Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
 
  57
  58/*
  59 * SLAB caches for signal bits.
  60 */
  61
  62static struct kmem_cache *sigqueue_cachep;
  63
  64int print_fatal_signals __read_mostly;
  65
  66static void __user *sig_handler(struct task_struct *t, int sig)
  67{
  68	return t->sighand->action[sig - 1].sa.sa_handler;
  69}
  70
  71static inline bool sig_handler_ignored(void __user *handler, int sig)
  72{
  73	/* Is it explicitly or implicitly ignored? */
  74	return handler == SIG_IGN ||
  75	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  76}
  77
  78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  79{
  80	void __user *handler;
  81
  82	handler = sig_handler(t, sig);
  83
  84	/* SIGKILL and SIGSTOP may not be sent to the global init */
  85	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  86		return true;
  87
  88	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  89	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  90		return true;
  91
  92	/* Only allow kernel generated signals to this kthread */
  93	if (unlikely((t->flags & PF_KTHREAD) &&
  94		     (handler == SIG_KTHREAD_KERNEL) && !force))
  95		return true;
  96
  97	return sig_handler_ignored(handler, sig);
  98}
  99
 100static bool sig_ignored(struct task_struct *t, int sig, bool force)
 101{
 102	/*
 103	 * Blocked signals are never ignored, since the
 104	 * signal handler may change by the time it is
 105	 * unblocked.
 106	 */
 107	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 108		return false;
 109
 110	/*
 111	 * Tracers may want to know about even ignored signal unless it
 112	 * is SIGKILL which can't be reported anyway but can be ignored
 113	 * by SIGNAL_UNKILLABLE task.
 114	 */
 115	if (t->ptrace && sig != SIGKILL)
 116		return false;
 117
 118	return sig_task_ignored(t, sig, force);
 119}
 120
 121/*
 122 * Re-calculate pending state from the set of locally pending
 123 * signals, globally pending signals, and blocked signals.
 124 */
 125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 126{
 127	unsigned long ready;
 128	long i;
 129
 130	switch (_NSIG_WORDS) {
 131	default:
 132		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 133			ready |= signal->sig[i] &~ blocked->sig[i];
 134		break;
 135
 136	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 137		ready |= signal->sig[2] &~ blocked->sig[2];
 138		ready |= signal->sig[1] &~ blocked->sig[1];
 139		ready |= signal->sig[0] &~ blocked->sig[0];
 140		break;
 141
 142	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 147	}
 148	return ready !=	0;
 149}
 150
 151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 152
 153static bool recalc_sigpending_tsk(struct task_struct *t)
 154{
 155	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 156	    PENDING(&t->pending, &t->blocked) ||
 157	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 158	    cgroup_task_frozen(t)) {
 159		set_tsk_thread_flag(t, TIF_SIGPENDING);
 160		return true;
 161	}
 162
 163	/*
 164	 * We must never clear the flag in another thread, or in current
 165	 * when it's possible the current syscall is returning -ERESTART*.
 166	 * So we don't clear it here, and only callers who know they should do.
 167	 */
 168	return false;
 169}
 170
 171/*
 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 173 * This is superfluous when called on current, the wakeup is a harmless no-op.
 174 */
 175void recalc_sigpending_and_wake(struct task_struct *t)
 176{
 177	if (recalc_sigpending_tsk(t))
 178		signal_wake_up(t, 0);
 179}
 180
 181void recalc_sigpending(void)
 182{
 183	if (!recalc_sigpending_tsk(current) && !freezing(current))
 184		clear_thread_flag(TIF_SIGPENDING);
 185
 186}
 187EXPORT_SYMBOL(recalc_sigpending);
 188
 189void calculate_sigpending(void)
 190{
 191	/* Have any signals or users of TIF_SIGPENDING been delayed
 192	 * until after fork?
 193	 */
 194	spin_lock_irq(&current->sighand->siglock);
 195	set_tsk_thread_flag(current, TIF_SIGPENDING);
 196	recalc_sigpending();
 197	spin_unlock_irq(&current->sighand->siglock);
 198}
 199
 200/* Given the mask, find the first available signal that should be serviced. */
 201
 202#define SYNCHRONOUS_MASK \
 203	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 204	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 205
 206int next_signal(struct sigpending *pending, sigset_t *mask)
 207{
 208	unsigned long i, *s, *m, x;
 209	int sig = 0;
 210
 211	s = pending->signal.sig;
 212	m = mask->sig;
 213
 214	/*
 215	 * Handle the first word specially: it contains the
 216	 * synchronous signals that need to be dequeued first.
 217	 */
 218	x = *s &~ *m;
 219	if (x) {
 220		if (x & SYNCHRONOUS_MASK)
 221			x &= SYNCHRONOUS_MASK;
 222		sig = ffz(~x) + 1;
 223		return sig;
 224	}
 225
 226	switch (_NSIG_WORDS) {
 227	default:
 228		for (i = 1; i < _NSIG_WORDS; ++i) {
 229			x = *++s &~ *++m;
 230			if (!x)
 231				continue;
 232			sig = ffz(~x) + i*_NSIG_BPW + 1;
 233			break;
 234		}
 235		break;
 236
 237	case 2:
 238		x = s[1] &~ m[1];
 239		if (!x)
 240			break;
 241		sig = ffz(~x) + _NSIG_BPW + 1;
 242		break;
 243
 244	case 1:
 245		/* Nothing to do */
 246		break;
 247	}
 248
 249	return sig;
 250}
 251
 252static inline void print_dropped_signal(int sig)
 253{
 254	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 255
 256	if (!print_fatal_signals)
 257		return;
 258
 259	if (!__ratelimit(&ratelimit_state))
 260		return;
 261
 262	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 263				current->comm, current->pid, sig);
 264}
 265
 266/**
 267 * task_set_jobctl_pending - set jobctl pending bits
 268 * @task: target task
 269 * @mask: pending bits to set
 270 *
 271 * Clear @mask from @task->jobctl.  @mask must be subset of
 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 273 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 274 * cleared.  If @task is already being killed or exiting, this function
 275 * becomes noop.
 276 *
 277 * CONTEXT:
 278 * Must be called with @task->sighand->siglock held.
 279 *
 280 * RETURNS:
 281 * %true if @mask is set, %false if made noop because @task was dying.
 282 */
 283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 284{
 285	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 286			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 287	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 288
 289	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 290		return false;
 291
 292	if (mask & JOBCTL_STOP_SIGMASK)
 293		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 294
 295	task->jobctl |= mask;
 296	return true;
 297}
 298
 299/**
 300 * task_clear_jobctl_trapping - clear jobctl trapping bit
 301 * @task: target task
 302 *
 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 304 * Clear it and wake up the ptracer.  Note that we don't need any further
 305 * locking.  @task->siglock guarantees that @task->parent points to the
 306 * ptracer.
 307 *
 308 * CONTEXT:
 309 * Must be called with @task->sighand->siglock held.
 310 */
 311void task_clear_jobctl_trapping(struct task_struct *task)
 312{
 313	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 314		task->jobctl &= ~JOBCTL_TRAPPING;
 315		smp_mb();	/* advised by wake_up_bit() */
 316		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 317	}
 318}
 319
 320/**
 321 * task_clear_jobctl_pending - clear jobctl pending bits
 322 * @task: target task
 323 * @mask: pending bits to clear
 324 *
 325 * Clear @mask from @task->jobctl.  @mask must be subset of
 326 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 327 * STOP bits are cleared together.
 328 *
 329 * If clearing of @mask leaves no stop or trap pending, this function calls
 330 * task_clear_jobctl_trapping().
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 */
 335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 336{
 337	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 338
 339	if (mask & JOBCTL_STOP_PENDING)
 340		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 341
 342	task->jobctl &= ~mask;
 343
 344	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 345		task_clear_jobctl_trapping(task);
 346}
 347
 348/**
 349 * task_participate_group_stop - participate in a group stop
 350 * @task: task participating in a group stop
 351 *
 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 353 * Group stop states are cleared and the group stop count is consumed if
 354 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 355 * stop, the appropriate `SIGNAL_*` flags are set.
 356 *
 357 * CONTEXT:
 358 * Must be called with @task->sighand->siglock held.
 359 *
 360 * RETURNS:
 361 * %true if group stop completion should be notified to the parent, %false
 362 * otherwise.
 363 */
 364static bool task_participate_group_stop(struct task_struct *task)
 365{
 366	struct signal_struct *sig = task->signal;
 367	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 368
 369	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 370
 371	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 372
 373	if (!consume)
 374		return false;
 375
 376	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 377		sig->group_stop_count--;
 378
 379	/*
 380	 * Tell the caller to notify completion iff we are entering into a
 381	 * fresh group stop.  Read comment in do_signal_stop() for details.
 382	 */
 383	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 384		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 385		return true;
 386	}
 387	return false;
 388}
 389
 390void task_join_group_stop(struct task_struct *task)
 391{
 392	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 393	struct signal_struct *sig = current->signal;
 394
 395	if (sig->group_stop_count) {
 396		sig->group_stop_count++;
 397		mask |= JOBCTL_STOP_CONSUME;
 398	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 399		return;
 400
 401	/* Have the new thread join an on-going signal group stop */
 402	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 403}
 404
 405/*
 406 * allocate a new signal queue record
 407 * - this may be called without locks if and only if t == current, otherwise an
 408 *   appropriate lock must be held to stop the target task from exiting
 409 */
 410static struct sigqueue *
 411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 412		 int override_rlimit, const unsigned int sigqueue_flags)
 413{
 414	struct sigqueue *q = NULL;
 415	struct ucounts *ucounts = NULL;
 416	long sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	ucounts = task_ucounts(t);
 428	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 429	rcu_read_unlock();
 430	if (!sigpending)
 431		return NULL;
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 441	} else {
 442		INIT_LIST_HEAD(&q->list);
 443		q->flags = sigqueue_flags;
 444		q->ucounts = ucounts;
 445	}
 446	return q;
 447}
 448
 449static void __sigqueue_free(struct sigqueue *q)
 450{
 451	if (q->flags & SIGQUEUE_PREALLOC)
 452		return;
 453	if (q->ucounts) {
 454		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 455		q->ucounts = NULL;
 456	}
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 
 
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 795}
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !task_sigpending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116
1117	if (q) {
1118		list_add_tail(&q->list, &pending->list);
1119		switch ((unsigned long) info) {
1120		case (unsigned long) SEND_SIG_NOINFO:
1121			clear_siginfo(&q->info);
1122			q->info.si_signo = sig;
1123			q->info.si_errno = 0;
1124			q->info.si_code = SI_USER;
1125			q->info.si_pid = task_tgid_nr_ns(current,
1126							task_active_pid_ns(t));
1127			rcu_read_lock();
1128			q->info.si_uid =
1129				from_kuid_munged(task_cred_xxx(t, user_ns),
1130						 current_uid());
1131			rcu_read_unlock();
1132			break;
1133		case (unsigned long) SEND_SIG_PRIV:
1134			clear_siginfo(&q->info);
1135			q->info.si_signo = sig;
1136			q->info.si_errno = 0;
1137			q->info.si_code = SI_KERNEL;
1138			q->info.si_pid = 0;
1139			q->info.si_uid = 0;
1140			break;
1141		default:
1142			copy_siginfo(&q->info, info);
1143			break;
1144		}
1145	} else if (!is_si_special(info) &&
1146		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147		/*
1148		 * Queue overflow, abort.  We may abort if the
1149		 * signal was rt and sent by user using something
1150		 * other than kill().
1151		 */
1152		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153		ret = -EAGAIN;
1154		goto ret;
1155	} else {
1156		/*
1157		 * This is a silent loss of information.  We still
1158		 * send the signal, but the *info bits are lost.
1159		 */
1160		result = TRACE_SIGNAL_LOSE_INFO;
1161	}
1162
1163out_set:
1164	signalfd_notify(t, sig);
1165	sigaddset(&pending->signal, sig);
1166
1167	/* Let multiprocess signals appear after on-going forks */
1168	if (type > PIDTYPE_TGID) {
1169		struct multiprocess_signals *delayed;
1170		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171			sigset_t *signal = &delayed->signal;
1172			/* Can't queue both a stop and a continue signal */
1173			if (sig == SIGCONT)
1174				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175			else if (sig_kernel_stop(sig))
1176				sigdelset(signal, SIGCONT);
1177			sigaddset(signal, sig);
1178		}
1179	}
1180
1181	complete_signal(sig, t, type);
1182ret:
1183	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184	return ret;
1185}
1186
1187static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1188{
1189	bool ret = false;
1190	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191	case SIL_KILL:
1192	case SIL_CHLD:
1193	case SIL_RT:
1194		ret = true;
1195		break;
1196	case SIL_TIMER:
1197	case SIL_POLL:
1198	case SIL_FAULT:
1199	case SIL_FAULT_TRAPNO:
1200	case SIL_FAULT_MCEERR:
1201	case SIL_FAULT_BNDERR:
1202	case SIL_FAULT_PKUERR:
1203	case SIL_PERF_EVENT:
1204	case SIL_SYS:
1205		ret = false;
1206		break;
1207	}
1208	return ret;
1209}
1210
1211static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212			enum pid_type type)
1213{
1214	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215	bool force = false;
1216
1217	if (info == SEND_SIG_NOINFO) {
1218		/* Force if sent from an ancestor pid namespace */
1219		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220	} else if (info == SEND_SIG_PRIV) {
1221		/* Don't ignore kernel generated signals */
1222		force = true;
1223	} else if (has_si_pid_and_uid(info)) {
1224		/* SIGKILL and SIGSTOP is special or has ids */
1225		struct user_namespace *t_user_ns;
1226
1227		rcu_read_lock();
1228		t_user_ns = task_cred_xxx(t, user_ns);
1229		if (current_user_ns() != t_user_ns) {
1230			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231			info->si_uid = from_kuid_munged(t_user_ns, uid);
1232		}
1233		rcu_read_unlock();
1234
1235		/* A kernel generated signal? */
1236		force = (info->si_code == SI_KERNEL);
1237
1238		/* From an ancestor pid namespace? */
1239		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240			info->si_pid = 0;
1241			force = true;
1242		}
1243	}
1244	return __send_signal(sig, info, t, type, force);
1245}
1246
1247static void print_fatal_signal(int signr)
1248{
1249	struct pt_regs *regs = signal_pt_regs();
1250	pr_info("potentially unexpected fatal signal %d.\n", signr);
1251
1252#if defined(__i386__) && !defined(__arch_um__)
1253	pr_info("code at %08lx: ", regs->ip);
1254	{
1255		int i;
1256		for (i = 0; i < 16; i++) {
1257			unsigned char insn;
1258
1259			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260				break;
1261			pr_cont("%02x ", insn);
1262		}
1263	}
1264	pr_cont("\n");
1265#endif
1266	preempt_disable();
1267	show_regs(regs);
1268	preempt_enable();
1269}
1270
1271static int __init setup_print_fatal_signals(char *str)
1272{
1273	get_option (&str, &print_fatal_signals);
1274
1275	return 1;
1276}
1277
1278__setup("print-fatal-signals=", setup_print_fatal_signals);
1279
1280int
1281__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1282{
1283	return send_signal(sig, info, p, PIDTYPE_TGID);
1284}
1285
1286int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287			enum pid_type type)
1288{
1289	unsigned long flags;
1290	int ret = -ESRCH;
1291
1292	if (lock_task_sighand(p, &flags)) {
1293		ret = send_signal(sig, info, p, type);
1294		unlock_task_sighand(p, &flags);
1295	}
1296
1297	return ret;
1298}
1299
 
 
 
 
 
 
1300/*
1301 * Force a signal that the process can't ignore: if necessary
1302 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303 *
1304 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305 * since we do not want to have a signal handler that was blocked
1306 * be invoked when user space had explicitly blocked it.
1307 *
1308 * We don't want to have recursive SIGSEGV's etc, for example,
1309 * that is why we also clear SIGNAL_UNKILLABLE.
1310 */
1311static int
1312force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
 
1313{
1314	unsigned long int flags;
1315	int ret, blocked, ignored;
1316	struct k_sigaction *action;
1317	int sig = info->si_signo;
1318
1319	spin_lock_irqsave(&t->sighand->siglock, flags);
1320	action = &t->sighand->action[sig-1];
1321	ignored = action->sa.sa_handler == SIG_IGN;
1322	blocked = sigismember(&t->blocked, sig);
1323	if (blocked || ignored) {
1324		action->sa.sa_handler = SIG_DFL;
 
 
1325		if (blocked) {
1326			sigdelset(&t->blocked, sig);
1327			recalc_sigpending_and_wake(t);
1328		}
1329	}
1330	/*
1331	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332	 * debugging to leave init killable.
1333	 */
1334	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
 
