336		/* Happy end! We did not retransmit anything
2337		 * or our original transmission succeeded.
2338		 */
2339		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2340		tcp_undo_cwnd_reduction(sk, false);
2341		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2342			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2343		else
2344			mib_idx = LINUX_MIB_TCPFULLUNDO;
2345
2346		NET_INC_STATS(sock_net(sk), mib_idx);
2347	} else if (tp->rack.reo_wnd_persist) {
2348		tp->rack.reo_wnd_persist--;
2349	}
2350	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2351		/* Hold old state until something *above* high_seq
2352		 * is ACKed. For Reno it is MUST to prevent false
2353		 * fast retransmits (RFC2582). SACK TCP is safe. */
2354		if (!tcp_any_retrans_done(sk))
2355			tp->retrans_stamp = 0;
2356		return true;
2357	}
2358	tcp_set_ca_state(sk, TCP_CA_Open);
2359	tp->is_sack_reneg = 0;
2360	return false;
2361}
2362
2363/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2364static bool tcp_try_undo_dsack(struct sock *sk)
2365{
2366	struct tcp_sock *tp = tcp_sk(sk);
2367
2368	if (tp->undo_marker && !tp->undo_retrans) {
2369		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2370					       tp->rack.reo_wnd_persist + 1);
2371		DBGUNDO(sk, "D-SACK");
2372		tcp_undo_cwnd_reduction(sk, false);
2373		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2374		return true;
2375	}
2376	return false;
2377}
2378
2379/* Undo during loss recovery after partial ACK or using F-RTO. */
2380static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2381{
2382	struct tcp_sock *tp = tcp_sk(sk);
2383
2384	if (frto_undo || tcp_may_undo(tp)) {
2385		tcp_undo_cwnd_reduction(sk, true);
2386
2387		DBGUNDO(sk, "partial loss");
2388		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2389		if (frto_undo)
2390			NET_INC_STATS(sock_net(sk),
2391					LINUX_MIB_TCPSPURIOUSRTOS);
2392		inet_csk(sk)->icsk_retransmits = 0;
2393		if (frto_undo || tcp_is_sack(tp)) {
2394			tcp_set_ca_state(sk, TCP_CA_Open);
2395			tp->is_sack_reneg = 0;
2396		}
2397		return true;
2398	}
2399	return false;
2400}
2401
2402/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2403 * It computes the number of packets to send (sndcnt) based on packets newly
2404 * delivered:
2405 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2406 *	cwnd reductions across a full RTT.
2407 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2408 *      But when the retransmits are acked without further losses, PRR
2409 *      slow starts cwnd up to ssthresh to speed up the recovery.
2410 */
2411static void tcp_init_cwnd_reduction(struct sock *sk)
2412{
2413	struct tcp_sock *tp = tcp_sk(sk);
2414
2415	tp->high_seq = tp->snd_nxt;
2416	tp->tlp_high_seq = 0;
2417	tp->snd_cwnd_cnt = 0;
2418	tp->prior_cwnd = tp->snd_cwnd;
2419	tp->prr_delivered = 0;
2420	tp->prr_out = 0;
2421	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2422	tcp_ecn_queue_cwr(tp);
2423}
2424
2425void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2426{
2427	struct tcp_sock *tp = tcp_sk(sk);
2428	int sndcnt = 0;
2429	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2430
2431	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2432		return;
2433
2434	tp->prr_delivered += newly_acked_sacked;
2435	if (delta < 0) {
2436		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2437			       tp->prior_cwnd - 1;
2438		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2439	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2440		   !(flag & FLAG_LOST_RETRANS)) {
2441		sndcnt = min_t(int, delta,
2442			       max_t(int, tp->prr_delivered - tp->prr_out,
2443				     newly_acked_sacked) + 1);
2444	} else {
2445		sndcnt = min(delta, newly_acked_sacked);
2446	}
2447	/* Force a fast retransmit upon entering fast recovery */
2448	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2449	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2450}
2451
2452static inline void tcp_end_cwnd_reduction(struct sock *sk)
2453{
2454	struct tcp_sock *tp = tcp_sk(sk);
2455
2456	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2457		return;
2458
2459	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2460	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2461	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2462		tp->snd_cwnd = tp->snd_ssthresh;
2463		tp->snd_cwnd_stamp = tcp_jiffies32;
2464	}
2465	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2466}
2467
2468/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2469void tcp_enter_cwr(struct sock *sk)
2470{
2471	struct tcp_sock *tp = tcp_sk(sk);
2472
2473	tp->prior_ssthresh = 0;
2474	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2475		tp->undo_marker = 0;
2476		tcp_init_cwnd_reduction(sk);
2477		tcp_set_ca_state(sk, TCP_CA_CWR);
2478	}
2479}
2480EXPORT_SYMBOL(tcp_enter_cwr);
2481
2482static void tcp_try_keep_open(struct sock *sk)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485	int state = TCP_CA_Open;
2486
2487	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2488		state = TCP_CA_Disorder;
2489
2490	if (inet_csk(sk)->icsk_ca_state != state) {
2491		tcp_set_ca_state(sk, state);
2492		tp->high_seq = tp->snd_nxt;
2493	}
2494}
2495
2496static void tcp_try_to_open(struct sock *sk, int flag)
2497{
2498	struct tcp_sock *tp = tcp_sk(sk);
2499
2500	tcp_verify_left_out(tp);
2501
2502	if (!tcp_any_retrans_done(sk))
2503		tp->retrans_stamp = 0;
2504
2505	if (flag & FLAG_ECE)
2506		tcp_enter_cwr(sk);
2507
2508	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2509		tcp_try_keep_open(sk);
2510	}
2511}
2512
2513static void tcp_mtup_probe_failed(struct sock *sk)
2514{
2515	struct inet_connection_sock *icsk = inet_csk(sk);
2516
2517	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2518	icsk->icsk_mtup.probe_size = 0;
2519	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2520}
2521
2522static void tcp_mtup_probe_success(struct sock *sk)
2523{
2524	struct tcp_sock *tp = tcp_sk(sk);
2525	struct inet_connection_sock *icsk = inet_csk(sk);
2526
2527	/* FIXME: breaks with very large cwnd */
2528	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2529	tp->snd_cwnd = tp->snd_cwnd *
2530		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2531		       icsk->icsk_mtup.probe_size;
2532	tp->snd_cwnd_cnt = 0;
2533	tp->snd_cwnd_stamp = tcp_jiffies32;
2534	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2535
2536	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2537	icsk->icsk_mtup.probe_size = 0;
2538	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2539	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2540}
2541
2542/* Do a simple retransmit without using the backoff mechanisms in
2543 * tcp_timer. This is used for path mtu discovery.
2544 * The socket is already locked here.
2545 */
2546void tcp_simple_retransmit(struct sock *sk)
2547{
2548	const struct inet_connection_sock *icsk = inet_csk(sk);
2549	struct tcp_sock *tp = tcp_sk(sk);
2550	struct sk_buff *skb;
2551	unsigned int mss = tcp_current_mss(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552
2553	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2554		if (tcp_skb_seglen(skb) > mss &&
2555		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2556			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2557				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2558				tp->retrans_out -= tcp_skb_pcount(skb);
2559			}
2560			tcp_skb_mark_lost_uncond_verify(tp, skb);
2561		}
2562	}
2563
2564	tcp_clear_retrans_hints_partial(tp);
2565
2566	if (!tp->lost_out)
2567		return;
2568
2569	if (tcp_is_reno(tp))
2570		tcp_limit_reno_sacked(tp);
2571
2572	tcp_verify_left_out(tp);
2573
2574	/* Don't muck with the congestion window here.
2575	 * Reason is that we do not increase amount of _data_
2576	 * in network, but units changed and effective
2577	 * cwnd/ssthresh really reduced now.
2578	 */
2579	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2580		tp->high_seq = tp->snd_nxt;
2581		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582		tp->prior_ssthresh = 0;
2583		tp->undo_marker = 0;
2584		tcp_set_ca_state(sk, TCP_CA_Loss);
2585	}
2586	tcp_xmit_retransmit_queue(sk);
2587}
2588EXPORT_SYMBOL(tcp_simple_retransmit);
2589
2590void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2591{
2592	struct tcp_sock *tp = tcp_sk(sk);
2593	int mib_idx;
2594
2595	if (tcp_is_reno(tp))
2596		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2597	else
2598		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2599
2600	NET_INC_STATS(sock_net(sk), mib_idx);
2601
2602	tp->prior_ssthresh = 0;
2603	tcp_init_undo(tp);
2604
2605	if (!tcp_in_cwnd_reduction(sk)) {
2606		if (!ece_ack)
2607			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2608		tcp_init_cwnd_reduction(sk);
2609	}
2610	tcp_set_ca_state(sk, TCP_CA_Recovery);
2611}
2612
2613/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2614 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2615 */
2616static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2617			     int *rexmit)
2618{
2619	struct tcp_sock *tp = tcp_sk(sk);
2620	bool recovered = !before(tp->snd_una, tp->high_seq);
2621
2622	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2623	    tcp_try_undo_loss(sk, false))
2624		return;
2625
2626	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2627		/* Step 3.b. A timeout is spurious if not all data are
2628		 * lost, i.e., never-retransmitted data are (s)acked.
2629		 */
2630		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2631		    tcp_try_undo_loss(sk, true))
2632			return;
2633
2634		if (after(tp->snd_nxt, tp->high_seq)) {
2635			if (flag & FLAG_DATA_SACKED || is_dupack)
2636				tp->frto = 0; /* Step 3.a. loss was real */
2637		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2638			tp->high_seq = tp->snd_nxt;
2639			/* Step 2.b. Try send new data (but deferred until cwnd
2640			 * is updated in tcp_ack()). Otherwise fall back to
2641			 * the conventional recovery.
2642			 */
2643			if (!tcp_write_queue_empty(sk) &&
2644			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2645				*rexmit = REXMIT_NEW;
2646				return;
2647			}
2648			tp->frto = 0;
2649		}
2650	}
2651
2652	if (recovered) {
2653		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2654		tcp_try_undo_recovery(sk);
2655		return;
2656	}
2657	if (tcp_is_reno(tp)) {
2658		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2659		 * delivered. Lower inflight to clock out (re)tranmissions.
2660		 */
2661		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2662			tcp_add_reno_sack(sk);
2663		else if (flag & FLAG_SND_UNA_ADVANCED)
2664			tcp_reset_reno_sack(tp);
2665	}
2666	*rexmit = REXMIT_LOST;
2667}
2668
 
 
 
 
 
 
 
 
2669/* Undo during fast recovery after partial ACK. */
2670static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
 
2671{
2672	struct tcp_sock *tp = tcp_sk(sk);
2673
2674	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2675		/* Plain luck! Hole if filled with delayed
2676		 * packet, rather than with a retransmit. Check reordering.
2677		 */
2678		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2679
2680		/* We are getting evidence that the reordering degree is higher
2681		 * than we realized. If there are no retransmits out then we
2682		 * can undo. Otherwise we clock out new packets but do not
2683		 * mark more packets lost or retransmit more.
2684		 */
2685		if (tp->retrans_out)
2686			return true;
2687
2688		if (!tcp_any_retrans_done(sk))
2689			tp->retrans_stamp = 0;
2690
2691		DBGUNDO(sk, "partial recovery");
2692		tcp_undo_cwnd_reduction(sk, true);
2693		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2694		tcp_try_keep_open(sk);
2695		return true;
 
 
2696	}
2697	return false;
2698}
2699
2700static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2701{
2702	struct tcp_sock *tp = tcp_sk(sk);
2703
2704	/* Use RACK to detect loss */
2705	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
 
 
 
 
2706		u32 prior_retrans = tp->retrans_out;
2707
2708		tcp_rack_mark_lost(sk);
 
2709		if (prior_retrans > tp->retrans_out)
2710			*ack_flag |= FLAG_LOST_RETRANS;
2711	}
2712}
2713
2714static bool tcp_force_fast_retransmit(struct sock *sk)
2715{
2716	struct tcp_sock *tp = tcp_sk(sk);
2717
2718	return after(tcp_highest_sack_seq(tp),
2719		     tp->snd_una + tp->reordering * tp->mss_cache);
2720}
2721
2722/* Process an event, which can update packets-in-flight not trivially.
2723 * Main goal of this function is to calculate new estimate for left_out,
2724 * taking into account both packets sitting in receiver's buffer and
2725 * packets lost by network.
2726 *
2727 * Besides that it updates the congestion state when packet loss or ECN
2728 * is detected. But it does not reduce the cwnd, it is done by the
2729 * congestion control later.
2730 *
2731 * It does _not_ decide what to send, it is made in function
2732 * tcp_xmit_retransmit_queue().
2733 */
2734static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2735				  bool is_dupack, int *ack_flag, int *rexmit)
2736{
2737	struct inet_connection_sock *icsk = inet_csk(sk);
2738	struct tcp_sock *tp = tcp_sk(sk);
2739	int fast_rexmit = 0, flag = *ack_flag;
2740	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2741				     tcp_force_fast_retransmit(sk));
 
2742
2743	if (!tp->packets_out && tp->sacked_out)
2744		tp->sacked_out = 0;
2745
2746	/* Now state machine starts.
2747	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2748	if (flag & FLAG_ECE)
2749		tp->prior_ssthresh = 0;
2750
2751	/* B. In all the states check for reneging SACKs. */
2752	if (tcp_check_sack_reneging(sk, flag))
2753		return;
2754
2755	/* C. Check consistency of the current state. */
2756	tcp_verify_left_out(tp);
2757
2758	/* D. Check state exit conditions. State can be terminated
2759	 *    when high_seq is ACKed. */
2760	if (icsk->icsk_ca_state == TCP_CA_Open) {
2761		WARN_ON(tp->retrans_out != 0);
2762		tp->retrans_stamp = 0;
2763	} else if (!before(tp->snd_una, tp->high_seq)) {
2764		switch (icsk->icsk_ca_state) {
2765		case TCP_CA_CWR:
2766			/* CWR is to be held something *above* high_seq
2767			 * is ACKed for CWR bit to reach receiver. */
2768			if (tp->snd_una != tp->high_seq) {
2769				tcp_end_cwnd_reduction(sk);
2770				tcp_set_ca_state(sk, TCP_CA_Open);
2771			}
2772			break;
2773
2774		case TCP_CA_Recovery:
2775			if (tcp_is_reno(tp))
2776				tcp_reset_reno_sack(tp);
2777			if (tcp_try_undo_recovery(sk))
2778				return;
2779			tcp_end_cwnd_reduction(sk);
2780			break;
2781		}
2782	}
2783
2784	/* E. Process state. */
2785	switch (icsk->icsk_ca_state) {
2786	case TCP_CA_Recovery:
2787		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2788			if (tcp_is_reno(tp) && is_dupack)
2789				tcp_add_reno_sack(sk);
2790		} else {
2791			if (tcp_try_undo_partial(sk, prior_snd_una))
 
 
 
 
 
 
 
2792				return;
2793			/* Partial ACK arrived. Force fast retransmit. */
2794			do_lost = tcp_is_reno(tp) ||
2795				  tcp_force_fast_retransmit(sk);
 
