Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Free some vmemmap pages of HugeTLB
4 *
5 * Copyright (c) 2020, Bytedance. All rights reserved.
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
9 * The struct page structures (page structs) are used to describe a physical
10 * page frame. By default, there is a one-to-one mapping from a page frame to
11 * it's corresponding page struct.
12 *
13 * HugeTLB pages consist of multiple base page size pages and is supported by
14 * many architectures. See hugetlbpage.rst in the Documentation directory for
15 * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
16 * are currently supported. Since the base page size on x86 is 4KB, a 2MB
17 * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
18 * 4096 base pages. For each base page, there is a corresponding page struct.
19 *
20 * Within the HugeTLB subsystem, only the first 4 page structs are used to
21 * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
22 * this upper limit. The only 'useful' information in the remaining page structs
23 * is the compound_head field, and this field is the same for all tail pages.
24 *
25 * By removing redundant page structs for HugeTLB pages, memory can be returned
26 * to the buddy allocator for other uses.
27 *
28 * Different architectures support different HugeTLB pages. For example, the
29 * following table is the HugeTLB page size supported by x86 and arm64
30 * architectures. Because arm64 supports 4k, 16k, and 64k base pages and
31 * supports contiguous entries, so it supports many kinds of sizes of HugeTLB
32 * page.
33 *
34 * +--------------+-----------+-----------------------------------------------+
35 * | Architecture | Page Size | HugeTLB Page Size |
36 * +--------------+-----------+-----------+-----------+-----------+-----------+
37 * | x86-64 | 4KB | 2MB | 1GB | | |
38 * +--------------+-----------+-----------+-----------+-----------+-----------+
39 * | | 4KB | 64KB | 2MB | 32MB | 1GB |
40 * | +-----------+-----------+-----------+-----------+-----------+
41 * | arm64 | 16KB | 2MB | 32MB | 1GB | |
42 * | +-----------+-----------+-----------+-----------+-----------+
43 * | | 64KB | 2MB | 512MB | 16GB | |
44 * +--------------+-----------+-----------+-----------+-----------+-----------+
45 *
46 * When the system boot up, every HugeTLB page has more than one struct page
47 * structs which size is (unit: pages):
48 *
49 * struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
50 *
51 * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
52 * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
53 * relationship.
54 *
55 * HugeTLB_Size = n * PAGE_SIZE
56 *
57 * Then,
58 *
59 * struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
60 * = n * sizeof(struct page) / PAGE_SIZE
61 *
62 * We can use huge mapping at the pud/pmd level for the HugeTLB page.
63 *
64 * For the HugeTLB page of the pmd level mapping, then
65 *
66 * struct_size = n * sizeof(struct page) / PAGE_SIZE
67 * = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
68 * = sizeof(struct page) / sizeof(pte_t)
69 * = 64 / 8
70 * = 8 (pages)
71 *
72 * Where n is how many pte entries which one page can contains. So the value of
73 * n is (PAGE_SIZE / sizeof(pte_t)).
74 *
75 * This optimization only supports 64-bit system, so the value of sizeof(pte_t)
76 * is 8. And this optimization also applicable only when the size of struct page
77 * is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
78 * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
79 * size of struct page structs of it is 8 page frames which size depends on the
80 * size of the base page.
81 *
82 * For the HugeTLB page of the pud level mapping, then
83 *
84 * struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
85 * = PAGE_SIZE / 8 * 8 (pages)
86 * = PAGE_SIZE (pages)
87 *
88 * Where the struct_size(pmd) is the size of the struct page structs of a
89 * HugeTLB page of the pmd level mapping.
90 *
91 * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
92 * HugeTLB page consists in 4096.
93 *
94 * Next, we take the pmd level mapping of the HugeTLB page as an example to
95 * show the internal implementation of this optimization. There are 8 pages
96 * struct page structs associated with a HugeTLB page which is pmd mapped.
97 *
98 * Here is how things look before optimization.
