Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
 
  77#include <linux/uaccess.h>
  78#include <asm/ioctls.h>
  79#include <linux/memblock.h>
  80#include <linux/highmem.h>
  81#include <linux/swap.h>
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 107#include <trace/events/udp.h>
 108#include <linux/static_key.h>
 109#include <linux/btf_ids.h>
 110#include <trace/events/skb.h>
 111#include <net/busy_poll.h>
 112#include "udp_impl.h"
 113#include <net/sock_reuseport.h>
 114#include <net/addrconf.h>
 115#include <net/udp_tunnel.h>
 116#if IS_ENABLED(CONFIG_IPV6)
 117#include <net/ipv6_stubs.h>
 118#endif
 119
 120struct udp_table udp_table __read_mostly;
 121EXPORT_SYMBOL(udp_table);
 122
 123long sysctl_udp_mem[3] __read_mostly;
 124EXPORT_SYMBOL(sysctl_udp_mem);
 125
 126atomic_long_t udp_memory_allocated;
 127EXPORT_SYMBOL(udp_memory_allocated);
 
 
 128
 129#define MAX_UDP_PORTS 65536
 130#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 
 
 
 
 
 131
 132static int udp_lib_lport_inuse(struct net *net, __u16 num,
 133			       const struct udp_hslot *hslot,
 134			       unsigned long *bitmap,
 135			       struct sock *sk, unsigned int log)
 136{
 137	struct sock *sk2;
 138	kuid_t uid = sock_i_uid(sk);
 139
 140	sk_for_each(sk2, &hslot->head) {
 141		if (net_eq(sock_net(sk2), net) &&
 142		    sk2 != sk &&
 143		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 144		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 145		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 146		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 147		    inet_rcv_saddr_equal(sk, sk2, true)) {
 148			if (sk2->sk_reuseport && sk->sk_reuseport &&
 149			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 150			    uid_eq(uid, sock_i_uid(sk2))) {
 151				if (!bitmap)
 152					return 0;
 153			} else {
 154				if (!bitmap)
 155					return 1;
 156				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 157					  bitmap);
 158			}
 159		}
 160	}
 161	return 0;
 162}
 163
 164/*
 165 * Note: we still hold spinlock of primary hash chain, so no other writer
 166 * can insert/delete a socket with local_port == num
 167 */
 168static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 169				struct udp_hslot *hslot2,
 170				struct sock *sk)
 171{
 172	struct sock *sk2;
 173	kuid_t uid = sock_i_uid(sk);
 174	int res = 0;
 175
 176	spin_lock(&hslot2->lock);
 177	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 178		if (net_eq(sock_net(sk2), net) &&
 179		    sk2 != sk &&
 180		    (udp_sk(sk2)->udp_port_hash == num) &&
 181		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 182		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 183		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 184		    inet_rcv_saddr_equal(sk, sk2, true)) {
 185			if (sk2->sk_reuseport && sk->sk_reuseport &&
 186			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 187			    uid_eq(uid, sock_i_uid(sk2))) {
 188				res = 0;
 189			} else {
 190				res = 1;
 191			}
 192			break;
 193		}
 194	}
 195	spin_unlock(&hslot2->lock);
 196	return res;
 197}
 198
 199static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 200{
 201	struct net *net = sock_net(sk);
 202	kuid_t uid = sock_i_uid(sk);
 203	struct sock *sk2;
 204
 205	sk_for_each(sk2, &hslot->head) {
 206		if (net_eq(sock_net(sk2), net) &&
 207		    sk2 != sk &&
 208		    sk2->sk_family == sk->sk_family &&
 209		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 210		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 211		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 212		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 213		    inet_rcv_saddr_equal(sk, sk2, false)) {
 214			return reuseport_add_sock(sk, sk2,
 215						  inet_rcv_saddr_any(sk));
 216		}
 217	}
 218
 219	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 220}
 221
 222/**
 223 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 224 *
 225 *  @sk:          socket struct in question
 226 *  @snum:        port number to look up
 227 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 228 *                   with NULL address
 229 */
 230int udp_lib_get_port(struct sock *sk, unsigned short snum,
 231		     unsigned int hash2_nulladdr)
 232{
 
 233	struct udp_hslot *hslot, *hslot2;
 234	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 235	int    error = 1;
 236	struct net *net = sock_net(sk);
 
 237
 238	if (!snum) {
 
 
 239		int low, high, remaining;
 240		unsigned int rand;
 241		unsigned short first, last;
 242		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 243
 244		inet_get_local_port_range(net, &low, &high);
 245		remaining = (high - low) + 1;
 246
 247		rand = prandom_u32();
 248		first = reciprocal_scale(rand, remaining) + low;
 249		/*
 250		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 251		 */
 252		rand = (rand | 1) * (udptable->mask + 1);
 253		last = first + udptable->mask + 1;
 254		do {
 255			hslot = udp_hashslot(udptable, net, first);
 256			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 257			spin_lock_bh(&hslot->lock);
 258			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 259					    udptable->log);
 260
 261			snum = first;
 262			/*
 263			 * Iterate on all possible values of snum for this hash.
 264			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 265			 * give us randomization and full range coverage.
 266			 */
 267			do {
 268				if (low <= snum && snum <= high &&
 269				    !test_bit(snum >> udptable->log, bitmap) &&
 270				    !inet_is_local_reserved_port(net, snum))
 271					goto found;
 272				snum += rand;
 273			} while (snum != first);
 274			spin_unlock_bh(&hslot->lock);
 275			cond_resched();
 276		} while (++first != last);
 277		goto fail;
 278	} else {
 279		hslot = udp_hashslot(udptable, net, snum);
 280		spin_lock_bh(&hslot->lock);
 281		if (hslot->count > 10) {
 282			int exist;
 283			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 284
 285			slot2          &= udptable->mask;
 286			hash2_nulladdr &= udptable->mask;
 287
 288			hslot2 = udp_hashslot2(udptable, slot2);
 289			if (hslot->count < hslot2->count)
 290				goto scan_primary_hash;
 291
 292			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 293			if (!exist && (hash2_nulladdr != slot2)) {
 294				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 295				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 296							     sk);
 297			}
 298			if (exist)
 299				goto fail_unlock;
 300			else
 301				goto found;
 302		}
 303scan_primary_hash:
 304		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 305			goto fail_unlock;
 306	}
 307found:
 308	inet_sk(sk)->inet_num = snum;
 309	udp_sk(sk)->udp_port_hash = snum;
 310	udp_sk(sk)->udp_portaddr_hash ^= snum;
 311	if (sk_unhashed(sk)) {
 312		if (sk->sk_reuseport &&
 313		    udp_reuseport_add_sock(sk, hslot)) {
 314			inet_sk(sk)->inet_num = 0;
 315			udp_sk(sk)->udp_port_hash = 0;
 316			udp_sk(sk)->udp_portaddr_hash ^= snum;
 317			goto fail_unlock;
 318		}
 319
 320		sk_add_node_rcu(sk, &hslot->head);
 321		hslot->count++;
 322		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 323
 324		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 325		spin_lock(&hslot2->lock);
 326		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 327		    sk->sk_family == AF_INET6)
 328			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 329					   &hslot2->head);
 330		else
 331			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 332					   &hslot2->head);
 333		hslot2->count++;
 334		spin_unlock(&hslot2->lock);
 335	}
 336	sock_set_flag(sk, SOCK_RCU_FREE);
 337	error = 0;
 338fail_unlock:
 339	spin_unlock_bh(&hslot->lock);
 340fail:
 341	return error;
 342}
 343EXPORT_SYMBOL(udp_lib_get_port);
 344
 345int udp_v4_get_port(struct sock *sk, unsigned short snum)
 346{
 347	unsigned int hash2_nulladdr =
 348		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 349	unsigned int hash2_partial =
 350		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 351
 352	/* precompute partial secondary hash */
 353	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 354	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 355}
 356
 357static int compute_score(struct sock *sk, struct net *net,
 358			 __be32 saddr, __be16 sport,
 359			 __be32 daddr, unsigned short hnum,
 360			 int dif, int sdif)
 361{
 362	int score;
 363	struct inet_sock *inet;
 364	bool dev_match;
 365
 366	if (!net_eq(sock_net(sk), net) ||
 367	    udp_sk(sk)->udp_port_hash != hnum ||
 368	    ipv6_only_sock(sk))
 369		return -1;
 370
 371	if (sk->sk_rcv_saddr != daddr)
 372		return -1;
 373
 374	score = (sk->sk_family == PF_INET) ? 2 : 1;
 375
 376	inet = inet_sk(sk);
 377	if (inet->inet_daddr) {
 378		if (inet->inet_daddr != saddr)
 379			return -1;
 380		score += 4;
 381	}
 382
 383	if (inet->inet_dport) {
 384		if (inet->inet_dport != sport)
 385			return -1;
 386		score += 4;
 387	}
 388
 389	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 390					dif, sdif);
 391	if (!dev_match)
 392		return -1;
 393	if (sk->sk_bound_dev_if)
 394		score += 4;
 395
 396	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 397		score++;
 398	return score;
 399}
 400
 401static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 402		       const __u16 lport, const __be32 faddr,
 403		       const __be16 fport)
 404{
 405	static u32 udp_ehash_secret __read_mostly;
 406
 407	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 408
 409	return __inet_ehashfn(laddr, lport, faddr, fport,
 410			      udp_ehash_secret + net_hash_mix(net));
 411}
 412
 413static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
 414				     struct sk_buff *skb,
 415				     __be32 saddr, __be16 sport,
 416				     __be32 daddr, unsigned short hnum)
 417{
 418	struct sock *reuse_sk = NULL;
 419	u32 hash;
 420
 421	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
 422		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
 423		reuse_sk = reuseport_select_sock(sk, hash, skb,
 424						 sizeof(struct udphdr));
 425	}
 426	return reuse_sk;
 427}
 428
 429/* called with rcu_read_lock() */
 430static struct sock *udp4_lib_lookup2(struct net *net,
 431				     __be32 saddr, __be16 sport,
 432				     __be32 daddr, unsigned int hnum,
 433				     int dif, int sdif,
 434				     struct udp_hslot *hslot2,
 435				     struct sk_buff *skb)
 436{
 437	struct sock *sk, *result;
 438	int score, badness;
 439
 440	result = NULL;
 441	badness = 0;
 442	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 443		score = compute_score(sk, net, saddr, sport,
 444				      daddr, hnum, dif, sdif);
 445		if (score > badness) {
 446			result = lookup_reuseport(net, sk, skb,
 447						  saddr, sport, daddr, hnum);
 448			/* Fall back to scoring if group has connections */
 449			if (result && !reuseport_has_conns(sk, false))
 450				return result;
 451
 452			result = result ? : sk;
 453			badness = score;
 454		}
 455	}
 456	return result;
 457}
 458
 459static struct sock *udp4_lookup_run_bpf(struct net *net,
 460					struct udp_table *udptable,
 461					struct sk_buff *skb,
 462					__be32 saddr, __be16 sport,
 463					__be32 daddr, u16 hnum)
 464{
 465	struct sock *sk, *reuse_sk;
 466	bool no_reuseport;
 467
 468	if (udptable != &udp_table)
 469		return NULL; /* only UDP is supported */
 470
 471	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
 472					    saddr, sport, daddr, hnum, &sk);
 473	if (no_reuseport || IS_ERR_OR_NULL(sk))
 474		return sk;
 475
 476	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
 477	if (reuse_sk)
 478		sk = reuse_sk;
 479	return sk;
 480}
 481
 482/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 483 * harder than this. -DaveM
 484 */
 485struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 486		__be16 sport, __be32 daddr, __be16 dport, int dif,
 487		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 488{
 489	unsigned short hnum = ntohs(dport);
 490	unsigned int hash2, slot2;
 491	struct udp_hslot *hslot2;
 492	struct sock *result, *sk;
 493
 494	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 495	slot2 = hash2 & udptable->mask;
 496	hslot2 = &udptable->hash2[slot2];
 497
 498	/* Lookup connected or non-wildcard socket */
 499	result = udp4_lib_lookup2(net, saddr, sport,
 500				  daddr, hnum, dif, sdif,
 501				  hslot2, skb);
 502	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 503		goto done;
 504
 505	/* Lookup redirect from BPF */
 506	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
 507		sk = udp4_lookup_run_bpf(net, udptable, skb,
 508					 saddr, sport, daddr, hnum);
 509		if (sk) {
 510			result = sk;
 511			goto done;
 512		}
 513	}
 514
 515	/* Got non-wildcard socket or error on first lookup */
 516	if (result)
 517		goto done;
 518
 519	/* Lookup wildcard sockets */
 520	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 521	slot2 = hash2 & udptable->mask;
 522	hslot2 = &udptable->hash2[slot2];
 523
 524	result = udp4_lib_lookup2(net, saddr, sport,
 525				  htonl(INADDR_ANY), hnum, dif, sdif,
 526				  hslot2, skb);
 527done:
 528	if (IS_ERR(result))
 529		return NULL;
 530	return result;
 531}
 532EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 533
 534static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 535						 __be16 sport, __be16 dport,
 536						 struct udp_table *udptable)
 537{
 538	const struct iphdr *iph = ip_hdr(skb);
 539
 540	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 541				 iph->daddr, dport, inet_iif(skb),
 542				 inet_sdif(skb), udptable, skb);
 543}
 544
 545struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 546				 __be16 sport, __be16 dport)
 547{
 548	const struct iphdr *iph = ip_hdr(skb);
 
 549
 550	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 551				 iph->daddr, dport, inet_iif(skb),
 552				 inet_sdif(skb), &udp_table, NULL);
 553}
 554
 555/* Must be called under rcu_read_lock().
 556 * Does increment socket refcount.
 557 */
 558#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 559struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 560			     __be32 daddr, __be16 dport, int dif)
 561{
 562	struct sock *sk;
 563
 564	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 565			       dif, 0, &udp_table, NULL);
 566	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 567		sk = NULL;
 568	return sk;
 569}
 570EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 571#endif
 572
 573static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 574				       __be16 loc_port, __be32 loc_addr,
 575				       __be16 rmt_port, __be32 rmt_addr,
 576				       int dif, int sdif, unsigned short hnum)
 577{
 578	struct inet_sock *inet = inet_sk(sk);
 579
 580	if (!net_eq(sock_net(sk), net) ||
 581	    udp_sk(sk)->udp_port_hash != hnum ||
 582	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 583	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 584	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 585	    ipv6_only_sock(sk) ||
 586	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 587		return false;
 588	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 589		return false;
 590	return true;
 591}
 592
 593DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 594void udp_encap_enable(void)
 595{
 596	static_branch_inc(&udp_encap_needed_key);
 597}
 598EXPORT_SYMBOL(udp_encap_enable);
 599
 600void udp_encap_disable(void)
 601{
 602	static_branch_dec(&udp_encap_needed_key);
 603}
 604EXPORT_SYMBOL(udp_encap_disable);
 605
 606/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 607 * through error handlers in encapsulations looking for a match.
 608 */
 609static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 610{
 611	int i;
 612
 613	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 614		int (*handler)(struct sk_buff *skb, u32 info);
 615		const struct ip_tunnel_encap_ops *encap;
 616
 617		encap = rcu_dereference(iptun_encaps[i]);
 618		if (!encap)
 619			continue;
 620		handler = encap->err_handler;
 621		if (handler && !handler(skb, info))
 622			return 0;
 623	}
 624
 625	return -ENOENT;
 626}
 627
 628/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 629 * reversing source and destination port: this will match tunnels that force the
 630 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 631 * lwtunnels might actually break this assumption by being configured with
 632 * different destination ports on endpoints, in this case we won't be able to
 633 * trace ICMP messages back to them.
 634 *
 635 * If this doesn't match any socket, probe tunnels with arbitrary destination
 636 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 637 * we've sent packets to won't necessarily match the local destination port.
 638 *
 639 * Then ask the tunnel implementation to match the error against a valid
 640 * association.
 641 *
 642 * Return an error if we can't find a match, the socket if we need further
 643 * processing, zero otherwise.
 644 */
 645static struct sock *__udp4_lib_err_encap(struct net *net,
 646					 const struct iphdr *iph,
 647					 struct udphdr *uh,
 648					 struct udp_table *udptable,
 649					 struct sock *sk,
 650					 struct sk_buff *skb, u32 info)
 651{
 652	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 653	int network_offset, transport_offset;
 654	struct udp_sock *up;
 655
 656	network_offset = skb_network_offset(skb);
 657	transport_offset = skb_transport_offset(skb);
 658
 659	/* Network header needs to point to the outer IPv4 header inside ICMP */
 660	skb_reset_network_header(skb);
 661
 662	/* Transport header needs to point to the UDP header */
 663	skb_set_transport_header(skb, iph->ihl << 2);
 664
 665	if (sk) {
 666		up = udp_sk(sk);
 667
 668		lookup = READ_ONCE(up->encap_err_lookup);
 669		if (lookup && lookup(sk, skb))
 670			sk = NULL;
 671
 672		goto out;
 673	}
 674
 675	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 676			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 677			       udptable, NULL);
 678	if (sk) {
 679		up = udp_sk(sk);
 680
 681		lookup = READ_ONCE(up->encap_err_lookup);
 682		if (!lookup || lookup(sk, skb))
 683			sk = NULL;
 684	}
 685
 686out:
 687	if (!sk)
 688		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 689
 690	skb_set_transport_header(skb, transport_offset);
 691	skb_set_network_header(skb, network_offset);
 692
 693	return sk;
 694}
 695
 696/*
 697 * This routine is called by the ICMP module when it gets some
 698 * sort of error condition.  If err < 0 then the socket should
 699 * be closed and the error returned to the user.  If err > 0
 700 * it's just the icmp type << 8 | icmp code.
 701 * Header points to the ip header of the error packet. We move
 702 * on past this. Then (as it used to claim before adjustment)
 703 * header points to the first 8 bytes of the udp header.  We need
 704 * to find the appropriate port.
 705 */
 706
 707int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 708{
 709	struct inet_sock *inet;
 710	const struct iphdr *iph = (const struct iphdr *)skb->data;
 711	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 712	const int type = icmp_hdr(skb)->type;
 713	const int code = icmp_hdr(skb)->code;
 714	bool tunnel = false;
 715	struct sock *sk;
 716	int harderr;
 717	int err;
 718	struct net *net = dev_net(skb->dev);
 719
 720	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 721			       iph->saddr, uh->source, skb->dev->ifindex,
 722			       inet_sdif(skb), udptable, NULL);
 723
 724	if (!sk || udp_sk(sk)->encap_type) {
 725		/* No socket for error: try tunnels before discarding */
 726		if (static_branch_unlikely(&udp_encap_needed_key)) {
 727			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 728						  info);
 729			if (!sk)
 730				return 0;
 731		} else
 732			sk = ERR_PTR(-ENOENT);
 733
 734		if (IS_ERR(sk)) {
 735			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 736			return PTR_ERR(sk);
 737		}
 738
 739		tunnel = true;
 740	}
 741
 742	err = 0;
 743	harderr = 0;
 744	inet = inet_sk(sk);
 745
 746	switch (type) {
 747	default:
 748	case ICMP_TIME_EXCEEDED:
 749		err = EHOSTUNREACH;
 750		break;
 751	case ICMP_SOURCE_QUENCH:
 752		goto out;
 753	case ICMP_PARAMETERPROB:
 754		err = EPROTO;
 755		harderr = 1;
 756		break;
 757	case ICMP_DEST_UNREACH:
 758		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 759			ipv4_sk_update_pmtu(skb, sk, info);
 760			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 761				err = EMSGSIZE;
 762				harderr = 1;
 763				break;
 764			}
 765			goto out;
 766		}
 767		err = EHOSTUNREACH;
 768		if (code <= NR_ICMP_UNREACH) {
 769			harderr = icmp_err_convert[code].fatal;
 770			err = icmp_err_convert[code].errno;
 771		}
 772		break;
 773	case ICMP_REDIRECT:
 774		ipv4_sk_redirect(skb, sk);
 775		goto out;
 776	}
 777
 778	/*
 779	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 780	 *	4.1.3.3.
 781	 */
 782	if (tunnel) {
 783		/* ...not for tunnels though: we don't have a sending socket */
 
 
 
