Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Free some vmemmap pages of HugeTLB
  4 *
  5 * Copyright (c) 2020, Bytedance. All rights reserved.
  6 *
  7 *     Author: Muchun Song <songmuchun@bytedance.com>
  8 *
  9 * The struct page structures (page structs) are used to describe a physical
 10 * page frame. By default, there is a one-to-one mapping from a page frame to
 11 * it's corresponding page struct.
 12 *
 13 * HugeTLB pages consist of multiple base page size pages and is supported by
 14 * many architectures. See hugetlbpage.rst in the Documentation directory for
 15 * more details. On the x86-64 architecture, HugeTLB pages of size 2MB and 1GB
 16 * are currently supported. Since the base page size on x86 is 4KB, a 2MB
 17 * HugeTLB page consists of 512 base pages and a 1GB HugeTLB page consists of
 18 * 4096 base pages. For each base page, there is a corresponding page struct.
 19 *
 20 * Within the HugeTLB subsystem, only the first 4 page structs are used to
 21 * contain unique information about a HugeTLB page. __NR_USED_SUBPAGE provides
 22 * this upper limit. The only 'useful' information in the remaining page structs
 23 * is the compound_head field, and this field is the same for all tail pages.
 24 *
 25 * By removing redundant page structs for HugeTLB pages, memory can be returned
 26 * to the buddy allocator for other uses.
 27 *
 28 * Different architectures support different HugeTLB pages. For example, the
 29 * following table is the HugeTLB page size supported by x86 and arm64
 30 * architectures. Because arm64 supports 4k, 16k, and 64k base pages and
 31 * supports contiguous entries, so it supports many kinds of sizes of HugeTLB
 32 * page.
 33 *
 34 * +--------------+-----------+-----------------------------------------------+
 35 * | Architecture | Page Size |                HugeTLB Page Size              |
 36 * +--------------+-----------+-----------+-----------+-----------+-----------+
 37 * |    x86-64    |    4KB    |    2MB    |    1GB    |           |           |
 38 * +--------------+-----------+-----------+-----------+-----------+-----------+
 39 * |              |    4KB    |   64KB    |    2MB    |    32MB   |    1GB    |
 40 * |              +-----------+-----------+-----------+-----------+-----------+
 41 * |    arm64     |   16KB    |    2MB    |   32MB    |     1GB   |           |
 42 * |              +-----------+-----------+-----------+-----------+-----------+
 43 * |              |   64KB    |    2MB    |  512MB    |    16GB   |           |
 44 * +--------------+-----------+-----------+-----------+-----------+-----------+
 45 *
 46 * When the system boot up, every HugeTLB page has more than one struct page
 47 * structs which size is (unit: pages):
 48 *
 49 *    struct_size = HugeTLB_Size / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
 50 *
 51 * Where HugeTLB_Size is the size of the HugeTLB page. We know that the size
 52 * of the HugeTLB page is always n times PAGE_SIZE. So we can get the following
 53 * relationship.
 54 *
 55 *    HugeTLB_Size = n * PAGE_SIZE
 56 *
 57 * Then,
 58 *
 59 *    struct_size = n * PAGE_SIZE / PAGE_SIZE * sizeof(struct page) / PAGE_SIZE
 60 *                = n * sizeof(struct page) / PAGE_SIZE
 61 *
 62 * We can use huge mapping at the pud/pmd level for the HugeTLB page.
 63 *
 64 * For the HugeTLB page of the pmd level mapping, then
 65 *
 66 *    struct_size = n * sizeof(struct page) / PAGE_SIZE
 67 *                = PAGE_SIZE / sizeof(pte_t) * sizeof(struct page) / PAGE_SIZE
 68 *                = sizeof(struct page) / sizeof(pte_t)
 69 *                = 64 / 8
 70 *                = 8 (pages)
 71 *
 72 * Where n is how many pte entries which one page can contains. So the value of
 73 * n is (PAGE_SIZE / sizeof(pte_t)).
 74 *
 75 * This optimization only supports 64-bit system, so the value of sizeof(pte_t)
 76 * is 8. And this optimization also applicable only when the size of struct page
 77 * is a power of two. In most cases, the size of struct page is 64 bytes (e.g.
 78 * x86-64 and arm64). So if we use pmd level mapping for a HugeTLB page, the
 79 * size of struct page structs of it is 8 page frames which size depends on the
 80 * size of the base page.
 81 *
 82 * For the HugeTLB page of the pud level mapping, then
 83 *
 84 *    struct_size = PAGE_SIZE / sizeof(pmd_t) * struct_size(pmd)
 85 *                = PAGE_SIZE / 8 * 8 (pages)
 86 *                = PAGE_SIZE (pages)
 87 *
 88 * Where the struct_size(pmd) is the size of the struct page structs of a
 89 * HugeTLB page of the pmd level mapping.
 90 *
 91 * E.g.: A 2MB HugeTLB page on x86_64 consists in 8 page frames while 1GB
 92 * HugeTLB page consists in 4096.
 93 *
 94 * Next, we take the pmd level mapping of the HugeTLB page as an example to
 95 * show the internal implementation of this optimization. There are 8 pages
 96 * struct page structs associated with a HugeTLB page which is pmd mapped.
 97 *
 98 * Here is how things look before optimization.
 99 *
100 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
101 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
102 * |           |                     |     0     | -------------> |     0     |
103 * |           |                     +-----------+                +-----------+
104 * |           |                     |     1     | -------------> |     1     |
105 * |           |                     +-----------+                +-----------+
106 * |           |                     |     2     | -------------> |     2     |
107 * |           |                     +-----------+                +-----------+
108 * |           |                     |     3     | -------------> |     3     |
109 * |           |                     +-----------+                +-----------+
110 * |           |                     |     4     | -------------> |     4     |
111 * |    PMD    |                     +-----------+                +-----------+
112 * |   level   |                     |     5     | -------------> |     5     |
113 * |  mapping  |                     +-----------+                +-----------+
114 * |           |                     |     6     | -------------> |     6     |
115 * |           |                     +-----------+                +-----------+
116 * |           |                     |     7     | -------------> |     7     |
117 * |           |                     +-----------+                +-----------+
118 * |           |
119 * |           |
120 * |           |
121 * +-----------+
122 *
123 * The value of page->compound_head is the same for all tail pages. The first
124 * page of page structs (page 0) associated with the HugeTLB page contains the 4
125 * page structs necessary to describe the HugeTLB. The only use of the remaining
126 * pages of page structs (page 1 to page 7) is to point to page->compound_head.
127 * Therefore, we can remap pages 2 to 7 to page 1. Only 2 pages of page structs
128 * will be used for each HugeTLB page. This will allow us to free the remaining
129 * 6 pages to the buddy allocator.
130 *
131 * Here is how things look after remapping.
132 *
133 *    HugeTLB                  struct pages(8 pages)         page frame(8 pages)
134 * +-----------+ ---virt_to_page---> +-----------+   mapping to   +-----------+
135 * |           |                     |     0     | -------------> |     0     |
136 * |           |                     +-----------+                +-----------+
137 * |           |                     |     1     | -------------> |     1     |
138 * |           |                     +-----------+                +-----------+
139 * |           |                     |     2     | ----------------^ ^ ^ ^ ^ ^
140 * |           |                     +-----------+                   | | | | |
141 * |           |                     |     3     | ------------------+ | | | |
142 * |           |                     +-----------+                     | | | |
143 * |           |                     |     4     | --------------------+ | | |
144 * |    PMD    |                     +-----------+                       | | |
145 * |   level   |                     |     5     | ----------------------+ | |
146 * |  mapping  |                     +-----------+                         | |
147 * |           |                     |     6     | ------------------------+ |
148 * |           |                     +-----------+                           |
149 * |           |                     |     7     | --------------------------+
150 * |           |                     +-----------+
151 * |           |
152 * |           |
153 * |           |
154 * +-----------+
155 *
156 * When a HugeTLB is freed to the buddy system, we should allocate 6 pages for
157 * vmemmap pages and restore the previous mapping relationship.
158 *
159 * For the HugeTLB page of the pud level mapping. It is similar to the former.
160 * We also can use this approach to free (PAGE_SIZE - 2) vmemmap pages.
161 *
162 * Apart from the HugeTLB page of the pmd/pud level mapping, some architectures
163 * (e.g. aarch64) provides a contiguous bit in the translation table entries
164 * that hints to the MMU to indicate that it is one of a contiguous set of
165 * entries that can be cached in a single TLB entry.
166 *
167 * The contiguous bit is used to increase the mapping size at the pmd and pte
168 * (last) level. So this type of HugeTLB page can be optimized only when its
169 * size of the struct page structs is greater than 2 pages.
170 */
171#define pr_fmt(fmt)	"HugeTLB: " fmt
172
 
