Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
 
  77#include <linux/uaccess.h>
  78#include <asm/ioctls.h>
  79#include <linux/memblock.h>
  80#include <linux/highmem.h>
  81#include <linux/swap.h>
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 
 106#include <net/xfrm.h>
 107#include <trace/events/udp.h>
 108#include <linux/static_key.h>
 109#include <linux/btf_ids.h>
 110#include <trace/events/skb.h>
 111#include <net/busy_poll.h>
 112#include "udp_impl.h"
 113#include <net/sock_reuseport.h>
 114#include <net/addrconf.h>
 115#include <net/udp_tunnel.h>
 
 116#if IS_ENABLED(CONFIG_IPV6)
 117#include <net/ipv6_stubs.h>
 118#endif
 119
 120struct udp_table udp_table __read_mostly;
 121EXPORT_SYMBOL(udp_table);
 122
 123long sysctl_udp_mem[3] __read_mostly;
 124EXPORT_SYMBOL(sysctl_udp_mem);
 125
 126atomic_long_t udp_memory_allocated;
 127EXPORT_SYMBOL(udp_memory_allocated);
 
 
 128
 129#define MAX_UDP_PORTS 65536
 130#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 
 
 
 
 
 131
 132static int udp_lib_lport_inuse(struct net *net, __u16 num,
 133			       const struct udp_hslot *hslot,
 134			       unsigned long *bitmap,
 135			       struct sock *sk, unsigned int log)
 136{
 137	struct sock *sk2;
 138	kuid_t uid = sock_i_uid(sk);
 139
 140	sk_for_each(sk2, &hslot->head) {
 141		if (net_eq(sock_net(sk2), net) &&
 142		    sk2 != sk &&
 143		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 144		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 145		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 146		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 147		    inet_rcv_saddr_equal(sk, sk2, true)) {
 148			if (sk2->sk_reuseport && sk->sk_reuseport &&
 149			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 150			    uid_eq(uid, sock_i_uid(sk2))) {
 151				if (!bitmap)
 152					return 0;
 153			} else {
 154				if (!bitmap)
 155					return 1;
 156				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 157					  bitmap);
 158			}
 159		}
 160	}
 161	return 0;
 162}
 163
 164/*
 165 * Note: we still hold spinlock of primary hash chain, so no other writer
 166 * can insert/delete a socket with local_port == num
 167 */
 168static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 169				struct udp_hslot *hslot2,
 170				struct sock *sk)
 171{
 172	struct sock *sk2;
 173	kuid_t uid = sock_i_uid(sk);
 174	int res = 0;
 175
 176	spin_lock(&hslot2->lock);
 177	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 178		if (net_eq(sock_net(sk2), net) &&
 179		    sk2 != sk &&
 180		    (udp_sk(sk2)->udp_port_hash == num) &&
 181		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 182		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 183		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 184		    inet_rcv_saddr_equal(sk, sk2, true)) {
 185			if (sk2->sk_reuseport && sk->sk_reuseport &&
 186			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 187			    uid_eq(uid, sock_i_uid(sk2))) {
 188				res = 0;
 189			} else {
 190				res = 1;
 191			}
 192			break;
 193		}
 194	}
 195	spin_unlock(&hslot2->lock);
 196	return res;
 197}
 198
 199static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 200{
 201	struct net *net = sock_net(sk);
 202	kuid_t uid = sock_i_uid(sk);
 203	struct sock *sk2;
 204
 205	sk_for_each(sk2, &hslot->head) {
 206		if (net_eq(sock_net(sk2), net) &&
 207		    sk2 != sk &&
 208		    sk2->sk_family == sk->sk_family &&
 209		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 210		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 211		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 212		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 213		    inet_rcv_saddr_equal(sk, sk2, false)) {
 214			return reuseport_add_sock(sk, sk2,
 215						  inet_rcv_saddr_any(sk));
 216		}
 217	}
 218
 219	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 220}
 221
 222/**
 223 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 224 *
 225 *  @sk:          socket struct in question
 226 *  @snum:        port number to look up
 227 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 228 *                   with NULL address
 229 */
 230int udp_lib_get_port(struct sock *sk, unsigned short snum,
 231		     unsigned int hash2_nulladdr)
 232{
 
 233	struct udp_hslot *hslot, *hslot2;
 234	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 235	int    error = 1;
 236	struct net *net = sock_net(sk);
 
 237
 238	if (!snum) {
 
 
 239		int low, high, remaining;
 240		unsigned int rand;
 241		unsigned short first, last;
 242		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 243
 244		inet_get_local_port_range(net, &low, &high);
 245		remaining = (high - low) + 1;
 246
 247		rand = prandom_u32();
 248		first = reciprocal_scale(rand, remaining) + low;
 249		/*
 250		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 251		 */
 252		rand = (rand | 1) * (udptable->mask + 1);
 253		last = first + udptable->mask + 1;
 254		do {
 255			hslot = udp_hashslot(udptable, net, first);
 256			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 257			spin_lock_bh(&hslot->lock);
 258			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 259					    udptable->log);
 260
 261			snum = first;
 262			/*
 263			 * Iterate on all possible values of snum for this hash.
 264			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 265			 * give us randomization and full range coverage.
 266			 */
 267			do {
 268				if (low <= snum && snum <= high &&
 269				    !test_bit(snum >> udptable->log, bitmap) &&
 270				    !inet_is_local_reserved_port(net, snum))
 271					goto found;
 272				snum += rand;
 273			} while (snum != first);
 274			spin_unlock_bh(&hslot->lock);
 275			cond_resched();
 276		} while (++first != last);
 277		goto fail;
 278	} else {
 279		hslot = udp_hashslot(udptable, net, snum);
 280		spin_lock_bh(&hslot->lock);
 281		if (hslot->count > 10) {
 282			int exist;
 283			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 284
 285			slot2          &= udptable->mask;
 286			hash2_nulladdr &= udptable->mask;
 287
 288			hslot2 = udp_hashslot2(udptable, slot2);
 289			if (hslot->count < hslot2->count)
 290				goto scan_primary_hash;
 291
 292			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 293			if (!exist && (hash2_nulladdr != slot2)) {
 294				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 295				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 296							     sk);
 297			}
 298			if (exist)
 299				goto fail_unlock;
 300			else
 301				goto found;
 302		}
 303scan_primary_hash:
 304		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 305			goto fail_unlock;
 306	}
 307found:
 308	inet_sk(sk)->inet_num = snum;
 309	udp_sk(sk)->udp_port_hash = snum;
 310	udp_sk(sk)->udp_portaddr_hash ^= snum;
 311	if (sk_unhashed(sk)) {
 312		if (sk->sk_reuseport &&
 313		    udp_reuseport_add_sock(sk, hslot)) {
 314			inet_sk(sk)->inet_num = 0;
 315			udp_sk(sk)->udp_port_hash = 0;
 316			udp_sk(sk)->udp_portaddr_hash ^= snum;
 317			goto fail_unlock;
 318		}
 319
 320		sk_add_node_rcu(sk, &hslot->head);
 321		hslot->count++;
 322		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 323
 324		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 325		spin_lock(&hslot2->lock);
 326		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 327		    sk->sk_family == AF_INET6)
 328			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 329					   &hslot2->head);
 330		else
 331			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 332					   &hslot2->head);
 333		hslot2->count++;
 334		spin_unlock(&hslot2->lock);
 335	}
 336	sock_set_flag(sk, SOCK_RCU_FREE);
 337	error = 0;
 338fail_unlock:
 339	spin_unlock_bh(&hslot->lock);
 340fail:
 341	return error;
 342}
 343EXPORT_SYMBOL(udp_lib_get_port);
 344
 345int udp_v4_get_port(struct sock *sk, unsigned short snum)
 346{
 347	unsigned int hash2_nulladdr =
 348		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 349	unsigned int hash2_partial =
 350		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 351
 352	/* precompute partial secondary hash */
 353	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 354	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 355}
 356
 357static int compute_score(struct sock *sk, struct net *net,
 358			 __be32 saddr, __be16 sport,
 359			 __be32 daddr, unsigned short hnum,
 360			 int dif, int sdif)
 361{
 362	int score;
 363	struct inet_sock *inet;
 364	bool dev_match;
 365
 366	if (!net_eq(sock_net(sk), net) ||
 367	    udp_sk(sk)->udp_port_hash != hnum ||
 368	    ipv6_only_sock(sk))
 369		return -1;
 370
 371	if (sk->sk_rcv_saddr != daddr)
 372		return -1;
 373
 374	score = (sk->sk_family == PF_INET) ? 2 : 1;
 375
 376	inet = inet_sk(sk);
 377	if (inet->inet_daddr) {
 378		if (inet->inet_daddr != saddr)
 379			return -1;
 380		score += 4;
 381	}
 382
 383	if (inet->inet_dport) {
 384		if (inet->inet_dport != sport)
 385			return -1;
 386		score += 4;
 387	}
 388
 389	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 390					dif, sdif);
 391	if (!dev_match)
 392		return -1;
 393	if (sk->sk_bound_dev_if)
 394		score += 4;
 395
 396	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 397		score++;
 398	return score;
 399}
 400
 401static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 402		       const __u16 lport, const __be32 faddr,
 403		       const __be16 fport)
 404{
 405	static u32 udp_ehash_secret __read_mostly;
 406
 407	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 408
 409	return __inet_ehashfn(laddr, lport, faddr, fport,
 410			      udp_ehash_secret + net_hash_mix(net));
 411}
 412
 413static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
 414				     struct sk_buff *skb,
 415				     __be32 saddr, __be16 sport,
 416				     __be32 daddr, unsigned short hnum)
 417{
 418	struct sock *reuse_sk = NULL;
 419	u32 hash;
 420
 421	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
 422		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
 423		reuse_sk = reuseport_select_sock(sk, hash, skb,
 424						 sizeof(struct udphdr));
 425	}
 426	return reuse_sk;
 427}
 428
 429/* called with rcu_read_lock() */
 430static struct sock *udp4_lib_lookup2(struct net *net,
 431				     __be32 saddr, __be16 sport,
 432				     __be32 daddr, unsigned int hnum,
 433				     int dif, int sdif,
 434				     struct udp_hslot *hslot2,
 435				     struct sk_buff *skb)
 436{
 437	struct sock *sk, *result;
 438	int score, badness;
 439
 440	result = NULL;
 441	badness = 0;
 442	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 443		score = compute_score(sk, net, saddr, sport,
 444				      daddr, hnum, dif, sdif);
 445		if (score > badness) {
 446			result = lookup_reuseport(net, sk, skb,
 447						  saddr, sport, daddr, hnum);
 
 
 
 
 
 
 
 
 
 
 
 
 448			/* Fall back to scoring if group has connections */
 449			if (result && !reuseport_has_conns(sk, false))
 450				return result;
 451
 452			result = result ? : sk;
 453			badness = score;
 
 
 
 
 
 454		}
 455	}
 456	return result;
 457}
 458
 459static struct sock *udp4_lookup_run_bpf(struct net *net,
 460					struct udp_table *udptable,
 461					struct sk_buff *skb,
 462					__be32 saddr, __be16 sport,
 463					__be32 daddr, u16 hnum)
 464{
 465	struct sock *sk, *reuse_sk;
 466	bool no_reuseport;
 467
 468	if (udptable != &udp_table)
 469		return NULL; /* only UDP is supported */
 470
 471	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
 472					    saddr, sport, daddr, hnum, &sk);
 473	if (no_reuseport || IS_ERR_OR_NULL(sk))
 474		return sk;
 475
 476	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
 477	if (reuse_sk)
 478		sk = reuse_sk;
 479	return sk;
 480}
 481
 482/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 483 * harder than this. -DaveM
 484 */
 485struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 486		__be16 sport, __be32 daddr, __be16 dport, int dif,
 487		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 488{
 489	unsigned short hnum = ntohs(dport);
 490	unsigned int hash2, slot2;
 491	struct udp_hslot *hslot2;
 492	struct sock *result, *sk;
 493
 494	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 495	slot2 = hash2 & udptable->mask;
 496	hslot2 = &udptable->hash2[slot2];
 497
 498	/* Lookup connected or non-wildcard socket */
 499	result = udp4_lib_lookup2(net, saddr, sport,
 500				  daddr, hnum, dif, sdif,
 501				  hslot2, skb);
 502	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 503		goto done;
 504
 505	/* Lookup redirect from BPF */
 506	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
 507		sk = udp4_lookup_run_bpf(net, udptable, skb,
 508					 saddr, sport, daddr, hnum);
 
 
 509		if (sk) {
 510			result = sk;
 511			goto done;
 512		}
 513	}
 514
 515	/* Got non-wildcard socket or error on first lookup */
 516	if (result)
 517		goto done;
 518
 519	/* Lookup wildcard sockets */
 520	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 521	slot2 = hash2 & udptable->mask;
 522	hslot2 = &udptable->hash2[slot2];
 523
 524	result = udp4_lib_lookup2(net, saddr, sport,
 525				  htonl(INADDR_ANY), hnum, dif, sdif,
 526				  hslot2, skb);
 527done:
 528	if (IS_ERR(result))
 529		return NULL;
 530	return result;
 531}
 532EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 533
 534static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 535						 __be16 sport, __be16 dport,
 536						 struct udp_table *udptable)
 537{
 538	const struct iphdr *iph = ip_hdr(skb);
 539
 540	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 541				 iph->daddr, dport, inet_iif(skb),
 542				 inet_sdif(skb), udptable, skb);
 543}
 544
 545struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 546				 __be16 sport, __be16 dport)
 547{
 548	const struct iphdr *iph = ip_hdr(skb);
 
 
 549
 550	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 551				 iph->daddr, dport, inet_iif(skb),
 552				 inet_sdif(skb), &udp_table, NULL);
 
 
 553}
 554
 555/* Must be called under rcu_read_lock().
 556 * Does increment socket refcount.
 557 */
 558#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 559struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 560			     __be32 daddr, __be16 dport, int dif)
 561{
 562	struct sock *sk;
 563
 564	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 565			       dif, 0, &udp_table, NULL);
 566	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 567		sk = NULL;
 568	return sk;
 569}
 570EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 571#endif
 572
 573static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 574				       __be16 loc_port, __be32 loc_addr,
 575				       __be16 rmt_port, __be32 rmt_addr,
 576				       int dif, int sdif, unsigned short hnum)
 577{
 578	struct inet_sock *inet = inet_sk(sk);
 579
 580	if (!net_eq(sock_net(sk), net) ||
 581	    udp_sk(sk)->udp_port_hash != hnum ||
 582	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 583	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 584	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 585	    ipv6_only_sock(sk) ||
 586	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 587		return false;
 588	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 589		return false;
 590	return true;
 591}
 592
 593DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 594void udp_encap_enable(void)
 595{
 596	static_branch_inc(&udp_encap_needed_key);
 597}
 598EXPORT_SYMBOL(udp_encap_enable);
 599
 600void udp_encap_disable(void)
 601{
 602	static_branch_dec(&udp_encap_needed_key);
 603}
 604EXPORT_SYMBOL(udp_encap_disable);
 605
 606/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 607 * through error handlers in encapsulations looking for a match.
 608 */
 609static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 610{
 611	int i;
 612
 613	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 614		int (*handler)(struct sk_buff *skb, u32 info);
 615		const struct ip_tunnel_encap_ops *encap;
 616
 617		encap = rcu_dereference(iptun_encaps[i]);
 618		if (!encap)
 619			continue;
 620		handler = encap->err_handler;
 621		if (handler && !handler(skb, info))
 622			return 0;
 623	}
 624
 625	return -ENOENT;
 626}
 627
 628/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 629 * reversing source and destination port: this will match tunnels that force the
 630 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 631 * lwtunnels might actually break this assumption by being configured with
 632 * different destination ports on endpoints, in this case we won't be able to
 633 * trace ICMP messages back to them.
 634 *
 635 * If this doesn't match any socket, probe tunnels with arbitrary destination
 636 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 637 * we've sent packets to won't necessarily match the local destination port.
 638 *
 639 * Then ask the tunnel implementation to match the error against a valid
 640 * association.
 641 *
 642 * Return an error if we can't find a match, the socket if we need further
 643 * processing, zero otherwise.
 644 */
 645static struct sock *__udp4_lib_err_encap(struct net *net,
 646					 const struct iphdr *iph,
 647					 struct udphdr *uh,
 648					 struct udp_table *udptable,
 649					 struct sock *sk,
 650					 struct sk_buff *skb, u32 info)
 651{
 652	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 653	int network_offset, transport_offset;
 654	struct udp_sock *up;
 655
 656	network_offset = skb_network_offset(skb);
 657	transport_offset = skb_transport_offset(skb);
 658
 659	/* Network header needs to point to the outer IPv4 header inside ICMP */
 660	skb_reset_network_header(skb);
 661
 662	/* Transport header needs to point to the UDP header */
 663	skb_set_transport_header(skb, iph->ihl << 2);
 664
 665	if (sk) {
 666		up = udp_sk(sk);
 667
 668		lookup = READ_ONCE(up->encap_err_lookup);
 669		if (lookup && lookup(sk, skb))
 670			sk = NULL;
 671
 672		goto out;
 673	}
 674
 675	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 676			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 677			       udptable, NULL);
 678	if (sk) {
 679		up = udp_sk(sk);
 680
 681		lookup = READ_ONCE(up->encap_err_lookup);
 682		if (!lookup || lookup(sk, skb))
 683			sk = NULL;
 684	}
 685
 686out:
 687	if (!sk)
 688		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 689
 690	skb_set_transport_header(skb, transport_offset);
 691	skb_set_network_header(skb, network_offset);
 692
 693	return sk;
 694}
 695
 696/*
 697 * This routine is called by the ICMP module when it gets some
 698 * sort of error condition.  If err < 0 then the socket should
 699 * be closed and the error returned to the user.  If err > 0
 700 * it's just the icmp type << 8 | icmp code.
 701 * Header points to the ip header of the error packet. We move
 702 * on past this. Then (as it used to claim before adjustment)
 703 * header points to the first 8 bytes of the udp header.  We need
 704 * to find the appropriate port.
 705 */
 706
 707int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 708{
 709	struct inet_sock *inet;
 710	const struct iphdr *iph = (const struct iphdr *)skb->data;
 711	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 712	const int type = icmp_hdr(skb)->type;
 713	const int code = icmp_hdr(skb)->code;
 714	bool tunnel = false;
 715	struct sock *sk;
 716	int harderr;
 717	int err;
 718	struct net *net = dev_net(skb->dev);
 719
 720	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 721			       iph->saddr, uh->source, skb->dev->ifindex,
 722			       inet_sdif(skb), udptable, NULL);
 723
 724	if (!sk || udp_sk(sk)->encap_type) {
 725		/* No socket for error: try tunnels before discarding */
 726		if (static_branch_unlikely(&udp_encap_needed_key)) {
 727			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 728						  info);
 729			if (!sk)
 730				return 0;
 731		} else
 732			sk = ERR_PTR(-ENOENT);
 733
 734		if (IS_ERR(sk)) {
 735			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 736			return PTR_ERR(sk);
 737		}
 738
 739		tunnel = true;
 740	}
 741
 742	err = 0;
 743	harderr = 0;
 744	inet = inet_sk(sk);
 745
 746	switch (type) {
 747	default:
 748	case ICMP_TIME_EXCEEDED:
 749		err = EHOSTUNREACH;
 750		break;
 751	case ICMP_SOURCE_QUENCH:
 752		goto out;
 753	case ICMP_PARAMETERPROB:
 754		err = EPROTO;
 755		harderr = 1;
 756		break;
 757	case ICMP_DEST_UNREACH:
 758		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 759			ipv4_sk_update_pmtu(skb, sk, info);
 760			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 761				err = EMSGSIZE;
 762				harderr = 1;
 763				break;
 764			}
 765			goto out;
 766		}
 767		err = EHOSTUNREACH;
 768		if (code <= NR_ICMP_UNREACH) {
 769			harderr = icmp_err_convert[code].fatal;
 770			err = icmp_err_convert[code].errno;
 771		}
 772		break;
 773	case ICMP_REDIRECT:
 774		ipv4_sk_redirect(skb, sk);
 775		goto out;
 776	}
 777
 778	/*
 779	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 780	 *	4.1.3.3.
 781	 */
 782	if (tunnel) {
 783		/* ...not for tunnels though: we don't have a sending socket */
 
 
 
 784		goto out;
 785	}
 786	if (!inet->recverr) {
 787		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 788			goto out;
 789	} else
 790		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 791
 792	sk->sk_err = err;
 793	sk_error_report(sk);
 794out:
 795	return 0;
 796}
 797
 798int udp_err(struct sk_buff *skb, u32 info)
 799{
 800	return __udp4_lib_err(skb, info, &udp_table);
 801}
 802
 803/*
 804 * Throw away all pending data and cancel the corking. Socket is locked.
 805 */
 806void udp_flush_pending_frames(struct sock *sk)
 807{
 808	struct udp_sock *up = udp_sk(sk);
 809
 810	if (up->pending) {
 811		up->len = 0;
 812		up->pending = 0;
 813		ip_flush_pending_frames(sk);
 814	}
 815}
 816EXPORT_SYMBOL(udp_flush_pending_frames);
 817
 818/**
 819 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 820 * 	@skb: 	sk_buff containing the filled-in UDP header
 821 * 	        (checksum field must be zeroed out)
 822 *	@src:	source IP address
 823 *	@dst:	destination IP address
 824 */
 825void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 826{
 827	struct udphdr *uh = udp_hdr(skb);
 828	int offset = skb_transport_offset(skb);
 829	int len = skb->len - offset;
 830	int hlen = len;
 831	__wsum csum = 0;
 832
 833	if (!skb_has_frag_list(skb)) {
 834		/*
 835		 * Only one fragment on the socket.
 836		 */
 837		skb->csum_start = skb_transport_header(skb) - skb->head;
 838		skb->csum_offset = offsetof(struct udphdr, check);
 839		uh->check = ~csum_tcpudp_magic(src, dst, len,
 840					       IPPROTO_UDP, 0);
 841	} else {
 842		struct sk_buff *frags;
 843
 844		/*
 845		 * HW-checksum won't work as there are two or more
 846		 * fragments on the socket so that all csums of sk_buffs
 847		 * should be together
 848		 */
 849		skb_walk_frags(skb, frags) {
 850			csum = csum_add(csum, frags->csum);
 851			hlen -= frags->len;
 852		}
 853
 854		csum = skb_checksum(skb, offset, hlen, csum);
 855		skb->ip_summed = CHECKSUM_NONE;
 856
 857		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 858		if (uh->check == 0)
 859			uh->check = CSUM_MANGLED_0;
 860	}
 861}
 862EXPORT_SYMBOL_GPL(udp4_hwcsum);
 863
 864/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 865 * for the simple case like when setting the checksum for a UDP tunnel.
 866 */
 867void udp_set_csum(bool nocheck, struct sk_buff *skb,
 868		  __be32 saddr, __be32 daddr, int len)
 869{
 870	struct udphdr *uh = udp_hdr(skb);
 871
 872	if (nocheck) {
 873		uh->check = 0;
 874	} else if (skb_is_gso(skb)) {
 875		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 876	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 877		uh->check = 0;
 878		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 879		if (uh->check == 0)
 880			uh->check = CSUM_MANGLED_0;
 881	} else {
 882		skb->ip_summed = CHECKSUM_PARTIAL;
 883		skb->csum_start = skb_transport_header(skb) - skb->head;
 884		skb->csum_offset = offsetof(struct udphdr, check);
 885		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 886	}
 887}
 888EXPORT_SYMBOL(udp_set_csum);
 889
 890static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 891			struct inet_cork *cork)
 892{
 893	struct sock *sk = skb->sk;
 894	struct inet_sock *inet = inet_sk(sk);
 895	struct udphdr *uh;
 896	int err;
 897	int is_udplite = IS_UDPLITE(sk);
 898	int offset = skb_transport_offset(skb);
 899	int len = skb->len - offset;
 900	int datalen = len - sizeof(*uh);
 901	__wsum csum = 0;
 902
 903	/*
 904	 * Create a UDP header
 905	 */
 906	uh = udp_hdr(skb);
 907	uh->source = inet->inet_sport;
 908	uh->dest = fl4->fl4_dport;
 909	uh->len = htons(len);
 910	uh->check = 0;
 911
 912	if (cork->gso_size) {
 913		const int hlen = skb_network_header_len(skb) +
 914				 sizeof(struct udphdr);
 915
 916		if (hlen + cork->gso_size > cork->fragsize) {
 917			kfree_skb(skb);
 918			return -EINVAL;
 919		}
 920		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
 921			kfree_skb(skb);
 922			return -EINVAL;
 923		}
 924		if (sk->sk_no_check_tx) {
 925			kfree_skb(skb);
 926			return -EINVAL;
 927		}
 928		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 929		    dst_xfrm(skb_dst(skb))) {
 930			kfree_skb(skb);
 931			return -EIO;
 932		}
 933
 934		if (datalen > cork->gso_size) {
 935			skb_shinfo(skb)->gso_size = cork->gso_size;
 936			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 937			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 938								 cork->gso_size);
 939		}
 940		goto csum_partial;
 941	}
 942
 943	if (is_udplite)  				 /*     UDP-Lite      */
 944		csum = udplite_csum(skb);
 945
 946	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 947
 948		skb->ip_summed = CHECKSUM_NONE;
 949		goto send;
 950
 951	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 952csum_partial:
 953
 954		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 955		goto send;
 956
 957	} else
 958		csum = udp_csum(skb);
 959
 960	/* add protocol-dependent pseudo-header */
 961	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 962				      sk->sk_protocol, csum);
 963	if (uh->check == 0)
 964		uh->check = CSUM_MANGLED_0;
 965
 966send:
 967	err = ip_send_skb(sock_net(sk), skb);
 968	if (err) {
 969		if (err == -ENOBUFS && !inet->recverr) {
 