 784		goto out;
 785	}
 786	if (!inet->recverr) {
 787		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 788			goto out;
 789	} else
 790		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 791
 792	sk->sk_err = err;
 793	sk_error_report(sk);
 794out:
 795	return 0;
 796}
 797
 798int udp_err(struct sk_buff *skb, u32 info)
 799{
 800	return __udp4_lib_err(skb, info, &udp_table);
 801}
 802
 803/*
 804 * Throw away all pending data and cancel the corking. Socket is locked.
 805 */
 806void udp_flush_pending_frames(struct sock *sk)
 807{
 808	struct udp_sock *up = udp_sk(sk);
 809
 810	if (up->pending) {
 811		up->len = 0;
 812		up->pending = 0;
 813		ip_flush_pending_frames(sk);
 814	}
 815}
 816EXPORT_SYMBOL(udp_flush_pending_frames);
 817
 818/**
 819 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 820 * 	@skb: 	sk_buff containing the filled-in UDP header
 821 * 	        (checksum field must be zeroed out)
 822 *	@src:	source IP address
 823 *	@dst:	destination IP address
 824 */
 825void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 826{
 827	struct udphdr *uh = udp_hdr(skb);
 828	int offset = skb_transport_offset(skb);
 829	int len = skb->len - offset;
 830	int hlen = len;
 831	__wsum csum = 0;
 832
 833	if (!skb_has_frag_list(skb)) {
 834		/*
 835		 * Only one fragment on the socket.
 836		 */
 837		skb->csum_start = skb_transport_header(skb) - skb->head;
 838		skb->csum_offset = offsetof(struct udphdr, check);
 839		uh->check = ~csum_tcpudp_magic(src, dst, len,
 840					       IPPROTO_UDP, 0);
 841	} else {
 842		struct sk_buff *frags;
 843
 844		/*
 845		 * HW-checksum won't work as there are two or more
 846		 * fragments on the socket so that all csums of sk_buffs
 847		 * should be together
 848		 */
 849		skb_walk_frags(skb, frags) {
 850			csum = csum_add(csum, frags->csum);
 851			hlen -= frags->len;
 852		}
 853
 854		csum = skb_checksum(skb, offset, hlen, csum);
 855		skb->ip_summed = CHECKSUM_NONE;
 856
 857		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 858		if (uh->check == 0)
 859			uh->check = CSUM_MANGLED_0;
 860	}
 861}
 862EXPORT_SYMBOL_GPL(udp4_hwcsum);
 863
 864/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 865 * for the simple case like when setting the checksum for a UDP tunnel.
 866 */
 867void udp_set_csum(bool nocheck, struct sk_buff *skb,
 868		  __be32 saddr, __be32 daddr, int len)
 869{
 870	struct udphdr *uh = udp_hdr(skb);
 871
 872	if (nocheck) {
 873		uh->check = 0;
 874	} else if (skb_is_gso(skb)) {
 875		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 876	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 877		uh->check = 0;
 878		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 879		if (uh->check == 0)
 880			uh->check = CSUM_MANGLED_0;
 881	} else {
 882		skb->ip_summed = CHECKSUM_PARTIAL;
 883		skb->csum_start = skb_transport_header(skb) - skb->head;
 884		skb->csum_offset = offsetof(struct udphdr, check);
 885		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 886	}
 887}
 888EXPORT_SYMBOL(udp_set_csum);
 889
 890static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 891			struct inet_cork *cork)
 892{
 893	struct sock *sk = skb->sk;
 894	struct inet_sock *inet = inet_sk(sk);
 895	struct udphdr *uh;
 896	int err;
 897	int is_udplite = IS_UDPLITE(sk);
 898	int offset = skb_transport_offset(skb);
 899	int len = skb->len - offset;
 900	int datalen = len - sizeof(*uh);
 901	__wsum csum = 0;
 902
 903	/*
 904	 * Create a UDP header
 905	 */
 906	uh = udp_hdr(skb);
 907	uh->source = inet->inet_sport;
 908	uh->dest = fl4->fl4_dport;
 909	uh->len = htons(len);
 910	uh->check = 0;
 911
 912	if (cork->gso_size) {
 913		const int hlen = skb_network_header_len(skb) +
 914				 sizeof(struct udphdr);
 915
 916		if (hlen + cork->gso_size > cork->fragsize) {
 917			kfree_skb(skb);
 918			return -EINVAL;
 919		}
 920		if (skb->len > cork->gso_size * UDP_MAX_SEGMENTS) {
 921			kfree_skb(skb);
 922			return -EINVAL;
 923		}
 924		if (sk->sk_no_check_tx) {
 925			kfree_skb(skb);
 926			return -EINVAL;
 927		}
 928		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 929		    dst_xfrm(skb_dst(skb))) {
 930			kfree_skb(skb);
 931			return -EIO;
 932		}
 933
 934		if (datalen > cork->gso_size) {
 935			skb_shinfo(skb)->gso_size = cork->gso_size;
 936			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 937			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 938								 cork->gso_size);
 939		}
 940		goto csum_partial;
 941	}
 942
 943	if (is_udplite)  				 /*     UDP-Lite      */
 944		csum = udplite_csum(skb);
 945
 946	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 947
 948		skb->ip_summed = CHECKSUM_NONE;
 949		goto send;
 950
 951	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 952csum_partial:
 953
 954		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 955		goto send;
 956
 957	} else
 958		csum = udp_csum(skb);
 959
 960	/* add protocol-dependent pseudo-header */
 961	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 962				      sk->sk_protocol, csum);
 963	if (uh->check == 0)
 964		uh->check = CSUM_MANGLED_0;
 965
 966send:
 967	err = ip_send_skb(sock_net(sk), skb);
 968	if (err) {
 969		if (err == -ENOBUFS && !inet->recverr) {
 970			UDP_INC_STATS(sock_net(sk),
 971				      UDP_MIB_SNDBUFERRORS, is_udplite);
 972			err = 0;
 973		}
 974	} else
 975		UDP_INC_STATS(sock_net(sk),
 976			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 977	return err;
 978}
 979
 980/*
 981 * Push out all pending data as one UDP datagram. Socket is locked.
 982 */
 983int udp_push_pending_frames(struct sock *sk)
 984{
 985	struct udp_sock  *up = udp_sk(sk);
 986	struct inet_sock *inet = inet_sk(sk);
 987	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 988	struct sk_buff *skb;
 989	int err = 0;
 990
 991	skb = ip_finish_skb(sk, fl4);
 992	if (!skb)
 993		goto out;
 994
 995	err = udp_send_skb(skb, fl4, &inet->cork.base);
 996
 997out:
 998	up->len = 0;
 999	up->pending = 0;
1000	return err;
1001}
1002EXPORT_SYMBOL(udp_push_pending_frames);
1003
1004static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1005{
1006	switch (cmsg->cmsg_type) {
1007	case UDP_SEGMENT:
1008		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1009			return -EINVAL;
1010		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1011		return 0;
1012	default:
1013		return -EINVAL;
1014	}
1015}
1016
1017int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1018{
1019	struct cmsghdr *cmsg;
1020	bool need_ip = false;
1021	int err;
1022
1023	for_each_cmsghdr(cmsg, msg) {
1024		if (!CMSG_OK(msg, cmsg))
1025			return -EINVAL;
1026
1027		if (cmsg->cmsg_level != SOL_UDP) {
1028			need_ip = true;
1029			continue;
1030		}
1031
1032		err = __udp_cmsg_send(cmsg, gso_size);
1033		if (err)
1034			return err;
1035	}
1036
1037	return need_ip;
1038}
1039EXPORT_SYMBOL_GPL(udp_cmsg_send);
1040
1041int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1042{
1043	struct inet_sock *inet = inet_sk(sk);
1044	struct udp_sock *up = udp_sk(sk);
1045	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1046	struct flowi4 fl4_stack;
1047	struct flowi4 *fl4;
1048	int ulen = len;
1049	struct ipcm_cookie ipc;
1050	struct rtable *rt = NULL;
1051	int free = 0;
1052	int connected = 0;
1053	__be32 daddr, faddr, saddr;
1054	__be16 dport;
1055	u8  tos;
1056	int err, is_udplite = IS_UDPLITE(sk);
1057	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1058	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1059	struct sk_buff *skb;
1060	struct ip_options_data opt_copy;
1061
1062	if (len > 0xFFFF)
1063		return -EMSGSIZE;
1064
1065	/*
1066	 *	Check the flags.
1067	 */
1068
1069	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1070		return -EOPNOTSUPP;
1071
1072	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1073
1074	fl4 = &inet->cork.fl.u.ip4;
1075	if (up->pending) {
1076		/*
1077		 * There are pending frames.
1078		 * The socket lock must be held while it's corked.
1079		 */
1080		lock_sock(sk);
1081		if (likely(up->pending)) {
1082			if (unlikely(up->pending != AF_INET)) {
1083				release_sock(sk);
1084				return -EINVAL;
1085			}
1086			goto do_append_data;
1087		}
1088		release_sock(sk);
1089	}
1090	ulen += sizeof(struct udphdr);
1091
1092	/*
1093	 *	Get and verify the address.
1094	 */
1095	if (usin) {
1096		if (msg->msg_namelen < sizeof(*usin))
1097			return -EINVAL;
1098		if (usin->sin_family != AF_INET) {
1099			if (usin->sin_family != AF_UNSPEC)
1100				return -EAFNOSUPPORT;
1101		}
1102
1103		daddr = usin->sin_addr.s_addr;
1104		dport = usin->sin_port;
1105		if (dport == 0)
1106			return -EINVAL;
1107	} else {
1108		if (sk->sk_state != TCP_ESTABLISHED)
1109			return -EDESTADDRREQ;
1110		daddr = inet->inet_daddr;
1111		dport = inet->inet_dport;
1112		/* Open fast path for connected socket.
1113		   Route will not be used, if at least one option is set.
1114		 */
1115		connected = 1;
1116	}
1117
1118	ipcm_init_sk(&ipc, inet);
1119	ipc.gso_size = READ_ONCE(up->gso_size);
1120
1121	if (msg->msg_controllen) {
1122		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1123		if (err > 0)
1124			err = ip_cmsg_send(sk, msg, &ipc,
1125					   sk->sk_family == AF_INET6);
1126		if (unlikely(err < 0)) {
1127			kfree(ipc.opt);
1128			return err;
1129		}
1130		if (ipc.opt)
1131			free = 1;
1132		connected = 0;
1133	}
1134	if (!ipc.opt) {
1135		struct ip_options_rcu *inet_opt;
1136
1137		rcu_read_lock();
1138		inet_opt = rcu_dereference(inet->inet_opt);
1139		if (inet_opt) {
1140			memcpy(&opt_copy, inet_opt,
1141			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1142			ipc.opt = &opt_copy.opt;
1143		}
1144		rcu_read_unlock();
1145	}
1146
1147	if (cgroup_bpf_enabled(BPF_CGROUP_UDP4_SENDMSG) && !connected) {
1148		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1149					    (struct sockaddr *)usin, &ipc.addr);
1150		if (err)
1151			goto out_free;
1152		if (usin) {
1153			if (usin->sin_port == 0) {
1154				/* BPF program set invalid port. Reject it. */
1155				err = -EINVAL;
1156				goto out_free;
1157			}
1158			daddr = usin->sin_addr.s_addr;
1159			dport = usin->sin_port;
1160		}
1161	}
1162
1163	saddr = ipc.addr;
1164	ipc.addr = faddr = daddr;
1165
1166	if (ipc.opt && ipc.opt->opt.srr) {
1167		if (!daddr) {
1168			err = -EINVAL;
1169			goto out_free;
1170		}
1171		faddr = ipc.opt->opt.faddr;
1172		connected = 0;
1173	}
1174	tos = get_rttos(&ipc, inet);
1175	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1176	    (msg->msg_flags & MSG_DONTROUTE) ||
1177	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1178		tos |= RTO_ONLINK;
1179		connected = 0;
1180	}
1181
1182	if (ipv4_is_multicast(daddr)) {
1183		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1184			ipc.oif = inet->mc_index;
1185		if (!saddr)
1186			saddr = inet->mc_addr;
1187		connected = 0;
1188	} else if (!ipc.oif) {
1189		ipc.oif = inet->uc_index;
1190	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1191		/* oif is set, packet is to local broadcast and
1192		 * uc_index is set. oif is most likely set
1193		 * by sk_bound_dev_if. If uc_index != oif check if the
1194		 * oif is an L3 master and uc_index is an L3 slave.
1195		 * If so, we want to allow the send using the uc_index.
1196		 */
1197		if (ipc.oif != inet->uc_index &&
1198		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1199							      inet->uc_index)) {
1200			ipc.oif = inet->uc_index;
1201		}
1202	}
1203
1204	if (connected)
1205		rt = (struct rtable *)sk_dst_check(sk, 0);
1206
1207	if (!rt) {
1208		struct net *net = sock_net(sk);
1209		__u8 flow_flags = inet_sk_flowi_flags(sk);
1210
1211		fl4 = &fl4_stack;
1212
1213		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1214				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1215				   flow_flags,
1216				   faddr, saddr, dport, inet->inet_sport,
1217				   sk->sk_uid);
1218
1219		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1220		rt = ip_route_output_flow(net, fl4, sk);
1221		if (IS_ERR(rt)) {
1222			err = PTR_ERR(rt);
1223			rt = NULL;
1224			if (err == -ENETUNREACH)
1225				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1226			goto out;
1227		}
1228
1229		err = -EACCES;
1230		if ((rt->rt_flags & RTCF_BROADCAST) &&
1231		    !sock_flag(sk, SOCK_BROADCAST))
1232			goto out;
1233		if (connected)
1234			sk_dst_set(sk, dst_clone(&rt->dst));
1235	}
1236
1237	if (msg->msg_flags&MSG_CONFIRM)
1238		goto do_confirm;
1239back_from_confirm:
1240
1241	saddr = fl4->saddr;
1242	if (!ipc.addr)
1243		daddr = ipc.addr = fl4->daddr;
1244
1245	/* Lockless fast path for the non-corking case. */
1246	if (!corkreq) {
1247		struct inet_cork cork;
1248
1249		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1250				  sizeof(struct udphdr), &ipc, &rt,
1251				  &cork, msg->msg_flags);
1252		err = PTR_ERR(skb);
1253		if (!IS_ERR_OR_NULL(skb))
1254			err = udp_send_skb(skb, fl4, &cork);
1255		goto out;
1256	}
1257
1258	lock_sock(sk);
1259	if (unlikely(up->pending)) {
1260		/* The socket is already corked while preparing it. */
1261		/* ... which is an evident application bug. --ANK */
1262		release_sock(sk);
1263
1264		net_dbg_ratelimited("socket already corked\n");
1265		err = -EINVAL;
1266		goto out;
1267	}
1268	/*
1269	 *	Now cork the socket to pend data.
1270	 */
1271	fl4 = &inet->cork.fl.u.ip4;
1272	fl4->daddr = daddr;
1273	fl4->saddr = saddr;
1274	fl4->fl4_dport = dport;
1275	fl4->fl4_sport = inet->inet_sport;
1276	up->pending = AF_INET;
1277
1278do_append_data:
1279	up->len += ulen;
1280	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1281			     sizeof(struct udphdr), &ipc, &rt,
1282			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1283	if (err)
1284		udp_flush_pending_frames(sk);
1285	else if (!corkreq)
1286		err = udp_push_pending_frames(sk);
1287	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1288		up->pending = 0;
1289	release_sock(sk);
1290
1291out:
1292	ip_rt_put(rt);
1293out_free:
1294	if (free)
1295		kfree(ipc.opt);
1296	if (!err)
1297		return len;
1298	/*
1299	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1300	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1301	 * we don't have a good statistic (IpOutDiscards but it can be too many
1302	 * things).  We could add another new stat but at least for now that
1303	 * seems like overkill.
1304	 */
1305	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1306		UDP_INC_STATS(sock_net(sk),
1307			      UDP_MIB_SNDBUFERRORS, is_udplite);
1308	}
1309	return err;
1310
1311do_confirm:
1312	if (msg->msg_flags & MSG_PROBE)
1313		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1314	if (!(msg->msg_flags&MSG_PROBE) || len)
1315		goto back_from_confirm;
1316	err = 0;
1317	goto out;
1318}
1319EXPORT_SYMBOL(udp_sendmsg);
1320
1321int udp_sendpage(struct sock *sk, struct page *page, int offset,
1322		 size_t size, int flags)
1323{
1324	struct inet_sock *inet = inet_sk(sk);
1325	struct udp_sock *up = udp_sk(sk);
1326	int ret;
1327
1328	if (flags & MSG_SENDPAGE_NOTLAST)
1329		flags |= MSG_MORE;
1330
1331	if (!up->pending) {
1332		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1333
1334		/* Call udp_sendmsg to specify destination address which
1335		 * sendpage interface can't pass.
1336		 * This will succeed only when the socket is connected.
1337		 */
1338		ret = udp_sendmsg(sk, &msg, 0);
1339		if (ret < 0)
1340			return ret;
1341	}
1342
1343	lock_sock(sk);
1344
1345	if (unlikely(!up->pending)) {
1346		release_sock(sk);
1347
1348		net_dbg_ratelimited("cork failed\n");
1349		return -EINVAL;
1350	}
1351
1352	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1353			     page, offset, size, flags);
1354	if (ret == -EOPNOTSUPP) {
1355		release_sock(sk);
1356		return sock_no_sendpage(sk->sk_socket, page, offset,
1357					size, flags);
1358	}
1359	if (ret < 0) {
1360		udp_flush_pending_frames(sk);
1361		goto out;
1362	}
1363
1364	up->len += size;
1365	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1366		ret = udp_push_pending_frames(sk);
1367	if (!ret)
1368		ret = size;
1369out:
1370	release_sock(sk);
1371	return ret;
1372}
1373
1374#define UDP_SKB_IS_STATELESS 0x80000000
1375
1376/* all head states (dst, sk, nf conntrack) except skb extensions are
1377 * cleared by udp_rcv().
1378 *
1379 * We need to preserve secpath, if present, to eventually process
1380 * IP_CMSG_PASSSEC at recvmsg() time.
1381 *
1382 * Other extensions can be cleared.
1383 */
1384static bool udp_try_make_stateless(struct sk_buff *skb)
1385{
1386	if (!skb_has_extensions(skb))
1387		return true;
1388
1389	if (!secpath_exists(skb)) {
1390		skb_ext_reset(skb);
1391		return true;
1392	}
1393
1394	return false;
1395}
1396
1397static void udp_set_dev_scratch(struct sk_buff *skb)
1398{
1399	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1400
1401	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1402	scratch->_tsize_state = skb->truesize;
1403#if BITS_PER_LONG == 64
1404	scratch->len = skb->len;
1405	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1406	scratch->is_linear = !skb_is_nonlinear(skb);
1407#endif
1408	if (udp_try_make_stateless(skb))
1409		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1410}
1411
1412static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1413{
1414	/* We come here after udp_lib_checksum_complete() returned 0.
1415	 * This means that __skb_checksum_complete() might have
1416	 * set skb->csum_valid to 1.
1417	 * On 64bit platforms, we can set csum_unnecessary
1418	 * to true, but only if the skb is not shared.
1419	 */
1420#if BITS_PER_LONG == 64
1421	if (!skb_shared(skb))
1422		udp_skb_scratch(skb)->csum_unnecessary = true;
1423#endif
1424}
1425
1426static int udp_skb_truesize(struct sk_buff *skb)
1427{
1428	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1429}
1430
1431static bool udp_skb_has_head_state(struct sk_buff *skb)
1432{
1433	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1434}
1435
1436/* fully reclaim rmem/fwd memory allocated for skb */
1437static void udp_rmem_release(struct sock *sk, int size, int partial,
1438			     bool rx_queue_lock_held)
1439{
1440	struct udp_sock *up = udp_sk(sk);
1441	struct sk_buff_head *sk_queue;
1442	int amt;
1443
1444	if (likely(partial)) {
1445		up->forward_deficit += size;
1446		size = up->forward_deficit;
1447		if (size < (sk->sk_rcvbuf >> 2) &&
1448		    !skb_queue_empty(&up->reader_queue))
1449			return;
1450	} else {
1451		size += up->forward_deficit;
1452	}
1453	up->forward_deficit = 0;
1454
1455	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1456	 * if the called don't held it already
1457	 */
1458	sk_queue = &sk->sk_receive_queue;
1459	if (!rx_queue_lock_held)
1460		spin_lock(&sk_queue->lock);
1461
1462
1463	sk->sk_forward_alloc += size;
1464	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1465	sk->sk_forward_alloc -= amt;
1466
1467	if (amt)
1468		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1469
1470	atomic_sub(size, &sk->sk_rmem_alloc);
1471
1472	/* this can save us from acquiring the rx queue lock on next receive */
1473	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1474
1475	if (!rx_queue_lock_held)
1476		spin_unlock(&sk_queue->lock);
1477}
1478
1479/* Note: called with reader_queue.lock held.
1480 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1481 * This avoids a cache line miss while receive_queue lock is held.
1482 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1483 */
1484void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1485{
1486	prefetch(&skb->data);
1487	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1488}
1489EXPORT_SYMBOL(udp_skb_destructor);
1490
1491/* as above, but the caller held the rx queue lock, too */
1492static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1493{
1494	prefetch(&skb->data);
1495	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1496}
1497
1498/* Idea of busylocks is to let producers grab an extra spinlock
1499 * to relieve pressure on the receive_queue spinlock shared by consumer.
1500 * Under flood, this means that only one producer can be in line
1501 * trying to acquire the receive_queue spinlock.
1502 * These busylock can be allocated on a per cpu manner, instead of a
1503 * per socket one (that would consume a cache line per socket)
1504 */
1505static int udp_busylocks_log __read_mostly;
1506static spinlock_t *udp_busylocks __read_mostly;
1507
1508static spinlock_t *busylock_acquire(void *ptr)
1509{
1510	spinlock_t *busy;
1511
1512	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1513	spin_lock(busy);
1514	return busy;
1515}
1516
1517static void busylock_release(spinlock_t *busy)
1518{
1519	if (busy)
1520		spin_unlock(busy);
1521}
1522
1523int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1524{
1525	struct sk_buff_head *list = &sk->sk_receive_queue;
1526	int rmem, delta, amt, err = -ENOMEM;
1527	spinlock_t *busy = NULL;
1528	int size;
1529
1530	/* try to avoid the costly atomic add/sub pair when the receive
1531	 * queue is full; always allow at least a packet
1532	 */
1533	rmem = atomic_read(&sk->sk_rmem_alloc);
1534	if (rmem > sk->sk_rcvbuf)
1535		goto drop;
1536
1537	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1538	 * having linear skbs :
1539	 * - Reduce memory overhead and thus increase receive queue capacity
1540	 * - Less cache line misses at copyout() time
1541	 * - Less work at consume_skb() (less alien page frag freeing)
1542	 */
1543	if (rmem > (sk->sk_rcvbuf >> 1)) {
1544		skb_condense(skb);
1545
1546		busy = busylock_acquire(sk);
1547	}
1548	size = skb->truesize;
1549	udp_set_dev_scratch(skb);
1550
1551	/* we drop only if the receive buf is full and the receive
1552	 * queue contains some other skb
1553	 */
1554	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1555	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1556		goto uncharge_drop;
1557
1558	spin_lock(&list->lock);
1559	if (size >= sk->sk_forward_alloc) {
1560		amt = sk_mem_pages(size);
1561		delta = amt << SK_MEM_QUANTUM_SHIFT;
1562		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1563			err = -ENOBUFS;
1564			spin_unlock(&list->lock);
1565			goto uncharge_drop;
1566		}
1567
1568		sk->sk_forward_alloc += delta;
1569	}
1570
1571	sk->sk_forward_alloc -= size;
1572
1573	/* no need to setup a destructor, we will explicitly release the
1574	 * forward allocated memory on dequeue
1575	 */
1576	sock_skb_set_dropcount(sk, skb);
1577
1578	__skb_queue_tail(list, skb);
1579	spin_unlock(&list->lock);
1580
1581	if (!sock_flag(sk, SOCK_DEAD))
1582		sk->sk_data_ready(sk);
1583
1584	busylock_release(busy);
1585	return 0;
1586
1587uncharge_drop:
1588	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1589
1590drop:
1591	atomic_inc(&sk->sk_drops);
1592	busylock_release(busy);
1593	return err;
1594}
1595EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1596
1597void udp_destruct_sock(struct sock *sk)
1598{
1599	/* reclaim completely the forward allocated memory */
1600	struct udp_sock *up = udp_sk(sk);
1601	unsigned int total = 0;
1602	struct sk_buff *skb;
1603
1604	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1605	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1606		total += skb->truesize;
1607		kfree_skb(skb);
1608	}
1609	udp_rmem_release(sk, total, 0, true);
 
 
1610
 
 
 
1611	inet_sock_destruct(sk);
1612}
1613EXPORT_SYMBOL_GPL(udp_destruct_sock);
1614
1615int udp_init_sock(struct sock *sk)
1616{
1617	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1618	sk->sk_destruct = udp_destruct_sock;
 
1619	return 0;
1620}
1621EXPORT_SYMBOL_GPL(udp_init_sock);
1622
1623void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1624{
1625	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1626		bool slow = lock_sock_fast(sk);
1627
1628		sk_peek_offset_bwd(sk, len);
1629		unlock_sock_fast(sk, slow);
1630	}
1631
1632	if (!skb_unref(skb))
1633		return;
1634
1635	/* In the more common cases we cleared the head states previously,
1636	 * see __udp_queue_rcv_skb().
1637	 */
1638	if (unlikely(udp_skb_has_head_state(skb)))
1639		skb_release_head_state(skb);
1640	__consume_stateless_skb(skb);
1641}
1642EXPORT_SYMBOL_GPL(skb_consume_udp);
1643
1644static struct sk_buff *__first_packet_length(struct sock *sk,
1645					     struct sk_buff_head *rcvq,
1646					     int *total)
1647{
1648	struct sk_buff *skb;
1649
1650	while ((skb = skb_peek(rcvq)) != NULL) {
1651		if (udp_lib_checksum_complete(skb)) {
1652			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1653					IS_UDPLITE(sk));
1654			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1655					IS_UDPLITE(sk));
1656			atomic_inc(&sk->sk_drops);
1657			__skb_unlink(skb, rcvq);
1658			*total += skb->truesize;
1659			kfree_skb(skb);
1660		} else {
1661			udp_skb_csum_unnecessary_set(skb);
1662			break;
1663		}
1664	}
1665	return skb;
1666}
1667
1668/**
1669 *	first_packet_length	- return length of first packet in receive queue
1670 *	@sk: socket
1671 *
1672 *	Drops all bad checksum frames, until a valid one is found.
1673 *	Returns the length of found skb, or -1 if none is found.
1674 */
1675static int first_packet_length(struct sock *sk)
1676{
1677	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1678	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1679	struct sk_buff *skb;
1680	int total = 0;
1681	int res;
1682
1683	spin_lock_bh(&rcvq->lock);
1684	skb = __first_packet_length(sk, rcvq, &total);
1685	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1686		spin_lock(&sk_queue->lock);
1687		skb_queue_splice_tail_init(sk_queue, rcvq);
1688		spin_unlock(&sk_queue->lock);
1689
1690		skb = __first_packet_length(sk, rcvq, &total);
1691	}
1692	res = skb ? skb->len : -1;
1693	if (total)
1694		udp_rmem_release(sk, total, 1, false);
1695	spin_unlock_bh(&rcvq->lock);
1696	return res;
1697}
1698
1699/*
1700 *	IOCTL requests applicable to the UDP protocol
1701 */
1702
1703int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1704{
1705	switch (cmd) {
1706	case SIOCOUTQ:
1707	{
1708		int amount = sk_wmem_alloc_get(sk);
1709
1710		return put_user(amount, (int __user *)arg);
1711	}
1712
1713	case SIOCINQ:
1714	{
1715		int amount = max_t(int, 0, first_packet_length(sk));
1716
1717		return put_user(amount, (int __user *)arg);
1718	}
1719
1720	default:
1721		return -ENOIOCTLCMD;
1722	}
1723
1724	return 0;
1725}
1726EXPORT_SYMBOL(udp_ioctl);
1727
1728struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1729			       int noblock, int *off, int *err)
1730{
1731	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1732	struct sk_buff_head *queue;
1733	struct sk_buff *last;
1734	long timeo;
1735	int error;
1736
1737	queue = &udp_sk(sk)->reader_queue;
1738	flags |= noblock ? MSG_DONTWAIT : 0;
1739	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1740	do {
1741		struct sk_buff *skb;
1742
1743		error = sock_error(sk);
1744		if (error)
1745			break;
1746
1747		error = -EAGAIN;
1748		do {
1749			spin_lock_bh(&queue->lock);
1750			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1751							err, &last);
1752			if (skb) {
1753				if (!(flags & MSG_PEEK))
1754					udp_skb_destructor(sk, skb);
1755				spin_unlock_bh(&queue->lock);
1756				return skb;
1757			}
1758
1759			if (skb_queue_empty_lockless(sk_queue)) {
1760				spin_unlock_bh(&queue->lock);
1761				goto busy_check;
1762			}
1763
1764			/* refill the reader queue and walk it again
1765			 * keep both queues locked to avoid re-acquiring
1766			 * the sk_receive_queue lock if fwd memory scheduling
1767			 * is needed.
1768			 */
1769			spin_lock(&sk_queue->lock);
1770			skb_queue_splice_tail_init(sk_queue, queue);
1771
1772			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1773							err, &last);
1774			if (skb && !(flags & MSG_PEEK))
1775				udp_skb_dtor_locked(sk, skb);
1776			spin_unlock(&sk_queue->lock);
1777			spin_unlock_bh(&queue->lock);
1778			if (skb)
1779				return skb;
1780
1781busy_check:
1782			if (!sk_can_busy_loop(sk))
1783				break;
1784
1785			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1786		} while (!skb_queue_empty_lockless(sk_queue));
1787
1788		/* sk_queue is empty, reader_queue may contain peeked packets */
1789	} while (timeo &&
1790		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1791					      &error, &timeo,
1792					      (struct sk_buff *)sk_queue));
1793
1794	*err = error;
1795	return NULL;
1796}
1797EXPORT_SYMBOL(__skb_recv_udp);
1798
1799int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1800		  sk_read_actor_t recv_actor)
1801{
1802	int copied = 0;
 