1335		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336	ret = send_signal(sig, info, t, PIDTYPE_PID);
1337	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338
1339	return ret;
1340}
1341
1342int force_sig_info(struct kernel_siginfo *info)
1343{
1344	return force_sig_info_to_task(info, current);
1345}
1346
1347/*
1348 * Nuke all other threads in the group.
1349 */
1350int zap_other_threads(struct task_struct *p)
1351{
1352	struct task_struct *t = p;
1353	int count = 0;
1354
1355	p->signal->group_stop_count = 0;
1356
1357	while_each_thread(p, t) {
1358		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359		count++;
1360
1361		/* Don't bother with already dead threads */
1362		if (t->exit_state)
1363			continue;
1364		sigaddset(&t->pending.signal, SIGKILL);
1365		signal_wake_up(t, 1);
1366	}
1367
1368	return count;
1369}
1370
1371struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372					   unsigned long *flags)
1373{
1374	struct sighand_struct *sighand;
1375
1376	rcu_read_lock();
1377	for (;;) {
1378		sighand = rcu_dereference(tsk->sighand);
1379		if (unlikely(sighand == NULL))
1380			break;
1381
1382		/*
1383		 * This sighand can be already freed and even reused, but
1384		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385		 * initializes ->siglock: this slab can't go away, it has
1386		 * the same object type, ->siglock can't be reinitialized.
1387		 *
1388		 * We need to ensure that tsk->sighand is still the same
1389		 * after we take the lock, we can race with de_thread() or
1390		 * __exit_signal(). In the latter case the next iteration
1391		 * must see ->sighand == NULL.
1392		 */
1393		spin_lock_irqsave(&sighand->siglock, *flags);
1394		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1395			break;
1396		spin_unlock_irqrestore(&sighand->siglock, *flags);
1397	}
1398	rcu_read_unlock();
1399
1400	return sighand;
1401}
1402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403/*
1404 * send signal info to all the members of a group
1405 */
1406int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407			struct task_struct *p, enum pid_type type)
1408{
1409	int ret;
1410
1411	rcu_read_lock();
1412	ret = check_kill_permission(sig, info, p);
1413	rcu_read_unlock();
1414
1415	if (!ret && sig)
1416		ret = do_send_sig_info(sig, info, p, type);
1417
1418	return ret;
1419}
1420
1421/*
1422 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423 * control characters do (^C, ^Z etc)
1424 * - the caller must hold at least a readlock on tasklist_lock
1425 */
1426int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427{
1428	struct task_struct *p = NULL;
1429	int retval, success;
1430
1431	success = 0;
1432	retval = -ESRCH;
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		success |= !err;
1436		retval = err;
1437	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438	return success ? 0 : retval;
1439}
1440
1441int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442{
1443	int error = -ESRCH;
1444	struct task_struct *p;
1445
1446	for (;;) {
1447		rcu_read_lock();
1448		p = pid_task(pid, PIDTYPE_PID);
1449		if (p)
1450			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451		rcu_read_unlock();
1452		if (likely(!p || error != -ESRCH))
1453			return error;
1454
1455		/*
1456		 * The task was unhashed in between, try again.  If it
1457		 * is dead, pid_task() will return NULL, if we race with
1458		 * de_thread() it will find the new leader.
1459		 */
1460	}
1461}
1462
1463static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464{
1465	int error;
1466	rcu_read_lock();
1467	error = kill_pid_info(sig, info, find_vpid(pid));
1468	rcu_read_unlock();
1469	return error;
1470}
1471
1472static inline bool kill_as_cred_perm(const struct cred *cred,
1473				     struct task_struct *target)
1474{
1475	const struct cred *pcred = __task_cred(target);
1476
1477	return uid_eq(cred->euid, pcred->suid) ||
1478	       uid_eq(cred->euid, pcred->uid) ||
1479	       uid_eq(cred->uid, pcred->suid) ||
1480	       uid_eq(cred->uid, pcred->uid);
1481}
1482
1483/*
1484 * The usb asyncio usage of siginfo is wrong.  The glibc support
1485 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486 * AKA after the generic fields:
1487 *	kernel_pid_t	si_pid;
1488 *	kernel_uid32_t	si_uid;
1489 *	sigval_t	si_value;
1490 *
1491 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492 * after the generic fields is:
1493 *	void __user 	*si_addr;
1494 *
1495 * This is a practical problem when there is a 64bit big endian kernel
1496 * and a 32bit userspace.  As the 32bit address will encoded in the low
1497 * 32bits of the pointer.  Those low 32bits will be stored at higher
1498 * address than appear in a 32 bit pointer.  So userspace will not
1499 * see the address it was expecting for it's completions.
1500 *
1501 * There is nothing in the encoding that can allow
1502 * copy_siginfo_to_user32 to detect this confusion of formats, so
1503 * handle this by requiring the caller of kill_pid_usb_asyncio to
1504 * notice when this situration takes place and to store the 32bit
1505 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506 * parameter.
1507 */
1508int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509			 struct pid *pid, const struct cred *cred)
1510{
1511	struct kernel_siginfo info;
1512	struct task_struct *p;
1513	unsigned long flags;
1514	int ret = -EINVAL;
1515
1516	if (!valid_signal(sig))
1517		return ret;
1518
1519	clear_siginfo(&info);
1520	info.si_signo = sig;
1521	info.si_errno = errno;
1522	info.si_code = SI_ASYNCIO;
1523	*((sigval_t *)&info.si_pid) = addr;
1524
1525	rcu_read_lock();
1526	p = pid_task(pid, PIDTYPE_PID);
1527	if (!p) {
1528		ret = -ESRCH;
1529		goto out_unlock;
1530	}
1531	if (!kill_as_cred_perm(cred, p)) {
1532		ret = -EPERM;
1533		goto out_unlock;
1534	}
1535	ret = security_task_kill(p, &info, sig, cred);
1536	if (ret)
1537		goto out_unlock;
1538
1539	if (sig) {
1540		if (lock_task_sighand(p, &flags)) {
1541			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542			unlock_task_sighand(p, &flags);
1543		} else
1544			ret = -ESRCH;
1545	}
1546out_unlock:
1547	rcu_read_unlock();
1548	return ret;
1549}
1550EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551
1552/*
1553 * kill_something_info() interprets pid in interesting ways just like kill(2).
1554 *
1555 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556 * is probably wrong.  Should make it like BSD or SYSV.
1557 */
1558
1559static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560{
1561	int ret;
1562
1563	if (pid > 0)
1564		return kill_proc_info(sig, info, pid);
1565
1566	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1567	if (pid == INT_MIN)
1568		return -ESRCH;
1569
1570	read_lock(&tasklist_lock);
1571	if (pid != -1) {
1572		ret = __kill_pgrp_info(sig, info,
1573				pid ? find_vpid(-pid) : task_pgrp(current));
1574	} else {
1575		int retval = 0, count = 0;
1576		struct task_struct * p;
1577
1578		for_each_process(p) {
1579			if (task_pid_vnr(p) > 1 &&
1580					!same_thread_group(p, current)) {
1581				int err = group_send_sig_info(sig, info, p,
1582							      PIDTYPE_MAX);
1583				++count;
1584				if (err != -EPERM)
1585					retval = err;
1586			}
1587		}
1588		ret = count ? retval : -ESRCH;
1589	}
1590	read_unlock(&tasklist_lock);
1591
1592	return ret;
1593}
1594
1595/*
1596 * These are for backward compatibility with the rest of the kernel source.
1597 */
1598
1599int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600{
1601	/*
1602	 * Make sure legacy kernel users don't send in bad values
1603	 * (normal paths check this in check_kill_permission).
1604	 */
1605	if (!valid_signal(sig))
1606		return -EINVAL;
1607
1608	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609}
1610EXPORT_SYMBOL(send_sig_info);
1611
1612#define __si_special(priv) \
1613	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614
1615int
1616send_sig(int sig, struct task_struct *p, int priv)
1617{
1618	return send_sig_info(sig, __si_special(priv), p);
1619}
1620EXPORT_SYMBOL(send_sig);
1621
1622void force_sig(int sig)
1623{
1624	struct kernel_siginfo info;
1625
1626	clear_siginfo(&info);
1627	info.si_signo = sig;
1628	info.si_errno = 0;
1629	info.si_code = SI_KERNEL;
1630	info.si_pid = 0;
1631	info.si_uid = 0;
1632	force_sig_info(&info);
1633}
1634EXPORT_SYMBOL(force_sig);
1635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636/*
1637 * When things go south during signal handling, we
1638 * will force a SIGSEGV. And if the signal that caused
1639 * the problem was already a SIGSEGV, we'll want to
1640 * make sure we don't even try to deliver the signal..
1641 */
1642void force_sigsegv(int sig)
1643{
1644	struct task_struct *p = current;
1645
1646	if (sig == SIGSEGV) {
1647		unsigned long flags;
1648		spin_lock_irqsave(&p->sighand->siglock, flags);
1649		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651	}
1652	force_sig(SIGSEGV);
1653}
1654
1655int force_sig_fault_to_task(int sig, int code, void __user *addr
1656	___ARCH_SI_TRAPNO(int trapno)
1657	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658	, struct task_struct *t)
1659{
1660	struct kernel_siginfo info;
1661
1662	clear_siginfo(&info);
1663	info.si_signo = sig;
1664	info.si_errno = 0;
1665	info.si_code  = code;
1666	info.si_addr  = addr;
1667#ifdef __ARCH_SI_TRAPNO
1668	info.si_trapno = trapno;
1669#endif
1670#ifdef __ia64__
1671	info.si_imm = imm;
1672	info.si_flags = flags;
1673	info.si_isr = isr;
1674#endif
1675	return force_sig_info_to_task(&info, t);
1676}
1677
1678int force_sig_fault(int sig, int code, void __user *addr
1679	___ARCH_SI_TRAPNO(int trapno)
1680	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681{
1682	return force_sig_fault_to_task(sig, code, addr
1683				       ___ARCH_SI_TRAPNO(trapno)
1684				       ___ARCH_SI_IA64(imm, flags, isr), current);
1685}
1686
1687int send_sig_fault(int sig, int code, void __user *addr
1688	___ARCH_SI_TRAPNO(int trapno)
1689	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690	, struct task_struct *t)
1691{
1692	struct kernel_siginfo info;
1693
1694	clear_siginfo(&info);
1695	info.si_signo = sig;
1696	info.si_errno = 0;
1697	info.si_code  = code;
1698	info.si_addr  = addr;
1699#ifdef __ARCH_SI_TRAPNO
1700	info.si_trapno = trapno;
1701#endif
1702#ifdef __ia64__
1703	info.si_imm = imm;
1704	info.si_flags = flags;
1705	info.si_isr = isr;
1706#endif
1707	return send_sig_info(info.si_signo, &info, t);
1708}
1709
1710int force_sig_mceerr(int code, void __user *addr, short lsb)
1711{
1712	struct kernel_siginfo info;
1713
1714	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715	clear_siginfo(&info);
1716	info.si_signo = SIGBUS;
1717	info.si_errno = 0;
1718	info.si_code = code;
1719	info.si_addr = addr;
1720	info.si_addr_lsb = lsb;
1721	return force_sig_info(&info);
1722}
1723
1724int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729	clear_siginfo(&info);
1730	info.si_signo = SIGBUS;
1731	info.si_errno = 0;
1732	info.si_code = code;
1733	info.si_addr = addr;
1734	info.si_addr_lsb = lsb;
1735	return send_sig_info(info.si_signo, &info, t);
1736}
1737EXPORT_SYMBOL(send_sig_mceerr);
1738
1739int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740{
1741	struct kernel_siginfo info;
1742
1743	clear_siginfo(&info);
1744	info.si_signo = SIGSEGV;
1745	info.si_errno = 0;
1746	info.si_code  = SEGV_BNDERR;
1747	info.si_addr  = addr;
1748	info.si_lower = lower;
1749	info.si_upper = upper;
1750	return force_sig_info(&info);
1751}
1752
1753#ifdef SEGV_PKUERR
1754int force_sig_pkuerr(void __user *addr, u32 pkey)
1755{
1756	struct kernel_siginfo info;
1757
1758	clear_siginfo(&info);
1759	info.si_signo = SIGSEGV;
1760	info.si_errno = 0;
1761	info.si_code  = SEGV_PKUERR;
1762	info.si_addr  = addr;
1763	info.si_pkey  = pkey;
1764	return force_sig_info(&info);
1765}
1766#endif
1767
1768int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo     = SIGTRAP;
1774	info.si_errno     = 0;
1775	info.si_code      = TRAP_PERF;
1776	info.si_addr      = addr;
1777	info.si_perf_data = sig_data;
1778	info.si_perf_type = type;
1779
1780	return force_sig_info(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781}
1782
1783/* For the crazy architectures that include trap information in
1784 * the errno field, instead of an actual errno value.
1785 */
1786int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787{
1788	struct kernel_siginfo info;
1789
1790	clear_siginfo(&info);
1791	info.si_signo = SIGTRAP;
1792	info.si_errno = errno;
1793	info.si_code  = TRAP_HWBKPT;
1794	info.si_addr  = addr;
1795	return force_sig_info(&info);
1796}
1797
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798int kill_pgrp(struct pid *pid, int sig, int priv)
1799{
1800	int ret;
1801
1802	read_lock(&tasklist_lock);
1803	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804	read_unlock(&tasklist_lock);
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL(kill_pgrp);
1809
1810int kill_pid(struct pid *pid, int sig, int priv)
1811{
1812	return kill_pid_info(sig, __si_special(priv), pid);
1813}
1814EXPORT_SYMBOL(kill_pid);
1815
1816/*
1817 * These functions support sending signals using preallocated sigqueue
1818 * structures.  This is needed "because realtime applications cannot
1819 * afford to lose notifications of asynchronous events, like timer
1820 * expirations or I/O completions".  In the case of POSIX Timers
1821 * we allocate the sigqueue structure from the timer_create.  If this
1822 * allocation fails we are able to report the failure to the application
1823 * with an EAGAIN error.
1824 */
1825struct sigqueue *sigqueue_alloc(void)
1826{
1827	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1828}
1829
1830void sigqueue_free(struct sigqueue *q)
1831{
1832	unsigned long flags;
1833	spinlock_t *lock = &current->sighand->siglock;
1834
1835	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836	/*
1837	 * We must hold ->siglock while testing q->list
1838	 * to serialize with collect_signal() or with
1839	 * __exit_signal()->flush_sigqueue().
1840	 */
1841	spin_lock_irqsave(lock, flags);
1842	q->flags &= ~SIGQUEUE_PREALLOC;
1843	/*
1844	 * If it is queued it will be freed when dequeued,
1845	 * like the "regular" sigqueue.
1846	 */
1847	if (!list_empty(&q->list))
1848		q = NULL;
1849	spin_unlock_irqrestore(lock, flags);
1850
1851	if (q)
1852		__sigqueue_free(q);
1853}
1854
1855int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856{
1857	int sig = q->info.si_signo;
1858	struct sigpending *pending;
1859	struct task_struct *t;
1860	unsigned long flags;
1861	int ret, result;
1862
1863	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864
1865	ret = -1;
1866	rcu_read_lock();
1867	t = pid_task(pid, type);
1868	if (!t || !likely(lock_task_sighand(t, &flags)))
1869		goto ret;
1870
1871	ret = 1; /* the signal is ignored */
1872	result = TRACE_SIGNAL_IGNORED;
1873	if (!prepare_signal(sig, t, false))
1874		goto out;
1875
1876	ret = 0;
1877	if (unlikely(!list_empty(&q->list))) {
1878		/*
1879		 * If an SI_TIMER entry is already queue just increment
1880		 * the overrun count.
1881		 */
1882		BUG_ON(q->info.si_code != SI_TIMER);
1883		q->info.si_overrun++;
1884		result = TRACE_SIGNAL_ALREADY_PENDING;
1885		goto out;
1886	}
1887	q->info.si_overrun = 0;
1888
1889	signalfd_notify(t, sig);
1890	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891	list_add_tail(&q->list, &pending->list);
1892	sigaddset(&pending->signal, sig);
1893	complete_signal(sig, t, type);
1894	result = TRACE_SIGNAL_DELIVERED;
1895out:
1896	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897	unlock_task_sighand(t, &flags);
1898ret:
1899	rcu_read_unlock();
1900	return ret;
1901}
1902
1903static void do_notify_pidfd(struct task_struct *task)
1904{
1905	struct pid *pid;
1906
1907	WARN_ON(task->exit_state == 0);
1908	pid = task_pid(task);
1909	wake_up_all(&pid->wait_pidfd);
1910}
1911
1912/*
1913 * Let a parent know about the death of a child.
1914 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915 *
1916 * Returns true if our parent ignored us and so we've switched to
1917 * self-reaping.
1918 */
1919bool do_notify_parent(struct task_struct *tsk, int sig)
1920{
1921	struct kernel_siginfo info;
1922	unsigned long flags;
1923	struct sighand_struct *psig;
1924	bool autoreap = false;
1925	u64 utime, stime;
1926
1927	BUG_ON(sig == -1);
1928
1929 	/* do_notify_parent_cldstop should have been called instead.  */
1930 	BUG_ON(task_is_stopped_or_traced(tsk));
1931
1932	BUG_ON(!tsk->ptrace &&
1933	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934
1935	/* Wake up all pidfd waiters */
1936	do_notify_pidfd(tsk);
1937
1938	if (sig != SIGCHLD) {
1939		/*
1940		 * This is only possible if parent == real_parent.
1941		 * Check if it has changed security domain.
1942		 */
1943		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944			sig = SIGCHLD;
1945	}
1946
1947	clear_siginfo(&info);
1948	info.si_signo = sig;
1949	info.si_errno = 0;
1950	/*
1951	 * We are under tasklist_lock here so our parent is tied to
1952	 * us and cannot change.
1953	 *
1954	 * task_active_pid_ns will always return the same pid namespace
1955	 * until a task passes through release_task.
1956	 *
1957	 * write_lock() currently calls preempt_disable() which is the
1958	 * same as rcu_read_lock(), but according to Oleg, this is not
1959	 * correct to rely on this
1960	 */
1961	rcu_read_lock();
1962	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964				       task_uid(tsk));
1965	rcu_read_unlock();
1966
1967	task_cputime(tsk, &utime, &stime);
1968	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970
1971	info.si_status = tsk->exit_code & 0x7f;
1972	if (tsk->exit_code & 0x80)
1973		info.si_code = CLD_DUMPED;
1974	else if (tsk->exit_code & 0x7f)
1975		info.si_code = CLD_KILLED;
1976	else {
1977		info.si_code = CLD_EXITED;
1978		info.si_status = tsk->exit_code >> 8;
1979	}
1980
1981	psig = tsk->parent->sighand;
1982	spin_lock_irqsave(&psig->siglock, flags);
1983	if (!tsk->ptrace && sig == SIGCHLD &&
1984	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986		/*
1987		 * We are exiting and our parent doesn't care.  POSIX.1
1988		 * defines special semantics for setting SIGCHLD to SIG_IGN
1989		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990		 * automatically and not left for our parent's wait4 call.
1991		 * Rather than having the parent do it as a magic kind of
1992		 * signal handler, we just set this to tell do_exit that we
1993		 * can be cleaned up without becoming a zombie.  Note that
1994		 * we still call __wake_up_parent in this case, because a
1995		 * blocked sys_wait4 might now return -ECHILD.
1996		 *
1997		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998		 * is implementation-defined: we do (if you don't want
1999		 * it, just use SIG_IGN instead).
2000		 */
2001		autoreap = true;
2002		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003			sig = 0;
2004	}
2005	/*
2006	 * Send with __send_signal as si_pid and si_uid are in the
2007	 * parent's namespaces.
2008	 */
2009	if (valid_signal(sig) && sig)
2010		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011	__wake_up_parent(tsk, tsk->parent);
2012	spin_unlock_irqrestore(&psig->siglock, flags);
2013
2014	return autoreap;
2015}
2016
2017/**
2018 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019 * @tsk: task reporting the state change
2020 * @for_ptracer: the notification is for ptracer
2021 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022 *
2023 * Notify @tsk's parent that the stopped/continued state has changed.  If
2024 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026 *
2027 * CONTEXT:
2028 * Must be called with tasklist_lock at least read locked.
2029 */
2030static void do_notify_parent_cldstop(struct task_struct *tsk,
2031				     bool for_ptracer, int why)
2032{
2033	struct kernel_siginfo info;
2034	unsigned long flags;
2035	struct task_struct *parent;
2036	struct sighand_struct *sighand;
2037	u64 utime, stime;
2038
2039	if (for_ptracer) {
2040		parent = tsk->parent;
2041	} else {
2042		tsk = tsk->group_leader;
2043		parent = tsk->real_parent;
2044	}
2045
2046	clear_siginfo(&info);
2047	info.si_signo = SIGCHLD;
2048	info.si_errno = 0;
2049	/*
2050	 * see comment in do_notify_parent() about the following 4 lines
2051	 */
2052	rcu_read_lock();
2053	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055	rcu_read_unlock();
2056
2057	task_cputime(tsk, &utime, &stime);
2058	info.si_utime = nsec_to_clock_t(utime);
2059	info.si_stime = nsec_to_clock_t(stime);
2060
2061 	info.si_code = why;
2062 	switch (why) {
2063 	case CLD_CONTINUED:
2064 		info.si_status = SIGCONT;
2065 		break;
2066 	case CLD_STOPPED:
2067 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2068 		break;
2069 	case CLD_TRAPPED:
2070 		info.si_status = tsk->exit_code & 0x7f;
2071 		break;
2072 	default:
2073 		BUG();
2074 	}
2075
2076	sighand = parent->sighand;
2077	spin_lock_irqsave(&sighand->siglock, flags);
2078	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080		__group_send_sig_info(SIGCHLD, &info, parent);
2081	/*
2082	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083	 */
2084	__wake_up_parent(tsk, parent);
2085	spin_unlock_irqrestore(&sighand->siglock, flags);
2086}
2087
2088static inline bool may_ptrace_stop(void)
2089{
2090	if (!likely(current->ptrace))
2091		return false;
2092	/*
2093	 * Are we in the middle of do_coredump?
2094	 * If so and our tracer is also part of the coredump stopping
2095	 * is a deadlock situation, and pointless because our tracer
2096	 * is dead so don't allow us to stop.
2097	 * If SIGKILL was already sent before the caller unlocked
2098	 * ->siglock we must see ->core_state != NULL. Otherwise it
2099	 * is safe to enter schedule().
2100	 *
2101	 * This is almost outdated, a task with the pending SIGKILL can't
2102	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103	 * after SIGKILL was already dequeued.
2104	 */
2105	if (unlikely(current->mm->core_state) &&
2106	    unlikely(current->mm == current->parent->mm))
2107		return false;
2108
2109	return true;
2110}
2111
2112/*
2113 * Return non-zero if there is a SIGKILL that should be waking us up.
2114 * Called with the siglock held.
2115 */
2116static bool sigkill_pending(struct task_struct *tsk)
2117{
2118	return sigismember(&tsk->pending.signal, SIGKILL) ||
2119	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120}
2121
2122/*
2123 * This must be called with current->sighand->siglock held.
2124 *
2125 * This should be the path for all ptrace stops.
2126 * We always set current->last_siginfo while stopped here.
2127 * That makes it a way to test a stopped process for
2128 * being ptrace-stopped vs being job-control-stopped.
2129 *
2130 * If we actually decide not to stop at all because the tracer
2131 * is gone, we keep current->exit_code unless clear_code.
 