99 *
100 * HugeTLB struct pages(8 pages) page frame(8 pages)
101 * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
102 * | | | 0 | -------------> | 0 |
103 * | | +-----------+ +-----------+
104 * | | | 1 | -------------> | 1 |
105 * | | +-----------+ +-----------+
106 * | | | 2 | -------------> | 2 |
107 * | | +-----------+ +-----------+
108 * | | | 3 | -------------> | 3 |
109 * | | +-----------+ +-----------+
110 * | | | 4 | -------------> | 4 |
111 * | PMD | +-----------+ +-----------+
112 * | level | | 5 | -------------> | 5 |
113 * | mapping | +-----------+ +-----------+
114 * | | | 6 | -------------> | 6 |
115 * | | +-----------+ +-----------+
116 * | | | 7 | -------------> | 7 |
117 * | | +-----------+ +-----------+
118 * | |
119 * | |
120 * | |
121 * +-----------+
122 *
123 * The value of page->compound_head is the same for all tail pages. The first
124 * page of page structs (page 0) associated with the HugeTLB page contains the 4
125 * page structs necessary to describe the HugeTLB. The only use of the remaining
126 * pages of page structs (page 1 to page 7) is to point to page->compound_head.
127 * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
128 * will be used for each HugeTLB page. This will allow us to free the remaining
129 * 6 pages to the buddy allocator.
130 *
131 * Here is how things look after remapping.
132 *
133 * HugeTLB struct pages(8 pages) page frame(8 pages)
134 * +-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
135 * | | | 0 | -------------> | 0 |
136 * | | +-----------+ +-----------+
137 * | | | 1 | -------------> | 1 |
138 * | | +-----------+ +-----------+
139 * | | | 2 | ----------------^ ^ ^ ^ ^ ^
140 * | | +-----------+ | | | | |
141 * | | | 3 | ------------------+ | | | |
142 * | | +-----------+ | | | |
143 * | | | 4 | --------------------+ | | |
144 * | PMD | +-----------+ | | |
145 * | level | | 5 | ----------------------+ | |
146 * | mapping | +-----------+ | |
147 * | | | 6 | ------------------------+ |
148 * | | +-----------+ |
149 * | | | 7 | --------------------------+
150 * | | +-----------+
151 * | |
152 * | |
153 * | |
154 * +-----------+
155 *
156 * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
157 * vmemmap pages and restore the previous mapping relationship.
158 *
159 * For the HugeTLB page of the pud level mapping. It is similar to the former.
160 * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
161 *
162 * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
163 * (e.g. aarch64) provides a contiguous bit in the translation table entries
164 * that hints to the MMU to indicate that it is one of a contiguous set of
165 * entries that can be cached in a single TLB entry.
166 *
167 * The contiguous bit is used to increase the mapping size at the pmd and pte
168 * (last) level. So this type of HugeTLB page can be optimized only when its
169 * size of the struct page structs is greater than 2 pages.
170 */
171#define pr_fmt(fmt) "HugeTLB: " fmt
172
173#include "hugetlb_vmemmap.h"
174
175/*
176 * There are a lot of struct page structures associated with each HugeTLB page.
177 * For tail pages, the value of compound_head is the same. So we can reuse first
178 * page of tail page structures. We map the virtual addresses of the remaining
179 * pages of tail page structures to the first tail page struct, and then free
180 * these page frames. Therefore, we need to reserve two pages as vmemmap areas.
181 */
182#define RESERVE_VMEMMAP_NR 2U
183#define RESERVE_VMEMMAP_SIZE (RESERVE_VMEMMAP_NR << PAGE_SHIFT)
184
185bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
186
187static int __init early_hugetlb_free_vmemmap_param(char *buf)
188{
189 /* We cannot optimize if a "struct page" crosses page boundaries. */
190 if ((!is_power_of_2(sizeof(struct page)))) {
191 pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
192 return 0;
193 }
194
195 if (!buf)
196 return -EINVAL;
197
198 if (!strcmp(buf, "on"))
199 hugetlb_free_vmemmap_enabled = true;
200 else if (!strcmp(buf, "off"))
201 hugetlb_free_vmemmap_enabled = false;
202 else
203 return -EINVAL;
204
205 return 0;
206}
207early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param);
208
209static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
210{
211 return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
212}
213
214/*
215 * Previously discarded vmemmap pages will be allocated and remapping
216 * after this function returns zero.