1803
1804	while (1) {
1805		struct sk_buff *skb;
1806		int err, used;
 
1807
1808		skb = skb_recv_udp(sk, 0, 1, &err);
1809		if (!skb)
1810			return err;
1811		used = recv_actor(desc, skb, 0, skb->len);
1812		if (used <= 0) {
1813			if (!copied)
1814				copied = used;
1815			kfree_skb(skb);
1816			break;
1817		} else if (used <= skb->len) {
1818			copied += used;
1819		}
1820
 
 
 
1821		kfree_skb(skb);
1822		if (!desc->count)
1823			break;
1824	}
1825
 
 
 
 
1826	return copied;
1827}
1828EXPORT_SYMBOL(udp_read_sock);
1829
1830/*
1831 * 	This should be easy, if there is something there we
1832 * 	return it, otherwise we block.
1833 */
1834
1835int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1836		int flags, int *addr_len)
1837{
1838	struct inet_sock *inet = inet_sk(sk);
1839	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1840	struct sk_buff *skb;
1841	unsigned int ulen, copied;
1842	int off, err, peeking = flags & MSG_PEEK;
1843	int is_udplite = IS_UDPLITE(sk);
1844	bool checksum_valid = false;
1845
1846	if (flags & MSG_ERRQUEUE)
1847		return ip_recv_error(sk, msg, len, addr_len);
1848
1849try_again:
1850	off = sk_peek_offset(sk, flags);
1851	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1852	if (!skb)
1853		return err;
1854
1855	ulen = udp_skb_len(skb);
1856	copied = len;
1857	if (copied > ulen - off)
1858		copied = ulen - off;
1859	else if (copied < ulen)
1860		msg->msg_flags |= MSG_TRUNC;
1861
1862	/*
1863	 * If checksum is needed at all, try to do it while copying the
1864	 * data.  If the data is truncated, or if we only want a partial
1865	 * coverage checksum (UDP-Lite), do it before the copy.
1866	 */
1867
1868	if (copied < ulen || peeking ||
1869	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1870		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1871				!__udp_lib_checksum_complete(skb);
1872		if (!checksum_valid)
1873			goto csum_copy_err;
1874	}
1875
1876	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1877		if (udp_skb_is_linear(skb))
1878			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1879		else
1880			err = skb_copy_datagram_msg(skb, off, msg, copied);
1881	} else {
1882		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1883
1884		if (err == -EINVAL)
1885			goto csum_copy_err;
1886	}
1887
1888	if (unlikely(err)) {
1889		if (!peeking) {
1890			atomic_inc(&sk->sk_drops);
1891			UDP_INC_STATS(sock_net(sk),
1892				      UDP_MIB_INERRORS, is_udplite);
1893		}
1894		kfree_skb(skb);
1895		return err;
1896	}
1897
1898	if (!peeking)
1899		UDP_INC_STATS(sock_net(sk),
1900			      UDP_MIB_INDATAGRAMS, is_udplite);
1901
1902	sock_recv_ts_and_drops(msg, sk, skb);
1903
1904	/* Copy the address. */
1905	if (sin) {
1906		sin->sin_family = AF_INET;
1907		sin->sin_port = udp_hdr(skb)->source;
1908		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1909		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1910		*addr_len = sizeof(*sin);
1911
1912		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1913						      (struct sockaddr *)sin);
1914	}
1915
1916	if (udp_sk(sk)->gro_enabled)
1917		udp_cmsg_recv(msg, sk, skb);
1918
1919	if (inet->cmsg_flags)
1920		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1921
1922	err = copied;
1923	if (flags & MSG_TRUNC)
1924		err = ulen;
1925
1926	skb_consume_udp(sk, skb, peeking ? -err : err);
1927	return err;
1928
1929csum_copy_err:
1930	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1931				 udp_skb_destructor)) {
1932		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1933		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1934	}
1935	kfree_skb(skb);
1936
1937	/* starting over for a new packet, but check if we need to yield */
1938	cond_resched();
1939	msg->msg_flags &= ~MSG_TRUNC;
1940	goto try_again;
1941}
1942
1943int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1944{
1945	/* This check is replicated from __ip4_datagram_connect() and
1946	 * intended to prevent BPF program called below from accessing bytes
1947	 * that are out of the bound specified by user in addr_len.
1948	 */
1949	if (addr_len < sizeof(struct sockaddr_in))
1950		return -EINVAL;
1951
1952	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1953}
1954EXPORT_SYMBOL(udp_pre_connect);
1955
1956int __udp_disconnect(struct sock *sk, int flags)
1957{
1958	struct inet_sock *inet = inet_sk(sk);
1959	/*
1960	 *	1003.1g - break association.
1961	 */
1962
1963	sk->sk_state = TCP_CLOSE;
1964	inet->inet_daddr = 0;
1965	inet->inet_dport = 0;
1966	sock_rps_reset_rxhash(sk);
1967	sk->sk_bound_dev_if = 0;
1968	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1969		inet_reset_saddr(sk);
1970		if (sk->sk_prot->rehash &&
1971		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1972			sk->sk_prot->rehash(sk);
1973	}
1974
1975	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1976		sk->sk_prot->unhash(sk);
1977		inet->inet_sport = 0;
1978	}
1979	sk_dst_reset(sk);
1980	return 0;
1981}
1982EXPORT_SYMBOL(__udp_disconnect);
1983
1984int udp_disconnect(struct sock *sk, int flags)
1985{
1986	lock_sock(sk);
1987	__udp_disconnect(sk, flags);
1988	release_sock(sk);
1989	return 0;
1990}
1991EXPORT_SYMBOL(udp_disconnect);
1992
1993void udp_lib_unhash(struct sock *sk)
1994{
1995	if (sk_hashed(sk)) {
1996		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1997		struct udp_hslot *hslot, *hslot2;
1998
1999		hslot  = udp_hashslot(udptable, sock_net(sk),
2000				      udp_sk(sk)->udp_port_hash);
2001		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2002
2003		spin_lock_bh(&hslot->lock);
2004		if (rcu_access_pointer(sk->sk_reuseport_cb))
2005			reuseport_detach_sock(sk);
2006		if (sk_del_node_init_rcu(sk)) {
2007			hslot->count--;
2008			inet_sk(sk)->inet_num = 0;
2009			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2010
2011			spin_lock(&hslot2->lock);
2012			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2013			hslot2->count--;
2014			spin_unlock(&hslot2->lock);
2015		}
2016		spin_unlock_bh(&hslot->lock);
2017	}
2018}
2019EXPORT_SYMBOL(udp_lib_unhash);
2020
2021/*
2022 * inet_rcv_saddr was changed, we must rehash secondary hash
2023 */
2024void udp_lib_rehash(struct sock *sk, u16 newhash)
2025{
2026	if (sk_hashed(sk)) {
2027		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2028		struct udp_hslot *hslot, *hslot2, *nhslot2;
2029
2030		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2031		nhslot2 = udp_hashslot2(udptable, newhash);
2032		udp_sk(sk)->udp_portaddr_hash = newhash;
2033
2034		if (hslot2 != nhslot2 ||
2035		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2036			hslot = udp_hashslot(udptable, sock_net(sk),
2037					     udp_sk(sk)->udp_port_hash);
2038			/* we must lock primary chain too */
2039			spin_lock_bh(&hslot->lock);
2040			if (rcu_access_pointer(sk->sk_reuseport_cb))
2041				reuseport_detach_sock(sk);
2042
2043			if (hslot2 != nhslot2) {
2044				spin_lock(&hslot2->lock);
2045				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2046				hslot2->count--;
2047				spin_unlock(&hslot2->lock);
2048
2049				spin_lock(&nhslot2->lock);
2050				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2051							 &nhslot2->head);
2052				nhslot2->count++;
2053				spin_unlock(&nhslot2->lock);
2054			}
2055
2056			spin_unlock_bh(&hslot->lock);
2057		}
2058	}
2059}
2060EXPORT_SYMBOL(udp_lib_rehash);
2061
2062void udp_v4_rehash(struct sock *sk)
2063{
2064	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2065					  inet_sk(sk)->inet_rcv_saddr,
2066					  inet_sk(sk)->inet_num);
2067	udp_lib_rehash(sk, new_hash);
2068}
2069
2070static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2071{
2072	int rc;
2073
2074	if (inet_sk(sk)->inet_daddr) {
2075		sock_rps_save_rxhash(sk, skb);
2076		sk_mark_napi_id(sk, skb);
2077		sk_incoming_cpu_update(sk);
2078	} else {
2079		sk_mark_napi_id_once(sk, skb);
2080	}
2081
2082	rc = __udp_enqueue_schedule_skb(sk, skb);
2083	if (rc < 0) {
2084		int is_udplite = IS_UDPLITE(sk);
 
2085
2086		/* Note that an ENOMEM error is charged twice */
2087		if (rc == -ENOMEM)
2088			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2089					is_udplite);
2090		else
 
2091			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2092				      is_udplite);
 
 
2093		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2094		kfree_skb(skb);
2095		trace_udp_fail_queue_rcv_skb(rc, sk);
2096		return -1;
2097	}
2098
2099	return 0;
2100}
2101
2102/* returns:
2103 *  -1: error
2104 *   0: success
2105 *  >0: "udp encap" protocol resubmission
2106 *
2107 * Note that in the success and error cases, the skb is assumed to
2108 * have either been requeued or freed.
2109 */
2110static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2111{
 
2112	struct udp_sock *up = udp_sk(sk);
2113	int is_udplite = IS_UDPLITE(sk);
2114
2115	/*
2116	 *	Charge it to the socket, dropping if the queue is full.
2117	 */
2118	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
2119		goto drop;
 
2120	nf_reset_ct(skb);
2121
2122	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2123		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2124
2125		/*
2126		 * This is an encapsulation socket so pass the skb to
2127		 * the socket's udp_encap_rcv() hook. Otherwise, just
2128		 * fall through and pass this up the UDP socket.
2129		 * up->encap_rcv() returns the following value:
2130		 * =0 if skb was successfully passed to the encap
2131		 *    handler or was discarded by it.
2132		 * >0 if skb should be passed on to UDP.
2133		 * <0 if skb should be resubmitted as proto -N
2134		 */
2135
2136		/* if we're overly short, let UDP handle it */
2137		encap_rcv = READ_ONCE(up->encap_rcv);
2138		if (encap_rcv) {
2139			int ret;
2140
2141			/* Verify checksum before giving to encap */
2142			if (udp_lib_checksum_complete(skb))
2143				goto csum_error;
2144
2145			ret = encap_rcv(sk, skb);
2146			if (ret <= 0) {
2147				__UDP_INC_STATS(sock_net(sk),
2148						UDP_MIB_INDATAGRAMS,
2149						is_udplite);
2150				return -ret;
2151			}
2152		}
2153
2154		/* FALLTHROUGH -- it's a UDP Packet */
2155	}
2156
2157	/*
2158	 * 	UDP-Lite specific tests, ignored on UDP sockets
2159	 */
2160	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2161
2162		/*
2163		 * MIB statistics other than incrementing the error count are
2164		 * disabled for the following two types of errors: these depend
2165		 * on the application settings, not on the functioning of the
2166		 * protocol stack as such.
2167		 *
2168		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2169		 * way ... to ... at least let the receiving application block
2170		 * delivery of packets with coverage values less than a value
2171		 * provided by the application."
2172		 */
2173		if (up->pcrlen == 0) {          /* full coverage was set  */
2174			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2175					    UDP_SKB_CB(skb)->cscov, skb->len);
2176			goto drop;
2177		}
2178		/* The next case involves violating the min. coverage requested
2179		 * by the receiver. This is subtle: if receiver wants x and x is
2180		 * greater than the buffersize/MTU then receiver will complain
2181		 * that it wants x while sender emits packets of smaller size y.
2182		 * Therefore the above ...()->partial_cov statement is essential.
2183		 */
2184		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2185			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2186					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2187			goto drop;
2188		}
2189	}
2190
2191	prefetch(&sk->sk_rmem_alloc);
2192	if (rcu_access_pointer(sk->sk_filter) &&
2193	    udp_lib_checksum_complete(skb))
2194			goto csum_error;
2195
2196	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
 
2197		goto drop;
 
2198
2199	udp_csum_pull_header(skb);
2200
2201	ipv4_pktinfo_prepare(sk, skb);
2202	return __udp_queue_rcv_skb(sk, skb);
2203
2204csum_error:
 
2205	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2206drop:
2207	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2208	atomic_inc(&sk->sk_drops);
2209	kfree_skb(skb);
2210	return -1;
2211}
2212
2213static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2214{
2215	struct sk_buff *next, *segs;
2216	int ret;
2217
2218	if (likely(!udp_unexpected_gso(sk, skb)))
2219		return udp_queue_rcv_one_skb(sk, skb);
2220
2221	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2222	__skb_push(skb, -skb_mac_offset(skb));
2223	segs = udp_rcv_segment(sk, skb, true);
2224	skb_list_walk_safe(segs, skb, next) {
2225		__skb_pull(skb, skb_transport_offset(skb));
2226
2227		udp_post_segment_fix_csum(skb);
2228		ret = udp_queue_rcv_one_skb(sk, skb);
2229		if (ret > 0)
2230			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2231	}
2232	return 0;
2233}
2234
2235/* For TCP sockets, sk_rx_dst is protected by socket lock
2236 * For UDP, we use xchg() to guard against concurrent changes.
2237 */
2238bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2239{
2240	struct dst_entry *old;
2241
2242	if (dst_hold_safe(dst)) {
2243		old = xchg(&sk->sk_rx_dst, dst);
2244		dst_release(old);
2245		return old != dst;
2246	}
2247	return false;
2248}
2249EXPORT_SYMBOL(udp_sk_rx_dst_set);
2250
2251/*
2252 *	Multicasts and broadcasts go to each listener.
2253 *
2254 *	Note: called only from the BH handler context.
2255 */
2256static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2257				    struct udphdr  *uh,
2258				    __be32 saddr, __be32 daddr,
2259				    struct udp_table *udptable,
2260				    int proto)
2261{
2262	struct sock *sk, *first = NULL;
2263	unsigned short hnum = ntohs(uh->dest);
2264	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2265	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2266	unsigned int offset = offsetof(typeof(*sk), sk_node);
2267	int dif = skb->dev->ifindex;
2268	int sdif = inet_sdif(skb);
2269	struct hlist_node *node;
2270	struct sk_buff *nskb;
2271
2272	if (use_hash2) {
2273		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2274			    udptable->mask;
2275		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2276start_lookup:
2277		hslot = &udptable->hash2[hash2];
2278		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2279	}
2280
2281	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2282		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2283					 uh->source, saddr, dif, sdif, hnum))
2284			continue;
2285
2286		if (!first) {
2287			first = sk;
2288			continue;
2289		}
2290		nskb = skb_clone(skb, GFP_ATOMIC);
2291
2292		if (unlikely(!nskb)) {
2293			atomic_inc(&sk->sk_drops);
2294			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2295					IS_UDPLITE(sk));
2296			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2297					IS_UDPLITE(sk));
2298			continue;
2299		}
2300		if (udp_queue_rcv_skb(sk, nskb) > 0)
2301			consume_skb(nskb);
2302	}
2303
2304	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2305	if (use_hash2 && hash2 != hash2_any) {
2306		hash2 = hash2_any;
2307		goto start_lookup;
2308	}
2309
2310	if (first) {
2311		if (udp_queue_rcv_skb(first, skb) > 0)
2312			consume_skb(skb);
2313	} else {
2314		kfree_skb(skb);
2315		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2316				proto == IPPROTO_UDPLITE);
2317	}
2318	return 0;
2319}
2320
2321/* Initialize UDP checksum. If exited with zero value (success),
2322 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2323 * Otherwise, csum completion requires checksumming packet body,
2324 * including udp header and folding it to skb->csum.
2325 */
2326static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2327				 int proto)
2328{
2329	int err;
2330
2331	UDP_SKB_CB(skb)->partial_cov = 0;
2332	UDP_SKB_CB(skb)->cscov = skb->len;
2333
2334	if (proto == IPPROTO_UDPLITE) {
2335		err = udplite_checksum_init(skb, uh);
2336		if (err)
2337			return err;
2338
2339		if (UDP_SKB_CB(skb)->partial_cov) {
2340			skb->csum = inet_compute_pseudo(skb, proto);
2341			return 0;
2342		}
2343	}
2344
2345	/* Note, we are only interested in != 0 or == 0, thus the
2346	 * force to int.
2347	 */
2348	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2349							inet_compute_pseudo);
2350	if (err)
2351		return err;
2352
2353	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2354		/* If SW calculated the value, we know it's bad */
2355		if (skb->csum_complete_sw)
2356			return 1;
2357
2358		/* HW says the value is bad. Let's validate that.
2359		 * skb->csum is no longer the full packet checksum,
2360		 * so don't treat it as such.
2361		 */
2362		skb_checksum_complete_unset(skb);
2363	}
2364
2365	return 0;
2366}
2367
2368/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2369 * return code conversion for ip layer consumption
2370 */
2371static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2372			       struct udphdr *uh)
2373{
2374	int ret;
2375
2376	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2377		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2378
2379	ret = udp_queue_rcv_skb(sk, skb);
2380
2381	/* a return value > 0 means to resubmit the input, but
2382	 * it wants the return to be -protocol, or 0
2383	 */
2384	if (ret > 0)
2385		return -ret;
2386	return 0;
2387}
2388
2389/*
2390 *	All we need to do is get the socket, and then do a checksum.
2391 */
2392
2393int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2394		   int proto)
2395{
2396	struct sock *sk;
2397	struct udphdr *uh;
2398	unsigned short ulen;
2399	struct rtable *rt = skb_rtable(skb);
2400	__be32 saddr, daddr;
2401	struct net *net = dev_net(skb->dev);
2402	bool refcounted;
 
 
 
2403
2404	/*
2405	 *  Validate the packet.
2406	 */
2407	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2408		goto drop;		/* No space for header. */
2409
2410	uh   = udp_hdr(skb);
2411	ulen = ntohs(uh->len);
2412	saddr = ip_hdr(skb)->saddr;
2413	daddr = ip_hdr(skb)->daddr;
2414
2415	if (ulen > skb->len)
2416		goto short_packet;
2417
2418	if (proto == IPPROTO_UDP) {
2419		/* UDP validates ulen. */
2420		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2421			goto short_packet;
2422		uh = udp_hdr(skb);
2423	}
2424
2425	if (udp4_csum_init(skb, uh, proto))
2426		goto csum_error;
2427
2428	sk = skb_steal_sock(skb, &refcounted);
2429	if (sk) {
2430		struct dst_entry *dst = skb_dst(skb);
2431		int ret;
2432
2433		if (unlikely(sk->sk_rx_dst != dst))
2434			udp_sk_rx_dst_set(sk, dst);
2435
2436		ret = udp_unicast_rcv_skb(sk, skb, uh);
2437		if (refcounted)
2438			sock_put(sk);
2439		return ret;
2440	}
2441
2442	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2443		return __udp4_lib_mcast_deliver(net, skb, uh,
2444						saddr, daddr, udptable, proto);
2445
2446	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2447	if (sk)
2448		return udp_unicast_rcv_skb(sk, skb, uh);
2449
2450	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2451		goto drop;
2452	nf_reset_ct(skb);
2453
2454	/* No socket. Drop packet silently, if checksum is wrong */
2455	if (udp_lib_checksum_complete(skb))
2456		goto csum_error;
2457
 
2458	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2459	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2460
2461	/*
2462	 * Hmm.  We got an UDP packet to a port to which we
2463	 * don't wanna listen.  Ignore it.
2464	 */
2465	kfree_skb(skb);
2466	return 0;
2467
2468short_packet:
 
2469	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2470			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2471			    &saddr, ntohs(uh->source),
2472			    ulen, skb->len,
2473			    &daddr, ntohs(uh->dest));
2474	goto drop;
2475
2476csum_error:
2477	/*
2478	 * RFC1122: OK.  Discards the bad packet silently (as far as
2479	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2480	 */
 
2481	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2482			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2483			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2484			    ulen);
2485	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2486drop:
2487	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2488	kfree_skb(skb);
2489	return 0;
2490}
2491
2492/* We can only early demux multicast if there is a single matching socket.
2493 * If more than one socket found returns NULL
2494 */
2495static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2496						  __be16 loc_port, __be32 loc_addr,
2497						  __be16 rmt_port, __be32 rmt_addr,
2498						  int dif, int sdif)
2499{
2500	struct sock *sk, *result;
2501	unsigned short hnum = ntohs(loc_port);
2502	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2503	struct udp_hslot *hslot = &udp_table.hash[slot];
 
 
 
 
2504
2505	/* Do not bother scanning a too big list */
2506	if (hslot->count > 10)
2507		return NULL;
2508
2509	result = NULL;
2510	sk_for_each_rcu(sk, &hslot->head) {
2511		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2512					rmt_port, rmt_addr, dif, sdif, hnum)) {
2513			if (result)
2514				return NULL;
2515			result = sk;
2516		}
2517	}
2518
2519	return result;
2520}
2521
2522/* For unicast we should only early demux connected sockets or we can
2523 * break forwarding setups.  The chains here can be long so only check
2524 * if the first socket is an exact match and if not move on.
2525 */
2526static struct sock *__udp4_lib_demux_lookup(struct net *net,
2527					    __be16 loc_port, __be32 loc_addr,
2528					    __be16 rmt_port, __be32 rmt_addr,
2529					    int dif, int sdif)
2530{
2531	unsigned short hnum = ntohs(loc_port);
2532	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2533	unsigned int slot2 = hash2 & udp_table.mask;
2534	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2535	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2536	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
 
 
 
2537	struct sock *sk;
2538
 
 
 
 
 
2539	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2540		if (INET_MATCH(sk, net, acookie, rmt_addr,
2541			       loc_addr, ports, dif, sdif))
2542			return sk;
2543		/* Only check first socket in chain */
2544		break;
2545	}
2546	return NULL;
2547}
2548
2549int udp_v4_early_demux(struct sk_buff *skb)
2550{
2551	struct net *net = dev_net(skb->dev);
2552	struct in_device *in_dev = NULL;
2553	const struct iphdr *iph;
2554	const struct udphdr *uh;
2555	struct sock *sk = NULL;
2556	struct dst_entry *dst;
2557	int dif = skb->dev->ifindex;
2558	int sdif = inet_sdif(skb);
2559	int ours;
2560
2561	/* validate the packet */
2562	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2563		return 0;
2564
2565	iph = ip_hdr(skb);
2566	uh = udp_hdr(skb);
2567
2568	if (skb->pkt_type == PACKET_MULTICAST) {
2569		in_dev = __in_dev_get_rcu(skb->dev);
2570
2571		if (!in_dev)
2572			return 0;
2573
2574		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2575				       iph->protocol);
2576		if (!ours)
2577			return 0;
2578
2579		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2580						   uh->source, iph->saddr,
2581						   dif, sdif);
2582	} else if (skb->pkt_type == PACKET_HOST) {
2583		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2584					     uh->source, iph->saddr, dif, sdif);
2585	}
2586
2587	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2588		return 0;
2589
2590	skb->sk = sk;
2591	skb->destructor = sock_efree;
2592	dst = READ_ONCE(sk->sk_rx_dst);
2593
2594	if (dst)
2595		dst = dst_check(dst, 0);
2596	if (dst) {
2597		u32 itag = 0;
2598
2599		/* set noref for now.
2600		 * any place which wants to hold dst has to call
2601		 * dst_hold_safe()
2602		 */
2603		skb_dst_set_noref(skb, dst);
2604
2605		/* for unconnected multicast sockets we need to validate
2606		 * the source on each packet
2607		 */
2608		if (!inet_sk(sk)->inet_daddr && in_dev)
2609			return ip_mc_validate_source(skb, iph->daddr,
2610						     iph->saddr,
2611						     iph->tos & IPTOS_RT_MASK,
2612						     skb->dev, in_dev, &itag);
2613	}
2614	return 0;
2615}
2616
2617int udp_rcv(struct sk_buff *skb)
2618{
2619	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2620}
2621
2622void udp_destroy_sock(struct sock *sk)
2623{
2624	struct udp_sock *up = udp_sk(sk);
2625	bool slow = lock_sock_fast(sk);
2626
2627	/* protects from races with udp_abort() */
2628	sock_set_flag(sk, SOCK_DEAD);
2629	udp_flush_pending_frames(sk);
2630	unlock_sock_fast(sk, slow);
2631	if (static_branch_unlikely(&udp_encap_needed_key)) {
2632		if (up->encap_type) {
2633			void (*encap_destroy)(struct sock *sk);
2634			encap_destroy = READ_ONCE(up->encap_destroy);
2635			if (encap_destroy)
2636				encap_destroy(sk);
2637		}
2638		if (up->encap_enabled)
2639			static_branch_dec(&udp_encap_needed_key);
2640	}
2641}
2642
2643/*
2644 *	Socket option code for UDP
2645 */
2646int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2647		       sockptr_t optval, unsigned int optlen,
2648		       int (*push_pending_frames)(struct sock *))
2649{
2650	struct udp_sock *up = udp_sk(sk);
2651	int val, valbool;
2652	int err = 0;
2653	int is_udplite = IS_UDPLITE(sk);
2654
 