 
 
 
 
 
 
173#include "hugetlb_vmemmap.h"
174
175/*
176 * There are a lot of struct page structures associated with each HugeTLB page.
177 * For tail pages, the value of compound_head is the same. So we can reuse first
178 * page of tail page structures. We map the virtual addresses of the remaining
179 * pages of tail page structures to the first tail page struct, and then free
180 * these page frames. Therefore, we need to reserve two pages as vmemmap areas.
 
 
 
 
 
181 */
182#define RESERVE_VMEMMAP_NR		2U
183#define RESERVE_VMEMMAP_SIZE		(RESERVE_VMEMMAP_NR << PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
185bool hugetlb_free_vmemmap_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_FREE_VMEMMAP_DEFAULT_ON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
187static int __init early_hugetlb_free_vmemmap_param(char *buf)
 
 
 
 
188{
189	/* We cannot optimize if a "struct page" crosses page boundaries. */
190	if ((!is_power_of_2(sizeof(struct page)))) {
191		pr_warn("cannot free vmemmap pages because \"struct page\" crosses page boundaries\n");
192		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193	}
 
 
 
194
195	if (!buf)
196		return -EINVAL;
197
198	if (!strcmp(buf, "on"))
199		hugetlb_free_vmemmap_enabled = true;
200	else if (!strcmp(buf, "off"))
201		hugetlb_free_vmemmap_enabled = false;
 
 
 
 
 
 
 
202	else
203		return -EINVAL;
 
204
205	return 0;
206}
207early_param("hugetlb_free_vmemmap", early_hugetlb_free_vmemmap_param);
208
209static inline unsigned long free_vmemmap_pages_size_per_hpage(struct hstate *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210{
211	return (unsigned long)free_vmemmap_pages_per_hpage(h) << PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212}
213
214/*
215 * Previously discarded vmemmap pages will be allocated and remapping
216 * after this function returns zero.
 