2132 */
2133static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
 
2134	__releases(&current->sighand->siglock)
2135	__acquires(&current->sighand->siglock)
2136{
2137	bool gstop_done = false;
2138
2139	if (arch_ptrace_stop_needed(exit_code, info)) {
2140		/*
2141		 * The arch code has something special to do before a
2142		 * ptrace stop.  This is allowed to block, e.g. for faults
2143		 * on user stack pages.  We can't keep the siglock while
2144		 * calling arch_ptrace_stop, so we must release it now.
2145		 * To preserve proper semantics, we must do this before
2146		 * any signal bookkeeping like checking group_stop_count.
2147		 * Meanwhile, a SIGKILL could come in before we retake the
2148		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2149		 * So after regaining the lock, we must check for SIGKILL.
2150		 */
2151		spin_unlock_irq(&current->sighand->siglock);
2152		arch_ptrace_stop(exit_code, info);
2153		spin_lock_irq(&current->sighand->siglock);
2154		if (sigkill_pending(current))
2155			return;
2156	}
2157
 
 
 
 
 
 
 
 
 
2158	set_special_state(TASK_TRACED);
 
2159
2160	/*
2161	 * We're committing to trapping.  TRACED should be visible before
2162	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163	 * Also, transition to TRACED and updates to ->jobctl should be
2164	 * atomic with respect to siglock and should be done after the arch
2165	 * hook as siglock is released and regrabbed across it.
2166	 *
2167	 *     TRACER				    TRACEE
2168	 *
2169	 *     ptrace_attach()
2170	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2171	 *     do_wait()
2172	 *       set_current_state()                smp_wmb();
2173	 *       ptrace_do_wait()
2174	 *         wait_task_stopped()
2175	 *           task_stopped_code()
2176	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2177	 */
2178	smp_wmb();
2179
 
2180	current->last_siginfo = info;
2181	current->exit_code = exit_code;
2182
2183	/*
2184	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2186	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187	 * could be clear now.  We act as if SIGCONT is received after
2188	 * TASK_TRACED is entered - ignore it.
2189	 */
2190	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191		gstop_done = task_participate_group_stop(current);
2192
2193	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197
2198	/* entering a trap, clear TRAPPING */
2199	task_clear_jobctl_trapping(current);
2200
2201	spin_unlock_irq(&current->sighand->siglock);
2202	read_lock(&tasklist_lock);
2203	if (may_ptrace_stop()) {
2204		/*
2205		 * Notify parents of the stop.
2206		 *
2207		 * While ptraced, there are two parents - the ptracer and
2208		 * the real_parent of the group_leader.  The ptracer should
2209		 * know about every stop while the real parent is only
2210		 * interested in the completion of group stop.  The states
2211		 * for the two don't interact with each other.  Notify
2212		 * separately unless they're gonna be duplicates.
2213		 */
2214		do_notify_parent_cldstop(current, true, why);
2215		if (gstop_done && ptrace_reparented(current))
2216			do_notify_parent_cldstop(current, false, why);
2217
2218		/*
2219		 * Don't want to allow preemption here, because
2220		 * sys_ptrace() needs this task to be inactive.
2221		 *
2222		 * XXX: implement read_unlock_no_resched().
2223		 */
2224		preempt_disable();
2225		read_unlock(&tasklist_lock);
2226		cgroup_enter_frozen();
2227		preempt_enable_no_resched();
2228		freezable_schedule();
2229		cgroup_leave_frozen(true);
2230	} else {
2231		/*
2232		 * By the time we got the lock, our tracer went away.
2233		 * Don't drop the lock yet, another tracer may come.
2234		 *
2235		 * If @gstop_done, the ptracer went away between group stop
2236		 * completion and here.  During detach, it would have set
2237		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239		 * the real parent of the group stop completion is enough.
2240		 */
2241		if (gstop_done)
2242			do_notify_parent_cldstop(current, false, why);
2243
2244		/* tasklist protects us from ptrace_freeze_traced() */
2245		__set_current_state(TASK_RUNNING);
2246		if (clear_code)
2247			current->exit_code = 0;
2248		read_unlock(&tasklist_lock);
2249	}
 
 
 
 
 
 
2250
2251	/*
2252	 * We are back.  Now reacquire the siglock before touching
2253	 * last_siginfo, so that we are sure to have synchronized with
2254	 * any signal-sending on another CPU that wants to examine it.
2255	 */
2256	spin_lock_irq(&current->sighand->siglock);
 
2257	current->last_siginfo = NULL;
 
 
2258
2259	/* LISTENING can be set only during STOP traps, clear it */
2260	current->jobctl &= ~JOBCTL_LISTENING;
2261
2262	/*
2263	 * Queued signals ignored us while we were stopped for tracing.
2264	 * So check for any that we should take before resuming user mode.
2265	 * This sets TIF_SIGPENDING, but never clears it.
2266	 */
2267	recalc_sigpending_tsk(current);
 
2268}
2269
2270static void ptrace_do_notify(int signr, int exit_code, int why)
2271{
2272	kernel_siginfo_t info;
2273
2274	clear_siginfo(&info);
2275	info.si_signo = signr;
2276	info.si_code = exit_code;
2277	info.si_pid = task_pid_vnr(current);
2278	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279
2280	/* Let the debugger run.  */
2281	ptrace_stop(exit_code, why, 1, &info);
2282}
2283
2284void ptrace_notify(int exit_code)
2285{
 
 
2286	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287	if (unlikely(current->task_works))
2288		task_work_run();
2289
2290	spin_lock_irq(&current->sighand->siglock);
2291	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292	spin_unlock_irq(&current->sighand->siglock);
 
2293}
2294
2295/**
2296 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297 * @signr: signr causing group stop if initiating
2298 *
2299 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300 * and participate in it.  If already set, participate in the existing
2301 * group stop.  If participated in a group stop (and thus slept), %true is
2302 * returned with siglock released.
2303 *
2304 * If ptraced, this function doesn't handle stop itself.  Instead,
2305 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2307 * places afterwards.
2308 *
2309 * CONTEXT:
2310 * Must be called with @current->sighand->siglock held, which is released
2311 * on %true return.
2312 *
2313 * RETURNS:
2314 * %false if group stop is already cancelled or ptrace trap is scheduled.
2315 * %true if participated in group stop.
2316 */
2317static bool do_signal_stop(int signr)
2318	__releases(&current->sighand->siglock)
2319{
2320	struct signal_struct *sig = current->signal;
2321
2322	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324		struct task_struct *t;
2325
2326		/* signr will be recorded in task->jobctl for retries */
2327		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328
2329		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330		    unlikely(signal_group_exit(sig)))
 
2331			return false;
2332		/*
2333		 * There is no group stop already in progress.  We must
2334		 * initiate one now.
2335		 *
2336		 * While ptraced, a task may be resumed while group stop is
2337		 * still in effect and then receive a stop signal and
2338		 * initiate another group stop.  This deviates from the
2339		 * usual behavior as two consecutive stop signals can't
2340		 * cause two group stops when !ptraced.  That is why we
2341		 * also check !task_is_stopped(t) below.
2342		 *
2343		 * The condition can be distinguished by testing whether
2344		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2345		 * group_exit_code in such case.
2346		 *
2347		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348		 * an intervening stop signal is required to cause two
2349		 * continued events regardless of ptrace.
2350		 */
2351		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352			sig->group_exit_code = signr;
2353
2354		sig->group_stop_count = 0;
2355
2356		if (task_set_jobctl_pending(current, signr | gstop))
2357			sig->group_stop_count++;
2358
2359		t = current;
2360		while_each_thread(current, t) {
2361			/*
2362			 * Setting state to TASK_STOPPED for a group
2363			 * stop is always done with the siglock held,
2364			 * so this check has no races.
2365			 */
2366			if (!task_is_stopped(t) &&
2367			    task_set_jobctl_pending(t, signr | gstop)) {
2368				sig->group_stop_count++;
2369				if (likely(!(t->ptrace & PT_SEIZED)))
2370					signal_wake_up(t, 0);
2371				else
2372					ptrace_trap_notify(t);
2373			}
2374		}
2375	}
2376
2377	if (likely(!current->ptrace)) {
2378		int notify = 0;
2379
2380		/*
2381		 * If there are no other threads in the group, or if there
2382		 * is a group stop in progress and we are the last to stop,
2383		 * report to the parent.
2384		 */
2385		if (task_participate_group_stop(current))
2386			notify = CLD_STOPPED;
2387
 
2388		set_special_state(TASK_STOPPED);
2389		spin_unlock_irq(&current->sighand->siglock);
2390
2391		/*
2392		 * Notify the parent of the group stop completion.  Because
2393		 * we're not holding either the siglock or tasklist_lock
2394		 * here, ptracer may attach inbetween; however, this is for
2395		 * group stop and should always be delivered to the real
2396		 * parent of the group leader.  The new ptracer will get
2397		 * its notification when this task transitions into
2398		 * TASK_TRACED.
2399		 */
2400		if (notify) {
2401			read_lock(&tasklist_lock);
2402			do_notify_parent_cldstop(current, false, notify);
2403			read_unlock(&tasklist_lock);
2404		}
2405
2406		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2407		cgroup_enter_frozen();
2408		freezable_schedule();
2409		return true;
2410	} else {
2411		/*
2412		 * While ptraced, group stop is handled by STOP trap.
2413		 * Schedule it and let the caller deal with it.
2414		 */
2415		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416		return false;
2417	}
2418}
2419
2420/**
2421 * do_jobctl_trap - take care of ptrace jobctl traps
2422 *
2423 * When PT_SEIZED, it's used for both group stop and explicit
2424 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2425 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2426 * the stop signal; otherwise, %SIGTRAP.
2427 *
2428 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429 * number as exit_code and no siginfo.
2430 *
2431 * CONTEXT:
2432 * Must be called with @current->sighand->siglock held, which may be
2433 * released and re-acquired before returning with intervening sleep.
2434 */
2435static void do_jobctl_trap(void)
2436{
2437	struct signal_struct *signal = current->signal;
2438	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439
2440	if (current->ptrace & PT_SEIZED) {
2441		if (!signal->group_stop_count &&
2442		    !(signal->flags & SIGNAL_STOP_STOPPED))
2443			signr = SIGTRAP;
2444		WARN_ON_ONCE(!signr);
2445		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446				 CLD_STOPPED);
2447	} else {
2448		WARN_ON_ONCE(!signr);
2449		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450		current->exit_code = 0;
2451	}
2452}
2453
2454/**
2455 * do_freezer_trap - handle the freezer jobctl trap
2456 *
2457 * Puts the task into frozen state, if only the task is not about to quit.
2458 * In this case it drops JOBCTL_TRAP_FREEZE.
2459 *
2460 * CONTEXT:
2461 * Must be called with @current->sighand->siglock held,
2462 * which is always released before returning.
2463 */
2464static void do_freezer_trap(void)
2465	__releases(&current->sighand->siglock)
2466{
2467	/*
2468	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469	 * let's make another loop to give it a chance to be handled.
2470	 * In any case, we'll return back.
2471	 */
2472	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473	     JOBCTL_TRAP_FREEZE) {
2474		spin_unlock_irq(&current->sighand->siglock);
2475		return;
2476	}
2477
2478	/*
2479	 * Now we're sure that there is no pending fatal signal and no
2480	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481	 * immediately (if there is a non-fatal signal pending), and
2482	 * put the task into sleep.
2483	 */
2484	__set_current_state(TASK_INTERRUPTIBLE);
2485	clear_thread_flag(TIF_SIGPENDING);
2486	spin_unlock_irq(&current->sighand->siglock);
2487	cgroup_enter_frozen();
2488	freezable_schedule();
2489}
2490
2491static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492{
2493	/*
2494	 * We do not check sig_kernel_stop(signr) but set this marker
2495	 * unconditionally because we do not know whether debugger will
2496	 * change signr. This flag has no meaning unless we are going
2497	 * to stop after return from ptrace_stop(). In this case it will
2498	 * be checked in do_signal_stop(), we should only stop if it was
2499	 * not cleared by SIGCONT while we were sleeping. See also the
2500	 * comment in dequeue_signal().
2501	 */
2502	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504
2505	/* We're back.  Did the debugger cancel the sig?  */
2506	signr = current->exit_code;
2507	if (signr == 0)
2508		return signr;
2509
2510	current->exit_code = 0;
2511
2512	/*
2513	 * Update the siginfo structure if the signal has
2514	 * changed.  If the debugger wanted something
2515	 * specific in the siginfo structure then it should
2516	 * have updated *info via PTRACE_SETSIGINFO.
2517	 */
2518	if (signr != info->si_signo) {
2519		clear_siginfo(info);
2520		info->si_signo = signr;
2521		info->si_errno = 0;
2522		info->si_code = SI_USER;
2523		rcu_read_lock();
2524		info->si_pid = task_pid_vnr(current->parent);
2525		info->si_uid = from_kuid_munged(current_user_ns(),
2526						task_uid(current->parent));
2527		rcu_read_unlock();
2528	}
2529
2530	/* If the (new) signal is now blocked, requeue it.  */
2531	if (sigismember(&current->blocked, signr)) {
2532		send_signal(signr, info, current, PIDTYPE_PID);
 
2533		signr = 0;
2534	}
2535
2536	return signr;
2537}
2538
2539static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540{
2541	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542	case SIL_FAULT:
2543	case SIL_FAULT_TRAPNO:
2544	case SIL_FAULT_MCEERR:
2545	case SIL_FAULT_BNDERR:
2546	case SIL_FAULT_PKUERR:
2547	case SIL_PERF_EVENT:
2548		ksig->info.si_addr = arch_untagged_si_addr(
2549			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550		break;
2551	case SIL_KILL:
2552	case SIL_TIMER:
2553	case SIL_POLL:
2554	case SIL_CHLD:
2555	case SIL_RT:
2556	case SIL_SYS:
2557		break;
2558	}
2559}
2560
2561bool get_signal(struct ksignal *ksig)
2562{
2563	struct sighand_struct *sighand = current->sighand;
2564	struct signal_struct *signal = current->signal;
2565	int signr;
2566
2567	if (unlikely(current->task_works))
 
2568		task_work_run();
2569
2570	/*
2571	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572	 * that the arch handlers don't all have to do it. If we get here
2573	 * without TIF_SIGPENDING, just exit after running signal work.
2574	 */
2575	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577			tracehook_notify_signal();
2578		if (!task_sigpending(current))
2579			return false;
2580	}
2581
2582	if (unlikely(uprobe_deny_signal()))
2583		return false;
2584
2585	/*
2586	 * Do this once, we can't return to user-mode if freezing() == T.
2587	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588	 * thus do not need another check after return.
2589	 */
2590	try_to_freeze();
2591
2592relock:
2593	spin_lock_irq(&sighand->siglock);
2594
2595	/*
2596	 * Every stopped thread goes here after wakeup. Check to see if
2597	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599	 */
2600	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601		int why;
2602
2603		if (signal->flags & SIGNAL_CLD_CONTINUED)
2604			why = CLD_CONTINUED;
2605		else
2606			why = CLD_STOPPED;
2607
2608		signal->flags &= ~SIGNAL_CLD_MASK;
2609
2610		spin_unlock_irq(&sighand->siglock);
2611
2612		/*
2613		 * Notify the parent that we're continuing.  This event is
2614		 * always per-process and doesn't make whole lot of sense
2615		 * for ptracers, who shouldn't consume the state via
2616		 * wait(2) either, but, for backward compatibility, notify
2617		 * the ptracer of the group leader too unless it's gonna be
2618		 * a duplicate.
2619		 */
2620		read_lock(&tasklist_lock);
2621		do_notify_parent_cldstop(current, false, why);
2622
2623		if (ptrace_reparented(current->group_leader))
2624			do_notify_parent_cldstop(current->group_leader,
2625						true, why);
2626		read_unlock(&tasklist_lock);
2627
2628		goto relock;
2629	}
2630
2631	/* Has this task already been marked for death? */
2632	if (signal_group_exit(signal)) {
2633		ksig->info.si_signo = signr = SIGKILL;
2634		sigdelset(&current->pending.signal, SIGKILL);
2635		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636				&sighand->action[SIGKILL - 1]);
2637		recalc_sigpending();
2638		goto fatal;
2639	}
2640
2641	for (;;) {
2642		struct k_sigaction *ka;
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645		    do_signal_stop(0))
2646			goto relock;
2647
2648		if (unlikely(current->jobctl &
2649			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650			if (current->jobctl & JOBCTL_TRAP_MASK) {
2651				do_jobctl_trap();
2652				spin_unlock_irq(&sighand->siglock);
2653			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654				do_freezer_trap();
2655
2656			goto relock;
2657		}
2658
2659		/*
2660		 * If the task is leaving the frozen state, let's update
2661		 * cgroup counters and reset the frozen bit.
2662		 */
2663		if (unlikely(cgroup_task_frozen(current))) {
2664			spin_unlock_irq(&sighand->siglock);
2665			cgroup_leave_frozen(false);
2666			goto relock;
2667		}
2668
2669		/*
2670		 * Signals generated by the execution of an instruction
2671		 * need to be delivered before any other pending signals
2672		 * so that the instruction pointer in the signal stack
2673		 * frame points to the faulting instruction.
2674		 */
 
2675		signr = dequeue_synchronous_signal(&ksig->info);
2676		if (!signr)
2677			signr = dequeue_signal(current, &current->blocked, &ksig->info);
 
2678
2679		if (!signr)
2680			break; /* will return 0 */
2681
2682		if (unlikely(current->ptrace) && signr != SIGKILL) {
2683			signr = ptrace_signal(signr, &ksig->info);
 
2684			if (!signr)
2685				continue;
2686		}
2687
2688		ka = &sighand->action[signr-1];
2689
2690		/* Trace actually delivered signals. */
2691		trace_signal_deliver(signr, &ksig->info, ka);
2692
2693		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2694			continue;
2695		if (ka->sa.sa_handler != SIG_DFL) {
2696			/* Run the handler.  */
2697			ksig->ka = *ka;
2698
2699			if (ka->sa.sa_flags & SA_ONESHOT)
2700				ka->sa.sa_handler = SIG_DFL;
2701
2702			break; /* will return non-zero "signr" value */
2703		}
2704
2705		/*
2706		 * Now we are doing the default action for this signal.
2707		 */
2708		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709			continue;
2710
2711		/*
2712		 * Global init gets no signals it doesn't want.
2713		 * Container-init gets no signals it doesn't want from same
2714		 * container.
2715		 *
2716		 * Note that if global/container-init sees a sig_kernel_only()
2717		 * signal here, the signal must have been generated internally
2718		 * or must have come from an ancestor namespace. In either
2719		 * case, the signal cannot be dropped.
2720		 */
2721		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722				!sig_kernel_only(signr))
2723			continue;
2724
2725		if (sig_kernel_stop(signr)) {
2726			/*
2727			 * The default action is to stop all threads in
2728			 * the thread group.  The job control signals
2729			 * do nothing in an orphaned pgrp, but SIGSTOP
2730			 * always works.  Note that siglock needs to be
2731			 * dropped during the call to is_orphaned_pgrp()
2732			 * because of lock ordering with tasklist_lock.
2733			 * This allows an intervening SIGCONT to be posted.
2734			 * We need to check for that and bail out if necessary.
2735			 */
2736			if (signr != SIGSTOP) {
2737				spin_unlock_irq(&sighand->siglock);
2738
2739				/* signals can be posted during this window */
2740
2741				if (is_current_pgrp_orphaned())
2742					goto relock;
2743
2744				spin_lock_irq(&sighand->siglock);
2745			}
2746
2747			if (likely(do_signal_stop(ksig->info.si_signo))) {
2748				/* It released the siglock.  */
2749				goto relock;
2750			}
2751
2752			/*
2753			 * We didn't actually stop, due to a race
2754			 * with SIGCONT or something like that.
2755			 */
2756			continue;
2757		}
2758
2759	fatal:
2760		spin_unlock_irq(&sighand->siglock);
2761		if (unlikely(cgroup_task_frozen(current)))
2762			cgroup_leave_frozen(true);
2763
2764		/*
2765		 * Anything else is fatal, maybe with a core dump.
2766		 */
2767		current->flags |= PF_SIGNALED;
2768
2769		if (sig_kernel_coredump(signr)) {
2770			if (print_fatal_signals)
2771				print_fatal_signal(ksig->info.si_signo);
2772			proc_coredump_connector(current);
2773			/*
2774			 * If it was able to dump core, this kills all
2775			 * other threads in the group and synchronizes with
2776			 * their demise.  If we lost the race with another
2777			 * thread getting here, it set group_exit_code
2778			 * first and our do_group_exit call below will use
2779			 * that value and ignore the one we pass it.
2780			 */
2781			do_coredump(&ksig->info);
2782		}
2783
2784		/*
2785		 * PF_IO_WORKER threads will catch and exit on fatal signals
2786		 * themselves. They have cleanup that must be performed, so
2787		 * we cannot call do_exit() on their behalf.
2788		 */
2789		if (current->flags & PF_IO_WORKER)
2790			goto out;
2791
2792		/*
2793		 * Death signals, no core dump.
2794		 */
2795		do_group_exit(ksig->info.si_signo);
2796		/* NOTREACHED */
2797	}
2798	spin_unlock_irq(&sighand->siglock);
2799out:
2800	ksig->sig = signr;
2801
2802	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803		hide_si_addr_tag_bits(ksig);
2804
2805	return ksig->sig > 0;
2806}
2807
2808/**
2809 * signal_delivered - 
2810 * @ksig:		kernel signal struct
2811 * @stepping:		nonzero if debugger single-step or block-step in use
2812 *
2813 * This function should be called when a signal has successfully been
2814 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2817 */
2818static void signal_delivered(struct ksignal *ksig, int stepping)
2819{
2820	sigset_t blocked;
2821
2822	/* A signal was successfully delivered, and the
2823	   saved sigmask was stored on the signal frame,
2824	   and will be restored by sigreturn.  So we can
2825	   simply clear the restore sigmask flag.  */
2826	clear_restore_sigmask();
2827
2828	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2829	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830		sigaddset(&blocked, ksig->sig);
2831	set_current_blocked(&blocked);
2832	if (current->sas_ss_flags & SS_AUTODISARM)
2833		sas_ss_reset(current);
2834	tracehook_signal_handler(stepping);
 