217 */
218int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
219{
220 int ret;
221 unsigned long vmemmap_addr = (unsigned long)head;
222 unsigned long vmemmap_end, vmemmap_reuse;
223
224 if (!HPageVmemmapOptimized(head))
225 return 0;
226
227 vmemmap_addr += RESERVE_VMEMMAP_SIZE;
228 vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
229 vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
230 /*
231 * The pages which the vmemmap virtual address range [@vmemmap_addr,
232 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
233 * the range is mapped to the page which @vmemmap_reuse is mapped to.
234 * When a HugeTLB page is freed to the buddy allocator, previously
235 * discarded vmemmap pages must be allocated and remapping.
236 */
237 ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
238 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
239
240 if (!ret)
241 ClearHPageVmemmapOptimized(head);
242
243 return ret;
244}
245
246void free_huge_page_vmemmap(struct hstate *h, struct page *head)
247{
248 unsigned long vmemmap_addr = (unsigned long)head;
249 unsigned long vmemmap_end, vmemmap_reuse;
250
251 if (!free_vmemmap_pages_per_hpage(h))
252 return;
253
254 vmemmap_addr += RESERVE_VMEMMAP_SIZE;
255 vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
256 vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
257
258 /*
259 * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
260 * to the page which @vmemmap_reuse is mapped to, then free the pages
261 * which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
262 */
263 if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
264 SetHPageVmemmapOptimized(head);
265}
266
267void __init hugetlb_vmemmap_init(struct hstate *h)
268{
269 unsigned int nr_pages = pages_per_huge_page(h);
270 unsigned int vmemmap_pages;
271
272 /*
273 * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
274 * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP,
275 * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page.
276 */
277 BUILD_BUG_ON(__NR_USED_SUBPAGE >=
278 RESERVE_VMEMMAP_SIZE / sizeof(struct page));
279
280 if (!hugetlb_free_vmemmap_enabled)
281 return;
282
283 vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
284 /*
285 * The head page and the first tail page are not to be freed to buddy
286 * allocator, the other pages will map to the first tail page, so they
287 * can be freed.
288 *
289 * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
290 * on some architectures (e.g. aarch64). See Documentation/arm64/
291 * hugetlbpage.rst for more details.
292 */
293 if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
294 h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
295
296 pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages,
297 h->name);
298}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * HugeTLB Vmemmap Optimization (HVO)
4 *
5 * Copyright (c) 2020, ByteDance. All rights reserved.
6 *
7 * Author: Muchun Song <songmuchun@bytedance.com>
8 *
9 * See Documentation/mm/vmemmap_dedup.rst
10 */
11#define pr_fmt(fmt) "HugeTLB: " fmt
12
13#include <linux/pgtable.h>
14#include <linux/moduleparam.h>
15#include <linux/bootmem_info.h>
16#include <linux/mmdebug.h>
17#include <linux/pagewalk.h>
18#include <asm/pgalloc.h>
19#include <asm/tlbflush.h>
20#include "hugetlb_vmemmap.h"
21
22/**
23 * struct vmemmap_remap_walk - walk vmemmap page table
24 *
25 * @remap_pte: called for each lowest-level entry (PTE).
26 * @nr_walked: the number of walked pte.
27 * @reuse_page: the page which is reused for the tail vmemmap pages.
28 * @reuse_addr: the virtual address of the @reuse_page page.
29 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
30 * or is mapped from.
31 * @flags: used to modify behavior in vmemmap page table walking
32 * operations.