 970			UDP_INC_STATS(sock_net(sk),
 971				      UDP_MIB_SNDBUFERRORS, is_udplite);
 972			err = 0;
 973		}
 974	} else
 975		UDP_INC_STATS(sock_net(sk),
 976			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 977	return err;
 978}
 979
 980/*
 981 * Push out all pending data as one UDP datagram. Socket is locked.
 982 */
 983int udp_push_pending_frames(struct sock *sk)
 984{
 985	struct udp_sock  *up = udp_sk(sk);
 986	struct inet_sock *inet = inet_sk(sk);
 987	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 988	struct sk_buff *skb;
 989	int err = 0;
 990
 991	skb = ip_finish_skb(sk, fl4);
 992	if (!skb)
 993		goto out;
 994
 995	err = udp_send_skb(skb, fl4, &inet->cork.base);
 996
 997out:
 998	up->len = 0;
 999	up->pending = 0;
1000	return err;
1001}
1002EXPORT_SYMBOL(udp_push_pending_frames);
1003
1004static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1005{
1006	switch (cmsg->cmsg_type) {
1007	case UDP_SEGMENT:
1008		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1009			return -EINVAL;
1010		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1011		return 0;
1012	default:
1013		return -EINVAL;
1014	}
1015}
1016
1017int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1018{
1019	struct cmsghdr *cmsg;
1020	bool need_ip = false;
1021	int err;
1022
1023	for_each_cmsghdr(cmsg, msg) {
1024		if (!CMSG_OK(msg, cmsg))
1025			return -EINVAL;
1026
1027		if (cmsg->cmsg_level != SOL_UDP) {
1028			need_ip = true;
1029			continue;
1030		}
1031
1032		err = __udp_cmsg_send(cmsg, gso_size);
1033		if (err)
1034			return err;
1035	}
1036
1037	return need_ip;
1038}
1039EXPORT_SYMBOL_GPL(udp_cmsg_send);
1040
1041int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1042{
1043	struct inet_sock *inet = inet_sk(sk);
1044	struct udp_sock *up = udp_sk(sk);
1045	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1046	struct flowi4 fl4_stack;
1047	struct flowi4 *fl4;
1048	int ulen = len;
1049	struct ipcm_cookie ipc;
1050	struct rtable *rt = NULL;
1051	int free = 0;
1052	int connected = 0;
1053	__be32 daddr, faddr, saddr;
 
1054	__be16 dport;
1055	u8  tos;
1056	int err, is_udplite = IS_UDPLITE(sk);
1057	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1058	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1059	struct sk_buff *skb;
1060	struct ip_options_data opt_copy;
 
1061
1062	if (len > 0xFFFF)
1063		return -EMSGSIZE;
1064
1065	/*
1066	 *	Check the flags.
1067	 */
1068
1069	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1070		return -EOPNOTSUPP;
1071
1072	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1073
1074	fl4 = &inet->cork.fl.u.ip4;
1075	if (up->pending) {
1076		/*
1077		 * There are pending frames.
1078		 * The socket lock must be held while it's corked.
1079		 */
1080		lock_sock(sk);
1081		if (likely(up->pending)) {
1082			if (unlikely(up->pending != AF_INET)) {
1083				release_sock(sk);
1084				return -EINVAL;
1085			}
1086			goto do_append_data;
1087		}
1088		release_sock(sk);
1089	}
1090	ulen += sizeof(struct udphdr);
1091
1092	/*
1093	 *	Get and verify the address.
1094	 */
1095	if (usin) {
1096		if (msg->msg_namelen < sizeof(*usin))
1097			return -EINVAL;
1098		if (usin->sin_family != AF_INET) {
1099			if (usin->sin_family != AF_UNSPEC)
1100				return -EAFNOSUPPORT;
1101		}
1102
1103		daddr = usin->sin_addr.s_addr;
1104		dport = usin->sin_port;
1105		if (dport == 0)
1106			return -EINVAL;
1107	} else {
1108		if (sk->sk_state != TCP_ESTABLISHED)
1109			return -EDESTADDRREQ;
1110		daddr = inet->inet_daddr;
1111		dport = inet->inet_dport;
1112		/* Open fast path for connected socket.
1113		   Route will not be used, if at least one option is set.
1114		 */
1115		connected = 1;
1116	}
1117
1118	ipcm_init_sk(&ipc, inet);
1119	ipc.gso_size = READ_ONCE(up->gso_size);
1120
1121	if (msg->msg_controllen) {
1122		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1123		if (err > 0)
1124			err = ip_cmsg_send(sk, msg, &ipc,
1125					   sk->sk_family == AF_INET6);
1126		if (unlikely(err < 0)) {
1127			kfree(ipc.opt);
1128			return err;
1129		}
1130		if (ipc.opt)
1131			free = 1;
1132		connected = 0;
1133	}
1134	if (!ipc.opt) {
1135		struct ip_options_rcu *inet_opt;
1136
1137		rcu_read_lock();
1138		inet_opt = rcu_dereference(inet->inet_opt);
1139		if (inet_opt) {
1140			memcpy(&opt_copy, inet_opt,
1141			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1142			ipc.opt = &opt_copy.opt;
1143		}
1144		rcu_read_unlock();
1145	}
1146
1147	if (cgroup_bpf_enabled(BPF_CGROUP_UDP4_SENDMSG) && !connected) {
1148		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1149					    (struct sockaddr *)usin, &ipc.addr);
 
 
1150		if (err)
1151			goto out_free;
1152		if (usin) {
1153			if (usin->sin_port == 0) {
1154				/* BPF program set invalid port. Reject it. */
1155				err = -EINVAL;
1156				goto out_free;
1157			}
1158			daddr = usin->sin_addr.s_addr;
1159			dport = usin->sin_port;
1160		}
1161	}
1162
1163	saddr = ipc.addr;
1164	ipc.addr = faddr = daddr;
1165
1166	if (ipc.opt && ipc.opt->opt.srr) {
1167		if (!daddr) {
1168			err = -EINVAL;
1169			goto out_free;
1170		}
1171		faddr = ipc.opt->opt.faddr;
1172		connected = 0;
1173	}
1174	tos = get_rttos(&ipc, inet);
1175	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1176	    (msg->msg_flags & MSG_DONTROUTE) ||
1177	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1178		tos |= RTO_ONLINK;
1179		connected = 0;
1180	}
1181
 
1182	if (ipv4_is_multicast(daddr)) {
1183		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1184			ipc.oif = inet->mc_index;
1185		if (!saddr)
1186			saddr = inet->mc_addr;
1187		connected = 0;
1188	} else if (!ipc.oif) {
1189		ipc.oif = inet->uc_index;
1190	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1191		/* oif is set, packet is to local broadcast and
1192		 * uc_index is set. oif is most likely set
1193		 * by sk_bound_dev_if. If uc_index != oif check if the
1194		 * oif is an L3 master and uc_index is an L3 slave.
1195		 * If so, we want to allow the send using the uc_index.
1196		 */
1197		if (ipc.oif != inet->uc_index &&
1198		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1199							      inet->uc_index)) {
1200			ipc.oif = inet->uc_index;
1201		}
1202	}
1203
1204	if (connected)
1205		rt = (struct rtable *)sk_dst_check(sk, 0);
1206
1207	if (!rt) {
1208		struct net *net = sock_net(sk);
1209		__u8 flow_flags = inet_sk_flowi_flags(sk);
1210
1211		fl4 = &fl4_stack;
1212
1213		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1214				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1215				   flow_flags,
1216				   faddr, saddr, dport, inet->inet_sport,
1217				   sk->sk_uid);
1218
1219		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1220		rt = ip_route_output_flow(net, fl4, sk);
1221		if (IS_ERR(rt)) {
1222			err = PTR_ERR(rt);
1223			rt = NULL;
1224			if (err == -ENETUNREACH)
1225				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1226			goto out;
1227		}
1228
1229		err = -EACCES;
1230		if ((rt->rt_flags & RTCF_BROADCAST) &&
1231		    !sock_flag(sk, SOCK_BROADCAST))
1232			goto out;
1233		if (connected)
1234			sk_dst_set(sk, dst_clone(&rt->dst));
1235	}
1236
1237	if (msg->msg_flags&MSG_CONFIRM)
1238		goto do_confirm;
1239back_from_confirm:
1240
1241	saddr = fl4->saddr;
1242	if (!ipc.addr)
1243		daddr = ipc.addr = fl4->daddr;
1244
1245	/* Lockless fast path for the non-corking case. */
1246	if (!corkreq) {
1247		struct inet_cork cork;
1248
1249		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1250				  sizeof(struct udphdr), &ipc, &rt,
1251				  &cork, msg->msg_flags);
1252		err = PTR_ERR(skb);
1253		if (!IS_ERR_OR_NULL(skb))
1254			err = udp_send_skb(skb, fl4, &cork);
1255		goto out;
1256	}
1257
1258	lock_sock(sk);
1259	if (unlikely(up->pending)) {
1260		/* The socket is already corked while preparing it. */
1261		/* ... which is an evident application bug. --ANK */
1262		release_sock(sk);
1263
1264		net_dbg_ratelimited("socket already corked\n");
1265		err = -EINVAL;
1266		goto out;
1267	}
1268	/*
1269	 *	Now cork the socket to pend data.
1270	 */
1271	fl4 = &inet->cork.fl.u.ip4;
1272	fl4->daddr = daddr;
1273	fl4->saddr = saddr;
1274	fl4->fl4_dport = dport;
1275	fl4->fl4_sport = inet->inet_sport;
1276	up->pending = AF_INET;
1277
1278do_append_data:
1279	up->len += ulen;
1280	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1281			     sizeof(struct udphdr), &ipc, &rt,
1282			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1283	if (err)
1284		udp_flush_pending_frames(sk);
1285	else if (!corkreq)
1286		err = udp_push_pending_frames(sk);
1287	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1288		up->pending = 0;
1289	release_sock(sk);
1290
1291out:
1292	ip_rt_put(rt);
1293out_free:
1294	if (free)
1295		kfree(ipc.opt);
1296	if (!err)
1297		return len;
1298	/*
1299	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1300	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1301	 * we don't have a good statistic (IpOutDiscards but it can be too many
1302	 * things).  We could add another new stat but at least for now that
1303	 * seems like overkill.
1304	 */
1305	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1306		UDP_INC_STATS(sock_net(sk),
1307			      UDP_MIB_SNDBUFERRORS, is_udplite);
1308	}
1309	return err;
1310
1311do_confirm:
1312	if (msg->msg_flags & MSG_PROBE)
1313		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1314	if (!(msg->msg_flags&MSG_PROBE) || len)
1315		goto back_from_confirm;
1316	err = 0;
1317	goto out;
1318}
1319EXPORT_SYMBOL(udp_sendmsg);
1320
1321int udp_sendpage(struct sock *sk, struct page *page, int offset,
1322		 size_t size, int flags)
1323{
1324	struct inet_sock *inet = inet_sk(sk);
1325	struct udp_sock *up = udp_sk(sk);
1326	int ret;
1327
1328	if (flags & MSG_SENDPAGE_NOTLAST)
1329		flags |= MSG_MORE;
1330
1331	if (!up->pending) {
1332		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1333
1334		/* Call udp_sendmsg to specify destination address which
1335		 * sendpage interface can't pass.
1336		 * This will succeed only when the socket is connected.
1337		 */
1338		ret = udp_sendmsg(sk, &msg, 0);
1339		if (ret < 0)
1340			return ret;
1341	}
1342
1343	lock_sock(sk);
1344
1345	if (unlikely(!up->pending)) {
1346		release_sock(sk);
1347
1348		net_dbg_ratelimited("cork failed\n");
1349		return -EINVAL;
1350	}
1351
1352	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1353			     page, offset, size, flags);
1354	if (ret == -EOPNOTSUPP) {
1355		release_sock(sk);
1356		return sock_no_sendpage(sk->sk_socket, page, offset,
1357					size, flags);
1358	}
1359	if (ret < 0) {
1360		udp_flush_pending_frames(sk);
1361		goto out;
1362	}
1363
1364	up->len += size;
1365	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1366		ret = udp_push_pending_frames(sk);
1367	if (!ret)
1368		ret = size;
1369out:
1370	release_sock(sk);
1371	return ret;
1372}
 
1373
1374#define UDP_SKB_IS_STATELESS 0x80000000
1375
1376/* all head states (dst, sk, nf conntrack) except skb extensions are
1377 * cleared by udp_rcv().
1378 *
1379 * We need to preserve secpath, if present, to eventually process
1380 * IP_CMSG_PASSSEC at recvmsg() time.
1381 *
1382 * Other extensions can be cleared.
1383 */
1384static bool udp_try_make_stateless(struct sk_buff *skb)
1385{
1386	if (!skb_has_extensions(skb))
1387		return true;
1388
1389	if (!secpath_exists(skb)) {
1390		skb_ext_reset(skb);
1391		return true;
1392	}
1393
1394	return false;
1395}
1396
1397static void udp_set_dev_scratch(struct sk_buff *skb)
1398{
1399	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1400
1401	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1402	scratch->_tsize_state = skb->truesize;
1403#if BITS_PER_LONG == 64
1404	scratch->len = skb->len;
1405	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1406	scratch->is_linear = !skb_is_nonlinear(skb);
1407#endif
1408	if (udp_try_make_stateless(skb))
1409		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1410}
1411
1412static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1413{
1414	/* We come here after udp_lib_checksum_complete() returned 0.
1415	 * This means that __skb_checksum_complete() might have
1416	 * set skb->csum_valid to 1.
1417	 * On 64bit platforms, we can set csum_unnecessary
1418	 * to true, but only if the skb is not shared.
1419	 */
1420#if BITS_PER_LONG == 64
1421	if (!skb_shared(skb))
1422		udp_skb_scratch(skb)->csum_unnecessary = true;
1423#endif
1424}
1425
1426static int udp_skb_truesize(struct sk_buff *skb)
1427{
1428	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1429}
1430
1431static bool udp_skb_has_head_state(struct sk_buff *skb)
1432{
1433	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1434}
1435
1436/* fully reclaim rmem/fwd memory allocated for skb */
1437static void udp_rmem_release(struct sock *sk, int size, int partial,
1438			     bool rx_queue_lock_held)
1439{
1440	struct udp_sock *up = udp_sk(sk);
1441	struct sk_buff_head *sk_queue;
1442	int amt;
1443
1444	if (likely(partial)) {
1445		up->forward_deficit += size;
1446		size = up->forward_deficit;
1447		if (size < (sk->sk_rcvbuf >> 2) &&
1448		    !skb_queue_empty(&up->reader_queue))
1449			return;
1450	} else {
1451		size += up->forward_deficit;
1452	}
1453	up->forward_deficit = 0;
1454
1455	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1456	 * if the called don't held it already
1457	 */
1458	sk_queue = &sk->sk_receive_queue;
1459	if (!rx_queue_lock_held)
1460		spin_lock(&sk_queue->lock);
1461
1462
1463	sk->sk_forward_alloc += size;
1464	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1465	sk->sk_forward_alloc -= amt;
1466
1467	if (amt)
1468		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1469
1470	atomic_sub(size, &sk->sk_rmem_alloc);
1471
1472	/* this can save us from acquiring the rx queue lock on next receive */
1473	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1474
1475	if (!rx_queue_lock_held)
1476		spin_unlock(&sk_queue->lock);
1477}
1478
1479/* Note: called with reader_queue.lock held.
1480 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1481 * This avoids a cache line miss while receive_queue lock is held.
1482 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1483 */
1484void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1485{
1486	prefetch(&skb->data);
1487	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1488}
1489EXPORT_SYMBOL(udp_skb_destructor);
1490
1491/* as above, but the caller held the rx queue lock, too */
1492static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1493{
1494	prefetch(&skb->data);
1495	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1496}
1497
1498/* Idea of busylocks is to let producers grab an extra spinlock
1499 * to relieve pressure on the receive_queue spinlock shared by consumer.
1500 * Under flood, this means that only one producer can be in line
1501 * trying to acquire the receive_queue spinlock.
1502 * These busylock can be allocated on a per cpu manner, instead of a
1503 * per socket one (that would consume a cache line per socket)
1504 */
1505static int udp_busylocks_log __read_mostly;
1506static spinlock_t *udp_busylocks __read_mostly;
1507
1508static spinlock_t *busylock_acquire(void *ptr)
1509{
1510	spinlock_t *busy;
1511
1512	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1513	spin_lock(busy);
1514	return busy;
1515}
1516
1517static void busylock_release(spinlock_t *busy)
1518{
1519	if (busy)
1520		spin_unlock(busy);
1521}
1522
 
 
 
 
 
 
 
 
 
 
 
1523int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1524{
1525	struct sk_buff_head *list = &sk->sk_receive_queue;
1526	int rmem, delta, amt, err = -ENOMEM;
1527	spinlock_t *busy = NULL;
1528	int size;
1529
1530	/* try to avoid the costly atomic add/sub pair when the receive
1531	 * queue is full; always allow at least a packet
1532	 */
1533	rmem = atomic_read(&sk->sk_rmem_alloc);
1534	if (rmem > sk->sk_rcvbuf)
1535		goto drop;
1536
1537	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1538	 * having linear skbs :
1539	 * - Reduce memory overhead and thus increase receive queue capacity
1540	 * - Less cache line misses at copyout() time
1541	 * - Less work at consume_skb() (less alien page frag freeing)
1542	 */
1543	if (rmem > (sk->sk_rcvbuf >> 1)) {
1544		skb_condense(skb);
1545
1546		busy = busylock_acquire(sk);
1547	}
1548	size = skb->truesize;
1549	udp_set_dev_scratch(skb);
1550
1551	/* we drop only if the receive buf is full and the receive
1552	 * queue contains some other skb
1553	 */
1554	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1555	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1556		goto uncharge_drop;
1557
1558	spin_lock(&list->lock);
1559	if (size >= sk->sk_forward_alloc) {
1560		amt = sk_mem_pages(size);
1561		delta = amt << SK_MEM_QUANTUM_SHIFT;
1562		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1563			err = -ENOBUFS;
1564			spin_unlock(&list->lock);
1565			goto uncharge_drop;
1566		}
1567
1568		sk->sk_forward_alloc += delta;
1569	}
1570
1571	sk->sk_forward_alloc -= size;
1572
1573	/* no need to setup a destructor, we will explicitly release the
1574	 * forward allocated memory on dequeue
1575	 */
1576	sock_skb_set_dropcount(sk, skb);
1577
1578	__skb_queue_tail(list, skb);
1579	spin_unlock(&list->lock);
1580
1581	if (!sock_flag(sk, SOCK_DEAD))
1582		sk->sk_data_ready(sk);
1583
1584	busylock_release(busy);
1585	return 0;
1586
1587uncharge_drop:
1588	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1589
1590drop:
1591	atomic_inc(&sk->sk_drops);
1592	busylock_release(busy);
1593	return err;
1594}
1595EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1596
1597void udp_destruct_sock(struct sock *sk)
1598{
1599	/* reclaim completely the forward allocated memory */
1600	struct udp_sock *up = udp_sk(sk);
1601	unsigned int total = 0;
1602	struct sk_buff *skb;
1603
1604	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1605	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1606		total += skb->truesize;
1607		kfree_skb(skb);
1608	}
1609	udp_rmem_release(sk, total, 0, true);
 
 
1610
 
 
 
1611	inet_sock_destruct(sk);
1612}
1613EXPORT_SYMBOL_GPL(udp_destruct_sock);
1614
1615int udp_init_sock(struct sock *sk)
1616{
1617	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1618	sk->sk_destruct = udp_destruct_sock;
 
1619	return 0;
1620}
1621EXPORT_SYMBOL_GPL(udp_init_sock);
1622
1623void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1624{
1625	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1626		bool slow = lock_sock_fast(sk);
1627
1628		sk_peek_offset_bwd(sk, len);
1629		unlock_sock_fast(sk, slow);
1630	}
1631
1632	if (!skb_unref(skb))
1633		return;
1634
1635	/* In the more common cases we cleared the head states previously,
1636	 * see __udp_queue_rcv_skb().
1637	 */
1638	if (unlikely(udp_skb_has_head_state(skb)))
1639		skb_release_head_state(skb);
1640	__consume_stateless_skb(skb);
1641}
1642EXPORT_SYMBOL_GPL(skb_consume_udp);
1643
1644static struct sk_buff *__first_packet_length(struct sock *sk,
1645					     struct sk_buff_head *rcvq,
1646					     int *total)
1647{
1648	struct sk_buff *skb;
1649
1650	while ((skb = skb_peek(rcvq)) != NULL) {
1651		if (udp_lib_checksum_complete(skb)) {
1652			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1653					IS_UDPLITE(sk));
1654			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1655					IS_UDPLITE(sk));
1656			atomic_inc(&sk->sk_drops);
1657			__skb_unlink(skb, rcvq);
1658			*total += skb->truesize;
1659			kfree_skb(skb);
1660		} else {
1661			udp_skb_csum_unnecessary_set(skb);
1662			break;
1663		}
1664	}
1665	return skb;
1666}
1667
1668/**
1669 *	first_packet_length	- return length of first packet in receive queue
1670 *	@sk: socket
1671 *
1672 *	Drops all bad checksum frames, until a valid one is found.
1673 *	Returns the length of found skb, or -1 if none is found.
1674 */
1675static int first_packet_length(struct sock *sk)
1676{
1677	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1678	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1679	struct sk_buff *skb;
1680	int total = 0;
1681	int res;
1682
1683	spin_lock_bh(&rcvq->lock);
1684	skb = __first_packet_length(sk, rcvq, &total);
1685	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1686		spin_lock(&sk_queue->lock);
1687		skb_queue_splice_tail_init(sk_queue, rcvq);
1688		spin_unlock(&sk_queue->lock);
1689
1690		skb = __first_packet_length(sk, rcvq, &total);
1691	}
1692	res = skb ? skb->len : -1;
1693	if (total)
1694		udp_rmem_release(sk, total, 1, false);
1695	spin_unlock_bh(&rcvq->lock);
1696	return res;
1697}
1698
1699/*
1700 *	IOCTL requests applicable to the UDP protocol
1701 */
1702
1703int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1704{
1705	switch (cmd) {
1706	case SIOCOUTQ:
1707	{
1708		int amount = sk_wmem_alloc_get(sk);
1709
1710		return put_user(amount, (int __user *)arg);
1711	}
1712
1713	case SIOCINQ:
1714	{
1715		int amount = max_t(int, 0, first_packet_length(sk));
1716
1717		return put_user(amount, (int __user *)arg);
1718	}
1719
1720	default:
1721		return -ENOIOCTLCMD;
1722	}
1723
1724	return 0;
1725}
1726EXPORT_SYMBOL(udp_ioctl);
1727
1728struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1729			       int noblock, int *off, int *err)
1730{
1731	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1732	struct sk_buff_head *queue;
1733	struct sk_buff *last;
1734	long timeo;
1735	int error;
1736
1737	queue = &udp_sk(sk)->reader_queue;
1738	flags |= noblock ? MSG_DONTWAIT : 0;
1739	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1740	do {
1741		struct sk_buff *skb;
1742
1743		error = sock_error(sk);
1744		if (error)
1745			break;
1746
1747		error = -EAGAIN;
1748		do {
1749			spin_lock_bh(&queue->lock);
1750			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1751							err, &last);
1752			if (skb) {
1753				if (!(flags & MSG_PEEK))
1754					udp_skb_destructor(sk, skb);
1755				spin_unlock_bh(&queue->lock);
1756				return skb;
1757			}
1758
1759			if (skb_queue_empty_lockless(sk_queue)) {
1760				spin_unlock_bh(&queue->lock);
1761				goto busy_check;
1762			}
1763
1764			/* refill the reader queue and walk it again
1765			 * keep both queues locked to avoid re-acquiring
1766			 * the sk_receive_queue lock if fwd memory scheduling
1767			 * is needed.
1768			 */
1769			spin_lock(&sk_queue->lock);
1770			skb_queue_splice_tail_init(sk_queue, queue);
1771
1772			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1773							err, &last);
1774			if (skb && !(flags & MSG_PEEK))
1775				udp_skb_dtor_locked(sk, skb);
1776			spin_unlock(&sk_queue->lock);
1777			spin_unlock_bh(&queue->lock);
1778			if (skb)
1779				return skb;
1780
1781busy_check:
1782			if (!sk_can_busy_loop(sk))
1783				break;
1784
1785			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1786		} while (!skb_queue_empty_lockless(sk_queue));
1787
1788		/* sk_queue is empty, reader_queue may contain peeked packets */
1789	} while (timeo &&
1790		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1791					      &error, &timeo,
1792					      (struct sk_buff *)sk_queue));
1793
1794	*err = error;
1795	return NULL;
1796}
1797EXPORT_SYMBOL(__skb_recv_udp);
1798
1799int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1800		  sk_read_actor_t recv_actor)
1801{
1802	int copied = 0;
 
1803
1804	while (1) {
1805		struct sk_buff *skb;
1806		int err, used;
 