 
 
 
 
217 */
218int alloc_huge_page_vmemmap(struct hstate *h, struct page *head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
219{
220	int ret;
221	unsigned long vmemmap_addr = (unsigned long)head;
222	unsigned long vmemmap_end, vmemmap_reuse;
223
224	if (!HPageVmemmapOptimized(head))
 
 
 
225		return 0;
226
227	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
228	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
229	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
 
 
 
 
230	/*
231	 * The pages which the vmemmap virtual address range [@vmemmap_addr,
232	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
233	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
234	 * When a HugeTLB page is freed to the buddy allocator, previously
235	 * discarded vmemmap pages must be allocated and remapping.
236	 */
237	ret = vmemmap_remap_alloc(vmemmap_addr, vmemmap_end, vmemmap_reuse,
238				  GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
 
 
 
239
240	if (!ret)
241		ClearHPageVmemmapOptimized(head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
 
 
 
 
243	return ret;
244}
245
246void free_huge_page_vmemmap(struct hstate *h, struct page *head)
 
247{
248	unsigned long vmemmap_addr = (unsigned long)head;
249	unsigned long vmemmap_end, vmemmap_reuse;
250
251	if (!free_vmemmap_pages_per_hpage(h))
252		return;
253
254	vmemmap_addr += RESERVE_VMEMMAP_SIZE;
255	vmemmap_end = vmemmap_addr + free_vmemmap_pages_size_per_hpage(h);
256	vmemmap_reuse = vmemmap_addr - PAGE_SIZE;
257
258	/*
259	 * Remap the vmemmap virtual address range [@vmemmap_addr, @vmemmap_end)
260	 * to the page which @vmemmap_reuse is mapped to, then free the pages
261	 * which the range [@vmemmap_addr, @vmemmap_end] is mapped to.
262	 */
263	if (!vmemmap_remap_free(vmemmap_addr, vmemmap_end, vmemmap_reuse))
264		SetHPageVmemmapOptimized(head);
265}
266
267void __init hugetlb_vmemmap_init(struct hstate *h)
 
 
 
268{
269	unsigned int nr_pages = pages_per_huge_page(h);
270	unsigned int vmemmap_pages;
 
 
 
 
 
 
 
 
 
271
 
 
272	/*
273	 * There are only (RESERVE_VMEMMAP_SIZE / sizeof(struct page)) struct
274	 * page structs that can be used when CONFIG_HUGETLB_PAGE_FREE_VMEMMAP,
275	 * so add a BUILD_BUG_ON to catch invalid usage of the tail struct page.
 
 
 
 
 
 
276	 */
277	BUILD_BUG_ON(__NR_USED_SUBPAGE >=
278		     RESERVE_VMEMMAP_SIZE / sizeof(struct page));
279
280	if (!hugetlb_free_vmemmap_enabled)
281		return;
 
