Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
 
  21#include <linux/dax.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33#include <linux/shmem_fs.h>
  34#include <linux/oom.h>
  35#include <linux/numa.h>
  36#include <linux/page_owner.h>
 
 
  37
  38#include <asm/tlb.h>
  39#include <asm/pgalloc.h>
  40#include "internal.h"
 
 
 
 
  41
  42/*
  43 * By default, transparent hugepage support is disabled in order to avoid
  44 * risking an increased memory footprint for applications that are not
  45 * guaranteed to benefit from it. When transparent hugepage support is
  46 * enabled, it is for all mappings, and khugepaged scans all mappings.
  47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  48 * for all hugepage allocations.
  49 */
  50unsigned long transparent_hugepage_flags __read_mostly =
  51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  52	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  53#endif
  54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  55	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  56#endif
  57	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  58	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  59	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  60
  61static struct shrinker deferred_split_shrinker;
  62
  63static atomic_t huge_zero_refcount;
  64struct page *huge_zero_page __read_mostly;
  65unsigned long huge_zero_pfn __read_mostly = ~0UL;
  66
  67static inline bool file_thp_enabled(struct vm_area_struct *vma)
 
  68{
  69	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
  70	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
  71	       (vma->vm_flags & VM_EXEC);
  72}
  73
  74bool transparent_hugepage_active(struct vm_area_struct *vma)
  75{
  76	/* The addr is used to check if the vma size fits */
  77	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
  78
  79	if (!transhuge_vma_suitable(vma, addr))
 
 
 
 
 
  80		return false;
  81	if (vma_is_anonymous(vma))
  82		return __transparent_hugepage_enabled(vma);
  83	if (vma_is_shmem(vma))
  84		return shmem_huge_enabled(vma);
  85	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
  86		return file_thp_enabled(vma);
  87
  88	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89}
  90
  91static bool get_huge_zero_page(void)
  92{
  93	struct page *zero_page;
  94retry:
  95	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  96		return true;
  97
  98	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  99			HPAGE_PMD_ORDER);
 100	if (!zero_page) {
 101		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 102		return false;
 103	}
 104	count_vm_event(THP_ZERO_PAGE_ALLOC);
 105	preempt_disable();
 106	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 107		preempt_enable();
 108		__free_pages(zero_page, compound_order(zero_page));
 109		goto retry;
 110	}
 111	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 112
 113	/* We take additional reference here. It will be put back by shrinker */
 114	atomic_set(&huge_zero_refcount, 2);
 115	preempt_enable();
 
 116	return true;
 117}
 118
 119static void put_huge_zero_page(void)
 120{
 121	/*
 122	 * Counter should never go to zero here. Only shrinker can put
 123	 * last reference.
 124	 */
 125	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 126}
 127
 128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 129{
 130	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 131		return READ_ONCE(huge_zero_page);
 132
 133	if (!get_huge_zero_page())
 134		return NULL;
 135
 136	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 137		put_huge_zero_page();
 138
 139	return READ_ONCE(huge_zero_page);
 140}
 141
 142void mm_put_huge_zero_page(struct mm_struct *mm)
 143{
 144	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 145		put_huge_zero_page();
 146}
 147
 148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 149					struct shrink_control *sc)
 150{
 151	/* we can free zero page only if last reference remains */
 152	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 153}
 154
 155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 156				       struct shrink_control *sc)
 157{
 158	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 159		struct page *zero_page = xchg(&huge_zero_page, NULL);
 160		BUG_ON(zero_page == NULL);
 161		WRITE_ONCE(huge_zero_pfn, ~0UL);
 162		__free_pages(zero_page, compound_order(zero_page));
 163		return HPAGE_PMD_NR;
 164	}
 165
 166	return 0;
 167}
 168
 169static struct shrinker huge_zero_page_shrinker = {
 170	.count_objects = shrink_huge_zero_page_count,
 171	.scan_objects = shrink_huge_zero_page_scan,
 172	.seeks = DEFAULT_SEEKS,
 173};
 174
 175#ifdef CONFIG_SYSFS
 176static ssize_t enabled_show(struct kobject *kobj,
 177			    struct kobj_attribute *attr, char *buf)
 178{
 179	const char *output;
 180
 181	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 182		output = "[always] madvise never";
 183	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 184			  &transparent_hugepage_flags))
 185		output = "always [madvise] never";
 186	else
 187		output = "always madvise [never]";
 188
 189	return sysfs_emit(buf, "%s\n", output);
 190}
 191
 192static ssize_t enabled_store(struct kobject *kobj,
 193			     struct kobj_attribute *attr,
 194			     const char *buf, size_t count)
 195{
 196	ssize_t ret = count;
 197
 198	if (sysfs_streq(buf, "always")) {
 199		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 200		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 201	} else if (sysfs_streq(buf, "madvise")) {
 202		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 203		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 204	} else if (sysfs_streq(buf, "never")) {
 205		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 206		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 207	} else
 208		ret = -EINVAL;
 209
 210	if (ret > 0) {
 211		int err = start_stop_khugepaged();
 212		if (err)
 213			ret = err;
 214	}
 215	return ret;
 216}
 217static struct kobj_attribute enabled_attr =
 218	__ATTR(enabled, 0644, enabled_show, enabled_store);
 219
 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
 221				  struct kobj_attribute *attr, char *buf,
 222				  enum transparent_hugepage_flag flag)
 223{
 224	return sysfs_emit(buf, "%d\n",
 225			  !!test_bit(flag, &transparent_hugepage_flags));
 226}
 227
 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
 229				 struct kobj_attribute *attr,
 230				 const char *buf, size_t count,
 231				 enum transparent_hugepage_flag flag)
 232{
 233	unsigned long value;
 234	int ret;
 235
 236	ret = kstrtoul(buf, 10, &value);
 237	if (ret < 0)
 238		return ret;
 239	if (value > 1)
 240		return -EINVAL;
 241
 242	if (value)
 243		set_bit(flag, &transparent_hugepage_flags);
 244	else
 245		clear_bit(flag, &transparent_hugepage_flags);
 246
 247	return count;
 248}
 249
 250static ssize_t defrag_show(struct kobject *kobj,
 251			   struct kobj_attribute *attr, char *buf)
 252{
 253	const char *output;
 254
 255	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 256		     &transparent_hugepage_flags))
 257		output = "[always] defer defer+madvise madvise never";
 258	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 259			  &transparent_hugepage_flags))
 260		output = "always [defer] defer+madvise madvise never";
 261	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 262			  &transparent_hugepage_flags))
 263		output = "always defer [defer+madvise] madvise never";
 264	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 265			  &transparent_hugepage_flags))
 266		output = "always defer defer+madvise [madvise] never";
 267	else
 268		output = "always defer defer+madvise madvise [never]";
 269
 270	return sysfs_emit(buf, "%s\n", output);
 271}
 272
 273static ssize_t defrag_store(struct kobject *kobj,
 274			    struct kobj_attribute *attr,
 275			    const char *buf, size_t count)
 276{
 277	if (sysfs_streq(buf, "always")) {
 278		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 279		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 280		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 281		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 282	} else if (sysfs_streq(buf, "defer+madvise")) {
 283		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 284		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 285		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 286		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 287	} else if (sysfs_streq(buf, "defer")) {
 288		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 289		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 290		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 291		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 292	} else if (sysfs_streq(buf, "madvise")) {
 293		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 294		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 295		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 296		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 297	} else if (sysfs_streq(buf, "never")) {
 298		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 299		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 300		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 301		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 302	} else
 303		return -EINVAL;
 304
 305	return count;
 306}
 307static struct kobj_attribute defrag_attr =
 308	__ATTR(defrag, 0644, defrag_show, defrag_store);
 309
 310static ssize_t use_zero_page_show(struct kobject *kobj,
 311				  struct kobj_attribute *attr, char *buf)
 312{
 313	return single_hugepage_flag_show(kobj, attr, buf,
 314					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 315}
 316static ssize_t use_zero_page_store(struct kobject *kobj,
 317		struct kobj_attribute *attr, const char *buf, size_t count)
 318{
 319	return single_hugepage_flag_store(kobj, attr, buf, count,
 320				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 321}
 322static struct kobj_attribute use_zero_page_attr =
 323	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 324
 325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 326				   struct kobj_attribute *attr, char *buf)
 327{
 328	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 329}
 330static struct kobj_attribute hpage_pmd_size_attr =
 331	__ATTR_RO(hpage_pmd_size);
 332
 333static struct attribute *hugepage_attr[] = {
 334	&enabled_attr.attr,
 335	&defrag_attr.attr,
 336	&use_zero_page_attr.attr,
 337	&hpage_pmd_size_attr.attr,
 338#ifdef CONFIG_SHMEM
 339	&shmem_enabled_attr.attr,
 340#endif
 341	NULL,
 342};
 343
 344static const struct attribute_group hugepage_attr_group = {
 345	.attrs = hugepage_attr,
 346};
 347
 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 349{
 350	int err;
 351
 352	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 353	if (unlikely(!*hugepage_kobj)) {
 354		pr_err("failed to create transparent hugepage kobject\n");
 355		return -ENOMEM;
 356	}
 357
 358	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 359	if (err) {
 360		pr_err("failed to register transparent hugepage group\n");
 361		goto delete_obj;
 362	}
 363
 364	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 365	if (err) {
 366		pr_err("failed to register transparent hugepage group\n");
 367		goto remove_hp_group;
 368	}
 369
 370	return 0;
 371
 372remove_hp_group:
 373	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 374delete_obj:
 375	kobject_put(*hugepage_kobj);
 376	return err;
 377}
 378
 379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 380{
 381	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 382	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 383	kobject_put(hugepage_kobj);
 384}
 385#else
 386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 387{
 388	return 0;
 389}
 390
 391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 392{
 393}
 394#endif /* CONFIG_SYSFS */
 395
 396static int __init hugepage_init(void)
 397{
 398	int err;
 399	struct kobject *hugepage_kobj;
 400
 401	if (!has_transparent_hugepage()) {
 402		/*
 403		 * Hardware doesn't support hugepages, hence disable
 404		 * DAX PMD support.
 405		 */
 406		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 407		return -EINVAL;
 408	}
 409
 410	/*
 411	 * hugepages can't be allocated by the buddy allocator
 412	 */
 413	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 414	/*
 415	 * we use page->mapping and page->index in second tail page
 416	 * as list_head: assuming THP order >= 2
 417	 */
 418	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 419
 420	err = hugepage_init_sysfs(&hugepage_kobj);
 421	if (err)
 422		goto err_sysfs;
 423
 424	err = khugepaged_init();
 425	if (err)
 426		goto err_slab;
 427
 428	err = register_shrinker(&huge_zero_page_shrinker);
 429	if (err)
 430		goto err_hzp_shrinker;
 431	err = register_shrinker(&deferred_split_shrinker);
 432	if (err)
 433		goto err_split_shrinker;
 434
 435	/*
 436	 * By default disable transparent hugepages on smaller systems,
 437	 * where the extra memory used could hurt more than TLB overhead
 438	 * is likely to save.  The admin can still enable it through /sys.
 439	 */
 440	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 441		transparent_hugepage_flags = 0;
 442		return 0;
 443	}
 444
 445	err = start_stop_khugepaged();
 446	if (err)
 447		goto err_khugepaged;
 448
 449	return 0;
 450err_khugepaged:
 451	unregister_shrinker(&deferred_split_shrinker);
 452err_split_shrinker:
 453	unregister_shrinker(&huge_zero_page_shrinker);
 454err_hzp_shrinker:
 455	khugepaged_destroy();
 456err_slab:
 457	hugepage_exit_sysfs(hugepage_kobj);
 458err_sysfs:
 459	return err;
 460}
 461subsys_initcall(hugepage_init);
 462
 463static int __init setup_transparent_hugepage(char *str)
 464{
 465	int ret = 0;
 466	if (!str)
 467		goto out;
 468	if (!strcmp(str, "always")) {
 469		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 470			&transparent_hugepage_flags);
 471		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 472			  &transparent_hugepage_flags);
 473		ret = 1;
 474	} else if (!strcmp(str, "madvise")) {
 475		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 476			  &transparent_hugepage_flags);
 477		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 478			&transparent_hugepage_flags);
 479		ret = 1;
 480	} else if (!strcmp(str, "never")) {
 481		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 482			  &transparent_hugepage_flags);
 483		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 484			  &transparent_hugepage_flags);
 485		ret = 1;
 486	}
 487out:
 488	if (!ret)
 489		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 490	return ret;
 491}
 492__setup("transparent_hugepage=", setup_transparent_hugepage);
 493
 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 495{
 496	if (likely(vma->vm_flags & VM_WRITE))
 497		pmd = pmd_mkwrite(pmd);
 498	return pmd;
 499}
 500
 501#ifdef CONFIG_MEMCG
 502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 503{
 504	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 505	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 506
 507	if (memcg)
 508		return &memcg->deferred_split_queue;
 509	else
 510		return &pgdat->deferred_split_queue;
 511}
 512#else
 513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 514{
 515	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 516
 517	return &pgdat->deferred_split_queue;
 518}
 519#endif
 520
 521void prep_transhuge_page(struct page *page)
 522{
 523	/*
 524	 * we use page->mapping and page->indexlru in second tail page
 525	 * as list_head: assuming THP order >= 2
 526	 */
 527
 528	INIT_LIST_HEAD(page_deferred_list(page));
 529	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 530}
 531
 532bool is_transparent_hugepage(struct page *page)
 533{
 534	if (!PageCompound(page))
 535		return false;
 536
 537	page = compound_head(page);
 538	return is_huge_zero_page(page) ||
 539	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 540}
 541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
 542
 543static unsigned long __thp_get_unmapped_area(struct file *filp,
 544		unsigned long addr, unsigned long len,
 545		loff_t off, unsigned long flags, unsigned long size)
 546{
 547	loff_t off_end = off + len;
 548	loff_t off_align = round_up(off, size);
 549	unsigned long len_pad, ret;
 550
 551	if (off_end <= off_align || (off_end - off_align) < size)
 552		return 0;
 553
 554	len_pad = len + size;
 555	if (len_pad < len || (off + len_pad) < off)
 556		return 0;
 557
 558	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 559					      off >> PAGE_SHIFT, flags);
 560
 561	/*
 562	 * The failure might be due to length padding. The caller will retry
 563	 * without the padding.
 564	 */
 565	if (IS_ERR_VALUE(ret))
 566		return 0;
 567
 568	/*
 569	 * Do not try to align to THP boundary if allocation at the address
 570	 * hint succeeds.
 571	 */
 572	if (ret == addr)
 573		return addr;
 574
 575	ret += (off - ret) & (size - 1);
 576	return ret;
 577}
 578
 579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 580		unsigned long len, unsigned long pgoff, unsigned long flags)
 581{
 582	unsigned long ret;
 583	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 584
 585	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 586		goto out;
 587
 588	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 589	if (ret)
 590		return ret;
 591out:
 592	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 593}
 594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 595
 596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 597			struct page *page, gfp_t gfp)
 598{
 599	struct vm_area_struct *vma = vmf->vma;
 600	pgtable_t pgtable;
 601	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 602	vm_fault_t ret = 0;
 603
 604	VM_BUG_ON_PAGE(!PageCompound(page), page);
 605
 606	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
 607		put_page(page);
 608		count_vm_event(THP_FAULT_FALLBACK);
 609		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 610		return VM_FAULT_FALLBACK;
 611	}
 612	cgroup_throttle_swaprate(page, gfp);
 613
 614	pgtable = pte_alloc_one(vma->vm_mm);
 615	if (unlikely(!pgtable)) {
 616		ret = VM_FAULT_OOM;
 617		goto release;
 618	}
 619
 620	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 621	/*
 622	 * The memory barrier inside __SetPageUptodate makes sure that
 623	 * clear_huge_page writes become visible before the set_pmd_at()
 624	 * write.
 625	 */
 626	__SetPageUptodate(page);
 627
 628	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 629	if (unlikely(!pmd_none(*vmf->pmd))) {
 630		goto unlock_release;
 631	} else {
 632		pmd_t entry;
 633
 634		ret = check_stable_address_space(vma->vm_mm);
 635		if (ret)
 636			goto unlock_release;
 637
 638		/* Deliver the page fault to userland */
 639		if (userfaultfd_missing(vma)) {
 640			spin_unlock(vmf->ptl);
 641			put_page(page);
 642			pte_free(vma->vm_mm, pgtable);
 643			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 644			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 645			return ret;
 646		}
 647
 648		entry = mk_huge_pmd(page, vma->vm_page_prot);
 649		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 650		page_add_new_anon_rmap(page, vma, haddr, true);
 651		lru_cache_add_inactive_or_unevictable(page, vma);
 652		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 653		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 654		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 655		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 656		mm_inc_nr_ptes(vma->vm_mm);
 657		spin_unlock(vmf->ptl);
 658		count_vm_event(THP_FAULT_ALLOC);
 659		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 660	}
 661
 662	return 0;
 663unlock_release:
 664	spin_unlock(vmf->ptl);
 665release:
 666	if (pgtable)
 667		pte_free(vma->vm_mm, pgtable);
 668	put_page(page);
 669	return ret;
 670
 671}
 672
 673/*
 674 * always: directly stall for all thp allocations
 675 * defer: wake kswapd and fail if not immediately available
 676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 677 *		  fail if not immediately available
 678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 679 *	    available
 680 * never: never stall for any thp allocation
 681 */
 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 683{
 684	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 685
 686	/* Always do synchronous compaction */
 687	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 688		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 689
 690	/* Kick kcompactd and fail quickly */
 691	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 692		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 693
 694	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 695	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 696		return GFP_TRANSHUGE_LIGHT |
 697			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 698					__GFP_KSWAPD_RECLAIM);
 699
 700	/* Only do synchronous compaction if madvised */
 701	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 702		return GFP_TRANSHUGE_LIGHT |
 703		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 704
 705	return GFP_TRANSHUGE_LIGHT;
 706}
 707
 708/* Caller must hold page table lock. */
 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 710		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 711		struct page *zero_page)
 712{
 713	pmd_t entry;
 714	if (!pmd_none(*pmd))
 715		return;
 716	entry = mk_pmd(zero_page, vma->vm_page_prot);
 717	entry = pmd_mkhuge(entry);
 718	if (pgtable)
 719		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 720	set_pmd_at(mm, haddr, pmd, entry);
 721	mm_inc_nr_ptes(mm);
 722}
 723
 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 725{
 726	struct vm_area_struct *vma = vmf->vma;
 727	gfp_t gfp;
 728	struct page *page;
 729	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 730
 731	if (!transhuge_vma_suitable(vma, haddr))
 732		return VM_FAULT_FALLBACK;
 733	if (unlikely(anon_vma_prepare(vma)))
 734		return VM_FAULT_OOM;
 735	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 736		return VM_FAULT_OOM;
 737	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 738			!mm_forbids_zeropage(vma->vm_mm) &&
 739			transparent_hugepage_use_zero_page()) {
 740		pgtable_t pgtable;
 741		struct page *zero_page;
 742		vm_fault_t ret;
 743		pgtable = pte_alloc_one(vma->vm_mm);
 744		if (unlikely(!pgtable))
 745			return VM_FAULT_OOM;
 746		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 747		if (unlikely(!zero_page)) {
 748			pte_free(vma->vm_mm, pgtable);
 749			count_vm_event(THP_FAULT_FALLBACK);
 750			return VM_FAULT_FALLBACK;
 751		}
 752		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 753		ret = 0;
 754		if (pmd_none(*vmf->pmd)) {
 755			ret = check_stable_address_space(vma->vm_mm);
 756			if (ret) {
 757				spin_unlock(vmf->ptl);
 758				pte_free(vma->vm_mm, pgtable);
 759			} else if (userfaultfd_missing(vma)) {
 760				spin_unlock(vmf->ptl);
 761				pte_free(vma->vm_mm, pgtable);
 762				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 763				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 764			} else {
 765				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 766						   haddr, vmf->pmd, zero_page);
 767				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 768				spin_unlock(vmf->ptl);
 769			}
 770		} else {
 771			spin_unlock(vmf->ptl);
 772			pte_free(vma->vm_mm, pgtable);
 773		}
 774		return ret;
 775	}
 776	gfp = vma_thp_gfp_mask(vma);
 777	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 778	if (unlikely(!page)) {
 779		count_vm_event(THP_FAULT_FALLBACK);
 780		return VM_FAULT_FALLBACK;
 781	}
 782	prep_transhuge_page(page);
 783	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 784}
 785
 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 787		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 788		pgtable_t pgtable)
 789{
 790	struct mm_struct *mm = vma->vm_mm;
 791	pmd_t entry;
 792	spinlock_t *ptl;
 793
 794	ptl = pmd_lock(mm, pmd);
 795	if (!pmd_none(*pmd)) {
 796		if (write) {
 797			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 798				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 799				goto out_unlock;
 800			}
 801			entry = pmd_mkyoung(*pmd);
 802			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 803			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 804				update_mmu_cache_pmd(vma, addr, pmd);
 805		}
 806
 807		goto out_unlock;
 808	}
 809
 810	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 811	if (pfn_t_devmap(pfn))
 812		entry = pmd_mkdevmap(entry);
 813	if (write) {
 814		entry = pmd_mkyoung(pmd_mkdirty(entry));
 815		entry = maybe_pmd_mkwrite(entry, vma);
 816	}
 817
 818	if (pgtable) {
 819		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 820		mm_inc_nr_ptes(mm);
 821		pgtable = NULL;
 822	}
 823
 824	set_pmd_at(mm, addr, pmd, entry);
 825	update_mmu_cache_pmd(vma, addr, pmd);
 826
 827out_unlock:
 828	spin_unlock(ptl);
 829	if (pgtable)
 830		pte_free(mm, pgtable);
 831}
 832
 833/**
 834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 835 * @vmf: Structure describing the fault
 836 * @pfn: pfn to insert
 837 * @pgprot: page protection to use
 838 * @write: whether it's a write fault
 839 *
 840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 841 * also consult the vmf_insert_mixed_prot() documentation when
 842 * @pgprot != @vmf->vma->vm_page_prot.
 843 *
 844 * Return: vm_fault_t value.
 845 */
 846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 847				   pgprot_t pgprot, bool write)
 848{
 849	unsigned long addr = vmf->address & PMD_MASK;
 850	struct vm_area_struct *vma = vmf->vma;
 851	pgtable_t pgtable = NULL;
 852
 853	/*
 854	 * If we had pmd_special, we could avoid all these restrictions,
 855	 * but we need to be consistent with PTEs and architectures that
 856	 * can't support a 'special' bit.
 857	 */
 858	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 859			!pfn_t_devmap(pfn));
 860	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 861						(VM_PFNMAP|VM_MIXEDMAP));
 862	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 863
 864	if (addr < vma->vm_start || addr >= vma->vm_end)
 865		return VM_FAULT_SIGBUS;
 866
 867	if (arch_needs_pgtable_deposit()) {
 868		pgtable = pte_alloc_one(vma->vm_mm);
 869		if (!pgtable)
 870			return VM_FAULT_OOM;
 871	}
 872
 873	track_pfn_insert(vma, &pgprot, pfn);
 874
 875	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 876	return VM_FAULT_NOPAGE;
 877}
 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 879
 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 882{
 883	if (likely(vma->vm_flags & VM_WRITE))
 884		pud = pud_mkwrite(pud);
 885	return pud;
 886}
 887
 888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 889		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 890{
 891	struct mm_struct *mm = vma->vm_mm;
 892	pud_t entry;
 893	spinlock_t *ptl;
 894
 895	ptl = pud_lock(mm, pud);
 896	if (!pud_none(*pud)) {
 897		if (write) {
 898			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 899				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 900				goto out_unlock;
 901			}
 902			entry = pud_mkyoung(*pud);
 903			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 904			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 905				update_mmu_cache_pud(vma, addr, pud);
 906		}
 907		goto out_unlock;
 908	}
 909
 910	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 911	if (pfn_t_devmap(pfn))
 912		entry = pud_mkdevmap(entry);
 913	if (write) {
 914		entry = pud_mkyoung(pud_mkdirty(entry));
 915		entry = maybe_pud_mkwrite(entry, vma);
 916	}
 917	set_pud_at(mm, addr, pud, entry);
 918	update_mmu_cache_pud(vma, addr, pud);
 919
 920out_unlock:
 921	spin_unlock(ptl);
 922}
 923
 924/**
 925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 926 * @vmf: Structure describing the fault
 927 * @pfn: pfn to insert
 928 * @pgprot: page protection to use
 929 * @write: whether it's a write fault
 930 *
 931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 932 * also consult the vmf_insert_mixed_prot() documentation when
 933 * @pgprot != @vmf->vma->vm_page_prot.
 934 *
 935 * Return: vm_fault_t value.
 936 */
 937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 938				   pgprot_t pgprot, bool write)
 939{
 940	unsigned long addr = vmf->address & PUD_MASK;
 941	struct vm_area_struct *vma = vmf->vma;
 942
 943	/*
 944	 * If we had pud_special, we could avoid all these restrictions,
 945	 * but we need to be consistent with PTEs and architectures that
 946	 * can't support a 'special' bit.
 947	 */
 948	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 949			!pfn_t_devmap(pfn));
 950	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 951						(VM_PFNMAP|VM_MIXEDMAP));
 952	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 953
 954	if (addr < vma->vm_start || addr >= vma->vm_end)
 955		return VM_FAULT_SIGBUS;
 956
 957	track_pfn_insert(vma, &pgprot, pfn);
 958
 959	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
 960	return VM_FAULT_NOPAGE;
 961}
 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
 963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 964
 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 966		pmd_t *pmd, int flags)
 967{
 968	pmd_t _pmd;
 969
 970	_pmd = pmd_mkyoung(*pmd);
 971	if (flags & FOLL_WRITE)
 972		_pmd = pmd_mkdirty(_pmd);
 973	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 974				pmd, _pmd, flags & FOLL_WRITE))
 975		update_mmu_cache_pmd(vma, addr, pmd);
 976}
 977
 978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 979		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 980{
 981	unsigned long pfn = pmd_pfn(*pmd);
 982	struct mm_struct *mm = vma->vm_mm;
 983	struct page *page;
 