2796		}
2797		if (tcp_try_undo_dsack(sk)) {
2798			tcp_try_keep_open(sk);
2799			return;
2800		}
2801		tcp_rack_identify_loss(sk, ack_flag);
2802		break;
2803	case TCP_CA_Loss:
2804		tcp_process_loss(sk, flag, is_dupack, rexmit);
2805		tcp_rack_identify_loss(sk, ack_flag);
2806		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2807		      (*ack_flag & FLAG_LOST_RETRANS)))
2808			return;
2809		/* Change state if cwnd is undone or retransmits are lost */
2810		/* fall through */
2811	default:
2812		if (tcp_is_reno(tp)) {
2813			if (flag & FLAG_SND_UNA_ADVANCED)
2814				tcp_reset_reno_sack(tp);
2815			if (is_dupack)
2816				tcp_add_reno_sack(sk);
2817		}
2818
2819		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2820			tcp_try_undo_dsack(sk);
2821
2822		tcp_rack_identify_loss(sk, ack_flag);
2823		if (!tcp_time_to_recover(sk, flag)) {
2824			tcp_try_to_open(sk, flag);
2825			return;
2826		}
2827
2828		/* MTU probe failure: don't reduce cwnd */
2829		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2830		    icsk->icsk_mtup.probe_size &&
2831		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2832			tcp_mtup_probe_failed(sk);
2833			/* Restores the reduction we did in tcp_mtup_probe() */
2834			tp->snd_cwnd++;
2835			tcp_simple_retransmit(sk);
2836			return;
2837		}
2838
2839		/* Otherwise enter Recovery state */
2840		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2841		fast_rexmit = 1;
2842	}
2843
2844	if (do_lost)
2845		tcp_update_scoreboard(sk, fast_rexmit);
2846	*rexmit = REXMIT_LOST;
2847}
2848
2849static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2850{
2851	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2852	struct tcp_sock *tp = tcp_sk(sk);
2853
2854	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2855		/* If the remote keeps returning delayed ACKs, eventually
2856		 * the min filter would pick it up and overestimate the
2857		 * prop. delay when it expires. Skip suspected delayed ACKs.
2858		 */
2859		return;
2860	}
2861	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2862			   rtt_us ? : jiffies_to_usecs(1));
2863}
2864
2865static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2866			       long seq_rtt_us, long sack_rtt_us,
2867			       long ca_rtt_us, struct rate_sample *rs)
2868{
2869	const struct tcp_sock *tp = tcp_sk(sk);
2870
2871	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2872	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2873	 * Karn's algorithm forbids taking RTT if some retransmitted data
2874	 * is acked (RFC6298).
2875	 */
2876	if (seq_rtt_us < 0)
2877		seq_rtt_us = sack_rtt_us;
2878
2879	/* RTTM Rule: A TSecr value received in a segment is used to
2880	 * update the averaged RTT measurement only if the segment
2881	 * acknowledges some new data, i.e., only if it advances the
2882	 * left edge of the send window.
2883	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2884	 */
2885	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2886	    flag & FLAG_ACKED) {
2887		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2888		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2889
2890		seq_rtt_us = ca_rtt_us = delta_us;
 
 
 
 
 
2891	}
2892	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2893	if (seq_rtt_us < 0)
2894		return false;
2895
2896	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2897	 * always taken together with ACK, SACK, or TS-opts. Any negative
2898	 * values will be skipped with the seq_rtt_us < 0 check above.
2899	 */
2900	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2901	tcp_rtt_estimator(sk, seq_rtt_us);
2902	tcp_set_rto(sk);
2903
2904	/* RFC6298: only reset backoff on valid RTT measurement. */
2905	inet_csk(sk)->icsk_backoff = 0;
2906	return true;
2907}
2908
2909/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2910void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2911{
2912	struct rate_sample rs;
2913	long rtt_us = -1L;
2914
2915	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2916		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2917
2918	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2919}
2920
2921
2922static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2923{
2924	const struct inet_connection_sock *icsk = inet_csk(sk);
2925
2926	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2927	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2928}
2929
2930/* Restart timer after forward progress on connection.
2931 * RFC2988 recommends to restart timer to now+rto.
2932 */
2933void tcp_rearm_rto(struct sock *sk)
2934{
2935	const struct inet_connection_sock *icsk = inet_csk(sk);
2936	struct tcp_sock *tp = tcp_sk(sk);
2937
2938	/* If the retrans timer is currently being used by Fast Open
2939	 * for SYN-ACK retrans purpose, stay put.
2940	 */
2941	if (tp->fastopen_rsk)
2942		return;
2943
2944	if (!tp->packets_out) {
2945		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2946	} else {
2947		u32 rto = inet_csk(sk)->icsk_rto;
2948		/* Offset the time elapsed after installing regular RTO */
2949		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2950		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2951			s64 delta_us = tcp_rto_delta_us(sk);
2952			/* delta_us may not be positive if the socket is locked
2953			 * when the retrans timer fires and is rescheduled.
2954			 */
2955			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2956		}
2957		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2958					  TCP_RTO_MAX);
2959	}
2960}
2961
2962/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2963static void tcp_set_xmit_timer(struct sock *sk)
2964{
2965	if (!tcp_schedule_loss_probe(sk, true))
2966		tcp_rearm_rto(sk);
2967}
2968
2969/* If we get here, the whole TSO packet has not been acked. */
2970static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2971{
2972	struct tcp_sock *tp = tcp_sk(sk);
2973	u32 packets_acked;
2974
2975	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2976
2977	packets_acked = tcp_skb_pcount(skb);
2978	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2979		return 0;
2980	packets_acked -= tcp_skb_pcount(skb);
2981
2982	if (packets_acked) {
2983		BUG_ON(tcp_skb_pcount(skb) == 0);
2984		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2985	}
2986
2987	return packets_acked;
2988}
2989
2990static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
2991			   u32 prior_snd_una)
2992{
2993	const struct skb_shared_info *shinfo;
2994
2995	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
2996	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
2997		return;
2998
2999	shinfo = skb_shinfo(skb);
3000	if (!before(shinfo->tskey, prior_snd_una) &&
3001	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3002		tcp_skb_tsorted_save(skb) {
3003			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3004		} tcp_skb_tsorted_restore(skb);
3005	}
3006}
3007
3008/* Remove acknowledged frames from the retransmission queue. If our packet
3009 * is before the ack sequence we can discard it as it's confirmed to have
3010 * arrived at the other end.
3011 */
3012static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3013			       u32 prior_snd_una,
3014			       struct tcp_sacktag_state *sack)
3015{
3016	const struct inet_connection_sock *icsk = inet_csk(sk);
3017	u64 first_ackt, last_ackt;
3018	struct tcp_sock *tp = tcp_sk(sk);
3019	u32 prior_sacked = tp->sacked_out;
3020	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3021	struct sk_buff *skb, *next;
3022	bool fully_acked = true;
3023	long sack_rtt_us = -1L;
3024	long seq_rtt_us = -1L;
3025	long ca_rtt_us = -1L;
3026	u32 pkts_acked = 0;
3027	u32 last_in_flight = 0;
3028	bool rtt_update;
3029	int flag = 0;
3030
3031	first_ackt = 0;
3032
3033	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3034		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3035		const u32 start_seq = scb->seq;
3036		u8 sacked = scb->sacked;
3037		u32 acked_pcount;
3038
3039		tcp_ack_tstamp(sk, skb, prior_snd_una);
3040
3041		/* Determine how many packets and what bytes were acked, tso and else */
3042		if (after(scb->end_seq, tp->snd_una)) {
3043			if (tcp_skb_pcount(skb) == 1 ||
3044			    !after(tp->snd_una, scb->seq))
3045				break;
3046
3047			acked_pcount = tcp_tso_acked(sk, skb);
3048			if (!acked_pcount)
3049				break;
3050			fully_acked = false;
3051		} else {
3052			acked_pcount = tcp_skb_pcount(skb);
3053		}
3054
3055		if (unlikely(sacked & TCPCB_RETRANS)) {
3056			if (sacked & TCPCB_SACKED_RETRANS)
3057				tp->retrans_out -= acked_pcount;
3058			flag |= FLAG_RETRANS_DATA_ACKED;
3059		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3060			last_ackt = skb->skb_mstamp;
3061			WARN_ON_ONCE(last_ackt == 0);
3062			if (!first_ackt)
3063				first_ackt = last_ackt;
3064
3065			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3066			if (before(start_seq, reord))
3067				reord = start_seq;
3068			if (!after(scb->end_seq, tp->high_seq))
3069				flag |= FLAG_ORIG_SACK_ACKED;
3070		}
3071
3072		if (sacked & TCPCB_SACKED_ACKED) {
3073			tp->sacked_out -= acked_pcount;
3074		} else if (tcp_is_sack(tp)) {
3075			tp->delivered += acked_pcount;
3076			if (!tcp_skb_spurious_retrans(tp, skb))
3077				tcp_rack_advance(tp, sacked, scb->end_seq,
3078						 skb->skb_mstamp);
3079		}
3080		if (sacked & TCPCB_LOST)
3081			tp->lost_out -= acked_pcount;
3082
3083		tp->packets_out -= acked_pcount;
3084		pkts_acked += acked_pcount;
3085		tcp_rate_skb_delivered(sk, skb, sack->rate);
3086
3087		/* Initial outgoing SYN's get put onto the write_queue
3088		 * just like anything else we transmit.  It is not
3089		 * true data, and if we misinform our callers that
3090		 * this ACK acks real data, we will erroneously exit
3091		 * connection startup slow start one packet too
3092		 * quickly.  This is severely frowned upon behavior.
3093		 */
3094		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3095			flag |= FLAG_DATA_ACKED;
3096		} else {
3097			flag |= FLAG_SYN_ACKED;
3098			tp->retrans_stamp = 0;
3099		}
3100
3101		if (!fully_acked)
3102			break;
3103
 
 
3104		next = skb_rb_next(skb);
3105		if (unlikely(skb == tp->retransmit_skb_hint))
3106			tp->retransmit_skb_hint = NULL;
3107		if (unlikely(skb == tp->lost_skb_hint))
3108			tp->lost_skb_hint = NULL;
 
3109		tcp_rtx_queue_unlink_and_free(skb, sk);
3110	}
3111
3112	if (!skb)
3113		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3114
3115	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3116		tp->snd_up = tp->snd_una;
3117
3118	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3119		flag |= FLAG_SACK_RENEGING;
 
 
 
3120
3121	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3122		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3123		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3124
3125		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3126		    last_in_flight && !prior_sacked && fully_acked &&
3127		    sack->rate->prior_delivered + 1 == tp->delivered &&
3128		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3129			/* Conservatively mark a delayed ACK. It's typically
3130			 * from a lone runt packet over the round trip to
3131			 * a receiver w/o out-of-order or CE events.
3132			 */
3133			flag |= FLAG_ACK_MAYBE_DELAYED;
3134		}
3135	}
3136	if (sack->first_sackt) {
3137		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3138		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3139	}
3140	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3141					ca_rtt_us, sack->rate);
3142
3143	if (flag & FLAG_ACKED) {
3144		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3145		if (unlikely(icsk->icsk_mtup.probe_size &&
3146			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3147			tcp_mtup_probe_success(sk);
3148		}
3149
3150		if (tcp_is_reno(tp)) {
3151			tcp_remove_reno_sacks(sk, pkts_acked);
 
 
 
 
 
 
 
 
 
3152		} else {
3153			int delta;
3154
3155			/* Non-retransmitted hole got filled? That's reordering */
3156			if (before(reord, prior_fack))
3157				tcp_check_sack_reordering(sk, reord, 0);
3158
3159			delta = prior_sacked - tp->sacked_out;
3160			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3161		}
3162	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3163		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
 
3164		/* Do not re-arm RTO if the sack RTT is measured from data sent
3165		 * after when the head was last (re)transmitted. Otherwise the
3166		 * timeout may continue to extend in loss recovery.
3167		 */
3168		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3169	}
3170
3171	if (icsk->icsk_ca_ops->pkts_acked) {
3172		struct ack_sample sample = { .pkts_acked = pkts_acked,
3173					     .rtt_us = sack->rate->rtt_us,
3174					     .in_flight = last_in_flight };
3175
3176		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3177	}
3178
3179#if FASTRETRANS_DEBUG > 0
3180	WARN_ON((int)tp->sacked_out < 0);
3181	WARN_ON((int)tp->lost_out < 0);
3182	WARN_ON((int)tp->retrans_out < 0);
3183	if (!tp->packets_out && tcp_is_sack(tp)) {
3184		icsk = inet_csk(sk);
3185		if (tp->lost_out) {
3186			pr_debug("Leak l=%u %d\n",
3187				 tp->lost_out, icsk->icsk_ca_state);
3188			tp->lost_out = 0;
3189		}
3190		if (tp->sacked_out) {
3191			pr_debug("Leak s=%u %d\n",
3192				 tp->sacked_out, icsk->icsk_ca_state);
3193			tp->sacked_out = 0;
3194		}
3195		if (tp->retrans_out) {
3196			pr_debug("Leak r=%u %d\n",
3197				 tp->retrans_out, icsk->icsk_ca_state);
3198			tp->retrans_out = 0;
3199		}
3200	}
3201#endif
3202	return flag;
3203}
3204
3205static void tcp_ack_probe(struct sock *sk)
3206{
3207	struct inet_connection_sock *icsk = inet_csk(sk);
3208	struct sk_buff *head = tcp_send_head(sk);
3209	const struct tcp_sock *tp = tcp_sk(sk);
3210
3211	/* Was it a usable window open? */
3212	if (!head)
3213		return;
3214	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3215		icsk->icsk_backoff = 0;
 