282
283	vmemmap_pages = (nr_pages * sizeof(struct page)) >> PAGE_SHIFT;
284	/*
285	 * The head page and the first tail page are not to be freed to buddy
286	 * allocator, the other pages will map to the first tail page, so they
287	 * can be freed.
288	 *
289	 * Could RESERVE_VMEMMAP_NR be greater than @vmemmap_pages? It is true
290	 * on some architectures (e.g. aarch64). See Documentation/arm64/
291	 * hugetlbpage.rst for more details.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292	 */
293	if (likely(vmemmap_pages > RESERVE_VMEMMAP_NR))
294		h->nr_free_vmemmap_pages = vmemmap_pages - RESERVE_VMEMMAP_NR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296	pr_info("can free %d vmemmap pages for %s\n", h->nr_free_vmemmap_pages,
297		h->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * HugeTLB Vmemmap Optimization (HVO)
  4 *
  5 * Copyright (c) 2020, ByteDance. All rights reserved.
  6 *
  7 *     Author: Muchun Song <songmuchun@bytedance.com>
  8 *
  9 * See Documentation/mm/vmemmap_dedup.rst
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 */
 11#define pr_fmt(fmt)	"HugeTLB: " fmt
 12
 13#include <linux/pgtable.h>
 14#include <linux/moduleparam.h>
 15#include <linux/bootmem_info.h>
 16#include <linux/mmdebug.h>
 17#include <linux/pagewalk.h>
 18#include <asm/pgalloc.h>
 19#include <asm/tlbflush.h>
 20#include "hugetlb_vmemmap.h"
 21
 22/**
 23 * struct vmemmap_remap_walk - walk vmemmap page table
 24 *
 25 * @remap_pte:		called for each lowest-level entry (PTE).
 26 * @nr_walked:		the number of walked pte.
 27 * @reuse_page:		the page which is reused for the tail vmemmap pages.
 28 * @reuse_addr:		the virtual address of the @reuse_page page.
 29 * @vmemmap_pages:	the list head of the vmemmap pages that can be freed
 30 *			or is mapped from.
 31 * @flags:		used to modify behavior in vmemmap page table walking
 32 *			operations.
 33 */
 34struct vmemmap_remap_walk {
 35	void			(*remap_pte)(pte_t *pte, unsigned long addr,
 36					     struct vmemmap_remap_walk *walk);
 37	unsigned long		nr_walked;
 38	struct page		*reuse_page;
 39	unsigned long		reuse_addr;
 40	struct list_head	*vmemmap_pages;
 41
 42/* Skip the TLB flush when we split the PMD */
 43#define VMEMMAP_SPLIT_NO_TLB_FLUSH	BIT(0)
 44/* Skip the TLB flush when we remap the PTE */
 45#define VMEMMAP_REMAP_NO_TLB_FLUSH	BIT(1)
 46/* synchronize_rcu() to avoid writes from page_ref_add_unless() */
 47#define VMEMMAP_SYNCHRONIZE_RCU		BIT(2)
 48	unsigned long		flags;
 49};
 50
 51static int vmemmap_split_pmd(pmd_t *pmd, struct page *head, unsigned long start,
 52			     struct vmemmap_remap_walk *walk)
 53{
 54	pmd_t __pmd;
 55	int i;
 56	unsigned long addr = start;
 57	pte_t *pgtable;
 58
 59	pgtable = pte_alloc_one_kernel(&init_mm);
 60	if (!pgtable)
 61		return -ENOMEM;
 62
 63	pmd_populate_kernel(&init_mm, &__pmd, pgtable);
 64
 65	for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
 66		pte_t entry, *pte;
 67		pgprot_t pgprot = PAGE_KERNEL;
 68
 69		entry = mk_pte(head + i, pgprot);
 70		pte = pte_offset_kernel(&__pmd, addr);
 71		set_pte_at(&init_mm, addr, pte, entry);
 72	}
 73
 74	spin_lock(&init_mm.page_table_lock);
 75	if (likely(pmd_leaf(*pmd))) {
 76		/*
 77		 * Higher order allocations from buddy allocator must be able to
 78		 * be treated as indepdenent small pages (as they can be freed
 79		 * individually).
 80		 */
 81		if (!PageReserved(head))
 82			split_page(head, get_order(PMD_SIZE));
 83
 84		/* Make pte visible before pmd. See comment in pmd_install(). */
 85		smp_wmb();
 86		pmd_populate_kernel(&init_mm, pmd, pgtable);
 87		if (!(walk->flags & VMEMMAP_SPLIT_NO_TLB_FLUSH))
 88			flush_tlb_kernel_range(start, start + PMD_SIZE);
 89	} else {
 90		pte_free_kernel(&init_mm, pgtable);
 91	}
 92	spin_unlock(&init_mm.page_table_lock);
 93
 94	return 0;
 95}
 96
 97static int vmemmap_pmd_entry(pmd_t *pmd, unsigned long addr,
 98			     unsigned long next, struct mm_walk *walk)
 99{
100	int ret = 0;
101	struct page *head;
102	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
103
104	/* Only splitting, not remapping the vmemmap pages. */
105	if (!vmemmap_walk->remap_pte)
106		walk->action = ACTION_CONTINUE;
107
108	spin_lock(&init_mm.page_table_lock);
109	head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
110	/*
111	 * Due to HugeTLB alignment requirements and the vmemmap
112	 * pages being at the start of the hotplugged memory
113	 * region in memory_hotplug.memmap_on_memory case. Checking
114	 * the vmemmap page associated with the first vmemmap page
115	 * if it is self-hosted is sufficient.
116	 *
117	 * [                  hotplugged memory                  ]
118	 * [        section        ][...][        section        ]
119	 * [ vmemmap ][              usable memory               ]
120	 *   ^  | ^                        |
121	 *   +--+ |                        |
122	 *        +------------------------+
123	 */
124	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && unlikely(!vmemmap_walk->nr_walked)) {
125		struct page *page = head ? head + pte_index(addr) :
126				    pte_page(ptep_get(pte_offset_kernel(pmd, addr)));
127
128		if (PageVmemmapSelfHosted(page))
129			ret = -ENOTSUPP;
130	}
131	spin_unlock(&init_mm.page_table_lock);
132	if (!head || ret)
133		return ret;
134
135	return vmemmap_split_pmd(pmd, head, addr & PMD_MASK, vmemmap_walk);
136}
137
138static int vmemmap_pte_entry(pte_t *pte, unsigned long addr,
139			     unsigned long next, struct mm_walk *walk)
140{
141	struct vmemmap_remap_walk *vmemmap_walk = walk->private;
142
143	/*
144	 * The reuse_page is found 'first' in page table walking before
145	 * starting remapping.
146	 */
147	if (!vmemmap_walk->reuse_page)
148		vmemmap_walk->reuse_page = pte_page(ptep_get(pte));
149	else
150		vmemmap_walk->remap_pte(pte, addr, vmemmap_walk);
151	vmemmap_walk->nr_walked++;
152
153	return 0;
154}
 