2835}
2836
2837void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2838{
2839	if (failed)
2840		force_sigsegv(ksig->sig);
2841	else
2842		signal_delivered(ksig, stepping);
2843}
2844
2845/*
2846 * It could be that complete_signal() picked us to notify about the
2847 * group-wide signal. Other threads should be notified now to take
2848 * the shared signals in @which since we will not.
2849 */
2850static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2851{
2852	sigset_t retarget;
2853	struct task_struct *t;
2854
2855	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2856	if (sigisemptyset(&retarget))
2857		return;
2858
2859	t = tsk;
2860	while_each_thread(tsk, t) {
2861		if (t->flags & PF_EXITING)
2862			continue;
2863
2864		if (!has_pending_signals(&retarget, &t->blocked))
2865			continue;
2866		/* Remove the signals this thread can handle. */
2867		sigandsets(&retarget, &retarget, &t->blocked);
2868
2869		if (!task_sigpending(t))
2870			signal_wake_up(t, 0);
2871
2872		if (sigisemptyset(&retarget))
2873			break;
2874	}
2875}
2876
2877void exit_signals(struct task_struct *tsk)
2878{
2879	int group_stop = 0;
2880	sigset_t unblocked;
2881
2882	/*
2883	 * @tsk is about to have PF_EXITING set - lock out users which
2884	 * expect stable threadgroup.
2885	 */
2886	cgroup_threadgroup_change_begin(tsk);
2887
2888	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2889		tsk->flags |= PF_EXITING;
2890		cgroup_threadgroup_change_end(tsk);
2891		return;
2892	}
2893
2894	spin_lock_irq(&tsk->sighand->siglock);
2895	/*
2896	 * From now this task is not visible for group-wide signals,
2897	 * see wants_signal(), do_signal_stop().
2898	 */
2899	tsk->flags |= PF_EXITING;
2900
2901	cgroup_threadgroup_change_end(tsk);
2902
2903	if (!task_sigpending(tsk))
2904		goto out;
2905
2906	unblocked = tsk->blocked;
2907	signotset(&unblocked);
2908	retarget_shared_pending(tsk, &unblocked);
2909
2910	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2911	    task_participate_group_stop(tsk))
2912		group_stop = CLD_STOPPED;
2913out:
2914	spin_unlock_irq(&tsk->sighand->siglock);
2915
2916	/*
2917	 * If group stop has completed, deliver the notification.  This
2918	 * should always go to the real parent of the group leader.
2919	 */
2920	if (unlikely(group_stop)) {
2921		read_lock(&tasklist_lock);
2922		do_notify_parent_cldstop(tsk, false, group_stop);
2923		read_unlock(&tasklist_lock);
2924	}
2925}
2926
2927/*
2928 * System call entry points.
2929 */
2930
2931/**
2932 *  sys_restart_syscall - restart a system call
2933 */
2934SYSCALL_DEFINE0(restart_syscall)
2935{
2936	struct restart_block *restart = &current->restart_block;
2937	return restart->fn(restart);
2938}
2939
2940long do_no_restart_syscall(struct restart_block *param)
2941{
2942	return -EINTR;
2943}
2944
2945static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2946{
2947	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2948		sigset_t newblocked;
2949		/* A set of now blocked but previously unblocked signals. */
2950		sigandnsets(&newblocked, newset, &current->blocked);
2951		retarget_shared_pending(tsk, &newblocked);
2952	}
2953	tsk->blocked = *newset;
2954	recalc_sigpending();
2955}
2956
2957/**
2958 * set_current_blocked - change current->blocked mask
2959 * @newset: new mask
2960 *
2961 * It is wrong to change ->blocked directly, this helper should be used
2962 * to ensure the process can't miss a shared signal we are going to block.
2963 */
2964void set_current_blocked(sigset_t *newset)
2965{
2966	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2967	__set_current_blocked(newset);
2968}
2969
2970void __set_current_blocked(const sigset_t *newset)
2971{
2972	struct task_struct *tsk = current;
2973
2974	/*
2975	 * In case the signal mask hasn't changed, there is nothing we need
2976	 * to do. The current->blocked shouldn't be modified by other task.
2977	 */
2978	if (sigequalsets(&tsk->blocked, newset))
2979		return;
2980
2981	spin_lock_irq(&tsk->sighand->siglock);
2982	__set_task_blocked(tsk, newset);
2983	spin_unlock_irq(&tsk->sighand->siglock);
2984}
2985
2986/*
2987 * This is also useful for kernel threads that want to temporarily
2988 * (or permanently) block certain signals.
2989 *
2990 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2991 * interface happily blocks "unblockable" signals like SIGKILL
2992 * and friends.
2993 */
2994int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2995{
2996	struct task_struct *tsk = current;
2997	sigset_t newset;
2998
2999	/* Lockless, only current can change ->blocked, never from irq */
3000	if (oldset)
3001		*oldset = tsk->blocked;
3002
3003	switch (how) {
3004	case SIG_BLOCK:
3005		sigorsets(&newset, &tsk->blocked, set);
3006		break;
3007	case SIG_UNBLOCK:
3008		sigandnsets(&newset, &tsk->blocked, set);
3009		break;
3010	case SIG_SETMASK:
3011		newset = *set;
3012		break;
3013	default:
3014		return -EINVAL;
3015	}
3016
3017	__set_current_blocked(&newset);
3018	return 0;
3019}
3020EXPORT_SYMBOL(sigprocmask);
3021
3022/*
3023 * The api helps set app-provided sigmasks.
3024 *
3025 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3026 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3027 *
3028 * Note that it does set_restore_sigmask() in advance, so it must be always
3029 * paired with restore_saved_sigmask_unless() before return from syscall.
3030 */
3031int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3032{
3033	sigset_t kmask;
3034
3035	if (!umask)
3036		return 0;
3037	if (sigsetsize != sizeof(sigset_t))
3038		return -EINVAL;
3039	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3040		return -EFAULT;
3041
3042	set_restore_sigmask();
3043	current->saved_sigmask = current->blocked;
3044	set_current_blocked(&kmask);
3045
3046	return 0;
3047}
3048
3049#ifdef CONFIG_COMPAT
3050int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3051			    size_t sigsetsize)
3052{
3053	sigset_t kmask;
3054
3055	if (!umask)
3056		return 0;
3057	if (sigsetsize != sizeof(compat_sigset_t))
3058		return -EINVAL;
3059	if (get_compat_sigset(&kmask, umask))
3060		return -EFAULT;
3061
3062	set_restore_sigmask();
3063	current->saved_sigmask = current->blocked;
3064	set_current_blocked(&kmask);
3065
3066	return 0;
3067}
3068#endif
3069
3070/**
3071 *  sys_rt_sigprocmask - change the list of currently blocked signals
3072 *  @how: whether to add, remove, or set signals
3073 *  @nset: stores pending signals
3074 *  @oset: previous value of signal mask if non-null
3075 *  @sigsetsize: size of sigset_t type
3076 */
3077SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3078		sigset_t __user *, oset, size_t, sigsetsize)
3079{
3080	sigset_t old_set, new_set;
3081	int error;
3082
3083	/* XXX: Don't preclude handling different sized sigset_t's.  */
3084	if (sigsetsize != sizeof(sigset_t))
3085		return -EINVAL;
3086
3087	old_set = current->blocked;
3088
3089	if (nset) {
3090		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3091			return -EFAULT;
3092		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093
3094		error = sigprocmask(how, &new_set, NULL);
3095		if (error)
3096			return error;
3097	}
3098
3099	if (oset) {
3100		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3101			return -EFAULT;
3102	}
3103
3104	return 0;
3105}
3106
3107#ifdef CONFIG_COMPAT
3108COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3109		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3110{
3111	sigset_t old_set = current->blocked;
3112
3113	/* XXX: Don't preclude handling different sized sigset_t's.  */
3114	if (sigsetsize != sizeof(sigset_t))
3115		return -EINVAL;
3116
3117	if (nset) {
3118		sigset_t new_set;
3119		int error;
3120		if (get_compat_sigset(&new_set, nset))
3121			return -EFAULT;
3122		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3123
3124		error = sigprocmask(how, &new_set, NULL);
3125		if (error)
3126			return error;
3127	}
3128	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3129}
3130#endif
3131
3132static void do_sigpending(sigset_t *set)
3133{
3134	spin_lock_irq(&current->sighand->siglock);
3135	sigorsets(set, &current->pending.signal,
3136		  &current->signal->shared_pending.signal);
3137	spin_unlock_irq(&current->sighand->siglock);
3138
3139	/* Outside the lock because only this thread touches it.  */
3140	sigandsets(set, &current->blocked, set);
3141}
3142
3143/**
3144 *  sys_rt_sigpending - examine a pending signal that has been raised
3145 *			while blocked
3146 *  @uset: stores pending signals
3147 *  @sigsetsize: size of sigset_t type or larger
3148 */
3149SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3150{
3151	sigset_t set;
3152
3153	if (sigsetsize > sizeof(*uset))
3154		return -EINVAL;
3155
3156	do_sigpending(&set);
3157
3158	if (copy_to_user(uset, &set, sigsetsize))
3159		return -EFAULT;
3160
3161	return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3166		compat_size_t, sigsetsize)
3167{
3168	sigset_t set;
3169
3170	if (sigsetsize > sizeof(*uset))
3171		return -EINVAL;
3172
3173	do_sigpending(&set);
3174
3175	return put_compat_sigset(uset, &set, sigsetsize);
3176}
3177#endif
3178
3179static const struct {
3180	unsigned char limit, layout;
3181} sig_sicodes[] = {
3182	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3183	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3184	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3185	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3186	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3187#if defined(SIGEMT)
3188	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3189#endif
3190	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3191	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3192	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3193};
3194
3195static bool known_siginfo_layout(unsigned sig, int si_code)
3196{
3197	if (si_code == SI_KERNEL)
3198		return true;
3199	else if ((si_code > SI_USER)) {
3200		if (sig_specific_sicodes(sig)) {
3201			if (si_code <= sig_sicodes[sig].limit)
3202				return true;
3203		}
3204		else if (si_code <= NSIGPOLL)
3205			return true;
3206	}
3207	else if (si_code >= SI_DETHREAD)
3208		return true;
3209	else if (si_code == SI_ASYNCNL)
3210		return true;
3211	return false;
3212}
3213
3214enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3215{
3216	enum siginfo_layout layout = SIL_KILL;
3217	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3218		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3219		    (si_code <= sig_sicodes[sig].limit)) {
3220			layout = sig_sicodes[sig].layout;
3221			/* Handle the exceptions */
3222			if ((sig == SIGBUS) &&
3223			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3224				layout = SIL_FAULT_MCEERR;
3225			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3226				layout = SIL_FAULT_BNDERR;
3227#ifdef SEGV_PKUERR
3228			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3229				layout = SIL_FAULT_PKUERR;
3230#endif
3231			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3232				layout = SIL_PERF_EVENT;
3233#ifdef __ARCH_SI_TRAPNO
3234			else if (layout == SIL_FAULT)
 
 
 
 
3235				layout = SIL_FAULT_TRAPNO;
3236#endif
3237		}
3238		else if (si_code <= NSIGPOLL)
3239			layout = SIL_POLL;
3240	} else {
3241		if (si_code == SI_TIMER)
3242			layout = SIL_TIMER;
3243		else if (si_code == SI_SIGIO)
3244			layout = SIL_POLL;
3245		else if (si_code < 0)
3246			layout = SIL_RT;
3247	}
3248	return layout;
3249}
3250
3251static inline char __user *si_expansion(const siginfo_t __user *info)
3252{
3253	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3254}
3255
3256int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3257{
3258	char __user *expansion = si_expansion(to);
3259	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3260		return -EFAULT;
3261	if (clear_user(expansion, SI_EXPANSION_SIZE))
3262		return -EFAULT;
3263	return 0;
3264}
3265
3266static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3267				       const siginfo_t __user *from)
3268{
3269	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3270		char __user *expansion = si_expansion(from);
3271		char buf[SI_EXPANSION_SIZE];
3272		int i;
3273		/*
3274		 * An unknown si_code might need more than
3275		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3276		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3277		 * will return this data to userspace exactly.
3278		 */
3279		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3280			return -EFAULT;
3281		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3282			if (buf[i] != 0)
3283				return -E2BIG;
3284		}
3285	}
3286	return 0;
3287}
3288
3289static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3290				    const siginfo_t __user *from)
3291{
3292	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3293		return -EFAULT;
3294	to->si_signo = signo;
3295	return post_copy_siginfo_from_user(to, from);
3296}
3297
3298int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3299{
3300	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3301		return -EFAULT;
3302	return post_copy_siginfo_from_user(to, from);
3303}
3304
3305#ifdef CONFIG_COMPAT
3306/**
3307 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3308 * @to: compat siginfo destination
3309 * @from: kernel siginfo source
3310 *
3311 * Note: This function does not work properly for the SIGCHLD on x32, but
3312 * fortunately it doesn't have to.  The only valid callers for this function are
3313 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3314 * The latter does not care because SIGCHLD will never cause a coredump.
3315 */
3316void copy_siginfo_to_external32(struct compat_siginfo *to,
3317		const struct kernel_siginfo *from)
3318{
3319	memset(to, 0, sizeof(*to));
3320
3321	to->si_signo = from->si_signo;
3322	to->si_errno = from->si_errno;
3323	to->si_code  = from->si_code;
3324	switch(siginfo_layout(from->si_signo, from->si_code)) {
3325	case SIL_KILL:
3326		to->si_pid = from->si_pid;
3327		to->si_uid = from->si_uid;
3328		break;
3329	case SIL_TIMER:
3330		to->si_tid     = from->si_tid;
3331		to->si_overrun = from->si_overrun;
3332		to->si_int     = from->si_int;
3333		break;
3334	case SIL_POLL:
3335		to->si_band = from->si_band;
3336		to->si_fd   = from->si_fd;
3337		break;
3338	case SIL_FAULT:
3339		to->si_addr = ptr_to_compat(from->si_addr);
3340		break;
3341	case SIL_FAULT_TRAPNO:
3342		to->si_addr = ptr_to_compat(from->si_addr);
3343		to->si_trapno = from->si_trapno;
3344		break;
3345	case SIL_FAULT_MCEERR:
3346		to->si_addr = ptr_to_compat(from->si_addr);
3347		to->si_addr_lsb = from->si_addr_lsb;
3348		break;
3349	case SIL_FAULT_BNDERR:
3350		to->si_addr = ptr_to_compat(from->si_addr);
3351		to->si_lower = ptr_to_compat(from->si_lower);
3352		to->si_upper = ptr_to_compat(from->si_upper);
3353		break;
3354	case SIL_FAULT_PKUERR:
3355		to->si_addr = ptr_to_compat(from->si_addr);
3356		to->si_pkey = from->si_pkey;
3357		break;
3358	case SIL_PERF_EVENT:
3359		to->si_addr = ptr_to_compat(from->si_addr);
3360		to->si_perf_data = from->si_perf_data;
3361		to->si_perf_type = from->si_perf_type;
 
3362		break;
3363	case SIL_CHLD:
3364		to->si_pid = from->si_pid;
3365		to->si_uid = from->si_uid;
3366		to->si_status = from->si_status;
3367		to->si_utime = from->si_utime;
3368		to->si_stime = from->si_stime;
3369		break;
3370	case SIL_RT:
3371		to->si_pid = from->si_pid;
3372		to->si_uid = from->si_uid;
3373		to->si_int = from->si_int;
3374		break;
3375	case SIL_SYS:
3376		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3377		to->si_syscall   = from->si_syscall;
3378		to->si_arch      = from->si_arch;
3379		break;
3380	}
3381}
3382
3383int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3384			   const struct kernel_siginfo *from)
3385{
3386	struct compat_siginfo new;
3387
3388	copy_siginfo_to_external32(&new, from);
3389	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3390		return -EFAULT;
3391	return 0;
3392}
3393
3394static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3395					 const struct compat_siginfo *from)
3396{
3397	clear_siginfo(to);
3398	to->si_signo = from->si_signo;
3399	to->si_errno = from->si_errno;
3400	to->si_code  = from->si_code;
3401	switch(siginfo_layout(from->si_signo, from->si_code)) {
3402	case SIL_KILL:
3403		to->si_pid = from->si_pid;
3404		to->si_uid = from->si_uid;
3405		break;
3406	case SIL_TIMER:
3407		to->si_tid     = from->si_tid;
3408		to->si_overrun = from->si_overrun;
3409		to->si_int     = from->si_int;
3410		break;
3411	case SIL_POLL:
3412		to->si_band = from->si_band;
3413		to->si_fd   = from->si_fd;
3414		break;
3415	case SIL_FAULT:
3416		to->si_addr = compat_ptr(from->si_addr);
3417		break;
3418	case SIL_FAULT_TRAPNO:
3419		to->si_addr = compat_ptr(from->si_addr);
3420		to->si_trapno = from->si_trapno;
3421		break;
3422	case SIL_FAULT_MCEERR:
3423		to->si_addr = compat_ptr(from->si_addr);
3424		to->si_addr_lsb = from->si_addr_lsb;
3425		break;
3426	case SIL_FAULT_BNDERR:
3427		to->si_addr = compat_ptr(from->si_addr);
3428		to->si_lower = compat_ptr(from->si_lower);
3429		to->si_upper = compat_ptr(from->si_upper);
3430		break;
3431	case SIL_FAULT_PKUERR:
3432		to->si_addr = compat_ptr(from->si_addr);
3433		to->si_pkey = from->si_pkey;
3434		break;
3435	case SIL_PERF_EVENT:
3436		to->si_addr = compat_ptr(from->si_addr);
3437		to->si_perf_data = from->si_perf_data;
3438		to->si_perf_type = from->si_perf_type;
 
3439		break;
3440	case SIL_CHLD:
3441		to->si_pid    = from->si_pid;
3442		to->si_uid    = from->si_uid;
3443		to->si_status = from->si_status;
3444#ifdef CONFIG_X86_X32_ABI
3445		if (in_x32_syscall()) {
3446			to->si_utime = from->_sifields._sigchld_x32._utime;
3447			to->si_stime = from->_sifields._sigchld_x32._stime;
3448		} else
3449#endif
3450		{
3451			to->si_utime = from->si_utime;
3452			to->si_stime = from->si_stime;
3453		}
3454		break;
3455	case SIL_RT:
3456		to->si_pid = from->si_pid;
3457		to->si_uid = from->si_uid;
3458		to->si_int = from->si_int;
3459		break;
3460	case SIL_SYS:
3461		to->si_call_addr = compat_ptr(from->si_call_addr);
3462		to->si_syscall   = from->si_syscall;
3463		to->si_arch      = from->si_arch;
3464		break;
3465	}
3466	return 0;
3467}
3468
3469static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3470				      const struct compat_siginfo __user *ufrom)
3471{
3472	struct compat_siginfo from;
3473
3474	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3475		return -EFAULT;
3476
3477	from.si_signo = signo;
3478	return post_copy_siginfo_from_user32(to, &from);
3479}
3480
3481int copy_siginfo_from_user32(struct kernel_siginfo *to,
3482			     const struct compat_siginfo __user *ufrom)
3483{
3484	struct compat_siginfo from;
3485
3486	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3487		return -EFAULT;
3488
3489	return post_copy_siginfo_from_user32(to, &from);
3490}
3491#endif /* CONFIG_COMPAT */
3492
3493/**
3494 *  do_sigtimedwait - wait for queued signals specified in @which
3495 *  @which: queued signals to wait for
3496 *  @info: if non-null, the signal's siginfo is returned here
3497 *  @ts: upper bound on process time suspension
3498 */
3499static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3500		    const struct timespec64 *ts)
3501{
3502	ktime_t *to = NULL, timeout = KTIME_MAX;
3503	struct task_struct *tsk = current;
3504	sigset_t mask = *which;
 