 984
 985	assert_spin_locked(pmd_lockptr(mm, pmd));
 986
 987	/*
 988	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
 989	 * not be in this function with `flags & FOLL_COW` set.
 990	 */
 991	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 992
 993	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 994	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 995			 (FOLL_PIN | FOLL_GET)))
 996		return NULL;
 997
 998	if (flags & FOLL_WRITE && !pmd_write(*pmd))
 999		return NULL;
1000
1001	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002		/* pass */;
1003	else
1004		return NULL;
1005
1006	if (flags & FOLL_TOUCH)
1007		touch_pmd(vma, addr, pmd, flags);
1008
1009	/*
1010	 * device mapped pages can only be returned if the
1011	 * caller will manage the page reference count.
1012	 */
1013	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014		return ERR_PTR(-EEXIST);
1015
1016	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017	*pgmap = get_dev_pagemap(pfn, *pgmap);
1018	if (!*pgmap)
1019		return ERR_PTR(-EFAULT);
1020	page = pfn_to_page(pfn);
1021	if (!try_grab_page(page, flags))
1022		page = ERR_PTR(-ENOMEM);
 
1023
1024	return page;
1025}
1026
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030{
1031	spinlock_t *dst_ptl, *src_ptl;
1032	struct page *src_page;
1033	pmd_t pmd;
1034	pgtable_t pgtable = NULL;
1035	int ret = -ENOMEM;
1036
1037	/* Skip if can be re-fill on fault */
1038	if (!vma_is_anonymous(dst_vma))
1039		return 0;
1040
1041	pgtable = pte_alloc_one(dst_mm);
1042	if (unlikely(!pgtable))
1043		goto out;
1044
1045	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046	src_ptl = pmd_lockptr(src_mm, src_pmd);
1047	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048
1049	ret = -EAGAIN;
1050	pmd = *src_pmd;
1051
1052#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053	if (unlikely(is_swap_pmd(pmd))) {
1054		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055
1056		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057		if (is_writable_migration_entry(entry)) {
1058			entry = make_readable_migration_entry(
1059							swp_offset(entry));
1060			pmd = swp_entry_to_pmd(entry);
1061			if (pmd_swp_soft_dirty(*src_pmd))
1062				pmd = pmd_swp_mksoft_dirty(pmd);
1063			if (pmd_swp_uffd_wp(*src_pmd))
1064				pmd = pmd_swp_mkuffd_wp(pmd);
1065			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066		}
1067		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068		mm_inc_nr_ptes(dst_mm);
1069		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070		if (!userfaultfd_wp(dst_vma))
1071			pmd = pmd_swp_clear_uffd_wp(pmd);
1072		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073		ret = 0;
1074		goto out_unlock;
1075	}
1076#endif
1077
1078	if (unlikely(!pmd_trans_huge(pmd))) {
1079		pte_free(dst_mm, pgtable);
1080		goto out_unlock;
1081	}
1082	/*
1083	 * When page table lock is held, the huge zero pmd should not be
1084	 * under splitting since we don't split the page itself, only pmd to
1085	 * a page table.
1086	 */
1087	if (is_huge_zero_pmd(pmd)) {
1088		/*
1089		 * get_huge_zero_page() will never allocate a new page here,
1090		 * since we already have a zero page to copy. It just takes a
1091		 * reference.
1092		 */
1093		mm_get_huge_zero_page(dst_mm);
1094		goto out_zero_page;
1095	}
1096
1097	src_page = pmd_page(pmd);
1098	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099
1100	/*
1101	 * If this page is a potentially pinned page, split and retry the fault
1102	 * with smaller page size.  Normally this should not happen because the
1103	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104	 * best effort that the pinned pages won't be replaced by another
1105	 * random page during the coming copy-on-write.
1106	 */
1107	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108		pte_free(dst_mm, pgtable);
1109		spin_unlock(src_ptl);
1110		spin_unlock(dst_ptl);
1111		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112		return -EAGAIN;
1113	}
1114
1115	get_page(src_page);
1116	page_dup_rmap(src_page, true);
1117	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118out_zero_page:
1119	mm_inc_nr_ptes(dst_mm);
1120	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122	if (!userfaultfd_wp(dst_vma))
1123		pmd = pmd_clear_uffd_wp(pmd);
1124	pmd = pmd_mkold(pmd_wrprotect(pmd));
1125	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126
1127	ret = 0;
1128out_unlock:
1129	spin_unlock(src_ptl);
1130	spin_unlock(dst_ptl);
1131out:
1132	return ret;
1133}
1134
1135#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137		pud_t *pud, int flags)
1138{
1139	pud_t _pud;
1140
1141	_pud = pud_mkyoung(*pud);
1142	if (flags & FOLL_WRITE)
1143		_pud = pud_mkdirty(_pud);
1144	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145				pud, _pud, flags & FOLL_WRITE))
1146		update_mmu_cache_pud(vma, addr, pud);
1147}
1148
1149struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151{
1152	unsigned long pfn = pud_pfn(*pud);
1153	struct mm_struct *mm = vma->vm_mm;
1154	struct page *page;
 
1155
1156	assert_spin_locked(pud_lockptr(mm, pud));
1157
1158	if (flags & FOLL_WRITE && !pud_write(*pud))
1159		return NULL;
1160
1161	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163			 (FOLL_PIN | FOLL_GET)))
1164		return NULL;
1165
1166	if (pud_present(*pud) && pud_devmap(*pud))
1167		/* pass */;
1168	else
1169		return NULL;
1170
1171	if (flags & FOLL_TOUCH)
1172		touch_pud(vma, addr, pud, flags);
1173
1174	/*
1175	 * device mapped pages can only be returned if the
1176	 * caller will manage the page reference count.
1177	 *
1178	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179	 */
1180	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181		return ERR_PTR(-EEXIST);
1182
1183	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184	*pgmap = get_dev_pagemap(pfn, *pgmap);
1185	if (!*pgmap)
1186		return ERR_PTR(-EFAULT);
1187	page = pfn_to_page(pfn);
1188	if (!try_grab_page(page, flags))
1189		page = ERR_PTR(-ENOMEM);
 
 
1190
1191	return page;
1192}
1193
1194int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196		  struct vm_area_struct *vma)
1197{
1198	spinlock_t *dst_ptl, *src_ptl;
1199	pud_t pud;
1200	int ret;
1201
1202	dst_ptl = pud_lock(dst_mm, dst_pud);
1203	src_ptl = pud_lockptr(src_mm, src_pud);
1204	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205
1206	ret = -EAGAIN;
1207	pud = *src_pud;
1208	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209		goto out_unlock;
1210
1211	/*
1212	 * When page table lock is held, the huge zero pud should not be
1213	 * under splitting since we don't split the page itself, only pud to
1214	 * a page table.
1215	 */
1216	if (is_huge_zero_pud(pud)) {
1217		/* No huge zero pud yet */
1218	}
1219
1220	/* Please refer to comments in copy_huge_pmd() */
1221	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222		spin_unlock(src_ptl);
1223		spin_unlock(dst_ptl);
1224		__split_huge_pud(vma, src_pud, addr);
1225		return -EAGAIN;
1226	}
1227
1228	pudp_set_wrprotect(src_mm, addr, src_pud);
1229	pud = pud_mkold(pud_wrprotect(pud));
1230	set_pud_at(dst_mm, addr, dst_pud, pud);
1231
1232	ret = 0;
1233out_unlock:
1234	spin_unlock(src_ptl);
1235	spin_unlock(dst_ptl);
1236	return ret;
1237}
1238
1239void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240{
1241	pud_t entry;
1242	unsigned long haddr;
1243	bool write = vmf->flags & FAULT_FLAG_WRITE;
1244
1245	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247		goto unlock;
1248
1249	entry = pud_mkyoung(orig_pud);
1250	if (write)
1251		entry = pud_mkdirty(entry);
1252	haddr = vmf->address & HPAGE_PUD_MASK;
1253	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255
1256unlock:
1257	spin_unlock(vmf->ptl);
1258}
1259#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260
1261void huge_pmd_set_accessed(struct vm_fault *vmf)
1262{
1263	pmd_t entry;
1264	unsigned long haddr;
1265	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266	pmd_t orig_pmd = vmf->orig_pmd;
1267
1268	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270		goto unlock;
1271
1272	entry = pmd_mkyoung(orig_pmd);
1273	if (write)
1274		entry = pmd_mkdirty(entry);
1275	haddr = vmf->address & HPAGE_PMD_MASK;
1276	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278
1279unlock:
1280	spin_unlock(vmf->ptl);
1281}
1282
1283vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284{
 
1285	struct vm_area_struct *vma = vmf->vma;
 
1286	struct page *page;
1287	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288	pmd_t orig_pmd = vmf->orig_pmd;
1289
1290	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292
1293	if (is_huge_zero_pmd(orig_pmd))
1294		goto fallback;
1295
1296	spin_lock(vmf->ptl);
1297
1298	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299		spin_unlock(vmf->ptl);
1300		return 0;
1301	}
1302
1303	page = pmd_page(orig_pmd);
 
1304	VM_BUG_ON_PAGE(!PageHead(page), page);
1305
1306	/* Lock page for reuse_swap_page() */
1307	if (!trylock_page(page)) {
1308		get_page(page);
 
 
 
1309		spin_unlock(vmf->ptl);
1310		lock_page(page);
1311		spin_lock(vmf->ptl);
1312		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1313			spin_unlock(vmf->ptl);
1314			unlock_page(page);
1315			put_page(page);
1316			return 0;
1317		}
1318		put_page(page);
 
 
 
 
 
 
1319	}
1320
1321	/*
1322	 * We can only reuse the page if nobody else maps the huge page or it's
1323	 * part.
 
1324	 */
1325	if (reuse_swap_page(page, NULL)) {
 
 
 
 
 
1326		pmd_t entry;
 
 
 
 
 
 
 
 
1327		entry = pmd_mkyoung(orig_pmd);
1328		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1329		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1330			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1331		unlock_page(page);
1332		spin_unlock(vmf->ptl);
1333		return VM_FAULT_WRITE;
1334	}
1335
1336	unlock_page(page);
 
1337	spin_unlock(vmf->ptl);
1338fallback:
1339	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340	return VM_FAULT_FALLBACK;
1341}
1342
1343/*
1344 * FOLL_FORCE can write to even unwritable pmd's, but only
1345 * after we've gone through a COW cycle and they are dirty.
1346 */
1347static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348{
1349	return pmd_write(pmd) ||
1350	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351}
1352
1353struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1354				   unsigned long addr,
1355				   pmd_t *pmd,
1356				   unsigned int flags)
1357{
1358	struct mm_struct *mm = vma->vm_mm;
1359	struct page *page = NULL;
 
1360
1361	assert_spin_locked(pmd_lockptr(mm, pmd));
1362
1363	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1364		goto out;
 
 
 
 
1365
1366	/* Avoid dumping huge zero page */
1367	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368		return ERR_PTR(-EFAULT);
1369
1370	/* Full NUMA hinting faults to serialise migration in fault paths */
1371	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1372		goto out;
1373
1374	page = pmd_page(*pmd);
1375	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1376
1377	if (!try_grab_page(page, flags))
1378		return ERR_PTR(-ENOMEM);
1379
1380	if (flags & FOLL_TOUCH)
1381		touch_pmd(vma, addr, pmd, flags);
 
1382
1383	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1384		/*
1385		 * We don't mlock() pte-mapped THPs. This way we can avoid
1386		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387		 *
1388		 * For anon THP:
1389		 *
1390		 * In most cases the pmd is the only mapping of the page as we
1391		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392		 * writable private mappings in populate_vma_page_range().
1393		 *
1394		 * The only scenario when we have the page shared here is if we
1395		 * mlocking read-only mapping shared over fork(). We skip
1396		 * mlocking such pages.
1397		 *
1398		 * For file THP:
1399		 *
1400		 * We can expect PageDoubleMap() to be stable under page lock:
1401		 * for file pages we set it in page_add_file_rmap(), which
1402		 * requires page to be locked.
1403		 */
1404
1405		if (PageAnon(page) && compound_mapcount(page) != 1)
1406			goto skip_mlock;
1407		if (PageDoubleMap(page) || !page->mapping)
1408			goto skip_mlock;
1409		if (!trylock_page(page))
1410			goto skip_mlock;
1411		if (page->mapping && !PageDoubleMap(page))
1412			mlock_vma_page(page);
1413		unlock_page(page);
1414	}
1415skip_mlock:
1416	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1417	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1418
1419out:
1420	return page;
1421}
1422
1423/* NUMA hinting page fault entry point for trans huge pmds */
1424vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1425{
1426	struct vm_area_struct *vma = vmf->vma;
1427	pmd_t oldpmd = vmf->orig_pmd;
1428	pmd_t pmd;
1429	struct page *page;
1430	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1431	int page_nid = NUMA_NO_NODE;
1432	int target_nid, last_cpupid = -1;
1433	bool migrated = false;
1434	bool was_writable = pmd_savedwrite(oldpmd);
1435	int flags = 0;
1436
1437	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1439		spin_unlock(vmf->ptl);
1440		goto out;
1441	}
1442
 
 
1443	/*
1444	 * Since we took the NUMA fault, we must have observed the !accessible
1445	 * bit. Make sure all other CPUs agree with that, to avoid them
1446	 * modifying the page we're about to migrate.
1447	 *
1448	 * Must be done under PTL such that we'll observe the relevant
1449	 * inc_tlb_flush_pending().
1450	 *
1451	 * We are not sure a pending tlb flush here is for a huge page
1452	 * mapping or not. Hence use the tlb range variant
1453	 */
1454	if (mm_tlb_flush_pending(vma->vm_mm)) {
1455		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1456		/*
1457		 * change_huge_pmd() released the pmd lock before
1458		 * invalidating the secondary MMUs sharing the primary
1459		 * MMU pagetables (with ->invalidate_range()). The
1460		 * mmu_notifier_invalidate_range_end() (which
1461		 * internally calls ->invalidate_range()) in
1462		 * change_pmd_range() will run after us, so we can't
1463		 * rely on it here and we need an explicit invalidate.
1464		 */
1465		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1466					      haddr + HPAGE_PMD_SIZE);
1467	}
1468
1469	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1470	page = vm_normal_page_pmd(vma, haddr, pmd);
1471	if (!page)
1472		goto out_map;
1473
1474	/* See similar comment in do_numa_page for explanation */
1475	if (!was_writable)
1476		flags |= TNF_NO_GROUP;
1477
1478	page_nid = page_to_nid(page);
1479	last_cpupid = page_cpupid_last(page);
 
 
 
 
 
1480	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1481				       &flags);
1482
1483	if (target_nid == NUMA_NO_NODE) {
1484		put_page(page);
1485		goto out_map;
1486	}
1487
1488	spin_unlock(vmf->ptl);
 
1489
1490	migrated = migrate_misplaced_page(page, vma, target_nid);
1491	if (migrated) {
1492		flags |= TNF_MIGRATED;
1493		page_nid = target_nid;
1494	} else {
1495		flags |= TNF_MIGRATE_FAIL;
1496		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1497		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1498			spin_unlock(vmf->ptl);
1499			goto out;
1500		}
1501		goto out_map;
1502	}
1503
1504out:
1505	if (page_nid != NUMA_NO_NODE)
1506		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1507				flags);
1508
1509	return 0;
1510
1511out_map:
1512	/* Restore the PMD */
1513	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1514	pmd = pmd_mkyoung(pmd);
1515	if (was_writable)
1516		pmd = pmd_mkwrite(pmd);
1517	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1518	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1519	spin_unlock(vmf->ptl);
1520	goto out;
1521}
1522
1523/*
1524 * Return true if we do MADV_FREE successfully on entire pmd page.
1525 * Otherwise, return false.
1526 */
1527bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1528		pmd_t *pmd, unsigned long addr, unsigned long next)
1529{
1530	spinlock_t *ptl;
1531	pmd_t orig_pmd;
1532	struct page *page;
1533	struct mm_struct *mm = tlb->mm;
1534	bool ret = false;
1535
1536	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1537
1538	ptl = pmd_trans_huge_lock(pmd, vma);
1539	if (!ptl)
1540		goto out_unlocked;
1541
1542	orig_pmd = *pmd;
1543	if (is_huge_zero_pmd(orig_pmd))
1544		goto out;
1545
1546	if (unlikely(!pmd_present(orig_pmd))) {
1547		VM_BUG_ON(thp_migration_supported() &&
1548				  !is_pmd_migration_entry(orig_pmd));
1549		goto out;
1550	}
1551
1552	page = pmd_page(orig_pmd);
1553	/*
1554	 * If other processes are mapping this page, we couldn't discard
1555	 * the page unless they all do MADV_FREE so let's skip the page.
1556	 */
1557	if (total_mapcount(page) != 1)
1558		goto out;
1559
1560	if (!trylock_page(page))
1561		goto out;
1562
1563	/*
1564	 * If user want to discard part-pages of THP, split it so MADV_FREE
1565	 * will deactivate only them.
1566	 */
1567	if (next - addr != HPAGE_PMD_SIZE) {
1568		get_page(page);
1569		spin_unlock(ptl);
1570		split_huge_page(page);
1571		unlock_page(page);
1572		put_page(page);
1573		goto out_unlocked;
1574	}
1575
1576	if (PageDirty(page))
1577		ClearPageDirty(page);
1578	unlock_page(page);
1579
1580	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1581		pmdp_invalidate(vma, addr, pmd);
1582		orig_pmd = pmd_mkold(orig_pmd);
1583		orig_pmd = pmd_mkclean(orig_pmd);
1584
1585		set_pmd_at(mm, addr, pmd, orig_pmd);
1586		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1587	}
1588
1589	mark_page_lazyfree(page);
1590	ret = true;
1591out:
1592	spin_unlock(ptl);
1593out_unlocked:
1594	return ret;
1595}
1596
1597static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1598{
1599	pgtable_t pgtable;
1600
1601	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1602	pte_free(mm, pgtable);
1603	mm_dec_nr_ptes(mm);
1604}
1605
1606int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1607		 pmd_t *pmd, unsigned long addr)
1608{
1609	pmd_t orig_pmd;
1610	spinlock_t *ptl;
1611
1612	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1613
1614	ptl = __pmd_trans_huge_lock(pmd, vma);
1615	if (!ptl)
1616		return 0;
1617	/*
1618	 * For architectures like ppc64 we look at deposited pgtable
1619	 * when calling pmdp_huge_get_and_clear. So do the
1620	 * pgtable_trans_huge_withdraw after finishing pmdp related
1621	 * operations.
1622	 */
1623	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1624						tlb->fullmm);
1625	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1626	if (vma_is_special_huge(vma)) {
1627		if (arch_needs_pgtable_deposit())
1628			zap_deposited_table(tlb->mm, pmd);
1629		spin_unlock(ptl);
1630	} else if (is_huge_zero_pmd(orig_pmd)) {
1631		zap_deposited_table(tlb->mm, pmd);
1632		spin_unlock(ptl);
1633	} else {
1634		struct page *page = NULL;
1635		int flush_needed = 1;
1636
1637		if (pmd_present(orig_pmd)) {
1638			page = pmd_page(orig_pmd);
1639			page_remove_rmap(page, true);
1640			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1641			VM_BUG_ON_PAGE(!PageHead(page), page);
1642		} else if (thp_migration_supported()) {
1643			swp_entry_t entry;
1644
1645			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1646			entry = pmd_to_swp_entry(orig_pmd);
1647			page = pfn_swap_entry_to_page(entry);
1648			flush_needed = 0;
1649		} else
1650			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1651
1652		if (PageAnon(page)) {
1653			zap_deposited_table(tlb->mm, pmd);
1654			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1655		} else {
1656			if (arch_needs_pgtable_deposit())
1657				zap_deposited_table(tlb->mm, pmd);
1658			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1659		}
1660
1661		spin_unlock(ptl);
1662		if (flush_needed)
1663			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1664	}
1665	return 1;
1666}
1667
1668#ifndef pmd_move_must_withdraw
1669static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1670					 spinlock_t *old_pmd_ptl,
1671					 struct vm_area_struct *vma)
1672{
1673	/*
1674	 * With split pmd lock we also need to move preallocated
1675	 * PTE page table if new_pmd is on different PMD page table.
1676	 *
1677	 * We also don't deposit and withdraw tables for file pages.
1678	 */
1679	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1680}
1681#endif
1682
1683static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1684{
1685#ifdef CONFIG_MEM_SOFT_DIRTY
1686	if (unlikely(is_pmd_migration_entry(pmd)))
1687		pmd = pmd_swp_mksoft_dirty(pmd);
1688	else if (pmd_present(pmd))
1689		pmd = pmd_mksoft_dirty(pmd);
1690#endif
1691	return pmd;
1692}
1693
1694bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1695		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1696{
1697	spinlock_t *old_ptl, *new_ptl;
1698	pmd_t pmd;
1699	struct mm_struct *mm = vma->vm_mm;
1700	bool force_flush = false;
1701
1702	/*
1703	 * The destination pmd shouldn't be established, free_pgtables()
1704	 * should have release it.
1705	 */
1706	if (WARN_ON(!pmd_none(*new_pmd))) {
1707		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1708		return false;
1709	}
1710
1711	/*
1712	 * We don't have to worry about the ordering of src and dst
1713	 * ptlocks because exclusive mmap_lock prevents deadlock.
1714	 */
1715	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716	if (old_ptl) {
1717		new_ptl = pmd_lockptr(mm, new_pmd);
1718		if (new_ptl != old_ptl)
1719			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1720		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1721		if (pmd_present(pmd))
1722			force_flush = true;
1723		VM_BUG_ON(!pmd_none(*new_pmd));
1724
1725		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1726			pgtable_t pgtable;
1727			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1729		}
1730		pmd = move_soft_dirty_pmd(pmd);
1731		set_pmd_at(mm, new_addr, new_pmd, pmd);
1732		if (force_flush)
1733			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1734		if (new_ptl != old_ptl)
1735			spin_unlock(new_ptl);
1736		spin_unlock(old_ptl);
1737		return true;
1738	}
1739	return false;
1740}
1741
1742/*
1743 * Returns
1744 *  - 0 if PMD could not be locked
1745 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1746 *      or if prot_numa but THP migration is not supported
1747 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1748 */
1749int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1750		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
 