1807
1808		skb = skb_recv_udp(sk, 0, 1, &err);
1809		if (!skb)
1810			return err;
1811		used = recv_actor(desc, skb, 0, skb->len);
1812		if (used <= 0) {
1813			if (!copied)
1814				copied = used;
1815			kfree_skb(skb);
1816			break;
1817		} else if (used <= skb->len) {
1818			copied += used;
1819		}
1820
 
 
 
1821		kfree_skb(skb);
1822		if (!desc->count)
1823			break;
1824	}
1825
1826	return copied;
 
1827}
1828EXPORT_SYMBOL(udp_read_sock);
1829
1830/*
1831 * 	This should be easy, if there is something there we
1832 * 	return it, otherwise we block.
1833 */
1834
1835int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1836		int flags, int *addr_len)
1837{
1838	struct inet_sock *inet = inet_sk(sk);
1839	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1840	struct sk_buff *skb;
1841	unsigned int ulen, copied;
1842	int off, err, peeking = flags & MSG_PEEK;
1843	int is_udplite = IS_UDPLITE(sk);
1844	bool checksum_valid = false;
1845
1846	if (flags & MSG_ERRQUEUE)
1847		return ip_recv_error(sk, msg, len, addr_len);
1848
1849try_again:
1850	off = sk_peek_offset(sk, flags);
1851	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1852	if (!skb)
1853		return err;
1854
1855	ulen = udp_skb_len(skb);
1856	copied = len;
1857	if (copied > ulen - off)
1858		copied = ulen - off;
1859	else if (copied < ulen)
1860		msg->msg_flags |= MSG_TRUNC;
1861
1862	/*
1863	 * If checksum is needed at all, try to do it while copying the
1864	 * data.  If the data is truncated, or if we only want a partial
1865	 * coverage checksum (UDP-Lite), do it before the copy.
1866	 */
1867
1868	if (copied < ulen || peeking ||
1869	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1870		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1871				!__udp_lib_checksum_complete(skb);
1872		if (!checksum_valid)
1873			goto csum_copy_err;
1874	}
1875
1876	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1877		if (udp_skb_is_linear(skb))
1878			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1879		else
1880			err = skb_copy_datagram_msg(skb, off, msg, copied);
1881	} else {
1882		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1883
1884		if (err == -EINVAL)
1885			goto csum_copy_err;
1886	}
1887
1888	if (unlikely(err)) {
1889		if (!peeking) {
1890			atomic_inc(&sk->sk_drops);
1891			UDP_INC_STATS(sock_net(sk),
1892				      UDP_MIB_INERRORS, is_udplite);
1893		}
1894		kfree_skb(skb);
1895		return err;
1896	}
1897
1898	if (!peeking)
1899		UDP_INC_STATS(sock_net(sk),
1900			      UDP_MIB_INDATAGRAMS, is_udplite);
1901
1902	sock_recv_ts_and_drops(msg, sk, skb);
1903
1904	/* Copy the address. */
1905	if (sin) {
1906		sin->sin_family = AF_INET;
1907		sin->sin_port = udp_hdr(skb)->source;
1908		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1909		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1910		*addr_len = sizeof(*sin);
1911
1912		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1913						      (struct sockaddr *)sin);
 
1914	}
1915
1916	if (udp_sk(sk)->gro_enabled)
1917		udp_cmsg_recv(msg, sk, skb);
1918
1919	if (inet->cmsg_flags)
1920		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1921
1922	err = copied;
1923	if (flags & MSG_TRUNC)
1924		err = ulen;
1925
1926	skb_consume_udp(sk, skb, peeking ? -err : err);
1927	return err;
1928
1929csum_copy_err:
1930	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1931				 udp_skb_destructor)) {
1932		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1933		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1934	}
1935	kfree_skb(skb);
1936
1937	/* starting over for a new packet, but check if we need to yield */
1938	cond_resched();
1939	msg->msg_flags &= ~MSG_TRUNC;
1940	goto try_again;
1941}
1942
1943int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1944{
1945	/* This check is replicated from __ip4_datagram_connect() and
1946	 * intended to prevent BPF program called below from accessing bytes
1947	 * that are out of the bound specified by user in addr_len.
1948	 */
1949	if (addr_len < sizeof(struct sockaddr_in))
1950		return -EINVAL;
1951
1952	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1953}
1954EXPORT_SYMBOL(udp_pre_connect);
1955
1956int __udp_disconnect(struct sock *sk, int flags)
1957{
1958	struct inet_sock *inet = inet_sk(sk);
1959	/*
1960	 *	1003.1g - break association.
1961	 */
1962
1963	sk->sk_state = TCP_CLOSE;
1964	inet->inet_daddr = 0;
1965	inet->inet_dport = 0;
1966	sock_rps_reset_rxhash(sk);
1967	sk->sk_bound_dev_if = 0;
1968	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1969		inet_reset_saddr(sk);
1970		if (sk->sk_prot->rehash &&
1971		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1972			sk->sk_prot->rehash(sk);
1973	}
1974
1975	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1976		sk->sk_prot->unhash(sk);
1977		inet->inet_sport = 0;
1978	}
1979	sk_dst_reset(sk);
1980	return 0;
1981}
1982EXPORT_SYMBOL(__udp_disconnect);
1983
1984int udp_disconnect(struct sock *sk, int flags)
1985{
1986	lock_sock(sk);
1987	__udp_disconnect(sk, flags);
1988	release_sock(sk);
1989	return 0;
1990}
1991EXPORT_SYMBOL(udp_disconnect);
1992
1993void udp_lib_unhash(struct sock *sk)
1994{
1995	if (sk_hashed(sk)) {
1996		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1997		struct udp_hslot *hslot, *hslot2;
1998
1999		hslot  = udp_hashslot(udptable, sock_net(sk),
2000				      udp_sk(sk)->udp_port_hash);
2001		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2002
2003		spin_lock_bh(&hslot->lock);
2004		if (rcu_access_pointer(sk->sk_reuseport_cb))
2005			reuseport_detach_sock(sk);
2006		if (sk_del_node_init_rcu(sk)) {
2007			hslot->count--;
2008			inet_sk(sk)->inet_num = 0;
2009			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2010
2011			spin_lock(&hslot2->lock);
2012			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2013			hslot2->count--;
2014			spin_unlock(&hslot2->lock);
2015		}
2016		spin_unlock_bh(&hslot->lock);
2017	}
2018}
2019EXPORT_SYMBOL(udp_lib_unhash);
2020
2021/*
2022 * inet_rcv_saddr was changed, we must rehash secondary hash
2023 */
2024void udp_lib_rehash(struct sock *sk, u16 newhash)
2025{
2026	if (sk_hashed(sk)) {
2027		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2028		struct udp_hslot *hslot, *hslot2, *nhslot2;
2029
2030		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2031		nhslot2 = udp_hashslot2(udptable, newhash);
2032		udp_sk(sk)->udp_portaddr_hash = newhash;
2033
2034		if (hslot2 != nhslot2 ||
2035		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2036			hslot = udp_hashslot(udptable, sock_net(sk),
2037					     udp_sk(sk)->udp_port_hash);
2038			/* we must lock primary chain too */
2039			spin_lock_bh(&hslot->lock);
2040			if (rcu_access_pointer(sk->sk_reuseport_cb))
2041				reuseport_detach_sock(sk);
2042
2043			if (hslot2 != nhslot2) {
2044				spin_lock(&hslot2->lock);
2045				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2046				hslot2->count--;
2047				spin_unlock(&hslot2->lock);
2048
2049				spin_lock(&nhslot2->lock);
2050				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2051							 &nhslot2->head);
2052				nhslot2->count++;
2053				spin_unlock(&nhslot2->lock);
2054			}
2055
2056			spin_unlock_bh(&hslot->lock);
2057		}
2058	}
2059}
2060EXPORT_SYMBOL(udp_lib_rehash);
2061
2062void udp_v4_rehash(struct sock *sk)
2063{
2064	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2065					  inet_sk(sk)->inet_rcv_saddr,
2066					  inet_sk(sk)->inet_num);
2067	udp_lib_rehash(sk, new_hash);
2068}
2069
2070static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2071{
2072	int rc;
2073
2074	if (inet_sk(sk)->inet_daddr) {
2075		sock_rps_save_rxhash(sk, skb);
2076		sk_mark_napi_id(sk, skb);
2077		sk_incoming_cpu_update(sk);
2078	} else {
2079		sk_mark_napi_id_once(sk, skb);
2080	}
2081
2082	rc = __udp_enqueue_schedule_skb(sk, skb);
2083	if (rc < 0) {
2084		int is_udplite = IS_UDPLITE(sk);
 
2085
2086		/* Note that an ENOMEM error is charged twice */
2087		if (rc == -ENOMEM)
2088			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2089					is_udplite);
2090		else
 
2091			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2092				      is_udplite);
 
 
2093		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2094		kfree_skb(skb);
2095		trace_udp_fail_queue_rcv_skb(rc, sk);
2096		return -1;
2097	}
2098
2099	return 0;
2100}
2101
2102/* returns:
2103 *  -1: error
2104 *   0: success
2105 *  >0: "udp encap" protocol resubmission
2106 *
2107 * Note that in the success and error cases, the skb is assumed to
2108 * have either been requeued or freed.
2109 */
2110static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2111{
 
2112	struct udp_sock *up = udp_sk(sk);
2113	int is_udplite = IS_UDPLITE(sk);
2114
2115	/*
2116	 *	Charge it to the socket, dropping if the queue is full.
2117	 */
2118	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
2119		goto drop;
 
2120	nf_reset_ct(skb);
2121
2122	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
 
2123		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2124
2125		/*
2126		 * This is an encapsulation socket so pass the skb to
2127		 * the socket's udp_encap_rcv() hook. Otherwise, just
2128		 * fall through and pass this up the UDP socket.
2129		 * up->encap_rcv() returns the following value:
2130		 * =0 if skb was successfully passed to the encap
2131		 *    handler or was discarded by it.
2132		 * >0 if skb should be passed on to UDP.
2133		 * <0 if skb should be resubmitted as proto -N
2134		 */
2135
2136		/* if we're overly short, let UDP handle it */
2137		encap_rcv = READ_ONCE(up->encap_rcv);
2138		if (encap_rcv) {
2139			int ret;
2140
2141			/* Verify checksum before giving to encap */
2142			if (udp_lib_checksum_complete(skb))
2143				goto csum_error;
2144
2145			ret = encap_rcv(sk, skb);
2146			if (ret <= 0) {
2147				__UDP_INC_STATS(sock_net(sk),
2148						UDP_MIB_INDATAGRAMS,
2149						is_udplite);
2150				return -ret;
2151			}
2152		}
2153
2154		/* FALLTHROUGH -- it's a UDP Packet */
2155	}
2156
2157	/*
2158	 * 	UDP-Lite specific tests, ignored on UDP sockets
2159	 */
2160	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
 
2161
2162		/*
2163		 * MIB statistics other than incrementing the error count are
2164		 * disabled for the following two types of errors: these depend
2165		 * on the application settings, not on the functioning of the
2166		 * protocol stack as such.
2167		 *
2168		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2169		 * way ... to ... at least let the receiving application block
2170		 * delivery of packets with coverage values less than a value
2171		 * provided by the application."
2172		 */
2173		if (up->pcrlen == 0) {          /* full coverage was set  */
2174			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2175					    UDP_SKB_CB(skb)->cscov, skb->len);
2176			goto drop;
2177		}
2178		/* The next case involves violating the min. coverage requested
2179		 * by the receiver. This is subtle: if receiver wants x and x is
2180		 * greater than the buffersize/MTU then receiver will complain
2181		 * that it wants x while sender emits packets of smaller size y.
2182		 * Therefore the above ...()->partial_cov statement is essential.
2183		 */
2184		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2185			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2186					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2187			goto drop;
2188		}
2189	}
2190
2191	prefetch(&sk->sk_rmem_alloc);
2192	if (rcu_access_pointer(sk->sk_filter) &&
2193	    udp_lib_checksum_complete(skb))
2194			goto csum_error;
2195
2196	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
 
2197		goto drop;
 
2198
2199	udp_csum_pull_header(skb);
2200
2201	ipv4_pktinfo_prepare(sk, skb);
2202	return __udp_queue_rcv_skb(sk, skb);
2203
2204csum_error:
 
2205	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2206drop:
2207	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2208	atomic_inc(&sk->sk_drops);
2209	kfree_skb(skb);
2210	return -1;
2211}
2212
2213static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2214{
2215	struct sk_buff *next, *segs;
2216	int ret;
2217
2218	if (likely(!udp_unexpected_gso(sk, skb)))
2219		return udp_queue_rcv_one_skb(sk, skb);
2220
2221	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2222	__skb_push(skb, -skb_mac_offset(skb));
2223	segs = udp_rcv_segment(sk, skb, true);
2224	skb_list_walk_safe(segs, skb, next) {
2225		__skb_pull(skb, skb_transport_offset(skb));
2226
2227		udp_post_segment_fix_csum(skb);
2228		ret = udp_queue_rcv_one_skb(sk, skb);
2229		if (ret > 0)
2230			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2231	}
2232	return 0;
2233}
2234
2235/* For TCP sockets, sk_rx_dst is protected by socket lock
2236 * For UDP, we use xchg() to guard against concurrent changes.
2237 */
2238bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2239{
2240	struct dst_entry *old;
2241
2242	if (dst_hold_safe(dst)) {
2243		old = xchg(&sk->sk_rx_dst, dst);
2244		dst_release(old);
2245		return old != dst;
2246	}
2247	return false;
2248}
2249EXPORT_SYMBOL(udp_sk_rx_dst_set);
2250
2251/*
2252 *	Multicasts and broadcasts go to each listener.
2253 *
2254 *	Note: called only from the BH handler context.
2255 */
2256static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2257				    struct udphdr  *uh,
2258				    __be32 saddr, __be32 daddr,
2259				    struct udp_table *udptable,
2260				    int proto)
2261{
2262	struct sock *sk, *first = NULL;
2263	unsigned short hnum = ntohs(uh->dest);
2264	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2265	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2266	unsigned int offset = offsetof(typeof(*sk), sk_node);
2267	int dif = skb->dev->ifindex;
2268	int sdif = inet_sdif(skb);
2269	struct hlist_node *node;
2270	struct sk_buff *nskb;
2271
2272	if (use_hash2) {
2273		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2274			    udptable->mask;
2275		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2276start_lookup:
2277		hslot = &udptable->hash2[hash2];
2278		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2279	}
2280
2281	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2282		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2283					 uh->source, saddr, dif, sdif, hnum))
2284			continue;
2285
2286		if (!first) {
2287			first = sk;
2288			continue;
2289		}
2290		nskb = skb_clone(skb, GFP_ATOMIC);
2291
2292		if (unlikely(!nskb)) {
2293			atomic_inc(&sk->sk_drops);
2294			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2295					IS_UDPLITE(sk));
2296			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2297					IS_UDPLITE(sk));
2298			continue;
2299		}
2300		if (udp_queue_rcv_skb(sk, nskb) > 0)
2301			consume_skb(nskb);
2302	}
2303
2304	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2305	if (use_hash2 && hash2 != hash2_any) {
2306		hash2 = hash2_any;
2307		goto start_lookup;
2308	}
2309
2310	if (first) {
2311		if (udp_queue_rcv_skb(first, skb) > 0)
2312			consume_skb(skb);
2313	} else {
2314		kfree_skb(skb);
2315		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2316				proto == IPPROTO_UDPLITE);
2317	}
2318	return 0;
2319}
2320
2321/* Initialize UDP checksum. If exited with zero value (success),
2322 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2323 * Otherwise, csum completion requires checksumming packet body,
2324 * including udp header and folding it to skb->csum.
2325 */
2326static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2327				 int proto)
2328{
2329	int err;
2330
2331	UDP_SKB_CB(skb)->partial_cov = 0;
2332	UDP_SKB_CB(skb)->cscov = skb->len;
2333
2334	if (proto == IPPROTO_UDPLITE) {
2335		err = udplite_checksum_init(skb, uh);
2336		if (err)
2337			return err;
2338
2339		if (UDP_SKB_CB(skb)->partial_cov) {
2340			skb->csum = inet_compute_pseudo(skb, proto);
2341			return 0;
2342		}
2343	}
2344
2345	/* Note, we are only interested in != 0 or == 0, thus the
2346	 * force to int.
2347	 */
2348	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2349							inet_compute_pseudo);
2350	if (err)
2351		return err;
2352
2353	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2354		/* If SW calculated the value, we know it's bad */
2355		if (skb->csum_complete_sw)
2356			return 1;
2357
2358		/* HW says the value is bad. Let's validate that.
2359		 * skb->csum is no longer the full packet checksum,
2360		 * so don't treat it as such.
2361		 */
2362		skb_checksum_complete_unset(skb);
2363	}
2364
2365	return 0;
2366}
2367
2368/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2369 * return code conversion for ip layer consumption
2370 */
2371static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2372			       struct udphdr *uh)
2373{
2374	int ret;
2375
2376	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2377		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2378
2379	ret = udp_queue_rcv_skb(sk, skb);
2380
2381	/* a return value > 0 means to resubmit the input, but
2382	 * it wants the return to be -protocol, or 0
2383	 */
2384	if (ret > 0)
2385		return -ret;
2386	return 0;
2387}
2388
2389/*
2390 *	All we need to do is get the socket, and then do a checksum.
2391 */
2392
2393int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2394		   int proto)
2395{
2396	struct sock *sk;
2397	struct udphdr *uh;
2398	unsigned short ulen;
2399	struct rtable *rt = skb_rtable(skb);
2400	__be32 saddr, daddr;
2401	struct net *net = dev_net(skb->dev);
2402	bool refcounted;
 
 
 
2403
2404	/*
2405	 *  Validate the packet.
2406	 */
2407	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2408		goto drop;		/* No space for header. */
2409
2410	uh   = udp_hdr(skb);
2411	ulen = ntohs(uh->len);
2412	saddr = ip_hdr(skb)->saddr;
2413	daddr = ip_hdr(skb)->daddr;
2414
2415	if (ulen > skb->len)
2416		goto short_packet;
2417
2418	if (proto == IPPROTO_UDP) {
2419		/* UDP validates ulen. */
2420		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2421			goto short_packet;
2422		uh = udp_hdr(skb);
2423	}
2424
2425	if (udp4_csum_init(skb, uh, proto))
2426		goto csum_error;
2427
2428	sk = skb_steal_sock(skb, &refcounted);
 
 
 
 
2429	if (sk) {
2430		struct dst_entry *dst = skb_dst(skb);
2431		int ret;
2432
2433		if (unlikely(sk->sk_rx_dst != dst))
2434			udp_sk_rx_dst_set(sk, dst);
2435
2436		ret = udp_unicast_rcv_skb(sk, skb, uh);
2437		if (refcounted)
2438			sock_put(sk);
2439		return ret;
2440	}
2441
2442	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2443		return __udp4_lib_mcast_deliver(net, skb, uh,
2444						saddr, daddr, udptable, proto);
2445
2446	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2447	if (sk)
2448		return udp_unicast_rcv_skb(sk, skb, uh);
2449
2450	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2451		goto drop;
2452	nf_reset_ct(skb);
2453
2454	/* No socket. Drop packet silently, if checksum is wrong */
2455	if (udp_lib_checksum_complete(skb))
2456		goto csum_error;
2457
 
2458	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2459	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2460
2461	/*
2462	 * Hmm.  We got an UDP packet to a port to which we
2463	 * don't wanna listen.  Ignore it.
2464	 */
2465	kfree_skb(skb);
2466	return 0;
2467
2468short_packet:
 
2469	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2470			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2471			    &saddr, ntohs(uh->source),
2472			    ulen, skb->len,
2473			    &daddr, ntohs(uh->dest));
2474	goto drop;
2475
2476csum_error:
2477	/*
2478	 * RFC1122: OK.  Discards the bad packet silently (as far as
2479	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2480	 */
 
2481	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2482			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2483			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2484			    ulen);
2485	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2486drop:
2487	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2488	kfree_skb(skb);
2489	return 0;
2490}
2491
2492/* We can only early demux multicast if there is a single matching socket.
2493 * If more than one socket found returns NULL
2494 */
2495static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2496						  __be16 loc_port, __be32 loc_addr,
2497						  __be16 rmt_port, __be32 rmt_addr,
2498						  int dif, int sdif)
2499{
2500	struct sock *sk, *result;
2501	unsigned short hnum = ntohs(loc_port);
2502	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2503	struct udp_hslot *hslot = &udp_table.hash[slot];
 
 
 
 
2504
2505	/* Do not bother scanning a too big list */
2506	if (hslot->count > 10)
2507		return NULL;
2508
2509	result = NULL;
2510	sk_for_each_rcu(sk, &hslot->head) {
2511		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2512					rmt_port, rmt_addr, dif, sdif, hnum)) {
2513			if (result)
2514				return NULL;
2515			result = sk;
2516		}
2517	}
2518
2519	return result;
2520}
2521
2522/* For unicast we should only early demux connected sockets or we can
2523 * break forwarding setups.  The chains here can be long so only check
2524 * if the first socket is an exact match and if not move on.
2525 */
2526static struct sock *__udp4_lib_demux_lookup(struct net *net,
2527					    __be16 loc_port, __be32 loc_addr,
2528					    __be16 rmt_port, __be32 rmt_addr,
2529					    int dif, int sdif)
2530{
2531	unsigned short hnum = ntohs(loc_port);
2532	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2533	unsigned int slot2 = hash2 & udp_table.mask;
2534	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2535	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2536	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
 
 
 
2537	struct sock *sk;
2538
 
 
 
 
 
2539	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2540		if (INET_MATCH(sk, net, acookie, rmt_addr,
2541			       loc_addr, ports, dif, sdif))
2542			return sk;
2543		/* Only check first socket in chain */
2544		break;
2545	}
2546	return NULL;
2547}
2548
2549int udp_v4_early_demux(struct sk_buff *skb)
2550{
2551	struct net *net = dev_net(skb->dev);
2552	struct in_device *in_dev = NULL;
2553	const struct iphdr *iph;
2554	const struct udphdr *uh;
2555	struct sock *sk = NULL;
2556	struct dst_entry *dst;
2557	int dif = skb->dev->ifindex;
2558	int sdif = inet_sdif(skb);
2559	int ours;
2560
2561	/* validate the packet */
2562	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2563		return 0;
2564
2565	iph = ip_hdr(skb);
2566	uh = udp_hdr(skb);
2567
2568	if (skb->pkt_type == PACKET_MULTICAST) {
2569		in_dev = __in_dev_get_rcu(skb->dev);
2570
2571		if (!in_dev)
2572			return 0;
2573
2574		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2575				       iph->protocol);
2576		if (!ours)
2577			return 0;
2578
2579		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2580						   uh->source, iph->saddr,
2581						   dif, sdif);
2582	} else if (skb->pkt_type == PACKET_HOST) {
2583		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2584					     uh->source, iph->saddr, dif, sdif);
2585	}
2586
2587	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2588		return 0;
2589
2590	skb->sk = sk;
2591	skb->destructor = sock_efree;
2592	dst = READ_ONCE(sk->sk_rx_dst);
2593
2594	if (dst)
2595		dst = dst_check(dst, 0);
2596	if (dst) {
2597		u32 itag = 0;
2598
2599		/* set noref for now.
2600		 * any place which wants to hold dst has to call
2601		 * dst_hold_safe()
2602		 */
2603		skb_dst_set_noref(skb, dst);
2604
2605		/* for unconnected multicast sockets we need to validate
2606		 * the source on each packet
2607		 */
2608		if (!inet_sk(sk)->inet_daddr && in_dev)
2609			return ip_mc_validate_source(skb, iph->daddr,
2610						     iph->saddr,
2611						     iph->tos & IPTOS_RT_MASK,
2612						     skb->dev, in_dev, &itag);
2613	}
2614	return 0;
2615}
2616
2617int udp_rcv(struct sk_buff *skb)
2618{
2619	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2620}
2621
2622void udp_destroy_sock(struct sock *sk)
2623{
2624	struct udp_sock *up = udp_sk(sk);
2625	bool slow = lock_sock_fast(sk);
2626
2627	/* protects from races with udp_abort() */
2628	sock_set_flag(sk, SOCK_DEAD);
2629	udp_flush_pending_frames(sk);
2630	unlock_sock_fast(sk, slow);
2631	if (static_branch_unlikely(&udp_encap_needed_key)) {
2632		if (up->encap_type) {
2633			void (*encap_destroy)(struct sock *sk);
2634			encap_destroy = READ_ONCE(up->encap_destroy);
2635			if (encap_destroy)
2636				encap_destroy(sk);
2637		}
2638		if (up->encap_enabled)
2639			static_branch_dec(&udp_encap_needed_key);
2640	}
2641}
2642
 
 
 
 
 
 
 
 
 
 
 
 
 
2643/*
2644 *	Socket option code for UDP
2645 */
2646int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2647		       sockptr_t optval, unsigned int optlen,
2648		       int (*push_pending_frames)(struct sock *))
2649{
2650	struct udp_sock *up = udp_sk(sk);
2651	int val, valbool;
2652	int err = 0;
2653	int is_udplite = IS_UDPLITE(sk);
2654
 
 
 
 
 
 
 
 
 
 
 