3505	int sig, ret = 0;
3506
3507	if (ts) {
3508		if (!timespec64_valid(ts))
3509			return -EINVAL;
3510		timeout = timespec64_to_ktime(*ts);
3511		to = &timeout;
3512	}
3513
3514	/*
3515	 * Invert the set of allowed signals to get those we want to block.
3516	 */
3517	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3518	signotset(&mask);
3519
3520	spin_lock_irq(&tsk->sighand->siglock);
3521	sig = dequeue_signal(tsk, &mask, info);
3522	if (!sig && timeout) {
3523		/*
3524		 * None ready, temporarily unblock those we're interested
3525		 * while we are sleeping in so that we'll be awakened when
3526		 * they arrive. Unblocking is always fine, we can avoid
3527		 * set_current_blocked().
3528		 */
3529		tsk->real_blocked = tsk->blocked;
3530		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3531		recalc_sigpending();
3532		spin_unlock_irq(&tsk->sighand->siglock);
3533
3534		__set_current_state(TASK_INTERRUPTIBLE);
3535		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3536							 HRTIMER_MODE_REL);
3537		spin_lock_irq(&tsk->sighand->siglock);
3538		__set_task_blocked(tsk, &tsk->real_blocked);
3539		sigemptyset(&tsk->real_blocked);
3540		sig = dequeue_signal(tsk, &mask, info);
3541	}
3542	spin_unlock_irq(&tsk->sighand->siglock);
3543
3544	if (sig)
3545		return sig;
3546	return ret ? -EINTR : -EAGAIN;
3547}
3548
3549/**
3550 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3551 *			in @uthese
3552 *  @uthese: queued signals to wait for
3553 *  @uinfo: if non-null, the signal's siginfo is returned here
3554 *  @uts: upper bound on process time suspension
3555 *  @sigsetsize: size of sigset_t type
3556 */
3557SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3558		siginfo_t __user *, uinfo,
3559		const struct __kernel_timespec __user *, uts,
3560		size_t, sigsetsize)
3561{
3562	sigset_t these;
3563	struct timespec64 ts;
3564	kernel_siginfo_t info;
3565	int ret;
3566
3567	/* XXX: Don't preclude handling different sized sigset_t's.  */
3568	if (sigsetsize != sizeof(sigset_t))
3569		return -EINVAL;
3570
3571	if (copy_from_user(&these, uthese, sizeof(these)))
3572		return -EFAULT;
3573
3574	if (uts) {
3575		if (get_timespec64(&ts, uts))
3576			return -EFAULT;
3577	}
3578
3579	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3580
3581	if (ret > 0 && uinfo) {
3582		if (copy_siginfo_to_user(uinfo, &info))
3583			ret = -EFAULT;
3584	}
3585
3586	return ret;
3587}
3588
3589#ifdef CONFIG_COMPAT_32BIT_TIME
3590SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3591		siginfo_t __user *, uinfo,
3592		const struct old_timespec32 __user *, uts,
3593		size_t, sigsetsize)
3594{
3595	sigset_t these;
3596	struct timespec64 ts;
3597	kernel_siginfo_t info;
3598	int ret;
3599
3600	if (sigsetsize != sizeof(sigset_t))
3601		return -EINVAL;
3602
3603	if (copy_from_user(&these, uthese, sizeof(these)))
3604		return -EFAULT;
3605
3606	if (uts) {
3607		if (get_old_timespec32(&ts, uts))
3608			return -EFAULT;
3609	}
3610
3611	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3612
3613	if (ret > 0 && uinfo) {
3614		if (copy_siginfo_to_user(uinfo, &info))
3615			ret = -EFAULT;
3616	}
3617
3618	return ret;
3619}
3620#endif
3621
3622#ifdef CONFIG_COMPAT
3623COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3624		struct compat_siginfo __user *, uinfo,
3625		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3626{
3627	sigset_t s;
3628	struct timespec64 t;
3629	kernel_siginfo_t info;
3630	long ret;
3631
3632	if (sigsetsize != sizeof(sigset_t))
3633		return -EINVAL;
3634
3635	if (get_compat_sigset(&s, uthese))
3636		return -EFAULT;
3637
3638	if (uts) {
3639		if (get_timespec64(&t, uts))
3640			return -EFAULT;
3641	}
3642
3643	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3644
3645	if (ret > 0 && uinfo) {
3646		if (copy_siginfo_to_user32(uinfo, &info))
3647			ret = -EFAULT;
3648	}
3649
3650	return ret;
3651}
3652
3653#ifdef CONFIG_COMPAT_32BIT_TIME
3654COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3655		struct compat_siginfo __user *, uinfo,
3656		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3657{
3658	sigset_t s;
3659	struct timespec64 t;
3660	kernel_siginfo_t info;
3661	long ret;
3662
3663	if (sigsetsize != sizeof(sigset_t))
3664		return -EINVAL;
3665
3666	if (get_compat_sigset(&s, uthese))
3667		return -EFAULT;
3668
3669	if (uts) {
3670		if (get_old_timespec32(&t, uts))
3671			return -EFAULT;
3672	}
3673
3674	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3675
3676	if (ret > 0 && uinfo) {
3677		if (copy_siginfo_to_user32(uinfo, &info))
3678			ret = -EFAULT;
3679	}
3680
3681	return ret;
3682}
3683#endif
3684#endif
3685
3686static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3687{
3688	clear_siginfo(info);
3689	info->si_signo = sig;
3690	info->si_errno = 0;
3691	info->si_code = SI_USER;
3692	info->si_pid = task_tgid_vnr(current);
3693	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3694}
3695
3696/**
3697 *  sys_kill - send a signal to a process
3698 *  @pid: the PID of the process
3699 *  @sig: signal to be sent
3700 */
3701SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3702{
3703	struct kernel_siginfo info;
3704
3705	prepare_kill_siginfo(sig, &info);
3706
3707	return kill_something_info(sig, &info, pid);
3708}
3709
3710/*
3711 * Verify that the signaler and signalee either are in the same pid namespace
3712 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3713 * namespace.
3714 */
3715static bool access_pidfd_pidns(struct pid *pid)
3716{
3717	struct pid_namespace *active = task_active_pid_ns(current);
3718	struct pid_namespace *p = ns_of_pid(pid);
3719
3720	for (;;) {
3721		if (!p)
3722			return false;
3723		if (p == active)
3724			break;
3725		p = p->parent;
3726	}
3727
3728	return true;
3729}
3730
3731static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3732		siginfo_t __user *info)
3733{
3734#ifdef CONFIG_COMPAT
3735	/*
3736	 * Avoid hooking up compat syscalls and instead handle necessary
3737	 * conversions here. Note, this is a stop-gap measure and should not be
3738	 * considered a generic solution.
3739	 */
3740	if (in_compat_syscall())
3741		return copy_siginfo_from_user32(
3742			kinfo, (struct compat_siginfo __user *)info);
3743#endif
3744	return copy_siginfo_from_user(kinfo, info);
3745}
3746
3747static struct pid *pidfd_to_pid(const struct file *file)
3748{
3749	struct pid *pid;
3750
3751	pid = pidfd_pid(file);
3752	if (!IS_ERR(pid))
3753		return pid;
3754
3755	return tgid_pidfd_to_pid(file);
3756}
3757
3758/**
3759 * sys_pidfd_send_signal - Signal a process through a pidfd
3760 * @pidfd:  file descriptor of the process
3761 * @sig:    signal to send
3762 * @info:   signal info
3763 * @flags:  future flags
3764 *
3765 * The syscall currently only signals via PIDTYPE_PID which covers
3766 * kill(<positive-pid>, <signal>. It does not signal threads or process
3767 * groups.
3768 * In order to extend the syscall to threads and process groups the @flags
3769 * argument should be used. In essence, the @flags argument will determine
3770 * what is signaled and not the file descriptor itself. Put in other words,
3771 * grouping is a property of the flags argument not a property of the file
3772 * descriptor.
3773 *
3774 * Return: 0 on success, negative errno on failure
3775 */
3776SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3777		siginfo_t __user *, info, unsigned int, flags)
3778{
3779	int ret;
3780	struct fd f;
3781	struct pid *pid;
3782	kernel_siginfo_t kinfo;
3783
3784	/* Enforce flags be set to 0 until we add an extension. */
3785	if (flags)
3786		return -EINVAL;
3787
3788	f = fdget(pidfd);
3789	if (!f.file)
3790		return -EBADF;
3791
3792	/* Is this a pidfd? */
3793	pid = pidfd_to_pid(f.file);
3794	if (IS_ERR(pid)) {
3795		ret = PTR_ERR(pid);
3796		goto err;
3797	}
3798
3799	ret = -EINVAL;
3800	if (!access_pidfd_pidns(pid))
3801		goto err;
3802
3803	if (info) {
3804		ret = copy_siginfo_from_user_any(&kinfo, info);
3805		if (unlikely(ret))
3806			goto err;
3807
3808		ret = -EINVAL;
3809		if (unlikely(sig != kinfo.si_signo))
3810			goto err;
3811
3812		/* Only allow sending arbitrary signals to yourself. */
3813		ret = -EPERM;
3814		if ((task_pid(current) != pid) &&
3815		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3816			goto err;
3817	} else {
3818		prepare_kill_siginfo(sig, &kinfo);
3819	}
3820
3821	ret = kill_pid_info(sig, &kinfo, pid);
3822
3823err:
3824	fdput(f);
3825	return ret;
3826}
3827
3828static int
3829do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3830{
3831	struct task_struct *p;
3832	int error = -ESRCH;
3833
3834	rcu_read_lock();
3835	p = find_task_by_vpid(pid);
3836	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3837		error = check_kill_permission(sig, info, p);
3838		/*
3839		 * The null signal is a permissions and process existence
3840		 * probe.  No signal is actually delivered.
3841		 */
3842		if (!error && sig) {
3843			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3844			/*
3845			 * If lock_task_sighand() failed we pretend the task
3846			 * dies after receiving the signal. The window is tiny,
3847			 * and the signal is private anyway.
3848			 */
3849			if (unlikely(error == -ESRCH))
3850				error = 0;
3851		}
3852	}
3853	rcu_read_unlock();
3854
3855	return error;
3856}
3857
3858static int do_tkill(pid_t tgid, pid_t pid, int sig)
3859{
3860	struct kernel_siginfo info;
3861
3862	clear_siginfo(&info);
3863	info.si_signo = sig;
3864	info.si_errno = 0;
3865	info.si_code = SI_TKILL;
3866	info.si_pid = task_tgid_vnr(current);
3867	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3868
3869	return do_send_specific(tgid, pid, sig, &info);
3870}
3871
3872/**
3873 *  sys_tgkill - send signal to one specific thread
3874 *  @tgid: the thread group ID of the thread
3875 *  @pid: the PID of the thread
3876 *  @sig: signal to be sent
3877 *
3878 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3879 *  exists but it's not belonging to the target process anymore. This
3880 *  method solves the problem of threads exiting and PIDs getting reused.
3881 */
3882SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	return do_tkill(tgid, pid, sig);
3889}
3890
3891/**
3892 *  sys_tkill - send signal to one specific task
3893 *  @pid: the PID of the task
3894 *  @sig: signal to be sent
3895 *
3896 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3897 */
3898SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3899{
3900	/* This is only valid for single tasks */
3901	if (pid <= 0)
3902		return -EINVAL;
3903
3904	return do_tkill(0, pid, sig);
3905}
3906
3907static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3908{
3909	/* Not even root can pretend to send signals from the kernel.
3910	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3911	 */
3912	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3913	    (task_pid_vnr(current) != pid))
3914		return -EPERM;
3915
3916	/* POSIX.1b doesn't mention process groups.  */
3917	return kill_proc_info(sig, info, pid);
3918}
3919
3920/**
3921 *  sys_rt_sigqueueinfo - send signal information to a signal
3922 *  @pid: the PID of the thread
3923 *  @sig: signal to be sent
3924 *  @uinfo: signal info to be sent
3925 */
3926SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3927		siginfo_t __user *, uinfo)
3928{
3929	kernel_siginfo_t info;
3930	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3931	if (unlikely(ret))
3932		return ret;
3933	return do_rt_sigqueueinfo(pid, sig, &info);
3934}
3935
3936#ifdef CONFIG_COMPAT
3937COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3938			compat_pid_t, pid,
3939			int, sig,
3940			struct compat_siginfo __user *, uinfo)
3941{
3942	kernel_siginfo_t info;
3943	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3944	if (unlikely(ret))
3945		return ret;
3946	return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948#endif
3949
3950static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3951{
3952	/* This is only valid for single tasks */
3953	if (pid <= 0 || tgid <= 0)
3954		return -EINVAL;
3955
3956	/* Not even root can pretend to send signals from the kernel.
3957	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3958	 */
3959	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3960	    (task_pid_vnr(current) != pid))
3961		return -EPERM;
3962
3963	return do_send_specific(tgid, pid, sig, info);
3964}
3965
3966SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3967		siginfo_t __user *, uinfo)
3968{
3969	kernel_siginfo_t info;
3970	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3971	if (unlikely(ret))
3972		return ret;
3973	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3974}
3975
3976#ifdef CONFIG_COMPAT
3977COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3978			compat_pid_t, tgid,
3979			compat_pid_t, pid,
3980			int, sig,
3981			struct compat_siginfo __user *, uinfo)
3982{
3983	kernel_siginfo_t info;
3984	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3985	if (unlikely(ret))
3986		return ret;
3987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3988}
3989#endif
3990
3991/*
3992 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3993 */
3994void kernel_sigaction(int sig, __sighandler_t action)
3995{
3996	spin_lock_irq(&current->sighand->siglock);
3997	current->sighand->action[sig - 1].sa.sa_handler = action;
3998	if (action == SIG_IGN) {
3999		sigset_t mask;
4000
4001		sigemptyset(&mask);
4002		sigaddset(&mask, sig);
4003
4004		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4005		flush_sigqueue_mask(&mask, &current->pending);
4006		recalc_sigpending();
4007	}
4008	spin_unlock_irq(&current->sighand->siglock);
4009}
4010EXPORT_SYMBOL(kernel_sigaction);
4011
4012void __weak sigaction_compat_abi(struct k_sigaction *act,
4013		struct k_sigaction *oact)
4014{
4015}
4016
4017int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4018{
4019	struct task_struct *p = current, *t;
4020	struct k_sigaction *k;
4021	sigset_t mask;
4022
4023	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4024		return -EINVAL;
4025
4026	k = &p->sighand->action[sig-1];
4027
4028	spin_lock_irq(&p->sighand->siglock);
 
 
 
 
4029	if (oact)
4030		*oact = *k;
4031
4032	/*
4033	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4034	 * e.g. by having an architecture use the bit in their uapi.
4035	 */
4036	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4037
4038	/*
4039	 * Clear unknown flag bits in order to allow userspace to detect missing
4040	 * support for flag bits and to allow the kernel to use non-uapi bits
4041	 * internally.
4042	 */
4043	if (act)
4044		act->sa.sa_flags &= UAPI_SA_FLAGS;
4045	if (oact)
4046		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4047
4048	sigaction_compat_abi(act, oact);
4049
4050	if (act) {
4051		sigdelsetmask(&act->sa.sa_mask,
4052			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4053		*k = *act;
4054		/*
4055		 * POSIX 3.3.1.3:
4056		 *  "Setting a signal action to SIG_IGN for a signal that is
4057		 *   pending shall cause the pending signal to be discarded,
4058		 *   whether or not it is blocked."
4059		 *
4060		 *  "Setting a signal action to SIG_DFL for a signal that is
4061		 *   pending and whose default action is to ignore the signal
4062		 *   (for example, SIGCHLD), shall cause the pending signal to
4063		 *   be discarded, whether or not it is blocked"
4064		 */
4065		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4066			sigemptyset(&mask);
4067			sigaddset(&mask, sig);
4068			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4069			for_each_thread(p, t)
4070				flush_sigqueue_mask(&mask, &t->pending);
4071		}
4072	}
4073
4074	spin_unlock_irq(&p->sighand->siglock);
4075	return 0;
4076}
4077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4078static int
4079do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4080		size_t min_ss_size)
4081{
4082	struct task_struct *t = current;
 
4083
4084	if (oss) {
4085		memset(oss, 0, sizeof(stack_t));
4086		oss->ss_sp = (void __user *) t->sas_ss_sp;
4087		oss->ss_size = t->sas_ss_size;
4088		oss->ss_flags = sas_ss_flags(sp) |
4089			(current->sas_ss_flags & SS_FLAG_BITS);
4090	}
4091
4092	if (ss) {
4093		void __user *ss_sp = ss->ss_sp;
4094		size_t ss_size = ss->ss_size;
4095		unsigned ss_flags = ss->ss_flags;
4096		int ss_mode;
4097
4098		if (unlikely(on_sig_stack(sp)))
4099			return -EPERM;
4100
4101		ss_mode = ss_flags & ~SS_FLAG_BITS;
4102		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4103				ss_mode != 0))
4104			return -EINVAL;
4105
 
 
 
 
 
 
 
 
 
 
4106		if (ss_mode == SS_DISABLE) {
4107			ss_size = 0;
4108			ss_sp = NULL;
4109		} else {
4110			if (unlikely(ss_size < min_ss_size))
4111				return -ENOMEM;
 
 
4112		}
4113
4114		t->sas_ss_sp = (unsigned long) ss_sp;
4115		t->sas_ss_size = ss_size;
4116		t->sas_ss_flags = ss_flags;
 
 
4117	}
4118	return 0;
4119}
4120
4121SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4122{
4123	stack_t new, old;
4124	int err;
4125	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4126		return -EFAULT;
4127	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4128			      current_user_stack_pointer(),
4129			      MINSIGSTKSZ);
4130	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4131		err = -EFAULT;
4132	return err;
4133}
4134
4135int restore_altstack(const stack_t __user *uss)
4136{
4137	stack_t new;
4138	if (copy_from_user(&new, uss, sizeof(stack_t)))
4139		return -EFAULT;
4140	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4141			     MINSIGSTKSZ);
4142	/* squash all but EFAULT for now */
4143	return 0;
4144}
4145
4146int __save_altstack(stack_t __user *uss, unsigned long sp)
4147{
4148	struct task_struct *t = current;
4149	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4150		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4151		__put_user(t->sas_ss_size, &uss->ss_size);
4152	return err;
4153}
4154
4155#ifdef CONFIG_COMPAT
4156static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4157				 compat_stack_t __user *uoss_ptr)
4158{
4159	stack_t uss, uoss;
4160	int ret;
4161
4162	if (uss_ptr) {
4163		compat_stack_t uss32;
4164		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4165			return -EFAULT;
4166		uss.ss_sp = compat_ptr(uss32.ss_sp);
4167		uss.ss_flags = uss32.ss_flags;
4168		uss.ss_size = uss32.ss_size;
4169	}
4170	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4171			     compat_user_stack_pointer(),
4172			     COMPAT_MINSIGSTKSZ);
4173	if (ret >= 0 && uoss_ptr)  {
4174		compat_stack_t old;
4175		memset(&old, 0, sizeof(old));
4176		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4177		old.ss_flags = uoss.ss_flags;
4178		old.ss_size = uoss.ss_size;
4179		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4180			ret = -EFAULT;
4181	}
4182	return ret;
4183}
4184
4185COMPAT_SYSCALL_DEFINE2(sigaltstack,
4186			const compat_stack_t __user *, uss_ptr,
4187			compat_stack_t __user *, uoss_ptr)
4188{
4189	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4190}
4191
4192int compat_restore_altstack(const compat_stack_t __user *uss)
4193{
4194	int err = do_compat_sigaltstack(uss, NULL);
4195	/* squash all but -EFAULT for now */
4196	return err == -EFAULT ? err : 0;
4197}
4198
4199int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4200{
4201	int err;
4202	struct task_struct *t = current;
4203	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4204			 &uss->ss_sp) |
4205		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4206		__put_user(t->sas_ss_size, &uss->ss_size);
4207	return err;
4208}
4209#endif
4210
4211#ifdef __ARCH_WANT_SYS_SIGPENDING
4212
4213/**
4214 *  sys_sigpending - examine pending signals
4215 *  @uset: where mask of pending signal is returned
4216 */
4217SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4218{
4219	sigset_t set;
4220
4221	if (sizeof(old_sigset_t) > sizeof(*uset))
4222		return -EINVAL;
4223
4224	do_sigpending(&set);
4225
4226	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4227		return -EFAULT;
4228
4229	return 0;
4230}
4231
4232#ifdef CONFIG_COMPAT
4233COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4234{
4235	sigset_t set;
4236
4237	do_sigpending(&set);
4238
4239	return put_user(set.sig[0], set32);
4240}
4241#endif
4242
4243#endif
4244
4245#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4246/**
4247 *  sys_sigprocmask - examine and change blocked signals
4248 *  @how: whether to add, remove, or set signals
4249 *  @nset: signals to add or remove (if non-null)
4250 *  @oset: previous value of signal mask if non-null
4251 *
4252 * Some platforms have their own version with special arguments;
4253 * others support only sys_rt_sigprocmask.
4254 */
4255
4256SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4257		old_sigset_t __user *, oset)
4258{
4259	old_sigset_t old_set, new_set;
4260	sigset_t new_blocked;
4261
4262	old_set = current->blocked.sig[0];
4263
4264	if (nset) {
4265		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4266			return -EFAULT;
4267
4268		new_blocked = current->blocked;
4269
4270		switch (how) {
4271		case SIG_BLOCK:
4272			sigaddsetmask(&new_blocked, new_set);
4273			break;
4274		case SIG_UNBLOCK:
4275			sigdelsetmask(&new_blocked, new_set);
4276			break;
4277		case SIG_SETMASK:
4278			new_blocked.sig[0] = new_set;
4279			break;
4280		default:
4281			return -EINVAL;
4282		}
4283
4284		set_current_blocked(&new_blocked);
4285	}
4286
4287	if (oset) {
4288		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4289			return -EFAULT;
4290	}
4291
4292	return 0;
4293}
4294#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4295
4296#ifndef CONFIG_ODD_RT_SIGACTION
4297/**
4298 *  sys_rt_sigaction - alter an action taken by a process
4299 *  @sig: signal to be sent
4300 *  @act: new sigaction
4301 *  @oact: used to save the previous sigaction
4302 *  @sigsetsize: size of sigset_t type
4303 */
4304SYSCALL_DEFINE4(rt_sigaction, int, sig,
4305		const struct sigaction __user *, act,
4306		struct sigaction __user *, oact,
4307		size_t, sigsetsize)
4308{
4309	struct k_sigaction new_sa, old_sa;
4310	int ret;
4311
4312	/* XXX: Don't preclude handling different sized sigset_t's.  */
4313	if (sigsetsize != sizeof(sigset_t))
4314		return -EINVAL;
4315
4316	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4317		return -EFAULT;
4318
4319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4320	if (ret)
4321		return ret;
4322
4323	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4324		return -EFAULT;
4325
4326	return 0;
4327}
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4330		const struct compat_sigaction __user *, act,
4331		struct compat_sigaction __user *, oact,
4332		compat_size_t, sigsetsize)
4333{
4334	struct k_sigaction new_ka, old_ka;
4335#ifdef __ARCH_HAS_SA_RESTORER
4336	compat_uptr_t restorer;
4337#endif
4338	int ret;
4339
4340	/* XXX: Don't preclude handling different sized sigset_t's.  */
4341	if (sigsetsize != sizeof(compat_sigset_t))
4342		return -EINVAL;
4343
4344	if (act) {
4345		compat_uptr_t handler;
4346		ret = get_user(handler, &act->sa_handler);
4347		new_ka.sa.sa_handler = compat_ptr(handler);
4348#ifdef __ARCH_HAS_SA_RESTORER
4349		ret |= get_user(restorer, &act->sa_restorer);
4350		new_ka.sa.sa_restorer = compat_ptr(restorer);
4351#endif
4352		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4353		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4354		if (ret)
4355			return -EFAULT;
4356	}
4357
4358	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359	if (!ret && oact) {
4360		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4361			       &oact->sa_handler);
4362		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4363					 sizeof(oact->sa_mask));
4364		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4365#ifdef __ARCH_HAS_SA_RESTORER
4366		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4367				&oact->sa_restorer);
4368#endif
4369	}
4370	return ret;
4371}
4372#endif
4373#endif /* !CONFIG_ODD_RT_SIGACTION */
4374
4375#ifdef CONFIG_OLD_SIGACTION
4376SYSCALL_DEFINE3(sigaction, int, sig,
4377		const struct old_sigaction __user *, act,
4378	        struct old_sigaction __user *, oact)
4379{
4380	struct k_sigaction new_ka, old_ka;
4381	int ret;
4382
4383	if (act) {
4384		old_sigset_t mask;
4385		if (!access_ok(act, sizeof(*act)) ||
4386		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4387		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4388		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4389		    __get_user(mask, &act->sa_mask))
4390			return -EFAULT;
4391#ifdef __ARCH_HAS_KA_RESTORER
4392		new_ka.ka_restorer = NULL;
4393#endif
4394		siginitset(&new_ka.sa.sa_mask, mask);
4395	}
4396
4397	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4398
4399	if (!ret && oact) {
4400		if (!access_ok(oact, sizeof(*oact)) ||
4401		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4402		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4403		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4404		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4405			return -EFAULT;
4406	}
4407
4408	return ret;
4409}
4410#endif
4411#ifdef CONFIG_COMPAT_OLD_SIGACTION
4412COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4413		const struct compat_old_sigaction __user *, act,
4414	        struct compat_old_sigaction __user *, oact)
4415{
4416	struct k_sigaction new_ka, old_ka;
4417	int ret;
4418	compat_old_sigset_t mask;
4419	compat_uptr_t handler, restorer;
4420
4421	if (act) {
4422		if (!access_ok(act, sizeof(*act)) ||
4423		    __get_user(handler, &act->sa_handler) ||
4424		    __get_user(restorer, &act->sa_restorer) ||
4425		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4426		    __get_user(mask, &act->sa_mask))
4427			return -EFAULT;
4428
4429#ifdef __ARCH_HAS_KA_RESTORER
4430		new_ka.ka_restorer = NULL;
4431#endif
4432		new_ka.sa.sa_handler = compat_ptr(handler);
4433		new_ka.sa.sa_restorer = compat_ptr(restorer);
4434		siginitset(&new_ka.sa.sa_mask, mask);
4435	}
4436
4437	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4438
4439	if (!ret && oact) {
4440		if (!access_ok(oact, sizeof(*oact)) ||
4441		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4442			       &oact->sa_handler) ||
4443		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4444			       &oact->sa_restorer) ||
4445		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4446		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4447			return -EFAULT;
4448	}
4449	return ret;
4450}
4451#endif
4452
4453#ifdef CONFIG_SGETMASK_SYSCALL
4454
4455/*
4456 * For backwards compatibility.  Functionality superseded by sigprocmask.
4457 */
4458SYSCALL_DEFINE0(sgetmask)
4459{
4460	/* SMP safe */
4461	return current->blocked.sig[0];
4462}
4463
4464SYSCALL_DEFINE1(ssetmask, int, newmask)
4465{
4466	int old = current->blocked.sig[0];
4467	sigset_t newset;
4468
4469	siginitset(&newset, newmask);
4470	set_current_blocked(&newset);
4471
4472	return old;
4473}
4474#endif /* CONFIG_SGETMASK_SYSCALL */
4475
4476#ifdef __ARCH_WANT_SYS_SIGNAL
4477/*
4478 * For backwards compatibility.  Functionality superseded by sigaction.
4479 */
4480SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4481{
4482	struct k_sigaction new_sa, old_sa;
4483	int ret;
4484
4485	new_sa.sa.sa_handler = handler;
4486	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4487	sigemptyset(&new_sa.sa.sa_mask);
4488
4489	ret = do_sigaction(sig, &new_sa, &old_sa);
4490
4491	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4492}
4493#endif /* __ARCH_WANT_SYS_SIGNAL */
4494
4495#ifdef __ARCH_WANT_SYS_PAUSE
4496
4497SYSCALL_DEFINE0(pause)
4498{
4499	while (!signal_pending(current)) {
4500		__set_current_state(TASK_INTERRUPTIBLE);
4501		schedule();
4502	}
4503	return -ERESTARTNOHAND;
4504}
4505
4506#endif
4507
4508static int sigsuspend(sigset_t *set)
4509{
4510	current->saved_sigmask = current->blocked;
4511	set_current_blocked(set);
4512
4513	while (!signal_pending(current)) {
4514		__set_current_state(TASK_INTERRUPTIBLE);
4515		schedule();
4516	}
4517	set_restore_sigmask();
4518	return -ERESTARTNOHAND;
4519}
4520
4521/**
4522 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4523 *	@unewset value until a signal is received
4524 *  @unewset: new signal mask value
4525 *  @sigsetsize: size of sigset_t type
4526 */
4527SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4528{
4529	sigset_t newset;
4530
4531	/* XXX: Don't preclude handling different sized sigset_t's.  */
4532	if (sigsetsize != sizeof(sigset_t))
4533		return -EINVAL;
4534
4535	if (copy_from_user(&newset, unewset, sizeof(newset)))
4536		return -EFAULT;
4537	return sigsuspend(&newset);
4538}
4539 
4540#ifdef CONFIG_COMPAT
4541COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4542{
4543	sigset_t newset;
4544
4545	/* XXX: Don't preclude handling different sized sigset_t's.  */
4546	if (sigsetsize != sizeof(sigset_t))
4547		return -EINVAL;
4548
4549	if (get_compat_sigset(&newset, unewset))
4550		return -EFAULT;
4551	return sigsuspend(&newset);
4552}
4553#endif
4554
4555#ifdef CONFIG_OLD_SIGSUSPEND
4556SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4557{
4558	sigset_t blocked;
4559	siginitset(&blocked, mask);
4560	return sigsuspend(&blocked);
4561}
4562#endif
4563#ifdef CONFIG_OLD_SIGSUSPEND3
4564SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4565{
4566	sigset_t blocked;
4567	siginitset(&blocked, mask);
4568	return sigsuspend(&blocked);
4569}
4570#endif
4571
4572__weak const char *arch_vma_name(struct vm_area_struct *vma)
4573{
4574	return NULL;
4575}
4576
4577static inline void siginfo_buildtime_checks(void)
4578{
4579	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4580
4581	/* Verify the offsets in the two siginfos match */
4582#define CHECK_OFFSET(field) \
4583	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4584
4585	/* kill */
4586	CHECK_OFFSET(si_pid);
4587	CHECK_OFFSET(si_uid);
4588
4589	/* timer */
4590	CHECK_OFFSET(si_tid);
4591	CHECK_OFFSET(si_overrun);
4592	CHECK_OFFSET(si_value);
4593
4594	/* rt */
4595	CHECK_OFFSET(si_pid);
4596	CHECK_OFFSET(si_uid);
4597	CHECK_OFFSET(si_value);
4598
4599	/* sigchld */
4600	CHECK_OFFSET(si_pid);
4601	CHECK_OFFSET(si_uid);
4602	CHECK_OFFSET(si_status);
4603	CHECK_OFFSET(si_utime);
4604	CHECK_OFFSET(si_stime);
4605
4606	/* sigfault */
4607	CHECK_OFFSET(si_addr);
4608	CHECK_OFFSET(si_trapno);
4609	CHECK_OFFSET(si_addr_lsb);
4610	CHECK_OFFSET(si_lower);
4611	CHECK_OFFSET(si_upper);
4612	CHECK_OFFSET(si_pkey);
4613	CHECK_OFFSET(si_perf_data);
4614	CHECK_OFFSET(si_perf_type);
 