3216		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3217		/* Socket must be waked up by subsequent tcp_data_snd_check().
3218		 * This function is not for random using!
3219		 */
3220	} else {
3221		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3222
3223		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3224					  when, TCP_RTO_MAX);
3225	}
3226}
3227
3228static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3229{
3230	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3231		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3232}
3233
3234/* Decide wheather to run the increase function of congestion control. */
3235static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3236{
3237	/* If reordering is high then always grow cwnd whenever data is
3238	 * delivered regardless of its ordering. Otherwise stay conservative
3239	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3240	 * new SACK or ECE mark may first advance cwnd here and later reduce
3241	 * cwnd in tcp_fastretrans_alert() based on more states.
3242	 */
3243	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3244		return flag & FLAG_FORWARD_PROGRESS;
3245
3246	return flag & FLAG_DATA_ACKED;
3247}
3248
3249/* The "ultimate" congestion control function that aims to replace the rigid
3250 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3251 * It's called toward the end of processing an ACK with precise rate
3252 * information. All transmission or retransmission are delayed afterwards.
3253 */
3254static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3255			     int flag, const struct rate_sample *rs)
3256{
3257	const struct inet_connection_sock *icsk = inet_csk(sk);
3258
3259	if (icsk->icsk_ca_ops->cong_control) {
3260		icsk->icsk_ca_ops->cong_control(sk, rs);
3261		return;
3262	}
3263
3264	if (tcp_in_cwnd_reduction(sk)) {
3265		/* Reduce cwnd if state mandates */
3266		tcp_cwnd_reduction(sk, acked_sacked, flag);
3267	} else if (tcp_may_raise_cwnd(sk, flag)) {
3268		/* Advance cwnd if state allows */
3269		tcp_cong_avoid(sk, ack, acked_sacked);
3270	}
3271	tcp_update_pacing_rate(sk);
3272}
3273
3274/* Check that window update is acceptable.
3275 * The function assumes that snd_una<=ack<=snd_next.
3276 */
3277static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3278					const u32 ack, const u32 ack_seq,
3279					const u32 nwin)
3280{
3281	return	after(ack, tp->snd_una) ||
3282		after(ack_seq, tp->snd_wl1) ||
3283		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3284}
3285
3286/* If we update tp->snd_una, also update tp->bytes_acked */
3287static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3288{
3289	u32 delta = ack - tp->snd_una;
3290
3291	sock_owned_by_me((struct sock *)tp);
3292	tp->bytes_acked += delta;
3293	tp->snd_una = ack;
3294}
3295
3296/* If we update tp->rcv_nxt, also update tp->bytes_received */
3297static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3298{
3299	u32 delta = seq - tp->rcv_nxt;
3300
3301	sock_owned_by_me((struct sock *)tp);
3302	tp->bytes_received += delta;
3303	tp->rcv_nxt = seq;
3304}
3305
3306/* Update our send window.
3307 *
3308 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3309 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3310 */
3311static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3312				 u32 ack_seq)
3313{
3314	struct tcp_sock *tp = tcp_sk(sk);
3315	int flag = 0;
3316	u32 nwin = ntohs(tcp_hdr(skb)->window);
3317
3318	if (likely(!tcp_hdr(skb)->syn))
3319		nwin <<= tp->rx_opt.snd_wscale;
3320
3321	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3322		flag |= FLAG_WIN_UPDATE;
3323		tcp_update_wl(tp, ack_seq);
3324
3325		if (tp->snd_wnd != nwin) {
3326			tp->snd_wnd = nwin;
3327
3328			/* Note, it is the only place, where
3329			 * fast path is recovered for sending TCP.
3330			 */
3331			tp->pred_flags = 0;
3332			tcp_fast_path_check(sk);
3333
3334			if (!tcp_write_queue_empty(sk))
3335				tcp_slow_start_after_idle_check(sk);
3336
3337			if (nwin > tp->max_window) {
3338				tp->max_window = nwin;
3339				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3340			}
3341		}
3342	}
3343
3344	tcp_snd_una_update(tp, ack);
3345
3346	return flag;
3347}
3348
3349static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3350				   u32 *last_oow_ack_time)
3351{
3352	if (*last_oow_ack_time) {
3353		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3354
3355		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3356			NET_INC_STATS(net, mib_idx);
3357			return true;	/* rate-limited: don't send yet! */
3358		}
3359	}
3360
3361	*last_oow_ack_time = tcp_jiffies32;
3362
3363	return false;	/* not rate-limited: go ahead, send dupack now! */
3364}
3365
3366/* Return true if we're currently rate-limiting out-of-window ACKs and
3367 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3368 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3369 * attacks that send repeated SYNs or ACKs for the same connection. To
3370 * do this, we do not send a duplicate SYNACK or ACK if the remote
3371 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3372 */
3373bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3374			  int mib_idx, u32 *last_oow_ack_time)
3375{
3376	/* Data packets without SYNs are not likely part of an ACK loop. */
3377	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3378	    !tcp_hdr(skb)->syn)
3379		return false;
3380
3381	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3382}
3383
3384/* RFC 5961 7 [ACK Throttling] */
3385static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3386{
3387	/* unprotected vars, we dont care of overwrites */
3388	static u32 challenge_timestamp;
3389	static unsigned int challenge_count;
3390	struct tcp_sock *tp = tcp_sk(sk);
3391	struct net *net = sock_net(sk);
3392	u32 count, now;
3393
3394	/* First check our per-socket dupack rate limit. */
3395	if (__tcp_oow_rate_limited(net,
3396				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3397				   &tp->last_oow_ack_time))
3398		return;
3399
3400	/* Then check host-wide RFC 5961 rate limit. */
3401	now = jiffies / HZ;
3402	if (now != challenge_timestamp) {
3403		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3404		u32 half = (ack_limit + 1) >> 1;
3405
3406		challenge_timestamp = now;
3407		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3408	}
3409	count = READ_ONCE(challenge_count);
3410	if (count > 0) {
3411		WRITE_ONCE(challenge_count, count - 1);
3412		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3413		tcp_send_ack(sk);
3414	}
3415}
3416
3417static void tcp_store_ts_recent(struct tcp_sock *tp)
3418{
3419	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3420	tp->rx_opt.ts_recent_stamp = get_seconds();
3421}
3422
3423static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3424{
3425	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3426		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3427		 * extra check below makes sure this can only happen
3428		 * for pure ACK frames.  -DaveM
3429		 *
3430		 * Not only, also it occurs for expired timestamps.
3431		 */
3432
3433		if (tcp_paws_check(&tp->rx_opt, 0))
3434			tcp_store_ts_recent(tp);
3435	}
3436}
3437
3438/* This routine deals with acks during a TLP episode.
3439 * We mark the end of a TLP episode on receiving TLP dupack or when
3440 * ack is after tlp_high_seq.
3441 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3442 */
3443static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3444{
3445	struct tcp_sock *tp = tcp_sk(sk);
3446
3447	if (before(ack, tp->tlp_high_seq))
3448		return;
3449
3450	if (flag & FLAG_DSACKING_ACK) {
 
 
 
3451		/* This DSACK means original and TLP probe arrived; no loss */
3452		tp->tlp_high_seq = 0;
3453	} else if (after(ack, tp->tlp_high_seq)) {
3454		/* ACK advances: there was a loss, so reduce cwnd. Reset
3455		 * tlp_high_seq in tcp_init_cwnd_reduction()
3456		 */
3457		tcp_init_cwnd_reduction(sk);
3458		tcp_set_ca_state(sk, TCP_CA_CWR);
3459		tcp_end_cwnd_reduction(sk);
3460		tcp_try_keep_open(sk);
3461		NET_INC_STATS(sock_net(sk),
3462				LINUX_MIB_TCPLOSSPROBERECOVERY);
3463	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3464			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3465		/* Pure dupack: original and TLP probe arrived; no loss */
3466		tp->tlp_high_seq = 0;
3467	}
3468}
3469
3470static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3471{
3472	const struct inet_connection_sock *icsk = inet_csk(sk);
3473
3474	if (icsk->icsk_ca_ops->in_ack_event)
3475		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3476}
3477
3478/* Congestion control has updated the cwnd already. So if we're in
3479 * loss recovery then now we do any new sends (for FRTO) or
3480 * retransmits (for CA_Loss or CA_recovery) that make sense.
3481 */
3482static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3483{
3484	struct tcp_sock *tp = tcp_sk(sk);
3485
3486	if (rexmit == REXMIT_NONE)
3487		return;
3488
3489	if (unlikely(rexmit == 2)) {
3490		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3491					  TCP_NAGLE_OFF);
3492		if (after(tp->snd_nxt, tp->high_seq))
3493			return;
3494		tp->frto = 0;
3495	}
3496	tcp_xmit_retransmit_queue(sk);
3497}
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499/* This routine deals with incoming acks, but not outgoing ones. */
3500static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3501{
3502	struct inet_connection_sock *icsk = inet_csk(sk);
3503	struct tcp_sock *tp = tcp_sk(sk);
3504	struct tcp_sacktag_state sack_state;
3505	struct rate_sample rs = { .prior_delivered = 0 };
3506	u32 prior_snd_una = tp->snd_una;
3507	bool is_sack_reneg = tp->is_sack_reneg;
3508	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3509	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3510	bool is_dupack = false;
3511	int prior_packets = tp->packets_out;
3512	u32 delivered = tp->delivered;
3513	u32 lost = tp->lost;
3514	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3515	u32 prior_fack;
3516
3517	sack_state.first_sackt = 0;
3518	sack_state.rate = &rs;
 
3519
3520	/* We very likely will need to access rtx queue. */
3521	prefetch(sk->tcp_rtx_queue.rb_node);
3522
3523	/* If the ack is older than previous acks
3524	 * then we can probably ignore it.
3525	 */
3526	if (before(ack, prior_snd_una)) {
3527		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3528		if (before(ack, prior_snd_una - tp->max_window)) {
3529			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3530				tcp_send_challenge_ack(sk, skb);
3531			return -1;
3532		}
3533		goto old_ack;
3534	}
3535
3536	/* If the ack includes data we haven't sent yet, discard
3537	 * this segment (RFC793 Section 3.9).
3538	 */
3539	if (after(ack, tp->snd_nxt))
3540		goto invalid_ack;
3541
3542	if (after(ack, prior_snd_una)) {
3543		flag |= FLAG_SND_UNA_ADVANCED;
3544		icsk->icsk_retransmits = 0;
 
 
 
 
 
 
3545	}
3546
3547	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3548	rs.prior_in_flight = tcp_packets_in_flight(tp);
3549
3550	/* ts_recent update must be made after we are sure that the packet
3551	 * is in window.
3552	 */
3553	if (flag & FLAG_UPDATE_TS_RECENT)
3554		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3555
3556	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
 
3557		/* Window is constant, pure forward advance.
3558		 * No more checks are required.
3559		 * Note, we use the fact that SND.UNA>=SND.WL2.
3560		 */
3561		tcp_update_wl(tp, ack_seq);
3562		tcp_snd_una_update(tp, ack);
3563		flag |= FLAG_WIN_UPDATE;
3564
3565		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3566
3567		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3568	} else {
3569		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3570
3571		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3572			flag |= FLAG_DATA;
3573		else
3574			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3575
3576		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3577
3578		if (TCP_SKB_CB(skb)->sacked)
3579			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3580							&sack_state);
3581
3582		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3583			flag |= FLAG_ECE;
3584			ack_ev_flags |= CA_ACK_ECE;
3585		}
3586
 
 
 
 
3587		if (flag & FLAG_WIN_UPDATE)
3588			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3589
3590		tcp_in_ack_event(sk, ack_ev_flags);
3591	}
3592
 
 
 
 
 
 
 
 
 
3593	/* We passed data and got it acked, remove any soft error
3594	 * log. Something worked...
3595	 */
3596	sk->sk_err_soft = 0;
3597	icsk->icsk_probes_out = 0;
3598	tp->rcv_tstamp = tcp_jiffies32;
3599	if (!prior_packets)
3600		goto no_queue;
3601
3602	/* See if we can take anything off of the retransmit queue. */
3603	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
 
3604
3605	tcp_rack_update_reo_wnd(sk, &rs);
3606
3607	if (tp->tlp_high_seq)
3608		tcp_process_tlp_ack(sk, ack, flag);
3609	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3610	if (flag & FLAG_SET_XMIT_TIMER)
3611		tcp_set_xmit_timer(sk);
3612
3613	if (tcp_ack_is_dubious(sk, flag)) {
3614		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3615		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
 
 
 
 
 
3616				      &rexmit);
3617	}
3618
 
 
 
 
3619	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3620		sk_dst_confirm(sk);
3621
3622	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3623	lost = tp->lost - lost;			/* freshly marked lost */
3624	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3625	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3626	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3627	tcp_xmit_recovery(sk, rexmit);
3628	return 1;
3629
3630no_queue:
3631	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3632	if (flag & FLAG_DSACKING_ACK)
3633		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3634				      &rexmit);
 
 
3635	/* If this ack opens up a zero window, clear backoff.  It was
3636	 * being used to time the probes, and is probably far higher than
3637	 * it needs to be for normal retransmission.
3638	 */
3639	tcp_ack_probe(sk);
3640
3641	if (tp->tlp_high_seq)
3642		tcp_process_tlp_ack(sk, ack, flag);
3643	return 1;
3644
3645invalid_ack:
3646	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3647	return -1;
3648
3649old_ack:
3650	/* If data was SACKed, tag it and see if we should send more data.
3651	 * If data was DSACKed, see if we can undo a cwnd reduction.
3652	 */
3653	if (TCP_SKB_CB(skb)->sacked) {
3654		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3655						&sack_state);
3656		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3657				      &rexmit);
 
3658		tcp_xmit_recovery(sk, rexmit);
3659	}
3660
3661	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3662	return 0;
3663}
3664
3665static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3666				      bool syn, struct tcp_fastopen_cookie *foc,
3667				      bool exp_opt)
3668{
3669	/* Valid only in SYN or SYN-ACK with an even length.  */
3670	if (!foc || !syn || len < 0 || (len & 1))
3671		return;
3672
3673	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3674	    len <= TCP_FASTOPEN_COOKIE_MAX)
3675		memcpy(foc->val, cookie, len);
3676	else if (len != 0)
3677		len = -1;
3678	foc->len = len;
3679	foc->exp = exp_opt;
3680}
3681
3682static void smc_parse_options(const struct tcphdr *th,
3683			      struct tcp_options_received *opt_rx,
3684			      const unsigned char *ptr,
3685			      int opsize)
3686{
3687#if IS_ENABLED(CONFIG_SMC)
3688	if (static_branch_unlikely(&tcp_have_smc)) {
3689		if (th->syn && !(opsize & 1) &&
3690		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3691		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3692			opt_rx->smc_ok = 1;
 
 
3693	}
3694#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3695}
3696
3697/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698 * But, this can also be called on packets in the established flow when
3699 * the fast version below fails.
3700 */
3701void tcp_parse_options(const struct net *net,
3702		       const struct sk_buff *skb,
3703		       struct tcp_options_received *opt_rx, int estab,
3704		       struct tcp_fastopen_cookie *foc)
3705{
3706	const unsigned char *ptr;
3707	const struct tcphdr *th = tcp_hdr(skb);
3708	int length = (th->doff * 4) - sizeof(struct tcphdr);
3709
3710	ptr = (const unsigned char *)(th + 1);
3711	opt_rx->saw_tstamp = 0;
 
3712
3713	while (length > 0) {
3714		int opcode = *ptr++;
3715		int opsize;
3716
3717		switch (opcode) {
3718		case TCPOPT_EOL:
3719			return;
3720		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3721			length--;
3722			continue;
3723		default:
 
 
3724			opsize = *ptr++;
3725			if (opsize < 2) /* "silly options" */
3726				return;
3727			if (opsize > length)
3728				return;	/* don't parse partial options */
3729			switch (opcode) {
3730			case TCPOPT_MSS:
3731				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3732					u16 in_mss = get_unaligned_be16(ptr);
3733					if (in_mss) {
3734						if (opt_rx->user_mss &&
3735						    opt_rx->user_mss < in_mss)
3736							in_mss = opt_rx->user_mss;
3737						opt_rx->mss_clamp = in_mss;
3738					}
3739				}
3740				break;
3741			case TCPOPT_WINDOW:
3742				if (opsize == TCPOLEN_WINDOW && th->syn &&
3743				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3744					__u8 snd_wscale = *(__u8 *)ptr;
3745					opt_rx->wscale_ok = 1;
3746					if (snd_wscale > TCP_MAX_WSCALE) {
3747						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3748								     __func__,
3749								     snd_wscale,
3750								     TCP_MAX_WSCALE);
3751						snd_wscale = TCP_MAX_WSCALE;
3752					}
3753					opt_rx->snd_wscale = snd_wscale;
3754				}
3755				break;
3756			case TCPOPT_TIMESTAMP:
3757				if ((opsize == TCPOLEN_TIMESTAMP) &&
3758				    ((estab && opt_rx->tstamp_ok) ||
3759				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3760					opt_rx->saw_tstamp = 1;
3761					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3762					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3763				}
3764				break;
3765			case TCPOPT_SACK_PERM:
3766				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3767				    !estab && net->ipv4.sysctl_tcp_sack) {
3768					opt_rx->sack_ok = TCP_SACK_SEEN;
3769					tcp_sack_reset(opt_rx);
3770				}
3771				break;
3772
3773			case TCPOPT_SACK:
3774				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3775				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3776				   opt_rx->sack_ok) {
3777					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3778				}
3779				break;
3780#ifdef CONFIG_TCP_MD5SIG
3781			case TCPOPT_MD5SIG:
3782				/*
3783				 * The MD5 Hash has already been
3784				 * checked (see tcp_v{4,6}_do_rcv()).
3785				 */
3786				break;
3787#endif
3788			case TCPOPT_FASTOPEN:
3789				tcp_parse_fastopen_option(
3790					opsize - TCPOLEN_FASTOPEN_BASE,
3791					ptr, th->syn, foc, false);
3792				break;
3793
3794			case TCPOPT_EXP:
3795				/* Fast Open option shares code 254 using a
3796				 * 16 bits magic number.
3797				 */
3798				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3799				    get_unaligned_be16(ptr) ==
3800				    TCPOPT_FASTOPEN_MAGIC)
3801					tcp_parse_fastopen_option(opsize -
3802						TCPOLEN_EXP_FASTOPEN_BASE,
3803						ptr + 2, th->syn, foc, true);
3804				else
3805					smc_parse_options(th, opt_rx, ptr,
3806							  opsize);
 