 
2655	if (optlen < sizeof(int))
2656		return -EINVAL;
2657
2658	if (copy_from_sockptr(&val, optval, sizeof(val)))
2659		return -EFAULT;
2660
2661	valbool = val ? 1 : 0;
2662
2663	switch (optname) {
2664	case UDP_CORK:
2665		if (val != 0) {
2666			WRITE_ONCE(up->corkflag, 1);
2667		} else {
2668			WRITE_ONCE(up->corkflag, 0);
2669			lock_sock(sk);
2670			push_pending_frames(sk);
2671			release_sock(sk);
2672		}
2673		break;
2674
2675	case UDP_ENCAP:
2676		switch (val) {
2677		case 0:
2678#ifdef CONFIG_XFRM
2679		case UDP_ENCAP_ESPINUDP:
 
 
2680		case UDP_ENCAP_ESPINUDP_NON_IKE:
2681#if IS_ENABLED(CONFIG_IPV6)
2682			if (sk->sk_family == AF_INET6)
2683				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
 
2684			else
2685#endif
2686				up->encap_rcv = xfrm4_udp_encap_rcv;
 
2687#endif
2688			fallthrough;
2689		case UDP_ENCAP_L2TPINUDP:
2690			up->encap_type = val;
2691			lock_sock(sk);
2692			udp_tunnel_encap_enable(sk->sk_socket);
2693			release_sock(sk);
2694			break;
2695		default:
2696			err = -ENOPROTOOPT;
2697			break;
2698		}
2699		break;
2700
2701	case UDP_NO_CHECK6_TX:
2702		up->no_check6_tx = valbool;
2703		break;
2704
2705	case UDP_NO_CHECK6_RX:
2706		up->no_check6_rx = valbool;
2707		break;
2708
2709	case UDP_SEGMENT:
2710		if (val < 0 || val > USHRT_MAX)
2711			return -EINVAL;
2712		WRITE_ONCE(up->gso_size, val);
2713		break;
2714
2715	case UDP_GRO:
2716		lock_sock(sk);
2717
2718		/* when enabling GRO, accept the related GSO packet type */
2719		if (valbool)
2720			udp_tunnel_encap_enable(sk->sk_socket);
2721		up->gro_enabled = valbool;
2722		up->accept_udp_l4 = valbool;
2723		release_sock(sk);
2724		break;
2725
2726	/*
2727	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2728	 */
2729	/* The sender sets actual checksum coverage length via this option.
2730	 * The case coverage > packet length is handled by send module. */
2731	case UDPLITE_SEND_CSCOV:
2732		if (!is_udplite)         /* Disable the option on UDP sockets */
2733			return -ENOPROTOOPT;
2734		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2735			val = 8;
2736		else if (val > USHRT_MAX)
2737			val = USHRT_MAX;
2738		up->pcslen = val;
2739		up->pcflag |= UDPLITE_SEND_CC;
2740		break;
2741
2742	/* The receiver specifies a minimum checksum coverage value. To make
2743	 * sense, this should be set to at least 8 (as done below). If zero is
2744	 * used, this again means full checksum coverage.                     */
2745	case UDPLITE_RECV_CSCOV:
2746		if (!is_udplite)         /* Disable the option on UDP sockets */
2747			return -ENOPROTOOPT;
2748		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2749			val = 8;
2750		else if (val > USHRT_MAX)
2751			val = USHRT_MAX;
2752		up->pcrlen = val;
2753		up->pcflag |= UDPLITE_RECV_CC;
2754		break;
2755
2756	default:
2757		err = -ENOPROTOOPT;
2758		break;
2759	}
2760
2761	return err;
2762}
2763EXPORT_SYMBOL(udp_lib_setsockopt);
2764
2765int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2766		   unsigned int optlen)
2767{
2768	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2769		return udp_lib_setsockopt(sk, level, optname,
2770					  optval, optlen,
2771					  udp_push_pending_frames);
2772	return ip_setsockopt(sk, level, optname, optval, optlen);
2773}
2774
2775int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2776		       char __user *optval, int __user *optlen)
2777{
2778	struct udp_sock *up = udp_sk(sk);
2779	int val, len;
2780
2781	if (get_user(len, optlen))
2782		return -EFAULT;
2783
2784	len = min_t(unsigned int, len, sizeof(int));
2785
2786	if (len < 0)
2787		return -EINVAL;
2788
2789	switch (optname) {
2790	case UDP_CORK:
2791		val = READ_ONCE(up->corkflag);
2792		break;
2793
2794	case UDP_ENCAP:
2795		val = up->encap_type;
2796		break;
2797
2798	case UDP_NO_CHECK6_TX:
2799		val = up->no_check6_tx;
2800		break;
2801
2802	case UDP_NO_CHECK6_RX:
2803		val = up->no_check6_rx;
2804		break;
2805
2806	case UDP_SEGMENT:
2807		val = READ_ONCE(up->gso_size);
2808		break;
2809
2810	case UDP_GRO:
2811		val = up->gro_enabled;
2812		break;
2813
2814	/* The following two cannot be changed on UDP sockets, the return is
2815	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2816	case UDPLITE_SEND_CSCOV:
2817		val = up->pcslen;
2818		break;
2819
2820	case UDPLITE_RECV_CSCOV:
2821		val = up->pcrlen;
2822		break;
2823
2824	default:
2825		return -ENOPROTOOPT;
2826	}
2827
2828	if (put_user(len, optlen))
2829		return -EFAULT;
2830	if (copy_to_user(optval, &val, len))
2831		return -EFAULT;
2832	return 0;
2833}
2834EXPORT_SYMBOL(udp_lib_getsockopt);
2835
2836int udp_getsockopt(struct sock *sk, int level, int optname,
2837		   char __user *optval, int __user *optlen)
2838{
2839	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2840		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2841	return ip_getsockopt(sk, level, optname, optval, optlen);
2842}
2843
2844/**
2845 * 	udp_poll - wait for a UDP event.
2846 *	@file: - file struct
2847 *	@sock: - socket
2848 *	@wait: - poll table
2849 *
2850 *	This is same as datagram poll, except for the special case of
2851 *	blocking sockets. If application is using a blocking fd
2852 *	and a packet with checksum error is in the queue;
2853 *	then it could get return from select indicating data available
2854 *	but then block when reading it. Add special case code
2855 *	to work around these arguably broken applications.
2856 */
2857__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2858{
2859	__poll_t mask = datagram_poll(file, sock, wait);
2860	struct sock *sk = sock->sk;
2861
2862	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2863		mask |= EPOLLIN | EPOLLRDNORM;
2864
2865	/* Check for false positives due to checksum errors */
2866	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2867	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2868		mask &= ~(EPOLLIN | EPOLLRDNORM);
2869
 
 
 
2870	return mask;
2871
2872}
2873EXPORT_SYMBOL(udp_poll);
2874
2875int udp_abort(struct sock *sk, int err)
2876{
2877	lock_sock(sk);
 
2878
2879	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2880	 * with close()
2881	 */
2882	if (sock_flag(sk, SOCK_DEAD))
2883		goto out;
2884
2885	sk->sk_err = err;
2886	sk_error_report(sk);
2887	__udp_disconnect(sk, 0);
2888
2889out:
2890	release_sock(sk);
 
2891
2892	return 0;
2893}
2894EXPORT_SYMBOL_GPL(udp_abort);
2895
2896struct proto udp_prot = {
2897	.name			= "UDP",
2898	.owner			= THIS_MODULE,
2899	.close			= udp_lib_close,
2900	.pre_connect		= udp_pre_connect,
2901	.connect		= ip4_datagram_connect,
2902	.disconnect		= udp_disconnect,
2903	.ioctl			= udp_ioctl,
2904	.init			= udp_init_sock,
2905	.destroy		= udp_destroy_sock,
2906	.setsockopt		= udp_setsockopt,
2907	.getsockopt		= udp_getsockopt,
2908	.sendmsg		= udp_sendmsg,
2909	.recvmsg		= udp_recvmsg,
2910	.sendpage		= udp_sendpage,
2911	.release_cb		= ip4_datagram_release_cb,
2912	.hash			= udp_lib_hash,
2913	.unhash			= udp_lib_unhash,
2914	.rehash			= udp_v4_rehash,
2915	.get_port		= udp_v4_get_port,
 
2916#ifdef CONFIG_BPF_SYSCALL
2917	.psock_update_sk_prot	= udp_bpf_update_proto,
2918#endif
2919	.memory_allocated	= &udp_memory_allocated,
 
 
2920	.sysctl_mem		= sysctl_udp_mem,
2921	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2922	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2923	.obj_size		= sizeof(struct udp_sock),
2924	.h.udp_table		= &udp_table,
2925	.diag_destroy		= udp_abort,
2926};
2927EXPORT_SYMBOL(udp_prot);
2928
2929/* ------------------------------------------------------------------------ */
2930#ifdef CONFIG_PROC_FS
2931
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932static struct sock *udp_get_first(struct seq_file *seq, int start)
2933{
2934	struct sock *sk;
2935	struct udp_seq_afinfo *afinfo;
2936	struct udp_iter_state *state = seq->private;
2937	struct net *net = seq_file_net(seq);
 
 
2938
2939	if (state->bpf_seq_afinfo)
2940		afinfo = state->bpf_seq_afinfo;
2941	else
2942		afinfo = PDE_DATA(file_inode(seq->file));
2943
2944	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2945	     ++state->bucket) {
2946		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2947
2948		if (hlist_empty(&hslot->head))
2949			continue;
2950
2951		spin_lock_bh(&hslot->lock);
2952		sk_for_each(sk, &hslot->head) {
2953			if (!net_eq(sock_net(sk), net))
2954				continue;
2955			if (afinfo->family == AF_UNSPEC ||
2956			    sk->sk_family == afinfo->family)
2957				goto found;
2958		}
2959		spin_unlock_bh(&hslot->lock);
2960	}
2961	sk = NULL;
2962found:
2963	return sk;
2964}
2965
2966static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2967{
2968	struct udp_seq_afinfo *afinfo;
2969	struct udp_iter_state *state = seq->private;
2970	struct net *net = seq_file_net(seq);
2971
2972	if (state->bpf_seq_afinfo)
2973		afinfo = state->bpf_seq_afinfo;
2974	else
2975		afinfo = PDE_DATA(file_inode(seq->file));
2976
2977	do {
2978		sk = sk_next(sk);
2979	} while (sk && (!net_eq(sock_net(sk), net) ||
2980			(afinfo->family != AF_UNSPEC &&
2981			 sk->sk_family != afinfo->family)));
2982
2983	if (!sk) {
2984		if (state->bucket <= afinfo->udp_table->mask)
2985			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
 
 
 
2986		return udp_get_first(seq, state->bucket + 1);
2987	}
2988	return sk;
2989}
2990
2991static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2992{
2993	struct sock *sk = udp_get_first(seq, 0);
2994
2995	if (sk)
2996		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2997			--pos;
2998	return pos ? NULL : sk;
2999}
3000
3001void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3002{
3003	struct udp_iter_state *state = seq->private;
3004	state->bucket = MAX_UDP_PORTS;
3005
3006	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3007}
3008EXPORT_SYMBOL(udp_seq_start);
3009
3010void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3011{
3012	struct sock *sk;
3013
3014	if (v == SEQ_START_TOKEN)
3015		sk = udp_get_idx(seq, 0);
3016	else
3017		sk = udp_get_next(seq, v);
3018
3019	++*pos;
3020	return sk;
3021}
3022EXPORT_SYMBOL(udp_seq_next);
3023
3024void udp_seq_stop(struct seq_file *seq, void *v)
3025{
3026	struct udp_seq_afinfo *afinfo;
3027	struct udp_iter_state *state = seq->private;
 
3028
3029	if (state->bpf_seq_afinfo)
3030		afinfo = state->bpf_seq_afinfo;
3031	else
3032		afinfo = PDE_DATA(file_inode(seq->file));
3033
3034	if (state->bucket <= afinfo->udp_table->mask)
3035		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3036}
3037EXPORT_SYMBOL(udp_seq_stop);
3038
3039/* ------------------------------------------------------------------------ */
3040static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3041		int bucket)
3042{
3043	struct inet_sock *inet = inet_sk(sp);
3044	__be32 dest = inet->inet_daddr;
3045	__be32 src  = inet->inet_rcv_saddr;
3046	__u16 destp	  = ntohs(inet->inet_dport);
3047	__u16 srcp	  = ntohs(inet->inet_sport);
3048
3049	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3050		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3051		bucket, src, srcp, dest, destp, sp->sk_state,
3052		sk_wmem_alloc_get(sp),
3053		udp_rqueue_get(sp),
3054		0, 0L, 0,
3055		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3056		0, sock_i_ino(sp),
3057		refcount_read(&sp->sk_refcnt), sp,
3058		atomic_read(&sp->sk_drops));
3059}
3060
3061int udp4_seq_show(struct seq_file *seq, void *v)
3062{
3063	seq_setwidth(seq, 127);
3064	if (v == SEQ_START_TOKEN)
3065		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
3066			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3067			   "inode ref pointer drops");
3068	else {
3069		struct udp_iter_state *state = seq->private;
3070
3071		udp4_format_sock(v, seq, state->bucket);
3072	}
3073	seq_pad(seq, '\n');
3074	return 0;
3075}
3076
3077#ifdef CONFIG_BPF_SYSCALL
3078struct bpf_iter__udp {
3079	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3080	__bpf_md_ptr(struct udp_sock *, udp_sk);
3081	uid_t uid __aligned(8);
3082	int bucket __aligned(8);
3083};
3084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3085static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3086			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3087{
3088	struct bpf_iter__udp ctx;
3089
3090	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3091	ctx.meta = meta;
3092	ctx.udp_sk = udp_sk;
3093	ctx.uid = uid;
3094	ctx.bucket = bucket;
3095	return bpf_iter_run_prog(prog, &ctx);
3096}
3097
3098static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3099{
3100	struct udp_iter_state *state = seq->private;
3101	struct bpf_iter_meta meta;
3102	struct bpf_prog *prog;
3103	struct sock *sk = v;
3104	uid_t uid;
 
3105
3106	if (v == SEQ_START_TOKEN)
3107		return 0;
3108
 
 
 
 
 
 
 
3109	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3110	meta.seq = seq;
3111	prog = bpf_iter_get_info(&meta, false);
3112	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
 
 
 
 
 
 
 
 
 
 
3113}
3114
3115static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3116{
 
3117	struct bpf_iter_meta meta;
3118	struct bpf_prog *prog;
3119
3120	if (!v) {
3121		meta.seq = seq;
3122		prog = bpf_iter_get_info(&meta, true);
3123		if (prog)
3124			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3125	}
3126
3127	udp_seq_stop(seq, v);
 
 
 
3128}
3129
3130static const struct seq_operations bpf_iter_udp_seq_ops = {
3131	.start		= udp_seq_start,
3132	.next		= udp_seq_next,
3133	.stop		= bpf_iter_udp_seq_stop,
3134	.show		= bpf_iter_udp_seq_show,
3135};
3136#endif
3137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138const struct seq_operations udp_seq_ops = {
3139	.start		= udp_seq_start,
3140	.next		= udp_seq_next,
3141	.stop		= udp_seq_stop,
3142	.show		= udp4_seq_show,
3143};
3144EXPORT_SYMBOL(udp_seq_ops);
3145
3146static struct udp_seq_afinfo udp4_seq_afinfo = {
3147	.family		= AF_INET,
3148	.udp_table	= &udp_table,
3149};
3150
3151static int __net_init udp4_proc_init_net(struct net *net)
3152{
3153	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3154			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3155		return -ENOMEM;
3156	return 0;
3157}
3158
3159static void __net_exit udp4_proc_exit_net(struct net *net)
3160{
3161	remove_proc_entry("udp", net->proc_net);
3162}
3163
3164static struct pernet_operations udp4_net_ops = {
3165	.init = udp4_proc_init_net,
3166	.exit = udp4_proc_exit_net,
3167};
3168
3169int __init udp4_proc_init(void)
3170{
3171	return register_pernet_subsys(&udp4_net_ops);
3172}
3173
3174void udp4_proc_exit(void)
3175{
3176	unregister_pernet_subsys(&udp4_net_ops);
3177}
3178#endif /* CONFIG_PROC_FS */
3179
3180static __initdata unsigned long uhash_entries;
3181static int __init set_uhash_entries(char *str)
3182{
3183	ssize_t ret;
3184
3185	if (!str)
3186		return 0;
3187
3188	ret = kstrtoul(str, 0, &uhash_entries);
3189	if (ret)
3190		return 0;
3191
3192	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3193		uhash_entries = UDP_HTABLE_SIZE_MIN;
3194	return 1;
3195}
3196__setup("uhash_entries=", set_uhash_entries);
3197
3198void __init udp_table_init(struct udp_table *table, const char *name)
3199{
3200	unsigned int i;
3201
3202	table->hash = alloc_large_system_hash(name,
3203					      2 * sizeof(struct udp_hslot),
3204					      uhash_entries,
3205					      21, /* one slot per 2 MB */
3206					      0,
3207					      &table->log,
3208					      &table->mask,
3209					      UDP_HTABLE_SIZE_MIN,
3210					      64 * 1024);
3211
3212	table->hash2 = table->hash + (table->mask + 1);
3213	for (i = 0; i <= table->mask; i++) {
3214		INIT_HLIST_HEAD(&table->hash[i].head);
3215		table->hash[i].count = 0;
3216		spin_lock_init(&table->hash[i].lock);
3217	}
3218	for (i = 0; i <= table->mask; i++) {
3219		INIT_HLIST_HEAD(&table->hash2[i].head);
3220		table->hash2[i].count = 0;
3221		spin_lock_init(&table->hash2[i].lock);
3222	}
3223}
3224
3225u32 udp_flow_hashrnd(void)
3226{
3227	static u32 hashrnd __read_mostly;
3228
3229	net_get_random_once(&hashrnd, sizeof(hashrnd));
3230
3231	return hashrnd;
3232}
3233EXPORT_SYMBOL(udp_flow_hashrnd);
3234
3235static void __udp_sysctl_init(struct net *net)
3236{
3237	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3238	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3239
3240#ifdef CONFIG_NET_L3_MASTER_DEV
3241	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3242#endif
3243}
3244
3245static int __net_init udp_sysctl_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246{
3247	__udp_sysctl_init(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248	return 0;
3249}
3250
 
 
 
 
 
3251static struct pernet_operations __net_initdata udp_sysctl_ops = {
3252	.init	= udp_sysctl_init,
 
3253};
3254
3255#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3256DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3257		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3258
3259static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
 
3260{
3261	struct udp_iter_state *st = priv_data;
3262	struct udp_seq_afinfo *afinfo;
3263	int ret;
3264
3265	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3266	if (!afinfo)
 
3267		return -ENOMEM;
3268
3269	afinfo->family = AF_UNSPEC;
3270	afinfo->udp_table = &udp_table;
3271	st->bpf_seq_afinfo = afinfo;
 
 
 
 
 
 
 
 
 
 
 
 
3272	ret = bpf_iter_init_seq_net(priv_data, aux);
3273	if (ret)
3274		kfree(afinfo);
 
 
 
 
 
3275	return ret;
3276}
3277
3278static void bpf_iter_fini_udp(void *priv_data)
3279{
3280	struct udp_iter_state *st = priv_data;
3281
3282	kfree(st->bpf_seq_afinfo);
3283	bpf_iter_fini_seq_net(priv_data);
 
3284}
3285
3286static const struct bpf_iter_seq_info udp_seq_info = {
3287	.seq_ops		= &bpf_iter_udp_seq_ops,
3288	.init_seq_private	= bpf_iter_init_udp,
3289	.fini_seq_private	= bpf_iter_fini_udp,
3290	.seq_priv_size		= sizeof(struct udp_iter_state),
3291};
3292
3293static struct bpf_iter_reg udp_reg_info = {
3294	.target			= "udp",
3295	.ctx_arg_info_size	= 1,
3296	.ctx_arg_info		= {
3297		{ offsetof(struct bpf_iter__udp, udp_sk),
3298		  PTR_TO_BTF_ID_OR_NULL },
3299	},
3300	.seq_info		= &udp_seq_info,
3301};
3302
3303static void __init bpf_iter_register(void)
3304{
3305	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3306	if (bpf_iter_reg_target(&udp_reg_info))
3307		pr_warn("Warning: could not register bpf iterator udp\n");
3308}
3309#endif
3310
3311void __init udp_init(void)
3312{
3313	unsigned long limit;
3314	unsigned int i;
3315
3316	udp_table_init(&udp_table, "UDP");
3317	limit = nr_free_buffer_pages() / 8;
3318	limit = max(limit, 128UL);
3319	sysctl_udp_mem[0] = limit / 4 * 3;
3320	sysctl_udp_mem[1] = limit;
3321	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3322
3323	__udp_sysctl_init(&init_net);
3324
3325	/* 16 spinlocks per cpu */
3326	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3327	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3328				GFP_KERNEL);
3329	if (!udp_busylocks)
3330		panic("UDP: failed to alloc udp_busylocks\n");
3331	for (i = 0; i < (1U << udp_busylocks_log); i++)
3332		spin_lock_init(udp_busylocks + i);
3333
3334	if (register_pernet_subsys(&udp_sysctl_ops))
3335		panic("UDP: failed to init sysctl parameters.\n");
3336
3337#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3338	bpf_iter_register();
3339#endif
3340}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
  77#include <linux/bpf-cgroup.h>
  78#include <linux/uaccess.h>
  79#include <asm/ioctls.h>
  80#include <linux/memblock.h>
  81#include <linux/highmem.h>
 
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/gso.h>
 107#include <net/xfrm.h>
 108#include <trace/events/udp.h>
 109#include <linux/static_key.h>
 110#include <linux/btf_ids.h>
 111#include <trace/events/skb.h>
 112#include <net/busy_poll.h>
 113#include "udp_impl.h"
 114#include <net/sock_reuseport.h>
 115#include <net/addrconf.h>
 116#include <net/udp_tunnel.h>
 117#include <net/gro.h>
 118#if IS_ENABLED(CONFIG_IPV6)
 119#include <net/ipv6_stubs.h>
 120#endif
 121
 122struct udp_table udp_table __read_mostly;
 123EXPORT_SYMBOL(udp_table);
 124
 125long sysctl_udp_mem[3] __read_mostly;
 126EXPORT_SYMBOL(sysctl_udp_mem);
 127
 128atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
 129EXPORT_SYMBOL(udp_memory_allocated);
 130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
 131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
 132
 133#define MAX_UDP_PORTS 65536
 134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
 135
 136static struct udp_table *udp_get_table_prot(struct sock *sk)
 137{
 138	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
 139}
 140
 141static int udp_lib_lport_inuse(struct net *net, __u16 num,
 142			       const struct udp_hslot *hslot,
 143			       unsigned long *bitmap,
 144			       struct sock *sk, unsigned int log)
 145{
 146	struct sock *sk2;
 147	kuid_t uid = sock_i_uid(sk);
 148
 149	sk_for_each(sk2, &hslot->head) {
 150		if (net_eq(sock_net(sk2), net) &&
 151		    sk2 != sk &&
 152		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 153		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 154		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 155		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 156		    inet_rcv_saddr_equal(sk, sk2, true)) {
 157			if (sk2->sk_reuseport && sk->sk_reuseport &&
 158			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 159			    uid_eq(uid, sock_i_uid(sk2))) {
 160				if (!bitmap)
 161					return 0;
 162			} else {
 163				if (!bitmap)
 164					return 1;
 165				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 166					  bitmap);
 167			}
 168		}
 169	}
 170	return 0;
 171}
 172
 173/*
 174 * Note: we still hold spinlock of primary hash chain, so no other writer
 175 * can insert/delete a socket with local_port == num
 176 */
 177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 178				struct udp_hslot *hslot2,
 179				struct sock *sk)
 180{
 181	struct sock *sk2;
 182	kuid_t uid = sock_i_uid(sk);
 183	int res = 0;
 184
 185	spin_lock(&hslot2->lock);
 186	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 187		if (net_eq(sock_net(sk2), net) &&
 188		    sk2 != sk &&
 189		    (udp_sk(sk2)->udp_port_hash == num) &&
 190		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 191		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 192		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 193		    inet_rcv_saddr_equal(sk, sk2, true)) {
 194			if (sk2->sk_reuseport && sk->sk_reuseport &&
 195			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 196			    uid_eq(uid, sock_i_uid(sk2))) {
 197				res = 0;
 198			} else {
 199				res = 1;
 200			}
 201			break;
 202		}
 203	}
 204	spin_unlock(&hslot2->lock);
 205	return res;
 206}
 207
 208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 209{
 210	struct net *net = sock_net(sk);
 211	kuid_t uid = sock_i_uid(sk);
 212	struct sock *sk2;
 213
 214	sk_for_each(sk2, &hslot->head) {
 215		if (net_eq(sock_net(sk2), net) &&
 216		    sk2 != sk &&
 217		    sk2->sk_family == sk->sk_family &&
 218		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 219		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 220		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 221		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 222		    inet_rcv_saddr_equal(sk, sk2, false)) {
 223			return reuseport_add_sock(sk, sk2,
 224						  inet_rcv_saddr_any(sk));
 225		}
 226	}
 227
 228	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 229}
 230
 231/**
 232 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 233 *
 234 *  @sk:          socket struct in question
 235 *  @snum:        port number to look up
 236 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 237 *                   with NULL address
 238 */
 239int udp_lib_get_port(struct sock *sk, unsigned short snum,
 240		     unsigned int hash2_nulladdr)
 241{
 242	struct udp_table *udptable = udp_get_table_prot(sk);
 243	struct udp_hslot *hslot, *hslot2;
 