4615
4616	/* sigpoll */
4617	CHECK_OFFSET(si_band);
4618	CHECK_OFFSET(si_fd);
4619
4620	/* sigsys */
4621	CHECK_OFFSET(si_call_addr);
4622	CHECK_OFFSET(si_syscall);
4623	CHECK_OFFSET(si_arch);
4624#undef CHECK_OFFSET
4625
4626	/* usb asyncio */
4627	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4628		     offsetof(struct siginfo, si_addr));
4629	if (sizeof(int) == sizeof(void __user *)) {
4630		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4631			     sizeof(void __user *));
4632	} else {
4633		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4634			      sizeof_field(struct siginfo, si_uid)) !=
4635			     sizeof(void __user *));
4636		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4637			     offsetof(struct siginfo, si_uid));
4638	}
4639#ifdef CONFIG_COMPAT
4640	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4641		     offsetof(struct compat_siginfo, si_addr));
4642	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4643		     sizeof(compat_uptr_t));
4644	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4645		     sizeof_field(struct siginfo, si_pid));
4646#endif
4647}
4648
4649void __init signals_init(void)
4650{
4651	siginfo_buildtime_checks();
4652
4653	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4654}
4655
4656#ifdef CONFIG_KGDB_KDB
4657#include <linux/kdb.h>
4658/*
4659 * kdb_send_sig - Allows kdb to send signals without exposing
4660 * signal internals.  This function checks if the required locks are
4661 * available before calling the main signal code, to avoid kdb
4662 * deadlocks.
4663 */
4664void kdb_send_sig(struct task_struct *t, int sig)
4665{
4666	static struct task_struct *kdb_prev_t;
4667	int new_t, ret;
4668	if (!spin_trylock(&t->sighand->siglock)) {
4669		kdb_printf("Can't do kill command now.\n"
4670			   "The sigmask lock is held somewhere else in "
4671			   "kernel, try again later\n");
4672		return;
4673	}
4674	new_t = kdb_prev_t != t;
4675	kdb_prev_t = t;
4676	if (!task_is_running(t) && new_t) {
4677		spin_unlock(&t->sighand->siglock);
4678		kdb_printf("Process is not RUNNING, sending a signal from "
4679			   "kdb risks deadlock\n"
4680			   "on the run queue locks. "
4681			   "The signal has _not_ been sent.\n"
4682			   "Reissue the kill command if you want to risk "
4683			   "the deadlock.\n");
4684		return;
4685	}
4686	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4687	spin_unlock(&t->sighand->siglock);
4688	if (ret)
4689		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4690			   sig, t->pid);
4691	else
4692		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4693}
4694#endif	/* CONFIG_KGDB_KDB */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/task_work.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
  57#include <asm/syscall.h>	/* for syscall_get_* */
  58
  59/*
  60 * SLAB caches for signal bits.
  61 */
  62
  63static struct kmem_cache *sigqueue_cachep;
  64
  65int print_fatal_signals __read_mostly;
  66
  67static void __user *sig_handler(struct task_struct *t, int sig)
  68{
  69	return t->sighand->action[sig - 1].sa.sa_handler;
  70}
  71
  72static inline bool sig_handler_ignored(void __user *handler, int sig)
  73{
  74	/* Is it explicitly or implicitly ignored? */
  75	return handler == SIG_IGN ||
  76	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  77}
  78
  79static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  80{
  81	void __user *handler;
  82
  83	handler = sig_handler(t, sig);
  84
  85	/* SIGKILL and SIGSTOP may not be sent to the global init */
  86	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  87		return true;
  88
  89	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  90	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  91		return true;
  92
  93	/* Only allow kernel generated signals to this kthread */
  94	if (unlikely((t->flags & PF_KTHREAD) &&
  95		     (handler == SIG_KTHREAD_KERNEL) && !force))
  96		return true;
  97
  98	return sig_handler_ignored(handler, sig);
  99}
 100
 101static bool sig_ignored(struct task_struct *t, int sig, bool force)
 102{
 103	/*
 104	 * Blocked signals are never ignored, since the
 105	 * signal handler may change by the time it is
 106	 * unblocked.
 107	 */
 108	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 109		return false;
 110
 111	/*
 112	 * Tracers may want to know about even ignored signal unless it
 113	 * is SIGKILL which can't be reported anyway but can be ignored
 114	 * by SIGNAL_UNKILLABLE task.
 115	 */
 116	if (t->ptrace && sig != SIGKILL)
 117		return false;
 118
 119	return sig_task_ignored(t, sig, force);
 120}
 121
 122/*
 123 * Re-calculate pending state from the set of locally pending
 124 * signals, globally pending signals, and blocked signals.
 125 */
 126static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 127{
 128	unsigned long ready;
 129	long i;
 130
 131	switch (_NSIG_WORDS) {
 132	default:
 133		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 134			ready |= signal->sig[i] &~ blocked->sig[i];
 135		break;
 136
 137	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 138		ready |= signal->sig[2] &~ blocked->sig[2];
 139		ready |= signal->sig[1] &~ blocked->sig[1];
 140		ready |= signal->sig[0] &~ blocked->sig[0];
 141		break;
 142
 143	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 144		ready |= signal->sig[0] &~ blocked->sig[0];
 145		break;
 146
 147	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 148	}
 149	return ready !=	0;
 150}
 151
 152#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 153
 154static bool recalc_sigpending_tsk(struct task_struct *t)
 155{
 156	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 157	    PENDING(&t->pending, &t->blocked) ||
 158	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 159	    cgroup_task_frozen(t)) {
 160		set_tsk_thread_flag(t, TIF_SIGPENDING);
 161		return true;
 162	}
 163
 164	/*
 165	 * We must never clear the flag in another thread, or in current
 166	 * when it's possible the current syscall is returning -ERESTART*.
 167	 * So we don't clear it here, and only callers who know they should do.
 168	 */
 169	return false;
 170}
 171
 172/*
 173 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 174 * This is superfluous when called on current, the wakeup is a harmless no-op.
 175 */
 176void recalc_sigpending_and_wake(struct task_struct *t)
 177{
 178	if (recalc_sigpending_tsk(t))
 179		signal_wake_up(t, 0);
 180}
 181
 182void recalc_sigpending(void)
 183{
 184	if (!recalc_sigpending_tsk(current) && !freezing(current))
 185		clear_thread_flag(TIF_SIGPENDING);
 186
 187}
 188EXPORT_SYMBOL(recalc_sigpending);
 189
 190void calculate_sigpending(void)
 191{
 192	/* Have any signals or users of TIF_SIGPENDING been delayed
 193	 * until after fork?
 194	 */
 195	spin_lock_irq(&current->sighand->siglock);
 196	set_tsk_thread_flag(current, TIF_SIGPENDING);
 197	recalc_sigpending();
 198	spin_unlock_irq(&current->sighand->siglock);
 199}
 200
 201/* Given the mask, find the first available signal that should be serviced. */
 202
 203#define SYNCHRONOUS_MASK \
 204	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 205	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 206
 207int next_signal(struct sigpending *pending, sigset_t *mask)
 208{
 209	unsigned long i, *s, *m, x;
 210	int sig = 0;
 211
 212	s = pending->signal.sig;
 213	m = mask->sig;
 214
 215	/*
 216	 * Handle the first word specially: it contains the
 217	 * synchronous signals that need to be dequeued first.
 218	 */
 219	x = *s &~ *m;
 220	if (x) {
 221		if (x & SYNCHRONOUS_MASK)
 222			x &= SYNCHRONOUS_MASK;
 223		sig = ffz(~x) + 1;
 224		return sig;
 225	}
 226
 227	switch (_NSIG_WORDS) {
 228	default:
 229		for (i = 1; i < _NSIG_WORDS; ++i) {
 230			x = *++s &~ *++m;
 231			if (!x)
 232				continue;
 233			sig = ffz(~x) + i*_NSIG_BPW + 1;
 234			break;
 235		}
 236		break;
 237
 238	case 2:
 239		x = s[1] &~ m[1];
 240		if (!x)
 241			break;
 242		sig = ffz(~x) + _NSIG_BPW + 1;
 243		break;
 244
 245	case 1:
 246		/* Nothing to do */
 247		break;
 248	}
 249
 250	return sig;
 251}
 252
 253static inline void print_dropped_signal(int sig)
 254{
 255	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 256
 257	if (!print_fatal_signals)
 258		return;
 259
 260	if (!__ratelimit(&ratelimit_state))
 261		return;
 262
 263	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 264				current->comm, current->pid, sig);
 265}
 266
 267/**
 268 * task_set_jobctl_pending - set jobctl pending bits
 269 * @task: target task
 270 * @mask: pending bits to set
 271 *
 272 * Clear @mask from @task->jobctl.  @mask must be subset of
 273 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 274 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 275 * cleared.  If @task is already being killed or exiting, this function
 276 * becomes noop.
 277 *
 278 * CONTEXT:
 279 * Must be called with @task->sighand->siglock held.
 280 *
 281 * RETURNS:
 282 * %true if @mask is set, %false if made noop because @task was dying.
 283 */
 284bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 285{
 286	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 287			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 288	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 289
 290	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 291		return false;
 292
 293	if (mask & JOBCTL_STOP_SIGMASK)
 294		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 295
 296	task->jobctl |= mask;
 297	return true;
 298}
 299
 300/**
 301 * task_clear_jobctl_trapping - clear jobctl trapping bit
 302 * @task: target task
 303 *
 304 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 305 * Clear it and wake up the ptracer.  Note that we don't need any further
 306 * locking.  @task->siglock guarantees that @task->parent points to the
 307 * ptracer.
 308 *
 309 * CONTEXT:
 310 * Must be called with @task->sighand->siglock held.
 311 */
 312void task_clear_jobctl_trapping(struct task_struct *task)
 313{
 314	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 315		task->jobctl &= ~JOBCTL_TRAPPING;
 316		smp_mb();	/* advised by wake_up_bit() */
 317		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 318	}
 319}
 320
 321/**
 322 * task_clear_jobctl_pending - clear jobctl pending bits
 323 * @task: target task
 324 * @mask: pending bits to clear
 325 *
 326 * Clear @mask from @task->jobctl.  @mask must be subset of
 327 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 328 * STOP bits are cleared together.
 329 *
 330 * If clearing of @mask leaves no stop or trap pending, this function calls
 331 * task_clear_jobctl_trapping().
 332 *
 333 * CONTEXT:
 334 * Must be called with @task->sighand->siglock held.
 335 */
 336void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 337{
 338	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 339
 340	if (mask & JOBCTL_STOP_PENDING)
 341		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 342
 343	task->jobctl &= ~mask;
 344
 345	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 346		task_clear_jobctl_trapping(task);
 347}
 348
 349/**
 350 * task_participate_group_stop - participate in a group stop
 351 * @task: task participating in a group stop
 352 *
 353 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 354 * Group stop states are cleared and the group stop count is consumed if
 355 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 356 * stop, the appropriate `SIGNAL_*` flags are set.
 357 *
 358 * CONTEXT:
 359 * Must be called with @task->sighand->siglock held.
 360 *
 361 * RETURNS:
 362 * %true if group stop completion should be notified to the parent, %false
 363 * otherwise.
 364 */
 365static bool task_participate_group_stop(struct task_struct *task)
 366{
 367	struct signal_struct *sig = task->signal;
 368	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 369
 370	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 371
 372	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 373
 374	if (!consume)
 375		return false;
 376
 377	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 378		sig->group_stop_count--;
 379
 380	/*
 381	 * Tell the caller to notify completion iff we are entering into a
 382	 * fresh group stop.  Read comment in do_signal_stop() for details.
 383	 */
 384	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 385		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 386		return true;
 387	}
 388	return false;
 389}
 390
 391void task_join_group_stop(struct task_struct *task)
 392{
 393	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 394	struct signal_struct *sig = current->signal;
 395
 396	if (sig->group_stop_count) {
 397		sig->group_stop_count++;
 398		mask |= JOBCTL_STOP_CONSUME;
 399	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 400		return;
 401
 402	/* Have the new thread join an on-going signal group stop */
 403	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 404}
 405
 406/*
 407 * allocate a new signal queue record
 408 * - this may be called without locks if and only if t == current, otherwise an
 409 *   appropriate lock must be held to stop the target task from exiting
 410 */
 411static struct sigqueue *
 412__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 413		 int override_rlimit, const unsigned int sigqueue_flags)
 414{
 415	struct sigqueue *q = NULL;
 416	struct ucounts *ucounts = NULL;
 417	long sigpending;
 418
 419	/*
 420	 * Protect access to @t credentials. This can go away when all
 421	 * callers hold rcu read lock.
 422	 *
 423	 * NOTE! A pending signal will hold on to the user refcount,
 424	 * and we get/put the refcount only when the sigpending count
 425	 * changes from/to zero.
 426	 */
 427	rcu_read_lock();
 428	ucounts = task_ucounts(t);
 429	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 430	rcu_read_unlock();
 431	if (!sigpending)
 432		return NULL;
 433
 434	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 435		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 436	} else {
 437		print_dropped_signal(sig);
 438	}
 439
 440	if (unlikely(q == NULL)) {
 441		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 442	} else {
 443		INIT_LIST_HEAD(&q->list);
 444		q->flags = sigqueue_flags;
 445		q->ucounts = ucounts;
 446	}
 447	return q;
 448}
 449
 450static void __sigqueue_free(struct sigqueue *q)
 451{
 452	if (q->flags & SIGQUEUE_PREALLOC)
 453		return;
 454	if (q->ucounts) {
 455		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 456		q->ucounts = NULL;
 457	}
 458	kmem_cache_free(sigqueue_cachep, q);
 459}
 460
 461void flush_sigqueue(struct sigpending *queue)
 462{
 463	struct sigqueue *q;
 464
 465	sigemptyset(&queue->signal);
 466	while (!list_empty(&queue->list)) {
 467		q = list_entry(queue->list.next, struct sigqueue , list);
 468		list_del_init(&q->list);
 469		__sigqueue_free(q);
 470	}
 471}
 472
 473/*
 474 * Flush all pending signals for this kthread.
 475 */
 476void flush_signals(struct task_struct *t)
 477{
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&t->sighand->siglock, flags);
 481	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 482	flush_sigqueue(&t->pending);
 483	flush_sigqueue(&t->signal->shared_pending);
 484	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 485}
 486EXPORT_SYMBOL(flush_signals);
 487
 488#ifdef CONFIG_POSIX_TIMERS
 489static void __flush_itimer_signals(struct sigpending *pending)
 490{
 491	sigset_t signal, retain;
 492	struct sigqueue *q, *n;
 493
 494	signal = pending->signal;
 495	sigemptyset(&retain);
 496
 497	list_for_each_entry_safe(q, n, &pending->list, list) {
 498		int sig = q->info.si_signo;
 499
 500		if (likely(q->info.si_code != SI_TIMER)) {
 501			sigaddset(&retain, sig);
 502		} else {
 503			sigdelset(&signal, sig);
 504			list_del_init(&q->list);
 505			__sigqueue_free(q);
 506		}
 507	}
 508
 509	sigorsets(&pending->signal, &signal, &retain);
 510}
 511
 512void flush_itimer_signals(void)
 513{
 514	struct task_struct *tsk = current;
 515	unsigned long flags;
 516
 517	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 518	__flush_itimer_signals(&tsk->pending);
 519	__flush_itimer_signals(&tsk->signal->shared_pending);
 520	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 521}
 522#endif
 523
 524void ignore_signals(struct task_struct *t)
 525{
 526	int i;
 527
 528	for (i = 0; i < _NSIG; ++i)
 529		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 530
 531	flush_signals(t);
 532}
 533
 534/*
 535 * Flush all handlers for a task.
 536 */
 537
 538void
 539flush_signal_handlers(struct task_struct *t, int force_default)
 540{
 541	int i;
 542	struct k_sigaction *ka = &t->sighand->action[0];
 543	for (i = _NSIG ; i != 0 ; i--) {
 544		if (force_default || ka->sa.sa_handler != SIG_IGN)
 545			ka->sa.sa_handler = SIG_DFL;
 546		ka->sa.sa_flags = 0;
 547#ifdef __ARCH_HAS_SA_RESTORER
 548		ka->sa.sa_restorer = NULL;
 549#endif
 550		sigemptyset(&ka->sa.sa_mask);
 551		ka++;
 552	}
 553}
 554
 555bool unhandled_signal(struct task_struct *tsk, int sig)
 556{
 557	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 558	if (is_global_init(tsk))
 559		return true;
 560
 561	if (handler != SIG_IGN && handler != SIG_DFL)
 562		return false;
 563
 564	/* if ptraced, let the tracer determine */
 565	return !tsk->ptrace;
 566}
 567
 568static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 569			   bool *resched_timer)
 570{
 571	struct sigqueue *q, *first = NULL;
 572
 573	/*
 574	 * Collect the siginfo appropriate to this signal.  Check if
 575	 * there is another siginfo for the same signal.
 576	*/
 577	list_for_each_entry(q, &list->list, list) {
 578		if (q->info.si_signo == sig) {
 579			if (first)
 580				goto still_pending;
 581			first = q;
 582		}
 583	}
 584
 585	sigdelset(&list->signal, sig);
 586
 587	if (first) {
 588still_pending:
 589		list_del_init(&first->list);
 590		copy_siginfo(info, &first->info);
 591
 592		*resched_timer =
 593			(first->flags & SIGQUEUE_PREALLOC) &&
 594			(info->si_code == SI_TIMER) &&
 595			(info->si_sys_private);
 596
 597		__sigqueue_free(first);
 598	} else {
 599		/*
 600		 * Ok, it wasn't in the queue.  This must be
 601		 * a fast-pathed signal or we must have been
 602		 * out of queue space.  So zero out the info.
 603		 */
 604		clear_siginfo(info);
 605		info->si_signo = sig;
 606		info->si_errno = 0;
 607		info->si_code = SI_USER;
 608		info->si_pid = 0;
 609		info->si_uid = 0;
 610	}
 611}
 612
 613static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 614			kernel_siginfo_t *info, bool *resched_timer)
 615{
 616	int sig = next_signal(pending, mask);
 617
 618	if (sig)
 619		collect_signal(sig, pending, info, resched_timer);
 620	return sig;
 621}
 622
 623/*
 624 * Dequeue a signal and return the element to the caller, which is
 625 * expected to free it.
 626 *
 627 * All callers have to hold the siglock.
 628 */
 629int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
 630		   kernel_siginfo_t *info, enum pid_type *type)
 631{
 632	bool resched_timer = false;
 633	int signr;
 634
 635	/* We only dequeue private signals from ourselves, we don't let
 636	 * signalfd steal them
 637	 */
 638	*type = PIDTYPE_PID;
 639	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 640	if (!signr) {
 641		*type = PIDTYPE_TGID;
 642		signr = __dequeue_signal(&tsk->signal->shared_pending,
 643					 mask, info, &resched_timer);
 644#ifdef CONFIG_POSIX_TIMERS
 645		/*
 646		 * itimer signal ?
 647		 *
 648		 * itimers are process shared and we restart periodic
 649		 * itimers in the signal delivery path to prevent DoS
 650		 * attacks in the high resolution timer case. This is