155
156static const struct mm_walk_ops vmemmap_remap_ops = {
157	.pmd_entry	= vmemmap_pmd_entry,
158	.pte_entry	= vmemmap_pte_entry,
159};
160
161static int vmemmap_remap_range(unsigned long start, unsigned long end,
162			       struct vmemmap_remap_walk *walk)
163{
164	int ret;
165
166	VM_BUG_ON(!PAGE_ALIGNED(start | end));
167
168	mmap_read_lock(&init_mm);
169	ret = walk_page_range_novma(&init_mm, start, end, &vmemmap_remap_ops,
170				    NULL, walk);
171	mmap_read_unlock(&init_mm);
172	if (ret)
173		return ret;
174
175	if (walk->remap_pte && !(walk->flags & VMEMMAP_REMAP_NO_TLB_FLUSH))
176		flush_tlb_kernel_range(start, end);
177
178	return 0;
179}
180
181/*
182 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
183 * allocator or buddy allocator. If the PG_reserved flag is set, it means
184 * that it allocated from the memblock allocator, just free it via the
185 * free_bootmem_page(). Otherwise, use __free_page().
186 */
187static inline void free_vmemmap_page(struct page *page)
188{
189	if (PageReserved(page)) {
190		memmap_boot_pages_add(-1);
191		free_bootmem_page(page);
192	} else {
193		memmap_pages_add(-1);
194		__free_page(page);
195	}
196}
197
198/* Free a list of the vmemmap pages */
199static void free_vmemmap_page_list(struct list_head *list)
200{
201	struct page *page, *next;
202
203	list_for_each_entry_safe(page, next, list, lru)
204		free_vmemmap_page(page);
205}
206
207static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
208			      struct vmemmap_remap_walk *walk)
209{
210	/*
211	 * Remap the tail pages as read-only to catch illegal write operation
212	 * to the tail pages.
213	 */
214	pgprot_t pgprot = PAGE_KERNEL_RO;
215	struct page *page = pte_page(ptep_get(pte));
216	pte_t entry;
217
218	/* Remapping the head page requires r/w */
219	if (unlikely(addr == walk->reuse_addr)) {
220		pgprot = PAGE_KERNEL;
221		list_del(&walk->reuse_page->lru);
222
223		/*
224		 * Makes sure that preceding stores to the page contents from
225		 * vmemmap_remap_free() become visible before the set_pte_at()
226		 * write.
227		 */
228		smp_wmb();
229	}
230
231	entry = mk_pte(walk->reuse_page, pgprot);
232	list_add(&page->lru, walk->vmemmap_pages);
233	set_pte_at(&init_mm, addr, pte, entry);
234}
235
236/*
237 * How many struct page structs need to be reset. When we reuse the head
238 * struct page, the special metadata (e.g. page->flags or page->mapping)
239 * cannot copy to the tail struct page structs. The invalid value will be
240 * checked in the free_tail_page_prepare(). In order to avoid the message
241 * of "corrupted mapping in tail page". We need to reset at least 3 (one
242 * head struct page struct and two tail struct page structs) struct page
243 * structs.
244 */
245#define NR_RESET_STRUCT_PAGE		3
246
247static inline void reset_struct_pages(struct page *start)
248{
249	struct page *from = start + NR_RESET_STRUCT_PAGE;
250
251	BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
252	memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
253}
254
255static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
256				struct vmemmap_remap_walk *walk)
257{
258	pgprot_t pgprot = PAGE_KERNEL;
259	struct page *page;
260	void *to;
261
262	BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
263
264	page = list_first_entry(walk->vmemmap_pages, struct page, lru);
265	list_del(&page->lru);
266	to = page_to_virt(page);
267	copy_page(to, (void *)walk->reuse_addr);
268	reset_struct_pages(to);
269
270	/*
271	 * Makes sure that preceding stores to the page contents become visible
272	 * before the set_pte_at() write.
273	 */
274	smp_wmb();
275	set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
276}
277
278/**
279 * vmemmap_remap_split - split the vmemmap virtual address range [@start, @end)
280 *                      backing PMDs of the directmap into PTEs
281 * @start:     start address of the vmemmap virtual address range that we want
282 *             to remap.
283 * @end:       end address of the vmemmap virtual address range that we want to
284 *             remap.
285 * @reuse:     reuse address.
286 *
287 * Return: %0 on success, negative error code otherwise.
288 */
289static int vmemmap_remap_split(unsigned long start, unsigned long end,
290			       unsigned long reuse)
291{
292	struct vmemmap_remap_walk walk = {
293		.remap_pte	= NULL,
294		.flags		= VMEMMAP_SPLIT_NO_TLB_FLUSH,
295	};
296
297	/* See the comment in the vmemmap_remap_free(). */
298	BUG_ON(start - reuse != PAGE_SIZE);
299
300	return vmemmap_remap_range(reuse, end, &walk);
301}
302
303/**
304 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
305 *			to the page which @reuse is mapped to, then free vmemmap
306 *			which the range are mapped to.
307 * @start:	start address of the vmemmap virtual address range that we want
308 *		to remap.
309 * @end:	end address of the vmemmap virtual address range that we want to
310 *		remap.
311 * @reuse:	reuse address.
312 * @vmemmap_pages: list to deposit vmemmap pages to be freed.  It is callers
313 *		responsibility to free pages.
314 * @flags:	modifications to vmemmap_remap_walk flags
315 *
316 * Return: %0 on success, negative error code otherwise.
317 */
318static int vmemmap_remap_free(unsigned long start, unsigned long end,
319			      unsigned long reuse,
320			      struct list_head *vmemmap_pages,
321			      unsigned long flags)
322{
323	int ret;
324	struct vmemmap_remap_walk walk = {
325		.remap_pte	= vmemmap_remap_pte,
326		.reuse_addr	= reuse,
327		.vmemmap_pages	= vmemmap_pages,
328		.flags		= flags,
329	};
330	int nid = page_to_nid((struct page *)reuse);
331	gfp_t gfp_mask = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
332
333	/*
334	 * Allocate a new head vmemmap page to avoid breaking a contiguous
335	 * block of struct page memory when freeing it back to page allocator
336	 * in free_vmemmap_page_list(). This will allow the likely contiguous
337	 * struct page backing memory to be kept contiguous and allowing for
338	 * more allocations of hugepages. Fallback to the currently
339	 * mapped head page in case should it fail to allocate.
340	 */
341	walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
342	if (walk.reuse_page) {
343		copy_page(page_to_virt(walk.reuse_page),
344			  (void *)walk.reuse_addr);
345		list_add(&walk.reuse_page->lru, vmemmap_pages);
346		memmap_pages_add(1);
347	}
348
349	/*
350	 * In order to make remapping routine most efficient for the huge pages,
351	 * the routine of vmemmap page table walking has the following rules
352	 * (see more details from the vmemmap_pte_range()):
353	 *
354	 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