 
 
 
 
 
 
 
 
 
 
 
2655	if (optlen < sizeof(int))
2656		return -EINVAL;
2657
2658	if (copy_from_sockptr(&val, optval, sizeof(val)))
2659		return -EFAULT;
2660
2661	valbool = val ? 1 : 0;
2662
2663	switch (optname) {
2664	case UDP_CORK:
2665		if (val != 0) {
2666			WRITE_ONCE(up->corkflag, 1);
2667		} else {
2668			WRITE_ONCE(up->corkflag, 0);
2669			lock_sock(sk);
2670			push_pending_frames(sk);
2671			release_sock(sk);
2672		}
2673		break;
2674
2675	case UDP_ENCAP:
2676		switch (val) {
2677		case 0:
2678#ifdef CONFIG_XFRM
2679		case UDP_ENCAP_ESPINUDP:
2680		case UDP_ENCAP_ESPINUDP_NON_IKE:
2681#if IS_ENABLED(CONFIG_IPV6)
2682			if (sk->sk_family == AF_INET6)
2683				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2684			else
2685#endif
2686				up->encap_rcv = xfrm4_udp_encap_rcv;
2687#endif
2688			fallthrough;
2689		case UDP_ENCAP_L2TPINUDP:
2690			up->encap_type = val;
2691			lock_sock(sk);
2692			udp_tunnel_encap_enable(sk->sk_socket);
2693			release_sock(sk);
2694			break;
2695		default:
2696			err = -ENOPROTOOPT;
2697			break;
2698		}
2699		break;
2700
2701	case UDP_NO_CHECK6_TX:
2702		up->no_check6_tx = valbool;
2703		break;
2704
2705	case UDP_NO_CHECK6_RX:
2706		up->no_check6_rx = valbool;
2707		break;
2708
2709	case UDP_SEGMENT:
2710		if (val < 0 || val > USHRT_MAX)
2711			return -EINVAL;
2712		WRITE_ONCE(up->gso_size, val);
2713		break;
2714
2715	case UDP_GRO:
2716		lock_sock(sk);
2717
2718		/* when enabling GRO, accept the related GSO packet type */
2719		if (valbool)
2720			udp_tunnel_encap_enable(sk->sk_socket);
2721		up->gro_enabled = valbool;
2722		up->accept_udp_l4 = valbool;
2723		release_sock(sk);
2724		break;
2725
2726	/*
2727	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2728	 */
2729	/* The sender sets actual checksum coverage length via this option.
2730	 * The case coverage > packet length is handled by send module. */
2731	case UDPLITE_SEND_CSCOV:
2732		if (!is_udplite)         /* Disable the option on UDP sockets */
2733			return -ENOPROTOOPT;
2734		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2735			val = 8;
2736		else if (val > USHRT_MAX)
2737			val = USHRT_MAX;
2738		up->pcslen = val;
2739		up->pcflag |= UDPLITE_SEND_CC;
2740		break;
2741
2742	/* The receiver specifies a minimum checksum coverage value. To make
2743	 * sense, this should be set to at least 8 (as done below). If zero is
2744	 * used, this again means full checksum coverage.                     */
2745	case UDPLITE_RECV_CSCOV:
2746		if (!is_udplite)         /* Disable the option on UDP sockets */
2747			return -ENOPROTOOPT;
2748		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2749			val = 8;
2750		else if (val > USHRT_MAX)
2751			val = USHRT_MAX;
2752		up->pcrlen = val;
2753		up->pcflag |= UDPLITE_RECV_CC;
2754		break;
2755
2756	default:
2757		err = -ENOPROTOOPT;
2758		break;
2759	}
2760
2761	return err;
2762}
2763EXPORT_SYMBOL(udp_lib_setsockopt);
2764
2765int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2766		   unsigned int optlen)
2767{
2768	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2769		return udp_lib_setsockopt(sk, level, optname,
2770					  optval, optlen,
2771					  udp_push_pending_frames);
2772	return ip_setsockopt(sk, level, optname, optval, optlen);
2773}
2774
2775int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2776		       char __user *optval, int __user *optlen)
2777{
2778	struct udp_sock *up = udp_sk(sk);
2779	int val, len;
2780
2781	if (get_user(len, optlen))
2782		return -EFAULT;
2783
2784	len = min_t(unsigned int, len, sizeof(int));
2785
2786	if (len < 0)
2787		return -EINVAL;
2788
2789	switch (optname) {
2790	case UDP_CORK:
2791		val = READ_ONCE(up->corkflag);
2792		break;
2793
2794	case UDP_ENCAP:
2795		val = up->encap_type;
2796		break;
2797
2798	case UDP_NO_CHECK6_TX:
2799		val = up->no_check6_tx;
2800		break;
2801
2802	case UDP_NO_CHECK6_RX:
2803		val = up->no_check6_rx;
2804		break;
2805
2806	case UDP_SEGMENT:
2807		val = READ_ONCE(up->gso_size);
2808		break;
2809
2810	case UDP_GRO:
2811		val = up->gro_enabled;
2812		break;
2813
2814	/* The following two cannot be changed on UDP sockets, the return is
2815	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2816	case UDPLITE_SEND_CSCOV:
2817		val = up->pcslen;
2818		break;
2819
2820	case UDPLITE_RECV_CSCOV:
2821		val = up->pcrlen;
2822		break;
2823
2824	default:
2825		return -ENOPROTOOPT;
2826	}
2827
2828	if (put_user(len, optlen))
2829		return -EFAULT;
2830	if (copy_to_user(optval, &val, len))
2831		return -EFAULT;
2832	return 0;
2833}
2834EXPORT_SYMBOL(udp_lib_getsockopt);
2835
2836int udp_getsockopt(struct sock *sk, int level, int optname,
2837		   char __user *optval, int __user *optlen)
2838{
2839	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2840		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2841	return ip_getsockopt(sk, level, optname, optval, optlen);
2842}
2843
2844/**
2845 * 	udp_poll - wait for a UDP event.
2846 *	@file: - file struct
2847 *	@sock: - socket
2848 *	@wait: - poll table
2849 *
2850 *	This is same as datagram poll, except for the special case of
2851 *	blocking sockets. If application is using a blocking fd
2852 *	and a packet with checksum error is in the queue;
2853 *	then it could get return from select indicating data available
2854 *	but then block when reading it. Add special case code
2855 *	to work around these arguably broken applications.
2856 */
2857__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2858{
2859	__poll_t mask = datagram_poll(file, sock, wait);
2860	struct sock *sk = sock->sk;
2861
2862	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2863		mask |= EPOLLIN | EPOLLRDNORM;
2864
2865	/* Check for false positives due to checksum errors */
2866	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2867	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2868		mask &= ~(EPOLLIN | EPOLLRDNORM);
2869
 
 
 
2870	return mask;
2871
2872}
2873EXPORT_SYMBOL(udp_poll);
2874
2875int udp_abort(struct sock *sk, int err)
2876{
2877	lock_sock(sk);
2878
2879	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2880	 * with close()
2881	 */
2882	if (sock_flag(sk, SOCK_DEAD))
2883		goto out;
2884
2885	sk->sk_err = err;
2886	sk_error_report(sk);
2887	__udp_disconnect(sk, 0);
2888
2889out:
2890	release_sock(sk);
2891
2892	return 0;
2893}
2894EXPORT_SYMBOL_GPL(udp_abort);
2895
2896struct proto udp_prot = {
2897	.name			= "UDP",
2898	.owner			= THIS_MODULE,
2899	.close			= udp_lib_close,
2900	.pre_connect		= udp_pre_connect,
2901	.connect		= ip4_datagram_connect,
2902	.disconnect		= udp_disconnect,
2903	.ioctl			= udp_ioctl,
2904	.init			= udp_init_sock,
2905	.destroy		= udp_destroy_sock,
2906	.setsockopt		= udp_setsockopt,
2907	.getsockopt		= udp_getsockopt,
2908	.sendmsg		= udp_sendmsg,
2909	.recvmsg		= udp_recvmsg,
2910	.sendpage		= udp_sendpage,
2911	.release_cb		= ip4_datagram_release_cb,
2912	.hash			= udp_lib_hash,
2913	.unhash			= udp_lib_unhash,
2914	.rehash			= udp_v4_rehash,
2915	.get_port		= udp_v4_get_port,
 
2916#ifdef CONFIG_BPF_SYSCALL
2917	.psock_update_sk_prot	= udp_bpf_update_proto,
2918#endif
2919	.memory_allocated	= &udp_memory_allocated,
 
 
2920	.sysctl_mem		= sysctl_udp_mem,
2921	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2922	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2923	.obj_size		= sizeof(struct udp_sock),
2924	.h.udp_table		= &udp_table,
2925	.diag_destroy		= udp_abort,
2926};
2927EXPORT_SYMBOL(udp_prot);
2928
2929/* ------------------------------------------------------------------------ */
2930#ifdef CONFIG_PROC_FS
2931
 
 
 
 
 
 
2932static struct sock *udp_get_first(struct seq_file *seq, int start)
2933{
2934	struct sock *sk;
2935	struct udp_seq_afinfo *afinfo;
2936	struct udp_iter_state *state = seq->private;
2937	struct net *net = seq_file_net(seq);
 
 
 
2938
2939	if (state->bpf_seq_afinfo)
2940		afinfo = state->bpf_seq_afinfo;
2941	else
2942		afinfo = PDE_DATA(file_inode(seq->file));
 
 
2943
2944	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2945	     ++state->bucket) {
2946		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2947
2948		if (hlist_empty(&hslot->head))
2949			continue;
2950
2951		spin_lock_bh(&hslot->lock);
2952		sk_for_each(sk, &hslot->head) {
2953			if (!net_eq(sock_net(sk), net))
2954				continue;
2955			if (afinfo->family == AF_UNSPEC ||
2956			    sk->sk_family == afinfo->family)
2957				goto found;
2958		}
2959		spin_unlock_bh(&hslot->lock);
2960	}
2961	sk = NULL;
2962found:
2963	return sk;
2964}
2965
2966static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2967{
2968	struct udp_seq_afinfo *afinfo;
2969	struct udp_iter_state *state = seq->private;
2970	struct net *net = seq_file_net(seq);
 
 
2971
2972	if (state->bpf_seq_afinfo)
2973		afinfo = state->bpf_seq_afinfo;
2974	else
2975		afinfo = PDE_DATA(file_inode(seq->file));
2976
2977	do {
2978		sk = sk_next(sk);
2979	} while (sk && (!net_eq(sock_net(sk), net) ||
2980			(afinfo->family != AF_UNSPEC &&
2981			 sk->sk_family != afinfo->family)));
2982
2983	if (!sk) {
2984		if (state->bucket <= afinfo->udp_table->mask)
2985			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
 
 
 
2986		return udp_get_first(seq, state->bucket + 1);
2987	}
2988	return sk;
2989}
2990
2991static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2992{
2993	struct sock *sk = udp_get_first(seq, 0);
2994
2995	if (sk)
2996		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2997			--pos;
2998	return pos ? NULL : sk;
2999}
3000
3001void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3002{
3003	struct udp_iter_state *state = seq->private;
3004	state->bucket = MAX_UDP_PORTS;
3005
3006	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3007}
3008EXPORT_SYMBOL(udp_seq_start);
3009
3010void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3011{
3012	struct sock *sk;
3013
3014	if (v == SEQ_START_TOKEN)
3015		sk = udp_get_idx(seq, 0);
3016	else
3017		sk = udp_get_next(seq, v);
3018
3019	++*pos;
3020	return sk;
3021}
3022EXPORT_SYMBOL(udp_seq_next);
3023
3024void udp_seq_stop(struct seq_file *seq, void *v)
3025{
3026	struct udp_seq_afinfo *afinfo;
3027	struct udp_iter_state *state = seq->private;
 
 
3028
3029	if (state->bpf_seq_afinfo)
3030		afinfo = state->bpf_seq_afinfo;
3031	else
3032		afinfo = PDE_DATA(file_inode(seq->file));
3033
3034	if (state->bucket <= afinfo->udp_table->mask)
3035		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
 
 
3036}
3037EXPORT_SYMBOL(udp_seq_stop);
3038
3039/* ------------------------------------------------------------------------ */
3040static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3041		int bucket)
3042{
3043	struct inet_sock *inet = inet_sk(sp);
3044	__be32 dest = inet->inet_daddr;
3045	__be32 src  = inet->inet_rcv_saddr;
3046	__u16 destp	  = ntohs(inet->inet_dport);
3047	__u16 srcp	  = ntohs(inet->inet_sport);
3048
3049	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3050		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3051		bucket, src, srcp, dest, destp, sp->sk_state,
3052		sk_wmem_alloc_get(sp),
3053		udp_rqueue_get(sp),
3054		0, 0L, 0,
3055		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3056		0, sock_i_ino(sp),
3057		refcount_read(&sp->sk_refcnt), sp,
3058		atomic_read(&sp->sk_drops));
3059}
3060
3061int udp4_seq_show(struct seq_file *seq, void *v)
3062{
3063	seq_setwidth(seq, 127);
3064	if (v == SEQ_START_TOKEN)
3065		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
3066			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3067			   "inode ref pointer drops");
3068	else {
3069		struct udp_iter_state *state = seq->private;
3070
3071		udp4_format_sock(v, seq, state->bucket);
3072	}
3073	seq_pad(seq, '\n');
3074	return 0;
3075}
3076
3077#ifdef CONFIG_BPF_SYSCALL
3078struct bpf_iter__udp {
3079	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3080	__bpf_md_ptr(struct udp_sock *, udp_sk);
3081	uid_t uid __aligned(8);
3082	int bucket __aligned(8);
3083};
3084
3085static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3086			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3087{
3088	struct bpf_iter__udp ctx;
3089
3090	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3091	ctx.meta = meta;
3092	ctx.udp_sk = udp_sk;
3093	ctx.uid = uid;
3094	ctx.bucket = bucket;
3095	return bpf_iter_run_prog(prog, &ctx);
3096}
3097
3098static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3099{
3100	struct udp_iter_state *state = seq->private;
3101	struct bpf_iter_meta meta;
3102	struct bpf_prog *prog;
3103	struct sock *sk = v;
3104	uid_t uid;
3105
3106	if (v == SEQ_START_TOKEN)
3107		return 0;
3108
3109	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3110	meta.seq = seq;
3111	prog = bpf_iter_get_info(&meta, false);
3112	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3113}
3114
3115static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3116{
3117	struct bpf_iter_meta meta;
3118	struct bpf_prog *prog;
3119
3120	if (!v) {
3121		meta.seq = seq;
3122		prog = bpf_iter_get_info(&meta, true);
3123		if (prog)
3124			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3125	}
3126
3127	udp_seq_stop(seq, v);
3128}
3129
3130static const struct seq_operations bpf_iter_udp_seq_ops = {
3131	.start		= udp_seq_start,
3132	.next		= udp_seq_next,
3133	.stop		= bpf_iter_udp_seq_stop,
3134	.show		= bpf_iter_udp_seq_show,
3135};
3136#endif
3137
3138const struct seq_operations udp_seq_ops = {
3139	.start		= udp_seq_start,
3140	.next		= udp_seq_next,
3141	.stop		= udp_seq_stop,
3142	.show		= udp4_seq_show,
3143};
3144EXPORT_SYMBOL(udp_seq_ops);
3145
3146static struct udp_seq_afinfo udp4_seq_afinfo = {
3147	.family		= AF_INET,
3148	.udp_table	= &udp_table,
3149};
3150
3151static int __net_init udp4_proc_init_net(struct net *net)
3152{
3153	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3154			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3155		return -ENOMEM;
3156	return 0;
3157}
3158
3159static void __net_exit udp4_proc_exit_net(struct net *net)
3160{
3161	remove_proc_entry("udp", net->proc_net);
3162}
3163
3164static struct pernet_operations udp4_net_ops = {
3165	.init = udp4_proc_init_net,
3166	.exit = udp4_proc_exit_net,
3167};
3168
3169int __init udp4_proc_init(void)
3170{
3171	return register_pernet_subsys(&udp4_net_ops);
3172}
3173
3174void udp4_proc_exit(void)
3175{
3176	unregister_pernet_subsys(&udp4_net_ops);
3177}
3178#endif /* CONFIG_PROC_FS */
3179
3180static __initdata unsigned long uhash_entries;
3181static int __init set_uhash_entries(char *str)
3182{
3183	ssize_t ret;
3184
3185	if (!str)
3186		return 0;
3187
3188	ret = kstrtoul(str, 0, &uhash_entries);
3189	if (ret)
3190		return 0;
3191
3192	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3193		uhash_entries = UDP_HTABLE_SIZE_MIN;
3194	return 1;
3195}
3196__setup("uhash_entries=", set_uhash_entries);
3197
3198void __init udp_table_init(struct udp_table *table, const char *name)
3199{
3200	unsigned int i;
3201
3202	table->hash = alloc_large_system_hash(name,
3203					      2 * sizeof(struct udp_hslot),
3204					      uhash_entries,
3205					      21, /* one slot per 2 MB */
3206					      0,
3207					      &table->log,
3208					      &table->mask,
3209					      UDP_HTABLE_SIZE_MIN,
3210					      64 * 1024);
3211
3212	table->hash2 = table->hash + (table->mask + 1);
3213	for (i = 0; i <= table->mask; i++) {
3214		INIT_HLIST_HEAD(&table->hash[i].head);
3215		table->hash[i].count = 0;
3216		spin_lock_init(&table->hash[i].lock);
3217	}
3218	for (i = 0; i <= table->mask; i++) {
3219		INIT_HLIST_HEAD(&table->hash2[i].head);
3220		table->hash2[i].count = 0;
3221		spin_lock_init(&table->hash2[i].lock);
3222	}
3223}
3224
3225u32 udp_flow_hashrnd(void)
3226{
3227	static u32 hashrnd __read_mostly;
3228
3229	net_get_random_once(&hashrnd, sizeof(hashrnd));
3230
3231	return hashrnd;
3232}
3233EXPORT_SYMBOL(udp_flow_hashrnd);
3234
3235static void __udp_sysctl_init(struct net *net)
3236{
3237	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3238	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3239
3240#ifdef CONFIG_NET_L3_MASTER_DEV
3241	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3242#endif
3243}
3244
3245static int __net_init udp_sysctl_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246{
3247	__udp_sysctl_init(net);
 
 
3248	return 0;
3249}
3250
 
 
 
 
 
3251static struct pernet_operations __net_initdata udp_sysctl_ops = {
3252	.init	= udp_sysctl_init,
 
3253};
3254
3255#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3256DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3257		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3258
3259static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3260{
3261	struct udp_iter_state *st = priv_data;
3262	struct udp_seq_afinfo *afinfo;
3263	int ret;
3264
3265	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3266	if (!afinfo)
3267		return -ENOMEM;
3268
3269	afinfo->family = AF_UNSPEC;
3270	afinfo->udp_table = &udp_table;
3271	st->bpf_seq_afinfo = afinfo;
3272	ret = bpf_iter_init_seq_net(priv_data, aux);
3273	if (ret)
3274		kfree(afinfo);
3275	return ret;
3276}
3277
3278static void bpf_iter_fini_udp(void *priv_data)
3279{
3280	struct udp_iter_state *st = priv_data;
3281
3282	kfree(st->bpf_seq_afinfo);
3283	bpf_iter_fini_seq_net(priv_data);
3284}
3285
3286static const struct bpf_iter_seq_info udp_seq_info = {
3287	.seq_ops		= &bpf_iter_udp_seq_ops,
3288	.init_seq_private	= bpf_iter_init_udp,
3289	.fini_seq_private	= bpf_iter_fini_udp,
3290	.seq_priv_size		= sizeof(struct udp_iter_state),
3291};
3292
3293static struct bpf_iter_reg udp_reg_info = {
3294	.target			= "udp",
3295	.ctx_arg_info_size	= 1,
3296	.ctx_arg_info		= {
3297		{ offsetof(struct bpf_iter__udp, udp_sk),
3298		  PTR_TO_BTF_ID_OR_NULL },
3299	},
3300	.seq_info		= &udp_seq_info,
3301};
3302
3303static void __init bpf_iter_register(void)
3304{
3305	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3306	if (bpf_iter_reg_target(&udp_reg_info))
3307		pr_warn("Warning: could not register bpf iterator udp\n");
3308}
3309#endif
3310
3311void __init udp_init(void)
3312{
3313	unsigned long limit;
3314	unsigned int i;
3315
3316	udp_table_init(&udp_table, "UDP");
3317	limit = nr_free_buffer_pages() / 8;
3318	limit = max(limit, 128UL);
3319	sysctl_udp_mem[0] = limit / 4 * 3;
3320	sysctl_udp_mem[1] = limit;
3321	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3322
3323	__udp_sysctl_init(&init_net);
3324
3325	/* 16 spinlocks per cpu */
3326	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3327	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3328				GFP_KERNEL);
3329	if (!udp_busylocks)
3330		panic("UDP: failed to alloc udp_busylocks\n");
3331	for (i = 0; i < (1U << udp_busylocks_log); i++)
3332		spin_lock_init(udp_busylocks + i);
3333
3334	if (register_pernet_subsys(&udp_sysctl_ops))
3335		panic("UDP: failed to init sysctl parameters.\n");
3336
3337#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3338	bpf_iter_register();
3339#endif
3340}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
  77#include <linux/bpf-cgroup.h>
  78#include <linux/uaccess.h>
  79#include <asm/ioctls.h>
  80#include <linux/memblock.h>
  81#include <linux/highmem.h>
 