 
 244	struct net *net = sock_net(sk);
 245	int error = -EADDRINUSE;
 246
 247	if (!snum) {
 248		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 249		unsigned short first, last;
 250		int low, high, remaining;
 251		unsigned int rand;
 
 
 252
 253		inet_sk_get_local_port_range(sk, &low, &high);
 254		remaining = (high - low) + 1;
 255
 256		rand = get_random_u32();
 257		first = reciprocal_scale(rand, remaining) + low;
 258		/*
 259		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 260		 */
 261		rand = (rand | 1) * (udptable->mask + 1);
 262		last = first + udptable->mask + 1;
 263		do {
 264			hslot = udp_hashslot(udptable, net, first);
 265			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 266			spin_lock_bh(&hslot->lock);
 267			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 268					    udptable->log);
 269
 270			snum = first;
 271			/*
 272			 * Iterate on all possible values of snum for this hash.
 273			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 274			 * give us randomization and full range coverage.
 275			 */
 276			do {
 277				if (low <= snum && snum <= high &&
 278				    !test_bit(snum >> udptable->log, bitmap) &&
 279				    !inet_is_local_reserved_port(net, snum))
 280					goto found;
 281				snum += rand;
 282			} while (snum != first);
 283			spin_unlock_bh(&hslot->lock);
 284			cond_resched();
 285		} while (++first != last);
 286		goto fail;
 287	} else {
 288		hslot = udp_hashslot(udptable, net, snum);
 289		spin_lock_bh(&hslot->lock);
 290		if (hslot->count > 10) {
 291			int exist;
 292			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 293
 294			slot2          &= udptable->mask;
 295			hash2_nulladdr &= udptable->mask;
 296
 297			hslot2 = udp_hashslot2(udptable, slot2);
 298			if (hslot->count < hslot2->count)
 299				goto scan_primary_hash;
 300
 301			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 302			if (!exist && (hash2_nulladdr != slot2)) {
 303				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 304				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 305							     sk);
 306			}
 307			if (exist)
 308				goto fail_unlock;
 309			else
 310				goto found;
 311		}
 312scan_primary_hash:
 313		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 314			goto fail_unlock;
 315	}
 316found:
 317	inet_sk(sk)->inet_num = snum;
 318	udp_sk(sk)->udp_port_hash = snum;
 319	udp_sk(sk)->udp_portaddr_hash ^= snum;
 320	if (sk_unhashed(sk)) {
 321		if (sk->sk_reuseport &&
 322		    udp_reuseport_add_sock(sk, hslot)) {
 323			inet_sk(sk)->inet_num = 0;
 324			udp_sk(sk)->udp_port_hash = 0;
 325			udp_sk(sk)->udp_portaddr_hash ^= snum;
 326			goto fail_unlock;
 327		}
 328
 329		sk_add_node_rcu(sk, &hslot->head);
 330		hslot->count++;
 331		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 332
 333		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 334		spin_lock(&hslot2->lock);
 335		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 336		    sk->sk_family == AF_INET6)
 337			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 338					   &hslot2->head);
 339		else
 340			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 341					   &hslot2->head);
 342		hslot2->count++;
 343		spin_unlock(&hslot2->lock);
 344	}
 345	sock_set_flag(sk, SOCK_RCU_FREE);
 346	error = 0;
 347fail_unlock:
 348	spin_unlock_bh(&hslot->lock);
 349fail:
 350	return error;
 351}
 352EXPORT_SYMBOL(udp_lib_get_port);
 353
 354int udp_v4_get_port(struct sock *sk, unsigned short snum)
 355{
 356	unsigned int hash2_nulladdr =
 357		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 358	unsigned int hash2_partial =
 359		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 360
 361	/* precompute partial secondary hash */
 362	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 363	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 364}
 365
 366static int compute_score(struct sock *sk, struct net *net,
 367			 __be32 saddr, __be16 sport,
 368			 __be32 daddr, unsigned short hnum,
 369			 int dif, int sdif)
 370{
 371	int score;
 372	struct inet_sock *inet;
 373	bool dev_match;
 374
 375	if (!net_eq(sock_net(sk), net) ||
 376	    udp_sk(sk)->udp_port_hash != hnum ||
 377	    ipv6_only_sock(sk))
 378		return -1;
 379
 380	if (sk->sk_rcv_saddr != daddr)
 381		return -1;
 382
 383	score = (sk->sk_family == PF_INET) ? 2 : 1;
 384
 385	inet = inet_sk(sk);
 386	if (inet->inet_daddr) {
 387		if (inet->inet_daddr != saddr)
 388			return -1;
 389		score += 4;
 390	}
 391
 392	if (inet->inet_dport) {
 393		if (inet->inet_dport != sport)
 394			return -1;
 395		score += 4;
 396	}
 397
 398	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 399					dif, sdif);
 400	if (!dev_match)
 401		return -1;
 402	if (sk->sk_bound_dev_if)
 403		score += 4;
 404
 405	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 406		score++;
 407	return score;
 408}
 409
 410INDIRECT_CALLABLE_SCOPE
 411u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
 412		const __be32 faddr, const __be16 fport)
 413{
 414	static u32 udp_ehash_secret __read_mostly;
 415
 416	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 417
 418	return __inet_ehashfn(laddr, lport, faddr, fport,
 419			      udp_ehash_secret + net_hash_mix(net));
 420}
 421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422/* called with rcu_read_lock() */
 423static struct sock *udp4_lib_lookup2(struct net *net,
 424				     __be32 saddr, __be16 sport,
 425				     __be32 daddr, unsigned int hnum,
 426				     int dif, int sdif,
 427				     struct udp_hslot *hslot2,
 428				     struct sk_buff *skb)
 429{
 430	struct sock *sk, *result;
 431	int score, badness;
 432
 433	result = NULL;
 434	badness = 0;
 435	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 436		score = compute_score(sk, net, saddr, sport,
 437				      daddr, hnum, dif, sdif);
 438		if (score > badness) {
 439			badness = score;
 440
 441			if (sk->sk_state == TCP_ESTABLISHED) {
 442				result = sk;
 443				continue;
 444			}
 445
 446			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
 447						       saddr, sport, daddr, hnum, udp_ehashfn);
 448			if (!result) {
 449				result = sk;
 450				continue;
 451			}
 452
 453			/* Fall back to scoring if group has connections */
 454			if (!reuseport_has_conns(sk))
 455				return result;
 456
 457			/* Reuseport logic returned an error, keep original score. */
 458			if (IS_ERR(result))
 459				continue;
 460
 461			badness = compute_score(result, net, saddr, sport,
 462						daddr, hnum, dif, sdif);
 463
 464		}
 465	}
 466	return result;
 467}
 468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 470 * harder than this. -DaveM
 471 */
 472struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 473		__be16 sport, __be32 daddr, __be16 dport, int dif,
 474		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 475{
 476	unsigned short hnum = ntohs(dport);
 477	unsigned int hash2, slot2;
 478	struct udp_hslot *hslot2;
 479	struct sock *result, *sk;
 480
 481	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 482	slot2 = hash2 & udptable->mask;
 483	hslot2 = &udptable->hash2[slot2];
 484
 485	/* Lookup connected or non-wildcard socket */
 486	result = udp4_lib_lookup2(net, saddr, sport,
 487				  daddr, hnum, dif, sdif,
 488				  hslot2, skb);
 489	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 490		goto done;
 491
 492	/* Lookup redirect from BPF */
 493	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
 494	    udptable == net->ipv4.udp_table) {
 495		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
 496					       saddr, sport, daddr, hnum, dif,
 497					       udp_ehashfn);
 498		if (sk) {
 499			result = sk;
 500			goto done;
 501		}
 502	}
 503
 504	/* Got non-wildcard socket or error on first lookup */
 505	if (result)
 506		goto done;
 507
 508	/* Lookup wildcard sockets */
 509	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 510	slot2 = hash2 & udptable->mask;
 511	hslot2 = &udptable->hash2[slot2];
 512
 513	result = udp4_lib_lookup2(net, saddr, sport,
 514				  htonl(INADDR_ANY), hnum, dif, sdif,
 515				  hslot2, skb);
 516done:
 517	if (IS_ERR(result))
 518		return NULL;
 519	return result;
 520}
 521EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 522
 523static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 524						 __be16 sport, __be16 dport,
 525						 struct udp_table *udptable)
 526{
 527	const struct iphdr *iph = ip_hdr(skb);
 528
 529	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 530				 iph->daddr, dport, inet_iif(skb),
 531				 inet_sdif(skb), udptable, skb);
 532}
 533
 534struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 535				 __be16 sport, __be16 dport)
 536{
 537	const struct iphdr *iph = ip_hdr(skb);
 538	struct net *net = dev_net(skb->dev);
 539	int iif, sdif;
 540
 541	inet_get_iif_sdif(skb, &iif, &sdif);
 542
 543	return __udp4_lib_lookup(net, iph->saddr, sport,
 544				 iph->daddr, dport, iif,
 545				 sdif, net->ipv4.udp_table, NULL);
 546}
 547
 548/* Must be called under rcu_read_lock().
 549 * Does increment socket refcount.
 550 */
 551#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 552struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 553			     __be32 daddr, __be16 dport, int dif)
 554{
 555	struct sock *sk;
 556
 557	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 558			       dif, 0, net->ipv4.udp_table, NULL);
 559	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 560		sk = NULL;
 561	return sk;
 562}
 563EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 564#endif
 565
 566static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
 567				       __be16 loc_port, __be32 loc_addr,
 568				       __be16 rmt_port, __be32 rmt_addr,
 569				       int dif, int sdif, unsigned short hnum)
 570{
 571	const struct inet_sock *inet = inet_sk(sk);
 572
 573	if (!net_eq(sock_net(sk), net) ||
 574	    udp_sk(sk)->udp_port_hash != hnum ||
 575	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 576	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 577	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 578	    ipv6_only_sock(sk) ||
 579	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 580		return false;
 581	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 582		return false;
 583	return true;
 584}
 585
 586DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 587void udp_encap_enable(void)
 588{
 589	static_branch_inc(&udp_encap_needed_key);
 590}
 591EXPORT_SYMBOL(udp_encap_enable);
 592
 593void udp_encap_disable(void)
 594{
 595	static_branch_dec(&udp_encap_needed_key);
 596}
 597EXPORT_SYMBOL(udp_encap_disable);
 598
 599/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 600 * through error handlers in encapsulations looking for a match.
 601 */
 602static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 603{
 604	int i;
 605
 606	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 607		int (*handler)(struct sk_buff *skb, u32 info);
 608		const struct ip_tunnel_encap_ops *encap;
 609
 610		encap = rcu_dereference(iptun_encaps[i]);
 611		if (!encap)
 612			continue;
 613		handler = encap->err_handler;
 614		if (handler && !handler(skb, info))
 615			return 0;
 616	}
 617
 618	return -ENOENT;
 619}
 620
 621/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 622 * reversing source and destination port: this will match tunnels that force the
 623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 624 * lwtunnels might actually break this assumption by being configured with
 625 * different destination ports on endpoints, in this case we won't be able to
 626 * trace ICMP messages back to them.
 627 *
 628 * If this doesn't match any socket, probe tunnels with arbitrary destination
 629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 630 * we've sent packets to won't necessarily match the local destination port.
 631 *
 632 * Then ask the tunnel implementation to match the error against a valid
 633 * association.
 634 *
 635 * Return an error if we can't find a match, the socket if we need further
 636 * processing, zero otherwise.
 637 */
 638static struct sock *__udp4_lib_err_encap(struct net *net,
 639					 const struct iphdr *iph,
 640					 struct udphdr *uh,
 641					 struct udp_table *udptable,
 642					 struct sock *sk,
 643					 struct sk_buff *skb, u32 info)
 644{
 645	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 646	int network_offset, transport_offset;
 647	struct udp_sock *up;
 648
 649	network_offset = skb_network_offset(skb);
 650	transport_offset = skb_transport_offset(skb);
 651
 652	/* Network header needs to point to the outer IPv4 header inside ICMP */
 653	skb_reset_network_header(skb);
 654
 655	/* Transport header needs to point to the UDP header */
 656	skb_set_transport_header(skb, iph->ihl << 2);
 657
 658	if (sk) {
 659		up = udp_sk(sk);
 660
 661		lookup = READ_ONCE(up->encap_err_lookup);
 662		if (lookup && lookup(sk, skb))
 663			sk = NULL;
 664
 665		goto out;
 666	}
 667
 668	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 669			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 670			       udptable, NULL);
 671	if (sk) {
 672		up = udp_sk(sk);
 673
 674		lookup = READ_ONCE(up->encap_err_lookup);
 675		if (!lookup || lookup(sk, skb))
 676			sk = NULL;
 677	}
 678
 679out:
 680	if (!sk)
 681		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 682
 683	skb_set_transport_header(skb, transport_offset);
 684	skb_set_network_header(skb, network_offset);
 685
 686	return sk;
 687}
 688
 689/*
 690 * This routine is called by the ICMP module when it gets some
 691 * sort of error condition.  If err < 0 then the socket should
 692 * be closed and the error returned to the user.  If err > 0
 693 * it's just the icmp type << 8 | icmp code.
 694 * Header points to the ip header of the error packet. We move
 695 * on past this. Then (as it used to claim before adjustment)
 696 * header points to the first 8 bytes of the udp header.  We need
 697 * to find the appropriate port.
 698 */
 699
 700int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 701{
 702	struct inet_sock *inet;
 703	const struct iphdr *iph = (const struct iphdr *)skb->data;
 704	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 705	const int type = icmp_hdr(skb)->type;
 706	const int code = icmp_hdr(skb)->code;
 707	bool tunnel = false;
 708	struct sock *sk;
 709	int harderr;
 710	int err;
 711	struct net *net = dev_net(skb->dev);
 712
 713	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 714			       iph->saddr, uh->source, skb->dev->ifindex,
 715			       inet_sdif(skb), udptable, NULL);
 716
 717	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
 718		/* No socket for error: try tunnels before discarding */
 719		if (static_branch_unlikely(&udp_encap_needed_key)) {
 720			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 721						  info);
 722			if (!sk)
 723				return 0;
 724		} else
 725			sk = ERR_PTR(-ENOENT);
 726
 727		if (IS_ERR(sk)) {
 728			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 729			return PTR_ERR(sk);
 730		}
 731
 732		tunnel = true;
 733	}
 734
 735	err = 0;
 736	harderr = 0;
 737	inet = inet_sk(sk);
 738
 739	switch (type) {
 740	default:
 741	case ICMP_TIME_EXCEEDED:
 742		err = EHOSTUNREACH;
 743		break;
 744	case ICMP_SOURCE_QUENCH:
 745		goto out;
 746	case ICMP_PARAMETERPROB:
 747		err = EPROTO;
 748		harderr = 1;
 749		break;
 750	case ICMP_DEST_UNREACH:
 751		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 752			ipv4_sk_update_pmtu(skb, sk, info);
 753			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
 754				err = EMSGSIZE;
 755				harderr = 1;
 756				break;
 757			}
 758			goto out;
 759		}
 760		err = EHOSTUNREACH;
 761		if (code <= NR_ICMP_UNREACH) {
 762			harderr = icmp_err_convert[code].fatal;
 763			err = icmp_err_convert[code].errno;
 764		}
 765		break;
 766	case ICMP_REDIRECT:
 767		ipv4_sk_redirect(skb, sk);
 768		goto out;
 769	}
 770
 771	/*
 772	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 773	 *	4.1.3.3.
 774	 */
 775	if (tunnel) {
 776		/* ...not for tunnels though: we don't have a sending socket */
 777		if (udp_sk(sk)->encap_err_rcv)
 778			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
 779						  (u8 *)(uh+1));
 780		goto out;
 781	}
 782	if (!inet_test_bit(RECVERR, sk)) {
 783		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 784			goto out;
 785	} else
 786		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 787
 788	sk->sk_err = err;
 789	sk_error_report(sk);
 790out:
 791	return 0;
 792}
 793
 794int udp_err(struct sk_buff *skb, u32 info)
 795{
 796	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
 797}
 798
 799/*
 800 * Throw away all pending data and cancel the corking. Socket is locked.
 801 */
 802void udp_flush_pending_frames(struct sock *sk)
 803{
 804	struct udp_sock *up = udp_sk(sk);
 805
 806	if (up->pending) {
 807		up->len = 0;
 808		WRITE_ONCE(up->pending, 0);
 809		ip_flush_pending_frames(sk);
 810	}
 811}
 812EXPORT_SYMBOL(udp_flush_pending_frames);
 813
 814/**
 815 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 816 * 	@skb: 	sk_buff containing the filled-in UDP header
 817 * 	        (checksum field must be zeroed out)
 818 *	@src:	source IP address
 819 *	@dst:	destination IP address
 820 */
 821void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 822{
 823	struct udphdr *uh = udp_hdr(skb);
 824	int offset = skb_transport_offset(skb);
 825	int len = skb->len - offset;
 826	int hlen = len;
 827	__wsum csum = 0;
 828
 829	if (!skb_has_frag_list(skb)) {
 830		/*
 831		 * Only one fragment on the socket.
 832		 */
 833		skb->csum_start = skb_transport_header(skb) - skb->head;
 834		skb->csum_offset = offsetof(struct udphdr, check);
 835		uh->check = ~csum_tcpudp_magic(src, dst, len,
 836					       IPPROTO_UDP, 0);
 837	} else {
 838		struct sk_buff *frags;
 839
 840		/*
 841		 * HW-checksum won't work as there are two or more
 842		 * fragments on the socket so that all csums of sk_buffs
 843		 * should be together
 844		 */
 845		skb_walk_frags(skb, frags) {
 846			csum = csum_add(csum, frags->csum);
 847			hlen -= frags->len;
 848		}
 849
 850		csum = skb_checksum(skb, offset, hlen, csum);
 851		skb->ip_summed = CHECKSUM_NONE;
 852
 853		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 854		if (uh->check == 0)
 855			uh->check = CSUM_MANGLED_0;
 856	}
 857}
 858EXPORT_SYMBOL_GPL(udp4_hwcsum);
 859
 860/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 861 * for the simple case like when setting the checksum for a UDP tunnel.
 862 */
 863void udp_set_csum(bool nocheck, struct sk_buff *skb,
 864		  __be32 saddr, __be32 daddr, int len)
 865{
 866	struct udphdr *uh = udp_hdr(skb);
 867
 868	if (nocheck) {
 869		uh->check = 0;
 870	} else if (skb_is_gso(skb)) {
 871		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 872	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 873		uh->check = 0;
 874		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 875		if (uh->check == 0)
 876			uh->check = CSUM_MANGLED_0;
 877	} else {
 878		skb->ip_summed = CHECKSUM_PARTIAL;
 879		skb->csum_start = skb_transport_header(skb) - skb->head;
 880		skb->csum_offset = offsetof(struct udphdr, check);
 881		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 882	}
 883}
 884EXPORT_SYMBOL(udp_set_csum);
 885
 886static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 887			struct inet_cork *cork)
 888{
 889	struct sock *sk = skb->sk;
 890	struct inet_sock *inet = inet_sk(sk);
 891	struct udphdr *uh;
 892	int err;
 893	int is_udplite = IS_UDPLITE(sk);
 894	int offset = skb_transport_offset(skb);
 895	int len = skb->len - offset;
 896	int datalen = len - sizeof(*uh);
 897	__wsum csum = 0;
 898
 899	/*
 900	 * Create a UDP header
 901	 */
 902	uh = udp_hdr(skb);
 903	uh->source = inet->inet_sport;
 904	uh->dest = fl4->fl4_dport;
 905	uh->len = htons(len);
 906	uh->check = 0;
 907
 908	if (cork->gso_size) {
 909		const int hlen = skb_network_header_len(skb) +
 910				 sizeof(struct udphdr);
 911
 912		if (hlen + cork->gso_size > cork->fragsize) {
 913			kfree_skb(skb);
 914			return -EINVAL;
 915		}
 916		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
 917			kfree_skb(skb);
 918			return -EINVAL;
 919		}
 920		if (sk->sk_no_check_tx) {
 921			kfree_skb(skb);
 922			return -EINVAL;
 923		}
 924		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 925		    dst_xfrm(skb_dst(skb))) {
 926			kfree_skb(skb);
 927			return -EIO;
 928		}
 929
 930		if (datalen > cork->gso_size) {
 931			skb_shinfo(skb)->gso_size = cork->gso_size;
 932			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 933			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 934								 cork->gso_size);
 935		}
 936		goto csum_partial;
 937	}
 938
 939	if (is_udplite)  				 /*     UDP-Lite      */
 940		csum = udplite_csum(skb);
 941
 942	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 943
 944		skb->ip_summed = CHECKSUM_NONE;
 945		goto send;
 946
 947	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 948csum_partial:
 949
 950		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 951		goto send;
 952
 953	} else
 954		csum = udp_csum(skb);
 955
 956	/* add protocol-dependent pseudo-header */
 957	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 958				      sk->sk_protocol, csum);
 959	if (uh->check == 0)
 960		uh->check = CSUM_MANGLED_0;
 961
 962send:
 963	err = ip_send_skb(sock_net(sk), skb);
 964	if (err) {
 965		if (err == -ENOBUFS &&
 966		    !inet_test_bit(RECVERR, sk)) {
 967			UDP_INC_STATS(sock_net(sk),
 968				      UDP_MIB_SNDBUFERRORS, is_udplite);
 969			err = 0;
 970		}
 971	} else
 972		UDP_INC_STATS(sock_net(sk),
 973			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 974	return err;
 975}
 976
 977/*
 978 * Push out all pending data as one UDP datagram. Socket is locked.
 979 */
 980int udp_push_pending_frames(struct sock *sk)
 981{
 982	struct udp_sock  *up = udp_sk(sk);
 983	struct inet_sock *inet = inet_sk(sk);
 984	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 985	struct sk_buff *skb;
 986	int err = 0;
 987
 988	skb = ip_finish_skb(sk, fl4);
 989	if (!skb)
 990		goto out;
 991
 992	err = udp_send_skb(skb, fl4, &inet->cork.base);
 993
 994out:
 995	up->len = 0;
 996	WRITE_ONCE(up->pending, 0);
 997	return err;
 998}
 999EXPORT_SYMBOL(udp_push_pending_frames);
1000
1001static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1002{
1003	switch (cmsg->cmsg_type) {
1004	case UDP_SEGMENT:
1005		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1006			return -EINVAL;
1007		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1008		return 0;
1009	default:
1010		return -EINVAL;
1011	}
1012}
1013
1014int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1015{
1016	struct cmsghdr *cmsg;
1017	bool need_ip = false;
1018	int err;
1019
1020	for_each_cmsghdr(cmsg, msg) {
1021		if (!CMSG_OK(msg, cmsg))
1022			return -EINVAL;
1023
1024		if (cmsg->cmsg_level != SOL_UDP) {
1025			need_ip = true;
1026			continue;
1027		}
1028
1029		err = __udp_cmsg_send(cmsg, gso_size);
1030		if (err)
1031			return err;
1032	}
1033
1034	return need_ip;
1035}
1036EXPORT_SYMBOL_GPL(udp_cmsg_send);
1037
1038int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1039{
1040	struct inet_sock *inet = inet_sk(sk);
1041	struct udp_sock *up = udp_sk(sk);
1042	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1043	struct flowi4 fl4_stack;
1044	struct flowi4 *fl4;
1045	int ulen = len;
1046	struct ipcm_cookie ipc;
1047	struct rtable *rt = NULL;
1048	int free = 0;
1049	int connected = 0;
1050	__be32 daddr, faddr, saddr;
1051	u8 tos, scope;
1052	__be16 dport;
 