355	 *   should be continuous.
356	 * - The @reuse address is part of the range [@reuse, @end) that we are
357	 *   walking which is passed to vmemmap_remap_range().
358	 * - The @reuse address is the first in the complete range.
359	 *
360	 * So we need to make sure that @start and @reuse meet the above rules.
361	 */
362	BUG_ON(start - reuse != PAGE_SIZE);
363
364	ret = vmemmap_remap_range(reuse, end, &walk);
365	if (ret && walk.nr_walked) {
366		end = reuse + walk.nr_walked * PAGE_SIZE;
367		/*
368		 * vmemmap_pages contains pages from the previous
369		 * vmemmap_remap_range call which failed.  These
370		 * are pages which were removed from the vmemmap.
371		 * They will be restored in the following call.
372		 */
373		walk = (struct vmemmap_remap_walk) {
374			.remap_pte	= vmemmap_restore_pte,
375			.reuse_addr	= reuse,
376			.vmemmap_pages	= vmemmap_pages,
377			.flags		= 0,
378		};
379
380		vmemmap_remap_range(reuse, end, &walk);
381	}
382
383	return ret;
384}
385
386static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
387				   struct list_head *list)
388{
389	gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
390	unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
391	int nid = page_to_nid((struct page *)start);
392	struct page *page, *next;
393	int i;
394
395	for (i = 0; i < nr_pages; i++) {
396		page = alloc_pages_node(nid, gfp_mask, 0);
397		if (!page)
398			goto out;
399		list_add(&page->lru, list);
400	}
401	memmap_pages_add(nr_pages);
402
403	return 0;
404out:
405	list_for_each_entry_safe(page, next, list, lru)
406		__free_page(page);
407	return -ENOMEM;
408}
409
410/**
411 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
412 *			 to the page which is from the @vmemmap_pages
413 *			 respectively.
414 * @start:	start address of the vmemmap virtual address range that we want
415 *		to remap.
416 * @end:	end address of the vmemmap virtual address range that we want to
417 *		remap.
418 * @reuse:	reuse address.
419 * @flags:	modifications to vmemmap_remap_walk flags
420 *
421 * Return: %0 on success, negative error code otherwise.
422 */
423static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
424			       unsigned long reuse, unsigned long flags)
425{
426	LIST_HEAD(vmemmap_pages);
427	struct vmemmap_remap_walk walk = {
428		.remap_pte	= vmemmap_restore_pte,
429		.reuse_addr	= reuse,
430		.vmemmap_pages	= &vmemmap_pages,
431		.flags		= flags,
432	};
433
434	/* See the comment in the vmemmap_remap_free(). */
435	BUG_ON(start - reuse != PAGE_SIZE);
436
437	if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
438		return -ENOMEM;
439
440	return vmemmap_remap_range(reuse, end, &walk);
441}
442
443DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
444EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
445
446static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
447core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
448
449static int __hugetlb_vmemmap_restore_folio(const struct hstate *h,
450					   struct folio *folio, unsigned long flags)
451{
452	int ret;
453	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
454	unsigned long vmemmap_reuse;
455
456	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
457	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
458
459	if (!folio_test_hugetlb_vmemmap_optimized(folio))
460		return 0;
461
462	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
463		synchronize_rcu();
464
465	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
466	vmemmap_reuse	= vmemmap_start;
467	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
468
469	/*
470	 * The pages which the vmemmap virtual address range [@vmemmap_start,
471	 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
472	 * the range is mapped to the page which @vmemmap_reuse is mapped to.
473	 * When a HugeTLB page is freed to the buddy allocator, previously
474	 * discarded vmemmap pages must be allocated and remapping.
475	 */
476	ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse, flags);
477	if (!ret) {
478		folio_clear_hugetlb_vmemmap_optimized(folio);
479		static_branch_dec(&hugetlb_optimize_vmemmap_key);
480	}
481
482	return ret;
483}
484
485/**
486 * hugetlb_vmemmap_restore_folio - restore previously optimized (by
487 *				hugetlb_vmemmap_optimize_folio()) vmemmap pages which
488 *				will be reallocated and remapped.
489 * @h:		struct hstate.
490 * @folio:     the folio whose vmemmap pages will be restored.
491 *
492 * Return: %0 if @folio's vmemmap pages have been reallocated and remapped,
493 * negative error code otherwise.
494 */
495int hugetlb_vmemmap_restore_folio(const struct hstate *h, struct folio *folio)
496{
497	return __hugetlb_vmemmap_restore_folio(h, folio, VMEMMAP_SYNCHRONIZE_RCU);
498}
499
500/**
501 * hugetlb_vmemmap_restore_folios - restore vmemmap for every folio on the list.
502 * @h:			hstate.
503 * @folio_list:		list of folios.
504 * @non_hvo_folios:	Output list of folios for which vmemmap exists.
505 *
506 * Return: number of folios for which vmemmap was restored, or an error code
507 *		if an error was encountered restoring vmemmap for a folio.
508 *		Folios that have vmemmap are moved to the non_hvo_folios
509 *		list.  Processing of entries stops when the first error is
510 *		encountered. The folio that experienced the error and all
511 *		non-processed folios will remain on folio_list.
512 */
513long hugetlb_vmemmap_restore_folios(const struct hstate *h,
514					struct list_head *folio_list,
515					struct list_head *non_hvo_folios)
516{
517	struct folio *folio, *t_folio;
518	long restored = 0;
519	long ret = 0;
520	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
521
522	list_for_each_entry_safe(folio, t_folio, folio_list, lru) {
523		if (folio_test_hugetlb_vmemmap_optimized(folio)) {
524			ret = __hugetlb_vmemmap_restore_folio(h, folio, flags);
525			/* only need to synchronize_rcu() once for each batch */
526			flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
527
528			if (ret)
529				break;
530			restored++;
531		}
532
533		/* Add non-optimized folios to output list */
534		list_move(&folio->lru, non_hvo_folios);
535	}
536
537	if (restored)
538		flush_tlb_all();
539	if (!ret)
540		ret = restored;
541	return ret;
542}
543
544/* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
545static bool vmemmap_should_optimize_folio(const struct hstate *h, struct folio *folio)
546{
547	if (folio_test_hugetlb_vmemmap_optimized(folio))
548		return false;
549
550	if (!READ_ONCE(vmemmap_optimize_enabled))
551		return false;
552
553	if (!hugetlb_vmemmap_optimizable(h))
554		return false;
 