1751{
1752	struct mm_struct *mm = vma->vm_mm;
1753	spinlock_t *ptl;
1754	pmd_t entry;
1755	bool preserve_write;
1756	int ret;
1757	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1758	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1759	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
 
 
 
1760
1761	if (prot_numa && !thp_migration_supported())
1762		return 1;
1763
1764	ptl = __pmd_trans_huge_lock(pmd, vma);
1765	if (!ptl)
1766		return 0;
1767
1768	preserve_write = prot_numa && pmd_write(*pmd);
1769	ret = 1;
1770
1771#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1772	if (is_swap_pmd(*pmd)) {
1773		swp_entry_t entry = pmd_to_swp_entry(*pmd);
 
1774
1775		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1776		if (is_writable_migration_entry(entry)) {
1777			pmd_t newpmd;
1778			/*
1779			 * A protection check is difficult so
1780			 * just be safe and disable write
1781			 */
1782			entry = make_readable_migration_entry(
1783							swp_offset(entry));
 
 
1784			newpmd = swp_entry_to_pmd(entry);
1785			if (pmd_swp_soft_dirty(*pmd))
1786				newpmd = pmd_swp_mksoft_dirty(newpmd);
1787			if (pmd_swp_uffd_wp(*pmd))
1788				newpmd = pmd_swp_mkuffd_wp(newpmd);
1789			set_pmd_at(mm, addr, pmd, newpmd);
1790		}
1791		goto unlock;
1792	}
1793#endif
1794
1795	/*
1796	 * Avoid trapping faults against the zero page. The read-only
1797	 * data is likely to be read-cached on the local CPU and
1798	 * local/remote hits to the zero page are not interesting.
1799	 */
1800	if (prot_numa && is_huge_zero_pmd(*pmd))
1801		goto unlock;
 
 
 
1802
1803	if (prot_numa && pmd_protnone(*pmd))
1804		goto unlock;
1805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1806	/*
1807	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1808	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1809	 * which is also under mmap_read_lock(mm):
1810	 *
1811	 *	CPU0:				CPU1:
1812	 *				change_huge_pmd(prot_numa=1)
1813	 *				 pmdp_huge_get_and_clear_notify()
1814	 * madvise_dontneed()
1815	 *  zap_pmd_range()
1816	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1817	 *   // skip the pmd
1818	 *				 set_pmd_at();
1819	 *				 // pmd is re-established
1820	 *
1821	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1822	 * which may break userspace.
1823	 *
1824	 * pmdp_invalidate() is required to make sure we don't miss
1825	 * dirty/young flags set by hardware.
1826	 */
1827	entry = pmdp_invalidate(vma, addr, pmd);
1828
1829	entry = pmd_modify(entry, newprot);
1830	if (preserve_write)
1831		entry = pmd_mk_savedwrite(entry);
1832	if (uffd_wp) {
1833		entry = pmd_wrprotect(entry);
1834		entry = pmd_mkuffd_wp(entry);
1835	} else if (uffd_wp_resolve) {
1836		/*
1837		 * Leave the write bit to be handled by PF interrupt
1838		 * handler, then things like COW could be properly
1839		 * handled.
1840		 */
1841		entry = pmd_clear_uffd_wp(entry);
1842	}
 
 
 
 
 
 
1843	ret = HPAGE_PMD_NR;
1844	set_pmd_at(mm, addr, pmd, entry);
1845	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
 
 
1846unlock:
1847	spin_unlock(ptl);
1848	return ret;
1849}
1850
1851/*
1852 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1853 *
1854 * Note that if it returns page table lock pointer, this routine returns without
1855 * unlocking page table lock. So callers must unlock it.
1856 */
1857spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1858{
1859	spinlock_t *ptl;
1860	ptl = pmd_lock(vma->vm_mm, pmd);
1861	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1862			pmd_devmap(*pmd)))
1863		return ptl;
1864	spin_unlock(ptl);
1865	return NULL;
1866}
1867
1868/*
1869 * Returns true if a given pud maps a thp, false otherwise.
1870 *
1871 * Note that if it returns true, this routine returns without unlocking page
1872 * table lock. So callers must unlock it.
1873 */
1874spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1875{
1876	spinlock_t *ptl;
1877
1878	ptl = pud_lock(vma->vm_mm, pud);
1879	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1880		return ptl;
1881	spin_unlock(ptl);
1882	return NULL;
1883}
1884
1885#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1886int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1887		 pud_t *pud, unsigned long addr)
1888{
1889	spinlock_t *ptl;
1890
1891	ptl = __pud_trans_huge_lock(pud, vma);
1892	if (!ptl)
1893		return 0;
1894	/*
1895	 * For architectures like ppc64 we look at deposited pgtable
1896	 * when calling pudp_huge_get_and_clear. So do the
1897	 * pgtable_trans_huge_withdraw after finishing pudp related
1898	 * operations.
1899	 */
1900	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1901	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1902	if (vma_is_special_huge(vma)) {
1903		spin_unlock(ptl);
1904		/* No zero page support yet */
1905	} else {
1906		/* No support for anonymous PUD pages yet */
1907		BUG();
1908	}
1909	return 1;
1910}
1911
1912static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1913		unsigned long haddr)
1914{
1915	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1916	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1917	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1918	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1919
1920	count_vm_event(THP_SPLIT_PUD);
1921
1922	pudp_huge_clear_flush_notify(vma, haddr, pud);
1923}
1924
1925void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1926		unsigned long address)
1927{
1928	spinlock_t *ptl;
1929	struct mmu_notifier_range range;
1930
1931	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1932				address & HPAGE_PUD_MASK,
1933				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1934	mmu_notifier_invalidate_range_start(&range);
1935	ptl = pud_lock(vma->vm_mm, pud);
1936	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1937		goto out;
1938	__split_huge_pud_locked(vma, pud, range.start);
1939
1940out:
1941	spin_unlock(ptl);
1942	/*
1943	 * No need to double call mmu_notifier->invalidate_range() callback as
1944	 * the above pudp_huge_clear_flush_notify() did already call it.
1945	 */
1946	mmu_notifier_invalidate_range_only_end(&range);
1947}
1948#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1949
1950static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1951		unsigned long haddr, pmd_t *pmd)
1952{
1953	struct mm_struct *mm = vma->vm_mm;
1954	pgtable_t pgtable;
1955	pmd_t _pmd;
1956	int i;
1957
1958	/*
1959	 * Leave pmd empty until pte is filled note that it is fine to delay
1960	 * notification until mmu_notifier_invalidate_range_end() as we are
1961	 * replacing a zero pmd write protected page with a zero pte write
1962	 * protected page.
1963	 *
1964	 * See Documentation/vm/mmu_notifier.rst
1965	 */
1966	pmdp_huge_clear_flush(vma, haddr, pmd);
1967
1968	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1969	pmd_populate(mm, &_pmd, pgtable);
1970
1971	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1972		pte_t *pte, entry;
1973		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1974		entry = pte_mkspecial(entry);
1975		pte = pte_offset_map(&_pmd, haddr);
1976		VM_BUG_ON(!pte_none(*pte));
1977		set_pte_at(mm, haddr, pte, entry);
1978		pte_unmap(pte);
1979	}
1980	smp_wmb(); /* make pte visible before pmd */
1981	pmd_populate(mm, pmd, pgtable);
1982}
1983
1984static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1985		unsigned long haddr, bool freeze)
1986{
1987	struct mm_struct *mm = vma->vm_mm;
1988	struct page *page;
1989	pgtable_t pgtable;
1990	pmd_t old_pmd, _pmd;
1991	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
 
1992	unsigned long addr;
1993	int i;
1994
1995	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1996	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1997	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1998	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1999				&& !pmd_devmap(*pmd));
2000
2001	count_vm_event(THP_SPLIT_PMD);
2002
2003	if (!vma_is_anonymous(vma)) {
2004		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2005		/*
2006		 * We are going to unmap this huge page. So
2007		 * just go ahead and zap it
2008		 */
2009		if (arch_needs_pgtable_deposit())
2010			zap_deposited_table(mm, pmd);
2011		if (vma_is_special_huge(vma))
2012			return;
2013		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2014			swp_entry_t entry;
2015
2016			entry = pmd_to_swp_entry(old_pmd);
2017			page = pfn_swap_entry_to_page(entry);
2018		} else {
2019			page = pmd_page(old_pmd);
2020			if (!PageDirty(page) && pmd_dirty(old_pmd))
2021				set_page_dirty(page);
2022			if (!PageReferenced(page) && pmd_young(old_pmd))
2023				SetPageReferenced(page);
2024			page_remove_rmap(page, true);
2025			put_page(page);
2026		}
2027		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2028		return;
2029	}
2030
2031	if (is_huge_zero_pmd(*pmd)) {
2032		/*
2033		 * FIXME: Do we want to invalidate secondary mmu by calling
2034		 * mmu_notifier_invalidate_range() see comments below inside
2035		 * __split_huge_pmd() ?
2036		 *
2037		 * We are going from a zero huge page write protected to zero
2038		 * small page also write protected so it does not seems useful
2039		 * to invalidate secondary mmu at this time.
2040		 */
2041		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2042	}
2043
2044	/*
2045	 * Up to this point the pmd is present and huge and userland has the
2046	 * whole access to the hugepage during the split (which happens in
2047	 * place). If we overwrite the pmd with the not-huge version pointing
2048	 * to the pte here (which of course we could if all CPUs were bug
2049	 * free), userland could trigger a small page size TLB miss on the
2050	 * small sized TLB while the hugepage TLB entry is still established in
2051	 * the huge TLB. Some CPU doesn't like that.
2052	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2053	 * 383 on page 105. Intel should be safe but is also warns that it's
2054	 * only safe if the permission and cache attributes of the two entries
2055	 * loaded in the two TLB is identical (which should be the case here).
2056	 * But it is generally safer to never allow small and huge TLB entries
2057	 * for the same virtual address to be loaded simultaneously. So instead
2058	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059	 * current pmd notpresent (atomically because here the pmd_trans_huge
2060	 * must remain set at all times on the pmd until the split is complete
2061	 * for this pmd), then we flush the SMP TLB and finally we write the
2062	 * non-huge version of the pmd entry with pmd_populate.
2063	 */
2064	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2065
2066	pmd_migration = is_pmd_migration_entry(old_pmd);
2067	if (unlikely(pmd_migration)) {
2068		swp_entry_t entry;
2069
2070		entry = pmd_to_swp_entry(old_pmd);
2071		page = pfn_swap_entry_to_page(entry);
2072		write = is_writable_migration_entry(entry);
2073		young = false;
 
 
 
2074		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2075		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2076	} else {
2077		page = pmd_page(old_pmd);
2078		if (pmd_dirty(old_pmd))
 
2079			SetPageDirty(page);
 
2080		write = pmd_write(old_pmd);
2081		young = pmd_young(old_pmd);
2082		soft_dirty = pmd_soft_dirty(old_pmd);
2083		uffd_wp = pmd_uffd_wp(old_pmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084	}
2085	VM_BUG_ON_PAGE(!page_count(page), page);
2086	page_ref_add(page, HPAGE_PMD_NR - 1);
2087
2088	/*
2089	 * Withdraw the table only after we mark the pmd entry invalid.
2090	 * This's critical for some architectures (Power).
2091	 */
2092	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2093	pmd_populate(mm, &_pmd, pgtable);
2094
2095	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2096		pte_t entry, *pte;
2097		/*
2098		 * Note that NUMA hinting access restrictions are not
2099		 * transferred to avoid any possibility of altering
2100		 * permissions across VMAs.
2101		 */
2102		if (freeze || pmd_migration) {
2103			swp_entry_t swp_entry;
2104			if (write)
2105				swp_entry = make_writable_migration_entry(
2106							page_to_pfn(page + i));
 
 
 
2107			else
2108				swp_entry = make_readable_migration_entry(
2109							page_to_pfn(page + i));
 
 
 
 
2110			entry = swp_entry_to_pte(swp_entry);
2111			if (soft_dirty)
2112				entry = pte_swp_mksoft_dirty(entry);
2113			if (uffd_wp)
2114				entry = pte_swp_mkuffd_wp(entry);
2115		} else {
2116			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2117			entry = maybe_mkwrite(entry, vma);
2118			if (!write)
2119				entry = pte_wrprotect(entry);
2120			if (!young)
2121				entry = pte_mkold(entry);
 
 
 
 
 
 
 
 
 
 
2122			if (soft_dirty)
2123				entry = pte_mksoft_dirty(entry);
2124			if (uffd_wp)
2125				entry = pte_mkuffd_wp(entry);
 
2126		}
2127		pte = pte_offset_map(&_pmd, addr);
2128		BUG_ON(!pte_none(*pte));
2129		set_pte_at(mm, addr, pte, entry);
2130		if (!pmd_migration)
2131			atomic_inc(&page[i]._mapcount);
2132		pte_unmap(pte);
2133	}
2134
2135	if (!pmd_migration) {
2136		/*
2137		 * Set PG_double_map before dropping compound_mapcount to avoid
2138		 * false-negative page_mapped().
2139		 */
2140		if (compound_mapcount(page) > 1 &&
2141		    !TestSetPageDoubleMap(page)) {
2142			for (i = 0; i < HPAGE_PMD_NR; i++)
2143				atomic_inc(&page[i]._mapcount);
2144		}
2145
2146		lock_page_memcg(page);
2147		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2148			/* Last compound_mapcount is gone. */
2149			__mod_lruvec_page_state(page, NR_ANON_THPS,
2150						-HPAGE_PMD_NR);
2151			if (TestClearPageDoubleMap(page)) {
2152				/* No need in mapcount reference anymore */
2153				for (i = 0; i < HPAGE_PMD_NR; i++)
2154					atomic_dec(&page[i]._mapcount);
2155			}
2156		}
2157		unlock_page_memcg(page);
2158	}
2159
2160	smp_wmb(); /* make pte visible before pmd */
2161	pmd_populate(mm, pmd, pgtable);
2162
2163	if (freeze) {
2164		for (i = 0; i < HPAGE_PMD_NR; i++) {
2165			page_remove_rmap(page + i, false);
2166			put_page(page + i);
2167		}
2168	}
2169}
2170
2171void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2172		unsigned long address, bool freeze, struct page *page)
2173{
2174	spinlock_t *ptl;
2175	struct mmu_notifier_range range;
2176	bool do_unlock_page = false;
2177	pmd_t _pmd;
2178
2179	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2180				address & HPAGE_PMD_MASK,
2181				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2182	mmu_notifier_invalidate_range_start(&range);
2183	ptl = pmd_lock(vma->vm_mm, pmd);
2184
2185	/*
2186	 * If caller asks to setup a migration entries, we need a page to check
2187	 * pmd against. Otherwise we can end up replacing wrong page.
2188	 */
2189	VM_BUG_ON(freeze && !page);
2190	if (page) {
2191		VM_WARN_ON_ONCE(!PageLocked(page));
2192		if (page != pmd_page(*pmd))
 
 
 
 
 
 
2193			goto out;
 
2194	}
2195
2196repeat:
2197	if (pmd_trans_huge(*pmd)) {
2198		if (!page) {
2199			page = pmd_page(*pmd);
2200			/*
2201			 * An anonymous page must be locked, to ensure that a
2202			 * concurrent reuse_swap_page() sees stable mapcount;
2203			 * but reuse_swap_page() is not used on shmem or file,
2204			 * and page lock must not be taken when zap_pmd_range()
2205			 * calls __split_huge_pmd() while i_mmap_lock is held.
2206			 */
2207			if (PageAnon(page)) {
2208				if (unlikely(!trylock_page(page))) {
2209					get_page(page);
2210					_pmd = *pmd;
2211					spin_unlock(ptl);
2212					lock_page(page);
2213					spin_lock(ptl);
2214					if (unlikely(!pmd_same(*pmd, _pmd))) {
2215						unlock_page(page);
2216						put_page(page);
2217						page = NULL;
2218						goto repeat;
2219					}
2220					put_page(page);
2221				}
2222				do_unlock_page = true;
2223			}
2224		}
2225		if (PageMlocked(page))
2226			clear_page_mlock(page);
2227	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2228		goto out;
2229	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2230out:
2231	spin_unlock(ptl);
2232	if (do_unlock_page)
2233		unlock_page(page);
2234	/*
2235	 * No need to double call mmu_notifier->invalidate_range() callback.
2236	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2237	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2238	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2239	 *    fault will trigger a flush_notify before pointing to a new page
2240	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2241	 *    page in the meantime)
2242	 *  3) Split a huge pmd into pte pointing to the same page. No need
2243	 *     to invalidate secondary tlb entry they are all still valid.
2244	 *     any further changes to individual pte will notify. So no need
2245	 *     to call mmu_notifier->invalidate_range()
2246	 */
2247	mmu_notifier_invalidate_range_only_end(&range);
2248}
2249
2250void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2251		bool freeze, struct page *page)
2252{
2253	pgd_t *pgd;
2254	p4d_t *p4d;
2255	pud_t *pud;
2256	pmd_t *pmd;
2257
2258	pgd = pgd_offset(vma->vm_mm, address);
2259	if (!pgd_present(*pgd))
2260		return;
2261
2262	p4d = p4d_offset(pgd, address);
2263	if (!p4d_present(*p4d))
2264		return;
2265
2266	pud = pud_offset(p4d, address);
2267	if (!pud_present(*pud))
2268		return;
2269
2270	pmd = pmd_offset(pud, address);
2271
2272	__split_huge_pmd(vma, pmd, address, freeze, page);
2273}
2274
2275static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2276{
2277	/*
2278	 * If the new address isn't hpage aligned and it could previously
2279	 * contain an hugepage: check if we need to split an huge pmd.
2280	 */
2281	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2282	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2283			 ALIGN(address, HPAGE_PMD_SIZE)))
2284		split_huge_pmd_address(vma, address, false, NULL);
2285}
2286
2287void vma_adjust_trans_huge(struct vm_area_struct *vma,
2288			     unsigned long start,
2289			     unsigned long end,
2290			     long adjust_next)
2291{
2292	/* Check if we need to split start first. */
2293	split_huge_pmd_if_needed(vma, start);
2294
2295	/* Check if we need to split end next. */
2296	split_huge_pmd_if_needed(vma, end);
2297
2298	/*
2299	 * If we're also updating the vma->vm_next->vm_start,
2300	 * check if we need to split it.
2301	 */
2302	if (adjust_next > 0) {
2303		struct vm_area_struct *next = vma->vm_next;
2304		unsigned long nstart = next->vm_start;
2305		nstart += adjust_next;
2306		split_huge_pmd_if_needed(next, nstart);
2307	}
2308}
2309
2310static void unmap_page(struct page *page)
2311{
2312	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2313		TTU_SYNC;
2314
2315	VM_BUG_ON_PAGE(!PageHead(page), page);
2316
2317	/*
2318	 * Anon pages need migration entries to preserve them, but file
2319	 * pages can simply be left unmapped, then faulted back on demand.
2320	 * If that is ever changed (perhaps for mlock), update remap_page().
2321	 */
2322	if (PageAnon(page))
2323		try_to_migrate(page, ttu_flags);
2324	else
2325		try_to_unmap(page, ttu_flags | TTU_IGNORE_MLOCK);
2326
2327	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2328}
2329
2330static void remap_page(struct page *page, unsigned int nr)
2331{
2332	int i;
2333
2334	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2335	if (!PageAnon(page))
2336		return;
2337	if (PageTransHuge(page)) {
2338		remove_migration_ptes(page, page, true);
2339	} else {
2340		for (i = 0; i < nr; i++)
2341			remove_migration_ptes(page + i, page + i, true);
 
2342	}
2343}
2344
2345static void lru_add_page_tail(struct page *head, struct page *tail,
2346		struct lruvec *lruvec, struct list_head *list)
2347{
2348	VM_BUG_ON_PAGE(!PageHead(head), head);
2349	VM_BUG_ON_PAGE(PageCompound(tail), head);
2350	VM_BUG_ON_PAGE(PageLRU(tail), head);
2351	lockdep_assert_held(&lruvec->lru_lock);
2352
2353	if (list) {
2354		/* page reclaim is reclaiming a huge page */
2355		VM_WARN_ON(PageLRU(head));
2356		get_page(tail);
2357		list_add_tail(&tail->lru, list);
2358	} else {
2359		/* head is still on lru (and we have it frozen) */
2360		VM_WARN_ON(!PageLRU(head));
 
 
 
 
2361		SetPageLRU(tail);
2362		list_add_tail(&tail->lru, &head->lru);
2363	}
2364}
2365
2366static void __split_huge_page_tail(struct page *head, int tail,
2367		struct lruvec *lruvec, struct list_head *list)
2368{
2369	struct page *page_tail = head + tail;
2370
2371	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2372
2373	/*
2374	 * Clone page flags before unfreezing refcount.
2375	 *
2376	 * After successful get_page_unless_zero() might follow flags change,
2377	 * for example lock_page() which set PG_waiters.
 