1053	int err, is_udplite = IS_UDPLITE(sk);
1054	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1055	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1056	struct sk_buff *skb;
1057	struct ip_options_data opt_copy;
1058	int uc_index;
1059
1060	if (len > 0xFFFF)
1061		return -EMSGSIZE;
1062
1063	/*
1064	 *	Check the flags.
1065	 */
1066
1067	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1068		return -EOPNOTSUPP;
1069
1070	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1071
1072	fl4 = &inet->cork.fl.u.ip4;
1073	if (READ_ONCE(up->pending)) {
1074		/*
1075		 * There are pending frames.
1076		 * The socket lock must be held while it's corked.
1077		 */
1078		lock_sock(sk);
1079		if (likely(up->pending)) {
1080			if (unlikely(up->pending != AF_INET)) {
1081				release_sock(sk);
1082				return -EINVAL;
1083			}
1084			goto do_append_data;
1085		}
1086		release_sock(sk);
1087	}
1088	ulen += sizeof(struct udphdr);
1089
1090	/*
1091	 *	Get and verify the address.
1092	 */
1093	if (usin) {
1094		if (msg->msg_namelen < sizeof(*usin))
1095			return -EINVAL;
1096		if (usin->sin_family != AF_INET) {
1097			if (usin->sin_family != AF_UNSPEC)
1098				return -EAFNOSUPPORT;
1099		}
1100
1101		daddr = usin->sin_addr.s_addr;
1102		dport = usin->sin_port;
1103		if (dport == 0)
1104			return -EINVAL;
1105	} else {
1106		if (sk->sk_state != TCP_ESTABLISHED)
1107			return -EDESTADDRREQ;
1108		daddr = inet->inet_daddr;
1109		dport = inet->inet_dport;
1110		/* Open fast path for connected socket.
1111		   Route will not be used, if at least one option is set.
1112		 */
1113		connected = 1;
1114	}
1115
1116	ipcm_init_sk(&ipc, inet);
1117	ipc.gso_size = READ_ONCE(up->gso_size);
1118
1119	if (msg->msg_controllen) {
1120		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1121		if (err > 0)
1122			err = ip_cmsg_send(sk, msg, &ipc,
1123					   sk->sk_family == AF_INET6);
1124		if (unlikely(err < 0)) {
1125			kfree(ipc.opt);
1126			return err;
1127		}
1128		if (ipc.opt)
1129			free = 1;
1130		connected = 0;
1131	}
1132	if (!ipc.opt) {
1133		struct ip_options_rcu *inet_opt;
1134
1135		rcu_read_lock();
1136		inet_opt = rcu_dereference(inet->inet_opt);
1137		if (inet_opt) {
1138			memcpy(&opt_copy, inet_opt,
1139			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1140			ipc.opt = &opt_copy.opt;
1141		}
1142		rcu_read_unlock();
1143	}
1144
1145	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1146		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1147					    (struct sockaddr *)usin,
1148					    &msg->msg_namelen,
1149					    &ipc.addr);
1150		if (err)
1151			goto out_free;
1152		if (usin) {
1153			if (usin->sin_port == 0) {
1154				/* BPF program set invalid port. Reject it. */
1155				err = -EINVAL;
1156				goto out_free;
1157			}
1158			daddr = usin->sin_addr.s_addr;
1159			dport = usin->sin_port;
1160		}
1161	}
1162
1163	saddr = ipc.addr;
1164	ipc.addr = faddr = daddr;
1165
1166	if (ipc.opt && ipc.opt->opt.srr) {
1167		if (!daddr) {
1168			err = -EINVAL;
1169			goto out_free;
1170		}
1171		faddr = ipc.opt->opt.faddr;
1172		connected = 0;
1173	}
1174	tos = get_rttos(&ipc, inet);
1175	scope = ip_sendmsg_scope(inet, &ipc, msg);
1176	if (scope == RT_SCOPE_LINK)
 
 
1177		connected = 0;
 
1178
1179	uc_index = READ_ONCE(inet->uc_index);
1180	if (ipv4_is_multicast(daddr)) {
1181		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1182			ipc.oif = READ_ONCE(inet->mc_index);
1183		if (!saddr)
1184			saddr = READ_ONCE(inet->mc_addr);
1185		connected = 0;
1186	} else if (!ipc.oif) {
1187		ipc.oif = uc_index;
1188	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1189		/* oif is set, packet is to local broadcast and
1190		 * uc_index is set. oif is most likely set
1191		 * by sk_bound_dev_if. If uc_index != oif check if the
1192		 * oif is an L3 master and uc_index is an L3 slave.
1193		 * If so, we want to allow the send using the uc_index.
1194		 */
1195		if (ipc.oif != uc_index &&
1196		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1197							      uc_index)) {
1198			ipc.oif = uc_index;
1199		}
1200	}
1201
1202	if (connected)
1203		rt = (struct rtable *)sk_dst_check(sk, 0);
1204
1205	if (!rt) {
1206		struct net *net = sock_net(sk);
1207		__u8 flow_flags = inet_sk_flowi_flags(sk);
1208
1209		fl4 = &fl4_stack;
1210
1211		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1212				   sk->sk_protocol, flow_flags, faddr, saddr,
1213				   dport, inet->inet_sport, sk->sk_uid);
 
 
1214
1215		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1216		rt = ip_route_output_flow(net, fl4, sk);
1217		if (IS_ERR(rt)) {
1218			err = PTR_ERR(rt);
1219			rt = NULL;
1220			if (err == -ENETUNREACH)
1221				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1222			goto out;
1223		}
1224
1225		err = -EACCES;
1226		if ((rt->rt_flags & RTCF_BROADCAST) &&
1227		    !sock_flag(sk, SOCK_BROADCAST))
1228			goto out;
1229		if (connected)
1230			sk_dst_set(sk, dst_clone(&rt->dst));
1231	}
1232
1233	if (msg->msg_flags&MSG_CONFIRM)
1234		goto do_confirm;
1235back_from_confirm:
1236
1237	saddr = fl4->saddr;
1238	if (!ipc.addr)
1239		daddr = ipc.addr = fl4->daddr;
1240
1241	/* Lockless fast path for the non-corking case. */
1242	if (!corkreq) {
1243		struct inet_cork cork;
1244
1245		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1246				  sizeof(struct udphdr), &ipc, &rt,
1247				  &cork, msg->msg_flags);
1248		err = PTR_ERR(skb);
1249		if (!IS_ERR_OR_NULL(skb))
1250			err = udp_send_skb(skb, fl4, &cork);
1251		goto out;
1252	}
1253
1254	lock_sock(sk);
1255	if (unlikely(up->pending)) {
1256		/* The socket is already corked while preparing it. */
1257		/* ... which is an evident application bug. --ANK */
1258		release_sock(sk);
1259
1260		net_dbg_ratelimited("socket already corked\n");
1261		err = -EINVAL;
1262		goto out;
1263	}
1264	/*
1265	 *	Now cork the socket to pend data.
1266	 */
1267	fl4 = &inet->cork.fl.u.ip4;
1268	fl4->daddr = daddr;
1269	fl4->saddr = saddr;
1270	fl4->fl4_dport = dport;
1271	fl4->fl4_sport = inet->inet_sport;
1272	WRITE_ONCE(up->pending, AF_INET);
1273
1274do_append_data:
1275	up->len += ulen;
1276	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1277			     sizeof(struct udphdr), &ipc, &rt,
1278			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1279	if (err)
1280		udp_flush_pending_frames(sk);
1281	else if (!corkreq)
1282		err = udp_push_pending_frames(sk);
1283	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1284		WRITE_ONCE(up->pending, 0);
1285	release_sock(sk);
1286
1287out:
1288	ip_rt_put(rt);
1289out_free:
1290	if (free)
1291		kfree(ipc.opt);
1292	if (!err)
1293		return len;
1294	/*
1295	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1296	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1297	 * we don't have a good statistic (IpOutDiscards but it can be too many
1298	 * things).  We could add another new stat but at least for now that
1299	 * seems like overkill.
1300	 */
1301	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1302		UDP_INC_STATS(sock_net(sk),
1303			      UDP_MIB_SNDBUFERRORS, is_udplite);
1304	}
1305	return err;
1306
1307do_confirm:
1308	if (msg->msg_flags & MSG_PROBE)
1309		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1310	if (!(msg->msg_flags&MSG_PROBE) || len)
1311		goto back_from_confirm;
1312	err = 0;
1313	goto out;
1314}
1315EXPORT_SYMBOL(udp_sendmsg);
1316
1317void udp_splice_eof(struct socket *sock)
 
1318{
1319	struct sock *sk = sock->sk;
1320	struct udp_sock *up = udp_sk(sk);
 
 
 
 
1321
1322	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1323		return;
 
 
 
 
 
 
 
 
 
1324
1325	lock_sock(sk);
1326	if (up->pending && !udp_test_bit(CORK, sk))
1327		udp_push_pending_frames(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328	release_sock(sk);
 
1329}
1330EXPORT_SYMBOL_GPL(udp_splice_eof);
1331
1332#define UDP_SKB_IS_STATELESS 0x80000000
1333
1334/* all head states (dst, sk, nf conntrack) except skb extensions are
1335 * cleared by udp_rcv().
1336 *
1337 * We need to preserve secpath, if present, to eventually process
1338 * IP_CMSG_PASSSEC at recvmsg() time.
1339 *
1340 * Other extensions can be cleared.
1341 */
1342static bool udp_try_make_stateless(struct sk_buff *skb)
1343{
1344	if (!skb_has_extensions(skb))
1345		return true;
1346
1347	if (!secpath_exists(skb)) {
1348		skb_ext_reset(skb);
1349		return true;
1350	}
1351
1352	return false;
1353}
1354
1355static void udp_set_dev_scratch(struct sk_buff *skb)
1356{
1357	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1358
1359	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1360	scratch->_tsize_state = skb->truesize;
1361#if BITS_PER_LONG == 64
1362	scratch->len = skb->len;
1363	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1364	scratch->is_linear = !skb_is_nonlinear(skb);
1365#endif
1366	if (udp_try_make_stateless(skb))
1367		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1368}
1369
1370static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1371{
1372	/* We come here after udp_lib_checksum_complete() returned 0.
1373	 * This means that __skb_checksum_complete() might have
1374	 * set skb->csum_valid to 1.
1375	 * On 64bit platforms, we can set csum_unnecessary
1376	 * to true, but only if the skb is not shared.
1377	 */
1378#if BITS_PER_LONG == 64
1379	if (!skb_shared(skb))
1380		udp_skb_scratch(skb)->csum_unnecessary = true;
1381#endif
1382}
1383
1384static int udp_skb_truesize(struct sk_buff *skb)
1385{
1386	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1387}
1388
1389static bool udp_skb_has_head_state(struct sk_buff *skb)
1390{
1391	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1392}
1393
1394/* fully reclaim rmem/fwd memory allocated for skb */
1395static void udp_rmem_release(struct sock *sk, int size, int partial,
1396			     bool rx_queue_lock_held)
1397{
1398	struct udp_sock *up = udp_sk(sk);
1399	struct sk_buff_head *sk_queue;
1400	int amt;
1401
1402	if (likely(partial)) {
1403		up->forward_deficit += size;
1404		size = up->forward_deficit;
1405		if (size < READ_ONCE(up->forward_threshold) &&
1406		    !skb_queue_empty(&up->reader_queue))
1407			return;
1408	} else {
1409		size += up->forward_deficit;
1410	}
1411	up->forward_deficit = 0;
1412
1413	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1414	 * if the called don't held it already
1415	 */
1416	sk_queue = &sk->sk_receive_queue;
1417	if (!rx_queue_lock_held)
1418		spin_lock(&sk_queue->lock);
1419
1420
1421	sk_forward_alloc_add(sk, size);
1422	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1423	sk_forward_alloc_add(sk, -amt);
1424
1425	if (amt)
1426		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1427
1428	atomic_sub(size, &sk->sk_rmem_alloc);
1429
1430	/* this can save us from acquiring the rx queue lock on next receive */
1431	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1432
1433	if (!rx_queue_lock_held)
1434		spin_unlock(&sk_queue->lock);
1435}
1436
1437/* Note: called with reader_queue.lock held.
1438 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1439 * This avoids a cache line miss while receive_queue lock is held.
1440 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1441 */
1442void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1443{
1444	prefetch(&skb->data);
1445	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1446}
1447EXPORT_SYMBOL(udp_skb_destructor);
1448
1449/* as above, but the caller held the rx queue lock, too */
1450static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1451{
1452	prefetch(&skb->data);
1453	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1454}
1455
1456/* Idea of busylocks is to let producers grab an extra spinlock
1457 * to relieve pressure on the receive_queue spinlock shared by consumer.
1458 * Under flood, this means that only one producer can be in line
1459 * trying to acquire the receive_queue spinlock.
1460 * These busylock can be allocated on a per cpu manner, instead of a
1461 * per socket one (that would consume a cache line per socket)
1462 */
1463static int udp_busylocks_log __read_mostly;
1464static spinlock_t *udp_busylocks __read_mostly;
1465
1466static spinlock_t *busylock_acquire(void *ptr)
1467{
1468	spinlock_t *busy;
1469
1470	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1471	spin_lock(busy);
1472	return busy;
1473}
1474
1475static void busylock_release(spinlock_t *busy)
1476{
1477	if (busy)
1478		spin_unlock(busy);
1479}
1480
1481static int udp_rmem_schedule(struct sock *sk, int size)
1482{
1483	int delta;
1484
1485	delta = size - sk->sk_forward_alloc;
1486	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1487		return -ENOBUFS;
1488
1489	return 0;
1490}
1491
1492int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1493{
1494	struct sk_buff_head *list = &sk->sk_receive_queue;
1495	int rmem, err = -ENOMEM;
1496	spinlock_t *busy = NULL;
1497	int size;
1498
1499	/* try to avoid the costly atomic add/sub pair when the receive
1500	 * queue is full; always allow at least a packet
1501	 */
1502	rmem = atomic_read(&sk->sk_rmem_alloc);
1503	if (rmem > sk->sk_rcvbuf)
1504		goto drop;
1505
1506	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1507	 * having linear skbs :
1508	 * - Reduce memory overhead and thus increase receive queue capacity
1509	 * - Less cache line misses at copyout() time
1510	 * - Less work at consume_skb() (less alien page frag freeing)
1511	 */
1512	if (rmem > (sk->sk_rcvbuf >> 1)) {
1513		skb_condense(skb);
1514
1515		busy = busylock_acquire(sk);
1516	}
1517	size = skb->truesize;
1518	udp_set_dev_scratch(skb);
1519
1520	/* we drop only if the receive buf is full and the receive
1521	 * queue contains some other skb
1522	 */
1523	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1524	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1525		goto uncharge_drop;
1526
1527	spin_lock(&list->lock);
1528	err = udp_rmem_schedule(sk, size);
1529	if (err) {
1530		spin_unlock(&list->lock);
1531		goto uncharge_drop;
 
 
 
 
 
 
1532	}
1533
1534	sk_forward_alloc_add(sk, -size);
1535
1536	/* no need to setup a destructor, we will explicitly release the
1537	 * forward allocated memory on dequeue
1538	 */
1539	sock_skb_set_dropcount(sk, skb);
1540
1541	__skb_queue_tail(list, skb);
1542	spin_unlock(&list->lock);
1543
1544	if (!sock_flag(sk, SOCK_DEAD))
1545		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1546
1547	busylock_release(busy);
1548	return 0;
1549
1550uncharge_drop:
1551	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1552
1553drop:
1554	atomic_inc(&sk->sk_drops);
1555	busylock_release(busy);
1556	return err;
1557}
1558EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1559
1560void udp_destruct_common(struct sock *sk)
1561{
1562	/* reclaim completely the forward allocated memory */
1563	struct udp_sock *up = udp_sk(sk);
1564	unsigned int total = 0;
1565	struct sk_buff *skb;
1566
1567	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1568	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1569		total += skb->truesize;
1570		kfree_skb(skb);
1571	}
1572	udp_rmem_release(sk, total, 0, true);
1573}
1574EXPORT_SYMBOL_GPL(udp_destruct_common);
1575
1576static void udp_destruct_sock(struct sock *sk)
1577{
1578	udp_destruct_common(sk);
1579	inet_sock_destruct(sk);
1580}
 
1581
1582int udp_init_sock(struct sock *sk)
1583{
1584	udp_lib_init_sock(sk);
1585	sk->sk_destruct = udp_destruct_sock;
1586	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1587	return 0;
1588}
 
1589
1590void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1591{
1592	sk_peek_offset_bwd(sk, len);
 
 
 
 
 
1593
1594	if (!skb_unref(skb))
1595		return;
1596
1597	/* In the more common cases we cleared the head states previously,
1598	 * see __udp_queue_rcv_skb().
1599	 */
1600	if (unlikely(udp_skb_has_head_state(skb)))
1601		skb_release_head_state(skb);
1602	__consume_stateless_skb(skb);
1603}
1604EXPORT_SYMBOL_GPL(skb_consume_udp);
1605
1606static struct sk_buff *__first_packet_length(struct sock *sk,
1607					     struct sk_buff_head *rcvq,
1608					     int *total)
1609{
1610	struct sk_buff *skb;
1611
1612	while ((skb = skb_peek(rcvq)) != NULL) {
1613		if (udp_lib_checksum_complete(skb)) {
1614			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1615					IS_UDPLITE(sk));
1616			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1617					IS_UDPLITE(sk));
1618			atomic_inc(&sk->sk_drops);
1619			__skb_unlink(skb, rcvq);
1620			*total += skb->truesize;
1621			kfree_skb(skb);
1622		} else {
1623			udp_skb_csum_unnecessary_set(skb);
1624			break;
1625		}
1626	}
1627	return skb;
1628}
1629
1630/**
1631 *	first_packet_length	- return length of first packet in receive queue
1632 *	@sk: socket
1633 *
1634 *	Drops all bad checksum frames, until a valid one is found.
1635 *	Returns the length of found skb, or -1 if none is found.
1636 */
1637static int first_packet_length(struct sock *sk)
1638{
1639	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1640	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1641	struct sk_buff *skb;
1642	int total = 0;
1643	int res;
1644
1645	spin_lock_bh(&rcvq->lock);
1646	skb = __first_packet_length(sk, rcvq, &total);
1647	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1648		spin_lock(&sk_queue->lock);
1649		skb_queue_splice_tail_init(sk_queue, rcvq);
1650		spin_unlock(&sk_queue->lock);
1651
1652		skb = __first_packet_length(sk, rcvq, &total);
1653	}
1654	res = skb ? skb->len : -1;
1655	if (total)
1656		udp_rmem_release(sk, total, 1, false);
1657	spin_unlock_bh(&rcvq->lock);
1658	return res;
1659}
1660
1661/*
1662 *	IOCTL requests applicable to the UDP protocol
1663 */
1664
1665int udp_ioctl(struct sock *sk, int cmd, int *karg)
1666{
1667	switch (cmd) {
1668	case SIOCOUTQ:
1669	{
1670		*karg = sk_wmem_alloc_get(sk);
1671		return 0;
 
1672	}
1673
1674	case SIOCINQ:
1675	{
1676		*karg = max_t(int, 0, first_packet_length(sk));
1677		return 0;
 
1678	}
1679
1680	default:
1681		return -ENOIOCTLCMD;
1682	}
1683
1684	return 0;
1685}
1686EXPORT_SYMBOL(udp_ioctl);
1687
1688struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1689			       int *off, int *err)
1690{
1691	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1692	struct sk_buff_head *queue;
1693	struct sk_buff *last;
1694	long timeo;
1695	int error;
1696
1697	queue = &udp_sk(sk)->reader_queue;
 
1698	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1699	do {
1700		struct sk_buff *skb;
1701
1702		error = sock_error(sk);
1703		if (error)
1704			break;
1705
1706		error = -EAGAIN;
1707		do {
1708			spin_lock_bh(&queue->lock);
1709			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1710							err, &last);
1711			if (skb) {
1712				if (!(flags & MSG_PEEK))
1713					udp_skb_destructor(sk, skb);
1714				spin_unlock_bh(&queue->lock);
1715				return skb;
1716			}
1717
1718			if (skb_queue_empty_lockless(sk_queue)) {
1719				spin_unlock_bh(&queue->lock);
1720				goto busy_check;
1721			}
1722
1723			/* refill the reader queue and walk it again
1724			 * keep both queues locked to avoid re-acquiring
1725			 * the sk_receive_queue lock if fwd memory scheduling
1726			 * is needed.
1727			 */
1728			spin_lock(&sk_queue->lock);
1729			skb_queue_splice_tail_init(sk_queue, queue);
1730
1731			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1732							err, &last);
1733			if (skb && !(flags & MSG_PEEK))
1734				udp_skb_dtor_locked(sk, skb);
1735			spin_unlock(&sk_queue->lock);
1736			spin_unlock_bh(&queue->lock);
1737			if (skb)
1738				return skb;
1739
1740busy_check:
1741			if (!sk_can_busy_loop(sk))
1742				break;
1743
1744			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1745		} while (!skb_queue_empty_lockless(sk_queue));
1746
1747		/* sk_queue is empty, reader_queue may contain peeked packets */
1748	} while (timeo &&
1749		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1750					      &error, &timeo,
1751					      (struct sk_buff *)sk_queue));
1752
1753	*err = error;
1754	return NULL;
1755}
1756EXPORT_SYMBOL(__skb_recv_udp);
1757
1758int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
 
1759{
1760	struct sk_buff *skb;
1761	int err;
1762
1763try_again:
1764	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1765	if (!skb)
1766		return err;
1767
1768	if (udp_lib_checksum_complete(skb)) {
1769		int is_udplite = IS_UDPLITE(sk);
1770		struct net *net = sock_net(sk);
 
 
 
 
 
 
 
 
 
1771
1772		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1773		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1774		atomic_inc(&sk->sk_drops);
1775		kfree_skb(skb);
1776		goto try_again;
 