555
556	return true;
 
 
 
 
 
 
557}
558
559static int __hugetlb_vmemmap_optimize_folio(const struct hstate *h,
560					    struct folio *folio,
561					    struct list_head *vmemmap_pages,
562					    unsigned long flags)
563{
564	int ret = 0;
565	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
566	unsigned long vmemmap_reuse;
567
568	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(folio), folio);
569	VM_WARN_ON_ONCE_FOLIO(folio_ref_count(folio), folio);
570
571	if (!vmemmap_should_optimize_folio(h, folio))
572		return ret;
573
574	static_branch_inc(&hugetlb_optimize_vmemmap_key);
575
576	if (flags & VMEMMAP_SYNCHRONIZE_RCU)
577		synchronize_rcu();
578	/*
579	 * Very Subtle
580	 * If VMEMMAP_REMAP_NO_TLB_FLUSH is set, TLB flushing is not performed
581	 * immediately after remapping.  As a result, subsequent accesses
582	 * and modifications to struct pages associated with the hugetlb
583	 * page could be to the OLD struct pages.  Set the vmemmap optimized
584	 * flag here so that it is copied to the new head page.  This keeps
585	 * the old and new struct pages in sync.
586	 * If there is an error during optimization, we will immediately FLUSH
587	 * the TLB and clear the flag below.
588	 */
589	folio_set_hugetlb_vmemmap_optimized(folio);
 