 
 
 
 
 
 
2378	 */
2379	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2380	page_tail->flags |= (head->flags &
2381			((1L << PG_referenced) |
2382			 (1L << PG_swapbacked) |
2383			 (1L << PG_swapcache) |
2384			 (1L << PG_mlocked) |
2385			 (1L << PG_uptodate) |
2386			 (1L << PG_active) |
2387			 (1L << PG_workingset) |
2388			 (1L << PG_locked) |
2389			 (1L << PG_unevictable) |
2390#ifdef CONFIG_64BIT
2391			 (1L << PG_arch_2) |
 
2392#endif
2393			 (1L << PG_dirty)));
 
2394
2395	/* ->mapping in first tail page is compound_mapcount */
2396	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2397			page_tail);
2398	page_tail->mapping = head->mapping;
2399	page_tail->index = head->index + tail;
2400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401	/* Page flags must be visible before we make the page non-compound. */
2402	smp_wmb();
2403
2404	/*
2405	 * Clear PageTail before unfreezing page refcount.
2406	 *
2407	 * After successful get_page_unless_zero() might follow put_page()
2408	 * which needs correct compound_head().
2409	 */
2410	clear_compound_head(page_tail);
2411
2412	/* Finally unfreeze refcount. Additional reference from page cache. */
2413	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2414					  PageSwapCache(head)));
2415
2416	if (page_is_young(head))
2417		set_page_young(page_tail);
2418	if (page_is_idle(head))
2419		set_page_idle(page_tail);
2420
2421	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2422
2423	/*
2424	 * always add to the tail because some iterators expect new
2425	 * pages to show after the currently processed elements - e.g.
2426	 * migrate_pages
2427	 */
2428	lru_add_page_tail(head, page_tail, lruvec, list);
2429}
2430
2431static void __split_huge_page(struct page *page, struct list_head *list,
2432		pgoff_t end)
2433{
2434	struct page *head = compound_head(page);
 
2435	struct lruvec *lruvec;
2436	struct address_space *swap_cache = NULL;
2437	unsigned long offset = 0;
2438	unsigned int nr = thp_nr_pages(head);
2439	int i;
2440
2441	/* complete memcg works before add pages to LRU */
2442	split_page_memcg(head, nr);
2443
2444	if (PageAnon(head) && PageSwapCache(head)) {
2445		swp_entry_t entry = { .val = page_private(head) };
2446
2447		offset = swp_offset(entry);
2448		swap_cache = swap_address_space(entry);
2449		xa_lock(&swap_cache->i_pages);
2450	}
2451
2452	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2453	lruvec = lock_page_lruvec(head);
 
 
2454
2455	for (i = nr - 1; i >= 1; i--) {
2456		__split_huge_page_tail(head, i, lruvec, list);
2457		/* Some pages can be beyond i_size: drop them from page cache */
2458		if (head[i].index >= end) {
2459			ClearPageDirty(head + i);
2460			__delete_from_page_cache(head + i, NULL);
2461			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2462				shmem_uncharge(head->mapping->host, 1);
2463			put_page(head + i);
 
 
 
 
2464		} else if (!PageAnon(page)) {
2465			__xa_store(&head->mapping->i_pages, head[i].index,
2466					head + i, 0);
2467		} else if (swap_cache) {
2468			__xa_store(&swap_cache->i_pages, offset + i,
2469					head + i, 0);
2470		}
2471	}
2472
2473	ClearPageCompound(head);
2474	unlock_page_lruvec(lruvec);
2475	/* Caller disabled irqs, so they are still disabled here */
2476
2477	split_page_owner(head, nr);
2478
2479	/* See comment in __split_huge_page_tail() */
2480	if (PageAnon(head)) {
2481		/* Additional pin to swap cache */
2482		if (PageSwapCache(head)) {
2483			page_ref_add(head, 2);
2484			xa_unlock(&swap_cache->i_pages);
2485		} else {
2486			page_ref_inc(head);
2487		}
2488	} else {
2489		/* Additional pin to page cache */
2490		page_ref_add(head, 2);
2491		xa_unlock(&head->mapping->i_pages);
2492	}
2493	local_irq_enable();
2494
2495	remap_page(head, nr);
2496
2497	if (PageSwapCache(head)) {
2498		swp_entry_t entry = { .val = page_private(head) };
2499
2500		split_swap_cluster(entry);
2501	}
2502
2503	for (i = 0; i < nr; i++) {
2504		struct page *subpage = head + i;
2505		if (subpage == page)
2506			continue;
2507		unlock_page(subpage);
2508
2509		/*
2510		 * Subpages may be freed if there wasn't any mapping
2511		 * like if add_to_swap() is running on a lru page that
2512		 * had its mapping zapped. And freeing these pages
2513		 * requires taking the lru_lock so we do the put_page
2514		 * of the tail pages after the split is complete.
2515		 */
2516		put_page(subpage);
2517	}
2518}
2519
2520int total_mapcount(struct page *page)
2521{
2522	int i, compound, nr, ret;
2523
2524	VM_BUG_ON_PAGE(PageTail(page), page);
2525
2526	if (likely(!PageCompound(page)))
2527		return atomic_read(&page->_mapcount) + 1;
2528
2529	compound = compound_mapcount(page);
2530	nr = compound_nr(page);
2531	if (PageHuge(page))
2532		return compound;
2533	ret = compound;
2534	for (i = 0; i < nr; i++)
2535		ret += atomic_read(&page[i]._mapcount) + 1;
2536	/* File pages has compound_mapcount included in _mapcount */
2537	if (!PageAnon(page))
2538		return ret - compound * nr;
2539	if (PageDoubleMap(page))
2540		ret -= nr;
2541	return ret;
2542}
2543
2544/*
2545 * This calculates accurately how many mappings a transparent hugepage
2546 * has (unlike page_mapcount() which isn't fully accurate). This full
2547 * accuracy is primarily needed to know if copy-on-write faults can
2548 * reuse the page and change the mapping to read-write instead of
2549 * copying them. At the same time this returns the total_mapcount too.
2550 *
2551 * The function returns the highest mapcount any one of the subpages
2552 * has. If the return value is one, even if different processes are
2553 * mapping different subpages of the transparent hugepage, they can
2554 * all reuse it, because each process is reusing a different subpage.
2555 *
2556 * The total_mapcount is instead counting all virtual mappings of the
2557 * subpages. If the total_mapcount is equal to "one", it tells the
2558 * caller all mappings belong to the same "mm" and in turn the
2559 * anon_vma of the transparent hugepage can become the vma->anon_vma
2560 * local one as no other process may be mapping any of the subpages.
2561 *
2562 * It would be more accurate to replace page_mapcount() with
2563 * page_trans_huge_mapcount(), however we only use
2564 * page_trans_huge_mapcount() in the copy-on-write faults where we
2565 * need full accuracy to avoid breaking page pinning, because
2566 * page_trans_huge_mapcount() is slower than page_mapcount().
2567 */
2568int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2569{
2570	int i, ret, _total_mapcount, mapcount;
2571
2572	/* hugetlbfs shouldn't call it */
2573	VM_BUG_ON_PAGE(PageHuge(page), page);
2574
2575	if (likely(!PageTransCompound(page))) {
2576		mapcount = atomic_read(&page->_mapcount) + 1;
2577		if (total_mapcount)
2578			*total_mapcount = mapcount;
2579		return mapcount;
2580	}
2581
2582	page = compound_head(page);
2583
2584	_total_mapcount = ret = 0;
2585	for (i = 0; i < thp_nr_pages(page); i++) {
2586		mapcount = atomic_read(&page[i]._mapcount) + 1;
2587		ret = max(ret, mapcount);
2588		_total_mapcount += mapcount;
2589	}
2590	if (PageDoubleMap(page)) {
2591		ret -= 1;
2592		_total_mapcount -= thp_nr_pages(page);
2593	}
2594	mapcount = compound_mapcount(page);
2595	ret += mapcount;
2596	_total_mapcount += mapcount;
2597	if (total_mapcount)
2598		*total_mapcount = _total_mapcount;
2599	return ret;
2600}
2601
2602/* Racy check whether the huge page can be split */
2603bool can_split_huge_page(struct page *page, int *pextra_pins)
2604{
2605	int extra_pins;
2606
2607	/* Additional pins from page cache */
2608	if (PageAnon(page))
2609		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
 
2610	else
2611		extra_pins = thp_nr_pages(page);
2612	if (pextra_pins)
2613		*pextra_pins = extra_pins;
2614	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2615}
2616
2617/*
2618 * This function splits huge page into normal pages. @page can point to any
2619 * subpage of huge page to split. Split doesn't change the position of @page.
2620 *
2621 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2622 * The huge page must be locked.
2623 *
2624 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2625 *
2626 * Both head page and tail pages will inherit mapping, flags, and so on from
2627 * the hugepage.
2628 *
2629 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2630 * they are not mapped.
2631 *
2632 * Returns 0 if the hugepage is split successfully.
2633 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2634 * us.
2635 */
2636int split_huge_page_to_list(struct page *page, struct list_head *list)
2637{
2638	struct page *head = compound_head(page);
2639	struct deferred_split *ds_queue = get_deferred_split_queue(head);
 
2640	struct anon_vma *anon_vma = NULL;
2641	struct address_space *mapping = NULL;
2642	int extra_pins, ret;
2643	pgoff_t end;
 
2644
2645	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2646	VM_BUG_ON_PAGE(!PageLocked(head), head);
2647	VM_BUG_ON_PAGE(!PageCompound(head), head);
2648
2649	if (PageWriteback(head))
 
 
2650		return -EBUSY;
2651
2652	if (PageAnon(head)) {
 
 
 
2653		/*
2654		 * The caller does not necessarily hold an mmap_lock that would
2655		 * prevent the anon_vma disappearing so we first we take a
2656		 * reference to it and then lock the anon_vma for write. This
2657		 * is similar to page_lock_anon_vma_read except the write lock
2658		 * is taken to serialise against parallel split or collapse
2659		 * operations.
2660		 */
2661		anon_vma = page_get_anon_vma(head);
2662		if (!anon_vma) {
2663			ret = -EBUSY;
2664			goto out;
2665		}
2666		end = -1;
2667		mapping = NULL;
2668		anon_vma_lock_write(anon_vma);
2669	} else {
2670		mapping = head->mapping;
 
 
2671
2672		/* Truncated ? */
2673		if (!mapping) {
2674			ret = -EBUSY;
2675			goto out;
2676		}
2677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2678		anon_vma = NULL;
2679		i_mmap_lock_read(mapping);
2680
2681		/*
2682		 *__split_huge_page() may need to trim off pages beyond EOF:
2683		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2684		 * which cannot be nested inside the page tree lock. So note
2685		 * end now: i_size itself may be changed at any moment, but
2686		 * head page lock is good enough to serialize the trimming.
2687		 */
2688		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
 
 
2689	}
2690
2691	/*
2692	 * Racy check if we can split the page, before unmap_page() will
2693	 * split PMDs
2694	 */
2695	if (!can_split_huge_page(head, &extra_pins)) {
2696		ret = -EBUSY;
2697		goto out_unlock;
2698	}
2699
2700	unmap_page(head);
2701
2702	/* block interrupt reentry in xa_lock and spinlock */
2703	local_irq_disable();
2704	if (mapping) {
2705		XA_STATE(xas, &mapping->i_pages, page_index(head));
2706
2707		/*
2708		 * Check if the head page is present in page cache.
2709		 * We assume all tail are present too, if head is there.
2710		 */
2711		xa_lock(&mapping->i_pages);
2712		if (xas_load(&xas) != head)
 
2713			goto fail;
2714	}
2715
2716	/* Prevent deferred_split_scan() touching ->_refcount */
2717	spin_lock(&ds_queue->split_queue_lock);
2718	if (page_ref_freeze(head, 1 + extra_pins)) {
2719		if (!list_empty(page_deferred_list(head))) {
2720			ds_queue->split_queue_len--;
2721			list_del(page_deferred_list(head));
2722		}
2723		spin_unlock(&ds_queue->split_queue_lock);
2724		if (mapping) {
2725			int nr = thp_nr_pages(head);
2726
2727			if (PageSwapBacked(head)) {
2728				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
 
2729							-nr);
2730			} else {
2731				__mod_lruvec_page_state(head, NR_FILE_THPS,
2732							-nr);
2733				filemap_nr_thps_dec(mapping);
2734			}
2735		}
2736
2737		__split_huge_page(page, list, end);
2738		ret = 0;
2739	} else {
2740		spin_unlock(&ds_queue->split_queue_lock);
2741fail:
2742		if (mapping)
2743			xa_unlock(&mapping->i_pages);
2744		local_irq_enable();
2745		remap_page(head, thp_nr_pages(head));
2746		ret = -EBUSY;
2747	}
2748
2749out_unlock:
2750	if (anon_vma) {
2751		anon_vma_unlock_write(anon_vma);
2752		put_anon_vma(anon_vma);
2753	}
2754	if (mapping)
2755		i_mmap_unlock_read(mapping);
2756out:
 
2757	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2758	return ret;
2759}
2760
2761void free_transhuge_page(struct page *page)
2762{
2763	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2764	unsigned long flags;
2765
2766	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2767	if (!list_empty(page_deferred_list(page))) {
2768		ds_queue->split_queue_len--;
2769		list_del(page_deferred_list(page));
2770	}
2771	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2772	free_compound_page(page);
2773}
2774
2775void deferred_split_huge_page(struct page *page)
2776{
2777	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2778#ifdef CONFIG_MEMCG
2779	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2780#endif
2781	unsigned long flags;
2782
2783	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2784
2785	/*
2786	 * The try_to_unmap() in page reclaim path might reach here too,
2787	 * this may cause a race condition to corrupt deferred split queue.
2788	 * And, if page reclaim is already handling the same page, it is
2789	 * unnecessary to handle it again in shrinker.
2790	 *
2791	 * Check PageSwapCache to determine if the page is being
2792	 * handled by page reclaim since THP swap would add the page into
2793	 * swap cache before calling try_to_unmap().
2794	 */
2795	if (PageSwapCache(page))
2796		return;
2797
2798	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2799	if (list_empty(page_deferred_list(page))) {
2800		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2801		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2802		ds_queue->split_queue_len++;
2803#ifdef CONFIG_MEMCG
2804		if (memcg)
2805			set_shrinker_bit(memcg, page_to_nid(page),
2806					 deferred_split_shrinker.id);
2807#endif
2808	}
2809	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2810}
2811
2812static unsigned long deferred_split_count(struct shrinker *shrink,
2813		struct shrink_control *sc)
2814{
2815	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2816	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2817
2818#ifdef CONFIG_MEMCG
2819	if (sc->memcg)
2820		ds_queue = &sc->memcg->deferred_split_queue;
2821#endif
2822	return READ_ONCE(ds_queue->split_queue_len);
2823}
2824
2825static unsigned long deferred_split_scan(struct shrinker *shrink,
2826		struct shrink_control *sc)
2827{
2828	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2829	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2830	unsigned long flags;
2831	LIST_HEAD(list), *pos, *next;
2832	struct page *page;
2833	int split = 0;
2834
2835#ifdef CONFIG_MEMCG
2836	if (sc->memcg)
2837		ds_queue = &sc->memcg->deferred_split_queue;
2838#endif
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	/* Take pin on all head pages to avoid freeing them under us */
2842	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2843		page = list_entry((void *)pos, struct page, deferred_list);
2844		page = compound_head(page);
2845		if (get_page_unless_zero(page)) {
2846			list_move(page_deferred_list(page), &list);
2847		} else {
2848			/* We lost race with put_compound_page() */
2849			list_del_init(page_deferred_list(page));
2850			ds_queue->split_queue_len--;
2851		}
2852		if (!--sc->nr_to_scan)
2853			break;
2854	}
2855	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2856
2857	list_for_each_safe(pos, next, &list) {
2858		page = list_entry((void *)pos, struct page, deferred_list);
2859		if (!trylock_page(page))
2860			goto next;
2861		/* split_huge_page() removes page from list on success */
2862		if (!split_huge_page(page))
2863			split++;
2864		unlock_page(page);
2865next:
2866		put_page(page);
2867	}
2868
2869	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2870	list_splice_tail(&list, &ds_queue->split_queue);
2871	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2872
2873	/*
2874	 * Stop shrinker if we didn't split any page, but the queue is empty.
2875	 * This can happen if pages were freed under us.
2876	 */
2877	if (!split && list_empty(&ds_queue->split_queue))
2878		return SHRINK_STOP;
2879	return split;
2880}
2881
2882static struct shrinker deferred_split_shrinker = {
2883	.count_objects = deferred_split_count,
2884	.scan_objects = deferred_split_scan,
2885	.seeks = DEFAULT_SEEKS,
2886	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2887		 SHRINKER_NONSLAB,
2888};
2889
2890#ifdef CONFIG_DEBUG_FS
2891static void split_huge_pages_all(void)
2892{
2893	struct zone *zone;
2894	struct page *page;
2895	unsigned long pfn, max_zone_pfn;
2896	unsigned long total = 0, split = 0;
2897
2898	pr_debug("Split all THPs\n");
2899	for_each_populated_zone(zone) {
 
 
2900		max_zone_pfn = zone_end_pfn(zone);
2901		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2902			if (!pfn_valid(pfn))
2903				continue;
2904
2905			page = pfn_to_page(pfn);
2906			if (!get_page_unless_zero(page))
2907				continue;
2908
2909			if (zone != page_zone(page))
2910				goto next;
2911
2912			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2913				goto next;
2914
2915			total++;
2916			lock_page(page);
 
2917			if (!split_huge_page(page))
2918				split++;
 
2919			unlock_page(page);
2920next:
2921			put_page(page);
2922			cond_resched();
2923		}
2924	}
2925
2926	pr_debug("%lu of %lu THP split\n", split, total);
2927}
2928
2929static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2930{
2931	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2932		    is_vm_hugetlb_page(vma);
2933}
2934
2935static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2936				unsigned long vaddr_end)
2937{
2938	int ret = 0;
2939	struct task_struct *task;
2940	struct mm_struct *mm;
2941	unsigned long total = 0, split = 0;
2942	unsigned long addr;
2943
2944	vaddr_start &= PAGE_MASK;
2945	vaddr_end &= PAGE_MASK;
2946
2947	/* Find the task_struct from pid */
2948	rcu_read_lock();
2949	task = find_task_by_vpid(pid);
2950	if (!task) {
2951		rcu_read_unlock();
2952		ret = -ESRCH;
2953		goto out;
2954	}
2955	get_task_struct(task);
2956	rcu_read_unlock();
2957
2958	/* Find the mm_struct */
2959	mm = get_task_mm(task);
2960	put_task_struct(task);
2961
2962	if (!mm) {
2963		ret = -EINVAL;
2964		goto out;
2965	}
2966
2967	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2968		 pid, vaddr_start, vaddr_end);
2969
2970	mmap_read_lock(mm);
2971	/*
2972	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2973	 * table filled with PTE-mapped THPs, each of which is distinct.
2974	 */
2975	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2976		struct vm_area_struct *vma = find_vma(mm, addr);
2977		unsigned int follflags;
2978		struct page *page;
2979
2980		if (!vma || addr < vma->vm_start)
2981			break;
2982
2983		/* skip special VMA and hugetlb VMA */
2984		if (vma_not_suitable_for_thp_split(vma)) {
2985			addr = vma->vm_end;
2986			continue;
2987		}
2988
2989		/* FOLL_DUMP to ignore special (like zero) pages */
2990		follflags = FOLL_GET | FOLL_DUMP;
2991		page = follow_page(vma, addr, follflags);
2992
2993		if (IS_ERR(page))
2994			continue;
2995		if (!page)
2996			continue;
2997
2998		if (!is_transparent_hugepage(page))
2999			goto next;
3000
3001		total++;
3002		if (!can_split_huge_page(compound_head(page), NULL))
3003			goto next;
3004
3005		if (!trylock_page(page))
3006			goto next;
3007
3008		if (!split_huge_page(page))
3009			split++;
3010
3011		unlock_page(page);
3012next:
3013		put_page(page);
3014		cond_resched();
3015	}
3016	mmap_read_unlock(mm);
3017	mmput(mm);
3018
3019	pr_debug("%lu of %lu THP split\n", split, total);
3020
3021out:
3022	return ret;
3023}
3024
3025static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3026				pgoff_t off_end)
3027{
3028	struct filename *file;
3029	struct file *candidate;
3030	struct address_space *mapping;
3031	int ret = -EINVAL;
3032	pgoff_t index;
3033	int nr_pages = 1;
3034	unsigned long total = 0, split = 0;
3035
3036	file = getname_kernel(file_path);
3037	if (IS_ERR(file))
3038		return ret;
3039
3040	candidate = file_open_name(file, O_RDONLY, 0);
3041	if (IS_ERR(candidate))
3042		goto out;
3043
3044	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3045		 file_path, off_start, off_end);
3046
3047	mapping = candidate->f_mapping;
3048
3049	for (index = off_start; index < off_end; index += nr_pages) {
3050		struct page *fpage = pagecache_get_page(mapping, index,
3051						FGP_ENTRY | FGP_HEAD, 0);
3052
3053		nr_pages = 1;
3054		if (xa_is_value(fpage) || !fpage)
3055			continue;
3056
3057		if (!is_transparent_hugepage(fpage))
3058			goto next;
3059
3060		total++;
3061		nr_pages = thp_nr_pages(fpage);
3062
3063		if (!trylock_page(fpage))
3064			goto next;
3065
3066		if (!split_huge_page(fpage))
3067			split++;
3068
3069		unlock_page(fpage);
3070next:
3071		put_page(fpage);
3072		cond_resched();
3073	}
3074
3075	filp_close(candidate, NULL);
3076	ret = 0;
3077
3078	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3079out:
3080	putname(file);
3081	return ret;
3082}
3083
3084#define MAX_INPUT_BUF_SZ 255
3085
3086static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3087				size_t count, loff_t *ppops)
3088{
3089	static DEFINE_MUTEX(split_debug_mutex);
3090	ssize_t ret;
3091	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3092	char input_buf[MAX_INPUT_BUF_SZ];
3093	int pid;
3094	unsigned long vaddr_start, vaddr_end;
3095
3096	ret = mutex_lock_interruptible(&split_debug_mutex);
3097	if (ret)
3098		return ret;
3099
3100	ret = -EFAULT;
3101
3102	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3103	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3104		goto out;
3105
3106	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3107
3108	if (input_buf[0] == '/') {
3109		char *tok;
3110		char *buf = input_buf;
3111		char file_path[MAX_INPUT_BUF_SZ];
3112		pgoff_t off_start = 0, off_end = 0;
3113		size_t input_len = strlen(input_buf);
3114
3115		tok = strsep(&buf, ",");
3116		if (tok) {
3117			strcpy(file_path, tok);
3118		} else {
3119			ret = -EINVAL;
3120			goto out;
3121		}
3122
3123		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3124		if (ret != 2) {
3125			ret = -EINVAL;
3126			goto out;
3127		}
3128		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3129		if (!ret)
3130			ret = input_len;
3131
3132		goto out;
3133	}
3134
3135	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3136	if (ret == 1 && pid == 1) {
3137		split_huge_pages_all();
3138		ret = strlen(input_buf);
3139		goto out;
3140	} else if (ret != 3) {
3141		ret = -EINVAL;
3142		goto out;
3143	}
3144
3145	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3146	if (!ret)
3147		ret = strlen(input_buf);
3148out:
3149	mutex_unlock(&split_debug_mutex);
3150	return ret;
3151
3152}
3153
3154static const struct file_operations split_huge_pages_fops = {
3155	.owner	 = THIS_MODULE,
3156	.write	 = split_huge_pages_write,
3157	.llseek  = no_llseek,
3158};
3159
3160static int __init split_huge_pages_debugfs(void)
3161{
3162	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3163			    &split_huge_pages_fops);
3164	return 0;
3165}
3166late_initcall(split_huge_pages_debugfs);
3167#endif
3168
3169#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3170void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3171		struct page *page)
3172{
3173	struct vm_area_struct *vma = pvmw->vma;
3174	struct mm_struct *mm = vma->vm_mm;
3175	unsigned long address = pvmw->address;
 
3176	pmd_t pmdval;
3177	swp_entry_t entry;
3178	pmd_t pmdswp;
3179
3180	if (!(pvmw->pmd && !pvmw->pte))
3181		return;
3182
3183	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3184	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
 
 
 
 
 
 
 
 
3185	if (pmd_dirty(pmdval))
3186		set_page_dirty(page);
3187	if (pmd_write(pmdval))
3188		entry = make_writable_migration_entry(page_to_pfn(page));
 
 
3189	else
3190		entry = make_readable_migration_entry(page_to_pfn(page));
 
 
 
 
3191	pmdswp = swp_entry_to_pmd(entry);
3192	if (pmd_soft_dirty(pmdval))
3193		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3194	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3195	page_remove_rmap(page, true);
3196	put_page(page);
 
 
 
3197}
3198
3199void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3200{
3201	struct vm_area_struct *vma = pvmw->vma;
3202	struct mm_struct *mm = vma->vm_mm;
3203	unsigned long address = pvmw->address;
3204	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3205	pmd_t pmde;
3206	swp_entry_t entry;
3207
3208	if (!(pvmw->pmd && !pvmw->pte))
3209		return;
3210
3211	entry = pmd_to_swp_entry(*pvmw->pmd);
3212	get_page(new);
3213	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3214	if (pmd_swp_soft_dirty(*pvmw->pmd))
3215		pmde = pmd_mksoft_dirty(pmde);
3216	if (is_writable_migration_entry(entry))
3217		pmde = maybe_pmd_mkwrite(pmde, vma);
3218	if (pmd_swp_uffd_wp(*pvmw->pmd))
3219		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3220
3221	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3222	if (PageAnon(new))
3223		page_add_anon_rmap(new, vma, mmun_start, true);
 
 
 
3224	else
3225		page_add_file_rmap(new, true);
3226	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3227	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3228		mlock_vma_page(new);
 
 
 
 
 
 
 
 
 
 
 
 
3229	update_mmu_cache_pmd(vma, address, pvmw->pmd);
 