33 */
34struct vmemmap_remap_walk {
35 void (*remap_pte)(pte_t *pte, unsigned long addr,
36 struct vmemmap_remap_walk *walk);
37 unsigned long nr_walked;
38 struct page *reuse_page;
39 unsigned long reuse_addr;
40 struct list_head *vmemmap_pages;
41
42/* Skip the TLB flush when we split the PMD */
43#define VMEMMAP_SPLIT_NO_TLB_FLUSH BIT(0)
44/* Skip the TLB flush when we remap the PTE */
45#define VMEMMAP_REMAP_NO_TLB_FLUSH BIT(1)
46 unsigned long flags;
47};
48
49static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
50 struct vmemmap_remap_walk *walk)
51{
52 pmd_t __pmd;
53 int i;
54 unsigned long addr = start;
55 pte_t *pgtable;
56
57 pgtable = pte_alloc_one_kernel(&init_mm);
58 if (!pgtable)
59 return -ENOMEM;
60
61 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
62
63 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
64 pte_t entry, *pte;
65 pgprot_t pgprot = PAGE_KERNEL;
66
67 entry = mk_pte(head + i, pgprot);
68 pte = pte_offset_kernel(&__pmd, addr);
69 set_pte_at(&init_mm, addr, pte, entry);
70 }
71
72 spin_lock(&init_mm.page_table_lock);
73 if (likely(pmd_leaf(*pmd))) {
74 /*
75 * Higher order allocations from buddy allocator must be able to
76 * be treated as indepdenent small pages (as they can be freed
77 * individually).
78 */
79 if (!PageReserved(head))
80 split_page(head, get_order(PMD_SIZE));
81
82 /* Make pte visible before pmd. See comment in pmd_install(). */
83 smp_wmb();
84 pmd_populate_kernel(&init_mm, pmd, pgtable);
85 if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
86 flush_tlb_kernel_range(start, start + PMD_SIZE);
87 } else {
88 pte_free_kernel(&init_mm, pgtable);
89 }
90 spin_unlock(&init_mm.page_table_lock);
91
92 return 0;
93}
94
95static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
96 unsigned long next, struct mm_walk *walk)
97{
98 int ret = 0;
99 struct page *head;
100 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
101
102 /* Only splitting, not remapping the vmemmap pages. */
103 if (!vmemmap_walk->remap_pte)
104 walk->action = ACTION_CONTINUE;
105
106 spin_lock(&init_mm.page_table_lock);
107 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
108 /*
109 * Due to HugeTLB alignment requirements and the vmemmap
110 * pages being at the start of the hotplugged memory
111 * region in memory_hotplug.memmap_on_memory case. Checking
112 * the vmemmap page associated with the first vmemmap page
113 * if it is self-hosted is sufficient.
114 *
115 * [ hotplugged memory ]
116 * [ section ][...][ section ]
117 * [ vmemmap ][ usable memory ]
118 * ^ | ^ |
119 * +--+ | |
120 * +------------------------+
121 */
122 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
123 struct page *page = head ? head + pte_index(addr) :
124 pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
125
126 if (PageVmemmapSelfHosted(page))
127 ret = -ENOTSUPP;
128 }
129 spin_unlock(&init_mm.page_table_lock);
130 if (!head || ret)
131 return ret;
132
133 return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
134}
135
136static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
137 unsigned long next, struct mm_walk *walk)
138{
139 struct vmemmap_remap_walk *vmemmap_walk = walk->private;
140
141 /*
142 * The reuse_page is found 'first' in page table walking before
143 * starting remapping.
144 */
145 if (!vmemmap_walk->reuse_page)
146 vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
147 else
148 vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
149 vmemmap_walk->nr_walked++;
150
151 return 0;
152}
153
154static const struct mm_walk_ops vmemmap_remap_ops = {
155 .pmd_entry = vmemmap_pmd_entry,
156 .pte_entry = vmemmap_pte_entry,
157};
158
159static int vmemmap_remap_range(unsigned long start, unsigned long end,
160 struct vmemmap_remap_walk *walk)
161{
162 int ret;
163
164 VM_BUG_ON(!PAGE_ALIGNED(start | end));
165
166 mmap_read_lock(&init_mm);
167 ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
168 NULL, walk);
169 mmap_read_unlock(&init_mm);
170 if (ret)
171 return ret;
172
173 if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
174 flush_tlb_kernel_range(start, end);
175
176 return 0;
177}
178
179/*
180 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
181 * allocator or buddy allocator. If the PG_reserved flag is set, it means
182 * that it allocated from the memblock allocator, just free it via the
183 * free_bootmem_page(). Otherwise, use __free_page().