590
591	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
592	vmemmap_reuse	= vmemmap_start;
593	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
594
 
595	/*
596	 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
597	 * to the page which @vmemmap_reuse is mapped to.  Add pages previously
598	 * mapping the range to vmemmap_pages list so that they can be freed by
599	 * the caller.
600	 */
601	ret = vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse,
602				 vmemmap_pages, flags);
603	if (ret) {
604		static_branch_dec(&hugetlb_optimize_vmemmap_key);
605		folio_clear_hugetlb_vmemmap_optimized(folio);
606	}
607
608	return ret;
609}
610
611/**
612 * hugetlb_vmemmap_optimize_folio - optimize @folio's vmemmap pages.
613 * @h:		struct hstate.
614 * @folio:     the folio whose vmemmap pages will be optimized.
615 *
616 * This function only tries to optimize @folio's vmemmap pages and does not
617 * guarantee that the optimization will succeed after it returns. The caller
618 * can use folio_test_hugetlb_vmemmap_optimized(@folio) to detect if @folio's
619 * vmemmap pages have been optimized.
620 */
621void hugetlb_vmemmap_optimize_folio(const struct hstate *h, struct folio *folio)
622{
623	LIST_HEAD(vmemmap_pages);
624
625	__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, VMEMMAP_SYNCHRONIZE_RCU);
626	free_vmemmap_page_list(&vmemmap_pages);
627}
628
629static int hugetlb_vmemmap_split_folio(const struct hstate *h, struct folio *folio)
630{
631	unsigned long vmemmap_start = (unsigned long)&folio->page, vmemmap_end;
632	unsigned long vmemmap_reuse;
633
634	if (!vmemmap_should_optimize_folio(h, folio))
635		return 0;
636
637	vmemmap_end	= vmemmap_start + hugetlb_vmemmap_size(h);
638	vmemmap_reuse	= vmemmap_start;
639	vmemmap_start	+= HUGETLB_VMEMMAP_RESERVE_SIZE;
640
641	/*
642	 * Split PMDs on the vmemmap virtual address range [@vmemmap_start,
643	 * @vmemmap_end]
644	 */
645	return vmemmap_remap_split(vmemmap_start, vmemmap_end, vmemmap_reuse);
646}
647
648void hugetlb_vmemmap_optimize_folios(struct hstate *h, struct list_head *folio_list)
649{
650	struct folio *folio;
651	LIST_HEAD(vmemmap_pages);
652	unsigned long flags = VMEMMAP_REMAP_NO_TLB_FLUSH | VMEMMAP_SYNCHRONIZE_RCU;
653
654	list_for_each_entry(folio, folio_list, lru) {
655		int ret = hugetlb_vmemmap_split_folio(h, folio);
656
657		/*
658		 * Spliting the PMD requires allocating a page, thus lets fail
659		 * early once we encounter the first OOM. No point in retrying
660		 * as it can be dynamically done on remap with the memory
661		 * we get back from the vmemmap deduplication.
662		 */
663		if (ret == -ENOMEM)
664			break;
665	}
666
667	flush_tlb_all();
668
669	list_for_each_entry(folio, folio_list, lru) {
670		int ret;
671
672		ret = __hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
673		/* only need to synchronize_rcu() once for each batch */
674		flags &= ~VMEMMAP_SYNCHRONIZE_RCU;
675
676		/*
677		 * Pages to be freed may have been accumulated.  If we
678		 * encounter an ENOMEM,  free what we have and try again.
679		 * This can occur in the case that both spliting fails
680		 * halfway and head page allocation also failed. In this
681		 * case __hugetlb_vmemmap_optimize_folio() would free memory
682		 * allowing more vmemmap remaps to occur.
683		 */
684		if (ret == -ENOMEM && !list_empty(&vmemmap_pages)) {
685			flush_tlb_all();
686			free_vmemmap_page_list(&vmemmap_pages);
687			INIT_LIST_HEAD(&vmemmap_pages);
688			__hugetlb_vmemmap_optimize_folio(h, folio, &vmemmap_pages, flags);
689		}
690	}
691
692	flush_tlb_all();
693	free_vmemmap_page_list(&vmemmap_pages);
694}
695
696static struct ctl_table hugetlb_vmemmap_sysctls[] = {
697	{
698		.procname	= "hugetlb_optimize_vmemmap",
699		.data		= &vmemmap_optimize_enabled,
700		.maxlen		= sizeof(vmemmap_optimize_enabled),
701		.mode		= 0644,
702		.proc_handler	= proc_dobool,
703	},
704};
705
706static int __init hugetlb_vmemmap_init(void)
707{
708	const struct hstate *h;
709
710	/* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
711	BUILD_BUG_ON(__NR_USED_SUBPAGE > HUGETLB_VMEMMAP_RESERVE_PAGES);
712
713	for_each_hstate(h) {
714		if (hugetlb_vmemmap_optimizable(h)) {
715			register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
716			break;
717		}
718	}
719	return 0;
720}
721late_initcall(hugetlb_vmemmap_init);