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 107#include <trace/events/udp.h>
 108#include <linux/static_key.h>
 109#include <linux/btf_ids.h>
 110#include <trace/events/skb.h>
 111#include <net/busy_poll.h>
 112#include "udp_impl.h"
 113#include <net/sock_reuseport.h>
 114#include <net/addrconf.h>
 115#include <net/udp_tunnel.h>
 116#if IS_ENABLED(CONFIG_IPV6)
 117#include <net/ipv6_stubs.h>
 118#endif
 119
 120struct udp_table udp_table __read_mostly;
 121EXPORT_SYMBOL(udp_table);
 122
 123long sysctl_udp_mem[3] __read_mostly;
 124EXPORT_SYMBOL(sysctl_udp_mem);
 125
 126atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
 127EXPORT_SYMBOL(udp_memory_allocated);
 128DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
 129EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
 130
 131#define MAX_UDP_PORTS 65536
 132#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
 133
 134static struct udp_table *udp_get_table_prot(struct sock *sk)
 135{
 136	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
 137}
 138
 139static int udp_lib_lport_inuse(struct net *net, __u16 num,
 140			       const struct udp_hslot *hslot,
 141			       unsigned long *bitmap,
 142			       struct sock *sk, unsigned int log)
 143{
 144	struct sock *sk2;
 145	kuid_t uid = sock_i_uid(sk);
 146
 147	sk_for_each(sk2, &hslot->head) {
 148		if (net_eq(sock_net(sk2), net) &&
 149		    sk2 != sk &&
 150		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 151		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 152		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 153		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 154		    inet_rcv_saddr_equal(sk, sk2, true)) {
 155			if (sk2->sk_reuseport && sk->sk_reuseport &&
 156			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 157			    uid_eq(uid, sock_i_uid(sk2))) {
 158				if (!bitmap)
 159					return 0;
 160			} else {
 161				if (!bitmap)
 162					return 1;
 163				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 164					  bitmap);
 165			}
 166		}
 167	}
 168	return 0;
 169}
 170
 171/*
 172 * Note: we still hold spinlock of primary hash chain, so no other writer
 173 * can insert/delete a socket with local_port == num
 174 */
 175static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 176				struct udp_hslot *hslot2,
 177				struct sock *sk)
 178{
 179	struct sock *sk2;
 180	kuid_t uid = sock_i_uid(sk);
 181	int res = 0;
 182
 183	spin_lock(&hslot2->lock);
 184	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 185		if (net_eq(sock_net(sk2), net) &&
 186		    sk2 != sk &&
 187		    (udp_sk(sk2)->udp_port_hash == num) &&
 188		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 189		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 190		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 191		    inet_rcv_saddr_equal(sk, sk2, true)) {
 192			if (sk2->sk_reuseport && sk->sk_reuseport &&
 193			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 194			    uid_eq(uid, sock_i_uid(sk2))) {
 195				res = 0;
 196			} else {
 197				res = 1;
 198			}
 199			break;
 200		}
 201	}
 202	spin_unlock(&hslot2->lock);
 203	return res;
 204}
 205
 206static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 207{
 208	struct net *net = sock_net(sk);
 209	kuid_t uid = sock_i_uid(sk);
 210	struct sock *sk2;
 211
 212	sk_for_each(sk2, &hslot->head) {
 213		if (net_eq(sock_net(sk2), net) &&
 214		    sk2 != sk &&
 215		    sk2->sk_family == sk->sk_family &&
 216		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 217		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 218		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 219		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 220		    inet_rcv_saddr_equal(sk, sk2, false)) {
 221			return reuseport_add_sock(sk, sk2,
 222						  inet_rcv_saddr_any(sk));
 223		}
 224	}
 225
 226	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 227}
 228
 229/**
 230 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 231 *
 232 *  @sk:          socket struct in question
 233 *  @snum:        port number to look up
 234 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 235 *                   with NULL address
 236 */
 237int udp_lib_get_port(struct sock *sk, unsigned short snum,
 238		     unsigned int hash2_nulladdr)
 239{
 240	struct udp_table *udptable = udp_get_table_prot(sk);
 241	struct udp_hslot *hslot, *hslot2;
 
 
 242	struct net *net = sock_net(sk);
 243	int error = -EADDRINUSE;
 244
 245	if (!snum) {
 246		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 247		unsigned short first, last;
 248		int low, high, remaining;
 249		unsigned int rand;
 
 
 250
 251		inet_get_local_port_range(net, &low, &high);
 252		remaining = (high - low) + 1;
 253
 254		rand = get_random_u32();
 255		first = reciprocal_scale(rand, remaining) + low;
 256		/*
 257		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 258		 */
 259		rand = (rand | 1) * (udptable->mask + 1);
 260		last = first + udptable->mask + 1;
 261		do {
 262			hslot = udp_hashslot(udptable, net, first);
 263			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 264			spin_lock_bh(&hslot->lock);
 265			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 266					    udptable->log);
 267
 268			snum = first;
 269			/*
 270			 * Iterate on all possible values of snum for this hash.
 271			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 272			 * give us randomization and full range coverage.
 273			 */
 274			do {
 275				if (low <= snum && snum <= high &&
 276				    !test_bit(snum >> udptable->log, bitmap) &&
 277				    !inet_is_local_reserved_port(net, snum))
 278					goto found;
 279				snum += rand;
 280			} while (snum != first);
 281			spin_unlock_bh(&hslot->lock);
 282			cond_resched();
 283		} while (++first != last);
 284		goto fail;
 285	} else {
 286		hslot = udp_hashslot(udptable, net, snum);
 287		spin_lock_bh(&hslot->lock);
 288		if (hslot->count > 10) {
 289			int exist;
 290			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 291
 292			slot2          &= udptable->mask;
 293			hash2_nulladdr &= udptable->mask;
 294
 295			hslot2 = udp_hashslot2(udptable, slot2);
 296			if (hslot->count < hslot2->count)
 297				goto scan_primary_hash;
 298
 299			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 300			if (!exist && (hash2_nulladdr != slot2)) {
 301				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 302				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 303							     sk);
 304			}
 305			if (exist)
 306				goto fail_unlock;
 307			else
 308				goto found;
 309		}
 310scan_primary_hash:
 311		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 312			goto fail_unlock;
 313	}
 314found:
 315	inet_sk(sk)->inet_num = snum;
 316	udp_sk(sk)->udp_port_hash = snum;
 317	udp_sk(sk)->udp_portaddr_hash ^= snum;
 318	if (sk_unhashed(sk)) {
 319		if (sk->sk_reuseport &&
 320		    udp_reuseport_add_sock(sk, hslot)) {
 321			inet_sk(sk)->inet_num = 0;
 322			udp_sk(sk)->udp_port_hash = 0;
 323			udp_sk(sk)->udp_portaddr_hash ^= snum;
 324			goto fail_unlock;
 325		}
 326
 327		sk_add_node_rcu(sk, &hslot->head);
 328		hslot->count++;
 329		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 330
 331		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 332		spin_lock(&hslot2->lock);
 333		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 334		    sk->sk_family == AF_INET6)
 335			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 336					   &hslot2->head);
 337		else
 338			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 339					   &hslot2->head);
 340		hslot2->count++;
 341		spin_unlock(&hslot2->lock);
 342	}
 343	sock_set_flag(sk, SOCK_RCU_FREE);
 344	error = 0;
 345fail_unlock:
 346	spin_unlock_bh(&hslot->lock);
 347fail:
 348	return error;
 349}
 350EXPORT_SYMBOL(udp_lib_get_port);
 351
 352int udp_v4_get_port(struct sock *sk, unsigned short snum)
 353{
 354	unsigned int hash2_nulladdr =
 355		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 356	unsigned int hash2_partial =
 357		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 358
 359	/* precompute partial secondary hash */
 360	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 361	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 362}
 363
 364static int compute_score(struct sock *sk, struct net *net,
 365			 __be32 saddr, __be16 sport,
 366			 __be32 daddr, unsigned short hnum,
 367			 int dif, int sdif)
 368{
 369	int score;
 370	struct inet_sock *inet;
 371	bool dev_match;
 372
 373	if (!net_eq(sock_net(sk), net) ||
 374	    udp_sk(sk)->udp_port_hash != hnum ||
 375	    ipv6_only_sock(sk))
 376		return -1;
 377
 378	if (sk->sk_rcv_saddr != daddr)
 379		return -1;
 380
 381	score = (sk->sk_family == PF_INET) ? 2 : 1;
 382
 383	inet = inet_sk(sk);
 384	if (inet->inet_daddr) {
 385		if (inet->inet_daddr != saddr)
 386			return -1;
 387		score += 4;
 388	}
 389
 390	if (inet->inet_dport) {
 391		if (inet->inet_dport != sport)
 392			return -1;
 393		score += 4;
 394	}
 395
 396	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 397					dif, sdif);
 398	if (!dev_match)
 399		return -1;
 400	if (sk->sk_bound_dev_if)
 401		score += 4;
 402
 403	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 404		score++;
 405	return score;
 406}
 407
 408static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 409		       const __u16 lport, const __be32 faddr,
 410		       const __be16 fport)
 411{
 412	static u32 udp_ehash_secret __read_mostly;
 413
 414	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 415
 416	return __inet_ehashfn(laddr, lport, faddr, fport,
 417			      udp_ehash_secret + net_hash_mix(net));
 418}
 419
 420static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
 421				     struct sk_buff *skb,
 422				     __be32 saddr, __be16 sport,
 423				     __be32 daddr, unsigned short hnum)
 424{
 425	struct sock *reuse_sk = NULL;
 426	u32 hash;
 427
 428	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
 429		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
 430		reuse_sk = reuseport_select_sock(sk, hash, skb,
 431						 sizeof(struct udphdr));
 432	}
 433	return reuse_sk;
 434}
 435
 436/* called with rcu_read_lock() */
 437static struct sock *udp4_lib_lookup2(struct net *net,
 438				     __be32 saddr, __be16 sport,
 439				     __be32 daddr, unsigned int hnum,
 440				     int dif, int sdif,
 441				     struct udp_hslot *hslot2,
 442				     struct sk_buff *skb)
 443{
 444	struct sock *sk, *result;
 445	int score, badness;
 446
 447	result = NULL;
 448	badness = 0;
 449	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 450		score = compute_score(sk, net, saddr, sport,
 451				      daddr, hnum, dif, sdif);
 452		if (score > badness) {
 453			result = lookup_reuseport(net, sk, skb,
 454						  saddr, sport, daddr, hnum);
 455			/* Fall back to scoring if group has connections */
 456			if (result && !reuseport_has_conns(sk))
 457				return result;
 458
 459			result = result ? : sk;
 460			badness = score;
 461		}
 462	}
 463	return result;
 464}
 465
 466static struct sock *udp4_lookup_run_bpf(struct net *net,
 467					struct udp_table *udptable,
 468					struct sk_buff *skb,
 469					__be32 saddr, __be16 sport,
 470					__be32 daddr, u16 hnum, const int dif)
 471{
 472	struct sock *sk, *reuse_sk;
 473	bool no_reuseport;
 474
 475	if (udptable != net->ipv4.udp_table)
 476		return NULL; /* only UDP is supported */
 477
 478	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP, saddr, sport,
 479					    daddr, hnum, dif, &sk);
 480	if (no_reuseport || IS_ERR_OR_NULL(sk))
 481		return sk;
 482
 483	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
 484	if (reuse_sk)
 485		sk = reuse_sk;
 486	return sk;
 487}
 488
 489/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 490 * harder than this. -DaveM
 491 */
 492struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 493		__be16 sport, __be32 daddr, __be16 dport, int dif,
 494		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 495{
 496	unsigned short hnum = ntohs(dport);
 497	unsigned int hash2, slot2;
 498	struct udp_hslot *hslot2;
 499	struct sock *result, *sk;
 500
 501	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 502	slot2 = hash2 & udptable->mask;
 503	hslot2 = &udptable->hash2[slot2];
 504
 505	/* Lookup connected or non-wildcard socket */
 506	result = udp4_lib_lookup2(net, saddr, sport,
 507				  daddr, hnum, dif, sdif,
 508				  hslot2, skb);
 509	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 510		goto done;
 511
 512	/* Lookup redirect from BPF */
 513	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
 514		sk = udp4_lookup_run_bpf(net, udptable, skb,
 515					 saddr, sport, daddr, hnum, dif);
 516		if (sk) {
 517			result = sk;
 518			goto done;
 519		}
 520	}
 521
 522	/* Got non-wildcard socket or error on first lookup */
 523	if (result)
 524		goto done;
 525
 526	/* Lookup wildcard sockets */
 527	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 528	slot2 = hash2 & udptable->mask;
 529	hslot2 = &udptable->hash2[slot2];
 530
 531	result = udp4_lib_lookup2(net, saddr, sport,
 532				  htonl(INADDR_ANY), hnum, dif, sdif,
 533				  hslot2, skb);
 534done:
 535	if (IS_ERR(result))
 536		return NULL;
 537	return result;
 538}
 539EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 540
 541static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 542						 __be16 sport, __be16 dport,
 543						 struct udp_table *udptable)
 544{
 545	const struct iphdr *iph = ip_hdr(skb);
 546
 547	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 548				 iph->daddr, dport, inet_iif(skb),
 549				 inet_sdif(skb), udptable, skb);
 550}
 551
 552struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 553				 __be16 sport, __be16 dport)
 554{
 555	const struct iphdr *iph = ip_hdr(skb);
 556	struct net *net = dev_net(skb->dev);
 557
 558	return __udp4_lib_lookup(net, iph->saddr, sport,
 559				 iph->daddr, dport, inet_iif(skb),
 560				 inet_sdif(skb), net->ipv4.udp_table, NULL);
 561}
 562
 563/* Must be called under rcu_read_lock().
 564 * Does increment socket refcount.
 565 */
 566#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 567struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 568			     __be32 daddr, __be16 dport, int dif)
 569{
 570	struct sock *sk;
 571
 572	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 573			       dif, 0, net->ipv4.udp_table, NULL);
 574	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 575		sk = NULL;
 576	return sk;
 577}
 578EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 579#endif
 580
 581static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 582				       __be16 loc_port, __be32 loc_addr,
 583				       __be16 rmt_port, __be32 rmt_addr,
 584				       int dif, int sdif, unsigned short hnum)
 585{
 586	struct inet_sock *inet = inet_sk(sk);
 587
 588	if (!net_eq(sock_net(sk), net) ||
 589	    udp_sk(sk)->udp_port_hash != hnum ||
 590	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 591	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 592	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 593	    ipv6_only_sock(sk) ||
 594	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 595		return false;
 596	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 597		return false;
 598	return true;
 599}
 600
 601DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 602void udp_encap_enable(void)
 603{
 604	static_branch_inc(&udp_encap_needed_key);
 605}
 606EXPORT_SYMBOL(udp_encap_enable);
 607
 608void udp_encap_disable(void)
 609{
 610	static_branch_dec(&udp_encap_needed_key);
 611}
 612EXPORT_SYMBOL(udp_encap_disable);
 613
 614/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 615 * through error handlers in encapsulations looking for a match.
 616 */
 617static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 618{
 619	int i;
 620
 621	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 622		int (*handler)(struct sk_buff *skb, u32 info);
 623		const struct ip_tunnel_encap_ops *encap;
 624
 625		encap = rcu_dereference(iptun_encaps[i]);
 626		if (!encap)
 627			continue;
 628		handler = encap->err_handler;
 629		if (handler && !handler(skb, info))
 630			return 0;
 631	}
 632
 633	return -ENOENT;
 634}
 635
 636/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 637 * reversing source and destination port: this will match tunnels that force the
 638 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 639 * lwtunnels might actually break this assumption by being configured with
 640 * different destination ports on endpoints, in this case we won't be able to
 641 * trace ICMP messages back to them.
 642 *
 643 * If this doesn't match any socket, probe tunnels with arbitrary destination
 644 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 645 * we've sent packets to won't necessarily match the local destination port.
 646 *
 647 * Then ask the tunnel implementation to match the error against a valid
 648 * association.
 649 *
 650 * Return an error if we can't find a match, the socket if we need further
 651 * processing, zero otherwise.
 652 */
 653static struct sock *__udp4_lib_err_encap(struct net *net,
 654					 const struct iphdr *iph,
 655					 struct udphdr *uh,
 656					 struct udp_table *udptable,
 657					 struct sock *sk,
 658					 struct sk_buff *skb, u32 info)
 659{
 660	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 661	int network_offset, transport_offset;
 662	struct udp_sock *up;
 663
 664	network_offset = skb_network_offset(skb);
 665	transport_offset = skb_transport_offset(skb);
 666
 667	/* Network header needs to point to the outer IPv4 header inside ICMP */
 668	skb_reset_network_header(skb);
 669
 670	/* Transport header needs to point to the UDP header */
 671	skb_set_transport_header(skb, iph->ihl << 2);
 672
 673	if (sk) {
 674		up = udp_sk(sk);
 675
 676		lookup = READ_ONCE(up->encap_err_lookup);
 677		if (lookup && lookup(sk, skb))
 678			sk = NULL;
 679
 680		goto out;
 681	}
 682
 683	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 684			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 685			       udptable, NULL);
 686	if (sk) {
 687		up = udp_sk(sk);
 688
 689		lookup = READ_ONCE(up->encap_err_lookup);
 690		if (!lookup || lookup(sk, skb))
 691			sk = NULL;
 692	}
 693
 694out:
 695	if (!sk)
 696		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 697
 698	skb_set_transport_header(skb, transport_offset);
 699	skb_set_network_header(skb, network_offset);
 700
 701	return sk;
 702}
 703
 704/*
 705 * This routine is called by the ICMP module when it gets some
 706 * sort of error condition.  If err < 0 then the socket should
 707 * be closed and the error returned to the user.  If err > 0
 708 * it's just the icmp type << 8 | icmp code.
 709 * Header points to the ip header of the error packet. We move
 710 * on past this. Then (as it used to claim before adjustment)
 711 * header points to the first 8 bytes of the udp header.  We need
 712 * to find the appropriate port.
 713 */
 714
 715int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 716{
 717	struct inet_sock *inet;
 718	const struct iphdr *iph = (const struct iphdr *)skb->data;
 719	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 720	const int type = icmp_hdr(skb)->type;
 721	const int code = icmp_hdr(skb)->code;
 722	bool tunnel = false;
 723	struct sock *sk;
 724	int harderr;
 725	int err;
 726	struct net *net = dev_net(skb->dev);
 727
 728	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 729			       iph->saddr, uh->source, skb->dev->ifindex,
 730			       inet_sdif(skb), udptable, NULL);
 731
 732	if (!sk || udp_sk(sk)->encap_type) {
 733		/* No socket for error: try tunnels before discarding */
 734		if (static_branch_unlikely(&udp_encap_needed_key)) {
 735			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 736						  info);
 737			if (!sk)
 738				return 0;
 739		} else
 740			sk = ERR_PTR(-ENOENT);
 741
 742		if (IS_ERR(sk)) {
 743			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 744			return PTR_ERR(sk);
 745		}
 746
 747		tunnel = true;
 748	}
 749
 750	err = 0;
 751	harderr = 0;
 752	inet = inet_sk(sk);
 753
 754	switch (type) {
 755	default:
 756	case ICMP_TIME_EXCEEDED:
 757		err = EHOSTUNREACH;
 758		break;
 759	case ICMP_SOURCE_QUENCH:
 760		goto out;
 761	case ICMP_PARAMETERPROB:
 762		err = EPROTO;
 763		harderr = 1;
 764		break;
 765	case ICMP_DEST_UNREACH:
 766		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 767			ipv4_sk_update_pmtu(skb, sk, info);
 768			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 769				err = EMSGSIZE;
 770				harderr = 1;
 771				break;
 772			}
 773			goto out;
 774		}
 775		err = EHOSTUNREACH;
 776		if (code <= NR_ICMP_UNREACH) {
 777			harderr = icmp_err_convert[code].fatal;
 778			err = icmp_err_convert[code].errno;
 779		}
 780		break;
 781	case ICMP_REDIRECT:
 782		ipv4_sk_redirect(skb, sk);
 783		goto out;
 784	}
 785
 786	/*
 787	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 788	 *	4.1.3.3.
 789	 */
 790	if (tunnel) {
 791		/* ...not for tunnels though: we don't have a sending socket */
 792		if (udp_sk(sk)->encap_err_rcv)
 793			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
 794						  (u8 *)(uh+1));
 795		goto out;
 796	}
 797	if (!inet->recverr) {
 798		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 799			goto out;
 800	} else
 801		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 802
 803	sk->sk_err = err;
 804	sk_error_report(sk);
 805out:
 806	return 0;
 807}
 808
 809int udp_err(struct sk_buff *skb, u32 info)
 810{
 811	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
 812}
 813
 814/*
 815 * Throw away all pending data and cancel the corking. Socket is locked.
 816 */
 817void udp_flush_pending_frames(struct sock *sk)
 818{
 819	struct udp_sock *up = udp_sk(sk);
 820
 821	if (up->pending) {
 822		up->len = 0;
 823		up->pending = 0;
 824		ip_flush_pending_frames(sk);
 825	}
 826}
 827EXPORT_SYMBOL(udp_flush_pending_frames);
 828
 829/**
 830 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 831 * 	@skb: 	sk_buff containing the filled-in UDP header
 832 * 	        (checksum field must be zeroed out)
 833 *	@src:	source IP address
 834 *	@dst:	destination IP address
 835 */
 836void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 837{
 838	struct udphdr *uh = udp_hdr(skb);
 839	int offset = skb_transport_offset(skb);
 840	int len = skb->len - offset;
 841	int hlen = len;
 842	__wsum csum = 0;
 843
 844	if (!skb_has_frag_list(skb)) {
 845		/*
 846		 * Only one fragment on the socket.
 847		 */
 848		skb->csum_start = skb_transport_header(skb) - skb->head;
 849		skb->csum_offset = offsetof(struct udphdr, check);
 850		uh->check = ~csum_tcpudp_magic(src, dst, len,
 851					       IPPROTO_UDP, 0);
 852	} else {
 853		struct sk_buff *frags;
 854
 855		/*
 856		 * HW-checksum won't work as there are two or more
 857		 * fragments on the socket so that all csums of sk_buffs
 858		 * should be together
 859		 */
 860		skb_walk_frags(skb, frags) {
 861			csum = csum_add(csum, frags->csum);
 862			hlen -= frags->len;
 863		}
 864
 865		csum = skb_checksum(skb, offset, hlen, csum);
 866		skb->ip_summed = CHECKSUM_NONE;
 867
 868		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 869		if (uh->check == 0)
 870			uh->check = CSUM_MANGLED_0;
 871	}
 872}
 873EXPORT_SYMBOL_GPL(udp4_hwcsum);
 874
 875/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 876 * for the simple case like when setting the checksum for a UDP tunnel.
 877 */
 878void udp_set_csum(bool nocheck, struct sk_buff *skb,
 879		  __be32 saddr, __be32 daddr, int len)
 880{
 881	struct udphdr *uh = udp_hdr(skb);
 882
 883	if (nocheck) {
 884		uh->check = 0;
 885	} else if (skb_is_gso(skb)) {
 886		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 887	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 888		uh->check = 0;
 889		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 890		if (uh->check == 0)
 891			uh->check = CSUM_MANGLED_0;
 892	} else {
 893		skb->ip_summed = CHECKSUM_PARTIAL;
 894		skb->csum_start = skb_transport_header(skb) - skb->head;
 895		skb->csum_offset = offsetof(struct udphdr, check);
 896		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 897	}
 898}
 899EXPORT_SYMBOL(udp_set_csum);
 900
 901static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 902			struct inet_cork *cork)
 903{
 904	struct sock *sk = skb->sk;
 905	struct inet_sock *inet = inet_sk(sk);
 906	struct udphdr *uh;
 907	int err;
 908	int is_udplite = IS_UDPLITE(sk);
 909	int offset = skb_transport_offset(skb);
 910	int len = skb->len - offset;
 911	int datalen = len - sizeof(*uh);
 912	__wsum csum = 0;
 913
 914	/*
 915	 * Create a UDP header
 916	 */
 917	uh = udp_hdr(skb);
 918	uh->source = inet->inet_sport;
 919	uh->dest = fl4->fl4_dport;
 920	uh->len = htons(len);
 921	uh->check = 0;
 922
 923	if (cork->gso_size) {
 924		const int hlen = skb_network_header_len(skb) +
 925				 sizeof(struct udphdr);
 926
 927		if (hlen + cork->gso_size > cork->fragsize) {
 928			kfree_skb(skb);
 929			return -EINVAL;
 930		}
 931		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
 932			kfree_skb(skb);
 933			return -EINVAL;
 934		}
 935		if (sk->sk_no_check_tx) {
 936			kfree_skb(skb);
 937			return -EINVAL;
 938		}
 939		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 940		    dst_xfrm(skb_dst(skb))) {
 941			kfree_skb(skb);
 942			return -EIO;
 943		}
 944
 945		if (datalen > cork->gso_size) {
 946			skb_shinfo(skb)->gso_size = cork->gso_size;
 947			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 948			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 949								 cork->gso_size);
 950		}
 951		goto csum_partial;
 952	}
 953
 954	if (is_udplite)  				 /*     UDP-Lite      */
 955		csum = udplite_csum(skb);
 956
 957	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 958
 959		skb->ip_summed = CHECKSUM_NONE;
 960		goto send;
 961
 962	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 963csum_partial:
 964
 965		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 966		goto send;
 967
 968	} else
 969		csum = udp_csum(skb);
 970
 971	/* add protocol-dependent pseudo-header */
 972	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 973				      sk->sk_protocol, csum);
 974	if (uh->check == 0)
 975		uh->check = CSUM_MANGLED_0;
 976
 977send:
 978	err = ip_send_skb(sock_net(sk), skb);
 979	if (err) {
 980		if (err == -ENOBUFS && !inet->recverr) {
 981			UDP_INC_STATS(sock_net(sk),
 982				      UDP_MIB_SNDBUFERRORS, is_udplite);
 983			err = 0;
 984		}
 985	} else
 986		UDP_INC_STATS(sock_net(sk),
 987			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 988	return err;
 989}
 990
 991/*
 992 * Push out all pending data as one UDP datagram. Socket is locked.
 993 */
 994int udp_push_pending_frames(struct sock *sk)
 995{
 996	struct udp_sock  *up = udp_sk(sk);
 997	struct inet_sock *inet = inet_sk(sk);
 998	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 999	struct sk_buff *skb;
1000	int err = 0;
1001
1002	skb = ip_finish_skb(sk, fl4);
1003	if (!skb)
1004		goto out;
1005
1006	err = udp_send_skb(skb, fl4, &inet->cork.base);
1007
1008out:
1009	up->len = 0;
1010	up->pending = 0;
1011	return err;
1012}
1013EXPORT_SYMBOL(udp_push_pending_frames);
1014
1015static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1016{
1017	switch (cmsg->cmsg_type) {
1018	case UDP_SEGMENT:
1019		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1020			return -EINVAL;
1021		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1022		return 0;
1023	default:
1024		return -EINVAL;
1025	}
1026}
1027
1028int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1029{
1030	struct cmsghdr *cmsg;
1031	bool need_ip = false;
1032	int err;
1033
1034	for_each_cmsghdr(cmsg, msg) {
1035		if (!CMSG_OK(msg, cmsg))
1036			return -EINVAL;
1037
1038		if (cmsg->cmsg_level != SOL_UDP) {
1039			need_ip = true;
1040			continue;
1041		}
1042
1043		err = __udp_cmsg_send(cmsg, gso_size);
1044		if (err)
1045			return err;
1046	}
1047
1048	return need_ip;
1049}
1050EXPORT_SYMBOL_GPL(udp_cmsg_send);
1051
1052int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1053{
1054	struct inet_sock *inet = inet_sk(sk);
1055	struct udp_sock *up = udp_sk(sk);
1056	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1057	struct flowi4 fl4_stack;
1058	struct flowi4 *fl4;
1059	int ulen = len;
1060	struct ipcm_cookie ipc;
1061	struct rtable *rt = NULL;
1062	int free = 0;
1063	int connected = 0;
1064	__be32 daddr, faddr, saddr;
1065	__be16 dport;
1066	u8  tos;
1067	int err, is_udplite = IS_UDPLITE(sk);
1068	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1069	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1070	struct sk_buff *skb;
1071	struct ip_options_data opt_copy;
1072
1073	if (len > 0xFFFF)
1074		return -EMSGSIZE;
1075
1076	/*
1077	 *	Check the flags.
1078	 */
1079
1080	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1081		return -EOPNOTSUPP;
1082
1083	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1084
1085	fl4 = &inet->cork.fl.u.ip4;
1086	if (up->pending) {
1087		/*
1088		 * There are pending frames.
1089		 * The socket lock must be held while it's corked.
1090		 */
1091		lock_sock(sk);
1092		if (likely(up->pending)) {
1093			if (unlikely(up->pending != AF_INET)) {
1094				release_sock(sk);
1095				return -EINVAL;
1096			}
1097			goto do_append_data;
1098		}
1099		release_sock(sk);
1100	}
1101	ulen += sizeof(struct udphdr);
1102
1103	/*
1104	 *	Get and verify the address.
1105	 */
1106	if (usin) {
1107		if (msg->msg_namelen < sizeof(*usin))
1108			return -EINVAL;
1109		if (usin->sin_family != AF_INET) {
1110			if (usin->sin_family != AF_UNSPEC)
1111				return -EAFNOSUPPORT;
1112		}
1113
1114		daddr = usin->sin_addr.s_addr;
1115		dport = usin->sin_port;
1116		if (dport == 0)
1117			return -EINVAL;
1118	} else {
1119		if (sk->sk_state != TCP_ESTABLISHED)
1120			return -EDESTADDRREQ;
1121		daddr = inet->inet_daddr;
1122		dport = inet->inet_dport;
1123		/* Open fast path for connected socket.
1124		   Route will not be used, if at least one option is set.
1125		 */
1126		connected = 1;
1127	}
1128
1129	ipcm_init_sk(&ipc, inet);
1130	ipc.gso_size = READ_ONCE(up->gso_size);
1131
1132	if (msg->msg_controllen) {
1133		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1134		if (err > 0)
1135			err = ip_cmsg_send(sk, msg, &ipc,
1136					   sk->sk_family == AF_INET6);
1137		if (unlikely(err < 0)) {
1138			kfree(ipc.opt);
1139			return err;
1140		}
1141		if (ipc.opt)
1142			free = 1;
1143		connected = 0;
1144	}
1145	if (!ipc.opt) {
1146		struct ip_options_rcu *inet_opt;
1147
1148		rcu_read_lock();
1149		inet_opt = rcu_dereference(inet->inet_opt);
1150		if (inet_opt) {
1151			memcpy(&opt_copy, inet_opt,
1152			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1153			ipc.opt = &opt_copy.opt;
1154		}
1155		rcu_read_unlock();
1156	}
1157
1158	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1159		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1160					    (struct sockaddr *)usin, &ipc.addr);
1161		if (err)
1162			goto out_free;
1163		if (usin) {
1164			if (usin->sin_port == 0) {
1165				/* BPF program set invalid port. Reject it. */
1166				err = -EINVAL;
1167				goto out_free;
1168			}
1169			daddr = usin->sin_addr.s_addr;
1170			dport = usin->sin_port;
1171		}
1172	}
1173
1174	saddr = ipc.addr;
1175	ipc.addr = faddr = daddr;
1176
1177	if (ipc.opt && ipc.opt->opt.srr) {
1178		if (!daddr) {
1179			err = -EINVAL;
1180			goto out_free;
1181		}
1182		faddr = ipc.opt->opt.faddr;
1183		connected = 0;
1184	}
1185	tos = get_rttos(&ipc, inet);
1186	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1187	    (msg->msg_flags & MSG_DONTROUTE) ||
1188	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1189		tos |= RTO_ONLINK;
1190		connected = 0;
1191	}
1192
1193	if (ipv4_is_multicast(daddr)) {
1194		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1195			ipc.oif = inet->mc_index;
1196		if (!saddr)
1197			saddr = inet->mc_addr;
1198		connected = 0;
1199	} else if (!ipc.oif) {
1200		ipc.oif = inet->uc_index;
1201	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1202		/* oif is set, packet is to local broadcast and
1203		 * uc_index is set. oif is most likely set
1204		 * by sk_bound_dev_if. If uc_index != oif check if the
1205		 * oif is an L3 master and uc_index is an L3 slave.
1206		 * If so, we want to allow the send using the uc_index.
1207		 */
1208		if (ipc.oif != inet->uc_index &&
1209		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1210							      inet->uc_index)) {
1211			ipc.oif = inet->uc_index;
1212		}
1213	}
1214
1215	if (connected)
1216		rt = (struct rtable *)sk_dst_check(sk, 0);
1217
1218	if (!rt) {
1219		struct net *net = sock_net(sk);
1220		__u8 flow_flags = inet_sk_flowi_flags(sk);
1221
1222		fl4 = &fl4_stack;
1223
1224		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1225				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1226				   flow_flags,
1227				   faddr, saddr, dport, inet->inet_sport,
1228				   sk->sk_uid);
1229
1230		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1231		rt = ip_route_output_flow(net, fl4, sk);
1232		if (IS_ERR(rt)) {
1233			err = PTR_ERR(rt);
1234			rt = NULL;
1235			if (err == -ENETUNREACH)
1236				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1237			goto out;
1238		}
1239
1240		err = -EACCES;
1241		if ((rt->rt_flags & RTCF_BROADCAST) &&
1242		    !sock_flag(sk, SOCK_BROADCAST))
1243			goto out;
1244		if (connected)
1245			sk_dst_set(sk, dst_clone(&rt->dst));
1246	}
1247
1248	if (msg->msg_flags&MSG_CONFIRM)
1249		goto do_confirm;
1250back_from_confirm:
1251
1252	saddr = fl4->saddr;
1253	if (!ipc.addr)
1254		daddr = ipc.addr = fl4->daddr;
1255
1256	/* Lockless fast path for the non-corking case. */
1257	if (!corkreq) {
1258		struct inet_cork cork;
1259
1260		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1261				  sizeof(struct udphdr), &ipc, &rt,
1262				  &cork, msg->msg_flags);
1263		err = PTR_ERR(skb);
1264		if (!IS_ERR_OR_NULL(skb))
1265			err = udp_send_skb(skb, fl4, &cork);
1266		goto out;
1267	}
1268
1269	lock_sock(sk);
1270	if (unlikely(up->pending)) {
1271		/* The socket is already corked while preparing it. */
1272		/* ... which is an evident application bug. --ANK */
1273		release_sock(sk);
1274
1275		net_dbg_ratelimited("socket already corked\n");
1276		err = -EINVAL;
1277		goto out;
1278	}
1279	/*
1280	 *	Now cork the socket to pend data.
1281	 */
1282	fl4 = &inet->cork.fl.u.ip4;
1283	fl4->daddr = daddr;
1284	fl4->saddr = saddr;
1285	fl4->fl4_dport = dport;
1286	fl4->fl4_sport = inet->inet_sport;
1287	up->pending = AF_INET;
1288
1289do_append_data:
1290	up->len += ulen;
1291	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1292			     sizeof(struct udphdr), &ipc, &rt,
1293			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1294	if (err)
1295		udp_flush_pending_frames(sk);
1296	else if (!corkreq)
1297		err = udp_push_pending_frames(sk);
1298	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1299		up->pending = 0;
1300	release_sock(sk);
1301
1302out:
1303	ip_rt_put(rt);
1304out_free:
1305	if (free)
1306		kfree(ipc.opt);
1307	if (!err)
1308		return len;
1309	/*
1310	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1311	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1312	 * we don't have a good statistic (IpOutDiscards but it can be too many
1313	 * things).  We could add another new stat but at least for now that
1314	 * seems like overkill.
1315	 */
1316	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1317		UDP_INC_STATS(sock_net(sk),
1318			      UDP_MIB_SNDBUFERRORS, is_udplite);
1319	}
1320	return err;
1321
1322do_confirm:
1323	if (msg->msg_flags & MSG_PROBE)
1324		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1325	if (!(msg->msg_flags&MSG_PROBE) || len)
1326		goto back_from_confirm;
1327	err = 0;
1328	goto out;
1329}
1330EXPORT_SYMBOL(udp_sendmsg);
1331
1332int udp_sendpage(struct sock *sk, struct page *page, int offset,
1333		 size_t size, int flags)
1334{
1335	struct inet_sock *inet = inet_sk(sk);
1336	struct udp_sock *up = udp_sk(sk);
1337	int ret;
1338
1339	if (flags & MSG_SENDPAGE_NOTLAST)
1340		flags |= MSG_MORE;
1341
1342	if (!up->pending) {
1343		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1344
1345		/* Call udp_sendmsg to specify destination address which
1346		 * sendpage interface can't pass.
1347		 * This will succeed only when the socket is connected.
1348		 */
1349		ret = udp_sendmsg(sk, &msg, 0);
1350		if (ret < 0)
1351			return ret;
1352	}
1353
1354	lock_sock(sk);
1355
1356	if (unlikely(!up->pending)) {
1357		release_sock(sk);
1358
1359		net_dbg_ratelimited("cork failed\n");
1360		return -EINVAL;
1361	}
1362
1363	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1364			     page, offset, size, flags);
1365	if (ret == -EOPNOTSUPP) {
1366		release_sock(sk);
1367		return sock_no_sendpage(sk->sk_socket, page, offset,
1368					size, flags);
1369	}
1370	if (ret < 0) {
1371		udp_flush_pending_frames(sk);
1372		goto out;
1373	}
1374
1375	up->len += size;
1376	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1377		ret = udp_push_pending_frames(sk);
1378	if (!ret)
1379		ret = size;
1380out:
1381	release_sock(sk);
1382	return ret;
1383}
1384
1385#define UDP_SKB_IS_STATELESS 0x80000000
1386
1387/* all head states (dst, sk, nf conntrack) except skb extensions are
1388 * cleared by udp_rcv().
1389 *
1390 * We need to preserve secpath, if present, to eventually process
1391 * IP_CMSG_PASSSEC at recvmsg() time.
1392 *
1393 * Other extensions can be cleared.
1394 */
1395static bool udp_try_make_stateless(struct sk_buff *skb)
1396{
1397	if (!skb_has_extensions(skb))
1398		return true;
1399
1400	if (!secpath_exists(skb)) {
1401		skb_ext_reset(skb);
1402		return true;
1403	}
1404
1405	return false;
1406}
1407
1408static void udp_set_dev_scratch(struct sk_buff *skb)
1409{
1410	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1411
1412	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1413	scratch->_tsize_state = skb->truesize;
1414#if BITS_PER_LONG == 64
1415	scratch->len = skb->len;
1416	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1417	scratch->is_linear = !skb_is_nonlinear(skb);
1418#endif
1419	if (udp_try_make_stateless(skb))
1420		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1421}
1422
1423static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1424{
1425	/* We come here after udp_lib_checksum_complete() returned 0.
1426	 * This means that __skb_checksum_complete() might have
1427	 * set skb->csum_valid to 1.
1428	 * On 64bit platforms, we can set csum_unnecessary
1429	 * to true, but only if the skb is not shared.
1430	 */
1431#if BITS_PER_LONG == 64
1432	if (!skb_shared(skb))
1433		udp_skb_scratch(skb)->csum_unnecessary = true;
1434#endif
1435}
1436
1437static int udp_skb_truesize(struct sk_buff *skb)
1438{
1439	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1440}
1441
1442static bool udp_skb_has_head_state(struct sk_buff *skb)
1443{
1444	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1445}
1446
1447/* fully reclaim rmem/fwd memory allocated for skb */
1448static void udp_rmem_release(struct sock *sk, int size, int partial,
1449			     bool rx_queue_lock_held)
1450{
1451	struct udp_sock *up = udp_sk(sk);
1452	struct sk_buff_head *sk_queue;
1453	int amt;
1454
1455	if (likely(partial)) {
1456		up->forward_deficit += size;
1457		size = up->forward_deficit;
1458		if (size < READ_ONCE(up->forward_threshold) &&
1459		    !skb_queue_empty(&up->reader_queue))
1460			return;
1461	} else {
1462		size += up->forward_deficit;
1463	}
1464	up->forward_deficit = 0;
1465
1466	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1467	 * if the called don't held it already
1468	 */
1469	sk_queue = &sk->sk_receive_queue;
1470	if (!rx_queue_lock_held)
1471		spin_lock(&sk_queue->lock);
1472
1473
1474	sk->sk_forward_alloc += size;
1475	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1476	sk->sk_forward_alloc -= amt;
1477
1478	if (amt)
1479		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1480
1481	atomic_sub(size, &sk->sk_rmem_alloc);
1482
1483	/* this can save us from acquiring the rx queue lock on next receive */
1484	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1485
1486	if (!rx_queue_lock_held)
1487		spin_unlock(&sk_queue->lock);
1488}
1489
1490/* Note: called with reader_queue.lock held.
1491 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1492 * This avoids a cache line miss while receive_queue lock is held.
1493 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1494 */
1495void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1496{
1497	prefetch(&skb->data);
1498	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1499}
1500EXPORT_SYMBOL(udp_skb_destructor);
1501
1502/* as above, but the caller held the rx queue lock, too */
1503static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1504{
1505	prefetch(&skb->data);
1506	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1507}
1508
1509/* Idea of busylocks is to let producers grab an extra spinlock
1510 * to relieve pressure on the receive_queue spinlock shared by consumer.
1511 * Under flood, this means that only one producer can be in line
1512 * trying to acquire the receive_queue spinlock.
1513 * These busylock can be allocated on a per cpu manner, instead of a
1514 * per socket one (that would consume a cache line per socket)
1515 */
1516static int udp_busylocks_log __read_mostly;
1517static spinlock_t *udp_busylocks __read_mostly;
1518
1519static spinlock_t *busylock_acquire(void *ptr)
1520{
1521	spinlock_t *busy;
1522
1523	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1524	spin_lock(busy);
1525	return busy;
1526}
1527
1528static void busylock_release(spinlock_t *busy)
1529{
1530	if (busy)
1531		spin_unlock(busy);
1532}
1533
1534int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1535{
1536	struct sk_buff_head *list = &sk->sk_receive_queue;
1537	int rmem, delta, amt, err = -ENOMEM;
1538	spinlock_t *busy = NULL;
1539	int size;
1540
1541	/* try to avoid the costly atomic add/sub pair when the receive
1542	 * queue is full; always allow at least a packet
1543	 */
1544	rmem = atomic_read(&sk->sk_rmem_alloc);
1545	if (rmem > sk->sk_rcvbuf)
1546		goto drop;
1547
1548	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1549	 * having linear skbs :
1550	 * - Reduce memory overhead and thus increase receive queue capacity
1551	 * - Less cache line misses at copyout() time
1552	 * - Less work at consume_skb() (less alien page frag freeing)
1553	 */
1554	if (rmem > (sk->sk_rcvbuf >> 1)) {
1555		skb_condense(skb);
1556
1557		busy = busylock_acquire(sk);
1558	}
1559	size = skb->truesize;
1560	udp_set_dev_scratch(skb);
1561
1562	/* we drop only if the receive buf is full and the receive
1563	 * queue contains some other skb
1564	 */
1565	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1566	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1567		goto uncharge_drop;
1568
1569	spin_lock(&list->lock);
1570	if (size >= sk->sk_forward_alloc) {
1571		amt = sk_mem_pages(size);
1572		delta = amt << PAGE_SHIFT;
1573		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1574			err = -ENOBUFS;
1575			spin_unlock(&list->lock);
1576			goto uncharge_drop;
1577		}
1578
1579		sk->sk_forward_alloc += delta;
1580	}
1581
1582	sk->sk_forward_alloc -= size;
1583
1584	/* no need to setup a destructor, we will explicitly release the
1585	 * forward allocated memory on dequeue
1586	 */
1587	sock_skb_set_dropcount(sk, skb);
1588
1589	__skb_queue_tail(list, skb);
1590	spin_unlock(&list->lock);
1591
1592	if (!sock_flag(sk, SOCK_DEAD))
1593		sk->sk_data_ready(sk);
1594
1595	busylock_release(busy);
1596	return 0;
1597
1598uncharge_drop:
1599	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1600
1601drop:
1602	atomic_inc(&sk->sk_drops);
1603	busylock_release(busy);
1604	return err;
1605}
1606EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1607
1608void udp_destruct_common(struct sock *sk)
1609{
1610	/* reclaim completely the forward allocated memory */
1611	struct udp_sock *up = udp_sk(sk);
1612	unsigned int total = 0;
1613	struct sk_buff *skb;
1614
1615	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1616	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1617		total += skb->truesize;
1618		kfree_skb(skb);
1619	}
1620	udp_rmem_release(sk, total, 0, true);
1621}
1622EXPORT_SYMBOL_GPL(udp_destruct_common);
1623
1624static void udp_destruct_sock(struct sock *sk)
1625{
1626	udp_destruct_common(sk);
1627	inet_sock_destruct(sk);
1628}
 