184 */
185static inline void free_vmemmap_page(struct page *page)
186{
187 if (PageReserved(page))
188 free_bootmem_page(page);
189 else
190 __free_page(page);
191}
192
193/* Free a list of the vmemmap pages */
194static void free_vmemmap_page_list(struct list_head *list)
195{
196 struct page *page, *next;
197
198 list_for_each_entry_safe(page, next, list, lru)
199 free_vmemmap_page(page);
200}
201
202static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
203 struct vmemmap_remap_walk *walk)
204{
205 /*
206 * Remap the tail pages as read-only to catch illegal write operation
207 * to the tail pages.
208 */
209 pgprot_t pgprot = PAGE_KERNEL_RO;
210 struct page *page = pte_page(ptep_get(pte));
211 pte_t entry;
212
213 /* Remapping the head page requires r/w */
214 if (unlikely(addr == walk->reuse_addr)) {
215 pgprot = PAGE_KERNEL;
216 list_del(&walk->reuse_page->lru);
217
218 /*
219 * Makes sure that preceding stores to the page contents from
220 * vmemmap_remap_free() become visible before the set_pte_at()
221 * write.
222 */
223 smp_wmb();
224 }
225
226 entry = mk_pte(walk->reuse_page, pgprot);
227 list_add(&page->lru, walk->vmemmap_pages);
228 set_pte_at(&init_mm, addr, pte, entry);
229}
230
231/*
232 * How many struct page structs need to be reset. When we reuse the head
233 * struct page, the special metadata (e.g. page->flags or page->mapping)
234 * cannot copy to the tail struct page structs. The invalid value will be
235 * checked in the free_tail_page_prepare(). In order to avoid the message
236 * of "corrupted mapping in tail page". We need to reset at least 3 (one
237 * head struct page struct and two tail struct page structs) struct page
238 * structs.
239 */
240#define NR_RESET_STRUCT_PAGE 3
241
242static inline void reset_struct_pages(struct page *start)
243{
244 struct page *from = start + NR_RESET_STRUCT_PAGE;
245
246 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
247 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
248}
249
250static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
251 struct vmemmap_remap_walk *walk)
252{
253 pgprot_t pgprot = PAGE_KERNEL;
254 struct page *page;
255 void *to;
256
257 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
258
259 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
260 list_del(&page->lru);
261 to = page_to_virt(page);
262 copy_page(to, (void *)walk->reuse_addr);
263 reset_struct_pages(to);
264
265 /*
266 * Makes sure that preceding stores to the page contents become visible
267 * before the set_pte_at() write.
268 */
269 smp_wmb();
270 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
271}
272
273/**
274 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
275 * backing PMDs of the directmap into PTEs
276 * @start: start address of the vmemmap virtual address range that we want
277 * to remap.
278 * @end: end address of the vmemmap virtual address range that we want to
279 * remap.
280 * @reuse: reuse address.
281 *
282 * Return: %0 on success, negative error code otherwise.
283 */
284static int vmemmap_remap_split(unsigned long start, unsigned long end,
285 unsigned long reuse)
286{
287 struct vmemmap_remap_walk walk = {
288 .remap_pte = NULL,
289 .flags = VMEMMAP_SPLIT_NO_TLB_FLUSH,
290 };
291
292 /* See the comment in the vmemmap_remap_free(). */
293 BUG_ON(start - reuse != PAGE_SIZE);
294
295 return vmemmap_remap_range(reuse, end, &walk);
296}
297
298/**
299 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
300 * to the page which @reuse is mapped to, then free vmemmap
301 * which the range are mapped to.