 
 
 
3807				break;
3808
 
 
3809			}
3810			ptr += opsize-2;
3811			length -= opsize;
3812		}
3813	}
3814}
3815EXPORT_SYMBOL(tcp_parse_options);
3816
3817static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3818{
3819	const __be32 *ptr = (const __be32 *)(th + 1);
3820
3821	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3822			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3823		tp->rx_opt.saw_tstamp = 1;
3824		++ptr;
3825		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3826		++ptr;
3827		if (*ptr)
3828			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3829		else
3830			tp->rx_opt.rcv_tsecr = 0;
3831		return true;
3832	}
3833	return false;
3834}
3835
3836/* Fast parse options. This hopes to only see timestamps.
3837 * If it is wrong it falls back on tcp_parse_options().
3838 */
3839static bool tcp_fast_parse_options(const struct net *net,
3840				   const struct sk_buff *skb,
3841				   const struct tcphdr *th, struct tcp_sock *tp)
3842{
3843	/* In the spirit of fast parsing, compare doff directly to constant
3844	 * values.  Because equality is used, short doff can be ignored here.
3845	 */
3846	if (th->doff == (sizeof(*th) / 4)) {
3847		tp->rx_opt.saw_tstamp = 0;
3848		return false;
3849	} else if (tp->rx_opt.tstamp_ok &&
3850		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3851		if (tcp_parse_aligned_timestamp(tp, th))
3852			return true;
3853	}
3854
3855	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3856	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3857		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3858
3859	return true;
3860}
3861
3862#ifdef CONFIG_TCP_MD5SIG
3863/*
3864 * Parse MD5 Signature option
3865 */
3866const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3867{
3868	int length = (th->doff << 2) - sizeof(*th);
3869	const u8 *ptr = (const u8 *)(th + 1);
3870
3871	/* If not enough data remaining, we can short cut */
3872	while (length >= TCPOLEN_MD5SIG) {
3873		int opcode = *ptr++;
3874		int opsize;
3875
3876		switch (opcode) {
3877		case TCPOPT_EOL:
3878			return NULL;
3879		case TCPOPT_NOP:
3880			length--;
3881			continue;
3882		default:
3883			opsize = *ptr++;
3884			if (opsize < 2 || opsize > length)
3885				return NULL;
3886			if (opcode == TCPOPT_MD5SIG)
3887				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3888		}
3889		ptr += opsize - 2;
3890		length -= opsize;
3891	}
3892	return NULL;
3893}
3894EXPORT_SYMBOL(tcp_parse_md5sig_option);
3895#endif
3896
3897/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3898 *
3899 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3900 * it can pass through stack. So, the following predicate verifies that
3901 * this segment is not used for anything but congestion avoidance or
3902 * fast retransmit. Moreover, we even are able to eliminate most of such
3903 * second order effects, if we apply some small "replay" window (~RTO)
3904 * to timestamp space.
3905 *
3906 * All these measures still do not guarantee that we reject wrapped ACKs
3907 * on networks with high bandwidth, when sequence space is recycled fastly,
3908 * but it guarantees that such events will be very rare and do not affect
3909 * connection seriously. This doesn't look nice, but alas, PAWS is really
3910 * buggy extension.
3911 *
3912 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3913 * states that events when retransmit arrives after original data are rare.
3914 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3915 * the biggest problem on large power networks even with minor reordering.
3916 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3917 * up to bandwidth of 18Gigabit/sec. 8) ]
3918 */
3919
3920static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3921{
3922	const struct tcp_sock *tp = tcp_sk(sk);
3923	const struct tcphdr *th = tcp_hdr(skb);
3924	u32 seq = TCP_SKB_CB(skb)->seq;
3925	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3926
3927	return (/* 1. Pure ACK with correct sequence number. */
3928		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3929
3930		/* 2. ... and duplicate ACK. */
3931		ack == tp->snd_una &&
3932
3933		/* 3. ... and does not update window. */
3934		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3935
3936		/* 4. ... and sits in replay window. */
3937		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3938}
3939
3940static inline bool tcp_paws_discard(const struct sock *sk,
3941				   const struct sk_buff *skb)
3942{
3943	const struct tcp_sock *tp = tcp_sk(sk);
3944
3945	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3946	       !tcp_disordered_ack(sk, skb);
3947}
3948
3949/* Check segment sequence number for validity.
3950 *
3951 * Segment controls are considered valid, if the segment
3952 * fits to the window after truncation to the window. Acceptability
3953 * of data (and SYN, FIN, of course) is checked separately.
3954 * See tcp_data_queue(), for example.
3955 *
3956 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3957 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3958 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3959 * (borrowed from freebsd)
3960 */
3961
3962static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3963{
3964	return	!before(end_seq, tp->rcv_wup) &&
3965		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3966}
3967
3968/* When we get a reset we do this. */
3969void tcp_reset(struct sock *sk)
3970{
3971	trace_tcp_receive_reset(sk);
3972
 
 
 
 
 
 
3973	/* We want the right error as BSD sees it (and indeed as we do). */
3974	switch (sk->sk_state) {
3975	case TCP_SYN_SENT:
3976		sk->sk_err = ECONNREFUSED;
3977		break;
3978	case TCP_CLOSE_WAIT:
3979		sk->sk_err = EPIPE;
3980		break;
3981	case TCP_CLOSE:
3982		return;
3983	default:
3984		sk->sk_err = ECONNRESET;
3985	}
3986	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3987	smp_wmb();
3988
3989	tcp_write_queue_purge(sk);
3990	tcp_done(sk);
3991
3992	if (!sock_flag(sk, SOCK_DEAD))
3993		sk->sk_error_report(sk);
3994}
3995
3996/*
3997 * 	Process the FIN bit. This now behaves as it is supposed to work
3998 *	and the FIN takes effect when it is validly part of sequence
3999 *	space. Not before when we get holes.
4000 *
4001 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4002 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4003 *	TIME-WAIT)
4004 *
4005 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4006 *	close and we go into CLOSING (and later onto TIME-WAIT)
4007 *
4008 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4009 */
4010void tcp_fin(struct sock *sk)
4011{
4012	struct tcp_sock *tp = tcp_sk(sk);
4013
4014	inet_csk_schedule_ack(sk);
4015
4016	sk->sk_shutdown |= RCV_SHUTDOWN;
4017	sock_set_flag(sk, SOCK_DONE);
4018
4019	switch (sk->sk_state) {
4020	case TCP_SYN_RECV:
4021	case TCP_ESTABLISHED:
4022		/* Move to CLOSE_WAIT */
4023		tcp_set_state(sk, TCP_CLOSE_WAIT);
4024		inet_csk(sk)->icsk_ack.pingpong = 1;
4025		break;
4026
4027	case TCP_CLOSE_WAIT:
4028	case TCP_CLOSING:
4029		/* Received a retransmission of the FIN, do
4030		 * nothing.
4031		 */
4032		break;
4033	case TCP_LAST_ACK:
4034		/* RFC793: Remain in the LAST-ACK state. */
4035		break;
4036
4037	case TCP_FIN_WAIT1:
4038		/* This case occurs when a simultaneous close
4039		 * happens, we must ack the received FIN and
4040		 * enter the CLOSING state.
4041		 */
4042		tcp_send_ack(sk);
4043		tcp_set_state(sk, TCP_CLOSING);
4044		break;
4045	case TCP_FIN_WAIT2:
4046		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4047		tcp_send_ack(sk);
4048		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4049		break;
4050	default:
4051		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4052		 * cases we should never reach this piece of code.
4053		 */
4054		pr_err("%s: Impossible, sk->sk_state=%d\n",
4055		       __func__, sk->sk_state);
4056		break;
4057	}
4058
4059	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4060	 * Probably, we should reset in this case. For now drop them.
4061	 */
4062	skb_rbtree_purge(&tp->out_of_order_queue);
4063	if (tcp_is_sack(tp))
4064		tcp_sack_reset(&tp->rx_opt);
4065	sk_mem_reclaim(sk);
4066
4067	if (!sock_flag(sk, SOCK_DEAD)) {
4068		sk->sk_state_change(sk);
4069
4070		/* Do not send POLL_HUP for half duplex close. */
4071		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4072		    sk->sk_state == TCP_CLOSE)
4073			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4074		else
4075			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4076	}
4077}
4078
4079static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4080				  u32 end_seq)
4081{
4082	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4083		if (before(seq, sp->start_seq))
4084			sp->start_seq = seq;
4085		if (after(end_seq, sp->end_seq))
4086			sp->end_seq = end_seq;
4087		return true;
4088	}
4089	return false;
4090}
4091
4092static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4093{
4094	struct tcp_sock *tp = tcp_sk(sk);
4095
4096	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4097		int mib_idx;
4098
4099		if (before(seq, tp->rcv_nxt))
4100			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4101		else
4102			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4103
4104		NET_INC_STATS(sock_net(sk), mib_idx);
4105
4106		tp->rx_opt.dsack = 1;
4107		tp->duplicate_sack[0].start_seq = seq;
4108		tp->duplicate_sack[0].end_seq = end_seq;
4109	}
4110}
4111
4112static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4113{
4114	struct tcp_sock *tp = tcp_sk(sk);
4115
4116	if (!tp->rx_opt.dsack)
4117		tcp_dsack_set(sk, seq, end_seq);
4118	else
4119		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4120}
4121
 
 
 
 
 
 
 
 
 
 
 
 
4122static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4123{
4124	struct tcp_sock *tp = tcp_sk(sk);
4125
4126	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4127	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4128		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4129		tcp_enter_quickack_mode(sk);
4130
4131		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4132			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4133
 
4134			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4135				end_seq = tp->rcv_nxt;
4136			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4137		}
4138	}
4139
4140	tcp_send_ack(sk);
4141}
4142
4143/* These routines update the SACK block as out-of-order packets arrive or
4144 * in-order packets close up the sequence space.
4145 */
4146static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4147{
4148	int this_sack;
4149	struct tcp_sack_block *sp = &tp->selective_acks[0];
4150	struct tcp_sack_block *swalk = sp + 1;
4151
4152	/* See if the recent change to the first SACK eats into
4153	 * or hits the sequence space of other SACK blocks, if so coalesce.
4154	 */
4155	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4156		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4157			int i;
4158
4159			/* Zap SWALK, by moving every further SACK up by one slot.
4160			 * Decrease num_sacks.
4161			 */
4162			tp->rx_opt.num_sacks--;
4163			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4164				sp[i] = sp[i + 1];
4165			continue;
4166		}
4167		this_sack++, swalk++;
 
4168	}
4169}
4170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4171static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4172{
4173	struct tcp_sock *tp = tcp_sk(sk);
4174	struct tcp_sack_block *sp = &tp->selective_acks[0];
4175	int cur_sacks = tp->rx_opt.num_sacks;
4176	int this_sack;
4177
4178	if (!cur_sacks)
4179		goto new_sack;
4180
4181	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4182		if (tcp_sack_extend(sp, seq, end_seq)) {
 
 
4183			/* Rotate this_sack to the first one. */
4184			for (; this_sack > 0; this_sack--, sp--)
4185				swap(*sp, *(sp - 1));
4186			if (cur_sacks > 1)
4187				tcp_sack_maybe_coalesce(tp);
4188			return;
4189		}
4190	}
4191
 
 
 
4192	/* Could not find an adjacent existing SACK, build a new one,
4193	 * put it at the front, and shift everyone else down.  We
4194	 * always know there is at least one SACK present already here.
4195	 *
4196	 * If the sack array is full, forget about the last one.
4197	 */
4198	if (this_sack >= TCP_NUM_SACKS) {
4199		this_sack--;
4200		tp->rx_opt.num_sacks--;
4201		sp--;
4202	}
4203	for (; this_sack > 0; this_sack--, sp--)
4204		*sp = *(sp - 1);
4205
4206new_sack:
4207	/* Build the new head SACK, and we're done. */
4208	sp->start_seq = seq;
4209	sp->end_seq = end_seq;
4210	tp->rx_opt.num_sacks++;
4211}
4212
4213/* RCV.NXT advances, some SACKs should be eaten. */
4214
4215static void tcp_sack_remove(struct tcp_sock *tp)
4216{
4217	struct tcp_sack_block *sp = &tp->selective_acks[0];
4218	int num_sacks = tp->rx_opt.num_sacks;
4219	int this_sack;
4220
4221	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4222	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4223		tp->rx_opt.num_sacks = 0;
4224		return;
4225	}
4226
4227	for (this_sack = 0; this_sack < num_sacks;) {
4228		/* Check if the start of the sack is covered by RCV.NXT. */
4229		if (!before(tp->rcv_nxt, sp->start_seq)) {
4230			int i;
4231
4232			/* RCV.NXT must cover all the block! */
4233			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4234
4235			/* Zap this SACK, by moving forward any other SACKS. */
4236			for (i = this_sack+1; i < num_sacks; i++)
4237				tp->selective_acks[i-1] = tp->selective_acks[i];
4238			num_sacks--;
4239			continue;
4240		}
4241		this_sack++;
4242		sp++;
4243	}
4244	tp->rx_opt.num_sacks = num_sacks;
4245}
4246
4247/**
4248 * tcp_try_coalesce - try to merge skb to prior one
4249 * @sk: socket
4250 * @dest: destination queue
4251 * @to: prior buffer
4252 * @from: buffer to add in queue
4253 * @fragstolen: pointer to boolean
4254 *
4255 * Before queueing skb @from after @to, try to merge them
4256 * to reduce overall memory use and queue lengths, if cost is small.
4257 * Packets in ofo or receive queues can stay a long time.
4258 * Better try to coalesce them right now to avoid future collapses.
4259 * Returns true if caller should free @from instead of queueing it
4260 */
4261static bool tcp_try_coalesce(struct sock *sk,
4262			     struct sk_buff *to,
4263			     struct sk_buff *from,
4264			     bool *fragstolen)
4265{
4266	int delta;
4267
4268	*fragstolen = false;
4269
4270	/* Its possible this segment overlaps with prior segment in queue */
4271	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4272		return false;
4273
 
 
 
 
 
 
 
 
4274	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4275		return false;
4276
4277	atomic_add(delta, &sk->sk_rmem_alloc);
4278	sk_mem_charge(sk, delta);
4279	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4280	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4281	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4282	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4283
4284	if (TCP_SKB_CB(from)->has_rxtstamp) {
4285		TCP_SKB_CB(to)->has_rxtstamp = true;
4286		to->tstamp = from->tstamp;
 