1777	}
1778
1779	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1780	return recv_actor(sk, skb);
1781}
1782EXPORT_SYMBOL(udp_read_skb);
1783
1784/*
1785 * 	This should be easy, if there is something there we
1786 * 	return it, otherwise we block.
1787 */
1788
1789int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1790		int *addr_len)
1791{
1792	struct inet_sock *inet = inet_sk(sk);
1793	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1794	struct sk_buff *skb;
1795	unsigned int ulen, copied;
1796	int off, err, peeking = flags & MSG_PEEK;
1797	int is_udplite = IS_UDPLITE(sk);
1798	bool checksum_valid = false;
1799
1800	if (flags & MSG_ERRQUEUE)
1801		return ip_recv_error(sk, msg, len, addr_len);
1802
1803try_again:
1804	off = sk_peek_offset(sk, flags);
1805	skb = __skb_recv_udp(sk, flags, &off, &err);
1806	if (!skb)
1807		return err;
1808
1809	ulen = udp_skb_len(skb);
1810	copied = len;
1811	if (copied > ulen - off)
1812		copied = ulen - off;
1813	else if (copied < ulen)
1814		msg->msg_flags |= MSG_TRUNC;
1815
1816	/*
1817	 * If checksum is needed at all, try to do it while copying the
1818	 * data.  If the data is truncated, or if we only want a partial
1819	 * coverage checksum (UDP-Lite), do it before the copy.
1820	 */
1821
1822	if (copied < ulen || peeking ||
1823	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1824		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1825				!__udp_lib_checksum_complete(skb);
1826		if (!checksum_valid)
1827			goto csum_copy_err;
1828	}
1829
1830	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1831		if (udp_skb_is_linear(skb))
1832			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1833		else
1834			err = skb_copy_datagram_msg(skb, off, msg, copied);
1835	} else {
1836		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1837
1838		if (err == -EINVAL)
1839			goto csum_copy_err;
1840	}
1841
1842	if (unlikely(err)) {
1843		if (!peeking) {
1844			atomic_inc(&sk->sk_drops);
1845			UDP_INC_STATS(sock_net(sk),
1846				      UDP_MIB_INERRORS, is_udplite);
1847		}
1848		kfree_skb(skb);
1849		return err;
1850	}
1851
1852	if (!peeking)
1853		UDP_INC_STATS(sock_net(sk),
1854			      UDP_MIB_INDATAGRAMS, is_udplite);
1855
1856	sock_recv_cmsgs(msg, sk, skb);
1857
1858	/* Copy the address. */
1859	if (sin) {
1860		sin->sin_family = AF_INET;
1861		sin->sin_port = udp_hdr(skb)->source;
1862		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1863		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1864		*addr_len = sizeof(*sin);
1865
1866		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1867						      (struct sockaddr *)sin,
1868						      addr_len);
1869	}
1870
1871	if (udp_test_bit(GRO_ENABLED, sk))
1872		udp_cmsg_recv(msg, sk, skb);
1873
1874	if (inet_cmsg_flags(inet))
1875		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1876
1877	err = copied;
1878	if (flags & MSG_TRUNC)
1879		err = ulen;
1880
1881	skb_consume_udp(sk, skb, peeking ? -err : err);
1882	return err;
1883
1884csum_copy_err:
1885	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1886				 udp_skb_destructor)) {
1887		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1888		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1889	}
1890	kfree_skb(skb);
1891
1892	/* starting over for a new packet, but check if we need to yield */
1893	cond_resched();
1894	msg->msg_flags &= ~MSG_TRUNC;
1895	goto try_again;
1896}
1897
1898int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1899{
1900	/* This check is replicated from __ip4_datagram_connect() and
1901	 * intended to prevent BPF program called below from accessing bytes
1902	 * that are out of the bound specified by user in addr_len.
1903	 */
1904	if (addr_len < sizeof(struct sockaddr_in))
1905		return -EINVAL;
1906
1907	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1908}
1909EXPORT_SYMBOL(udp_pre_connect);
1910
1911int __udp_disconnect(struct sock *sk, int flags)
1912{
1913	struct inet_sock *inet = inet_sk(sk);
1914	/*
1915	 *	1003.1g - break association.
1916	 */
1917
1918	sk->sk_state = TCP_CLOSE;
1919	inet->inet_daddr = 0;
1920	inet->inet_dport = 0;
1921	sock_rps_reset_rxhash(sk);
1922	sk->sk_bound_dev_if = 0;
1923	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1924		inet_reset_saddr(sk);
1925		if (sk->sk_prot->rehash &&
1926		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1927			sk->sk_prot->rehash(sk);
1928	}
1929
1930	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1931		sk->sk_prot->unhash(sk);
1932		inet->inet_sport = 0;
1933	}
1934	sk_dst_reset(sk);
1935	return 0;
1936}
1937EXPORT_SYMBOL(__udp_disconnect);
1938
1939int udp_disconnect(struct sock *sk, int flags)
1940{
1941	lock_sock(sk);
1942	__udp_disconnect(sk, flags);
1943	release_sock(sk);
1944	return 0;
1945}
1946EXPORT_SYMBOL(udp_disconnect);
1947
1948void udp_lib_unhash(struct sock *sk)
1949{
1950	if (sk_hashed(sk)) {
1951		struct udp_table *udptable = udp_get_table_prot(sk);
1952		struct udp_hslot *hslot, *hslot2;
1953
1954		hslot  = udp_hashslot(udptable, sock_net(sk),
1955				      udp_sk(sk)->udp_port_hash);
1956		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1957
1958		spin_lock_bh(&hslot->lock);
1959		if (rcu_access_pointer(sk->sk_reuseport_cb))
1960			reuseport_detach_sock(sk);
1961		if (sk_del_node_init_rcu(sk)) {
1962			hslot->count--;
1963			inet_sk(sk)->inet_num = 0;
1964			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1965
1966			spin_lock(&hslot2->lock);
1967			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1968			hslot2->count--;
1969			spin_unlock(&hslot2->lock);
1970		}
1971		spin_unlock_bh(&hslot->lock);
1972	}
1973}
1974EXPORT_SYMBOL(udp_lib_unhash);
1975
1976/*
1977 * inet_rcv_saddr was changed, we must rehash secondary hash
1978 */
1979void udp_lib_rehash(struct sock *sk, u16 newhash)
1980{
1981	if (sk_hashed(sk)) {
1982		struct udp_table *udptable = udp_get_table_prot(sk);
1983		struct udp_hslot *hslot, *hslot2, *nhslot2;
1984
1985		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1986		nhslot2 = udp_hashslot2(udptable, newhash);
1987		udp_sk(sk)->udp_portaddr_hash = newhash;
1988
1989		if (hslot2 != nhslot2 ||
1990		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1991			hslot = udp_hashslot(udptable, sock_net(sk),
1992					     udp_sk(sk)->udp_port_hash);
1993			/* we must lock primary chain too */
1994			spin_lock_bh(&hslot->lock);
1995			if (rcu_access_pointer(sk->sk_reuseport_cb))
1996				reuseport_detach_sock(sk);
1997
1998			if (hslot2 != nhslot2) {
1999				spin_lock(&hslot2->lock);
2000				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2001				hslot2->count--;
2002				spin_unlock(&hslot2->lock);
2003
2004				spin_lock(&nhslot2->lock);
2005				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2006							 &nhslot2->head);
2007				nhslot2->count++;
2008				spin_unlock(&nhslot2->lock);
2009			}
2010
2011			spin_unlock_bh(&hslot->lock);
2012		}
2013	}
2014}
2015EXPORT_SYMBOL(udp_lib_rehash);
2016
2017void udp_v4_rehash(struct sock *sk)
2018{
2019	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2020					  inet_sk(sk)->inet_rcv_saddr,
2021					  inet_sk(sk)->inet_num);
2022	udp_lib_rehash(sk, new_hash);
2023}
2024
2025static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2026{
2027	int rc;
2028
2029	if (inet_sk(sk)->inet_daddr) {
2030		sock_rps_save_rxhash(sk, skb);
2031		sk_mark_napi_id(sk, skb);
2032		sk_incoming_cpu_update(sk);
2033	} else {
2034		sk_mark_napi_id_once(sk, skb);
2035	}
2036
2037	rc = __udp_enqueue_schedule_skb(sk, skb);
2038	if (rc < 0) {
2039		int is_udplite = IS_UDPLITE(sk);
2040		int drop_reason;
2041
2042		/* Note that an ENOMEM error is charged twice */
2043		if (rc == -ENOMEM) {
2044			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2045					is_udplite);
2046			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2047		} else {
2048			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2049				      is_udplite);
2050			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2051		}
2052		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2053		kfree_skb_reason(skb, drop_reason);
2054		trace_udp_fail_queue_rcv_skb(rc, sk);
2055		return -1;
2056	}
2057
2058	return 0;
2059}
2060
2061/* returns:
2062 *  -1: error
2063 *   0: success
2064 *  >0: "udp encap" protocol resubmission
2065 *
2066 * Note that in the success and error cases, the skb is assumed to
2067 * have either been requeued or freed.
2068 */
2069static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2070{
2071	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2072	struct udp_sock *up = udp_sk(sk);
2073	int is_udplite = IS_UDPLITE(sk);
2074
2075	/*
2076	 *	Charge it to the socket, dropping if the queue is full.
2077	 */
2078	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2079		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2080		goto drop;
2081	}
2082	nf_reset_ct(skb);
2083
2084	if (static_branch_unlikely(&udp_encap_needed_key) &&
2085	    READ_ONCE(up->encap_type)) {
2086		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2087
2088		/*
2089		 * This is an encapsulation socket so pass the skb to
2090		 * the socket's udp_encap_rcv() hook. Otherwise, just
2091		 * fall through and pass this up the UDP socket.
2092		 * up->encap_rcv() returns the following value:
2093		 * =0 if skb was successfully passed to the encap
2094		 *    handler or was discarded by it.
2095		 * >0 if skb should be passed on to UDP.
2096		 * <0 if skb should be resubmitted as proto -N
2097		 */
2098
2099		/* if we're overly short, let UDP handle it */
2100		encap_rcv = READ_ONCE(up->encap_rcv);
2101		if (encap_rcv) {
2102			int ret;
2103
2104			/* Verify checksum before giving to encap */
2105			if (udp_lib_checksum_complete(skb))
2106				goto csum_error;
2107
2108			ret = encap_rcv(sk, skb);
2109			if (ret <= 0) {
2110				__UDP_INC_STATS(sock_net(sk),
2111						UDP_MIB_INDATAGRAMS,
2112						is_udplite);
2113				return -ret;
2114			}
2115		}
2116
2117		/* FALLTHROUGH -- it's a UDP Packet */
2118	}
2119
2120	/*
2121	 * 	UDP-Lite specific tests, ignored on UDP sockets
2122	 */
2123	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2124		u16 pcrlen = READ_ONCE(up->pcrlen);
2125
2126		/*
2127		 * MIB statistics other than incrementing the error count are
2128		 * disabled for the following two types of errors: these depend
2129		 * on the application settings, not on the functioning of the
2130		 * protocol stack as such.
2131		 *
2132		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2133		 * way ... to ... at least let the receiving application block
2134		 * delivery of packets with coverage values less than a value
2135		 * provided by the application."
2136		 */
2137		if (pcrlen == 0) {          /* full coverage was set  */
2138			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2139					    UDP_SKB_CB(skb)->cscov, skb->len);
2140			goto drop;
2141		}
2142		/* The next case involves violating the min. coverage requested
2143		 * by the receiver. This is subtle: if receiver wants x and x is
2144		 * greater than the buffersize/MTU then receiver will complain
2145		 * that it wants x while sender emits packets of smaller size y.
2146		 * Therefore the above ...()->partial_cov statement is essential.
2147		 */
2148		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2149			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2150					    UDP_SKB_CB(skb)->cscov, pcrlen);
2151			goto drop;
2152		}
2153	}
2154
2155	prefetch(&sk->sk_rmem_alloc);
2156	if (rcu_access_pointer(sk->sk_filter) &&
2157	    udp_lib_checksum_complete(skb))
2158			goto csum_error;
2159
2160	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2161		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2162		goto drop;
2163	}
2164
2165	udp_csum_pull_header(skb);
2166
2167	ipv4_pktinfo_prepare(sk, skb, true);
2168	return __udp_queue_rcv_skb(sk, skb);
2169
2170csum_error:
2171	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2172	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2173drop:
2174	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2175	atomic_inc(&sk->sk_drops);
2176	kfree_skb_reason(skb, drop_reason);
2177	return -1;
2178}
2179
2180static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2181{
2182	struct sk_buff *next, *segs;
2183	int ret;
2184
2185	if (likely(!udp_unexpected_gso(sk, skb)))
2186		return udp_queue_rcv_one_skb(sk, skb);
2187
2188	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2189	__skb_push(skb, -skb_mac_offset(skb));
2190	segs = udp_rcv_segment(sk, skb, true);
2191	skb_list_walk_safe(segs, skb, next) {
2192		__skb_pull(skb, skb_transport_offset(skb));
2193
2194		udp_post_segment_fix_csum(skb);
2195		ret = udp_queue_rcv_one_skb(sk, skb);
2196		if (ret > 0)
2197			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2198	}
2199	return 0;
2200}
2201
2202/* For TCP sockets, sk_rx_dst is protected by socket lock
2203 * For UDP, we use xchg() to guard against concurrent changes.
2204 */
2205bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2206{
2207	struct dst_entry *old;
2208
2209	if (dst_hold_safe(dst)) {
2210		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2211		dst_release(old);
2212		return old != dst;
2213	}
2214	return false;
2215}
2216EXPORT_SYMBOL(udp_sk_rx_dst_set);
2217
2218/*
2219 *	Multicasts and broadcasts go to each listener.
2220 *
2221 *	Note: called only from the BH handler context.
2222 */
2223static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2224				    struct udphdr  *uh,
2225				    __be32 saddr, __be32 daddr,
2226				    struct udp_table *udptable,
2227				    int proto)
2228{
2229	struct sock *sk, *first = NULL;
2230	unsigned short hnum = ntohs(uh->dest);
2231	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2232	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2233	unsigned int offset = offsetof(typeof(*sk), sk_node);
2234	int dif = skb->dev->ifindex;
2235	int sdif = inet_sdif(skb);
2236	struct hlist_node *node;
2237	struct sk_buff *nskb;
2238
2239	if (use_hash2) {
2240		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2241			    udptable->mask;
2242		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2243start_lookup:
2244		hslot = &udptable->hash2[hash2];
2245		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2246	}
2247
2248	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2249		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2250					 uh->source, saddr, dif, sdif, hnum))
2251			continue;
2252
2253		if (!first) {
2254			first = sk;
2255			continue;
2256		}
2257		nskb = skb_clone(skb, GFP_ATOMIC);
2258
2259		if (unlikely(!nskb)) {
2260			atomic_inc(&sk->sk_drops);
2261			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2262					IS_UDPLITE(sk));
2263			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2264					IS_UDPLITE(sk));
2265			continue;
2266		}
2267		if (udp_queue_rcv_skb(sk, nskb) > 0)
2268			consume_skb(nskb);
2269	}
2270
2271	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2272	if (use_hash2 && hash2 != hash2_any) {
2273		hash2 = hash2_any;
2274		goto start_lookup;
2275	}
2276
2277	if (first) {
2278		if (udp_queue_rcv_skb(first, skb) > 0)
2279			consume_skb(skb);
2280	} else {
2281		kfree_skb(skb);
2282		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2283				proto == IPPROTO_UDPLITE);
2284	}
2285	return 0;
2286}
2287
2288/* Initialize UDP checksum. If exited with zero value (success),
2289 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2290 * Otherwise, csum completion requires checksumming packet body,
2291 * including udp header and folding it to skb->csum.
2292 */
2293static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2294				 int proto)
2295{
2296	int err;
2297
2298	UDP_SKB_CB(skb)->partial_cov = 0;
2299	UDP_SKB_CB(skb)->cscov = skb->len;
2300
2301	if (proto == IPPROTO_UDPLITE) {
2302		err = udplite_checksum_init(skb, uh);
2303		if (err)
2304			return err;
2305
2306		if (UDP_SKB_CB(skb)->partial_cov) {
2307			skb->csum = inet_compute_pseudo(skb, proto);
2308			return 0;
2309		}
2310	}
2311
2312	/* Note, we are only interested in != 0 or == 0, thus the
2313	 * force to int.
2314	 */
2315	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2316							inet_compute_pseudo);
2317	if (err)
2318		return err;
2319
2320	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2321		/* If SW calculated the value, we know it's bad */
2322		if (skb->csum_complete_sw)
2323			return 1;
2324
2325		/* HW says the value is bad. Let's validate that.
2326		 * skb->csum is no longer the full packet checksum,
2327		 * so don't treat it as such.
2328		 */
2329		skb_checksum_complete_unset(skb);
2330	}
2331
2332	return 0;
2333}
2334
2335/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2336 * return code conversion for ip layer consumption
2337 */
2338static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2339			       struct udphdr *uh)
2340{
2341	int ret;
2342
2343	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2344		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2345
2346	ret = udp_queue_rcv_skb(sk, skb);
2347
2348	/* a return value > 0 means to resubmit the input, but
2349	 * it wants the return to be -protocol, or 0
2350	 */
2351	if (ret > 0)
2352		return -ret;
2353	return 0;
2354}
2355
2356/*
2357 *	All we need to do is get the socket, and then do a checksum.
2358 */
2359
2360int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2361		   int proto)
2362{
2363	struct sock *sk;
2364	struct udphdr *uh;
2365	unsigned short ulen;
2366	struct rtable *rt = skb_rtable(skb);
2367	__be32 saddr, daddr;
2368	struct net *net = dev_net(skb->dev);
2369	bool refcounted;
2370	int drop_reason;
2371
2372	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2373
2374	/*
2375	 *  Validate the packet.
2376	 */
2377	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2378		goto drop;		/* No space for header. */
2379
2380	uh   = udp_hdr(skb);
2381	ulen = ntohs(uh->len);
2382	saddr = ip_hdr(skb)->saddr;
2383	daddr = ip_hdr(skb)->daddr;
2384
2385	if (ulen > skb->len)
2386		goto short_packet;
2387
2388	if (proto == IPPROTO_UDP) {
2389		/* UDP validates ulen. */
2390		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2391			goto short_packet;
2392		uh = udp_hdr(skb);
2393	}
2394
2395	if (udp4_csum_init(skb, uh, proto))
2396		goto csum_error;
2397
2398	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2399			     &refcounted, udp_ehashfn);
2400	if (IS_ERR(sk))
2401		goto no_sk;
2402
2403	if (sk) {
2404		struct dst_entry *dst = skb_dst(skb);
2405		int ret;
2406
2407		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2408			udp_sk_rx_dst_set(sk, dst);
2409
2410		ret = udp_unicast_rcv_skb(sk, skb, uh);
2411		if (refcounted)
2412			sock_put(sk);
2413		return ret;
2414	}
2415
2416	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2417		return __udp4_lib_mcast_deliver(net, skb, uh,
2418						saddr, daddr, udptable, proto);
2419
2420	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2421	if (sk)
2422		return udp_unicast_rcv_skb(sk, skb, uh);
2423no_sk:
2424	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2425		goto drop;
2426	nf_reset_ct(skb);
2427
2428	/* No socket. Drop packet silently, if checksum is wrong */
2429	if (udp_lib_checksum_complete(skb))
2430		goto csum_error;
2431
2432	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2433	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2434	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2435
2436	/*
2437	 * Hmm.  We got an UDP packet to a port to which we
2438	 * don't wanna listen.  Ignore it.
2439	 */
2440	kfree_skb_reason(skb, drop_reason);
2441	return 0;
2442
2443short_packet:
2444	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2445	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2446			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2447			    &saddr, ntohs(uh->source),
2448			    ulen, skb->len,
2449			    &daddr, ntohs(uh->dest));
2450	goto drop;
2451
2452csum_error:
2453	/*
2454	 * RFC1122: OK.  Discards the bad packet silently (as far as
2455	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2456	 */
2457	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2458	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2459			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2460			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2461			    ulen);
2462	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2463drop:
2464	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2465	kfree_skb_reason(skb, drop_reason);
2466	return 0;
2467}
2468
2469/* We can only early demux multicast if there is a single matching socket.
2470 * If more than one socket found returns NULL
2471 */
2472static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2473						  __be16 loc_port, __be32 loc_addr,
2474						  __be16 rmt_port, __be32 rmt_addr,
2475						  int dif, int sdif)
2476{
2477	struct udp_table *udptable = net->ipv4.udp_table;
2478	unsigned short hnum = ntohs(loc_port);
2479	struct sock *sk, *result;
2480	struct udp_hslot *hslot;
2481	unsigned int slot;
2482
2483	slot = udp_hashfn(net, hnum, udptable->mask);
2484	hslot = &udptable->hash[slot];
2485
2486	/* Do not bother scanning a too big list */
2487	if (hslot->count > 10)
2488		return NULL;
2489
2490	result = NULL;
2491	sk_for_each_rcu(sk, &hslot->head) {
2492		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2493					rmt_port, rmt_addr, dif, sdif, hnum)) {
2494			if (result)
2495				return NULL;
2496			result = sk;
2497		}
2498	}
2499
2500	return result;
2501}
2502
2503/* For unicast we should only early demux connected sockets or we can
2504 * break forwarding setups.  The chains here can be long so only check
2505 * if the first socket is an exact match and if not move on.
2506 */
2507static struct sock *__udp4_lib_demux_lookup(struct net *net,
2508					    __be16 loc_port, __be32 loc_addr,
2509					    __be16 rmt_port, __be32 rmt_addr,
2510					    int dif, int sdif)
2511{
2512	struct udp_table *udptable = net->ipv4.udp_table;
 
 
 
2513	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2514	unsigned short hnum = ntohs(loc_port);
2515	unsigned int hash2, slot2;
2516	struct udp_hslot *hslot2;
2517	__portpair ports;
2518	struct sock *sk;
2519
2520	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2521	slot2 = hash2 & udptable->mask;
2522	hslot2 = &udptable->hash2[slot2];
2523	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2524
2525	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2526		if (inet_match(net, sk, acookie, ports, dif, sdif))
 
2527			return sk;
2528		/* Only check first socket in chain */
2529		break;
2530	}
2531	return NULL;
2532}
2533
2534int udp_v4_early_demux(struct sk_buff *skb)
2535{
2536	struct net *net = dev_net(skb->dev);
2537	struct in_device *in_dev = NULL;
2538	const struct iphdr *iph;
2539	const struct udphdr *uh;
2540	struct sock *sk = NULL;
2541	struct dst_entry *dst;
2542	int dif = skb->dev->ifindex;
2543	int sdif = inet_sdif(skb);
2544	int ours;
2545
2546	/* validate the packet */
2547	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2548		return 0;
2549
2550	iph = ip_hdr(skb);
2551	uh = udp_hdr(skb);
2552
2553	if (skb->pkt_type == PACKET_MULTICAST) {
2554		in_dev = __in_dev_get_rcu(skb->dev);
2555
2556		if (!in_dev)
2557			return 0;
2558
2559		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2560				       iph->protocol);
2561		if (!ours)
2562			return 0;
2563
2564		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2565						   uh->source, iph->saddr,
2566						   dif, sdif);
2567	} else if (skb->pkt_type == PACKET_HOST) {
2568		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2569					     uh->source, iph->saddr, dif, sdif);
2570	}
2571
2572	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2573		return 0;
2574
2575	skb->sk = sk;
2576	skb->destructor = sock_efree;
2577	dst = rcu_dereference(sk->sk_rx_dst);
2578
2579	if (dst)
2580		dst = dst_check(dst, 0);
2581	if (dst) {
2582		u32 itag = 0;
2583
2584		/* set noref for now.
2585		 * any place which wants to hold dst has to call
2586		 * dst_hold_safe()
2587		 */
2588		skb_dst_set_noref(skb, dst);
2589
2590		/* for unconnected multicast sockets we need to validate
2591		 * the source on each packet
2592		 */
2593		if (!inet_sk(sk)->inet_daddr && in_dev)
2594			return ip_mc_validate_source(skb, iph->daddr,
2595						     iph->saddr,
2596						     iph->tos & IPTOS_RT_MASK,
2597						     skb->dev, in_dev, &itag);
2598	}
2599	return 0;
2600}
2601
2602int udp_rcv(struct sk_buff *skb)
2603{
2604	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2605}
2606
2607void udp_destroy_sock(struct sock *sk)
2608{
2609	struct udp_sock *up = udp_sk(sk);
2610	bool slow = lock_sock_fast(sk);
2611
2612	/* protects from races with udp_abort() */
2613	sock_set_flag(sk, SOCK_DEAD);
2614	udp_flush_pending_frames(sk);
2615	unlock_sock_fast(sk, slow);
2616	if (static_branch_unlikely(&udp_encap_needed_key)) {
2617		if (up->encap_type) {
2618			void (*encap_destroy)(struct sock *sk);
2619			encap_destroy = READ_ONCE(up->encap_destroy);
2620			if (encap_destroy)
2621				encap_destroy(sk);
2622		}
2623		if (udp_test_bit(ENCAP_ENABLED, sk))
2624			static_branch_dec(&udp_encap_needed_key);
2625	}
2626}
2627
2628static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2629				       struct sock *sk)
2630{
2631#ifdef CONFIG_XFRM
2632	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2633		if (family == AF_INET)
2634			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2635		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2636			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2637	}
2638#endif
2639}
2640
2641/*
2642 *	Socket option code for UDP
2643 */
2644int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2645		       sockptr_t optval, unsigned int optlen,
2646		       int (*push_pending_frames)(struct sock *))
2647{
2648	struct udp_sock *up = udp_sk(sk);
2649	int val, valbool;
2650	int err = 0;
2651	int is_udplite = IS_UDPLITE(sk);
2652
2653	if (level == SOL_SOCKET) {
2654		err = sk_setsockopt(sk, level, optname, optval, optlen);
2655
2656		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2657			sockopt_lock_sock(sk);
2658			/* paired with READ_ONCE in udp_rmem_release() */
2659			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2660			sockopt_release_sock(sk);
2661		}
2662		return err;
2663	}
2664
2665	if (optlen < sizeof(int))
2666		return -EINVAL;
2667
2668	if (copy_from_sockptr(&val, optval, sizeof(val)))
2669		return -EFAULT;
2670
2671	valbool = val ? 1 : 0;
2672
2673	switch (optname) {
2674	case UDP_CORK:
2675		if (val != 0) {
2676			udp_set_bit(CORK, sk);
2677		} else {
2678			udp_clear_bit(CORK, sk);
2679			lock_sock(sk);
2680			push_pending_frames(sk);
2681			release_sock(sk);
2682		}
2683		break;
2684
2685	case UDP_ENCAP:
2686		switch (val) {
2687		case 0:
2688#ifdef CONFIG_XFRM
2689		case UDP_ENCAP_ESPINUDP:
2690			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2691			fallthrough;
2692		case UDP_ENCAP_ESPINUDP_NON_IKE:
2693#if IS_ENABLED(CONFIG_IPV6)
2694			if (sk->sk_family == AF_INET6)
2695				WRITE_ONCE(up->encap_rcv,
2696					   ipv6_stub->xfrm6_udp_encap_rcv);
2697			else
2698#endif
2699				WRITE_ONCE(up->encap_rcv,
2700					   xfrm4_udp_encap_rcv);
2701#endif
2702			fallthrough;
2703		case UDP_ENCAP_L2TPINUDP:
2704			WRITE_ONCE(up->encap_type, val);
2705			udp_tunnel_encap_enable(sk);
 
 
2706			break;
2707		default:
2708			err = -ENOPROTOOPT;
2709			break;
2710		}
2711		break;
2712
2713	case UDP_NO_CHECK6_TX:
2714		udp_set_no_check6_tx(sk, valbool);
2715		break;
2716
2717	case UDP_NO_CHECK6_RX:
2718		udp_set_no_check6_rx(sk, valbool);
2719		break;
2720
2721	case UDP_SEGMENT:
2722		if (val < 0 || val > USHRT_MAX)
2723			return -EINVAL;
2724		WRITE_ONCE(up->gso_size, val);
2725		break;
2726
2727	case UDP_GRO:
 