302 * @start: start address of the vmemmap virtual address range that we want
303 * to remap.
304 * @end: end address of the vmemmap virtual address range that we want to
305 * remap.
306 * @reuse: reuse address.
307 * @vmemmap_pages: list to deposit vmemmap pages to be freed. It is callers
308 * responsibility to free pages.
309 * @flags: modifications to vmemmap_remap_walk flags
310 *
311 * Return: %0 on success, negative error code otherwise.
312 */
313static int vmemmap_remap_free(unsigned long start, unsigned long end,
314 unsigned long reuse,
315 struct list_head *vmemmap_pages,
316 unsigned long flags)
317{
318 int ret;
319 struct vmemmap_remap_walk walk = {
320 .remap_pte = vmemmap_remap_pte,
321 .reuse_addr = reuse,
322 .vmemmap_pages = vmemmap_pages,
323 .flags = flags,
324 };
325 int nid = page_to_nid((struct page *)reuse);
326 gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
327
328 /*
329 * Allocate a new head vmemmap page to avoid breaking a contiguous
330 * block of struct page memory when freeing it back to page allocator
331 * in free_vmemmap_page_list(). This will allow the likely contiguous
332 * struct page backing memory to be kept contiguous and allowing for
333 * more allocations of hugepages. Fallback to the currently
334 * mapped head page in case should it fail to allocate.
335 */
336 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
337 if (walk.reuse_page) {
338 copy_page(page_to_virt(walk.reuse_page),
339 (void *)walk.reuse_addr);
340 list_add(&walk.reuse_page->lru, vmemmap_pages);
341 }
342
343 /*
344 * In order to make remapping routine most efficient for the huge pages,
345 * the routine of vmemmap page table walking has the following rules
346 * (see more details from the vmemmap_pte_range()):
347 *
348 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
349 * should be continuous.
350 * - The @reuse address is part of the range [@reuse, @end) that we are
351 * walking which is passed to vmemmap_remap_range().
352 * - The @reuse address is the first in the complete range.
353 *
354 * So we need to make sure that @start and @reuse meet the above rules.
355 */
356 BUG_ON(start - reuse != PAGE_SIZE);
357
358 ret = vmemmap_remap_range(reuse, end, &walk);
359 if (ret && walk.nr_walked) {
360 end = reuse + walk.nr_walked * PAGE_SIZE;
361 /*
362 * vmemmap_pages contains pages from the previous
363 * vmemmap_remap_range call which failed. These
364 * are pages which were removed from the vmemmap.
365 * They will be restored in the following call.
366 */
367 walk = (struct vmemmap_remap_walk) {
368 .remap_pte = vmemmap_restore_pte,
369 .reuse_addr = reuse,
370 .vmemmap_pages = vmemmap_pages,
371 .flags = 0,
372 };
373
374 vmemmap_remap_range(reuse, end, &walk);
375 }
376
377 return ret;
378}
379
380static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381 struct list_head *list)
382{
383 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
384 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 int nid = page_to_nid((struct page *)start);
386 struct page *page, *next;
387
388 while (nr_pages--) {
389 page = alloc_pages_node(nid, gfp_mask, 0);
390 if (!page)
391 goto out;
392 list_add(&page->lru, list);
393 }
394
395 return 0;
396out:
397 list_for_each_entry_safe(page, next, list, lru)
398 __free_page(page);
399 return -ENOMEM;
400}
401
402/**
403 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404 * to the page which is from the @vmemmap_pages
405 * respectively.
406 * @start: start address of the vmemmap virtual address range that we want
407 * to remap.
408 * @end: end address of the vmemmap virtual address range that we want to
409 * remap.
410 * @reuse: reuse address.
411 * @flags: modifications to vmemmap_remap_walk flags
412 *
413 * Return: %0 on success, negative error code otherwise.