4287	}
4288
4289	return true;
4290}
4291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4292static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4293{
4294	sk_drops_add(sk, skb);
4295	__kfree_skb(skb);
4296}
4297
4298/* This one checks to see if we can put data from the
4299 * out_of_order queue into the receive_queue.
4300 */
4301static void tcp_ofo_queue(struct sock *sk)
4302{
4303	struct tcp_sock *tp = tcp_sk(sk);
4304	__u32 dsack_high = tp->rcv_nxt;
4305	bool fin, fragstolen, eaten;
4306	struct sk_buff *skb, *tail;
4307	struct rb_node *p;
4308
4309	p = rb_first(&tp->out_of_order_queue);
4310	while (p) {
4311		skb = rb_to_skb(p);
4312		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4313			break;
4314
4315		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4316			__u32 dsack = dsack_high;
4317			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4318				dsack_high = TCP_SKB_CB(skb)->end_seq;
4319			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4320		}
4321		p = rb_next(p);
4322		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4323
4324		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4325			SOCK_DEBUG(sk, "ofo packet was already received\n");
4326			tcp_drop(sk, skb);
4327			continue;
4328		}
4329		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4330			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4331			   TCP_SKB_CB(skb)->end_seq);
4332
4333		tail = skb_peek_tail(&sk->sk_receive_queue);
4334		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4335		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4336		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4337		if (!eaten)
4338			__skb_queue_tail(&sk->sk_receive_queue, skb);
4339		else
4340			kfree_skb_partial(skb, fragstolen);
4341
4342		if (unlikely(fin)) {
4343			tcp_fin(sk);
4344			/* tcp_fin() purges tp->out_of_order_queue,
4345			 * so we must end this loop right now.
4346			 */
4347			break;
4348		}
4349	}
4350}
4351
4352static bool tcp_prune_ofo_queue(struct sock *sk);
4353static int tcp_prune_queue(struct sock *sk);
4354
4355static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4356				 unsigned int size)
4357{
4358	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4359	    !sk_rmem_schedule(sk, skb, size)) {
4360
4361		if (tcp_prune_queue(sk) < 0)
4362			return -1;
4363
4364		while (!sk_rmem_schedule(sk, skb, size)) {
4365			if (!tcp_prune_ofo_queue(sk))
4366				return -1;
4367		}
4368	}
4369	return 0;
4370}
4371
4372static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4373{
4374	struct tcp_sock *tp = tcp_sk(sk);
4375	struct rb_node **p, *parent;
4376	struct sk_buff *skb1;
4377	u32 seq, end_seq;
4378	bool fragstolen;
4379
4380	tcp_ecn_check_ce(tp, skb);
4381
4382	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4383		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
 
4384		tcp_drop(sk, skb);
4385		return;
4386	}
4387
4388	/* Disable header prediction. */
4389	tp->pred_flags = 0;
4390	inet_csk_schedule_ack(sk);
4391
 
4392	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4393	seq = TCP_SKB_CB(skb)->seq;
4394	end_seq = TCP_SKB_CB(skb)->end_seq;
4395	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4396		   tp->rcv_nxt, seq, end_seq);
4397
4398	p = &tp->out_of_order_queue.rb_node;
4399	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4400		/* Initial out of order segment, build 1 SACK. */
4401		if (tcp_is_sack(tp)) {
4402			tp->rx_opt.num_sacks = 1;
4403			tp->selective_acks[0].start_seq = seq;
4404			tp->selective_acks[0].end_seq = end_seq;
4405		}
4406		rb_link_node(&skb->rbnode, NULL, p);
4407		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4408		tp->ooo_last_skb = skb;
4409		goto end;
4410	}
4411
4412	/* In the typical case, we are adding an skb to the end of the list.
4413	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4414	 */
4415	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4416			     skb, &fragstolen)) {
4417coalesce_done:
4418		tcp_grow_window(sk, skb);
 
 
 
 
4419		kfree_skb_partial(skb, fragstolen);
4420		skb = NULL;
4421		goto add_sack;
4422	}
4423	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4424	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4425		parent = &tp->ooo_last_skb->rbnode;
4426		p = &parent->rb_right;
4427		goto insert;
4428	}
4429
4430	/* Find place to insert this segment. Handle overlaps on the way. */
4431	parent = NULL;
4432	while (*p) {
4433		parent = *p;
4434		skb1 = rb_to_skb(parent);
4435		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4436			p = &parent->rb_left;
4437			continue;
4438		}
4439		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4440			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4441				/* All the bits are present. Drop. */
4442				NET_INC_STATS(sock_net(sk),
4443					      LINUX_MIB_TCPOFOMERGE);
4444				__kfree_skb(skb);
4445				skb = NULL;
4446				tcp_dsack_set(sk, seq, end_seq);
4447				goto add_sack;
4448			}
4449			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4450				/* Partial overlap. */
4451				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4452			} else {
4453				/* skb's seq == skb1's seq and skb covers skb1.
4454				 * Replace skb1 with skb.
4455				 */
4456				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4457						&tp->out_of_order_queue);
4458				tcp_dsack_extend(sk,
4459						 TCP_SKB_CB(skb1)->seq,
4460						 TCP_SKB_CB(skb1)->end_seq);
4461				NET_INC_STATS(sock_net(sk),
4462					      LINUX_MIB_TCPOFOMERGE);
4463				__kfree_skb(skb1);
4464				goto merge_right;
4465			}
4466		} else if (tcp_try_coalesce(sk, skb1,
4467					    skb, &fragstolen)) {
4468			goto coalesce_done;
4469		}
4470		p = &parent->rb_right;
4471	}
4472insert:
4473	/* Insert segment into RB tree. */
4474	rb_link_node(&skb->rbnode, parent, p);
4475	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4476
4477merge_right:
4478	/* Remove other segments covered by skb. */
4479	while ((skb1 = skb_rb_next(skb)) != NULL) {
4480		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4481			break;
4482		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4483			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4484					 end_seq);
4485			break;
4486		}
4487		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4488		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4489				 TCP_SKB_CB(skb1)->end_seq);
4490		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4491		tcp_drop(sk, skb1);
4492	}
4493	/* If there is no skb after us, we are the last_skb ! */
4494	if (!skb1)
4495		tp->ooo_last_skb = skb;
4496
4497add_sack:
4498	if (tcp_is_sack(tp))
4499		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4500end:
4501	if (skb) {
4502		tcp_grow_window(sk, skb);
 
 
 
 
4503		skb_condense(skb);
4504		skb_set_owner_r(skb, sk);
4505	}
4506}
4507
4508static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4509		  bool *fragstolen)
4510{
4511	int eaten;
4512	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4513
4514	__skb_pull(skb, hdrlen);
4515	eaten = (tail &&
4516		 tcp_try_coalesce(sk, tail,
4517				  skb, fragstolen)) ? 1 : 0;
4518	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4519	if (!eaten) {
4520		__skb_queue_tail(&sk->sk_receive_queue, skb);
4521		skb_set_owner_r(skb, sk);
4522	}
4523	return eaten;
4524}
4525
4526int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4527{
4528	struct sk_buff *skb;
4529	int err = -ENOMEM;
4530	int data_len = 0;
4531	bool fragstolen;
4532
4533	if (size == 0)
4534		return 0;
4535
4536	if (size > PAGE_SIZE) {
4537		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4538
4539		data_len = npages << PAGE_SHIFT;
4540		size = data_len + (size & ~PAGE_MASK);
4541	}
4542	skb = alloc_skb_with_frags(size - data_len, data_len,
4543				   PAGE_ALLOC_COSTLY_ORDER,
4544				   &err, sk->sk_allocation);
4545	if (!skb)
4546		goto err;
4547
4548	skb_put(skb, size - data_len);
4549	skb->data_len = data_len;
4550	skb->len = size;
4551
4552	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
 
4553		goto err_free;
 
4554
4555	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4556	if (err)
4557		goto err_free;
4558
4559	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4560	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4561	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4562
4563	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4564		WARN_ON_ONCE(fragstolen); /* should not happen */
4565		__kfree_skb(skb);
4566	}
4567	return size;
4568
4569err_free:
4570	kfree_skb(skb);
4571err:
4572	return err;
4573
4574}
4575
 
 
 
 
 
 
4576static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4577{
4578	struct tcp_sock *tp = tcp_sk(sk);
4579	bool fragstolen;
4580	int eaten;
4581
 
 
 
 
 
 
 
 
4582	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4583		__kfree_skb(skb);
4584		return;
4585	}
4586	skb_dst_drop(skb);
4587	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4588
4589	tcp_ecn_accept_cwr(tp, skb);
4590
4591	tp->rx_opt.dsack = 0;
4592
4593	/*  Queue data for delivery to the user.
4594	 *  Packets in sequence go to the receive queue.
4595	 *  Out of sequence packets to the out_of_order_queue.
4596	 */
4597	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4598		if (tcp_receive_window(tp) == 0)
 
4599			goto out_of_window;
 
4600
4601		/* Ok. In sequence. In window. */
4602queue_and_out:
4603		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4604			sk_forced_mem_schedule(sk, skb->truesize);
4605		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
 
 
4606			goto drop;
 
4607
4608		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4609		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4610		if (skb->len)
4611			tcp_event_data_recv(sk, skb);
4612		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4613			tcp_fin(sk);
4614
4615		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4616			tcp_ofo_queue(sk);
4617
4618			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4619			 * gap in queue is filled.
4620			 */
4621			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4622				inet_csk(sk)->icsk_ack.pingpong = 0;
4623		}
4624
4625		if (tp->rx_opt.num_sacks)
4626			tcp_sack_remove(tp);
4627
4628		tcp_fast_path_check(sk);
4629
4630		if (eaten > 0)
4631			kfree_skb_partial(skb, fragstolen);
4632		if (!sock_flag(sk, SOCK_DEAD))
4633			sk->sk_data_ready(sk);
4634		return;
4635	}
4636
4637	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
 
4638		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4639		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4640		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4641
4642out_of_window:
4643		tcp_enter_quickack_mode(sk);
4644		inet_csk_schedule_ack(sk);
4645drop:
4646		tcp_drop(sk, skb);
4647		return;
4648	}
4649
4650	/* Out of window. F.e. zero window probe. */
4651	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4652		goto out_of_window;
4653
4654	tcp_enter_quickack_mode(sk);
4655
4656	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4657		/* Partial packet, seq < rcv_next < end_seq */
4658		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4659			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4660			   TCP_SKB_CB(skb)->end_seq);
4661
4662		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4663
4664		/* If window is closed, drop tail of packet. But after
4665		 * remembering D-SACK for its head made in previous line.
4666		 */
4667		if (!tcp_receive_window(tp))
 
4668			goto out_of_window;
 
4669		goto queue_and_out;
4670	}
4671
4672	tcp_data_queue_ofo(sk, skb);
4673}
4674
4675static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4676{
4677	if (list)
4678		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4679
4680	return skb_rb_next(skb);
4681}
4682
4683static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4684					struct sk_buff_head *list,
4685					struct rb_root *root)
4686{
4687	struct sk_buff *next = tcp_skb_next(skb, list);
4688
4689	if (list)
4690		__skb_unlink(skb, list);
4691	else
4692		rb_erase(&skb->rbnode, root);
4693
4694	__kfree_skb(skb);
4695	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4696
4697	return next;
4698}
4699
4700/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4701void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4702{
4703	struct rb_node **p = &root->rb_node;
4704	struct rb_node *parent = NULL;
4705	struct sk_buff *skb1;
4706
4707	while (*p) {
4708		parent = *p;
4709		skb1 = rb_to_skb(parent);
4710		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4711			p = &parent->rb_left;
4712		else
4713			p = &parent->rb_right;
4714	}
4715	rb_link_node(&skb->rbnode, parent, p);
4716	rb_insert_color(&skb->rbnode, root);
4717}
4718
4719/* Collapse contiguous sequence of skbs head..tail with
4720 * sequence numbers start..end.
4721 *
4722 * If tail is NULL, this means until the end of the queue.
4723 *
4724 * Segments with FIN/SYN are not collapsed (only because this
4725 * simplifies code)
4726 */
4727static void
4728tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4729	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4730{
4731	struct sk_buff *skb = head, *n;
4732	struct sk_buff_head tmp;
4733	bool end_of_skbs;
4734
4735	/* First, check that queue is collapsible and find
4736	 * the point where collapsing can be useful.
4737	 */
4738restart:
4739	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4740		n = tcp_skb_next(skb, list);
4741
4742		/* No new bits? It is possible on ofo queue. */
4743		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4744			skb = tcp_collapse_one(sk, skb, list, root);
4745			if (!skb)
4746				break;
4747			goto restart;
4748		}
4749
4750		/* The first skb to collapse is:
4751		 * - not SYN/FIN and
4752		 * - bloated or contains data before "start" or
4753		 *   overlaps to the next one.
4754		 */
4755		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4756		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4757		     before(TCP_SKB_CB(skb)->seq, start))) {
4758			end_of_skbs = false;
4759			break;
4760		}
4761
4762		if (n && n != tail &&
4763		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4764			end_of_skbs = false;
4765			break;
4766		}
4767
4768		/* Decided to skip this, advance start seq. */
4769		start = TCP_SKB_CB(skb)->end_seq;
4770	}
4771	if (end_of_skbs ||
4772	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4773		return;
4774
4775	__skb_queue_head_init(&tmp);
4776
4777	while (before(start, end)) {
4778		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4779		struct sk_buff *nskb;
4780
4781		nskb = alloc_skb(copy, GFP_ATOMIC);
4782		if (!nskb)
4783			break;
4784
4785		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
 
 
 
4786		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4787		if (list)
4788			__skb_queue_before(list, skb, nskb);
4789		else
4790			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4791		skb_set_owner_r(nskb, sk);
 
4792
4793		/* Copy data, releasing collapsed skbs. */
4794		while (copy > 0) {
4795			int offset = start - TCP_SKB_CB(skb)->seq;
4796			int size = TCP_SKB_CB(skb)->end_seq - start;
4797
4798			BUG_ON(offset < 0);
4799			if (size > 0) {
4800				size = min(copy, size);
4801				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4802					BUG();
4803				TCP_SKB_CB(nskb)->end_seq += size;
4804				copy -= size;
4805				start += size;
4806			}
4807			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4808				skb = tcp_collapse_one(sk, skb, list, root);
4809				if (!skb ||
4810				    skb == tail ||
 
4811				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4812					goto end;
 
 
 
 
4813			}
4814		}
4815	}
4816end:
4817	skb_queue_walk_safe(&tmp, skb, n)
4818		tcp_rbtree_insert(root, skb);
4819}
4820
4821/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4822 * and tcp_collapse() them until all the queue is collapsed.
4823 */
4824static void tcp_collapse_ofo_queue(struct sock *sk)
4825{
4826	struct tcp_sock *tp = tcp_sk(sk);
 
4827	struct sk_buff *skb, *head;
4828	u32 start, end;
4829
4830	skb = skb_rb_first(&tp->out_of_order_queue);
4831new_range:
4832	if (!skb) {
4833		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4834		return;
4835	}
4836	start = TCP_SKB_CB(skb)->seq;
4837	end = TCP_SKB_CB(skb)->end_seq;
 
4838
4839	for (head = skb;;) {
4840		skb = skb_rb_next(skb);
4841
4842		/* Range is terminated when we see a gap or when
4843		 * we are at the queue end.
4844		 */
4845		if (!skb ||
4846		    after(TCP_SKB_CB(skb)->seq, end) ||
4847		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4848			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4849				     head, skb, start, end);
 