1629
1630int udp_init_sock(struct sock *sk)
1631{
1632	udp_lib_init_sock(sk);
1633	sk->sk_destruct = udp_destruct_sock;
1634	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1635	return 0;
1636}
 
1637
1638void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1639{
1640	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1641		bool slow = lock_sock_fast(sk);
1642
1643		sk_peek_offset_bwd(sk, len);
1644		unlock_sock_fast(sk, slow);
1645	}
1646
1647	if (!skb_unref(skb))
1648		return;
1649
1650	/* In the more common cases we cleared the head states previously,
1651	 * see __udp_queue_rcv_skb().
1652	 */
1653	if (unlikely(udp_skb_has_head_state(skb)))
1654		skb_release_head_state(skb);
1655	__consume_stateless_skb(skb);
1656}
1657EXPORT_SYMBOL_GPL(skb_consume_udp);
1658
1659static struct sk_buff *__first_packet_length(struct sock *sk,
1660					     struct sk_buff_head *rcvq,
1661					     int *total)
1662{
1663	struct sk_buff *skb;
1664
1665	while ((skb = skb_peek(rcvq)) != NULL) {
1666		if (udp_lib_checksum_complete(skb)) {
1667			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1668					IS_UDPLITE(sk));
1669			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1670					IS_UDPLITE(sk));
1671			atomic_inc(&sk->sk_drops);
1672			__skb_unlink(skb, rcvq);
1673			*total += skb->truesize;
1674			kfree_skb(skb);
1675		} else {
1676			udp_skb_csum_unnecessary_set(skb);
1677			break;
1678		}
1679	}
1680	return skb;
1681}
1682
1683/**
1684 *	first_packet_length	- return length of first packet in receive queue
1685 *	@sk: socket
1686 *
1687 *	Drops all bad checksum frames, until a valid one is found.
1688 *	Returns the length of found skb, or -1 if none is found.
1689 */
1690static int first_packet_length(struct sock *sk)
1691{
1692	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1693	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1694	struct sk_buff *skb;
1695	int total = 0;
1696	int res;
1697
1698	spin_lock_bh(&rcvq->lock);
1699	skb = __first_packet_length(sk, rcvq, &total);
1700	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1701		spin_lock(&sk_queue->lock);
1702		skb_queue_splice_tail_init(sk_queue, rcvq);
1703		spin_unlock(&sk_queue->lock);
1704
1705		skb = __first_packet_length(sk, rcvq, &total);
1706	}
1707	res = skb ? skb->len : -1;
1708	if (total)
1709		udp_rmem_release(sk, total, 1, false);
1710	spin_unlock_bh(&rcvq->lock);
1711	return res;
1712}
1713
1714/*
1715 *	IOCTL requests applicable to the UDP protocol
1716 */
1717
1718int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1719{
1720	switch (cmd) {
1721	case SIOCOUTQ:
1722	{
1723		int amount = sk_wmem_alloc_get(sk);
1724
1725		return put_user(amount, (int __user *)arg);
1726	}
1727
1728	case SIOCINQ:
1729	{
1730		int amount = max_t(int, 0, first_packet_length(sk));
1731
1732		return put_user(amount, (int __user *)arg);
1733	}
1734
1735	default:
1736		return -ENOIOCTLCMD;
1737	}
1738
1739	return 0;
1740}
1741EXPORT_SYMBOL(udp_ioctl);
1742
1743struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1744			       int *off, int *err)
1745{
1746	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1747	struct sk_buff_head *queue;
1748	struct sk_buff *last;
1749	long timeo;
1750	int error;
1751
1752	queue = &udp_sk(sk)->reader_queue;
 
1753	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1754	do {
1755		struct sk_buff *skb;
1756
1757		error = sock_error(sk);
1758		if (error)
1759			break;
1760
1761		error = -EAGAIN;
1762		do {
1763			spin_lock_bh(&queue->lock);
1764			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1765							err, &last);
1766			if (skb) {
1767				if (!(flags & MSG_PEEK))
1768					udp_skb_destructor(sk, skb);
1769				spin_unlock_bh(&queue->lock);
1770				return skb;
1771			}
1772
1773			if (skb_queue_empty_lockless(sk_queue)) {
1774				spin_unlock_bh(&queue->lock);
1775				goto busy_check;
1776			}
1777
1778			/* refill the reader queue and walk it again
1779			 * keep both queues locked to avoid re-acquiring
1780			 * the sk_receive_queue lock if fwd memory scheduling
1781			 * is needed.
1782			 */
1783			spin_lock(&sk_queue->lock);
1784			skb_queue_splice_tail_init(sk_queue, queue);
1785
1786			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1787							err, &last);
1788			if (skb && !(flags & MSG_PEEK))
1789				udp_skb_dtor_locked(sk, skb);
1790			spin_unlock(&sk_queue->lock);
1791			spin_unlock_bh(&queue->lock);
1792			if (skb)
1793				return skb;
1794
1795busy_check:
1796			if (!sk_can_busy_loop(sk))
1797				break;
1798
1799			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1800		} while (!skb_queue_empty_lockless(sk_queue));
1801
1802		/* sk_queue is empty, reader_queue may contain peeked packets */
1803	} while (timeo &&
1804		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1805					      &error, &timeo,
1806					      (struct sk_buff *)sk_queue));
1807
1808	*err = error;
1809	return NULL;
1810}
1811EXPORT_SYMBOL(__skb_recv_udp);
1812
1813int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
 
1814{
1815	struct sk_buff *skb;
1816	int err, copied;
1817
1818try_again:
1819	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1820	if (!skb)
1821		return err;
1822
1823	if (udp_lib_checksum_complete(skb)) {
1824		int is_udplite = IS_UDPLITE(sk);
1825		struct net *net = sock_net(sk);
 
 
 
 
 
 
 
 
 
1826
1827		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1828		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1829		atomic_inc(&sk->sk_drops);
1830		kfree_skb(skb);
1831		goto try_again;
 