414 */
415static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
416 unsigned long reuse, unsigned long flags)
417{
418 LIST_HEAD(vmemmap_pages);
419 struct vmemmap_remap_walk walk = {
420 .remap_pte = vmemmap_restore_pte,
421 .reuse_addr = reuse,
422 .vmemmap_pages = &vmemmap_pages,
423 .flags = flags,
424 };
425
426 /* See the comment in the vmemmap_remap_free(). */
427 BUG_ON(start - reuse != PAGE_SIZE);
428
429 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
430 return -ENOMEM;
431
432 return vmemmap_remap_range(reuse, end, &walk);
433}
434
435DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
436EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
437
438static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
439core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
440
441static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
442 struct folio *folio, unsigned long flags)
443{
444 int ret;
445 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
446 unsigned long vmemmap_reuse;
447
448 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
449 if (!folio_test_hugetlb_vmemmap_optimized(folio))
450 return 0;
451
452 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
453 vmemmap_reuse = vmemmap_start;
454 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
455
456 /*
457 * The pages which the vmemmap virtual address range [@vmemmap_start,
458 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
459 * the range is mapped to the page which @vmemmap_reuse is mapped to.
460 * When a HugeTLB page is freed to the buddy allocator, previously
461 * discarded vmemmap pages must be allocated and remapping.
462 */
463 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
464 if (!ret) {
465 folio_clear_hugetlb_vmemmap_optimized(folio);
466 static_branch_dec(&hugetlb_optimize_vmemmap_key);
467 }
468
469 return ret;
470}
471
472/**
473 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
474 * hugetlb_vmemmap_optimize_folio()) vmemmap pages which
475 * will be reallocated and remapped.
476 * @h: struct hstate.
477 * @folio: the folio whose vmemmap pages will be restored.
478 *
479 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
480 * negative error code otherwise.
481 */
482int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
483{
484 return __hugetlb_vmemmap_restore_folio(h, folio, 0);
485}
486
487/**
488 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
489 * @h: hstate.
490 * @folio_list: list of folios.
491 * @non_hvo_folios: Output list of folios for which vmemmap exists.
492 *
493 * Return: number of folios for which vmemmap was restored, or an error code
494 * if an error was encountered restoring vmemmap for a folio.
495 * Folios that have vmemmap are moved to the non_hvo_folios
496 * list. Processing of entries stops when the first error is
497 * encountered. The folio that experienced the error and all
498 * non-processed folios will remain on folio_list.
499 */
500long hugetlb_vmemmap_restore_folios(const struct hstate *h,
501 struct list_head *folio_list,
502 struct list_head *non_hvo_folios)
503{
504 struct folio *folio, *t_folio;
505 long restored = 0;
506 long ret = 0;
507
508 list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
509 if (folio_test_hugetlb_vmemmap_optimized(folio)) {
510 ret = __hugetlb_vmemmap_restore_folio(h, folio,
511 VMEMMAP_REMAP_NO_TLB_FLUSH);
512 if (ret)
513 break;
514 restored++;
515 }
516
517 /* Add non-optimized folios to output list */
518 list_move(&folio->lru, non_hvo_folios);
519 }
520
521 if (restored)
522 flush_tlb_all();
523 if (!ret)
524 ret = restored;
525 return ret;
526}
527
528/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
529static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
530{
531 if (folio_test_hugetlb_vmemmap_optimized(folio))
532 return false;
533
534 if (!READ_ONCE(vmemmap_optimize_enabled))
535 return false;
536
537 if (!hugetlb_vmemmap_optimizable(h))
538 return false;
539
540 return true;
541}
542
543static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
544 struct folio *folio,
545 struct list_head *vmemmap_pages,
546 unsigned long flags)
547{
548 int ret = 0;
549 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
550 unsigned long vmemmap_reuse;
551
552 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
553 if (!vmemmap_should_optimize_folio(h, folio))
554 return ret;
555
556 static_branch_inc(&hugetlb_optimize_vmemmap_key);
557 /*
558 * Very Subtle
559 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
560 * immediately after remapping. As a result, subsequent accesses
561 * and modifications to struct pages associated with the hugetlb
562 * page could be to the OLD struct pages. Set the vmemmap optimized
563 * flag here so that it is copied to the new head page. This keeps
564 * the old and new struct pages in sync.