 
 
 
 
 
 
 
4850			goto new_range;
4851		}
4852
 
4853		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4854			start = TCP_SKB_CB(skb)->seq;
4855		if (after(TCP_SKB_CB(skb)->end_seq, end))
4856			end = TCP_SKB_CB(skb)->end_seq;
4857	}
4858}
4859
4860/*
4861 * Clean the out-of-order queue to make room.
4862 * We drop high sequences packets to :
4863 * 1) Let a chance for holes to be filled.
4864 * 2) not add too big latencies if thousands of packets sit there.
4865 *    (But if application shrinks SO_RCVBUF, we could still end up
4866 *     freeing whole queue here)
 
4867 *
4868 * Return true if queue has shrunk.
4869 */
4870static bool tcp_prune_ofo_queue(struct sock *sk)
4871{
4872	struct tcp_sock *tp = tcp_sk(sk);
4873	struct rb_node *node, *prev;
 
4874
4875	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4876		return false;
4877
4878	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
 
4879	node = &tp->ooo_last_skb->rbnode;
4880	do {
4881		prev = rb_prev(node);
4882		rb_erase(node, &tp->out_of_order_queue);
 
4883		tcp_drop(sk, rb_to_skb(node));
4884		sk_mem_reclaim(sk);
4885		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4886		    !tcp_under_memory_pressure(sk))
4887			break;
 
 
 
4888		node = prev;
4889	} while (node);
4890	tp->ooo_last_skb = rb_to_skb(prev);
4891
4892	/* Reset SACK state.  A conforming SACK implementation will
4893	 * do the same at a timeout based retransmit.  When a connection
4894	 * is in a sad state like this, we care only about integrity
4895	 * of the connection not performance.
4896	 */
4897	if (tp->rx_opt.sack_ok)
4898		tcp_sack_reset(&tp->rx_opt);
4899	return true;
4900}
4901
4902/* Reduce allocated memory if we can, trying to get
4903 * the socket within its memory limits again.
4904 *
4905 * Return less than zero if we should start dropping frames
4906 * until the socket owning process reads some of the data
4907 * to stabilize the situation.
4908 */
4909static int tcp_prune_queue(struct sock *sk)
4910{
4911	struct tcp_sock *tp = tcp_sk(sk);
4912
4913	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4914
4915	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4916
4917	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4918		tcp_clamp_window(sk);
4919	else if (tcp_under_memory_pressure(sk))
4920		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4921
 
 
 
4922	tcp_collapse_ofo_queue(sk);
4923	if (!skb_queue_empty(&sk->sk_receive_queue))
4924		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4925			     skb_peek(&sk->sk_receive_queue),
4926			     NULL,
4927			     tp->copied_seq, tp->rcv_nxt);
4928	sk_mem_reclaim(sk);
4929
4930	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4931		return 0;
4932
4933	/* Collapsing did not help, destructive actions follow.
4934	 * This must not ever occur. */
4935
4936	tcp_prune_ofo_queue(sk);
4937
4938	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4939		return 0;
4940
4941	/* If we are really being abused, tell the caller to silently
4942	 * drop receive data on the floor.  It will get retransmitted
4943	 * and hopefully then we'll have sufficient space.
4944	 */
4945	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4946
4947	/* Massive buffer overcommit. */
4948	tp->pred_flags = 0;
4949	return -1;
4950}
4951
4952static bool tcp_should_expand_sndbuf(const struct sock *sk)
4953{
4954	const struct tcp_sock *tp = tcp_sk(sk);
4955
4956	/* If the user specified a specific send buffer setting, do
4957	 * not modify it.
4958	 */
4959	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4960		return false;
4961
4962	/* If we are under global TCP memory pressure, do not expand.  */
4963	if (tcp_under_memory_pressure(sk))
4964		return false;
4965
4966	/* If we are under soft global TCP memory pressure, do not expand.  */
4967	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4968		return false;
4969
4970	/* If we filled the congestion window, do not expand.  */
4971	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4972		return false;
4973
4974	return true;
4975}
4976
4977/* When incoming ACK allowed to free some skb from write_queue,
4978 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4979 * on the exit from tcp input handler.
4980 *
4981 * PROBLEM: sndbuf expansion does not work well with largesend.
4982 */
4983static void tcp_new_space(struct sock *sk)
4984{
4985	struct tcp_sock *tp = tcp_sk(sk);
4986
4987	if (tcp_should_expand_sndbuf(sk)) {
4988		tcp_sndbuf_expand(sk);
4989		tp->snd_cwnd_stamp = tcp_jiffies32;
4990	}
4991
4992	sk->sk_write_space(sk);
4993}
4994
4995static void tcp_check_space(struct sock *sk)
4996{
4997	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4998		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4999		/* pairs with tcp_poll() */
5000		smp_mb();
5001		if (sk->sk_socket &&
5002		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5003			tcp_new_space(sk);
5004			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5005				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5006		}
5007	}
5008}
5009
5010static inline void tcp_data_snd_check(struct sock *sk)
5011{
5012	tcp_push_pending_frames(sk);
5013	tcp_check_space(sk);
5014}
5015
5016/*
5017 * Check if sending an ack is needed.
5018 */
5019static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5020{
5021	struct tcp_sock *tp = tcp_sk(sk);
 
5022
5023	    /* More than one full frame received... */
5024	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5025	     /* ... and right edge of window advances far enough.
5026	      * (tcp_recvmsg() will send ACK otherwise). Or...
 
 
5027	      */
5028	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
 
5029	    /* We ACK each frame or... */
5030	    tcp_in_quickack_mode(sk) ||
5031	    /* We have out of order data. */
5032	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5033		/* Then ack it now */
5034		tcp_send_ack(sk);
5035	} else {
5036		/* Else, send delayed ack. */
 
 
5037		tcp_send_delayed_ack(sk);
 
5038	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039}
5040
5041static inline void tcp_ack_snd_check(struct sock *sk)
5042{
5043	if (!inet_csk_ack_scheduled(sk)) {
5044		/* We sent a data segment already. */
5045		return;
5046	}
5047	__tcp_ack_snd_check(sk, 1);
5048}
5049
5050/*
5051 *	This routine is only called when we have urgent data
5052 *	signaled. Its the 'slow' part of tcp_urg. It could be
5053 *	moved inline now as tcp_urg is only called from one
5054 *	place. We handle URGent data wrong. We have to - as
5055 *	BSD still doesn't use the correction from RFC961.
5056 *	For 1003.1g we should support a new option TCP_STDURG to permit
5057 *	either form (or just set the sysctl tcp_stdurg).
5058 */
5059
5060static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5061{
5062	struct tcp_sock *tp = tcp_sk(sk);
5063	u32 ptr = ntohs(th->urg_ptr);
5064
5065	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5066		ptr--;
5067	ptr += ntohl(th->seq);
5068
5069	/* Ignore urgent data that we've already seen and read. */
5070	if (after(tp->copied_seq, ptr))
5071		return;
5072
5073	/* Do not replay urg ptr.
5074	 *
5075	 * NOTE: interesting situation not covered by specs.
5076	 * Misbehaving sender may send urg ptr, pointing to segment,
5077	 * which we already have in ofo queue. We are not able to fetch
5078	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5079	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5080	 * situations. But it is worth to think about possibility of some
5081	 * DoSes using some hypothetical application level deadlock.
5082	 */
5083	if (before(ptr, tp->rcv_nxt))
5084		return;
5085
5086	/* Do we already have a newer (or duplicate) urgent pointer? */
5087	if (tp->urg_data && !after(ptr, tp->urg_seq))
5088		return;
5089
5090	/* Tell the world about our new urgent pointer. */
5091	sk_send_sigurg(sk);
5092
5093	/* We may be adding urgent data when the last byte read was
5094	 * urgent. To do this requires some care. We cannot just ignore
5095	 * tp->copied_seq since we would read the last urgent byte again
5096	 * as data, nor can we alter copied_seq until this data arrives
5097	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5098	 *
5099	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5100	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5101	 * and expect that both A and B disappear from stream. This is _wrong_.
5102	 * Though this happens in BSD with high probability, this is occasional.
5103	 * Any application relying on this is buggy. Note also, that fix "works"
5104	 * only in this artificial test. Insert some normal data between A and B and we will
5105	 * decline of BSD again. Verdict: it is better to remove to trap
5106	 * buggy users.
5107	 */
5108	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5109	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5110		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5111		tp->copied_seq++;
5112		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5113			__skb_unlink(skb, &sk->sk_receive_queue);
5114			__kfree_skb(skb);
5115		}
5116	}
5117
5118	tp->urg_data = TCP_URG_NOTYET;
5119	tp->urg_seq = ptr;
5120
5121	/* Disable header prediction. */
5122	tp->pred_flags = 0;
5123}
5124
5125/* This is the 'fast' part of urgent handling. */
5126static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5127{
5128	struct tcp_sock *tp = tcp_sk(sk);
5129
5130	/* Check if we get a new urgent pointer - normally not. */
5131	if (th->urg)
5132		tcp_check_urg(sk, th);
5133
5134	/* Do we wait for any urgent data? - normally not... */
5135	if (tp->urg_data == TCP_URG_NOTYET) {
5136		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5137			  th->syn;
5138
5139		/* Is the urgent pointer pointing into this packet? */
5140		if (ptr < skb->len) {
5141			u8 tmp;
5142			if (skb_copy_bits(skb, ptr, &tmp, 1))
5143				BUG();
5144			tp->urg_data = TCP_URG_VALID | tmp;
5145			if (!sock_flag(sk, SOCK_DEAD))
5146				sk->sk_data_ready(sk);
5147		}
5148	}
5149}
5150
5151/* Accept RST for rcv_nxt - 1 after a FIN.
5152 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5153 * FIN is sent followed by a RST packet. The RST is sent with the same
5154 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5155 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5156 * ACKs on the closed socket. In addition middleboxes can drop either the
5157 * challenge ACK or a subsequent RST.
5158 */
5159static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5160{
5161	struct tcp_sock *tp = tcp_sk(sk);
5162
5163	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5164			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5165					       TCPF_CLOSING));
5166}
5167
5168/* Does PAWS and seqno based validation of an incoming segment, flags will
5169 * play significant role here.
5170 */
5171static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5172				  const struct tcphdr *th, int syn_inerr)
5173{
5174	struct tcp_sock *tp = tcp_sk(sk);
5175	bool rst_seq_match = false;
5176
5177	/* RFC1323: H1. Apply PAWS check first. */
5178	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5179	    tp->rx_opt.saw_tstamp &&
5180	    tcp_paws_discard(sk, skb)) {
5181		if (!th->rst) {
5182			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5183			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5184						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5185						  &tp->last_oow_ack_time))
5186				tcp_send_dupack(sk, skb);
5187			goto discard;
5188		}
5189		/* Reset is accepted even if it did not pass PAWS. */
5190	}
5191
5192	/* Step 1: check sequence number */
5193	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5194		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5195		 * (RST) segments are validated by checking their SEQ-fields."
5196		 * And page 69: "If an incoming segment is not acceptable,
5197		 * an acknowledgment should be sent in reply (unless the RST
5198		 * bit is set, if so drop the segment and return)".
5199		 */
5200		if (!th->rst) {
5201			if (th->syn)
5202				goto syn_challenge;
5203			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5204						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5205						  &tp->last_oow_ack_time))
5206				tcp_send_dupack(sk, skb);
5207		} else if (tcp_reset_check(sk, skb)) {
5208			tcp_reset(sk);
5209		}
5210		goto discard;
5211	}
5212
5213	/* Step 2: check RST bit */
5214	if (th->rst) {
5215		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5216		 * FIN and SACK too if available):
5217		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5218		 * the right-most SACK block,
5219		 * then
5220		 *     RESET the connection
5221		 * else
5222		 *     Send a challenge ACK
5223		 */
5224		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5225		    tcp_reset_check(sk, skb)) {
5226			rst_seq_match = true;
5227		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5228			struct tcp_sack_block *sp = &tp->selective_acks[0];
5229			int max_sack = sp[0].end_seq;
5230			int this_sack;
5231
5232			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5233			     ++this_sack) {
5234				max_sack = after(sp[this_sack].end_seq,
5235						 max_sack) ?
5236					sp[this_sack].end_seq : max_sack;
5237			}
5238
5239			if (TCP_SKB_CB(skb)->seq == max_sack)
5240				rst_seq_match = true;
5241		}
5242
5243		if (rst_seq_match)
5244			tcp_reset(sk);
5245		else {
5246			/* Disable TFO if RST is out-of-order
5247			 * and no data has been received
5248			 * for current active TFO socket
5249			 */
5250			if (tp->syn_fastopen && !tp->data_segs_in &&
5251			    sk->sk_state == TCP_ESTABLISHED)
5252				tcp_fastopen_active_disable(sk);
5253			tcp_send_challenge_ack(sk, skb);
5254		}
5255		goto discard;
5256	}
5257
5258	/* step 3: check security and precedence [ignored] */
5259
5260	/* step 4: Check for a SYN
5261	 * RFC 5961 4.2 : Send a challenge ack
5262	 */
5263	if (th->syn) {
5264syn_challenge:
5265		if (syn_inerr)
5266			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5267		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5268		tcp_send_challenge_ack(sk, skb);
5269		goto discard;
5270	}
5271
 
 
5272	return true;
5273
5274discard:
5275	tcp_drop(sk, skb);
5276	return false;
5277}
5278
5279/*
5280 *	TCP receive function for the ESTABLISHED state.
5281 *
5282 *	It is split into a fast path and a slow path. The fast path is
5283 * 	disabled when:
5284 *	- A zero window was announced from us - zero window probing
5285 *        is only handled properly in the slow path.
5286 *	- Out of order segments arrived.
5287 *	- Urgent data is expected.
5288 *	- There is no buffer space left
5289 *	- Unexpected TCP flags/window values/header lengths are received
5290 *	  (detected by checking the TCP header against pred_flags)
5291 *	- Data is sent in both directions. Fast path only supports pure senders
5292 *	  or pure receivers (this means either the sequence number or the ack
5293 *	  value must stay constant)
5294 *	- Unexpected TCP option.
5295 *
5296 *	When these conditions are not satisfied it drops into a standard
5297 *	receive procedure patterned after RFC793 to handle all cases.
5298 *	The first three cases are guaranteed by proper pred_flags setting,
5299 *	the rest is checked inline. Fast processing is turned on in
5300 *	tcp_data_queue when everything is OK.
5301 */
5302void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5303			 const struct tcphdr *th)
5304{
 