3230}
3231#endif
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/mm.h>
  11#include <linux/sched/coredump.h>
  12#include <linux/sched/numa_balancing.h>
  13#include <linux/highmem.h>
  14#include <linux/hugetlb.h>
  15#include <linux/mmu_notifier.h>
  16#include <linux/rmap.h>
  17#include <linux/swap.h>
  18#include <linux/shrinker.h>
  19#include <linux/mm_inline.h>
  20#include <linux/swapops.h>
  21#include <linux/backing-dev.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36#include <linux/numa.h>
  37#include <linux/page_owner.h>
  38#include <linux/sched/sysctl.h>
  39#include <linux/memory-tiers.h>
  40
  41#include <asm/tlb.h>
  42#include <asm/pgalloc.h>
  43#include "internal.h"
  44#include "swap.h"
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/thp.h>
  48
  49/*
  50 * By default, transparent hugepage support is disabled in order to avoid
  51 * risking an increased memory footprint for applications that are not
  52 * guaranteed to benefit from it. When transparent hugepage support is
  53 * enabled, it is for all mappings, and khugepaged scans all mappings.
  54 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  55 * for all hugepage allocations.
  56 */
  57unsigned long transparent_hugepage_flags __read_mostly =
  58#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  59	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  60#endif
  61#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  62	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  63#endif
  64	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  65	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  66	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  67
  68static struct shrinker deferred_split_shrinker;
  69
  70static atomic_t huge_zero_refcount;
  71struct page *huge_zero_page __read_mostly;
  72unsigned long huge_zero_pfn __read_mostly = ~0UL;
  73
  74bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
  75			bool smaps, bool in_pf, bool enforce_sysfs)
  76{
  77	if (!vma->vm_mm)		/* vdso */
  78		return false;
 
 
  79
  80	/*
  81	 * Explicitly disabled through madvise or prctl, or some
  82	 * architectures may disable THP for some mappings, for
  83	 * example, s390 kvm.
  84	 * */
  85	if ((vm_flags & VM_NOHUGEPAGE) ||
  86	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
  87		return false;
  88	/*
  89	 * If the hardware/firmware marked hugepage support disabled.
  90	 */
  91	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
  92		return false;
  93
  94	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
  95	if (vma_is_dax(vma))
  96		return in_pf;
  97
  98	/*
  99	 * Special VMA and hugetlb VMA.
 100	 * Must be checked after dax since some dax mappings may have
 101	 * VM_MIXEDMAP set.
 102	 */
 103	if (vm_flags & VM_NO_KHUGEPAGED)
 104		return false;
 
 
 
 
 
 
 105
 106	/*
 107	 * Check alignment for file vma and size for both file and anon vma.
 108	 *
 109	 * Skip the check for page fault. Huge fault does the check in fault
 110	 * handlers. And this check is not suitable for huge PUD fault.
 111	 */
 112	if (!in_pf &&
 113	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
 114		return false;
 115
 116	/*
 117	 * Enabled via shmem mount options or sysfs settings.
 118	 * Must be done before hugepage flags check since shmem has its
 119	 * own flags.
 120	 */
 121	if (!in_pf && shmem_file(vma->vm_file))
 122		return shmem_huge_enabled(vma, !enforce_sysfs);
 123
 124	/* Enforce sysfs THP requirements as necessary */
 125	if (enforce_sysfs &&
 126	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
 127					   !hugepage_flags_always())))
 128		return false;
 129
 130	/* Only regular file is valid */
 131	if (!in_pf && file_thp_enabled(vma))
 132		return true;
 133
 134	if (!vma_is_anonymous(vma))
 135		return false;
 136
 137	if (vma_is_temporary_stack(vma))
 138		return false;
 139
 140	/*
 141	 * THPeligible bit of smaps should show 1 for proper VMAs even
 142	 * though anon_vma is not initialized yet.
 143	 *
 144	 * Allow page fault since anon_vma may be not initialized until
 145	 * the first page fault.
 146	 */
 147	if (!vma->anon_vma)
 148		return (smaps || in_pf);
 149
 150	return true;
 151}
 152
 153static bool get_huge_zero_page(void)
 154{
 155	struct page *zero_page;
 156retry:
 157	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 158		return true;
 159
 160	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 161			HPAGE_PMD_ORDER);
 162	if (!zero_page) {
 163		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 164		return false;
 165	}
 
 166	preempt_disable();
 167	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 168		preempt_enable();
 169		__free_pages(zero_page, compound_order(zero_page));
 170		goto retry;
 171	}
 172	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
 173
 174	/* We take additional reference here. It will be put back by shrinker */
 175	atomic_set(&huge_zero_refcount, 2);
 176	preempt_enable();
 177	count_vm_event(THP_ZERO_PAGE_ALLOC);
 178	return true;
 179}
 180
 181static void put_huge_zero_page(void)
 182{
 183	/*
 184	 * Counter should never go to zero here. Only shrinker can put
 185	 * last reference.
 186	 */
 187	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 188}
 189
 190struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 191{
 192	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 193		return READ_ONCE(huge_zero_page);
 194
 195	if (!get_huge_zero_page())
 196		return NULL;
 197
 198	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 199		put_huge_zero_page();
 200
 201	return READ_ONCE(huge_zero_page);
 202}
 203
 204void mm_put_huge_zero_page(struct mm_struct *mm)
 205{
 206	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 207		put_huge_zero_page();
 208}
 209
 210static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 211					struct shrink_control *sc)
 212{
 213	/* we can free zero page only if last reference remains */
 214	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 215}
 216
 217static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 218				       struct shrink_control *sc)
 219{
 220	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 221		struct page *zero_page = xchg(&huge_zero_page, NULL);
 222		BUG_ON(zero_page == NULL);
 223		WRITE_ONCE(huge_zero_pfn, ~0UL);
 224		__free_pages(zero_page, compound_order(zero_page));
 225		return HPAGE_PMD_NR;
 226	}
 227
 228	return 0;
 229}
 230
 231static struct shrinker huge_zero_page_shrinker = {
 232	.count_objects = shrink_huge_zero_page_count,
 233	.scan_objects = shrink_huge_zero_page_scan,
 234	.seeks = DEFAULT_SEEKS,
 235};
 236
 237#ifdef CONFIG_SYSFS
 238static ssize_t enabled_show(struct kobject *kobj,
 239			    struct kobj_attribute *attr, char *buf)
 240{
 241	const char *output;
 242
 243	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 244		output = "[always] madvise never";
 245	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 246			  &transparent_hugepage_flags))
 247		output = "always [madvise] never";
 248	else
 249		output = "always madvise [never]";
 250
 251	return sysfs_emit(buf, "%s\n", output);
 252}
 253
 254static ssize_t enabled_store(struct kobject *kobj,
 255			     struct kobj_attribute *attr,
 256			     const char *buf, size_t count)
 257{
 258	ssize_t ret = count;
 259
 260	if (sysfs_streq(buf, "always")) {
 261		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 263	} else if (sysfs_streq(buf, "madvise")) {
 264		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 265		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 266	} else if (sysfs_streq(buf, "never")) {
 267		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 268		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 269	} else
 270		ret = -EINVAL;
 271
 272	if (ret > 0) {
 273		int err = start_stop_khugepaged();
 274		if (err)
 275			ret = err;
 276	}
 277	return ret;
 278}
 279
 280static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
 281
 282ssize_t single_hugepage_flag_show(struct kobject *kobj,
 283				  struct kobj_attribute *attr, char *buf,
 284				  enum transparent_hugepage_flag flag)
 285{
 286	return sysfs_emit(buf, "%d\n",
 287			  !!test_bit(flag, &transparent_hugepage_flags));
 288}
 289
 290ssize_t single_hugepage_flag_store(struct kobject *kobj,
 291				 struct kobj_attribute *attr,
 292				 const char *buf, size_t count,
 293				 enum transparent_hugepage_flag flag)
 294{
 295	unsigned long value;
 296	int ret;
 297
 298	ret = kstrtoul(buf, 10, &value);
 299	if (ret < 0)
 300		return ret;
 301	if (value > 1)
 302		return -EINVAL;
 303
 304	if (value)
 305		set_bit(flag, &transparent_hugepage_flags);
 306	else
 307		clear_bit(flag, &transparent_hugepage_flags);
 308
 309	return count;
 310}
 311
 312static ssize_t defrag_show(struct kobject *kobj,
 313			   struct kobj_attribute *attr, char *buf)
 314{
 315	const char *output;
 316
 317	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 318		     &transparent_hugepage_flags))
 319		output = "[always] defer defer+madvise madvise never";
 320	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 321			  &transparent_hugepage_flags))
 322		output = "always [defer] defer+madvise madvise never";
 323	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
 324			  &transparent_hugepage_flags))
 325		output = "always defer [defer+madvise] madvise never";
 326	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
 327			  &transparent_hugepage_flags))
 328		output = "always defer defer+madvise [madvise] never";
 329	else
 330		output = "always defer defer+madvise madvise [never]";
 331
 332	return sysfs_emit(buf, "%s\n", output);
 333}
 334
 335static ssize_t defrag_store(struct kobject *kobj,
 336			    struct kobj_attribute *attr,
 337			    const char *buf, size_t count)
 338{
 339	if (sysfs_streq(buf, "always")) {
 340		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 341		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 342		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 343		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 344	} else if (sysfs_streq(buf, "defer+madvise")) {
 345		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 346		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 347		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 348		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 349	} else if (sysfs_streq(buf, "defer")) {
 350		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 351		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 352		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 353		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 354	} else if (sysfs_streq(buf, "madvise")) {
 355		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 356		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 357		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 358		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 359	} else if (sysfs_streq(buf, "never")) {
 360		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 361		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 362		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 363		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 364	} else
 365		return -EINVAL;
 366
 367	return count;
 368}
 369static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
 
 370
 371static ssize_t use_zero_page_show(struct kobject *kobj,
 372				  struct kobj_attribute *attr, char *buf)
 373{
 374	return single_hugepage_flag_show(kobj, attr, buf,
 375					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 376}
 377static ssize_t use_zero_page_store(struct kobject *kobj,
 378		struct kobj_attribute *attr, const char *buf, size_t count)
 379{
 380	return single_hugepage_flag_store(kobj, attr, buf, count,
 381				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 382}
 383static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
 
 384
 385static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 386				   struct kobj_attribute *attr, char *buf)
 387{
 388	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
 389}
 390static struct kobj_attribute hpage_pmd_size_attr =
 391	__ATTR_RO(hpage_pmd_size);
 392
 393static struct attribute *hugepage_attr[] = {
 394	&enabled_attr.attr,
 395	&defrag_attr.attr,
 396	&use_zero_page_attr.attr,
 397	&hpage_pmd_size_attr.attr,
 398#ifdef CONFIG_SHMEM
 399	&shmem_enabled_attr.attr,
 400#endif
 401	NULL,
 402};
 403
 404static const struct attribute_group hugepage_attr_group = {
 405	.attrs = hugepage_attr,
 406};
 407
 408static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 409{
 410	int err;
 411
 412	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 413	if (unlikely(!*hugepage_kobj)) {
 414		pr_err("failed to create transparent hugepage kobject\n");
 415		return -ENOMEM;
 416	}
 417
 418	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 419	if (err) {
 420		pr_err("failed to register transparent hugepage group\n");
 421		goto delete_obj;
 422	}
 423
 424	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 425	if (err) {
 426		pr_err("failed to register transparent hugepage group\n");
 427		goto remove_hp_group;
 428	}
 429
 430	return 0;
 431
 432remove_hp_group:
 433	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 434delete_obj:
 435	kobject_put(*hugepage_kobj);
 436	return err;
 437}
 438
 439static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 440{
 441	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 442	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 443	kobject_put(hugepage_kobj);
 444}
 445#else
 446static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 447{
 448	return 0;
 449}
 450
 451static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 452{
 453}
 454#endif /* CONFIG_SYSFS */
 455
 456static int __init hugepage_init(void)
 457{
 458	int err;
 459	struct kobject *hugepage_kobj;
 460
 461	if (!has_transparent_hugepage()) {
 462		/*
 463		 * Hardware doesn't support hugepages, hence disable
 464		 * DAX PMD support.
 465		 */
 466		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
 467		return -EINVAL;
 468	}
 469
 470	/*
 471	 * hugepages can't be allocated by the buddy allocator
 472	 */
 473	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 474	/*
 475	 * we use page->mapping and page->index in second tail page
 476	 * as list_head: assuming THP order >= 2
 477	 */
 478	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 479
 480	err = hugepage_init_sysfs(&hugepage_kobj);
 481	if (err)
 482		goto err_sysfs;
 483
 484	err = khugepaged_init();
 485	if (err)
 486		goto err_slab;
 487
 488	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
 489	if (err)
 490		goto err_hzp_shrinker;
 491	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
 492	if (err)
 493		goto err_split_shrinker;
 494
 495	/*
 496	 * By default disable transparent hugepages on smaller systems,
 497	 * where the extra memory used could hurt more than TLB overhead
 498	 * is likely to save.  The admin can still enable it through /sys.
 499	 */
 500	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 501		transparent_hugepage_flags = 0;
 502		return 0;
 503	}
 504
 505	err = start_stop_khugepaged();
 506	if (err)
 507		goto err_khugepaged;
 508
 509	return 0;
 510err_khugepaged:
 511	unregister_shrinker(&deferred_split_shrinker);
 512err_split_shrinker:
 513	unregister_shrinker(&huge_zero_page_shrinker);
 514err_hzp_shrinker:
 515	khugepaged_destroy();
 516err_slab:
 517	hugepage_exit_sysfs(hugepage_kobj);
 518err_sysfs:
 519	return err;
 520}
 521subsys_initcall(hugepage_init);
 522
 523static int __init setup_transparent_hugepage(char *str)
 524{
 525	int ret = 0;
 526	if (!str)
 527		goto out;
 528	if (!strcmp(str, "always")) {
 529		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 530			&transparent_hugepage_flags);
 531		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 532			  &transparent_hugepage_flags);
 533		ret = 1;
 534	} else if (!strcmp(str, "madvise")) {
 535		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 536			  &transparent_hugepage_flags);
 537		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 538			&transparent_hugepage_flags);
 539		ret = 1;
 540	} else if (!strcmp(str, "never")) {
 541		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 542			  &transparent_hugepage_flags);
 543		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 544			  &transparent_hugepage_flags);
 545		ret = 1;
 546	}
 547out:
 548	if (!ret)
 549		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 550	return ret;
 551}
 552__setup("transparent_hugepage=", setup_transparent_hugepage);
 553
 554pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 555{
 556	if (likely(vma->vm_flags & VM_WRITE))
 557		pmd = pmd_mkwrite(pmd);
 558	return pmd;
 559}
 560
 561#ifdef CONFIG_MEMCG
 562static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 563{
 564	struct mem_cgroup *memcg = page_memcg(compound_head(page));
 565	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 566
 567	if (memcg)
 568		return &memcg->deferred_split_queue;
 569	else
 570		return &pgdat->deferred_split_queue;
 571}
 572#else
 573static inline struct deferred_split *get_deferred_split_queue(struct page *page)
 574{
 575	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
 576
 577	return &pgdat->deferred_split_queue;
 578}
 579#endif
 580
 581void prep_transhuge_page(struct page *page)
 582{
 583	/*
 584	 * we use page->mapping and page->index in second tail page
 585	 * as list_head: assuming THP order >= 2
 586	 */
 587
 588	INIT_LIST_HEAD(page_deferred_list(page));
 589	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 590}
 591
 592static inline bool is_transparent_hugepage(struct page *page)
 593{
 594	if (!PageCompound(page))
 595		return false;
 596
 597	page = compound_head(page);
 598	return is_huge_zero_page(page) ||
 599	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
 600}
 
 601
 602static unsigned long __thp_get_unmapped_area(struct file *filp,
 603		unsigned long addr, unsigned long len,
 604		loff_t off, unsigned long flags, unsigned long size)
 605{
 606	loff_t off_end = off + len;
 607	loff_t off_align = round_up(off, size);
 608	unsigned long len_pad, ret;
 609
 610	if (off_end <= off_align || (off_end - off_align) < size)
 611		return 0;
 612
 613	len_pad = len + size;
 614	if (len_pad < len || (off + len_pad) < off)
 615		return 0;
 616
 617	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
 618					      off >> PAGE_SHIFT, flags);
 619
 620	/*
 621	 * The failure might be due to length padding. The caller will retry
 622	 * without the padding.
 623	 */
 624	if (IS_ERR_VALUE(ret))
 625		return 0;
 626
 627	/*
 628	 * Do not try to align to THP boundary if allocation at the address
 629	 * hint succeeds.
 630	 */
 631	if (ret == addr)
 632		return addr;
 633
 634	ret += (off - ret) & (size - 1);
 635	return ret;
 636}
 637
 638unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 639		unsigned long len, unsigned long pgoff, unsigned long flags)
 640{
 641	unsigned long ret;
 642	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 643
 
 
 
 644	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
 645	if (ret)
 646		return ret;
 647
 648	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 649}
 650EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 651
 652static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 653			struct page *page, gfp_t gfp)
 654{
 655	struct vm_area_struct *vma = vmf->vma;
 656	pgtable_t pgtable;
 657	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 658	vm_fault_t ret = 0;
 659
 660	VM_BUG_ON_PAGE(!PageCompound(page), page);
 661
 662	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
 663		put_page(page);
 664		count_vm_event(THP_FAULT_FALLBACK);
 665		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
 666		return VM_FAULT_FALLBACK;
 667	}
 668	cgroup_throttle_swaprate(page, gfp);
 669
 670	pgtable = pte_alloc_one(vma->vm_mm);
 671	if (unlikely(!pgtable)) {
 672		ret = VM_FAULT_OOM;
 673		goto release;
 674	}
 675
 676	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 677	/*
 678	 * The memory barrier inside __SetPageUptodate makes sure that
 679	 * clear_huge_page writes become visible before the set_pmd_at()
 680	 * write.
 681	 */
 682	__SetPageUptodate(page);
 683
 684	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 685	if (unlikely(!pmd_none(*vmf->pmd))) {
 686		goto unlock_release;
 687	} else {
 688		pmd_t entry;
 689
 690		ret = check_stable_address_space(vma->vm_mm);
 691		if (ret)
 692			goto unlock_release;
 693
 694		/* Deliver the page fault to userland */
 695		if (userfaultfd_missing(vma)) {
 696			spin_unlock(vmf->ptl);
 697			put_page(page);
 698			pte_free(vma->vm_mm, pgtable);
 699			ret = handle_userfault(vmf, VM_UFFD_MISSING);
 700			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 701			return ret;
 702		}
 703
 704		entry = mk_huge_pmd(page, vma->vm_page_prot);
 705		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 706		page_add_new_anon_rmap(page, vma, haddr);
 707		lru_cache_add_inactive_or_unevictable(page, vma);
 708		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 709		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 710		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 711		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 712		mm_inc_nr_ptes(vma->vm_mm);
 713		spin_unlock(vmf->ptl);
 714		count_vm_event(THP_FAULT_ALLOC);
 715		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
 716	}
 717
 718	return 0;
 719unlock_release:
 720	spin_unlock(vmf->ptl);
 721release:
 722	if (pgtable)
 723		pte_free(vma->vm_mm, pgtable);
 724	put_page(page);
 725	return ret;
 726
 727}
 728
 729/*
 730 * always: directly stall for all thp allocations
 731 * defer: wake kswapd and fail if not immediately available
 732 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 733 *		  fail if not immediately available
 734 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 735 *	    available
 736 * never: never stall for any thp allocation
 737 */
 738gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
 739{
 740	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
 741
 742	/* Always do synchronous compaction */
 743	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 744		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 745
 746	/* Kick kcompactd and fail quickly */
 747	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 748		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 749
 750	/* Synchronous compaction if madvised, otherwise kick kcompactd */
 751	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 752		return GFP_TRANSHUGE_LIGHT |
 753			(vma_madvised ? __GFP_DIRECT_RECLAIM :
 754					__GFP_KSWAPD_RECLAIM);
 755
 756	/* Only do synchronous compaction if madvised */
 757	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 758		return GFP_TRANSHUGE_LIGHT |
 759		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
 760
 761	return GFP_TRANSHUGE_LIGHT;
 762}
 763
 764/* Caller must hold page table lock. */
 765static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 766		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 767		struct page *zero_page)
 768{
 769	pmd_t entry;
 770	if (!pmd_none(*pmd))
 771		return;
 772	entry = mk_pmd(zero_page, vma->vm_page_prot);
 773	entry = pmd_mkhuge(entry);
 774	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 775	set_pmd_at(mm, haddr, pmd, entry);
 776	mm_inc_nr_ptes(mm);
 777}
 778
 779vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 780{
 781	struct vm_area_struct *vma = vmf->vma;
 782	gfp_t gfp;
 783	struct folio *folio;
 784	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 785
 786	if (!transhuge_vma_suitable(vma, haddr))
 787		return VM_FAULT_FALLBACK;
 788	if (unlikely(anon_vma_prepare(vma)))
 789		return VM_FAULT_OOM;
 790	khugepaged_enter_vma(vma, vma->vm_flags);
 791
 792	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 793			!mm_forbids_zeropage(vma->vm_mm) &&
 794			transparent_hugepage_use_zero_page()) {
 795		pgtable_t pgtable;
 796		struct page *zero_page;
 797		vm_fault_t ret;
 798		pgtable = pte_alloc_one(vma->vm_mm);
 799		if (unlikely(!pgtable))
 800			return VM_FAULT_OOM;
 801		zero_page = mm_get_huge_zero_page(vma->vm_mm);
 802		if (unlikely(!zero_page)) {
 803			pte_free(vma->vm_mm, pgtable);
 804			count_vm_event(THP_FAULT_FALLBACK);
 805			return VM_FAULT_FALLBACK;
 806		}
 807		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 808		ret = 0;
 809		if (pmd_none(*vmf->pmd)) {
 810			ret = check_stable_address_space(vma->vm_mm);
 811			if (ret) {
 812				spin_unlock(vmf->ptl);
 813				pte_free(vma->vm_mm, pgtable);
 814			} else if (userfaultfd_missing(vma)) {
 815				spin_unlock(vmf->ptl);
 816				pte_free(vma->vm_mm, pgtable);
 817				ret = handle_userfault(vmf, VM_UFFD_MISSING);
 818				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 819			} else {
 820				set_huge_zero_page(pgtable, vma->vm_mm, vma,
 821						   haddr, vmf->pmd, zero_page);
 822				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 823				spin_unlock(vmf->ptl);
 824			}
 825		} else {
 826			spin_unlock(vmf->ptl);
 827			pte_free(vma->vm_mm, pgtable);
 828		}
 829		return ret;
 830	}
 831	gfp = vma_thp_gfp_mask(vma);
 832	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
 833	if (unlikely(!folio)) {
 834		count_vm_event(THP_FAULT_FALLBACK);
 835		return VM_FAULT_FALLBACK;
 836	}
 837	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
 