565 * If there is an error during optimization, we will immediately FLUSH
566 * the TLB and clear the flag below.
567 */
568 folio_set_hugetlb_vmemmap_optimized(folio);
569
570 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
571 vmemmap_reuse = vmemmap_start;
572 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
573
574 /*
575 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
576 * to the page which @vmemmap_reuse is mapped to. Add pages previously
577 * mapping the range to vmemmap_pages list so that they can be freed by
578 * the caller.
579 */
580 ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
581 vmemmap_pages, flags);
582 if (ret) {
583 static_branch_dec(&hugetlb_optimize_vmemmap_key);
584 folio_clear_hugetlb_vmemmap_optimized(folio);
585 }
586
587 return ret;
588}
589
590/**
591 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
592 * @h: struct hstate.
593 * @folio: the folio whose vmemmap pages will be optimized.
594 *
595 * This function only tries to optimize @folio's vmemmap pages and does not
596 * guarantee that the optimization will succeed after it returns. The caller
597 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
598 * vmemmap pages have been optimized.
599 */
600void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
601{
602 LIST_HEAD(vmemmap_pages);
603
604 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, 0);
605 free_vmemmap_page_list(&vmemmap_pages);
606}
607
608static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
609{
610 unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
611 unsigned long vmemmap_reuse;
612
613 if (!vmemmap_should_optimize_folio(h, folio))
614 return 0;
615
616 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
617 vmemmap_reuse = vmemmap_start;
618 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
619
620 /*
621 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
622 * @vmemmap_end]
623 */
624 return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
625}
626
627void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
628{
629 struct folio *folio;
630 LIST_HEAD(vmemmap_pages);
631
632 list_for_each_entry(folio, folio_list, lru) {
633 int ret = hugetlb_vmemmap_split_folio(h, folio);
634
635 /*
636 * Spliting the PMD requires allocating a page, thus lets fail
637 * early once we encounter the first OOM. No point in retrying
638 * as it can be dynamically done on remap with the memory
639 * we get back from the vmemmap deduplication.
640 */
641 if (ret == -ENOMEM)
642 break;
643 }
644
645 flush_tlb_all();
646
647 list_for_each_entry(folio, folio_list, lru) {
648 int ret;
649
650 ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
651 VMEMMAP_REMAP_NO_TLB_FLUSH);
652
653 /*
654 * Pages to be freed may have been accumulated. If we
655 * encounter an ENOMEM, free what we have and try again.
656 * This can occur in the case that both spliting fails
657 * halfway and head page allocation also failed. In this
658 * case __hugetlb_vmemmap_optimize_folio() would free memory
659 * allowing more vmemmap remaps to occur.
660 */
661 if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
662 flush_tlb_all();
663 free_vmemmap_page_list(&vmemmap_pages);
664 INIT_LIST_HEAD(&vmemmap_pages);
665 __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages,
666 VMEMMAP_REMAP_NO_TLB_FLUSH);
667 }
668 }
669
670 flush_tlb_all();
671 free_vmemmap_page_list(&vmemmap_pages);
672}
673
674static struct ctl_table hugetlb_vmemmap_sysctls[] = {
675 {
676 .procname = "hugetlb_optimize_vmemmap",
677 .data = &vmemmap_optimize_enabled,
678 .maxlen = sizeof(vmemmap_optimize_enabled),
679 .mode = 0644,
680 .proc_handler = proc_dobool,
681 },
682 { }
683};
684
685static int __init hugetlb_vmemmap_init(void)
686{
687 const struct hstate *h;
688
689 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
690 BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
691
692 for_each_hstate(h) {
693 if (hugetlb_vmemmap_optimizable(h)) {
694 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
695 break;
696 }
697 }
698 return 0;
699}
700late_initcall(hugetlb_vmemmap_init);