 651		 * compliant with the old way of self-restarting
 652		 * itimers, as the SIGALRM is a legacy signal and only
 653		 * queued once. Changing the restart behaviour to
 654		 * restart the timer in the signal dequeue path is
 655		 * reducing the timer noise on heavy loaded !highres
 656		 * systems too.
 657		 */
 658		if (unlikely(signr == SIGALRM)) {
 659			struct hrtimer *tmr = &tsk->signal->real_timer;
 660
 661			if (!hrtimer_is_queued(tmr) &&
 662			    tsk->signal->it_real_incr != 0) {
 663				hrtimer_forward(tmr, tmr->base->get_time(),
 664						tsk->signal->it_real_incr);
 665				hrtimer_restart(tmr);
 666			}
 667		}
 668#endif
 669	}
 670
 671	recalc_sigpending();
 672	if (!signr)
 673		return 0;
 674
 675	if (unlikely(sig_kernel_stop(signr))) {
 676		/*
 677		 * Set a marker that we have dequeued a stop signal.  Our
 678		 * caller might release the siglock and then the pending
 679		 * stop signal it is about to process is no longer in the
 680		 * pending bitmasks, but must still be cleared by a SIGCONT
 681		 * (and overruled by a SIGKILL).  So those cases clear this
 682		 * shared flag after we've set it.  Note that this flag may
 683		 * remain set after the signal we return is ignored or
 684		 * handled.  That doesn't matter because its only purpose
 685		 * is to alert stop-signal processing code when another
 686		 * processor has come along and cleared the flag.
 687		 */
 688		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 689	}
 690#ifdef CONFIG_POSIX_TIMERS
 691	if (resched_timer) {
 692		/*
 693		 * Release the siglock to ensure proper locking order
 694		 * of timer locks outside of siglocks.  Note, we leave
 695		 * irqs disabled here, since the posix-timers code is
 696		 * about to disable them again anyway.
 697		 */
 698		spin_unlock(&tsk->sighand->siglock);
 699		posixtimer_rearm(info);
 700		spin_lock(&tsk->sighand->siglock);
 701
 702		/* Don't expose the si_sys_private value to userspace */
 703		info->si_sys_private = 0;
 704	}
 705#endif
 706	return signr;
 707}
 708EXPORT_SYMBOL_GPL(dequeue_signal);
 709
 710static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 711{
 712	struct task_struct *tsk = current;
 713	struct sigpending *pending = &tsk->pending;
 714	struct sigqueue *q, *sync = NULL;
 715
 716	/*
 717	 * Might a synchronous signal be in the queue?
 718	 */
 719	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 720		return 0;
 721
 722	/*
 723	 * Return the first synchronous signal in the queue.
 724	 */
 725	list_for_each_entry(q, &pending->list, list) {
 726		/* Synchronous signals have a positive si_code */
 727		if ((q->info.si_code > SI_USER) &&
 728		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 729			sync = q;
 730			goto next;
 731		}
 732	}
 733	return 0;
 734next:
 735	/*
 736	 * Check if there is another siginfo for the same signal.
 737	 */
 738	list_for_each_entry_continue(q, &pending->list, list) {
 739		if (q->info.si_signo == sync->info.si_signo)
 740			goto still_pending;
 741	}
 742
 743	sigdelset(&pending->signal, sync->info.si_signo);
 744	recalc_sigpending();
 745still_pending:
 746	list_del_init(&sync->list);
 747	copy_siginfo(info, &sync->info);
 748	__sigqueue_free(sync);
 749	return info->si_signo;
 750}
 751
 752/*
 753 * Tell a process that it has a new active signal..
 754 *
 755 * NOTE! we rely on the previous spin_lock to
 756 * lock interrupts for us! We can only be called with
 757 * "siglock" held, and the local interrupt must
 758 * have been disabled when that got acquired!
 759 *
 760 * No need to set need_resched since signal event passing
 761 * goes through ->blocked
 762 */
 763void signal_wake_up_state(struct task_struct *t, unsigned int state)
 764{
 765	lockdep_assert_held(&t->sighand->siglock);
 766
 767	set_tsk_thread_flag(t, TIF_SIGPENDING);
 768
 769	/*
 770	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 771	 * case. We don't check t->state here because there is a race with it
 772	 * executing another processor and just now entering stopped state.
 773	 * By using wake_up_state, we ensure the process will wake up and
 774	 * handle its death signal.
 775	 */
 776	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 777		kick_process(t);
 778}
 779
 780/*
 781 * Remove signals in mask from the pending set and queue.
 782 * Returns 1 if any signals were found.
 783 *
 784 * All callers must be holding the siglock.
 785 */
 786static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 787{
 788	struct sigqueue *q, *n;
 789	sigset_t m;
 790
 791	sigandsets(&m, mask, &s->signal);
 792	if (sigisemptyset(&m))
 793		return;
 794
 795	sigandnsets(&s->signal, &s->signal, mask);
 796	list_for_each_entry_safe(q, n, &s->list, list) {
 797		if (sigismember(mask, q->info.si_signo)) {
 798			list_del_init(&q->list);
 799			__sigqueue_free(q);
 800		}
 801	}
 802}
 803
 804static inline int is_si_special(const struct kernel_siginfo *info)
 805{
 806	return info <= SEND_SIG_PRIV;
 807}
 808
 809static inline bool si_fromuser(const struct kernel_siginfo *info)
 810{
 811	return info == SEND_SIG_NOINFO ||
 812		(!is_si_special(info) && SI_FROMUSER(info));
 813}
 814
 815/*
 816 * called with RCU read lock from check_kill_permission()
 817 */
 818static bool kill_ok_by_cred(struct task_struct *t)
 819{
 820	const struct cred *cred = current_cred();
 821	const struct cred *tcred = __task_cred(t);
 822
 823	return uid_eq(cred->euid, tcred->suid) ||
 824	       uid_eq(cred->euid, tcred->uid) ||
 825	       uid_eq(cred->uid, tcred->suid) ||
 826	       uid_eq(cred->uid, tcred->uid) ||
 827	       ns_capable(tcred->user_ns, CAP_KILL);
 828}
 829
 830/*
 831 * Bad permissions for sending the signal
 832 * - the caller must hold the RCU read lock
 833 */
 834static int check_kill_permission(int sig, struct kernel_siginfo *info,
 835				 struct task_struct *t)
 836{
 837	struct pid *sid;
 838	int error;
 839
 840	if (!valid_signal(sig))
 841		return -EINVAL;
 842
 843	if (!si_fromuser(info))
 844		return 0;
 845
 846	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 847	if (error)
 848		return error;
 849
 850	if (!same_thread_group(current, t) &&
 851	    !kill_ok_by_cred(t)) {
 852		switch (sig) {
 853		case SIGCONT:
 854			sid = task_session(t);
 855			/*
 856			 * We don't return the error if sid == NULL. The
 857			 * task was unhashed, the caller must notice this.
 858			 */
 859			if (!sid || sid == task_session(current))
 860				break;
 861			fallthrough;
 862		default:
 863			return -EPERM;
 864		}
 865	}
 866
 867	return security_task_kill(t, info, sig, NULL);
 868}
 869
 870/**
 871 * ptrace_trap_notify - schedule trap to notify ptracer
 872 * @t: tracee wanting to notify tracer
 873 *
 874 * This function schedules sticky ptrace trap which is cleared on the next
 875 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 876 * ptracer.
 877 *
 878 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 879 * ptracer is listening for events, tracee is woken up so that it can
 880 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 881 * eventually taken without returning to userland after the existing traps
 882 * are finished by PTRACE_CONT.
 883 *
 884 * CONTEXT:
 885 * Must be called with @task->sighand->siglock held.
 886 */
 887static void ptrace_trap_notify(struct task_struct *t)
 888{
 889	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 890	lockdep_assert_held(&t->sighand->siglock);
 891
 892	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 893	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 894}
 895
 896/*
 897 * Handle magic process-wide effects of stop/continue signals. Unlike
 898 * the signal actions, these happen immediately at signal-generation
 899 * time regardless of blocking, ignoring, or handling.  This does the
 900 * actual continuing for SIGCONT, but not the actual stopping for stop
 901 * signals. The process stop is done as a signal action for SIG_DFL.
 902 *
 903 * Returns true if the signal should be actually delivered, otherwise
 904 * it should be dropped.
 905 */
 906static bool prepare_signal(int sig, struct task_struct *p, bool force)
 907{
 908	struct signal_struct *signal = p->signal;
 909	struct task_struct *t;
 910	sigset_t flush;
 911
 912	if (signal->flags & SIGNAL_GROUP_EXIT) {
 913		if (signal->core_state)
 914			return sig == SIGKILL;
 915		/*
 916		 * The process is in the middle of dying, drop the signal.
 917		 */
 918		return false;
 919	} else if (sig_kernel_stop(sig)) {
 920		/*
 921		 * This is a stop signal.  Remove SIGCONT from all queues.
 922		 */
 923		siginitset(&flush, sigmask(SIGCONT));
 924		flush_sigqueue_mask(&flush, &signal->shared_pending);
 925		for_each_thread(p, t)
 926			flush_sigqueue_mask(&flush, &t->pending);
 927	} else if (sig == SIGCONT) {
 928		unsigned int why;
 929		/*
 930		 * Remove all stop signals from all queues, wake all threads.
 931		 */
 932		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 933		flush_sigqueue_mask(&flush, &signal->shared_pending);
 934		for_each_thread(p, t) {
 935			flush_sigqueue_mask(&flush, &t->pending);
 936			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 937			if (likely(!(t->ptrace & PT_SEIZED))) {
 938				t->jobctl &= ~JOBCTL_STOPPED;
 939				wake_up_state(t, __TASK_STOPPED);
 940			} else
 941				ptrace_trap_notify(t);
 942		}
 943
 944		/*
 945		 * Notify the parent with CLD_CONTINUED if we were stopped.
 946		 *
 947		 * If we were in the middle of a group stop, we pretend it
 948		 * was already finished, and then continued. Since SIGCHLD
 949		 * doesn't queue we report only CLD_STOPPED, as if the next
 950		 * CLD_CONTINUED was dropped.
 951		 */
 952		why = 0;
 953		if (signal->flags & SIGNAL_STOP_STOPPED)
 954			why |= SIGNAL_CLD_CONTINUED;
 955		else if (signal->group_stop_count)
 956			why |= SIGNAL_CLD_STOPPED;
 957
 958		if (why) {
 959			/*
 960			 * The first thread which returns from do_signal_stop()
 961			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 962			 * notify its parent. See get_signal().
 963			 */
 964			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 965			signal->group_stop_count = 0;
 966			signal->group_exit_code = 0;
 967		}
 968	}
 969
 970	return !sig_ignored(p, sig, force);
 971}
 972
 973/*
 974 * Test if P wants to take SIG.  After we've checked all threads with this,
 975 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 976 * blocking SIG were ruled out because they are not running and already
 977 * have pending signals.  Such threads will dequeue from the shared queue
 978 * as soon as they're available, so putting the signal on the shared queue
 979 * will be equivalent to sending it to one such thread.
 980 */
 981static inline bool wants_signal(int sig, struct task_struct *p)
 982{
 983	if (sigismember(&p->blocked, sig))
 984		return false;
 985
 986	if (p->flags & PF_EXITING)
 987		return false;
 988
 989	if (sig == SIGKILL)
 990		return true;
 991
 992	if (task_is_stopped_or_traced(p))
 993		return false;
 994
 995	return task_curr(p) || !task_sigpending(p);
 996}
 997
 998static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 999{
1000	struct signal_struct *signal = p->signal;
1001	struct task_struct *t;
1002
1003	/*
1004	 * Now find a thread we can wake up to take the signal off the queue.
1005	 *
1006	 * If the main thread wants the signal, it gets first crack.
1007	 * Probably the least surprising to the average bear.
1008	 */
1009	if (wants_signal(sig, p))
1010		t = p;
1011	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1012		/*
1013		 * There is just one thread and it does not need to be woken.
1014		 * It will dequeue unblocked signals before it runs again.
1015		 */
1016		return;
1017	else {
1018		/*
1019		 * Otherwise try to find a suitable thread.
1020		 */
1021		t = signal->curr_target;
1022		while (!wants_signal(sig, t)) {
1023			t = next_thread(t);
1024			if (t == signal->curr_target)
1025				/*
1026				 * No thread needs to be woken.
1027				 * Any eligible threads will see
1028				 * the signal in the queue soon.
1029				 */
1030				return;
1031		}
1032		signal->curr_target = t;
1033	}
1034
1035	/*
1036	 * Found a killable thread.  If the signal will be fatal,
1037	 * then start taking the whole group down immediately.
1038	 */
1039	if (sig_fatal(p, sig) &&
1040	    (signal->core_state || !(signal->flags & SIGNAL_GROUP_EXIT)) &&
1041	    !sigismember(&t->real_blocked, sig) &&
1042	    (sig == SIGKILL || !p->ptrace)) {
1043		/*
1044		 * This signal will be fatal to the whole group.
1045		 */
1046		if (!sig_kernel_coredump(sig)) {
1047			/*
1048			 * Start a group exit and wake everybody up.
1049			 * This way we don't have other threads
1050			 * running and doing things after a slower
1051			 * thread has the fatal signal pending.
1052			 */
1053			signal->flags = SIGNAL_GROUP_EXIT;
1054			signal->group_exit_code = sig;
1055			signal->group_stop_count = 0;
1056			t = p;
1057			do {
1058				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1059				sigaddset(&t->pending.signal, SIGKILL);
1060				signal_wake_up(t, 1);
1061			} while_each_thread(p, t);
1062			return;
1063		}
1064	}
1065
1066	/*
1067	 * The signal is already in the shared-pending queue.
1068	 * Tell the chosen thread to wake up and dequeue it.
1069	 */
1070	signal_wake_up(t, sig == SIGKILL);
1071	return;
1072}
1073
1074static inline bool legacy_queue(struct sigpending *signals, int sig)
1075{
1076	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1077}
1078
1079static int __send_signal_locked(int sig, struct kernel_siginfo *info,
1080				struct task_struct *t, enum pid_type type, bool force)
1081{
1082	struct sigpending *pending;
1083	struct sigqueue *q;
1084	int override_rlimit;
1085	int ret = 0, result;
1086
1087	lockdep_assert_held(&t->sighand->siglock);
1088
1089	result = TRACE_SIGNAL_IGNORED;
1090	if (!prepare_signal(sig, t, force))
1091		goto ret;
1092
1093	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1094	/*
1095	 * Short-circuit ignored signals and support queuing
1096	 * exactly one non-rt signal, so that we can get more
1097	 * detailed information about the cause of the signal.
1098	 */
1099	result = TRACE_SIGNAL_ALREADY_PENDING;
1100	if (legacy_queue(pending, sig))
1101		goto ret;
1102
1103	result = TRACE_SIGNAL_DELIVERED;
1104	/*
1105	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
1106	 */
1107	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1108		goto out_set;
1109
1110	/*
1111	 * Real-time signals must be queued if sent by sigqueue, or
1112	 * some other real-time mechanism.  It is implementation
1113	 * defined whether kill() does so.  We attempt to do so, on
1114	 * the principle of least surprise, but since kill is not
1115	 * allowed to fail with EAGAIN when low on memory we just
1116	 * make sure at least one signal gets delivered and don't
1117	 * pass on the info struct.
1118	 */
1119	if (sig < SIGRTMIN)
1120		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1121	else
1122		override_rlimit = 0;
1123
1124	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1125
1126	if (q) {
1127		list_add_tail(&q->list, &pending->list);
1128		switch ((unsigned long) info) {
1129		case (unsigned long) SEND_SIG_NOINFO:
1130			clear_siginfo(&q->info);
1131			q->info.si_signo = sig;
1132			q->info.si_errno = 0;
1133			q->info.si_code = SI_USER;
1134			q->info.si_pid = task_tgid_nr_ns(current,
1135							task_active_pid_ns(t));
1136			rcu_read_lock();
1137			q->info.si_uid =
1138				from_kuid_munged(task_cred_xxx(t, user_ns),
1139						 current_uid());
1140			rcu_read_unlock();
1141			break;
1142		case (unsigned long) SEND_SIG_PRIV:
1143			clear_siginfo(&q->info);
1144			q->info.si_signo = sig;
1145			q->info.si_errno = 0;
1146			q->info.si_code = SI_KERNEL;
1147			q->info.si_pid = 0;
1148			q->info.si_uid = 0;
1149			break;
1150		default:
1151			copy_siginfo(&q->info, info);
1152			break;
1153		}
1154	} else if (!is_si_special(info) &&
1155		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1156		/*
1157		 * Queue overflow, abort.  We may abort if the
1158		 * signal was rt and sent by user using something
1159		 * other than kill().
1160		 */
1161		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1162		ret = -EAGAIN;
1163		goto ret;
1164	} else {
1165		/*
1166		 * This is a silent loss of information.  We still
1167		 * send the signal, but the *info bits are lost.
1168		 */
1169		result = TRACE_SIGNAL_LOSE_INFO;
1170	}
1171
1172out_set:
1173	signalfd_notify(t, sig);
1174	sigaddset(&pending->signal, sig);
1175
1176	/* Let multiprocess signals appear after on-going forks */
1177	if (type > PIDTYPE_TGID) {
1178		struct multiprocess_signals *delayed;
1179		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1180			sigset_t *signal = &delayed->signal;
1181			/* Can't queue both a stop and a continue signal */
1182			if (sig == SIGCONT)
1183				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1184			else if (sig_kernel_stop(sig))
1185				sigdelset(signal, SIGCONT);
1186			sigaddset(signal, sig);
1187		}
1188	}
1189
1190	complete_signal(sig, t, type);
1191ret:
1192	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1193	return ret;
1194}
1195
1196static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
1197{
1198	bool ret = false;
1199	switch (siginfo_layout(info->si_signo, info->si_code)) {
1200	case SIL_KILL:
1201	case SIL_CHLD:
1202	case SIL_RT:
1203		ret = true;
1204		break;
1205	case SIL_TIMER:
1206	case SIL_POLL:
1207	case SIL_FAULT:
1208	case SIL_FAULT_TRAPNO:
1209	case SIL_FAULT_MCEERR:
1210	case SIL_FAULT_BNDERR:
1211	case SIL_FAULT_PKUERR:
1212	case SIL_FAULT_PERF_EVENT:
1213	case SIL_SYS:
1214		ret = false;
1215		break;
1216	}
1217	return ret;
1218}
1219
1220int send_signal_locked(int sig, struct kernel_siginfo *info,
1221		       struct task_struct *t, enum pid_type type)
1222{
1223	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1224	bool force = false;
1225
1226	if (info == SEND_SIG_NOINFO) {
1227		/* Force if sent from an ancestor pid namespace */
1228		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1229	} else if (info == SEND_SIG_PRIV) {
1230		/* Don't ignore kernel generated signals */
1231		force = true;
1232	} else if (has_si_pid_and_uid(info)) {
1233		/* SIGKILL and SIGSTOP is special or has ids */
1234		struct user_namespace *t_user_ns;
1235
1236		rcu_read_lock();
1237		t_user_ns = task_cred_xxx(t, user_ns);
1238		if (current_user_ns() != t_user_ns) {
1239			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1240			info->si_uid = from_kuid_munged(t_user_ns, uid);
1241		}
1242		rcu_read_unlock();
1243
1244		/* A kernel generated signal? */
1245		force = (info->si_code == SI_KERNEL);
1246
1247		/* From an ancestor pid namespace? */
1248		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1249			info->si_pid = 0;
1250			force = true;
1251		}
1252	}
1253	return __send_signal_locked(sig, info, t, type, force);
1254}
1255
1256static void print_fatal_signal(int signr)
1257{
1258	struct pt_regs *regs = task_pt_regs(current);
1259	pr_info("potentially unexpected fatal signal %d.\n", signr);
1260
1261#if defined(__i386__) && !defined(__arch_um__)
1262	pr_info("code at %08lx: ", regs->ip);
1263	{
1264		int i;
1265		for (i = 0; i < 16; i++) {
1266			unsigned char insn;
1267
1268			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1269				break;
1270			pr_cont("%02x ", insn);
1271		}
1272	}
1273	pr_cont("\n");
1274#endif
1275	preempt_disable();
1276	show_regs(regs);
1277	preempt_enable();
1278}
1279
1280static int __init setup_print_fatal_signals(char *str)
1281{
1282	get_option (&str, &print_fatal_signals);
1283
1284	return 1;
1285}
1286
1287__setup("print-fatal-signals=", setup_print_fatal_signals);
1288
 