1832	}
1833
1834	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1835	copied = recv_actor(sk, skb);
1836	kfree_skb(skb);
1837
1838	return copied;
1839}
1840EXPORT_SYMBOL(udp_read_skb);
1841
1842/*
1843 * 	This should be easy, if there is something there we
1844 * 	return it, otherwise we block.
1845 */
1846
1847int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1848		int *addr_len)
1849{
1850	struct inet_sock *inet = inet_sk(sk);
1851	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1852	struct sk_buff *skb;
1853	unsigned int ulen, copied;
1854	int off, err, peeking = flags & MSG_PEEK;
1855	int is_udplite = IS_UDPLITE(sk);
1856	bool checksum_valid = false;
1857
1858	if (flags & MSG_ERRQUEUE)
1859		return ip_recv_error(sk, msg, len, addr_len);
1860
1861try_again:
1862	off = sk_peek_offset(sk, flags);
1863	skb = __skb_recv_udp(sk, flags, &off, &err);
1864	if (!skb)
1865		return err;
1866
1867	ulen = udp_skb_len(skb);
1868	copied = len;
1869	if (copied > ulen - off)
1870		copied = ulen - off;
1871	else if (copied < ulen)
1872		msg->msg_flags |= MSG_TRUNC;
1873
1874	/*
1875	 * If checksum is needed at all, try to do it while copying the
1876	 * data.  If the data is truncated, or if we only want a partial
1877	 * coverage checksum (UDP-Lite), do it before the copy.
1878	 */
1879
1880	if (copied < ulen || peeking ||
1881	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1882		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1883				!__udp_lib_checksum_complete(skb);
1884		if (!checksum_valid)
1885			goto csum_copy_err;
1886	}
1887
1888	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1889		if (udp_skb_is_linear(skb))
1890			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1891		else
1892			err = skb_copy_datagram_msg(skb, off, msg, copied);
1893	} else {
1894		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1895
1896		if (err == -EINVAL)
1897			goto csum_copy_err;
1898	}
1899
1900	if (unlikely(err)) {
1901		if (!peeking) {
1902			atomic_inc(&sk->sk_drops);
1903			UDP_INC_STATS(sock_net(sk),
1904				      UDP_MIB_INERRORS, is_udplite);
1905		}
1906		kfree_skb(skb);
1907		return err;
1908	}
1909
1910	if (!peeking)
1911		UDP_INC_STATS(sock_net(sk),
1912			      UDP_MIB_INDATAGRAMS, is_udplite);
1913
1914	sock_recv_cmsgs(msg, sk, skb);
1915
1916	/* Copy the address. */
1917	if (sin) {
1918		sin->sin_family = AF_INET;
1919		sin->sin_port = udp_hdr(skb)->source;
1920		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1921		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1922		*addr_len = sizeof(*sin);
1923
1924		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1925						      (struct sockaddr *)sin);
1926	}
1927
1928	if (udp_sk(sk)->gro_enabled)
1929		udp_cmsg_recv(msg, sk, skb);
1930
1931	if (inet->cmsg_flags)
1932		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1933
1934	err = copied;
1935	if (flags & MSG_TRUNC)
1936		err = ulen;
1937
1938	skb_consume_udp(sk, skb, peeking ? -err : err);
1939	return err;
1940
1941csum_copy_err:
1942	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1943				 udp_skb_destructor)) {
1944		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1945		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1946	}
1947	kfree_skb(skb);
1948
1949	/* starting over for a new packet, but check if we need to yield */
1950	cond_resched();
1951	msg->msg_flags &= ~MSG_TRUNC;
1952	goto try_again;
1953}
1954
1955int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1956{
1957	/* This check is replicated from __ip4_datagram_connect() and
1958	 * intended to prevent BPF program called below from accessing bytes
1959	 * that are out of the bound specified by user in addr_len.
1960	 */
1961	if (addr_len < sizeof(struct sockaddr_in))
1962		return -EINVAL;
1963
1964	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1965}
1966EXPORT_SYMBOL(udp_pre_connect);
1967
1968int __udp_disconnect(struct sock *sk, int flags)
1969{
1970	struct inet_sock *inet = inet_sk(sk);
1971	/*
1972	 *	1003.1g - break association.
1973	 */
1974
1975	sk->sk_state = TCP_CLOSE;
1976	inet->inet_daddr = 0;
1977	inet->inet_dport = 0;
1978	sock_rps_reset_rxhash(sk);
1979	sk->sk_bound_dev_if = 0;
1980	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1981		inet_reset_saddr(sk);
1982		if (sk->sk_prot->rehash &&
1983		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1984			sk->sk_prot->rehash(sk);
1985	}
1986
1987	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1988		sk->sk_prot->unhash(sk);
1989		inet->inet_sport = 0;
1990	}
1991	sk_dst_reset(sk);
1992	return 0;
1993}
1994EXPORT_SYMBOL(__udp_disconnect);
1995
1996int udp_disconnect(struct sock *sk, int flags)
1997{
1998	lock_sock(sk);
1999	__udp_disconnect(sk, flags);
2000	release_sock(sk);
2001	return 0;
2002}
2003EXPORT_SYMBOL(udp_disconnect);
2004
2005void udp_lib_unhash(struct sock *sk)
2006{
2007	if (sk_hashed(sk)) {
2008		struct udp_table *udptable = udp_get_table_prot(sk);
2009		struct udp_hslot *hslot, *hslot2;
2010
2011		hslot  = udp_hashslot(udptable, sock_net(sk),
2012				      udp_sk(sk)->udp_port_hash);
2013		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2014
2015		spin_lock_bh(&hslot->lock);
2016		if (rcu_access_pointer(sk->sk_reuseport_cb))
2017			reuseport_detach_sock(sk);
2018		if (sk_del_node_init_rcu(sk)) {
2019			hslot->count--;
2020			inet_sk(sk)->inet_num = 0;
2021			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2022
2023			spin_lock(&hslot2->lock);
2024			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2025			hslot2->count--;
2026			spin_unlock(&hslot2->lock);
2027		}
2028		spin_unlock_bh(&hslot->lock);
2029	}
2030}
2031EXPORT_SYMBOL(udp_lib_unhash);
2032
2033/*
2034 * inet_rcv_saddr was changed, we must rehash secondary hash
2035 */
2036void udp_lib_rehash(struct sock *sk, u16 newhash)
2037{
2038	if (sk_hashed(sk)) {
2039		struct udp_table *udptable = udp_get_table_prot(sk);
2040		struct udp_hslot *hslot, *hslot2, *nhslot2;
2041
2042		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2043		nhslot2 = udp_hashslot2(udptable, newhash);
2044		udp_sk(sk)->udp_portaddr_hash = newhash;
2045
2046		if (hslot2 != nhslot2 ||
2047		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2048			hslot = udp_hashslot(udptable, sock_net(sk),
2049					     udp_sk(sk)->udp_port_hash);
2050			/* we must lock primary chain too */
2051			spin_lock_bh(&hslot->lock);
2052			if (rcu_access_pointer(sk->sk_reuseport_cb))
2053				reuseport_detach_sock(sk);
2054
2055			if (hslot2 != nhslot2) {
2056				spin_lock(&hslot2->lock);
2057				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2058				hslot2->count--;
2059				spin_unlock(&hslot2->lock);
2060
2061				spin_lock(&nhslot2->lock);
2062				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2063							 &nhslot2->head);
2064				nhslot2->count++;
2065				spin_unlock(&nhslot2->lock);
2066			}
2067
2068			spin_unlock_bh(&hslot->lock);
2069		}
2070	}
2071}
2072EXPORT_SYMBOL(udp_lib_rehash);
2073
2074void udp_v4_rehash(struct sock *sk)
2075{
2076	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2077					  inet_sk(sk)->inet_rcv_saddr,
2078					  inet_sk(sk)->inet_num);
2079	udp_lib_rehash(sk, new_hash);
2080}
2081
2082static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2083{
2084	int rc;
2085
2086	if (inet_sk(sk)->inet_daddr) {
2087		sock_rps_save_rxhash(sk, skb);
2088		sk_mark_napi_id(sk, skb);
2089		sk_incoming_cpu_update(sk);
2090	} else {
2091		sk_mark_napi_id_once(sk, skb);
2092	}
2093
2094	rc = __udp_enqueue_schedule_skb(sk, skb);
2095	if (rc < 0) {
2096		int is_udplite = IS_UDPLITE(sk);
2097		int drop_reason;
2098
2099		/* Note that an ENOMEM error is charged twice */
2100		if (rc == -ENOMEM) {
2101			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2102					is_udplite);
2103			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2104		} else {
2105			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2106				      is_udplite);
2107			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2108		}
2109		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2110		kfree_skb_reason(skb, drop_reason);
2111		trace_udp_fail_queue_rcv_skb(rc, sk);
2112		return -1;
2113	}
2114
2115	return 0;
2116}
2117
2118/* returns:
2119 *  -1: error
2120 *   0: success
2121 *  >0: "udp encap" protocol resubmission
2122 *
2123 * Note that in the success and error cases, the skb is assumed to
2124 * have either been requeued or freed.
2125 */
2126static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2127{
2128	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2129	struct udp_sock *up = udp_sk(sk);
2130	int is_udplite = IS_UDPLITE(sk);
2131
2132	/*
2133	 *	Charge it to the socket, dropping if the queue is full.
2134	 */
2135	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2136		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2137		goto drop;
2138	}
2139	nf_reset_ct(skb);
2140
2141	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2142		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2143
2144		/*
2145		 * This is an encapsulation socket so pass the skb to
2146		 * the socket's udp_encap_rcv() hook. Otherwise, just
2147		 * fall through and pass this up the UDP socket.
2148		 * up->encap_rcv() returns the following value:
2149		 * =0 if skb was successfully passed to the encap
2150		 *    handler or was discarded by it.
2151		 * >0 if skb should be passed on to UDP.
2152		 * <0 if skb should be resubmitted as proto -N
2153		 */
2154
2155		/* if we're overly short, let UDP handle it */
2156		encap_rcv = READ_ONCE(up->encap_rcv);
2157		if (encap_rcv) {
2158			int ret;
2159
2160			/* Verify checksum before giving to encap */
2161			if (udp_lib_checksum_complete(skb))
2162				goto csum_error;
2163
2164			ret = encap_rcv(sk, skb);
2165			if (ret <= 0) {
2166				__UDP_INC_STATS(sock_net(sk),
2167						UDP_MIB_INDATAGRAMS,
2168						is_udplite);
2169				return -ret;
2170			}
2171		}
2172
2173		/* FALLTHROUGH -- it's a UDP Packet */
2174	}
2175
2176	/*
2177	 * 	UDP-Lite specific tests, ignored on UDP sockets
2178	 */
2179	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2180
2181		/*
2182		 * MIB statistics other than incrementing the error count are
2183		 * disabled for the following two types of errors: these depend
2184		 * on the application settings, not on the functioning of the
2185		 * protocol stack as such.
2186		 *
2187		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2188		 * way ... to ... at least let the receiving application block
2189		 * delivery of packets with coverage values less than a value
2190		 * provided by the application."
2191		 */
2192		if (up->pcrlen == 0) {          /* full coverage was set  */
2193			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2194					    UDP_SKB_CB(skb)->cscov, skb->len);
2195			goto drop;
2196		}
2197		/* The next case involves violating the min. coverage requested
2198		 * by the receiver. This is subtle: if receiver wants x and x is
2199		 * greater than the buffersize/MTU then receiver will complain
2200		 * that it wants x while sender emits packets of smaller size y.
2201		 * Therefore the above ...()->partial_cov statement is essential.
2202		 */
2203		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2204			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2205					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2206			goto drop;
2207		}
2208	}
2209
2210	prefetch(&sk->sk_rmem_alloc);
2211	if (rcu_access_pointer(sk->sk_filter) &&
2212	    udp_lib_checksum_complete(skb))
2213			goto csum_error;
2214
2215	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2216		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2217		goto drop;
2218	}
2219
2220	udp_csum_pull_header(skb);
2221
2222	ipv4_pktinfo_prepare(sk, skb);
2223	return __udp_queue_rcv_skb(sk, skb);
2224
2225csum_error:
2226	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2227	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2228drop:
2229	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2230	atomic_inc(&sk->sk_drops);
2231	kfree_skb_reason(skb, drop_reason);
2232	return -1;
2233}
2234
2235static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2236{
2237	struct sk_buff *next, *segs;
2238	int ret;
2239
2240	if (likely(!udp_unexpected_gso(sk, skb)))
2241		return udp_queue_rcv_one_skb(sk, skb);
2242
2243	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2244	__skb_push(skb, -skb_mac_offset(skb));
2245	segs = udp_rcv_segment(sk, skb, true);
2246	skb_list_walk_safe(segs, skb, next) {
2247		__skb_pull(skb, skb_transport_offset(skb));
2248
2249		udp_post_segment_fix_csum(skb);
2250		ret = udp_queue_rcv_one_skb(sk, skb);
2251		if (ret > 0)
2252			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2253	}
2254	return 0;
2255}
2256
2257/* For TCP sockets, sk_rx_dst is protected by socket lock
2258 * For UDP, we use xchg() to guard against concurrent changes.
2259 */
2260bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2261{
2262	struct dst_entry *old;
2263
2264	if (dst_hold_safe(dst)) {
2265		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2266		dst_release(old);
2267		return old != dst;
2268	}
2269	return false;
2270}
2271EXPORT_SYMBOL(udp_sk_rx_dst_set);
2272
2273/*
2274 *	Multicasts and broadcasts go to each listener.
2275 *
2276 *	Note: called only from the BH handler context.
2277 */
2278static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2279				    struct udphdr  *uh,
2280				    __be32 saddr, __be32 daddr,
2281				    struct udp_table *udptable,
2282				    int proto)
2283{
2284	struct sock *sk, *first = NULL;
2285	unsigned short hnum = ntohs(uh->dest);
2286	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2287	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2288	unsigned int offset = offsetof(typeof(*sk), sk_node);
2289	int dif = skb->dev->ifindex;
2290	int sdif = inet_sdif(skb);
2291	struct hlist_node *node;
2292	struct sk_buff *nskb;
2293
2294	if (use_hash2) {
2295		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2296			    udptable->mask;
2297		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2298start_lookup:
2299		hslot = &udptable->hash2[hash2];
2300		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2301	}
2302
2303	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2304		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2305					 uh->source, saddr, dif, sdif, hnum))
2306			continue;
2307
2308		if (!first) {
2309			first = sk;
2310			continue;
2311		}
2312		nskb = skb_clone(skb, GFP_ATOMIC);
2313
2314		if (unlikely(!nskb)) {
2315			atomic_inc(&sk->sk_drops);
2316			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2317					IS_UDPLITE(sk));
2318			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2319					IS_UDPLITE(sk));
2320			continue;
2321		}
2322		if (udp_queue_rcv_skb(sk, nskb) > 0)
2323			consume_skb(nskb);
2324	}
2325
2326	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2327	if (use_hash2 && hash2 != hash2_any) {
2328		hash2 = hash2_any;
2329		goto start_lookup;
2330	}
2331
2332	if (first) {
2333		if (udp_queue_rcv_skb(first, skb) > 0)
2334			consume_skb(skb);
2335	} else {
2336		kfree_skb(skb);
2337		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2338				proto == IPPROTO_UDPLITE);
2339	}
2340	return 0;
2341}
2342
2343/* Initialize UDP checksum. If exited with zero value (success),
2344 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2345 * Otherwise, csum completion requires checksumming packet body,
2346 * including udp header and folding it to skb->csum.
2347 */
2348static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2349				 int proto)
2350{
2351	int err;
2352
2353	UDP_SKB_CB(skb)->partial_cov = 0;
2354	UDP_SKB_CB(skb)->cscov = skb->len;
2355
2356	if (proto == IPPROTO_UDPLITE) {
2357		err = udplite_checksum_init(skb, uh);
2358		if (err)
2359			return err;
2360
2361		if (UDP_SKB_CB(skb)->partial_cov) {
2362			skb->csum = inet_compute_pseudo(skb, proto);
2363			return 0;
2364		}
2365	}
2366
2367	/* Note, we are only interested in != 0 or == 0, thus the
2368	 * force to int.
2369	 */
2370	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2371							inet_compute_pseudo);
2372	if (err)
2373		return err;
2374
2375	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2376		/* If SW calculated the value, we know it's bad */
2377		if (skb->csum_complete_sw)
2378			return 1;
2379
2380		/* HW says the value is bad. Let's validate that.
2381		 * skb->csum is no longer the full packet checksum,
2382		 * so don't treat it as such.
2383		 */
2384		skb_checksum_complete_unset(skb);
2385	}
2386
2387	return 0;
2388}
2389
2390/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2391 * return code conversion for ip layer consumption
2392 */
2393static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2394			       struct udphdr *uh)
2395{
2396	int ret;
2397
2398	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2399		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2400
2401	ret = udp_queue_rcv_skb(sk, skb);
2402
2403	/* a return value > 0 means to resubmit the input, but
2404	 * it wants the return to be -protocol, or 0
2405	 */
2406	if (ret > 0)
2407		return -ret;
2408	return 0;
2409}
2410
2411/*
2412 *	All we need to do is get the socket, and then do a checksum.
2413 */
2414
2415int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2416		   int proto)
2417{
2418	struct sock *sk;
2419	struct udphdr *uh;
2420	unsigned short ulen;
2421	struct rtable *rt = skb_rtable(skb);
2422	__be32 saddr, daddr;
2423	struct net *net = dev_net(skb->dev);
2424	bool refcounted;
2425	int drop_reason;
2426
2427	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2428
2429	/*
2430	 *  Validate the packet.
2431	 */
2432	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2433		goto drop;		/* No space for header. */
2434
2435	uh   = udp_hdr(skb);
2436	ulen = ntohs(uh->len);
2437	saddr = ip_hdr(skb)->saddr;
2438	daddr = ip_hdr(skb)->daddr;
2439
2440	if (ulen > skb->len)
2441		goto short_packet;
2442
2443	if (proto == IPPROTO_UDP) {
2444		/* UDP validates ulen. */
2445		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2446			goto short_packet;
2447		uh = udp_hdr(skb);
2448	}
2449
2450	if (udp4_csum_init(skb, uh, proto))
2451		goto csum_error;
2452
2453	sk = skb_steal_sock(skb, &refcounted);
2454	if (sk) {
2455		struct dst_entry *dst = skb_dst(skb);
2456		int ret;
2457
2458		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2459			udp_sk_rx_dst_set(sk, dst);
2460
2461		ret = udp_unicast_rcv_skb(sk, skb, uh);
2462		if (refcounted)
2463			sock_put(sk);
2464		return ret;
2465	}
2466
2467	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2468		return __udp4_lib_mcast_deliver(net, skb, uh,
2469						saddr, daddr, udptable, proto);
2470
2471	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2472	if (sk)
2473		return udp_unicast_rcv_skb(sk, skb, uh);
2474
2475	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2476		goto drop;
2477	nf_reset_ct(skb);
2478
2479	/* No socket. Drop packet silently, if checksum is wrong */
2480	if (udp_lib_checksum_complete(skb))
2481		goto csum_error;
2482
2483	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2484	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2485	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2486
2487	/*
2488	 * Hmm.  We got an UDP packet to a port to which we
2489	 * don't wanna listen.  Ignore it.
2490	 */
2491	kfree_skb_reason(skb, drop_reason);
2492	return 0;
2493
2494short_packet:
2495	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2496	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2497			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2498			    &saddr, ntohs(uh->source),
2499			    ulen, skb->len,
2500			    &daddr, ntohs(uh->dest));
2501	goto drop;
2502
2503csum_error:
2504	/*
2505	 * RFC1122: OK.  Discards the bad packet silently (as far as
2506	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2507	 */
2508	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2509	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2510			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2511			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2512			    ulen);
2513	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2514drop:
2515	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2516	kfree_skb_reason(skb, drop_reason);
2517	return 0;
2518}
2519
2520/* We can only early demux multicast if there is a single matching socket.
2521 * If more than one socket found returns NULL
2522 */
2523static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2524						  __be16 loc_port, __be32 loc_addr,
2525						  __be16 rmt_port, __be32 rmt_addr,
2526						  int dif, int sdif)
2527{
2528	struct udp_table *udptable = net->ipv4.udp_table;
2529	unsigned short hnum = ntohs(loc_port);
2530	struct sock *sk, *result;
2531	struct udp_hslot *hslot;
2532	unsigned int slot;
2533
2534	slot = udp_hashfn(net, hnum, udptable->mask);
2535	hslot = &udptable->hash[slot];
2536
2537	/* Do not bother scanning a too big list */
2538	if (hslot->count > 10)
2539		return NULL;
2540
2541	result = NULL;
2542	sk_for_each_rcu(sk, &hslot->head) {
2543		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2544					rmt_port, rmt_addr, dif, sdif, hnum)) {
2545			if (result)
2546				return NULL;
2547			result = sk;
2548		}
2549	}
2550
2551	return result;
2552}
2553
2554/* For unicast we should only early demux connected sockets or we can
2555 * break forwarding setups.  The chains here can be long so only check
2556 * if the first socket is an exact match and if not move on.
2557 */
2558static struct sock *__udp4_lib_demux_lookup(struct net *net,
2559					    __be16 loc_port, __be32 loc_addr,
2560					    __be16 rmt_port, __be32 rmt_addr,
2561					    int dif, int sdif)
2562{
2563	struct udp_table *udptable = net->ipv4.udp_table;
 
 
 
2564	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2565	unsigned short hnum = ntohs(loc_port);
2566	unsigned int hash2, slot2;
2567	struct udp_hslot *hslot2;
2568	__portpair ports;
2569	struct sock *sk;
2570
2571	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2572	slot2 = hash2 & udptable->mask;
2573	hslot2 = &udptable->hash2[slot2];
2574	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2575
2576	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2577		if (inet_match(net, sk, acookie, ports, dif, sdif))
 