 838}
 839
 840static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 841		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 842		pgtable_t pgtable)
 843{
 844	struct mm_struct *mm = vma->vm_mm;
 845	pmd_t entry;
 846	spinlock_t *ptl;
 847
 848	ptl = pmd_lock(mm, pmd);
 849	if (!pmd_none(*pmd)) {
 850		if (write) {
 851			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 852				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 853				goto out_unlock;
 854			}
 855			entry = pmd_mkyoung(*pmd);
 856			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 857			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 858				update_mmu_cache_pmd(vma, addr, pmd);
 859		}
 860
 861		goto out_unlock;
 862	}
 863
 864	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 865	if (pfn_t_devmap(pfn))
 866		entry = pmd_mkdevmap(entry);
 867	if (write) {
 868		entry = pmd_mkyoung(pmd_mkdirty(entry));
 869		entry = maybe_pmd_mkwrite(entry, vma);
 870	}
 871
 872	if (pgtable) {
 873		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 874		mm_inc_nr_ptes(mm);
 875		pgtable = NULL;
 876	}
 877
 878	set_pmd_at(mm, addr, pmd, entry);
 879	update_mmu_cache_pmd(vma, addr, pmd);
 880
 881out_unlock:
 882	spin_unlock(ptl);
 883	if (pgtable)
 884		pte_free(mm, pgtable);
 885}
 886
 887/**
 888 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
 889 * @vmf: Structure describing the fault
 890 * @pfn: pfn to insert
 891 * @pgprot: page protection to use
 892 * @write: whether it's a write fault
 893 *
 894 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
 895 * also consult the vmf_insert_mixed_prot() documentation when
 896 * @pgprot != @vmf->vma->vm_page_prot.
 897 *
 898 * Return: vm_fault_t value.
 899 */
 900vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
 901				   pgprot_t pgprot, bool write)
 902{
 903	unsigned long addr = vmf->address & PMD_MASK;
 904	struct vm_area_struct *vma = vmf->vma;
 905	pgtable_t pgtable = NULL;
 906
 907	/*
 908	 * If we had pmd_special, we could avoid all these restrictions,
 909	 * but we need to be consistent with PTEs and architectures that
 910	 * can't support a 'special' bit.
 911	 */
 912	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 913			!pfn_t_devmap(pfn));
 914	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 915						(VM_PFNMAP|VM_MIXEDMAP));
 916	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 917
 918	if (addr < vma->vm_start || addr >= vma->vm_end)
 919		return VM_FAULT_SIGBUS;
 920
 921	if (arch_needs_pgtable_deposit()) {
 922		pgtable = pte_alloc_one(vma->vm_mm);
 923		if (!pgtable)
 924			return VM_FAULT_OOM;
 925	}
 926
 927	track_pfn_insert(vma, &pgprot, pfn);
 928
 929	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 930	return VM_FAULT_NOPAGE;
 931}
 932EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
 933
 934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 935static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 936{
 937	if (likely(vma->vm_flags & VM_WRITE))
 938		pud = pud_mkwrite(pud);
 939	return pud;
 940}
 941
 942static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 943		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 944{
 945	struct mm_struct *mm = vma->vm_mm;
 946	pud_t entry;
 947	spinlock_t *ptl;
 948
 949	ptl = pud_lock(mm, pud);
 950	if (!pud_none(*pud)) {
 951		if (write) {
 952			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 953				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 954				goto out_unlock;
 955			}
 956			entry = pud_mkyoung(*pud);
 957			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 958			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 959				update_mmu_cache_pud(vma, addr, pud);
 960		}
 961		goto out_unlock;
 962	}
 963
 964	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 965	if (pfn_t_devmap(pfn))
 966		entry = pud_mkdevmap(entry);
 967	if (write) {
 968		entry = pud_mkyoung(pud_mkdirty(entry));
 969		entry = maybe_pud_mkwrite(entry, vma);
 970	}
 971	set_pud_at(mm, addr, pud, entry);
 972	update_mmu_cache_pud(vma, addr, pud);
 973
 974out_unlock:
 975	spin_unlock(ptl);
 976}
 977
 978/**
 979 * vmf_insert_pfn_pud_prot - insert a pud size pfn
 980 * @vmf: Structure describing the fault
 981 * @pfn: pfn to insert
 982 * @pgprot: page protection to use
 983 * @write: whether it's a write fault
 984 *
 985 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
 986 * also consult the vmf_insert_mixed_prot() documentation when
 987 * @pgprot != @vmf->vma->vm_page_prot.
 988 *
 989 * Return: vm_fault_t value.
 990 */
 991vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
 992				   pgprot_t pgprot, bool write)
 993{
 994	unsigned long addr = vmf->address & PUD_MASK;
 995	struct vm_area_struct *vma = vmf->vma;
 996
 997	/*
 998	 * If we had pud_special, we could avoid all these restrictions,
 999	 * but we need to be consistent with PTEs and architectures that
1000	 * can't support a 'special' bit.
1001	 */
1002	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003			!pfn_t_devmap(pfn));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007
1008	if (addr < vma->vm_start || addr >= vma->vm_end)
1009		return VM_FAULT_SIGBUS;
1010
1011	track_pfn_insert(vma, &pgprot, pfn);
1012
1013	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018
1019static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020		      pmd_t *pmd, bool write)
1021{
1022	pmd_t _pmd;
1023
1024	_pmd = pmd_mkyoung(*pmd);
1025	if (write)
1026		_pmd = pmd_mkdirty(_pmd);
1027	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028				  pmd, _pmd, write))
1029		update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034{
1035	unsigned long pfn = pmd_pfn(*pmd);
1036	struct mm_struct *mm = vma->vm_mm;
1037	struct page *page;
1038	int ret;
1039
1040	assert_spin_locked(pmd_lockptr(mm, pmd));
1041
 
 
 
 
 
 
1042	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1043	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1044			 (FOLL_PIN | FOLL_GET)))
1045		return NULL;
1046
1047	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1048		return NULL;
1049
1050	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1051		/* pass */;
1052	else
1053		return NULL;
1054
1055	if (flags & FOLL_TOUCH)
1056		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1057
1058	/*
1059	 * device mapped pages can only be returned if the
1060	 * caller will manage the page reference count.
1061	 */
1062	if (!(flags & (FOLL_GET | FOLL_PIN)))
1063		return ERR_PTR(-EEXIST);
1064
1065	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1066	*pgmap = get_dev_pagemap(pfn, *pgmap);
1067	if (!*pgmap)
1068		return ERR_PTR(-EFAULT);
1069	page = pfn_to_page(pfn);
1070	ret = try_grab_page(page, flags);
1071	if (ret)
1072		page = ERR_PTR(ret);
1073
1074	return page;
1075}
1076
1077int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1078		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1080{
1081	spinlock_t *dst_ptl, *src_ptl;
1082	struct page *src_page;
1083	pmd_t pmd;
1084	pgtable_t pgtable = NULL;
1085	int ret = -ENOMEM;
1086
1087	/* Skip if can be re-fill on fault */
1088	if (!vma_is_anonymous(dst_vma))
1089		return 0;
1090
1091	pgtable = pte_alloc_one(dst_mm);
1092	if (unlikely(!pgtable))
1093		goto out;
1094
1095	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1096	src_ptl = pmd_lockptr(src_mm, src_pmd);
1097	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1098
1099	ret = -EAGAIN;
1100	pmd = *src_pmd;
1101
1102#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1103	if (unlikely(is_swap_pmd(pmd))) {
1104		swp_entry_t entry = pmd_to_swp_entry(pmd);
1105
1106		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1107		if (!is_readable_migration_entry(entry)) {
1108			entry = make_readable_migration_entry(
1109							swp_offset(entry));
1110			pmd = swp_entry_to_pmd(entry);
1111			if (pmd_swp_soft_dirty(*src_pmd))
1112				pmd = pmd_swp_mksoft_dirty(pmd);
1113			if (pmd_swp_uffd_wp(*src_pmd))
1114				pmd = pmd_swp_mkuffd_wp(pmd);
1115			set_pmd_at(src_mm, addr, src_pmd, pmd);
1116		}
1117		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118		mm_inc_nr_ptes(dst_mm);
1119		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1120		if (!userfaultfd_wp(dst_vma))
1121			pmd = pmd_swp_clear_uffd_wp(pmd);
1122		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1123		ret = 0;
1124		goto out_unlock;
1125	}
1126#endif
1127
1128	if (unlikely(!pmd_trans_huge(pmd))) {
1129		pte_free(dst_mm, pgtable);
1130		goto out_unlock;
1131	}
1132	/*
1133	 * When page table lock is held, the huge zero pmd should not be
1134	 * under splitting since we don't split the page itself, only pmd to
1135	 * a page table.
1136	 */
1137	if (is_huge_zero_pmd(pmd)) {
1138		/*
1139		 * get_huge_zero_page() will never allocate a new page here,
1140		 * since we already have a zero page to copy. It just takes a
1141		 * reference.
1142		 */
1143		mm_get_huge_zero_page(dst_mm);
1144		goto out_zero_page;
1145	}
1146
1147	src_page = pmd_page(pmd);
1148	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1149
1150	get_page(src_page);
1151	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1152		/* Page maybe pinned: split and retry the fault on PTEs. */
1153		put_page(src_page);
 
 
 
 
1154		pte_free(dst_mm, pgtable);
1155		spin_unlock(src_ptl);
1156		spin_unlock(dst_ptl);
1157		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1158		return -EAGAIN;
1159	}
 
 
 
1160	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1161out_zero_page:
1162	mm_inc_nr_ptes(dst_mm);
1163	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1164	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1165	if (!userfaultfd_wp(dst_vma))
1166		pmd = pmd_clear_uffd_wp(pmd);
1167	pmd = pmd_mkold(pmd_wrprotect(pmd));
1168	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1169
1170	ret = 0;
1171out_unlock:
1172	spin_unlock(src_ptl);
1173	spin_unlock(dst_ptl);
1174out:
1175	return ret;
1176}
1177
1178#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1179static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1180		      pud_t *pud, bool write)
1181{
1182	pud_t _pud;
1183
1184	_pud = pud_mkyoung(*pud);
1185	if (write)
1186		_pud = pud_mkdirty(_pud);
1187	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1188				  pud, _pud, write))
1189		update_mmu_cache_pud(vma, addr, pud);
1190}
1191
1192struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1193		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1194{
1195	unsigned long pfn = pud_pfn(*pud);
1196	struct mm_struct *mm = vma->vm_mm;
1197	struct page *page;
1198	int ret;
1199
1200	assert_spin_locked(pud_lockptr(mm, pud));
1201
1202	if (flags & FOLL_WRITE && !pud_write(*pud))
1203		return NULL;
1204
1205	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1206	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1207			 (FOLL_PIN | FOLL_GET)))
1208		return NULL;
1209
1210	if (pud_present(*pud) && pud_devmap(*pud))
1211		/* pass */;
1212	else
1213		return NULL;
1214
1215	if (flags & FOLL_TOUCH)
1216		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1217
1218	/*
1219	 * device mapped pages can only be returned if the
1220	 * caller will manage the page reference count.
1221	 *
1222	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1223	 */
1224	if (!(flags & (FOLL_GET | FOLL_PIN)))
1225		return ERR_PTR(-EEXIST);
1226
1227	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1228	*pgmap = get_dev_pagemap(pfn, *pgmap);
1229	if (!*pgmap)
1230		return ERR_PTR(-EFAULT);
1231	page = pfn_to_page(pfn);
1232
1233	ret = try_grab_page(page, flags);
1234	if (ret)
1235		page = ERR_PTR(ret);
1236
1237	return page;
1238}
1239
1240int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1241		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1242		  struct vm_area_struct *vma)
1243{
1244	spinlock_t *dst_ptl, *src_ptl;
1245	pud_t pud;
1246	int ret;
1247
1248	dst_ptl = pud_lock(dst_mm, dst_pud);
1249	src_ptl = pud_lockptr(src_mm, src_pud);
1250	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1251
1252	ret = -EAGAIN;
1253	pud = *src_pud;
1254	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1255		goto out_unlock;
1256
1257	/*
1258	 * When page table lock is held, the huge zero pud should not be
1259	 * under splitting since we don't split the page itself, only pud to
1260	 * a page table.
1261	 */
1262	if (is_huge_zero_pud(pud)) {
1263		/* No huge zero pud yet */
1264	}
1265
1266	/*
1267	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1268	 * and split if duplicating fails.
1269	 */
 
 
 
 
1270	pudp_set_wrprotect(src_mm, addr, src_pud);
1271	pud = pud_mkold(pud_wrprotect(pud));
1272	set_pud_at(dst_mm, addr, dst_pud, pud);
1273
1274	ret = 0;
1275out_unlock:
1276	spin_unlock(src_ptl);
1277	spin_unlock(dst_ptl);
1278	return ret;
1279}
1280
1281void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1282{
 
 
1283	bool write = vmf->flags & FAULT_FLAG_WRITE;
1284
1285	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1286	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1287		goto unlock;
1288
1289	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
 
 
 
 
 
 
1290unlock:
1291	spin_unlock(vmf->ptl);
1292}
1293#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1294
1295void huge_pmd_set_accessed(struct vm_fault *vmf)
1296{
 
 
1297	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
1298
1299	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1300	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1301		goto unlock;
1302
1303	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
 
 
 
 
 
1304
1305unlock:
1306	spin_unlock(vmf->ptl);
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1310{
1311	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1312	struct vm_area_struct *vma = vmf->vma;
1313	struct folio *folio;
1314	struct page *page;
1315	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1316	pmd_t orig_pmd = vmf->orig_pmd;
1317
1318	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320
1321	if (is_huge_zero_pmd(orig_pmd))
1322		goto fallback;
1323
1324	spin_lock(vmf->ptl);
1325
1326	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1327		spin_unlock(vmf->ptl);
1328		return 0;
1329	}
1330
1331	page = pmd_page(orig_pmd);
1332	folio = page_folio(page);
1333	VM_BUG_ON_PAGE(!PageHead(page), page);
1334
1335	/* Early check when only holding the PT lock. */
1336	if (PageAnonExclusive(page))
1337		goto reuse;
1338
1339	if (!folio_trylock(folio)) {
1340		folio_get(folio);
1341		spin_unlock(vmf->ptl);
1342		folio_lock(folio);
1343		spin_lock(vmf->ptl);
1344		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345			spin_unlock(vmf->ptl);
1346			folio_unlock(folio);
1347			folio_put(folio);
1348			return 0;
1349		}
1350		folio_put(folio);
1351	}
1352
1353	/* Recheck after temporarily dropping the PT lock. */
1354	if (PageAnonExclusive(page)) {
1355		folio_unlock(folio);
1356		goto reuse;
1357	}
1358
1359	/*
1360	 * See do_wp_page(): we can only reuse the folio exclusively if
1361	 * there are no additional references. Note that we always drain
1362	 * the LRU pagevecs immediately after adding a THP.
1363	 */
1364	if (folio_ref_count(folio) >
1365			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1366		goto unlock_fallback;
1367	if (folio_test_swapcache(folio))
1368		folio_free_swap(folio);
1369	if (folio_ref_count(folio) == 1) {
1370		pmd_t entry;
1371
1372		page_move_anon_rmap(page, vma);
1373		folio_unlock(folio);
1374reuse:
1375		if (unlikely(unshare)) {
1376			spin_unlock(vmf->ptl);
1377			return 0;
1378		}
1379		entry = pmd_mkyoung(orig_pmd);
1380		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1381		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1382			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
 
1383		spin_unlock(vmf->ptl);
1384		return 0;
1385	}
1386
1387unlock_fallback:
1388	folio_unlock(folio);
1389	spin_unlock(vmf->ptl);
1390fallback:
1391	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1392	return VM_FAULT_FALLBACK;
1393}
1394
1395static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1396					   unsigned long addr, pmd_t pmd)
 
 
 
1397{
1398	struct page *page;
1399
1400	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1401		return false;
1402
1403	/* Don't touch entries that are not even readable (NUMA hinting). */
1404	if (pmd_protnone(pmd))
1405		return false;
1406
1407	/* Do we need write faults for softdirty tracking? */
1408	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1409		return false;
1410
1411	/* Do we need write faults for uffd-wp tracking? */
1412	if (userfaultfd_huge_pmd_wp(vma, pmd))
1413		return false;
1414
1415	if (!(vma->vm_flags & VM_SHARED)) {
1416		/* See can_change_pte_writable(). */
1417		page = vm_normal_page_pmd(vma, addr, pmd);
1418		return page && PageAnon(page) && PageAnonExclusive(page);
1419	}
1420
1421	/* See can_change_pte_writable(). */
1422	return pmd_dirty(pmd);
1423}
1424
1425/* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1426static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1427					struct vm_area_struct *vma,
1428					unsigned int flags)
1429{
1430	/* If the pmd is writable, we can write to the page. */
1431	if (pmd_write(pmd))
1432		return true;
1433
1434	/* Maybe FOLL_FORCE is set to override it? */
1435	if (!(flags & FOLL_FORCE))
1436		return false;
1437
1438	/* But FOLL_FORCE has no effect on shared mappings */
1439	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1440		return false;
1441
1442	/* ... or read-only private ones */
1443	if (!(vma->vm_flags & VM_MAYWRITE))
1444		return false;
1445
1446	/* ... or already writable ones that just need to take a write fault */
1447	if (vma->vm_flags & VM_WRITE)
1448		return false;
1449
1450	/*
1451	 * See can_change_pte_writable(): we broke COW and could map the page
1452	 * writable if we have an exclusive anonymous page ...
1453	 */
1454	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1455		return false;
1456
1457	/* ... and a write-fault isn't required for other reasons. */
1458	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1459		return false;
1460	return !userfaultfd_huge_pmd_wp(vma, pmd);
1461}
1462
1463struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1464				   unsigned long addr,
1465				   pmd_t *pmd,
1466				   unsigned int flags)
1467{
1468	struct mm_struct *mm = vma->vm_mm;
1469	struct page *page;
1470	int ret;
1471
1472	assert_spin_locked(pmd_lockptr(mm, pmd));
1473
1474	page = pmd_page(*pmd);
1475	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1476
1477	if ((flags & FOLL_WRITE) &&
1478	    !can_follow_write_pmd(*pmd, page, vma, flags))
1479		return NULL;
1480
1481	/* Avoid dumping huge zero page */
1482	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1483		return ERR_PTR(-EFAULT);
1484
1485	/* Full NUMA hinting faults to serialise migration in fault paths */
1486	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1487		return NULL;
1488
1489	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1490		return ERR_PTR(-EMLINK);
1491
1492	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1493			!PageAnonExclusive(page), page);
1494
1495	ret = try_grab_page(page, flags);
1496	if (ret)
1497		return ERR_PTR(ret);
1498
1499	if (flags & FOLL_TOUCH)
1500		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
 
 
 
 
 
 
 
 
 
 
 
1502	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1503	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1504
 
1505	return page;
1506}
1507
1508/* NUMA hinting page fault entry point for trans huge pmds */
1509vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1510{
1511	struct vm_area_struct *vma = vmf->vma;
1512	pmd_t oldpmd = vmf->orig_pmd;
1513	pmd_t pmd;
1514	struct page *page;
1515	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1516	int page_nid = NUMA_NO_NODE;
1517	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1518	bool migrated = false, writable = false;
 
1519	int flags = 0;
1520
1521	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1522	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1523		spin_unlock(vmf->ptl);
1524		goto out;
1525	}
1526
1527	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1528
1529	/*
1530	 * Detect now whether the PMD could be writable; this information
1531	 * is only valid while holding the PT lock.
 
 
 
 
 
 
 
1532	 */
1533	writable = pmd_write(pmd);
1534	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1535	    can_change_pmd_writable(vma, vmf->address, pmd))
1536		writable = true;
 
 
 
 
 
 
 
 
 
 
1537
 
1538	page = vm_normal_page_pmd(vma, haddr, pmd);
1539	if (!page)
1540		goto out_map;
1541
1542	/* See similar comment in do_numa_page for explanation */
1543	if (!writable)
1544		flags |= TNF_NO_GROUP;
1545
1546	page_nid = page_to_nid(page);
1547	/*
1548	 * For memory tiering mode, cpupid of slow memory page is used
1549	 * to record page access time.  So use default value.
1550	 */
1551	if (node_is_toptier(page_nid))
1552		last_cpupid = page_cpupid_last(page);
1553	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1554				       &flags);
1555
1556	if (target_nid == NUMA_NO_NODE) {
1557		put_page(page);
1558		goto out_map;
1559	}
1560
1561	spin_unlock(vmf->ptl);
1562	writable = false;
1563
1564	migrated = migrate_misplaced_page(page, vma, target_nid);
1565	if (migrated) {
1566		flags |= TNF_MIGRATED;
1567		page_nid = target_nid;
1568	} else {
1569		flags |= TNF_MIGRATE_FAIL;
1570		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1571		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1572			spin_unlock(vmf->ptl);
1573			goto out;
1574		}
1575		goto out_map;
1576	}
1577
1578out:
1579	if (page_nid != NUMA_NO_NODE)
1580		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1581				flags);
1582
1583	return 0;
1584
1585out_map:
1586	/* Restore the PMD */
1587	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1588	pmd = pmd_mkyoung(pmd);
1589	if (writable)
1590		pmd = pmd_mkwrite(pmd);
1591	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1592	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1593	spin_unlock(vmf->ptl);
1594	goto out;
1595}
1596
1597/*
1598 * Return true if we do MADV_FREE successfully on entire pmd page.
1599 * Otherwise, return false.
1600 */
1601bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1602		pmd_t *pmd, unsigned long addr, unsigned long next)
1603{
1604	spinlock_t *ptl;
1605	pmd_t orig_pmd;
1606	struct page *page;
1607	struct mm_struct *mm = tlb->mm;
1608	bool ret = false;
1609
1610	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1611
1612	ptl = pmd_trans_huge_lock(pmd, vma);
1613	if (!ptl)
1614		goto out_unlocked;
1615
1616	orig_pmd = *pmd;
1617	if (is_huge_zero_pmd(orig_pmd))
1618		goto out;
1619
1620	if (unlikely(!pmd_present(orig_pmd))) {
1621		VM_BUG_ON(thp_migration_supported() &&
1622				  !is_pmd_migration_entry(orig_pmd));
1623		goto out;
1624	}
1625
1626	page = pmd_page(orig_pmd);
1627	/*
1628	 * If other processes are mapping this page, we couldn't discard
1629	 * the page unless they all do MADV_FREE so let's skip the page.
1630	 */
1631	if (total_mapcount(page) != 1)
1632		goto out;
1633
1634	if (!trylock_page(page))
1635		goto out;
1636
1637	/*
1638	 * If user want to discard part-pages of THP, split it so MADV_FREE
1639	 * will deactivate only them.
1640	 */
1641	if (next - addr != HPAGE_PMD_SIZE) {
1642		get_page(page);
1643		spin_unlock(ptl);
1644		split_huge_page(page);
1645		unlock_page(page);
1646		put_page(page);
1647		goto out_unlocked;
1648	}
1649
1650	if (PageDirty(page))
1651		ClearPageDirty(page);
1652	unlock_page(page);
1653
1654	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1655		pmdp_invalidate(vma, addr, pmd);
1656		orig_pmd = pmd_mkold(orig_pmd);
1657		orig_pmd = pmd_mkclean(orig_pmd);
1658
1659		set_pmd_at(mm, addr, pmd, orig_pmd);
1660		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1661	}
1662
1663	mark_page_lazyfree(page);
1664	ret = true;
1665out:
1666	spin_unlock(ptl);
1667out_unlocked:
1668	return ret;
1669}
1670
1671static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1672{
1673	pgtable_t pgtable;
1674
1675	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1676	pte_free(mm, pgtable);
1677	mm_dec_nr_ptes(mm);
1678}
1679
1680int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1681		 pmd_t *pmd, unsigned long addr)
1682{
1683	pmd_t orig_pmd;
1684	spinlock_t *ptl;
1685
1686	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1687
1688	ptl = __pmd_trans_huge_lock(pmd, vma);
1689	if (!ptl)
1690		return 0;
1691	/*
1692	 * For architectures like ppc64 we look at deposited pgtable
1693	 * when calling pmdp_huge_get_and_clear. So do the
1694	 * pgtable_trans_huge_withdraw after finishing pmdp related
1695	 * operations.
1696	 */
1697	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1698						tlb->fullmm);
1699	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1700	if (vma_is_special_huge(vma)) {
1701		if (arch_needs_pgtable_deposit())
1702			zap_deposited_table(tlb->mm, pmd);
1703		spin_unlock(ptl);
1704	} else if (is_huge_zero_pmd(orig_pmd)) {
1705		zap_deposited_table(tlb->mm, pmd);
1706		spin_unlock(ptl);
1707	} else {
1708		struct page *page = NULL;
1709		int flush_needed = 1;
1710
1711		if (pmd_present(orig_pmd)) {
1712			page = pmd_page(orig_pmd);
1713			page_remove_rmap(page, vma, true);
1714			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1715			VM_BUG_ON_PAGE(!PageHead(page), page);
1716		} else if (thp_migration_supported()) {
1717			swp_entry_t entry;
1718
1719			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1720			entry = pmd_to_swp_entry(orig_pmd);
1721			page = pfn_swap_entry_to_page(entry);
1722			flush_needed = 0;
1723		} else
1724			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1725
1726		if (PageAnon(page)) {
1727			zap_deposited_table(tlb->mm, pmd);
1728			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1729		} else {
1730			if (arch_needs_pgtable_deposit())
1731				zap_deposited_table(tlb->mm, pmd);
1732			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1733		}
1734
1735		spin_unlock(ptl);
1736		if (flush_needed)
1737			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1738	}
1739	return 1;
1740}
1741
1742#ifndef pmd_move_must_withdraw
1743static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1744					 spinlock_t *old_pmd_ptl,
1745					 struct vm_area_struct *vma)
1746{
1747	/*
1748	 * With split pmd lock we also need to move preallocated
1749	 * PTE page table if new_pmd is on different PMD page table.
1750	 *
1751	 * We also don't deposit and withdraw tables for file pages.
1752	 */
1753	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1754}
1755#endif
1756
1757static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1758{
1759#ifdef CONFIG_MEM_SOFT_DIRTY
1760	if (unlikely(is_pmd_migration_entry(pmd)))
1761		pmd = pmd_swp_mksoft_dirty(pmd);
1762	else if (pmd_present(pmd))
1763		pmd = pmd_mksoft_dirty(pmd);
1764#endif
1765	return pmd;
1766}
1767
1768bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1769		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1770{
1771	spinlock_t *old_ptl, *new_ptl;
1772	pmd_t pmd;
1773	struct mm_struct *mm = vma->vm_mm;
1774	bool force_flush = false;
1775
1776	/*
1777	 * The destination pmd shouldn't be established, free_pgtables()
1778	 * should have release it.
1779	 */
1780	if (WARN_ON(!pmd_none(*new_pmd))) {
1781		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1782		return false;
1783	}
1784
1785	/*
1786	 * We don't have to worry about the ordering of src and dst
1787	 * ptlocks because exclusive mmap_lock prevents deadlock.
1788	 */
1789	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1790	if (old_ptl) {
1791		new_ptl = pmd_lockptr(mm, new_pmd);
1792		if (new_ptl != old_ptl)
1793			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1794		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1795		if (pmd_present(pmd))
1796			force_flush = true;
1797		VM_BUG_ON(!pmd_none(*new_pmd));
1798
1799		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1800			pgtable_t pgtable;
1801			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1802			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1803		}
1804		pmd = move_soft_dirty_pmd(pmd);
1805		set_pmd_at(mm, new_addr, new_pmd, pmd);
1806		if (force_flush)
1807			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1808		if (new_ptl != old_ptl)
1809			spin_unlock(new_ptl);
1810		spin_unlock(old_ptl);
1811		return true;
1812	}
1813	return false;
1814}
1815
1816/*
1817 * Returns
1818 *  - 0 if PMD could not be locked
1819 *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1820 *      or if prot_numa but THP migration is not supported
1821 *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1822 */
1823int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1824		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1825		    unsigned long cp_flags)
1826{
1827	struct mm_struct *mm = vma->vm_mm;
1828	spinlock_t *ptl;
1829	pmd_t oldpmd, entry;
 