 
5305	unsigned int len = skb->len;
5306	struct tcp_sock *tp = tcp_sk(sk);
5307
5308	/* TCP congestion window tracking */
5309	trace_tcp_probe(sk, skb);
5310
5311	tcp_mstamp_refresh(tp);
5312	if (unlikely(!sk->sk_rx_dst))
5313		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5314	/*
5315	 *	Header prediction.
5316	 *	The code loosely follows the one in the famous
5317	 *	"30 instruction TCP receive" Van Jacobson mail.
5318	 *
5319	 *	Van's trick is to deposit buffers into socket queue
5320	 *	on a device interrupt, to call tcp_recv function
5321	 *	on the receive process context and checksum and copy
5322	 *	the buffer to user space. smart...
5323	 *
5324	 *	Our current scheme is not silly either but we take the
5325	 *	extra cost of the net_bh soft interrupt processing...
5326	 *	We do checksum and copy also but from device to kernel.
5327	 */
5328
5329	tp->rx_opt.saw_tstamp = 0;
5330
5331	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5332	 *	if header_prediction is to be made
5333	 *	'S' will always be tp->tcp_header_len >> 2
5334	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5335	 *  turn it off	(when there are holes in the receive
5336	 *	 space for instance)
5337	 *	PSH flag is ignored.
5338	 */
5339
5340	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5341	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5342	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5343		int tcp_header_len = tp->tcp_header_len;
5344
5345		/* Timestamp header prediction: tcp_header_len
5346		 * is automatically equal to th->doff*4 due to pred_flags
5347		 * match.
5348		 */
5349
5350		/* Check timestamp */
5351		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5352			/* No? Slow path! */
5353			if (!tcp_parse_aligned_timestamp(tp, th))
5354				goto slow_path;
5355
5356			/* If PAWS failed, check it more carefully in slow path */
5357			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5358				goto slow_path;
5359
5360			/* DO NOT update ts_recent here, if checksum fails
5361			 * and timestamp was corrupted part, it will result
5362			 * in a hung connection since we will drop all
5363			 * future packets due to the PAWS test.
5364			 */
5365		}
5366
5367		if (len <= tcp_header_len) {
5368			/* Bulk data transfer: sender */
5369			if (len == tcp_header_len) {
5370				/* Predicted packet is in window by definition.
5371				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372				 * Hence, check seq<=rcv_wup reduces to:
5373				 */
5374				if (tcp_header_len ==
5375				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5376				    tp->rcv_nxt == tp->rcv_wup)
5377					tcp_store_ts_recent(tp);
5378
5379				/* We know that such packets are checksummed
5380				 * on entry.
5381				 */
5382				tcp_ack(sk, skb, 0);
5383				__kfree_skb(skb);
5384				tcp_data_snd_check(sk);
 
 
 
 
 
5385				return;
5386			} else { /* Header too small */
5387				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5388				goto discard;
5389			}
5390		} else {
5391			int eaten = 0;
5392			bool fragstolen = false;
5393
5394			if (tcp_checksum_complete(skb))
5395				goto csum_error;
5396
5397			if ((int)skb->truesize > sk->sk_forward_alloc)
5398				goto step5;
5399
5400			/* Predicted packet is in window by definition.
5401			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5402			 * Hence, check seq<=rcv_wup reduces to:
5403			 */
5404			if (tcp_header_len ==
5405			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5406			    tp->rcv_nxt == tp->rcv_wup)
5407				tcp_store_ts_recent(tp);
5408
5409			tcp_rcv_rtt_measure_ts(sk, skb);
5410
5411			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5412
5413			/* Bulk data transfer: receiver */
5414			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5415					      &fragstolen);
5416
5417			tcp_event_data_recv(sk, skb);
5418
5419			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5420				/* Well, only one small jumplet in fast path... */
5421				tcp_ack(sk, skb, FLAG_DATA);
5422				tcp_data_snd_check(sk);
5423				if (!inet_csk_ack_scheduled(sk))
5424					goto no_ack;
 
 
5425			}
5426
5427			__tcp_ack_snd_check(sk, 0);
5428no_ack:
5429			if (eaten)
5430				kfree_skb_partial(skb, fragstolen);
5431			sk->sk_data_ready(sk);
5432			return;
5433		}
5434	}
5435
5436slow_path:
5437	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5438		goto csum_error;
5439
5440	if (!th->ack && !th->rst && !th->syn)
5441		goto discard;
5442
5443	/*
5444	 *	Standard slow path.
5445	 */
5446
5447	if (!tcp_validate_incoming(sk, skb, th, 1))
5448		return;
5449
5450step5:
5451	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5452		goto discard;
5453
5454	tcp_rcv_rtt_measure_ts(sk, skb);
5455
5456	/* Process urgent data. */
5457	tcp_urg(sk, skb, th);
5458
5459	/* step 7: process the segment text */
5460	tcp_data_queue(sk, skb);
5461
5462	tcp_data_snd_check(sk);
5463	tcp_ack_snd_check(sk);
5464	return;
5465
5466csum_error:
 
5467	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5468	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5469
5470discard:
5471	tcp_drop(sk, skb);
5472}
5473EXPORT_SYMBOL(tcp_rcv_established);
5474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5475void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5476{
5477	struct tcp_sock *tp = tcp_sk(sk);
5478	struct inet_connection_sock *icsk = inet_csk(sk);
5479
5480	tcp_set_state(sk, TCP_ESTABLISHED);
5481	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5482
5483	if (skb) {
5484		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5485		security_inet_conn_established(sk, skb);
 
5486	}
5487
5488	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5489
5490	/* Prevent spurious tcp_cwnd_restart() on first data
5491	 * packet.
5492	 */
5493	tp->lsndtime = tcp_jiffies32;
5494
5495	if (sock_flag(sk, SOCK_KEEPOPEN))
5496		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5497
5498	if (!tp->rx_opt.snd_wscale)
5499		__tcp_fast_path_on(tp, tp->snd_wnd);
5500	else
5501		tp->pred_flags = 0;
5502}
5503
5504static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5505				    struct tcp_fastopen_cookie *cookie)
5506{
5507	struct tcp_sock *tp = tcp_sk(sk);
5508	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5509	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5510	bool syn_drop = false;
5511
5512	if (mss == tp->rx_opt.user_mss) {
5513		struct tcp_options_received opt;
5514
5515		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5516		tcp_clear_options(&opt);
5517		opt.user_mss = opt.mss_clamp = 0;
5518		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5519		mss = opt.mss_clamp;
5520	}
5521
5522	if (!tp->syn_fastopen) {
5523		/* Ignore an unsolicited cookie */
5524		cookie->len = -1;
5525	} else if (tp->total_retrans) {
5526		/* SYN timed out and the SYN-ACK neither has a cookie nor
5527		 * acknowledges data. Presumably the remote received only
5528		 * the retransmitted (regular) SYNs: either the original
5529		 * SYN-data or the corresponding SYN-ACK was dropped.
5530		 */
5531		syn_drop = (cookie->len < 0 && data);
5532	} else if (cookie->len < 0 && !tp->syn_data) {
5533		/* We requested a cookie but didn't get it. If we did not use
5534		 * the (old) exp opt format then try so next time (try_exp=1).
5535		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5536		 */
5537		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5538	}
5539
5540	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5541
5542	if (data) { /* Retransmit unacked data in SYN */
5543		skb_rbtree_walk_from(data) {
5544			if (__tcp_retransmit_skb(sk, data, 1))
5545				break;
5546		}
5547		tcp_rearm_rto(sk);
 
 
5548		NET_INC_STATS(sock_net(sk),
5549				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5550		return true;
5551	}
5552	tp->syn_data_acked = tp->syn_data;
5553	if (tp->syn_data_acked)
5554		NET_INC_STATS(sock_net(sk),
5555				LINUX_MIB_TCPFASTOPENACTIVE);
 
 
 
5556
5557	tcp_fastopen_add_skb(sk, synack);
5558
5559	return false;
5560}
5561
5562static void smc_check_reset_syn(struct tcp_sock *tp)
5563{
5564#if IS_ENABLED(CONFIG_SMC)
5565	if (static_branch_unlikely(&tcp_have_smc)) {
5566		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5567			tp->syn_smc = 0;
5568	}
5569#endif
5570}
5571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5572static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5573					 const struct tcphdr *th)
5574{
5575	struct inet_connection_sock *icsk = inet_csk(sk);
5576	struct tcp_sock *tp = tcp_sk(sk);
5577	struct tcp_fastopen_cookie foc = { .len = -1 };
5578	int saved_clamp = tp->rx_opt.mss_clamp;
5579	bool fastopen_fail;
5580
5581	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5582	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5583		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5584
5585	if (th->ack) {
5586		/* rfc793:
5587		 * "If the state is SYN-SENT then
5588		 *    first check the ACK bit
5589		 *      If the ACK bit is set
5590		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5591		 *        a reset (unless the RST bit is set, if so drop
5592		 *        the segment and return)"
5593		 */
5594		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5595		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
 
 
 
 
 
5596			goto reset_and_undo;
 
5597
5598		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5599		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5600			     tcp_time_stamp(tp))) {
5601			NET_INC_STATS(sock_net(sk),
5602					LINUX_MIB_PAWSACTIVEREJECTED);
5603			goto reset_and_undo;
5604		}
5605
5606		/* Now ACK is acceptable.
5607		 *
5608		 * "If the RST bit is set
5609		 *    If the ACK was acceptable then signal the user "error:
5610		 *    connection reset", drop the segment, enter CLOSED state,
5611		 *    delete TCB, and return."
5612		 */
5613
5614		if (th->rst) {
5615			tcp_reset(sk);
5616			goto discard;
5617		}
5618
5619		/* rfc793:
5620		 *   "fifth, if neither of the SYN or RST bits is set then
5621		 *    drop the segment and return."
5622		 *
5623		 *    See note below!
5624		 *                                        --ANK(990513)
5625		 */
5626		if (!th->syn)
5627			goto discard_and_undo;
5628
5629		/* rfc793:
5630		 *   "If the SYN bit is on ...
5631		 *    are acceptable then ...
5632		 *    (our SYN has been ACKed), change the connection
5633		 *    state to ESTABLISHED..."
5634		 */
5635
5636		tcp_ecn_rcv_synack(tp, th);
5637
5638		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
 
5639		tcp_ack(sk, skb, FLAG_SLOWPATH);
5640
5641		/* Ok.. it's good. Set up sequence numbers and
5642		 * move to established.
5643		 */
5644		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5645		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5646
5647		/* RFC1323: The window in SYN & SYN/ACK segments is
5648		 * never scaled.
5649		 */
5650		tp->snd_wnd = ntohs(th->window);
5651
5652		if (!tp->rx_opt.wscale_ok) {
5653			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5654			tp->window_clamp = min(tp->window_clamp, 65535U);
5655		}
5656
5657		if (tp->rx_opt.saw_tstamp) {
5658			tp->rx_opt.tstamp_ok	   = 1;
5659			tp->tcp_header_len =
5660				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5661			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5662			tcp_store_ts_recent(tp);
5663		} else {
5664			tp->tcp_header_len = sizeof(struct tcphdr);
5665		}
5666
5667		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5668		tcp_initialize_rcv_mss(sk);
5669
5670		/* Remember, tcp_poll() does not lock socket!
5671		 * Change state from SYN-SENT only after copied_seq
5672		 * is initialized. */
5673		tp->copied_seq = tp->rcv_nxt;
5674
5675		smc_check_reset_syn(tp);
5676
5677		smp_mb();
5678
5679		tcp_finish_connect(sk, skb);
5680
5681		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5682				tcp_rcv_fastopen_synack(sk, skb, &foc);
5683
5684		if (!sock_flag(sk, SOCK_DEAD)) {
5685			sk->sk_state_change(sk);
5686			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5687		}
5688		if (fastopen_fail)
5689			return -1;
5690		if (sk->sk_write_pending ||
5691		    icsk->icsk_accept_queue.rskq_defer_accept ||
5692		    icsk->icsk_ack.pingpong) {
5693			/* Save one ACK. Data will be ready after
5694			 * several ticks, if write_pending is set.
5695			 *
5696			 * It may be deleted, but with this feature tcpdumps
5697			 * look so _wonderfully_ clever, that I was not able
5698			 * to stand against the temptation 8)     --ANK
5699			 */
5700			inet_csk_schedule_ack(sk);
5701			tcp_enter_quickack_mode(sk);
5702			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5703						  TCP_DELACK_MAX, TCP_RTO_MAX);
5704
5705discard:
5706			tcp_drop(sk, skb);
5707			return 0;
5708		} else {
5709			tcp_send_ack(sk);
5710		}
5711		return -1;
5712	}
5713
5714	/* No ACK in the segment */
5715
5716	if (th->rst) {
5717		/* rfc793:
5718		 * "If the RST bit is set
5719		 *
5720		 *      Otherwise (no ACK) drop the segment and return."
5721		 */
5722
5723		goto discard_and_undo;
5724	}
5725
5726	/* PAWS check. */
5727	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5728	    tcp_paws_reject(&tp->rx_opt, 0))
5729		goto discard_and_undo;
5730
5731	if (th->syn) {
5732		/* We see SYN without ACK. It is attempt of
5733		 * simultaneous connect with crossed SYNs.
5734		 * Particularly, it can be connect to self.
5735		 */
5736		tcp_set_state(sk, TCP_SYN_RECV);
5737
5738		if (tp->rx_opt.saw_tstamp) {
5739			tp->rx_opt.tstamp_ok = 1;
5740			tcp_store_ts_recent(tp);
5741			tp->tcp_header_len =
5742				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5743		} else {
5744			tp->tcp_header_len = sizeof(struct tcphdr);
5745		}
5746
5747		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748		tp->copied_seq = tp->rcv_nxt;
5749		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5750
5751		/* RFC1323: The window in SYN & SYN/ACK segments is
5752		 * never scaled.
5753		 */
5754		tp->snd_wnd    = ntohs(th->window);
5755		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5756		tp->max_window = tp->snd_wnd;
5757
5758		tcp_ecn_rcv_syn(tp, th);
5759
5760		tcp_mtup_init(sk);
5761		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5762		tcp_initialize_rcv_mss(sk);
5763
5764		tcp_send_synack(sk);
5765#if 0
5766		/* Note, we could accept data and URG from this segment.
5767		 * There are no obstacles to make this (except that we must
5768		 * either change tcp_recvmsg() to prevent it from returning data
5769		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5770		 *
5771		 * However, if we ignore data in ACKless segments sometimes,
5772		 * we have no reasons to accept it sometimes.
5773		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5774		 * is not flawless. So, discard packet for sanity.
5775		 * Uncomment this return to process the data.
5776		 */
5777		return -1;
5778#else
5779		goto discard;
5780#endif
5781	}
5782	/* "fifth, if neither of the SYN or RST bits is set then
5783	 * drop the segment and return."
5784	 */
5785
5786discard_and_undo:
5787	tcp_clear_options(&tp->rx_opt);
5788	tp->rx_opt.mss_clamp = saved_clamp;
5789	goto discard;
5790
5791reset_and_undo:
5792	tcp_clear_options(&tp->rx_opt);
5793	tp->rx_opt.mss_clamp = saved_clamp;
5794	return 1;
5795}
5796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5797/*
5798 *	This function implements the receiving procedure of RFC 793 for
5799 *	all states except ESTABLISHED and TIME_WAIT.
5800 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5801 *	address independent.
5802 */
5803
5804int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5805{
5806	struct tcp_sock *tp = tcp_sk(sk);
5807	struct inet_connection_sock *icsk = inet_csk(sk);
5808	const struct tcphdr *th = tcp_hdr(skb);
5809	struct request_sock *req;
5810	int queued = 0;
5811	bool acceptable;
5812
5813	switch (sk->sk_state) {
5814	case TCP_CLOSE:
5815		goto discard;
5816
5817	case TCP_LISTEN:
5818		if (th->ack)
5819			return 1;
5820
5821		if (th->rst)
5822			goto discard;
5823
5824		if (th->syn) {
5825			if (th->fin)
5826				goto discard;
5827			/* It is possible that we process SYN packets from backlog,
5828			 * so we need to make sure to disable BH right there.
5829			 */
 
5830			local_bh_disable();
5831			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5832			local_bh_enable();
 