2578			return sk;
2579		/* Only check first socket in chain */
2580		break;
2581	}
2582	return NULL;
2583}
2584
2585int udp_v4_early_demux(struct sk_buff *skb)
2586{
2587	struct net *net = dev_net(skb->dev);
2588	struct in_device *in_dev = NULL;
2589	const struct iphdr *iph;
2590	const struct udphdr *uh;
2591	struct sock *sk = NULL;
2592	struct dst_entry *dst;
2593	int dif = skb->dev->ifindex;
2594	int sdif = inet_sdif(skb);
2595	int ours;
2596
2597	/* validate the packet */
2598	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2599		return 0;
2600
2601	iph = ip_hdr(skb);
2602	uh = udp_hdr(skb);
2603
2604	if (skb->pkt_type == PACKET_MULTICAST) {
2605		in_dev = __in_dev_get_rcu(skb->dev);
2606
2607		if (!in_dev)
2608			return 0;
2609
2610		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2611				       iph->protocol);
2612		if (!ours)
2613			return 0;
2614
2615		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2616						   uh->source, iph->saddr,
2617						   dif, sdif);
2618	} else if (skb->pkt_type == PACKET_HOST) {
2619		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2620					     uh->source, iph->saddr, dif, sdif);
2621	}
2622
2623	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2624		return 0;
2625
2626	skb->sk = sk;
2627	skb->destructor = sock_efree;
2628	dst = rcu_dereference(sk->sk_rx_dst);
2629
2630	if (dst)
2631		dst = dst_check(dst, 0);
2632	if (dst) {
2633		u32 itag = 0;
2634
2635		/* set noref for now.
2636		 * any place which wants to hold dst has to call
2637		 * dst_hold_safe()
2638		 */
2639		skb_dst_set_noref(skb, dst);
2640
2641		/* for unconnected multicast sockets we need to validate
2642		 * the source on each packet
2643		 */
2644		if (!inet_sk(sk)->inet_daddr && in_dev)
2645			return ip_mc_validate_source(skb, iph->daddr,
2646						     iph->saddr,
2647						     iph->tos & IPTOS_RT_MASK,
2648						     skb->dev, in_dev, &itag);
2649	}
2650	return 0;
2651}
2652
2653int udp_rcv(struct sk_buff *skb)
2654{
2655	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2656}
2657
2658void udp_destroy_sock(struct sock *sk)
2659{
2660	struct udp_sock *up = udp_sk(sk);
2661	bool slow = lock_sock_fast(sk);
2662
2663	/* protects from races with udp_abort() */
2664	sock_set_flag(sk, SOCK_DEAD);
2665	udp_flush_pending_frames(sk);
2666	unlock_sock_fast(sk, slow);
2667	if (static_branch_unlikely(&udp_encap_needed_key)) {
2668		if (up->encap_type) {
2669			void (*encap_destroy)(struct sock *sk);
2670			encap_destroy = READ_ONCE(up->encap_destroy);
2671			if (encap_destroy)
2672				encap_destroy(sk);
2673		}
2674		if (up->encap_enabled)
2675			static_branch_dec(&udp_encap_needed_key);
2676	}
2677}
2678
2679/*
2680 *	Socket option code for UDP
2681 */
2682int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2683		       sockptr_t optval, unsigned int optlen,
2684		       int (*push_pending_frames)(struct sock *))
2685{
2686	struct udp_sock *up = udp_sk(sk);
2687	int val, valbool;
2688	int err = 0;
2689	int is_udplite = IS_UDPLITE(sk);
2690
2691	if (level == SOL_SOCKET) {
2692		err = sk_setsockopt(sk, level, optname, optval, optlen);
2693
2694		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2695			sockopt_lock_sock(sk);
2696			/* paired with READ_ONCE in udp_rmem_release() */
2697			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2698			sockopt_release_sock(sk);
2699		}
2700		return err;
2701	}
2702
2703	if (optlen < sizeof(int))
2704		return -EINVAL;
2705
2706	if (copy_from_sockptr(&val, optval, sizeof(val)))
2707		return -EFAULT;
2708
2709	valbool = val ? 1 : 0;
2710
2711	switch (optname) {
2712	case UDP_CORK:
2713		if (val != 0) {
2714			WRITE_ONCE(up->corkflag, 1);
2715		} else {
2716			WRITE_ONCE(up->corkflag, 0);
2717			lock_sock(sk);
2718			push_pending_frames(sk);
2719			release_sock(sk);
2720		}
2721		break;
2722
2723	case UDP_ENCAP:
2724		switch (val) {
2725		case 0:
2726#ifdef CONFIG_XFRM
2727		case UDP_ENCAP_ESPINUDP:
2728		case UDP_ENCAP_ESPINUDP_NON_IKE:
2729#if IS_ENABLED(CONFIG_IPV6)
2730			if (sk->sk_family == AF_INET6)
2731				up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2732			else
2733#endif
2734				up->encap_rcv = xfrm4_udp_encap_rcv;
2735#endif
2736			fallthrough;
2737		case UDP_ENCAP_L2TPINUDP:
2738			up->encap_type = val;
2739			lock_sock(sk);
2740			udp_tunnel_encap_enable(sk->sk_socket);
2741			release_sock(sk);
2742			break;
2743		default:
2744			err = -ENOPROTOOPT;
2745			break;
2746		}
2747		break;
2748
2749	case UDP_NO_CHECK6_TX:
2750		up->no_check6_tx = valbool;
2751		break;
2752
2753	case UDP_NO_CHECK6_RX:
2754		up->no_check6_rx = valbool;
2755		break;
2756
2757	case UDP_SEGMENT:
2758		if (val < 0 || val > USHRT_MAX)
2759			return -EINVAL;
2760		WRITE_ONCE(up->gso_size, val);
2761		break;
2762
2763	case UDP_GRO:
2764		lock_sock(sk);
2765
2766		/* when enabling GRO, accept the related GSO packet type */
2767		if (valbool)
2768			udp_tunnel_encap_enable(sk->sk_socket);
2769		up->gro_enabled = valbool;
2770		up->accept_udp_l4 = valbool;
2771		release_sock(sk);
2772		break;
2773
2774	/*
2775	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2776	 */
2777	/* The sender sets actual checksum coverage length via this option.
2778	 * The case coverage > packet length is handled by send module. */
2779	case UDPLITE_SEND_CSCOV:
2780		if (!is_udplite)         /* Disable the option on UDP sockets */
2781			return -ENOPROTOOPT;
2782		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2783			val = 8;
2784		else if (val > USHRT_MAX)
2785			val = USHRT_MAX;
2786		up->pcslen = val;
2787		up->pcflag |= UDPLITE_SEND_CC;
2788		break;
2789
2790	/* The receiver specifies a minimum checksum coverage value. To make
2791	 * sense, this should be set to at least 8 (as done below). If zero is
2792	 * used, this again means full checksum coverage.                     */
2793	case UDPLITE_RECV_CSCOV:
2794		if (!is_udplite)         /* Disable the option on UDP sockets */
2795			return -ENOPROTOOPT;
2796		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2797			val = 8;
2798		else if (val > USHRT_MAX)
2799			val = USHRT_MAX;
2800		up->pcrlen = val;
2801		up->pcflag |= UDPLITE_RECV_CC;
2802		break;
2803
2804	default:
2805		err = -ENOPROTOOPT;
2806		break;
2807	}
2808
2809	return err;
2810}
2811EXPORT_SYMBOL(udp_lib_setsockopt);
2812
2813int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2814		   unsigned int optlen)
2815{
2816	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2817		return udp_lib_setsockopt(sk, level, optname,
2818					  optval, optlen,
2819					  udp_push_pending_frames);
2820	return ip_setsockopt(sk, level, optname, optval, optlen);
2821}
2822
2823int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2824		       char __user *optval, int __user *optlen)
2825{
2826	struct udp_sock *up = udp_sk(sk);
2827	int val, len;
2828
2829	if (get_user(len, optlen))
2830		return -EFAULT;
2831
2832	len = min_t(unsigned int, len, sizeof(int));
2833
2834	if (len < 0)
2835		return -EINVAL;
2836
2837	switch (optname) {
2838	case UDP_CORK:
2839		val = READ_ONCE(up->corkflag);
2840		break;
2841
2842	case UDP_ENCAP:
2843		val = up->encap_type;
2844		break;
2845
2846	case UDP_NO_CHECK6_TX:
2847		val = up->no_check6_tx;
2848		break;
2849
2850	case UDP_NO_CHECK6_RX:
2851		val = up->no_check6_rx;
2852		break;
2853
2854	case UDP_SEGMENT:
2855		val = READ_ONCE(up->gso_size);
2856		break;
2857
2858	case UDP_GRO:
2859		val = up->gro_enabled;
2860		break;
2861
2862	/* The following two cannot be changed on UDP sockets, the return is
2863	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2864	case UDPLITE_SEND_CSCOV:
2865		val = up->pcslen;
2866		break;
2867
2868	case UDPLITE_RECV_CSCOV:
2869		val = up->pcrlen;
2870		break;
2871
2872	default:
2873		return -ENOPROTOOPT;
2874	}
2875
2876	if (put_user(len, optlen))
2877		return -EFAULT;
2878	if (copy_to_user(optval, &val, len))
2879		return -EFAULT;
2880	return 0;
2881}
2882EXPORT_SYMBOL(udp_lib_getsockopt);
2883
2884int udp_getsockopt(struct sock *sk, int level, int optname,
2885		   char __user *optval, int __user *optlen)
2886{
2887	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2888		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2889	return ip_getsockopt(sk, level, optname, optval, optlen);
2890}
2891
2892/**
2893 * 	udp_poll - wait for a UDP event.
2894 *	@file: - file struct
2895 *	@sock: - socket
2896 *	@wait: - poll table
2897 *
2898 *	This is same as datagram poll, except for the special case of
2899 *	blocking sockets. If application is using a blocking fd
2900 *	and a packet with checksum error is in the queue;
2901 *	then it could get return from select indicating data available
2902 *	but then block when reading it. Add special case code
2903 *	to work around these arguably broken applications.
2904 */
2905__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2906{
2907	__poll_t mask = datagram_poll(file, sock, wait);
2908	struct sock *sk = sock->sk;
2909
2910	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2911		mask |= EPOLLIN | EPOLLRDNORM;
2912
2913	/* Check for false positives due to checksum errors */
2914	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2915	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2916		mask &= ~(EPOLLIN | EPOLLRDNORM);
2917
2918	/* psock ingress_msg queue should not contain any bad checksum frames */
2919	if (sk_is_readable(sk))
2920		mask |= EPOLLIN | EPOLLRDNORM;
2921	return mask;
2922
2923}
2924EXPORT_SYMBOL(udp_poll);
2925
2926int udp_abort(struct sock *sk, int err)
2927{
2928	lock_sock(sk);
2929
2930	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2931	 * with close()
2932	 */
2933	if (sock_flag(sk, SOCK_DEAD))
2934		goto out;
2935
2936	sk->sk_err = err;
2937	sk_error_report(sk);
2938	__udp_disconnect(sk, 0);
2939
2940out:
2941	release_sock(sk);
2942
2943	return 0;
2944}
2945EXPORT_SYMBOL_GPL(udp_abort);
2946
2947struct proto udp_prot = {
2948	.name			= "UDP",
2949	.owner			= THIS_MODULE,
2950	.close			= udp_lib_close,
2951	.pre_connect		= udp_pre_connect,
2952	.connect		= ip4_datagram_connect,
2953	.disconnect		= udp_disconnect,
2954	.ioctl			= udp_ioctl,
2955	.init			= udp_init_sock,
2956	.destroy		= udp_destroy_sock,
2957	.setsockopt		= udp_setsockopt,
2958	.getsockopt		= udp_getsockopt,
2959	.sendmsg		= udp_sendmsg,
2960	.recvmsg		= udp_recvmsg,
2961	.sendpage		= udp_sendpage,
2962	.release_cb		= ip4_datagram_release_cb,
2963	.hash			= udp_lib_hash,
2964	.unhash			= udp_lib_unhash,
2965	.rehash			= udp_v4_rehash,
2966	.get_port		= udp_v4_get_port,
2967	.put_port		= udp_lib_unhash,
2968#ifdef CONFIG_BPF_SYSCALL
2969	.psock_update_sk_prot	= udp_bpf_update_proto,
2970#endif
2971	.memory_allocated	= &udp_memory_allocated,
2972	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2973
2974	.sysctl_mem		= sysctl_udp_mem,
2975	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2976	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2977	.obj_size		= sizeof(struct udp_sock),
2978	.h.udp_table		= NULL,
2979	.diag_destroy		= udp_abort,
2980};
2981EXPORT_SYMBOL(udp_prot);
2982
2983/* ------------------------------------------------------------------------ */
2984#ifdef CONFIG_PROC_FS
2985
2986static struct udp_table *udp_get_table_afinfo(struct udp_seq_afinfo *afinfo,
2987					      struct net *net)
2988{
2989	return afinfo->udp_table ? : net->ipv4.udp_table;
2990}
2991
2992static struct sock *udp_get_first(struct seq_file *seq, int start)
2993{
 
 
2994	struct udp_iter_state *state = seq->private;
2995	struct net *net = seq_file_net(seq);
2996	struct udp_seq_afinfo *afinfo;
2997	struct udp_table *udptable;
2998	struct sock *sk;
2999
3000	if (state->bpf_seq_afinfo)
3001		afinfo = state->bpf_seq_afinfo;
3002	else
3003		afinfo = pde_data(file_inode(seq->file));
3004
3005	udptable = udp_get_table_afinfo(afinfo, net);
3006
3007	for (state->bucket = start; state->bucket <= udptable->mask;
3008	     ++state->bucket) {
3009		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3010
3011		if (hlist_empty(&hslot->head))
3012			continue;
3013
3014		spin_lock_bh(&hslot->lock);
3015		sk_for_each(sk, &hslot->head) {
3016			if (!net_eq(sock_net(sk), net))
3017				continue;
3018			if (afinfo->family == AF_UNSPEC ||
3019			    sk->sk_family == afinfo->family)
3020				goto found;
3021		}
3022		spin_unlock_bh(&hslot->lock);
3023	}
3024	sk = NULL;
3025found:
3026	return sk;
3027}
3028
3029static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3030{
 
3031	struct udp_iter_state *state = seq->private;
3032	struct net *net = seq_file_net(seq);
3033	struct udp_seq_afinfo *afinfo;
3034	struct udp_table *udptable;
3035
3036	if (state->bpf_seq_afinfo)
3037		afinfo = state->bpf_seq_afinfo;
3038	else
3039		afinfo = pde_data(file_inode(seq->file));
3040
3041	do {
3042		sk = sk_next(sk);
3043	} while (sk && (!net_eq(sock_net(sk), net) ||
3044			(afinfo->family != AF_UNSPEC &&
3045			 sk->sk_family != afinfo->family)));
3046
3047	if (!sk) {
3048		udptable = udp_get_table_afinfo(afinfo, net);
3049
3050		if (state->bucket <= udptable->mask)
3051			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3052
3053		return udp_get_first(seq, state->bucket + 1);
3054	}
3055	return sk;
3056}
3057
3058static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3059{
3060	struct sock *sk = udp_get_first(seq, 0);
3061
3062	if (sk)
3063		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3064			--pos;
3065	return pos ? NULL : sk;
3066}
3067
3068void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3069{
3070	struct udp_iter_state *state = seq->private;
3071	state->bucket = MAX_UDP_PORTS;
3072
3073	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3074}
3075EXPORT_SYMBOL(udp_seq_start);
3076
3077void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3078{
3079	struct sock *sk;
3080
3081	if (v == SEQ_START_TOKEN)
3082		sk = udp_get_idx(seq, 0);
3083	else
3084		sk = udp_get_next(seq, v);
3085
3086	++*pos;
3087	return sk;
3088}
3089EXPORT_SYMBOL(udp_seq_next);
3090
3091void udp_seq_stop(struct seq_file *seq, void *v)
3092{
 
3093	struct udp_iter_state *state = seq->private;
3094	struct udp_seq_afinfo *afinfo;
3095	struct udp_table *udptable;
3096
3097	if (state->bpf_seq_afinfo)
3098		afinfo = state->bpf_seq_afinfo;
3099	else
3100		afinfo = pde_data(file_inode(seq->file));
3101
3102	udptable = udp_get_table_afinfo(afinfo, seq_file_net(seq));
3103
3104	if (state->bucket <= udptable->mask)
3105		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3106}
3107EXPORT_SYMBOL(udp_seq_stop);
3108
3109/* ------------------------------------------------------------------------ */
3110static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3111		int bucket)
3112{
3113	struct inet_sock *inet = inet_sk(sp);
3114	__be32 dest = inet->inet_daddr;
3115	__be32 src  = inet->inet_rcv_saddr;
3116	__u16 destp	  = ntohs(inet->inet_dport);
3117	__u16 srcp	  = ntohs(inet->inet_sport);
3118
3119	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3120		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3121		bucket, src, srcp, dest, destp, sp->sk_state,
3122		sk_wmem_alloc_get(sp),
3123		udp_rqueue_get(sp),
3124		0, 0L, 0,
3125		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3126		0, sock_i_ino(sp),
3127		refcount_read(&sp->sk_refcnt), sp,
3128		atomic_read(&sp->sk_drops));
3129}
3130
3131int udp4_seq_show(struct seq_file *seq, void *v)
3132{
3133	seq_setwidth(seq, 127);
3134	if (v == SEQ_START_TOKEN)
3135		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3136			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3137			   "inode ref pointer drops");
3138	else {
3139		struct udp_iter_state *state = seq->private;
3140
3141		udp4_format_sock(v, seq, state->bucket);
3142	}
3143	seq_pad(seq, '\n');
3144	return 0;
3145}
3146
3147#ifdef CONFIG_BPF_SYSCALL
3148struct bpf_iter__udp {
3149	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3150	__bpf_md_ptr(struct udp_sock *, udp_sk);
3151	uid_t uid __aligned(8);
3152	int bucket __aligned(8);
3153};
3154
3155static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3156			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3157{
3158	struct bpf_iter__udp ctx;
3159
3160	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3161	ctx.meta = meta;
3162	ctx.udp_sk = udp_sk;
3163	ctx.uid = uid;
3164	ctx.bucket = bucket;
3165	return bpf_iter_run_prog(prog, &ctx);
3166}
3167
3168static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3169{
3170	struct udp_iter_state *state = seq->private;
3171	struct bpf_iter_meta meta;
3172	struct bpf_prog *prog;
3173	struct sock *sk = v;
3174	uid_t uid;
3175
3176	if (v == SEQ_START_TOKEN)
3177		return 0;
3178
3179	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3180	meta.seq = seq;
3181	prog = bpf_iter_get_info(&meta, false);
3182	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3183}
3184
3185static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3186{
3187	struct bpf_iter_meta meta;
3188	struct bpf_prog *prog;
3189
3190	if (!v) {
3191		meta.seq = seq;
3192		prog = bpf_iter_get_info(&meta, true);
3193		if (prog)
3194			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3195	}
3196
3197	udp_seq_stop(seq, v);
3198}
3199
3200static const struct seq_operations bpf_iter_udp_seq_ops = {
3201	.start		= udp_seq_start,
3202	.next		= udp_seq_next,
3203	.stop		= bpf_iter_udp_seq_stop,
3204	.show		= bpf_iter_udp_seq_show,
3205};
3206#endif
3207
3208const struct seq_operations udp_seq_ops = {
3209	.start		= udp_seq_start,
3210	.next		= udp_seq_next,
3211	.stop		= udp_seq_stop,
3212	.show		= udp4_seq_show,
3213};
3214EXPORT_SYMBOL(udp_seq_ops);
3215
3216static struct udp_seq_afinfo udp4_seq_afinfo = {
3217	.family		= AF_INET,
3218	.udp_table	= NULL,
3219};
3220
3221static int __net_init udp4_proc_init_net(struct net *net)
3222{
3223	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3224			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3225		return -ENOMEM;
3226	return 0;
3227}
3228
3229static void __net_exit udp4_proc_exit_net(struct net *net)
3230{
3231	remove_proc_entry("udp", net->proc_net);
3232}
3233
3234static struct pernet_operations udp4_net_ops = {
3235	.init = udp4_proc_init_net,
3236	.exit = udp4_proc_exit_net,
3237};
3238
3239int __init udp4_proc_init(void)
3240{
3241	return register_pernet_subsys(&udp4_net_ops);
3242}
3243
3244void udp4_proc_exit(void)
3245{
3246	unregister_pernet_subsys(&udp4_net_ops);
3247}
3248#endif /* CONFIG_PROC_FS */
3249
3250static __initdata unsigned long uhash_entries;
3251static int __init set_uhash_entries(char *str)
3252{
3253	ssize_t ret;
3254
3255	if (!str)
3256		return 0;
3257
3258	ret = kstrtoul(str, 0, &uhash_entries);
3259	if (ret)
3260		return 0;
3261
3262	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3263		uhash_entries = UDP_HTABLE_SIZE_MIN;
3264	return 1;
3265}
3266__setup("uhash_entries=", set_uhash_entries);
3267
3268void __init udp_table_init(struct udp_table *table, const char *name)
3269{
3270	unsigned int i;
3271
3272	table->hash = alloc_large_system_hash(name,
3273					      2 * sizeof(struct udp_hslot),
3274					      uhash_entries,
3275					      21, /* one slot per 2 MB */
3276					      0,
3277					      &table->log,
3278					      &table->mask,
3279					      UDP_HTABLE_SIZE_MIN,
3280					      UDP_HTABLE_SIZE_MAX);
3281
3282	table->hash2 = table->hash + (table->mask + 1);
3283	for (i = 0; i <= table->mask; i++) {
3284		INIT_HLIST_HEAD(&table->hash[i].head);
3285		table->hash[i].count = 0;
3286		spin_lock_init(&table->hash[i].lock);
3287	}
3288	for (i = 0; i <= table->mask; i++) {
3289		INIT_HLIST_HEAD(&table->hash2[i].head);
3290		table->hash2[i].count = 0;
3291		spin_lock_init(&table->hash2[i].lock);
3292	}
3293}
3294
3295u32 udp_flow_hashrnd(void)
3296{
3297	static u32 hashrnd __read_mostly;
3298
3299	net_get_random_once(&hashrnd, sizeof(hashrnd));
3300
3301	return hashrnd;
3302}
3303EXPORT_SYMBOL(udp_flow_hashrnd);
3304
3305static void __net_init udp_sysctl_init(struct net *net)
3306{
3307	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3308	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3309
3310#ifdef CONFIG_NET_L3_MASTER_DEV
3311	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3312#endif
3313}
3314
3315static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3316{
3317	struct udp_table *udptable;
3318	int i;
3319
3320	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3321	if (!udptable)
3322		goto out;
3323
3324	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3325				      GFP_KERNEL_ACCOUNT);
3326	if (!udptable->hash)
3327		goto free_table;
3328
3329	udptable->hash2 = udptable->hash + hash_entries;
3330	udptable->mask = hash_entries - 1;
3331	udptable->log = ilog2(hash_entries);
3332
3333	for (i = 0; i < hash_entries; i++) {
3334		INIT_HLIST_HEAD(&udptable->hash[i].head);
3335		udptable->hash[i].count = 0;
3336		spin_lock_init(&udptable->hash[i].lock);
3337
3338		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3339		udptable->hash2[i].count = 0;
3340		spin_lock_init(&udptable->hash2[i].lock);
3341	}
3342
3343	return udptable;
3344
3345free_table:
3346	kfree(udptable);
3347out:
3348	return NULL;
3349}
3350
3351static void __net_exit udp_pernet_table_free(struct net *net)
3352{
3353	struct udp_table *udptable = net->ipv4.udp_table;
3354
3355	if (udptable == &udp_table)
3356		return;
3357
3358	kvfree(udptable->hash);
3359	kfree(udptable);
3360}
3361
3362static void __net_init udp_set_table(struct net *net)
3363{
3364	struct udp_table *udptable;
3365	unsigned int hash_entries;
3366	struct net *old_net;
3367
3368	if (net_eq(net, &init_net))
3369		goto fallback;
3370
3371	old_net = current->nsproxy->net_ns;
3372	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3373	if (!hash_entries)
3374		goto fallback;
3375
3376	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3377	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3378		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3379	else
3380		hash_entries = roundup_pow_of_two(hash_entries);
3381
3382	udptable = udp_pernet_table_alloc(hash_entries);
3383	if (udptable) {
3384		net->ipv4.udp_table = udptable;
3385	} else {
3386		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3387			"for a netns, fallback to the global one\n",
3388			hash_entries);
3389fallback:
3390		net->ipv4.udp_table = &udp_table;
3391	}
3392}
3393
3394static int __net_init udp_pernet_init(struct net *net)
3395{
3396	udp_sysctl_init(net);
3397	udp_set_table(net);
3398
3399	return 0;
3400}
3401
3402static void __net_exit udp_pernet_exit(struct net *net)
3403{
3404	udp_pernet_table_free(net);
3405}
3406
3407static struct pernet_operations __net_initdata udp_sysctl_ops = {
3408	.init	= udp_pernet_init,
3409	.exit	= udp_pernet_exit,
3410};
3411
3412#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3413DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3414		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3415
3416static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3417{
3418	struct udp_iter_state *st = priv_data;
3419	struct udp_seq_afinfo *afinfo;
3420	int ret;
3421
3422	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3423	if (!afinfo)
3424		return -ENOMEM;
3425
3426	afinfo->family = AF_UNSPEC;
3427	afinfo->udp_table = NULL;
3428	st->bpf_seq_afinfo = afinfo;
3429	ret = bpf_iter_init_seq_net(priv_data, aux);
3430	if (ret)
3431		kfree(afinfo);
3432	return ret;
3433}
3434
3435static void bpf_iter_fini_udp(void *priv_data)
3436{
3437	struct udp_iter_state *st = priv_data;
3438
3439	kfree(st->bpf_seq_afinfo);
3440	bpf_iter_fini_seq_net(priv_data);
3441}
3442
3443static const struct bpf_iter_seq_info udp_seq_info = {
3444	.seq_ops		= &bpf_iter_udp_seq_ops,
3445	.init_seq_private	= bpf_iter_init_udp,
3446	.fini_seq_private	= bpf_iter_fini_udp,
3447	.seq_priv_size		= sizeof(struct udp_iter_state),
3448};
3449
3450static struct bpf_iter_reg udp_reg_info = {
3451	.target			= "udp",
3452	.ctx_arg_info_size	= 1,
3453	.ctx_arg_info		= {
3454		{ offsetof(struct bpf_iter__udp, udp_sk),
3455		  PTR_TO_BTF_ID_OR_NULL },
3456	},
3457	.seq_info		= &udp_seq_info,
3458};
3459
3460static void __init bpf_iter_register(void)
3461{
3462	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3463	if (bpf_iter_reg_target(&udp_reg_info))
3464		pr_warn("Warning: could not register bpf iterator udp\n");
3465}
3466#endif
3467
3468void __init udp_init(void)
3469{
3470	unsigned long limit;
3471	unsigned int i;
3472
3473	udp_table_init(&udp_table, "UDP");
3474	limit = nr_free_buffer_pages() / 8;
3475	limit = max(limit, 128UL);
3476	sysctl_udp_mem[0] = limit / 4 * 3;
3477	sysctl_udp_mem[1] = limit;
3478	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
 
 
3479
3480	/* 16 spinlocks per cpu */
3481	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3482	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3483				GFP_KERNEL);
3484	if (!udp_busylocks)
3485		panic("UDP: failed to alloc udp_busylocks\n");
3486	for (i = 0; i < (1U << udp_busylocks_log); i++)
3487		spin_lock_init(udp_busylocks + i);
3488
3489	if (register_pernet_subsys(&udp_sysctl_ops))
3490		panic("UDP: failed to init sysctl parameters.\n");
3491
3492#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3493	bpf_iter_register();
3494#endif
3495}