 
1830	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1831	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1832	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1833	int ret = 1;
1834
1835	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1836
1837	if (prot_numa && !thp_migration_supported())
1838		return 1;
1839
1840	ptl = __pmd_trans_huge_lock(pmd, vma);
1841	if (!ptl)
1842		return 0;
1843
 
 
 
1844#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1845	if (is_swap_pmd(*pmd)) {
1846		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1847		struct page *page = pfn_swap_entry_to_page(entry);
1848
1849		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1850		if (is_writable_migration_entry(entry)) {
1851			pmd_t newpmd;
1852			/*
1853			 * A protection check is difficult so
1854			 * just be safe and disable write
1855			 */
1856			if (PageAnon(page))
1857				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1858			else
1859				entry = make_readable_migration_entry(swp_offset(entry));
1860			newpmd = swp_entry_to_pmd(entry);
1861			if (pmd_swp_soft_dirty(*pmd))
1862				newpmd = pmd_swp_mksoft_dirty(newpmd);
1863			if (pmd_swp_uffd_wp(*pmd))
1864				newpmd = pmd_swp_mkuffd_wp(newpmd);
1865			set_pmd_at(mm, addr, pmd, newpmd);
1866		}
1867		goto unlock;
1868	}
1869#endif
1870
1871	if (prot_numa) {
1872		struct page *page;
1873		bool toptier;
1874		/*
1875		 * Avoid trapping faults against the zero page. The read-only
1876		 * data is likely to be read-cached on the local CPU and
1877		 * local/remote hits to the zero page are not interesting.
1878		 */
1879		if (is_huge_zero_pmd(*pmd))
1880			goto unlock;
1881
1882		if (pmd_protnone(*pmd))
1883			goto unlock;
1884
1885		page = pmd_page(*pmd);
1886		toptier = node_is_toptier(page_to_nid(page));
1887		/*
1888		 * Skip scanning top tier node if normal numa
1889		 * balancing is disabled
1890		 */
1891		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1892		    toptier)
1893			goto unlock;
1894
1895		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1896		    !toptier)
1897			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1898	}
1899	/*
1900	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1901	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1902	 * which is also under mmap_read_lock(mm):
1903	 *
1904	 *	CPU0:				CPU1:
1905	 *				change_huge_pmd(prot_numa=1)
1906	 *				 pmdp_huge_get_and_clear_notify()
1907	 * madvise_dontneed()
1908	 *  zap_pmd_range()
1909	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1910	 *   // skip the pmd
1911	 *				 set_pmd_at();
1912	 *				 // pmd is re-established
1913	 *
1914	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1915	 * which may break userspace.
1916	 *
1917	 * pmdp_invalidate_ad() is required to make sure we don't miss
1918	 * dirty/young flags set by hardware.
1919	 */
1920	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1921
1922	entry = pmd_modify(oldpmd, newprot);
 
 
1923	if (uffd_wp) {
1924		entry = pmd_wrprotect(entry);
1925		entry = pmd_mkuffd_wp(entry);
1926	} else if (uffd_wp_resolve) {
1927		/*
1928		 * Leave the write bit to be handled by PF interrupt
1929		 * handler, then things like COW could be properly
1930		 * handled.
1931		 */
1932		entry = pmd_clear_uffd_wp(entry);
1933	}
1934
1935	/* See change_pte_range(). */
1936	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1937	    can_change_pmd_writable(vma, addr, entry))
1938		entry = pmd_mkwrite(entry);
1939
1940	ret = HPAGE_PMD_NR;
1941	set_pmd_at(mm, addr, pmd, entry);
1942
1943	if (huge_pmd_needs_flush(oldpmd, entry))
1944		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1945unlock:
1946	spin_unlock(ptl);
1947	return ret;
1948}
1949
1950/*
1951 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1952 *
1953 * Note that if it returns page table lock pointer, this routine returns without
1954 * unlocking page table lock. So callers must unlock it.
1955 */
1956spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1957{
1958	spinlock_t *ptl;
1959	ptl = pmd_lock(vma->vm_mm, pmd);
1960	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1961			pmd_devmap(*pmd)))
1962		return ptl;
1963	spin_unlock(ptl);
1964	return NULL;
1965}
1966
1967/*
1968 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1969 *
1970 * Note that if it returns page table lock pointer, this routine returns without
1971 * unlocking page table lock. So callers must unlock it.
1972 */
1973spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1974{
1975	spinlock_t *ptl;
1976
1977	ptl = pud_lock(vma->vm_mm, pud);
1978	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1979		return ptl;
1980	spin_unlock(ptl);
1981	return NULL;
1982}
1983
1984#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1985int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1986		 pud_t *pud, unsigned long addr)
1987{
1988	spinlock_t *ptl;
1989
1990	ptl = __pud_trans_huge_lock(pud, vma);
1991	if (!ptl)
1992		return 0;
1993
 
 
 
 
 
1994	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1995	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1996	if (vma_is_special_huge(vma)) {
1997		spin_unlock(ptl);
1998		/* No zero page support yet */
1999	} else {
2000		/* No support for anonymous PUD pages yet */
2001		BUG();
2002	}
2003	return 1;
2004}
2005
2006static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2007		unsigned long haddr)
2008{
2009	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2010	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2011	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2012	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2013
2014	count_vm_event(THP_SPLIT_PUD);
2015
2016	pudp_huge_clear_flush_notify(vma, haddr, pud);
2017}
2018
2019void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2020		unsigned long address)
2021{
2022	spinlock_t *ptl;
2023	struct mmu_notifier_range range;
2024
2025	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2026				address & HPAGE_PUD_MASK,
2027				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028	mmu_notifier_invalidate_range_start(&range);
2029	ptl = pud_lock(vma->vm_mm, pud);
2030	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031		goto out;
2032	__split_huge_pud_locked(vma, pud, range.start);
2033
2034out:
2035	spin_unlock(ptl);
2036	/*
2037	 * No need to double call mmu_notifier->invalidate_range() callback as
2038	 * the above pudp_huge_clear_flush_notify() did already call it.
2039	 */
2040	mmu_notifier_invalidate_range_only_end(&range);
2041}
2042#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043
2044static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045		unsigned long haddr, pmd_t *pmd)
2046{
2047	struct mm_struct *mm = vma->vm_mm;
2048	pgtable_t pgtable;
2049	pmd_t _pmd;
2050	int i;
2051
2052	/*
2053	 * Leave pmd empty until pte is filled note that it is fine to delay
2054	 * notification until mmu_notifier_invalidate_range_end() as we are
2055	 * replacing a zero pmd write protected page with a zero pte write
2056	 * protected page.
2057	 *
2058	 * See Documentation/mm/mmu_notifier.rst
2059	 */
2060	pmdp_huge_clear_flush(vma, haddr, pmd);
2061
2062	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063	pmd_populate(mm, &_pmd, pgtable);
2064
2065	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066		pte_t *pte, entry;
2067		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068		entry = pte_mkspecial(entry);
2069		pte = pte_offset_map(&_pmd, haddr);
2070		VM_BUG_ON(!pte_none(*pte));
2071		set_pte_at(mm, haddr, pte, entry);
2072		pte_unmap(pte);
2073	}
2074	smp_wmb(); /* make pte visible before pmd */
2075	pmd_populate(mm, pmd, pgtable);
2076}
2077
2078static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079		unsigned long haddr, bool freeze)
2080{
2081	struct mm_struct *mm = vma->vm_mm;
2082	struct page *page;
2083	pgtable_t pgtable;
2084	pmd_t old_pmd, _pmd;
2085	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2086	bool anon_exclusive = false, dirty = false;
2087	unsigned long addr;
2088	int i;
2089
2090	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094				&& !pmd_devmap(*pmd));
2095
2096	count_vm_event(THP_SPLIT_PMD);
2097
2098	if (!vma_is_anonymous(vma)) {
2099		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100		/*
2101		 * We are going to unmap this huge page. So
2102		 * just go ahead and zap it
2103		 */
2104		if (arch_needs_pgtable_deposit())
2105			zap_deposited_table(mm, pmd);
2106		if (vma_is_special_huge(vma))
2107			return;
2108		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2109			swp_entry_t entry;
2110
2111			entry = pmd_to_swp_entry(old_pmd);
2112			page = pfn_swap_entry_to_page(entry);
2113		} else {
2114			page = pmd_page(old_pmd);
2115			if (!PageDirty(page) && pmd_dirty(old_pmd))
2116				set_page_dirty(page);
2117			if (!PageReferenced(page) && pmd_young(old_pmd))
2118				SetPageReferenced(page);
2119			page_remove_rmap(page, vma, true);
2120			put_page(page);
2121		}
2122		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2123		return;
2124	}
2125
2126	if (is_huge_zero_pmd(*pmd)) {
2127		/*
2128		 * FIXME: Do we want to invalidate secondary mmu by calling
2129		 * mmu_notifier_invalidate_range() see comments below inside
2130		 * __split_huge_pmd() ?
2131		 *
2132		 * We are going from a zero huge page write protected to zero
2133		 * small page also write protected so it does not seems useful
2134		 * to invalidate secondary mmu at this time.
2135		 */
2136		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2137	}
2138
2139	/*
2140	 * Up to this point the pmd is present and huge and userland has the
2141	 * whole access to the hugepage during the split (which happens in
2142	 * place). If we overwrite the pmd with the not-huge version pointing
2143	 * to the pte here (which of course we could if all CPUs were bug
2144	 * free), userland could trigger a small page size TLB miss on the
2145	 * small sized TLB while the hugepage TLB entry is still established in
2146	 * the huge TLB. Some CPU doesn't like that.
2147	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2148	 * 383 on page 105. Intel should be safe but is also warns that it's
2149	 * only safe if the permission and cache attributes of the two entries
2150	 * loaded in the two TLB is identical (which should be the case here).
2151	 * But it is generally safer to never allow small and huge TLB entries
2152	 * for the same virtual address to be loaded simultaneously. So instead
2153	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2154	 * current pmd notpresent (atomically because here the pmd_trans_huge
2155	 * must remain set at all times on the pmd until the split is complete
2156	 * for this pmd), then we flush the SMP TLB and finally we write the
2157	 * non-huge version of the pmd entry with pmd_populate.
2158	 */
2159	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2160
2161	pmd_migration = is_pmd_migration_entry(old_pmd);
2162	if (unlikely(pmd_migration)) {
2163		swp_entry_t entry;
2164
2165		entry = pmd_to_swp_entry(old_pmd);
2166		page = pfn_swap_entry_to_page(entry);
2167		write = is_writable_migration_entry(entry);
2168		if (PageAnon(page))
2169			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2170		young = is_migration_entry_young(entry);
2171		dirty = is_migration_entry_dirty(entry);
2172		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2173		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2174	} else {
2175		page = pmd_page(old_pmd);
2176		if (pmd_dirty(old_pmd)) {
2177			dirty = true;
2178			SetPageDirty(page);
2179		}
2180		write = pmd_write(old_pmd);
2181		young = pmd_young(old_pmd);
2182		soft_dirty = pmd_soft_dirty(old_pmd);
2183		uffd_wp = pmd_uffd_wp(old_pmd);
2184
2185		VM_BUG_ON_PAGE(!page_count(page), page);
2186
2187		/*
2188		 * Without "freeze", we'll simply split the PMD, propagating the
2189		 * PageAnonExclusive() flag for each PTE by setting it for
2190		 * each subpage -- no need to (temporarily) clear.
2191		 *
2192		 * With "freeze" we want to replace mapped pages by
2193		 * migration entries right away. This is only possible if we
2194		 * managed to clear PageAnonExclusive() -- see
2195		 * set_pmd_migration_entry().
2196		 *
2197		 * In case we cannot clear PageAnonExclusive(), split the PMD
2198		 * only and let try_to_migrate_one() fail later.
2199		 *
2200		 * See page_try_share_anon_rmap(): invalidate PMD first.
2201		 */
2202		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2203		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2204			freeze = false;
2205		if (!freeze)
2206			page_ref_add(page, HPAGE_PMD_NR - 1);
2207	}
 
 
2208
2209	/*
2210	 * Withdraw the table only after we mark the pmd entry invalid.
2211	 * This's critical for some architectures (Power).
2212	 */
2213	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2214	pmd_populate(mm, &_pmd, pgtable);
2215
2216	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2217		pte_t entry, *pte;
2218		/*
2219		 * Note that NUMA hinting access restrictions are not
2220		 * transferred to avoid any possibility of altering
2221		 * permissions across VMAs.
2222		 */
2223		if (freeze || pmd_migration) {
2224			swp_entry_t swp_entry;
2225			if (write)
2226				swp_entry = make_writable_migration_entry(
2227							page_to_pfn(page + i));
2228			else if (anon_exclusive)
2229				swp_entry = make_readable_exclusive_migration_entry(
2230							page_to_pfn(page + i));
2231			else
2232				swp_entry = make_readable_migration_entry(
2233							page_to_pfn(page + i));
2234			if (young)
2235				swp_entry = make_migration_entry_young(swp_entry);
2236			if (dirty)
2237				swp_entry = make_migration_entry_dirty(swp_entry);
2238			entry = swp_entry_to_pte(swp_entry);
2239			if (soft_dirty)
2240				entry = pte_swp_mksoft_dirty(entry);
2241			if (uffd_wp)
2242				entry = pte_swp_mkuffd_wp(entry);
2243		} else {
2244			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2245			entry = maybe_mkwrite(entry, vma);
2246			if (anon_exclusive)
2247				SetPageAnonExclusive(page + i);
2248			if (!young)
2249				entry = pte_mkold(entry);
2250			/* NOTE: this may set soft-dirty too on some archs */
2251			if (dirty)
2252				entry = pte_mkdirty(entry);
2253			/*
2254			 * NOTE: this needs to happen after pte_mkdirty,
2255			 * because some archs (sparc64, loongarch) could
2256			 * set hw write bit when mkdirty.
2257			 */
2258			if (!write)
2259				entry = pte_wrprotect(entry);
2260			if (soft_dirty)
2261				entry = pte_mksoft_dirty(entry);
2262			if (uffd_wp)
2263				entry = pte_mkuffd_wp(entry);
2264			page_add_anon_rmap(page + i, vma, addr, false);
2265		}
2266		pte = pte_offset_map(&_pmd, addr);
2267		BUG_ON(!pte_none(*pte));
2268		set_pte_at(mm, addr, pte, entry);
 
 
2269		pte_unmap(pte);
2270	}
2271
2272	if (!pmd_migration)
2273		page_remove_rmap(page, vma, true);
2274	if (freeze)
2275		put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2276
2277	smp_wmb(); /* make pte visible before pmd */
2278	pmd_populate(mm, pmd, pgtable);
 
 
 
 
 
 
 
2279}
2280
2281void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2282		unsigned long address, bool freeze, struct folio *folio)
2283{
2284	spinlock_t *ptl;
2285	struct mmu_notifier_range range;
 
 
2286
2287	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2288				address & HPAGE_PMD_MASK,
2289				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2290	mmu_notifier_invalidate_range_start(&range);
2291	ptl = pmd_lock(vma->vm_mm, pmd);
2292
2293	/*
2294	 * If caller asks to setup a migration entry, we need a folio to check
2295	 * pmd against. Otherwise we can end up replacing wrong folio.
2296	 */
2297	VM_BUG_ON(freeze && !folio);
2298	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2299
2300	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2301	    is_pmd_migration_entry(*pmd)) {
2302		/*
2303		 * It's safe to call pmd_page when folio is set because it's
2304		 * guaranteed that pmd is present.
2305		 */
2306		if (folio && folio != page_folio(pmd_page(*pmd)))
2307			goto out;
2308		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2309	}
2310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2311out:
2312	spin_unlock(ptl);
 
 
2313	/*
2314	 * No need to double call mmu_notifier->invalidate_range() callback.
2315	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2316	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2317	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2318	 *    fault will trigger a flush_notify before pointing to a new page
2319	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2320	 *    page in the meantime)
2321	 *  3) Split a huge pmd into pte pointing to the same page. No need
2322	 *     to invalidate secondary tlb entry they are all still valid.
2323	 *     any further changes to individual pte will notify. So no need
2324	 *     to call mmu_notifier->invalidate_range()
2325	 */
2326	mmu_notifier_invalidate_range_only_end(&range);
2327}
2328
2329void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2330		bool freeze, struct folio *folio)
2331{
2332	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
 
 
 
 
 
 
 
2333
2334	if (!pmd)
 
2335		return;
2336
2337	__split_huge_pmd(vma, pmd, address, freeze, folio);
 
 
 
 
 
 
2338}
2339
2340static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2341{
2342	/*
2343	 * If the new address isn't hpage aligned and it could previously
2344	 * contain an hugepage: check if we need to split an huge pmd.
2345	 */
2346	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2347	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2348			 ALIGN(address, HPAGE_PMD_SIZE)))
2349		split_huge_pmd_address(vma, address, false, NULL);
2350}
2351
2352void vma_adjust_trans_huge(struct vm_area_struct *vma,
2353			     unsigned long start,
2354			     unsigned long end,
2355			     long adjust_next)
2356{
2357	/* Check if we need to split start first. */
2358	split_huge_pmd_if_needed(vma, start);
2359
2360	/* Check if we need to split end next. */
2361	split_huge_pmd_if_needed(vma, end);
2362
2363	/*
2364	 * If we're also updating the next vma vm_start,
2365	 * check if we need to split it.
2366	 */
2367	if (adjust_next > 0) {
2368		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2369		unsigned long nstart = next->vm_start;
2370		nstart += adjust_next;
2371		split_huge_pmd_if_needed(next, nstart);
2372	}
2373}
2374
2375static void unmap_folio(struct folio *folio)
2376{
2377	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2378		TTU_SYNC;
2379
2380	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2381
2382	/*
2383	 * Anon pages need migration entries to preserve them, but file
2384	 * pages can simply be left unmapped, then faulted back on demand.
2385	 * If that is ever changed (perhaps for mlock), update remap_page().
2386	 */
2387	if (folio_test_anon(folio))
2388		try_to_migrate(folio, ttu_flags);
2389	else
2390		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
 
 
2391}
2392
2393static void remap_page(struct folio *folio, unsigned long nr)
2394{
2395	int i = 0;
2396
2397	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2398	if (!folio_test_anon(folio))
2399		return;
2400	for (;;) {
2401		remove_migration_ptes(folio, folio, true);
2402		i += folio_nr_pages(folio);
2403		if (i >= nr)
2404			break;
2405		folio = folio_next(folio);
2406	}
2407}
2408
2409static void lru_add_page_tail(struct page *head, struct page *tail,
2410		struct lruvec *lruvec, struct list_head *list)
2411{
2412	VM_BUG_ON_PAGE(!PageHead(head), head);
2413	VM_BUG_ON_PAGE(PageCompound(tail), head);
2414	VM_BUG_ON_PAGE(PageLRU(tail), head);
2415	lockdep_assert_held(&lruvec->lru_lock);
2416
2417	if (list) {
2418		/* page reclaim is reclaiming a huge page */
2419		VM_WARN_ON(PageLRU(head));
2420		get_page(tail);
2421		list_add_tail(&tail->lru, list);
2422	} else {
2423		/* head is still on lru (and we have it frozen) */
2424		VM_WARN_ON(!PageLRU(head));
2425		if (PageUnevictable(tail))
2426			tail->mlock_count = 0;
2427		else
2428			list_add_tail(&tail->lru, &head->lru);
2429		SetPageLRU(tail);
 