5833
5834			if (!acceptable)
5835				return 1;
5836			consume_skb(skb);
5837			return 0;
5838		}
5839		goto discard;
5840
5841	case TCP_SYN_SENT:
5842		tp->rx_opt.saw_tstamp = 0;
5843		tcp_mstamp_refresh(tp);
5844		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5845		if (queued >= 0)
5846			return queued;
5847
5848		/* Do step6 onward by hand. */
5849		tcp_urg(sk, skb, th);
5850		__kfree_skb(skb);
5851		tcp_data_snd_check(sk);
5852		return 0;
5853	}
5854
5855	tcp_mstamp_refresh(tp);
5856	tp->rx_opt.saw_tstamp = 0;
5857	req = tp->fastopen_rsk;
 
5858	if (req) {
5859		bool req_stolen;
5860
5861		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5862		    sk->sk_state != TCP_FIN_WAIT1);
5863
5864		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
5865			goto discard;
5866	}
5867
5868	if (!th->ack && !th->rst && !th->syn)
5869		goto discard;
5870
5871	if (!tcp_validate_incoming(sk, skb, th, 0))
5872		return 0;
5873
5874	/* step 5: check the ACK field */
5875	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5876				      FLAG_UPDATE_TS_RECENT |
5877				      FLAG_NO_CHALLENGE_ACK) > 0;
5878
5879	if (!acceptable) {
5880		if (sk->sk_state == TCP_SYN_RECV)
5881			return 1;	/* send one RST */
5882		tcp_send_challenge_ack(sk, skb);
5883		goto discard;
5884	}
5885	switch (sk->sk_state) {
5886	case TCP_SYN_RECV:
 
5887		if (!tp->srtt_us)
5888			tcp_synack_rtt_meas(sk, req);
5889
5890		/* Once we leave TCP_SYN_RECV, we no longer need req
5891		 * so release it.
5892		 */
5893		if (req) {
5894			inet_csk(sk)->icsk_retransmits = 0;
5895			reqsk_fastopen_remove(sk, req, false);
5896			/* Re-arm the timer because data may have been sent out.
5897			 * This is similar to the regular data transmission case
5898			 * when new data has just been ack'ed.
5899			 *
5900			 * (TFO) - we could try to be more aggressive and
5901			 * retransmitting any data sooner based on when they
5902			 * are sent out.
5903			 */
5904			tcp_rearm_rto(sk);
5905		} else {
5906			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5907			tp->copied_seq = tp->rcv_nxt;
 
 
 
5908		}
5909		smp_mb();
5910		tcp_set_state(sk, TCP_ESTABLISHED);
5911		sk->sk_state_change(sk);
5912
5913		/* Note, that this wakeup is only for marginal crossed SYN case.
5914		 * Passively open sockets are not waked up, because
5915		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5916		 */
5917		if (sk->sk_socket)
5918			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5919
5920		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5921		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5922		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5923
5924		if (tp->rx_opt.tstamp_ok)
5925			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5926
5927		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5928			tcp_update_pacing_rate(sk);
5929
5930		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5931		tp->lsndtime = tcp_jiffies32;
5932
5933		tcp_initialize_rcv_mss(sk);
5934		tcp_fast_path_on(tp);
5935		break;
5936
5937	case TCP_FIN_WAIT1: {
5938		int tmo;
5939
5940		/* If we enter the TCP_FIN_WAIT1 state and we are a
5941		 * Fast Open socket and this is the first acceptable
5942		 * ACK we have received, this would have acknowledged
5943		 * our SYNACK so stop the SYNACK timer.
5944		 */
5945		if (req) {
5946			/* We no longer need the request sock. */
5947			reqsk_fastopen_remove(sk, req, false);
5948			tcp_rearm_rto(sk);
5949		}
5950		if (tp->snd_una != tp->write_seq)
5951			break;
5952
5953		tcp_set_state(sk, TCP_FIN_WAIT2);
5954		sk->sk_shutdown |= SEND_SHUTDOWN;
5955
5956		sk_dst_confirm(sk);
5957
5958		if (!sock_flag(sk, SOCK_DEAD)) {
5959			/* Wake up lingering close() */
5960			sk->sk_state_change(sk);
5961			break;
5962		}
5963
5964		if (tp->linger2 < 0) {
5965			tcp_done(sk);
5966			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5967			return 1;
5968		}
5969		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5970		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5971			/* Receive out of order FIN after close() */
5972			if (tp->syn_fastopen && th->fin)
5973				tcp_fastopen_active_disable(sk);
5974			tcp_done(sk);
5975			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5976			return 1;
5977		}
5978
5979		tmo = tcp_fin_time(sk);
5980		if (tmo > TCP_TIMEWAIT_LEN) {
5981			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5982		} else if (th->fin || sock_owned_by_user(sk)) {
5983			/* Bad case. We could lose such FIN otherwise.
5984			 * It is not a big problem, but it looks confusing
5985			 * and not so rare event. We still can lose it now,
5986			 * if it spins in bh_lock_sock(), but it is really
5987			 * marginal case.
5988			 */
5989			inet_csk_reset_keepalive_timer(sk, tmo);
5990		} else {
5991			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5992			goto discard;
5993		}
5994		break;
5995	}
5996
5997	case TCP_CLOSING:
5998		if (tp->snd_una == tp->write_seq) {
5999			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6000			goto discard;
6001		}
6002		break;
6003
6004	case TCP_LAST_ACK:
6005		if (tp->snd_una == tp->write_seq) {
6006			tcp_update_metrics(sk);
6007			tcp_done(sk);
6008			goto discard;
6009		}
6010		break;
6011	}
6012
6013	/* step 6: check the URG bit */
6014	tcp_urg(sk, skb, th);
6015
6016	/* step 7: process the segment text */
6017	switch (sk->sk_state) {
6018	case TCP_CLOSE_WAIT:
6019	case TCP_CLOSING:
6020	case TCP_LAST_ACK:
6021		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
 
 
 
 
 
6022			break;
6023		/* fall through */
 
6024	case TCP_FIN_WAIT1:
6025	case TCP_FIN_WAIT2:
6026		/* RFC 793 says to queue data in these states,
6027		 * RFC 1122 says we MUST send a reset.
6028		 * BSD 4.4 also does reset.
6029		 */
6030		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034				tcp_reset(sk);
6035				return 1;
6036			}
6037		}
6038		/* Fall through */
6039	case TCP_ESTABLISHED:
6040		tcp_data_queue(sk, skb);
6041		queued = 1;
6042		break;
6043	}
6044
6045	/* tcp_data could move socket to TIME-WAIT */
6046	if (sk->sk_state != TCP_CLOSE) {
6047		tcp_data_snd_check(sk);
6048		tcp_ack_snd_check(sk);
6049	}
6050
6051	if (!queued) {
6052discard:
6053		tcp_drop(sk, skb);
6054	}
6055	return 0;
6056}
6057EXPORT_SYMBOL(tcp_rcv_state_process);
6058
6059static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6060{
6061	struct inet_request_sock *ireq = inet_rsk(req);
6062
6063	if (family == AF_INET)
6064		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6065				    &ireq->ir_rmt_addr, port);
6066#if IS_ENABLED(CONFIG_IPV6)
6067	else if (family == AF_INET6)
6068		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6069				    &ireq->ir_v6_rmt_addr, port);
6070#endif
6071}
6072
6073/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6074 *
6075 * If we receive a SYN packet with these bits set, it means a
6076 * network is playing bad games with TOS bits. In order to
6077 * avoid possible false congestion notifications, we disable
6078 * TCP ECN negotiation.
6079 *
6080 * Exception: tcp_ca wants ECN. This is required for DCTCP
6081 * congestion control: Linux DCTCP asserts ECT on all packets,
6082 * including SYN, which is most optimal solution; however,
6083 * others, such as FreeBSD do not.
 
 
 
 
 
6084 */
6085static void tcp_ecn_create_request(struct request_sock *req,
6086				   const struct sk_buff *skb,
6087				   const struct sock *listen_sk,
6088				   const struct dst_entry *dst)
6089{
6090	const struct tcphdr *th = tcp_hdr(skb);
6091	const struct net *net = sock_net(listen_sk);
6092	bool th_ecn = th->ece && th->cwr;
6093	bool ect, ecn_ok;
6094	u32 ecn_ok_dst;
6095
6096	if (!th_ecn)
6097		return;
6098
6099	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6100	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6101	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6102
6103	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6104	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6105	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6106		inet_rsk(req)->ecn_ok = 1;
6107}
6108
6109static void tcp_openreq_init(struct request_sock *req,
6110			     const struct tcp_options_received *rx_opt,
6111			     struct sk_buff *skb, const struct sock *sk)
6112{
6113	struct inet_request_sock *ireq = inet_rsk(req);
6114
6115	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6116	req->cookie_ts = 0;
6117	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6118	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6119	tcp_rsk(req)->snt_synack = tcp_clock_us();
6120	tcp_rsk(req)->last_oow_ack_time = 0;
6121	req->mss = rx_opt->mss_clamp;
6122	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6123	ireq->tstamp_ok = rx_opt->tstamp_ok;
6124	ireq->sack_ok = rx_opt->sack_ok;
6125	ireq->snd_wscale = rx_opt->snd_wscale;
6126	ireq->wscale_ok = rx_opt->wscale_ok;
6127	ireq->acked = 0;
6128	ireq->ecn_ok = 0;
6129	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6130	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6131	ireq->ir_mark = inet_request_mark(sk, skb);
6132#if IS_ENABLED(CONFIG_SMC)
6133	ireq->smc_ok = rx_opt->smc_ok;
6134#endif
6135}
6136
6137struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6138				      struct sock *sk_listener,
6139				      bool attach_listener)
6140{
6141	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6142					       attach_listener);
6143
6144	if (req) {
6145		struct inet_request_sock *ireq = inet_rsk(req);
6146
6147		ireq->ireq_opt = NULL;
6148#if IS_ENABLED(CONFIG_IPV6)
6149		ireq->pktopts = NULL;
6150#endif
6151		atomic64_set(&ireq->ir_cookie, 0);
6152		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154		ireq->ireq_family = sk_listener->sk_family;
6155	}
6156
6157	return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165				 const struct sk_buff *skb,
6166				 const char *proto)
6167{
6168	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169	const char *msg = "Dropping request";
6170	bool want_cookie = false;
6171	struct net *net = sock_net(sk);
6172
6173#ifdef CONFIG_SYN_COOKIES
6174	if (net->ipv4.sysctl_tcp_syncookies) {
6175		msg = "Sending cookies";
6176		want_cookie = true;
6177		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178	} else
6179#endif
6180		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182	if (!queue->synflood_warned &&
6183	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184	    xchg(&queue->synflood_warned, 1) == 0)
6185		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186			proto, ntohs(tcp_hdr(skb)->dest), msg);
6187
6188	return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192				 struct request_sock *req,
6193				 const struct sk_buff *skb)
6194{
6195	if (tcp_sk(sk)->save_syn) {
6196		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197		u32 *copy;
 
 
 
 
 
 
 
 
 
 
 
6198
6199		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200		if (copy) {
6201			copy[0] = len;
6202			memcpy(&copy[1], skb_network_header(skb), len);
6203			req->saved_syn = copy;
 
 
 
6204		}
6205	}
6206}
6207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209		     const struct tcp_request_sock_ops *af_ops,
6210		     struct sock *sk, struct sk_buff *skb)
6211{
6212	struct tcp_fastopen_cookie foc = { .len = -1 };
6213	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214	struct tcp_options_received tmp_opt;
6215	struct tcp_sock *tp = tcp_sk(sk);
6216	struct net *net = sock_net(sk);
6217	struct sock *fastopen_sk = NULL;
6218	struct request_sock *req;
6219	bool want_cookie = false;
6220	struct dst_entry *dst;
6221	struct flowi fl;
6222
6223	/* TW buckets are converted to open requests without
6224	 * limitations, they conserve resources and peer is
6225	 * evidently real one.
6226	 */
6227	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230		if (!want_cookie)
6231			goto drop;
6232	}
6233
6234	if (sk_acceptq_is_full(sk)) {
6235		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6236		goto drop;
6237	}
6238
6239	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6240	if (!req)
6241		goto drop;
6242
 
6243	tcp_rsk(req)->af_specific = af_ops;
6244	tcp_rsk(req)->ts_off = 0;
 
 
 
6245
6246	tcp_clear_options(&tmp_opt);
6247	tmp_opt.mss_clamp = af_ops->mss_clamp;
6248	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6249	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6250			  want_cookie ? NULL : &foc);
6251
6252	if (want_cookie && !tmp_opt.saw_tstamp)
6253		tcp_clear_options(&tmp_opt);
6254
6255	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6256		tmp_opt.smc_ok = 0;
6257
6258	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6259	tcp_openreq_init(req, &tmp_opt, skb, sk);
6260	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6261
6262	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265	af_ops->init_req(req, sk, skb);
6266
6267	if (security_inet_conn_request(sk, skb, req))
6268		goto drop_and_free;
6269
6270	if (tmp_opt.tstamp_ok)
6271		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6272
6273	dst = af_ops->route_req(sk, &fl, req);
6274	if (!dst)
6275		goto drop_and_free;
6276
6277	if (!want_cookie && !isn) {
6278		/* Kill the following clause, if you dislike this way. */
6279		if (!net->ipv4.sysctl_tcp_syncookies &&
6280		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6281		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6282		    !tcp_peer_is_proven(req, dst)) {
6283			/* Without syncookies last quarter of
6284			 * backlog is filled with destinations,
6285			 * proven to be alive.
6286			 * It means that we continue to communicate
6287			 * to destinations, already remembered
6288			 * to the moment of synflood.
6289			 */
6290			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6291				    rsk_ops->family);
6292			goto drop_and_release;
6293		}
6294
6295		isn = af_ops->init_seq(skb);
6296	}
6297
6298	tcp_ecn_create_request(req, skb, sk, dst);
6299
6300	if (want_cookie) {
6301		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6302		req->cookie_ts = tmp_opt.tstamp_ok;
6303		if (!tmp_opt.tstamp_ok)
6304			inet_rsk(req)->ecn_ok = 0;
6305	}
6306
6307	tcp_rsk(req)->snt_isn = isn;
6308	tcp_rsk(req)->txhash = net_tx_rndhash();
 
6309	tcp_openreq_init_rwin(req, sk, dst);
 
6310	if (!want_cookie) {
6311		tcp_reqsk_record_syn(sk, req, skb);
6312		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6313	}
6314	if (fastopen_sk) {
6315		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6316				    &foc, TCP_SYNACK_FASTOPEN);
6317		/* Add the child socket directly into the accept queue */
6318		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
 
 
 
 
 
6319		sk->sk_data_ready(sk);
6320		bh_unlock_sock(fastopen_sk);
6321		sock_put(fastopen_sk);
6322	} else {
6323		tcp_rsk(req)->tfo_listener = false;
6324		if (!want_cookie)
6325			inet_csk_reqsk_queue_hash_add(sk, req,
6326				tcp_timeout_init((struct sock *)req));
6327		af_ops->send_synack(sk, dst, &fl, req, &foc,
6328				    !want_cookie ? TCP_SYNACK_NORMAL :
6329						   TCP_SYNACK_COOKIE);
 
6330		if (want_cookie) {
6331			reqsk_free(req);
6332			return 0;
6333		}
6334	}
6335	reqsk_put(req);
6336	return 0;
6337
6338drop_and_release:
6339	dst_release(dst);
6340drop_and_free:
6341	reqsk_free(req);
6342drop:
6343	tcp_listendrop(sk);
6344	return 0;
6345}
6346EXPORT_SYMBOL(tcp_conn_request);