2728
2729		/* when enabling GRO, accept the related GSO packet type */
2730		if (valbool)
2731			udp_tunnel_encap_enable(sk);
2732		udp_assign_bit(GRO_ENABLED, sk, valbool);
2733		udp_assign_bit(ACCEPT_L4, sk, valbool);
2734		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2735		break;
2736
2737	/*
2738	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2739	 */
2740	/* The sender sets actual checksum coverage length via this option.
2741	 * The case coverage > packet length is handled by send module. */
2742	case UDPLITE_SEND_CSCOV:
2743		if (!is_udplite)         /* Disable the option on UDP sockets */
2744			return -ENOPROTOOPT;
2745		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2746			val = 8;
2747		else if (val > USHRT_MAX)
2748			val = USHRT_MAX;
2749		WRITE_ONCE(up->pcslen, val);
2750		udp_set_bit(UDPLITE_SEND_CC, sk);
2751		break;
2752
2753	/* The receiver specifies a minimum checksum coverage value. To make
2754	 * sense, this should be set to at least 8 (as done below). If zero is
2755	 * used, this again means full checksum coverage.                     */
2756	case UDPLITE_RECV_CSCOV:
2757		if (!is_udplite)         /* Disable the option on UDP sockets */
2758			return -ENOPROTOOPT;
2759		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2760			val = 8;
2761		else if (val > USHRT_MAX)
2762			val = USHRT_MAX;
2763		WRITE_ONCE(up->pcrlen, val);
2764		udp_set_bit(UDPLITE_RECV_CC, sk);
2765		break;
2766
2767	default:
2768		err = -ENOPROTOOPT;
2769		break;
2770	}
2771
2772	return err;
2773}
2774EXPORT_SYMBOL(udp_lib_setsockopt);
2775
2776int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2777		   unsigned int optlen)
2778{
2779	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2780		return udp_lib_setsockopt(sk, level, optname,
2781					  optval, optlen,
2782					  udp_push_pending_frames);
2783	return ip_setsockopt(sk, level, optname, optval, optlen);
2784}
2785
2786int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2787		       char __user *optval, int __user *optlen)
2788{
2789	struct udp_sock *up = udp_sk(sk);
2790	int val, len;
2791
2792	if (get_user(len, optlen))
2793		return -EFAULT;
2794
2795	len = min_t(unsigned int, len, sizeof(int));
2796
2797	if (len < 0)
2798		return -EINVAL;
2799
2800	switch (optname) {
2801	case UDP_CORK:
2802		val = udp_test_bit(CORK, sk);
2803		break;
2804
2805	case UDP_ENCAP:
2806		val = READ_ONCE(up->encap_type);
2807		break;
2808
2809	case UDP_NO_CHECK6_TX:
2810		val = udp_get_no_check6_tx(sk);
2811		break;
2812
2813	case UDP_NO_CHECK6_RX:
2814		val = udp_get_no_check6_rx(sk);
2815		break;
2816
2817	case UDP_SEGMENT:
2818		val = READ_ONCE(up->gso_size);
2819		break;
2820
2821	case UDP_GRO:
2822		val = udp_test_bit(GRO_ENABLED, sk);
2823		break;
2824
2825	/* The following two cannot be changed on UDP sockets, the return is
2826	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2827	case UDPLITE_SEND_CSCOV:
2828		val = READ_ONCE(up->pcslen);
2829		break;
2830
2831	case UDPLITE_RECV_CSCOV:
2832		val = READ_ONCE(up->pcrlen);
2833		break;
2834
2835	default:
2836		return -ENOPROTOOPT;
2837	}
2838
2839	if (put_user(len, optlen))
2840		return -EFAULT;
2841	if (copy_to_user(optval, &val, len))
2842		return -EFAULT;
2843	return 0;
2844}
2845EXPORT_SYMBOL(udp_lib_getsockopt);
2846
2847int udp_getsockopt(struct sock *sk, int level, int optname,
2848		   char __user *optval, int __user *optlen)
2849{
2850	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2851		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2852	return ip_getsockopt(sk, level, optname, optval, optlen);
2853}
2854
2855/**
2856 * 	udp_poll - wait for a UDP event.
2857 *	@file: - file struct
2858 *	@sock: - socket
2859 *	@wait: - poll table
2860 *
2861 *	This is same as datagram poll, except for the special case of
2862 *	blocking sockets. If application is using a blocking fd
2863 *	and a packet with checksum error is in the queue;
2864 *	then it could get return from select indicating data available
2865 *	but then block when reading it. Add special case code
2866 *	to work around these arguably broken applications.
2867 */
2868__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2869{
2870	__poll_t mask = datagram_poll(file, sock, wait);
2871	struct sock *sk = sock->sk;
2872
2873	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2874		mask |= EPOLLIN | EPOLLRDNORM;
2875
2876	/* Check for false positives due to checksum errors */
2877	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2878	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2879		mask &= ~(EPOLLIN | EPOLLRDNORM);
2880
2881	/* psock ingress_msg queue should not contain any bad checksum frames */
2882	if (sk_is_readable(sk))
2883		mask |= EPOLLIN | EPOLLRDNORM;
2884	return mask;
2885
2886}
2887EXPORT_SYMBOL(udp_poll);
2888
2889int udp_abort(struct sock *sk, int err)
2890{
2891	if (!has_current_bpf_ctx())
2892		lock_sock(sk);
2893
2894	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2895	 * with close()
2896	 */
2897	if (sock_flag(sk, SOCK_DEAD))
2898		goto out;
2899
2900	sk->sk_err = err;
2901	sk_error_report(sk);
2902	__udp_disconnect(sk, 0);
2903
2904out:
2905	if (!has_current_bpf_ctx())
2906		release_sock(sk);
2907
2908	return 0;
2909}
2910EXPORT_SYMBOL_GPL(udp_abort);
2911
2912struct proto udp_prot = {
2913	.name			= "UDP",
2914	.owner			= THIS_MODULE,
2915	.close			= udp_lib_close,
2916	.pre_connect		= udp_pre_connect,
2917	.connect		= ip4_datagram_connect,
2918	.disconnect		= udp_disconnect,
2919	.ioctl			= udp_ioctl,
2920	.init			= udp_init_sock,
2921	.destroy		= udp_destroy_sock,
2922	.setsockopt		= udp_setsockopt,
2923	.getsockopt		= udp_getsockopt,
2924	.sendmsg		= udp_sendmsg,
2925	.recvmsg		= udp_recvmsg,
2926	.splice_eof		= udp_splice_eof,
2927	.release_cb		= ip4_datagram_release_cb,
2928	.hash			= udp_lib_hash,
2929	.unhash			= udp_lib_unhash,
2930	.rehash			= udp_v4_rehash,
2931	.get_port		= udp_v4_get_port,
2932	.put_port		= udp_lib_unhash,
2933#ifdef CONFIG_BPF_SYSCALL
2934	.psock_update_sk_prot	= udp_bpf_update_proto,
2935#endif
2936	.memory_allocated	= &udp_memory_allocated,
2937	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2938
2939	.sysctl_mem		= sysctl_udp_mem,
2940	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2941	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2942	.obj_size		= sizeof(struct udp_sock),
2943	.h.udp_table		= NULL,
2944	.diag_destroy		= udp_abort,
2945};
2946EXPORT_SYMBOL(udp_prot);
2947
2948/* ------------------------------------------------------------------------ */
2949#ifdef CONFIG_PROC_FS
2950
2951static unsigned short seq_file_family(const struct seq_file *seq);
2952static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2953{
2954	unsigned short family = seq_file_family(seq);
2955
2956	/* AF_UNSPEC is used as a match all */
2957	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2958		net_eq(sock_net(sk), seq_file_net(seq)));
2959}
2960
2961#ifdef CONFIG_BPF_SYSCALL
2962static const struct seq_operations bpf_iter_udp_seq_ops;
2963#endif
2964static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2965					   struct net *net)
2966{
2967	const struct udp_seq_afinfo *afinfo;
2968
2969#ifdef CONFIG_BPF_SYSCALL
2970	if (seq->op == &bpf_iter_udp_seq_ops)
2971		return net->ipv4.udp_table;
2972#endif
2973
2974	afinfo = pde_data(file_inode(seq->file));
2975	return afinfo->udp_table ? : net->ipv4.udp_table;
2976}
2977
2978static struct sock *udp_get_first(struct seq_file *seq, int start)
2979{
 
 
2980	struct udp_iter_state *state = seq->private;
2981	struct net *net = seq_file_net(seq);
2982	struct udp_table *udptable;
2983	struct sock *sk;
2984
2985	udptable = udp_get_table_seq(seq, net);
 
 
 
2986
2987	for (state->bucket = start; state->bucket <= udptable->mask;
2988	     ++state->bucket) {
2989		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2990
2991		if (hlist_empty(&hslot->head))
2992			continue;
2993
2994		spin_lock_bh(&hslot->lock);
2995		sk_for_each(sk, &hslot->head) {
2996			if (seq_sk_match(seq, sk))
 
 
 
2997				goto found;
2998		}
2999		spin_unlock_bh(&hslot->lock);
3000	}
3001	sk = NULL;
3002found:
3003	return sk;
3004}
3005
3006static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3007{
 
3008	struct udp_iter_state *state = seq->private;
3009	struct net *net = seq_file_net(seq);
3010	struct udp_table *udptable;
 
 
 
 
3011
3012	do {
3013		sk = sk_next(sk);
3014	} while (sk && !seq_sk_match(seq, sk));
 
 
3015
3016	if (!sk) {
3017		udptable = udp_get_table_seq(seq, net);
3018
3019		if (state->bucket <= udptable->mask)
3020			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3021
3022		return udp_get_first(seq, state->bucket + 1);
3023	}
3024	return sk;
3025}
3026
3027static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3028{
3029	struct sock *sk = udp_get_first(seq, 0);
3030
3031	if (sk)
3032		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3033			--pos;
3034	return pos ? NULL : sk;
3035}
3036
3037void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3038{
3039	struct udp_iter_state *state = seq->private;
3040	state->bucket = MAX_UDP_PORTS;
3041
3042	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3043}
3044EXPORT_SYMBOL(udp_seq_start);
3045
3046void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3047{
3048	struct sock *sk;
3049
3050	if (v == SEQ_START_TOKEN)
3051		sk = udp_get_idx(seq, 0);
3052	else
3053		sk = udp_get_next(seq, v);
3054
3055	++*pos;
3056	return sk;
3057}
3058EXPORT_SYMBOL(udp_seq_next);
3059
3060void udp_seq_stop(struct seq_file *seq, void *v)
3061{
 
3062	struct udp_iter_state *state = seq->private;
3063	struct udp_table *udptable;
3064
3065	udptable = udp_get_table_seq(seq, seq_file_net(seq));
 
 
 
3066
3067	if (state->bucket <= udptable->mask)
3068		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3069}
3070EXPORT_SYMBOL(udp_seq_stop);
3071
3072/* ------------------------------------------------------------------------ */
3073static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3074		int bucket)
3075{
3076	struct inet_sock *inet = inet_sk(sp);
3077	__be32 dest = inet->inet_daddr;
3078	__be32 src  = inet->inet_rcv_saddr;
3079	__u16 destp	  = ntohs(inet->inet_dport);
3080	__u16 srcp	  = ntohs(inet->inet_sport);
3081
3082	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3083		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3084		bucket, src, srcp, dest, destp, sp->sk_state,
3085		sk_wmem_alloc_get(sp),
3086		udp_rqueue_get(sp),
3087		0, 0L, 0,
3088		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3089		0, sock_i_ino(sp),
3090		refcount_read(&sp->sk_refcnt), sp,
3091		atomic_read(&sp->sk_drops));
3092}
3093
3094int udp4_seq_show(struct seq_file *seq, void *v)
3095{
3096	seq_setwidth(seq, 127);
3097	if (v == SEQ_START_TOKEN)
3098		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3099			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3100			   "inode ref pointer drops");
3101	else {
3102		struct udp_iter_state *state = seq->private;
3103
3104		udp4_format_sock(v, seq, state->bucket);
3105	}
3106	seq_pad(seq, '\n');
3107	return 0;
3108}
3109
3110#ifdef CONFIG_BPF_SYSCALL
3111struct bpf_iter__udp {
3112	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3113	__bpf_md_ptr(struct udp_sock *, udp_sk);
3114	uid_t uid __aligned(8);
3115	int bucket __aligned(8);
3116};
3117
3118struct bpf_udp_iter_state {
3119	struct udp_iter_state state;
3120	unsigned int cur_sk;
3121	unsigned int end_sk;
3122	unsigned int max_sk;
3123	int offset;
3124	struct sock **batch;
3125	bool st_bucket_done;
3126};
3127
3128static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3129				      unsigned int new_batch_sz);
3130static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3131{
3132	struct bpf_udp_iter_state *iter = seq->private;
3133	struct udp_iter_state *state = &iter->state;
3134	struct net *net = seq_file_net(seq);
3135	int resume_bucket, resume_offset;
3136	struct udp_table *udptable;
3137	unsigned int batch_sks = 0;
3138	bool resized = false;
3139	struct sock *sk;
3140
3141	resume_bucket = state->bucket;
3142	resume_offset = iter->offset;
3143
3144	/* The current batch is done, so advance the bucket. */
3145	if (iter->st_bucket_done)
3146		state->bucket++;
3147
3148	udptable = udp_get_table_seq(seq, net);
3149
3150again:
3151	/* New batch for the next bucket.
3152	 * Iterate over the hash table to find a bucket with sockets matching
3153	 * the iterator attributes, and return the first matching socket from
3154	 * the bucket. The remaining matched sockets from the bucket are batched
3155	 * before releasing the bucket lock. This allows BPF programs that are
3156	 * called in seq_show to acquire the bucket lock if needed.
3157	 */
3158	iter->cur_sk = 0;
3159	iter->end_sk = 0;
3160	iter->st_bucket_done = false;
3161	batch_sks = 0;
3162
3163	for (; state->bucket <= udptable->mask; state->bucket++) {
3164		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3165
3166		if (hlist_empty(&hslot2->head))
3167			continue;
3168
3169		iter->offset = 0;
3170		spin_lock_bh(&hslot2->lock);
3171		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3172			if (seq_sk_match(seq, sk)) {
3173				/* Resume from the last iterated socket at the
3174				 * offset in the bucket before iterator was stopped.
3175				 */
3176				if (state->bucket == resume_bucket &&
3177				    iter->offset < resume_offset) {
3178					++iter->offset;
3179					continue;
3180				}
3181				if (iter->end_sk < iter->max_sk) {
3182					sock_hold(sk);
3183					iter->batch[iter->end_sk++] = sk;
3184				}
3185				batch_sks++;
3186			}
3187		}
3188		spin_unlock_bh(&hslot2->lock);
3189
3190		if (iter->end_sk)
3191			break;
3192	}
3193
3194	/* All done: no batch made. */
3195	if (!iter->end_sk)
3196		return NULL;
3197
3198	if (iter->end_sk == batch_sks) {
3199		/* Batching is done for the current bucket; return the first
3200		 * socket to be iterated from the batch.
3201		 */
3202		iter->st_bucket_done = true;
3203		goto done;
3204	}
3205	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3206		resized = true;
3207		/* After allocating a larger batch, retry one more time to grab
3208		 * the whole bucket.
3209		 */
3210		goto again;
3211	}
3212done:
3213	return iter->batch[0];
3214}
3215
3216static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3217{
3218	struct bpf_udp_iter_state *iter = seq->private;
3219	struct sock *sk;
3220
3221	/* Whenever seq_next() is called, the iter->cur_sk is
3222	 * done with seq_show(), so unref the iter->cur_sk.
3223	 */
3224	if (iter->cur_sk < iter->end_sk) {
3225		sock_put(iter->batch[iter->cur_sk++]);
3226		++iter->offset;
3227	}
3228
3229	/* After updating iter->cur_sk, check if there are more sockets
3230	 * available in the current bucket batch.
3231	 */
3232	if (iter->cur_sk < iter->end_sk)
3233		sk = iter->batch[iter->cur_sk];
3234	else
3235		/* Prepare a new batch. */
3236		sk = bpf_iter_udp_batch(seq);
3237
3238	++*pos;
3239	return sk;
3240}
3241
3242static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3243{
3244	/* bpf iter does not support lseek, so it always
3245	 * continue from where it was stop()-ped.
3246	 */
3247	if (*pos)
3248		return bpf_iter_udp_batch(seq);
3249
3250	return SEQ_START_TOKEN;
3251}
3252
3253static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3254			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3255{
3256	struct bpf_iter__udp ctx;
3257
3258	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3259	ctx.meta = meta;
3260	ctx.udp_sk = udp_sk;
3261	ctx.uid = uid;
3262	ctx.bucket = bucket;
3263	return bpf_iter_run_prog(prog, &ctx);
3264}
3265
3266static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3267{
3268	struct udp_iter_state *state = seq->private;
3269	struct bpf_iter_meta meta;
3270	struct bpf_prog *prog;
3271	struct sock *sk = v;
3272	uid_t uid;
3273	int ret;
3274
3275	if (v == SEQ_START_TOKEN)
3276		return 0;
3277
3278	lock_sock(sk);
3279
3280	if (unlikely(sk_unhashed(sk))) {
3281		ret = SEQ_SKIP;
3282		goto unlock;
3283	}
3284
3285	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3286	meta.seq = seq;
3287	prog = bpf_iter_get_info(&meta, false);
3288	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3289
3290unlock:
3291	release_sock(sk);
3292	return ret;
3293}
3294
3295static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3296{
3297	while (iter->cur_sk < iter->end_sk)
3298		sock_put(iter->batch[iter->cur_sk++]);
3299}
3300
3301static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3302{
3303	struct bpf_udp_iter_state *iter = seq->private;
3304	struct bpf_iter_meta meta;
3305	struct bpf_prog *prog;
3306
3307	if (!v) {
3308		meta.seq = seq;
3309		prog = bpf_iter_get_info(&meta, true);
3310		if (prog)
3311			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3312	}
3313
3314	if (iter->cur_sk < iter->end_sk) {
3315		bpf_iter_udp_put_batch(iter);
3316		iter->st_bucket_done = false;
3317	}
3318}
3319
3320static const struct seq_operations bpf_iter_udp_seq_ops = {
3321	.start		= bpf_iter_udp_seq_start,
3322	.next		= bpf_iter_udp_seq_next,
3323	.stop		= bpf_iter_udp_seq_stop,
3324	.show		= bpf_iter_udp_seq_show,
3325};
3326#endif
3327
3328static unsigned short seq_file_family(const struct seq_file *seq)
3329{
3330	const struct udp_seq_afinfo *afinfo;
3331
3332#ifdef CONFIG_BPF_SYSCALL
3333	/* BPF iterator: bpf programs to filter sockets. */
3334	if (seq->op == &bpf_iter_udp_seq_ops)
3335		return AF_UNSPEC;
3336#endif
3337
3338	/* Proc fs iterator */
3339	afinfo = pde_data(file_inode(seq->file));
3340	return afinfo->family;
3341}
3342
3343const struct seq_operations udp_seq_ops = {
3344	.start		= udp_seq_start,
3345	.next		= udp_seq_next,
3346	.stop		= udp_seq_stop,
3347	.show		= udp4_seq_show,
3348};
3349EXPORT_SYMBOL(udp_seq_ops);
3350
3351static struct udp_seq_afinfo udp4_seq_afinfo = {
3352	.family		= AF_INET,
3353	.udp_table	= NULL,
3354};
3355
3356static int __net_init udp4_proc_init_net(struct net *net)
3357{
3358	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3359			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3360		return -ENOMEM;
3361	return 0;
3362}
3363
3364static void __net_exit udp4_proc_exit_net(struct net *net)
3365{
3366	remove_proc_entry("udp", net->proc_net);
3367}
3368
3369static struct pernet_operations udp4_net_ops = {
3370	.init = udp4_proc_init_net,
3371	.exit = udp4_proc_exit_net,
3372};
3373
3374int __init udp4_proc_init(void)
3375{
3376	return register_pernet_subsys(&udp4_net_ops);
3377}
3378
3379void udp4_proc_exit(void)
3380{
3381	unregister_pernet_subsys(&udp4_net_ops);
3382}
3383#endif /* CONFIG_PROC_FS */
3384
3385static __initdata unsigned long uhash_entries;
3386static int __init set_uhash_entries(char *str)
3387{
3388	ssize_t ret;
3389
3390	if (!str)
3391		return 0;
3392
3393	ret = kstrtoul(str, 0, &uhash_entries);
3394	if (ret)
3395		return 0;
3396
3397	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3398		uhash_entries = UDP_HTABLE_SIZE_MIN;
3399	return 1;
3400}
3401__setup("uhash_entries=", set_uhash_entries);
3402
3403void __init udp_table_init(struct udp_table *table, const char *name)
3404{
3405	unsigned int i;
3406
3407	table->hash = alloc_large_system_hash(name,
3408					      2 * sizeof(struct udp_hslot),
3409					      uhash_entries,
3410					      21, /* one slot per 2 MB */
3411					      0,
3412					      &table->log,
3413					      &table->mask,
3414					      UDP_HTABLE_SIZE_MIN,
3415					      UDP_HTABLE_SIZE_MAX);
3416
3417	table->hash2 = table->hash + (table->mask + 1);
3418	for (i = 0; i <= table->mask; i++) {
3419		INIT_HLIST_HEAD(&table->hash[i].head);
3420		table->hash[i].count = 0;
3421		spin_lock_init(&table->hash[i].lock);
3422	}
3423	for (i = 0; i <= table->mask; i++) {
3424		INIT_HLIST_HEAD(&table->hash2[i].head);
3425		table->hash2[i].count = 0;
3426		spin_lock_init(&table->hash2[i].lock);
3427	}
3428}
3429
3430u32 udp_flow_hashrnd(void)
3431{
3432	static u32 hashrnd __read_mostly;
3433
3434	net_get_random_once(&hashrnd, sizeof(hashrnd));
3435
3436	return hashrnd;
3437}
3438EXPORT_SYMBOL(udp_flow_hashrnd);
3439
3440static void __net_init udp_sysctl_init(struct net *net)
3441{
3442	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3443	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3444
3445#ifdef CONFIG_NET_L3_MASTER_DEV
3446	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3447#endif
3448}
3449
3450static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3451{
3452	struct udp_table *udptable;
3453	int i;
3454
3455	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3456	if (!udptable)
3457		goto out;
3458
3459	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3460				      GFP_KERNEL_ACCOUNT);
3461	if (!udptable->hash)
3462		goto free_table;
3463
3464	udptable->hash2 = udptable->hash + hash_entries;
3465	udptable->mask = hash_entries - 1;
3466	udptable->log = ilog2(hash_entries);
3467
3468	for (i = 0; i < hash_entries; i++) {
3469		INIT_HLIST_HEAD(&udptable->hash[i].head);
3470		udptable->hash[i].count = 0;
3471		spin_lock_init(&udptable->hash[i].lock);
3472
3473		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3474		udptable->hash2[i].count = 0;
3475		spin_lock_init(&udptable->hash2[i].lock);
3476	}
3477
3478	return udptable;
3479
3480free_table:
3481	kfree(udptable);
3482out:
3483	return NULL;
3484}
3485
3486static void __net_exit udp_pernet_table_free(struct net *net)
3487{
3488	struct udp_table *udptable = net->ipv4.udp_table;
3489
3490	if (udptable == &udp_table)
3491		return;
3492
3493	kvfree(udptable->hash);
3494	kfree(udptable);
3495}
3496
3497static void __net_init udp_set_table(struct net *net)
3498{
3499	struct udp_table *udptable;
3500	unsigned int hash_entries;
3501	struct net *old_net;
3502
3503	if (net_eq(net, &init_net))
3504		goto fallback;
3505
3506	old_net = current->nsproxy->net_ns;
3507	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3508	if (!hash_entries)
3509		goto fallback;
3510
3511	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3512	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3513		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3514	else
3515		hash_entries = roundup_pow_of_two(hash_entries);
3516
3517	udptable = udp_pernet_table_alloc(hash_entries);
3518	if (udptable) {
3519		net->ipv4.udp_table = udptable;
3520	} else {
3521		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3522			"for a netns, fallback to the global one\n",
3523			hash_entries);
3524fallback:
3525		net->ipv4.udp_table = &udp_table;
3526	}
3527}
3528
3529static int __net_init udp_pernet_init(struct net *net)
3530{
3531	udp_sysctl_init(net);
3532	udp_set_table(net);
3533
3534	return 0;
3535}
3536
3537static void __net_exit udp_pernet_exit(struct net *net)
3538{
3539	udp_pernet_table_free(net);
3540}
3541
3542static struct pernet_operations __net_initdata udp_sysctl_ops = {
3543	.init	= udp_pernet_init,
3544	.exit	= udp_pernet_exit,
3545};
3546
3547#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3548DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3549		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3550
3551static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3552				      unsigned int new_batch_sz)
3553{
3554	struct sock **new_batch;
 
 
3555
3556	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3557				   GFP_USER | __GFP_NOWARN);
3558	if (!new_batch)
3559		return -ENOMEM;
3560
3561	bpf_iter_udp_put_batch(iter);
3562	kvfree(iter->batch);
3563	iter->batch = new_batch;
3564	iter->max_sk = new_batch_sz;
3565
3566	return 0;
3567}
3568
3569#define INIT_BATCH_SZ 16
3570
3571static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3572{
3573	struct bpf_udp_iter_state *iter = priv_data;
3574	int ret;
3575
3576	ret = bpf_iter_init_seq_net(priv_data, aux);
3577	if (ret)
3578		return ret;
3579
3580	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3581	if (ret)
3582		bpf_iter_fini_seq_net(priv_data);
3583
3584	return ret;
3585}
3586
3587static void bpf_iter_fini_udp(void *priv_data)
3588{
3589	struct bpf_udp_iter_state *iter = priv_data;
3590
 
3591	bpf_iter_fini_seq_net(priv_data);
3592	kvfree(iter->batch);
3593}
3594
3595static const struct bpf_iter_seq_info udp_seq_info = {
3596	.seq_ops		= &bpf_iter_udp_seq_ops,
3597	.init_seq_private	= bpf_iter_init_udp,
3598	.fini_seq_private	= bpf_iter_fini_udp,
3599	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3600};
3601
3602static struct bpf_iter_reg udp_reg_info = {
3603	.target			= "udp",
3604	.ctx_arg_info_size	= 1,
3605	.ctx_arg_info		= {
3606		{ offsetof(struct bpf_iter__udp, udp_sk),
3607		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3608	},
3609	.seq_info		= &udp_seq_info,
3610};
3611
3612static void __init bpf_iter_register(void)
3613{
3614	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3615	if (bpf_iter_reg_target(&udp_reg_info))
3616		pr_warn("Warning: could not register bpf iterator udp\n");
3617}
3618#endif
3619
3620void __init udp_init(void)
3621{
3622	unsigned long limit;
3623	unsigned int i;
3624
3625	udp_table_init(&udp_table, "UDP");
3626	limit = nr_free_buffer_pages() / 8;
3627	limit = max(limit, 128UL);
3628	sysctl_udp_mem[0] = limit / 4 * 3;
3629	sysctl_udp_mem[1] = limit;
3630	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
 
 
3631
3632	/* 16 spinlocks per cpu */
3633	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3634	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3635				GFP_KERNEL);
3636	if (!udp_busylocks)
3637		panic("UDP: failed to alloc udp_busylocks\n");
3638	for (i = 0; i < (1U << udp_busylocks_log); i++)
3639		spin_lock_init(udp_busylocks + i);
3640
3641	if (register_pernet_subsys(&udp_sysctl_ops))
3642		panic("UDP: failed to init sysctl parameters.\n");
3643
3644#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3645	bpf_iter_register();
3646#endif
3647}