2430	}
2431}
2432
2433static void __split_huge_page_tail(struct page *head, int tail,
2434		struct lruvec *lruvec, struct list_head *list)
2435{
2436	struct page *page_tail = head + tail;
2437
2438	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2439
2440	/*
2441	 * Clone page flags before unfreezing refcount.
2442	 *
2443	 * After successful get_page_unless_zero() might follow flags change,
2444	 * for example lock_page() which set PG_waiters.
2445	 *
2446	 * Note that for mapped sub-pages of an anonymous THP,
2447	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2448	 * the migration entry instead from where remap_page() will restore it.
2449	 * We can still have PG_anon_exclusive set on effectively unmapped and
2450	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2451	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2452	 */
2453	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2454	page_tail->flags |= (head->flags &
2455			((1L << PG_referenced) |
2456			 (1L << PG_swapbacked) |
2457			 (1L << PG_swapcache) |
2458			 (1L << PG_mlocked) |
2459			 (1L << PG_uptodate) |
2460			 (1L << PG_active) |
2461			 (1L << PG_workingset) |
2462			 (1L << PG_locked) |
2463			 (1L << PG_unevictable) |
2464#ifdef CONFIG_ARCH_USES_PG_ARCH_X
2465			 (1L << PG_arch_2) |
2466			 (1L << PG_arch_3) |
2467#endif
2468			 (1L << PG_dirty) |
2469			 LRU_GEN_MASK | LRU_REFS_MASK));
2470
2471	/* ->mapping in first and second tail page is replaced by other uses */
2472	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2473			page_tail);
2474	page_tail->mapping = head->mapping;
2475	page_tail->index = head->index + tail;
2476
2477	/*
2478	 * page->private should not be set in tail pages with the exception
2479	 * of swap cache pages that store the swp_entry_t in tail pages.
2480	 * Fix up and warn once if private is unexpectedly set.
2481	 *
2482	 * What of 32-bit systems, on which head[1].compound_pincount overlays
2483	 * head[1].private?  No problem: THP_SWAP is not enabled on 32-bit, and
2484	 * compound_pincount must be 0 for folio_ref_freeze() to have succeeded.
2485	 */
2486	if (!folio_test_swapcache(page_folio(head))) {
2487		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2488		page_tail->private = 0;
2489	}
2490
2491	/* Page flags must be visible before we make the page non-compound. */
2492	smp_wmb();
2493
2494	/*
2495	 * Clear PageTail before unfreezing page refcount.
2496	 *
2497	 * After successful get_page_unless_zero() might follow put_page()
2498	 * which needs correct compound_head().
2499	 */
2500	clear_compound_head(page_tail);
2501
2502	/* Finally unfreeze refcount. Additional reference from page cache. */
2503	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2504					  PageSwapCache(head)));
2505
2506	if (page_is_young(head))
2507		set_page_young(page_tail);
2508	if (page_is_idle(head))
2509		set_page_idle(page_tail);
2510
2511	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2512
2513	/*
2514	 * always add to the tail because some iterators expect new
2515	 * pages to show after the currently processed elements - e.g.
2516	 * migrate_pages
2517	 */
2518	lru_add_page_tail(head, page_tail, lruvec, list);
2519}
2520
2521static void __split_huge_page(struct page *page, struct list_head *list,
2522		pgoff_t end)
2523{
2524	struct folio *folio = page_folio(page);
2525	struct page *head = &folio->page;
2526	struct lruvec *lruvec;
2527	struct address_space *swap_cache = NULL;
2528	unsigned long offset = 0;
2529	unsigned int nr = thp_nr_pages(head);
2530	int i;
2531
2532	/* complete memcg works before add pages to LRU */
2533	split_page_memcg(head, nr);
2534
2535	if (PageAnon(head) && PageSwapCache(head)) {
2536		swp_entry_t entry = { .val = page_private(head) };
2537
2538		offset = swp_offset(entry);
2539		swap_cache = swap_address_space(entry);
2540		xa_lock(&swap_cache->i_pages);
2541	}
2542
2543	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2544	lruvec = folio_lruvec_lock(folio);
2545
2546	ClearPageHasHWPoisoned(head);
2547
2548	for (i = nr - 1; i >= 1; i--) {
2549		__split_huge_page_tail(head, i, lruvec, list);
2550		/* Some pages can be beyond EOF: drop them from page cache */
2551		if (head[i].index >= end) {
2552			struct folio *tail = page_folio(head + i);
2553
2554			if (shmem_mapping(head->mapping))
2555				shmem_uncharge(head->mapping->host, 1);
2556			else if (folio_test_clear_dirty(tail))
2557				folio_account_cleaned(tail,
2558					inode_to_wb(folio->mapping->host));
2559			__filemap_remove_folio(tail, NULL);
2560			folio_put(tail);
2561		} else if (!PageAnon(page)) {
2562			__xa_store(&head->mapping->i_pages, head[i].index,
2563					head + i, 0);
2564		} else if (swap_cache) {
2565			__xa_store(&swap_cache->i_pages, offset + i,
2566					head + i, 0);
2567		}
2568	}
2569
2570	ClearPageCompound(head);
2571	unlock_page_lruvec(lruvec);
2572	/* Caller disabled irqs, so they are still disabled here */
2573
2574	split_page_owner(head, nr);
2575
2576	/* See comment in __split_huge_page_tail() */
2577	if (PageAnon(head)) {
2578		/* Additional pin to swap cache */
2579		if (PageSwapCache(head)) {
2580			page_ref_add(head, 2);
2581			xa_unlock(&swap_cache->i_pages);
2582		} else {
2583			page_ref_inc(head);
2584		}
2585	} else {
2586		/* Additional pin to page cache */
2587		page_ref_add(head, 2);
2588		xa_unlock(&head->mapping->i_pages);
2589	}
2590	local_irq_enable();
2591
2592	remap_page(folio, nr);
2593
2594	if (PageSwapCache(head)) {
2595		swp_entry_t entry = { .val = page_private(head) };
2596
2597		split_swap_cluster(entry);
2598	}
2599
2600	for (i = 0; i < nr; i++) {
2601		struct page *subpage = head + i;
2602		if (subpage == page)
2603			continue;
2604		unlock_page(subpage);
2605
2606		/*
2607		 * Subpages may be freed if there wasn't any mapping
2608		 * like if add_to_swap() is running on a lru page that
2609		 * had its mapping zapped. And freeing these pages
2610		 * requires taking the lru_lock so we do the put_page
2611		 * of the tail pages after the split is complete.
2612		 */
2613		free_page_and_swap_cache(subpage);
2614	}
2615}
2616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617/* Racy check whether the huge page can be split */
2618bool can_split_folio(struct folio *folio, int *pextra_pins)
2619{
2620	int extra_pins;
2621
2622	/* Additional pins from page cache */
2623	if (folio_test_anon(folio))
2624		extra_pins = folio_test_swapcache(folio) ?
2625				folio_nr_pages(folio) : 0;
2626	else
2627		extra_pins = folio_nr_pages(folio);
2628	if (pextra_pins)
2629		*pextra_pins = extra_pins;
2630	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2631}
2632
2633/*
2634 * This function splits huge page into normal pages. @page can point to any
2635 * subpage of huge page to split. Split doesn't change the position of @page.
2636 *
2637 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2638 * The huge page must be locked.
2639 *
2640 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2641 *
2642 * Both head page and tail pages will inherit mapping, flags, and so on from
2643 * the hugepage.
2644 *
2645 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2646 * they are not mapped.
2647 *
2648 * Returns 0 if the hugepage is split successfully.
2649 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2650 * us.
2651 */
2652int split_huge_page_to_list(struct page *page, struct list_head *list)
2653{
2654	struct folio *folio = page_folio(page);
2655	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2656	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2657	struct anon_vma *anon_vma = NULL;
2658	struct address_space *mapping = NULL;
2659	int extra_pins, ret;
2660	pgoff_t end;
2661	bool is_hzp;
2662
2663	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2664	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
 
2665
2666	is_hzp = is_huge_zero_page(&folio->page);
2667	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2668	if (is_hzp)
2669		return -EBUSY;
2670
2671	if (folio_test_writeback(folio))
2672		return -EBUSY;
2673
2674	if (folio_test_anon(folio)) {
2675		/*
2676		 * The caller does not necessarily hold an mmap_lock that would
2677		 * prevent the anon_vma disappearing so we first we take a
2678		 * reference to it and then lock the anon_vma for write. This
2679		 * is similar to folio_lock_anon_vma_read except the write lock
2680		 * is taken to serialise against parallel split or collapse
2681		 * operations.
2682		 */
2683		anon_vma = folio_get_anon_vma(folio);
2684		if (!anon_vma) {
2685			ret = -EBUSY;
2686			goto out;
2687		}
2688		end = -1;
2689		mapping = NULL;
2690		anon_vma_lock_write(anon_vma);
2691	} else {
2692		gfp_t gfp;
2693
2694		mapping = folio->mapping;
2695
2696		/* Truncated ? */
2697		if (!mapping) {
2698			ret = -EBUSY;
2699			goto out;
2700		}
2701
2702		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2703							GFP_RECLAIM_MASK);
2704
2705		if (folio_test_private(folio) &&
2706				!filemap_release_folio(folio, gfp)) {
2707			ret = -EBUSY;
2708			goto out;
2709		}
2710
2711		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2712		if (xas_error(&xas)) {
2713			ret = xas_error(&xas);
2714			goto out;
2715		}
2716
2717		anon_vma = NULL;
2718		i_mmap_lock_read(mapping);
2719
2720		/*
2721		 *__split_huge_page() may need to trim off pages beyond EOF:
2722		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2723		 * which cannot be nested inside the page tree lock. So note
2724		 * end now: i_size itself may be changed at any moment, but
2725		 * folio lock is good enough to serialize the trimming.
2726		 */
2727		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2728		if (shmem_mapping(mapping))
2729			end = shmem_fallocend(mapping->host, end);
2730	}
2731
2732	/*
2733	 * Racy check if we can split the page, before unmap_folio() will
2734	 * split PMDs
2735	 */
2736	if (!can_split_folio(folio, &extra_pins)) {
2737		ret = -EAGAIN;
2738		goto out_unlock;
2739	}
2740
2741	unmap_folio(folio);
2742
2743	/* block interrupt reentry in xa_lock and spinlock */
2744	local_irq_disable();
2745	if (mapping) {
 
 
2746		/*
2747		 * Check if the folio is present in page cache.
2748		 * We assume all tail are present too, if folio is there.
2749		 */
2750		xas_lock(&xas);
2751		xas_reset(&xas);
2752		if (xas_load(&xas) != folio)
2753			goto fail;
2754	}
2755
2756	/* Prevent deferred_split_scan() touching ->_refcount */
2757	spin_lock(&ds_queue->split_queue_lock);
2758	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2759		if (!list_empty(page_deferred_list(&folio->page))) {
2760			ds_queue->split_queue_len--;
2761			list_del(page_deferred_list(&folio->page));
2762		}
2763		spin_unlock(&ds_queue->split_queue_lock);
2764		if (mapping) {
2765			int nr = folio_nr_pages(folio);
2766
2767			xas_split(&xas, folio, folio_order(folio));
2768			if (folio_test_swapbacked(folio)) {
2769				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2770							-nr);
2771			} else {
2772				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2773							-nr);
2774				filemap_nr_thps_dec(mapping);
2775			}
2776		}
2777
2778		__split_huge_page(page, list, end);
2779		ret = 0;
2780	} else {
2781		spin_unlock(&ds_queue->split_queue_lock);
2782fail:
2783		if (mapping)
2784			xas_unlock(&xas);
2785		local_irq_enable();
2786		remap_page(folio, folio_nr_pages(folio));
2787		ret = -EAGAIN;
2788	}
2789
2790out_unlock:
2791	if (anon_vma) {
2792		anon_vma_unlock_write(anon_vma);
2793		put_anon_vma(anon_vma);
2794	}
2795	if (mapping)
2796		i_mmap_unlock_read(mapping);
2797out:
2798	xas_destroy(&xas);
2799	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2800	return ret;
2801}
2802
2803void free_transhuge_page(struct page *page)
2804{
2805	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2806	unsigned long flags;
2807
2808	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2809	if (!list_empty(page_deferred_list(page))) {
2810		ds_queue->split_queue_len--;
2811		list_del(page_deferred_list(page));
2812	}
2813	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2814	free_compound_page(page);
2815}
2816
2817void deferred_split_huge_page(struct page *page)
2818{
2819	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2820#ifdef CONFIG_MEMCG
2821	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2822#endif
2823	unsigned long flags;
2824
2825	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2826
2827	/*
2828	 * The try_to_unmap() in page reclaim path might reach here too,
2829	 * this may cause a race condition to corrupt deferred split queue.
2830	 * And, if page reclaim is already handling the same page, it is
2831	 * unnecessary to handle it again in shrinker.
2832	 *
2833	 * Check PageSwapCache to determine if the page is being
2834	 * handled by page reclaim since THP swap would add the page into
2835	 * swap cache before calling try_to_unmap().
2836	 */
2837	if (PageSwapCache(page))
2838		return;
2839
2840	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2841	if (list_empty(page_deferred_list(page))) {
2842		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2843		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2844		ds_queue->split_queue_len++;
2845#ifdef CONFIG_MEMCG
2846		if (memcg)
2847			set_shrinker_bit(memcg, page_to_nid(page),
2848					 deferred_split_shrinker.id);
2849#endif
2850	}
2851	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2852}
2853
2854static unsigned long deferred_split_count(struct shrinker *shrink,
2855		struct shrink_control *sc)
2856{
2857	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2858	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2859
2860#ifdef CONFIG_MEMCG
2861	if (sc->memcg)
2862		ds_queue = &sc->memcg->deferred_split_queue;
2863#endif
2864	return READ_ONCE(ds_queue->split_queue_len);
2865}
2866
2867static unsigned long deferred_split_scan(struct shrinker *shrink,
2868		struct shrink_control *sc)
2869{
2870	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2871	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2872	unsigned long flags;
2873	LIST_HEAD(list), *pos, *next;
2874	struct page *page;
2875	int split = 0;
2876
2877#ifdef CONFIG_MEMCG
2878	if (sc->memcg)
2879		ds_queue = &sc->memcg->deferred_split_queue;
2880#endif
2881
2882	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2883	/* Take pin on all head pages to avoid freeing them under us */
2884	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2885		page = list_entry((void *)pos, struct page, deferred_list);
2886		page = compound_head(page);
2887		if (get_page_unless_zero(page)) {
2888			list_move(page_deferred_list(page), &list);
2889		} else {
2890			/* We lost race with put_compound_page() */
2891			list_del_init(page_deferred_list(page));
2892			ds_queue->split_queue_len--;
2893		}
2894		if (!--sc->nr_to_scan)
2895			break;
2896	}
2897	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898
2899	list_for_each_safe(pos, next, &list) {
2900		page = list_entry((void *)pos, struct page, deferred_list);
2901		if (!trylock_page(page))
2902			goto next;
2903		/* split_huge_page() removes page from list on success */
2904		if (!split_huge_page(page))
2905			split++;
2906		unlock_page(page);
2907next:
2908		put_page(page);
2909	}
2910
2911	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2912	list_splice_tail(&list, &ds_queue->split_queue);
2913	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2914
2915	/*
2916	 * Stop shrinker if we didn't split any page, but the queue is empty.
2917	 * This can happen if pages were freed under us.
2918	 */
2919	if (!split && list_empty(&ds_queue->split_queue))
2920		return SHRINK_STOP;
2921	return split;
2922}
2923
2924static struct shrinker deferred_split_shrinker = {
2925	.count_objects = deferred_split_count,
2926	.scan_objects = deferred_split_scan,
2927	.seeks = DEFAULT_SEEKS,
2928	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2929		 SHRINKER_NONSLAB,
2930};
2931
2932#ifdef CONFIG_DEBUG_FS
2933static void split_huge_pages_all(void)
2934{
2935	struct zone *zone;
2936	struct page *page;
2937	unsigned long pfn, max_zone_pfn;
2938	unsigned long total = 0, split = 0;
2939
2940	pr_debug("Split all THPs\n");
2941	for_each_zone(zone) {
2942		if (!managed_zone(zone))
2943			continue;
2944		max_zone_pfn = zone_end_pfn(zone);
2945		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2946			int nr_pages;
 
2947
2948			page = pfn_to_online_page(pfn);
2949			if (!page || !get_page_unless_zero(page))
2950				continue;
2951
2952			if (zone != page_zone(page))
2953				goto next;
2954
2955			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2956				goto next;
2957
2958			total++;
2959			lock_page(page);
2960			nr_pages = thp_nr_pages(page);
2961			if (!split_huge_page(page))
2962				split++;
2963			pfn += nr_pages - 1;
2964			unlock_page(page);
2965next:
2966			put_page(page);
2967			cond_resched();
2968		}
2969	}
2970
2971	pr_debug("%lu of %lu THP split\n", split, total);
2972}
2973
2974static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2975{
2976	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2977		    is_vm_hugetlb_page(vma);
2978}
2979
2980static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2981				unsigned long vaddr_end)
2982{
2983	int ret = 0;
2984	struct task_struct *task;
2985	struct mm_struct *mm;
2986	unsigned long total = 0, split = 0;
2987	unsigned long addr;
2988
2989	vaddr_start &= PAGE_MASK;
2990	vaddr_end &= PAGE_MASK;
2991
2992	/* Find the task_struct from pid */
2993	rcu_read_lock();
2994	task = find_task_by_vpid(pid);
2995	if (!task) {
2996		rcu_read_unlock();
2997		ret = -ESRCH;
2998		goto out;
2999	}
3000	get_task_struct(task);
3001	rcu_read_unlock();
3002
3003	/* Find the mm_struct */
3004	mm = get_task_mm(task);
3005	put_task_struct(task);
3006
3007	if (!mm) {
3008		ret = -EINVAL;
3009		goto out;
3010	}
3011
3012	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3013		 pid, vaddr_start, vaddr_end);
3014
3015	mmap_read_lock(mm);
3016	/*
3017	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3018	 * table filled with PTE-mapped THPs, each of which is distinct.
3019	 */
3020	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3021		struct vm_area_struct *vma = vma_lookup(mm, addr);
 
3022		struct page *page;
3023
3024		if (!vma)
3025			break;
3026
3027		/* skip special VMA and hugetlb VMA */
3028		if (vma_not_suitable_for_thp_split(vma)) {
3029			addr = vma->vm_end;
3030			continue;
3031		}
3032
3033		/* FOLL_DUMP to ignore special (like zero) pages */
3034		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
 
3035
3036		if (IS_ERR_OR_NULL(page))
 
 
3037			continue;
3038
3039		if (!is_transparent_hugepage(page))
3040			goto next;
3041
3042		total++;
3043		if (!can_split_folio(page_folio(page), NULL))
3044			goto next;
3045
3046		if (!trylock_page(page))
3047			goto next;
3048
3049		if (!split_huge_page(page))
3050			split++;
3051
3052		unlock_page(page);
3053next:
3054		put_page(page);
3055		cond_resched();
3056	}
3057	mmap_read_unlock(mm);
3058	mmput(mm);
3059
3060	pr_debug("%lu of %lu THP split\n", split, total);
3061
3062out:
3063	return ret;
3064}
3065
3066static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3067				pgoff_t off_end)
3068{
3069	struct filename *file;
3070	struct file *candidate;
3071	struct address_space *mapping;
3072	int ret = -EINVAL;
3073	pgoff_t index;
3074	int nr_pages = 1;
3075	unsigned long total = 0, split = 0;
3076
3077	file = getname_kernel(file_path);
3078	if (IS_ERR(file))
3079		return ret;
3080
3081	candidate = file_open_name(file, O_RDONLY, 0);
3082	if (IS_ERR(candidate))
3083		goto out;
3084
3085	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3086		 file_path, off_start, off_end);
3087
3088	mapping = candidate->f_mapping;
3089
3090	for (index = off_start; index < off_end; index += nr_pages) {
3091		struct folio *folio = __filemap_get_folio(mapping, index,
3092						FGP_ENTRY, 0);
3093
3094		nr_pages = 1;
3095		if (xa_is_value(folio) || !folio)
3096			continue;
3097
3098		if (!folio_test_large(folio))
3099			goto next;
3100
3101		total++;
3102		nr_pages = folio_nr_pages(folio);
3103
3104		if (!folio_trylock(folio))
3105			goto next;
3106
3107		if (!split_folio(folio))
3108			split++;
3109
3110		folio_unlock(folio);
3111next:
3112		folio_put(folio);
3113		cond_resched();
3114	}
3115
3116	filp_close(candidate, NULL);
3117	ret = 0;
3118
3119	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3120out:
3121	putname(file);
3122	return ret;
3123}
3124
3125#define MAX_INPUT_BUF_SZ 255
3126
3127static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3128				size_t count, loff_t *ppops)
3129{
3130	static DEFINE_MUTEX(split_debug_mutex);
3131	ssize_t ret;
3132	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3133	char input_buf[MAX_INPUT_BUF_SZ];
3134	int pid;
3135	unsigned long vaddr_start, vaddr_end;
3136
3137	ret = mutex_lock_interruptible(&split_debug_mutex);
3138	if (ret)
3139		return ret;
3140
3141	ret = -EFAULT;
3142
3143	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3144	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3145		goto out;
3146
3147	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3148
3149	if (input_buf[0] == '/') {
3150		char *tok;
3151		char *buf = input_buf;
3152		char file_path[MAX_INPUT_BUF_SZ];
3153		pgoff_t off_start = 0, off_end = 0;
3154		size_t input_len = strlen(input_buf);
3155
3156		tok = strsep(&buf, ",");
3157		if (tok) {
3158			strcpy(file_path, tok);
3159		} else {
3160			ret = -EINVAL;
3161			goto out;
3162		}
3163
3164		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3165		if (ret != 2) {
3166			ret = -EINVAL;
3167			goto out;
3168		}
3169		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3170		if (!ret)
3171			ret = input_len;
3172
3173		goto out;
3174	}
3175
3176	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3177	if (ret == 1 && pid == 1) {
3178		split_huge_pages_all();
3179		ret = strlen(input_buf);
3180		goto out;
3181	} else if (ret != 3) {
3182		ret = -EINVAL;
3183		goto out;
3184	}
3185
3186	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3187	if (!ret)
3188		ret = strlen(input_buf);
3189out:
3190	mutex_unlock(&split_debug_mutex);
3191	return ret;
3192
3193}
3194
3195static const struct file_operations split_huge_pages_fops = {
3196	.owner	 = THIS_MODULE,
3197	.write	 = split_huge_pages_write,
3198	.llseek  = no_llseek,
3199};
3200
3201static int __init split_huge_pages_debugfs(void)
3202{
3203	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3204			    &split_huge_pages_fops);
3205	return 0;
3206}
3207late_initcall(split_huge_pages_debugfs);
3208#endif
3209
3210#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3211int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3212		struct page *page)
3213{
3214	struct vm_area_struct *vma = pvmw->vma;
3215	struct mm_struct *mm = vma->vm_mm;
3216	unsigned long address = pvmw->address;
3217	bool anon_exclusive;
3218	pmd_t pmdval;
3219	swp_entry_t entry;
3220	pmd_t pmdswp;
3221
3222	if (!(pvmw->pmd && !pvmw->pte))
3223		return 0;
3224
3225	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3226	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3227
3228	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3229	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3230	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3231		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3232		return -EBUSY;
3233	}
3234
3235	if (pmd_dirty(pmdval))
3236		set_page_dirty(page);
3237	if (pmd_write(pmdval))
3238		entry = make_writable_migration_entry(page_to_pfn(page));
3239	else if (anon_exclusive)
3240		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3241	else
3242		entry = make_readable_migration_entry(page_to_pfn(page));
3243	if (pmd_young(pmdval))
3244		entry = make_migration_entry_young(entry);
3245	if (pmd_dirty(pmdval))
3246		entry = make_migration_entry_dirty(entry);
3247	pmdswp = swp_entry_to_pmd(entry);
3248	if (pmd_soft_dirty(pmdval))
3249		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3250	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3251	page_remove_rmap(page, vma, true);
3252	put_page(page);
3253	trace_set_migration_pmd(address, pmd_val(pmdswp));
3254
3255	return 0;
3256}
3257
3258void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3259{
3260	struct vm_area_struct *vma = pvmw->vma;
3261	struct mm_struct *mm = vma->vm_mm;
3262	unsigned long address = pvmw->address;
3263	unsigned long haddr = address & HPAGE_PMD_MASK;
3264	pmd_t pmde;
3265	swp_entry_t entry;
3266
3267	if (!(pvmw->pmd && !pvmw->pte))
3268		return;
3269
3270	entry = pmd_to_swp_entry(*pvmw->pmd);
3271	get_page(new);
3272	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3273	if (pmd_swp_soft_dirty(*pvmw->pmd))
3274		pmde = pmd_mksoft_dirty(pmde);
 
 
3275	if (pmd_swp_uffd_wp(*pvmw->pmd))
3276		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3277	if (!is_migration_entry_young(entry))
3278		pmde = pmd_mkold(pmde);
3279	/* NOTE: this may contain setting soft-dirty on some archs */
3280	if (PageDirty(new) && is_migration_entry_dirty(entry))
3281		pmde = pmd_mkdirty(pmde);
3282	if (is_writable_migration_entry(entry))
3283		pmde = maybe_pmd_mkwrite(pmde, vma);
3284	else
3285		pmde = pmd_wrprotect(pmde);
3286
3287	if (PageAnon(new)) {
3288		rmap_t rmap_flags = RMAP_COMPOUND;
3289
3290		if (!is_readable_migration_entry(entry))
3291			rmap_flags |= RMAP_EXCLUSIVE;
3292
3293		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3294	} else {
3295		page_add_file_rmap(new, vma, true);
3296	}
3297	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3298	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3299
3300	/* No need to invalidate - it was non-present before */
3301	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3302	trace_remove_migration_pmd(address, pmd_val(pmde));
3303}
3304#endif