 
 
 
 
 
1289int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1290			enum pid_type type)
1291{
1292	unsigned long flags;
1293	int ret = -ESRCH;
1294
1295	if (lock_task_sighand(p, &flags)) {
1296		ret = send_signal_locked(sig, info, p, type);
1297		unlock_task_sighand(p, &flags);
1298	}
1299
1300	return ret;
1301}
1302
1303enum sig_handler {
1304	HANDLER_CURRENT, /* If reachable use the current handler */
1305	HANDLER_SIG_DFL, /* Always use SIG_DFL handler semantics */
1306	HANDLER_EXIT,	 /* Only visible as the process exit code */
1307};
1308
1309/*
1310 * Force a signal that the process can't ignore: if necessary
1311 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1312 *
1313 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1314 * since we do not want to have a signal handler that was blocked
1315 * be invoked when user space had explicitly blocked it.
1316 *
1317 * We don't want to have recursive SIGSEGV's etc, for example,
1318 * that is why we also clear SIGNAL_UNKILLABLE.
1319 */
1320static int
1321force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t,
1322	enum sig_handler handler)
1323{
1324	unsigned long int flags;
1325	int ret, blocked, ignored;
1326	struct k_sigaction *action;
1327	int sig = info->si_signo;
1328
1329	spin_lock_irqsave(&t->sighand->siglock, flags);
1330	action = &t->sighand->action[sig-1];
1331	ignored = action->sa.sa_handler == SIG_IGN;
1332	blocked = sigismember(&t->blocked, sig);
1333	if (blocked || ignored || (handler != HANDLER_CURRENT)) {
1334		action->sa.sa_handler = SIG_DFL;
1335		if (handler == HANDLER_EXIT)
1336			action->sa.sa_flags |= SA_IMMUTABLE;
1337		if (blocked) {
1338			sigdelset(&t->blocked, sig);
1339			recalc_sigpending_and_wake(t);
1340		}
1341	}
1342	/*
1343	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1344	 * debugging to leave init killable. But HANDLER_EXIT is always fatal.
1345	 */
1346	if (action->sa.sa_handler == SIG_DFL &&
1347	    (!t->ptrace || (handler == HANDLER_EXIT)))
1348		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1349	ret = send_signal_locked(sig, info, t, PIDTYPE_PID);
1350	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1351
1352	return ret;
1353}
1354
1355int force_sig_info(struct kernel_siginfo *info)
1356{
1357	return force_sig_info_to_task(info, current, HANDLER_CURRENT);
1358}
1359
1360/*
1361 * Nuke all other threads in the group.
1362 */
1363int zap_other_threads(struct task_struct *p)
1364{
1365	struct task_struct *t = p;
1366	int count = 0;
1367
1368	p->signal->group_stop_count = 0;
1369
1370	while_each_thread(p, t) {
1371		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1372		count++;
1373
1374		/* Don't bother with already dead threads */
1375		if (t->exit_state)
1376			continue;
1377		sigaddset(&t->pending.signal, SIGKILL);
1378		signal_wake_up(t, 1);
1379	}
1380
1381	return count;
1382}
1383
1384struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1385					   unsigned long *flags)
1386{
1387	struct sighand_struct *sighand;
1388
1389	rcu_read_lock();
1390	for (;;) {
1391		sighand = rcu_dereference(tsk->sighand);
1392		if (unlikely(sighand == NULL))
1393			break;
1394
1395		/*
1396		 * This sighand can be already freed and even reused, but
1397		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1398		 * initializes ->siglock: this slab can't go away, it has
1399		 * the same object type, ->siglock can't be reinitialized.
1400		 *
1401		 * We need to ensure that tsk->sighand is still the same
1402		 * after we take the lock, we can race with de_thread() or
1403		 * __exit_signal(). In the latter case the next iteration
1404		 * must see ->sighand == NULL.
1405		 */
1406		spin_lock_irqsave(&sighand->siglock, *flags);
1407		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1408			break;
1409		spin_unlock_irqrestore(&sighand->siglock, *flags);
1410	}
1411	rcu_read_unlock();
1412
1413	return sighand;
1414}
1415
1416#ifdef CONFIG_LOCKDEP
1417void lockdep_assert_task_sighand_held(struct task_struct *task)
1418{
1419	struct sighand_struct *sighand;
1420
1421	rcu_read_lock();
1422	sighand = rcu_dereference(task->sighand);
1423	if (sighand)
1424		lockdep_assert_held(&sighand->siglock);
1425	else
1426		WARN_ON_ONCE(1);
1427	rcu_read_unlock();
1428}
1429#endif
1430
1431/*
1432 * send signal info to all the members of a group
1433 */
1434int group_send_sig_info(int sig, struct kernel_siginfo *info,
1435			struct task_struct *p, enum pid_type type)
1436{
1437	int ret;
1438
1439	rcu_read_lock();
1440	ret = check_kill_permission(sig, info, p);
1441	rcu_read_unlock();
1442
1443	if (!ret && sig)
1444		ret = do_send_sig_info(sig, info, p, type);
1445
1446	return ret;
1447}
1448
1449/*
1450 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1451 * control characters do (^C, ^Z etc)
1452 * - the caller must hold at least a readlock on tasklist_lock
1453 */
1454int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1455{
1456	struct task_struct *p = NULL;
1457	int retval, success;
1458
1459	success = 0;
1460	retval = -ESRCH;
1461	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1462		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1463		success |= !err;
1464		retval = err;
1465	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1466	return success ? 0 : retval;
1467}
1468
1469int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1470{
1471	int error = -ESRCH;
1472	struct task_struct *p;
1473
1474	for (;;) {
1475		rcu_read_lock();
1476		p = pid_task(pid, PIDTYPE_PID);
1477		if (p)
1478			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1479		rcu_read_unlock();
1480		if (likely(!p || error != -ESRCH))
1481			return error;
1482
1483		/*
1484		 * The task was unhashed in between, try again.  If it
1485		 * is dead, pid_task() will return NULL, if we race with
1486		 * de_thread() it will find the new leader.
1487		 */
1488	}
1489}
1490
1491static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1492{
1493	int error;
1494	rcu_read_lock();
1495	error = kill_pid_info(sig, info, find_vpid(pid));
1496	rcu_read_unlock();
1497	return error;
1498}
1499
1500static inline bool kill_as_cred_perm(const struct cred *cred,
1501				     struct task_struct *target)
1502{
1503	const struct cred *pcred = __task_cred(target);
1504
1505	return uid_eq(cred->euid, pcred->suid) ||
1506	       uid_eq(cred->euid, pcred->uid) ||
1507	       uid_eq(cred->uid, pcred->suid) ||
1508	       uid_eq(cred->uid, pcred->uid);
1509}
1510
1511/*
1512 * The usb asyncio usage of siginfo is wrong.  The glibc support
1513 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1514 * AKA after the generic fields:
1515 *	kernel_pid_t	si_pid;
1516 *	kernel_uid32_t	si_uid;
1517 *	sigval_t	si_value;
1518 *
1519 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1520 * after the generic fields is:
1521 *	void __user 	*si_addr;
1522 *
1523 * This is a practical problem when there is a 64bit big endian kernel
1524 * and a 32bit userspace.  As the 32bit address will encoded in the low
1525 * 32bits of the pointer.  Those low 32bits will be stored at higher
1526 * address than appear in a 32 bit pointer.  So userspace will not
1527 * see the address it was expecting for it's completions.
1528 *
1529 * There is nothing in the encoding that can allow
1530 * copy_siginfo_to_user32 to detect this confusion of formats, so
1531 * handle this by requiring the caller of kill_pid_usb_asyncio to
1532 * notice when this situration takes place and to store the 32bit
1533 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1534 * parameter.
1535 */
1536int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1537			 struct pid *pid, const struct cred *cred)
1538{
1539	struct kernel_siginfo info;
1540	struct task_struct *p;
1541	unsigned long flags;
1542	int ret = -EINVAL;
1543
1544	if (!valid_signal(sig))
1545		return ret;
1546
1547	clear_siginfo(&info);
1548	info.si_signo = sig;
1549	info.si_errno = errno;
1550	info.si_code = SI_ASYNCIO;
1551	*((sigval_t *)&info.si_pid) = addr;
1552
1553	rcu_read_lock();
1554	p = pid_task(pid, PIDTYPE_PID);
1555	if (!p) {
1556		ret = -ESRCH;
1557		goto out_unlock;
1558	}
1559	if (!kill_as_cred_perm(cred, p)) {
1560		ret = -EPERM;
1561		goto out_unlock;
1562	}
1563	ret = security_task_kill(p, &info, sig, cred);
1564	if (ret)
1565		goto out_unlock;
1566
1567	if (sig) {
1568		if (lock_task_sighand(p, &flags)) {
1569			ret = __send_signal_locked(sig, &info, p, PIDTYPE_TGID, false);
1570			unlock_task_sighand(p, &flags);
1571		} else
1572			ret = -ESRCH;
1573	}
1574out_unlock:
1575	rcu_read_unlock();
1576	return ret;
1577}
1578EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1579
1580/*
1581 * kill_something_info() interprets pid in interesting ways just like kill(2).
1582 *
1583 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1584 * is probably wrong.  Should make it like BSD or SYSV.
1585 */
1586
1587static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1588{
1589	int ret;
1590
1591	if (pid > 0)
1592		return kill_proc_info(sig, info, pid);
1593
1594	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1595	if (pid == INT_MIN)
1596		return -ESRCH;
1597
1598	read_lock(&tasklist_lock);
1599	if (pid != -1) {
1600		ret = __kill_pgrp_info(sig, info,
1601				pid ? find_vpid(-pid) : task_pgrp(current));
1602	} else {
1603		int retval = 0, count = 0;
1604		struct task_struct * p;
1605
1606		for_each_process(p) {
1607			if (task_pid_vnr(p) > 1 &&
1608					!same_thread_group(p, current)) {
1609				int err = group_send_sig_info(sig, info, p,
1610							      PIDTYPE_MAX);
1611				++count;
1612				if (err != -EPERM)
1613					retval = err;
1614			}
1615		}
1616		ret = count ? retval : -ESRCH;
1617	}
1618	read_unlock(&tasklist_lock);
1619
1620	return ret;
1621}
1622
1623/*
1624 * These are for backward compatibility with the rest of the kernel source.
1625 */
1626
1627int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1628{
1629	/*
1630	 * Make sure legacy kernel users don't send in bad values
1631	 * (normal paths check this in check_kill_permission).
1632	 */
1633	if (!valid_signal(sig))
1634		return -EINVAL;
1635
1636	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1637}
1638EXPORT_SYMBOL(send_sig_info);
1639
1640#define __si_special(priv) \
1641	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1642
1643int
1644send_sig(int sig, struct task_struct *p, int priv)
1645{
1646	return send_sig_info(sig, __si_special(priv), p);
1647}
1648EXPORT_SYMBOL(send_sig);
1649
1650void force_sig(int sig)
1651{
1652	struct kernel_siginfo info;
1653
1654	clear_siginfo(&info);
1655	info.si_signo = sig;
1656	info.si_errno = 0;
1657	info.si_code = SI_KERNEL;
1658	info.si_pid = 0;
1659	info.si_uid = 0;
1660	force_sig_info(&info);
1661}
1662EXPORT_SYMBOL(force_sig);
1663
1664void force_fatal_sig(int sig)
1665{
1666	struct kernel_siginfo info;
1667
1668	clear_siginfo(&info);
1669	info.si_signo = sig;
1670	info.si_errno = 0;
1671	info.si_code = SI_KERNEL;
1672	info.si_pid = 0;
1673	info.si_uid = 0;
1674	force_sig_info_to_task(&info, current, HANDLER_SIG_DFL);
1675}
1676
1677void force_exit_sig(int sig)
1678{
1679	struct kernel_siginfo info;
1680
1681	clear_siginfo(&info);
1682	info.si_signo = sig;
1683	info.si_errno = 0;
1684	info.si_code = SI_KERNEL;
1685	info.si_pid = 0;
1686	info.si_uid = 0;
1687	force_sig_info_to_task(&info, current, HANDLER_EXIT);
1688}
1689
1690/*
1691 * When things go south during signal handling, we
1692 * will force a SIGSEGV. And if the signal that caused
1693 * the problem was already a SIGSEGV, we'll want to
1694 * make sure we don't even try to deliver the signal..
1695 */
1696void force_sigsegv(int sig)
1697{
1698	if (sig == SIGSEGV)
1699		force_fatal_sig(SIGSEGV);
1700	else
1701		force_sig(SIGSEGV);
 
 
 
 
 
1702}
1703
1704int force_sig_fault_to_task(int sig, int code, void __user *addr
 
1705	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1706	, struct task_struct *t)
1707{
1708	struct kernel_siginfo info;
1709
1710	clear_siginfo(&info);
1711	info.si_signo = sig;
1712	info.si_errno = 0;
1713	info.si_code  = code;
1714	info.si_addr  = addr;
 
 
 
1715#ifdef __ia64__
1716	info.si_imm = imm;
1717	info.si_flags = flags;
1718	info.si_isr = isr;
1719#endif
1720	return force_sig_info_to_task(&info, t, HANDLER_CURRENT);
1721}
1722
1723int force_sig_fault(int sig, int code, void __user *addr
 
1724	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1725{
1726	return force_sig_fault_to_task(sig, code, addr
 
1727				       ___ARCH_SI_IA64(imm, flags, isr), current);
1728}
1729
1730int send_sig_fault(int sig, int code, void __user *addr
 
1731	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1732	, struct task_struct *t)
1733{
1734	struct kernel_siginfo info;
1735
1736	clear_siginfo(&info);
1737	info.si_signo = sig;
1738	info.si_errno = 0;
1739	info.si_code  = code;
1740	info.si_addr  = addr;
 
 
 
1741#ifdef __ia64__
1742	info.si_imm = imm;
1743	info.si_flags = flags;
1744	info.si_isr = isr;
1745#endif
1746	return send_sig_info(info.si_signo, &info, t);
1747}
1748
1749int force_sig_mceerr(int code, void __user *addr, short lsb)
1750{
1751	struct kernel_siginfo info;
1752
1753	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1754	clear_siginfo(&info);
1755	info.si_signo = SIGBUS;
1756	info.si_errno = 0;
1757	info.si_code = code;
1758	info.si_addr = addr;
1759	info.si_addr_lsb = lsb;
1760	return force_sig_info(&info);
1761}
1762
1763int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1764{
1765	struct kernel_siginfo info;
1766
1767	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1768	clear_siginfo(&info);
1769	info.si_signo = SIGBUS;
1770	info.si_errno = 0;
1771	info.si_code = code;
1772	info.si_addr = addr;
1773	info.si_addr_lsb = lsb;
1774	return send_sig_info(info.si_signo, &info, t);
1775}
1776EXPORT_SYMBOL(send_sig_mceerr);
1777
1778int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1779{
1780	struct kernel_siginfo info;
1781
1782	clear_siginfo(&info);
1783	info.si_signo = SIGSEGV;
1784	info.si_errno = 0;
1785	info.si_code  = SEGV_BNDERR;
1786	info.si_addr  = addr;
1787	info.si_lower = lower;
1788	info.si_upper = upper;
1789	return force_sig_info(&info);
1790}
1791
1792#ifdef SEGV_PKUERR
1793int force_sig_pkuerr(void __user *addr, u32 pkey)
1794{
1795	struct kernel_siginfo info;
1796
1797	clear_siginfo(&info);
1798	info.si_signo = SIGSEGV;
1799	info.si_errno = 0;
1800	info.si_code  = SEGV_PKUERR;
1801	info.si_addr  = addr;
1802	info.si_pkey  = pkey;
1803	return force_sig_info(&info);
1804}
1805#endif
1806
1807int send_sig_perf(void __user *addr, u32 type, u64 sig_data)
1808{
1809	struct kernel_siginfo info;
1810
1811	clear_siginfo(&info);
1812	info.si_signo     = SIGTRAP;
1813	info.si_errno     = 0;
1814	info.si_code      = TRAP_PERF;
1815	info.si_addr      = addr;
1816	info.si_perf_data = sig_data;
1817	info.si_perf_type = type;
1818
1819	/*
1820	 * Signals generated by perf events should not terminate the whole
1821	 * process if SIGTRAP is blocked, however, delivering the signal
1822	 * asynchronously is better than not delivering at all. But tell user
1823	 * space if the signal was asynchronous, so it can clearly be
1824	 * distinguished from normal synchronous ones.
1825	 */
1826	info.si_perf_flags = sigismember(&current->blocked, info.si_signo) ?
1827				     TRAP_PERF_FLAG_ASYNC :
1828				     0;
1829
1830	return send_sig_info(info.si_signo, &info, current);
1831}
1832
1833/**
1834 * force_sig_seccomp - signals the task to allow in-process syscall emulation
1835 * @syscall: syscall number to send to userland
1836 * @reason: filter-supplied reason code to send to userland (via si_errno)
1837 * @force_coredump: true to trigger a coredump
1838 *
1839 * Forces a SIGSYS with a code of SYS_SECCOMP and related sigsys info.
1840 */
1841int force_sig_seccomp(int syscall, int reason, bool force_coredump)
1842{
1843	struct kernel_siginfo info;
1844
1845	clear_siginfo(&info);
1846	info.si_signo = SIGSYS;
1847	info.si_code = SYS_SECCOMP;
1848	info.si_call_addr = (void __user *)KSTK_EIP(current);
1849	info.si_errno = reason;
1850	info.si_arch = syscall_get_arch(current);
1851	info.si_syscall = syscall;
1852	return force_sig_info_to_task(&info, current,
1853		force_coredump ? HANDLER_EXIT : HANDLER_CURRENT);
1854}
1855
1856/* For the crazy architectures that include trap information in
1857 * the errno field, instead of an actual errno value.
1858 */
1859int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1860{
1861	struct kernel_siginfo info;
1862
1863	clear_siginfo(&info);
1864	info.si_signo = SIGTRAP;
1865	info.si_errno = errno;
1866	info.si_code  = TRAP_HWBKPT;
1867	info.si_addr  = addr;
1868	return force_sig_info(&info);
1869}
1870
1871/* For the rare architectures that include trap information using
1872 * si_trapno.
1873 */
1874int force_sig_fault_trapno(int sig, int code, void __user *addr, int trapno)
1875{
1876	struct kernel_siginfo info;
1877
1878	clear_siginfo(&info);
1879	info.si_signo = sig;
1880	info.si_errno = 0;
1881	info.si_code  = code;
1882	info.si_addr  = addr;
1883	info.si_trapno = trapno;
1884	return force_sig_info(&info);
1885}
1886
1887/* For the rare architectures that include trap information using
1888 * si_trapno.
1889 */
1890int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
1891			  struct task_struct *t)
1892{
1893	struct kernel_siginfo info;
1894
1895	clear_siginfo(&info);
1896	info.si_signo = sig;
1897	info.si_errno = 0;
1898	info.si_code  = code;
1899	info.si_addr  = addr;
1900	info.si_trapno = trapno;
1901	return send_sig_info(info.si_signo, &info, t);
1902}
1903
1904int kill_pgrp(struct pid *pid, int sig, int priv)
1905{
1906	int ret;
1907
1908	read_lock(&tasklist_lock);
1909	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1910	read_unlock(&tasklist_lock);
1911
1912	return ret;
1913}
1914EXPORT_SYMBOL(kill_pgrp);
1915
1916int kill_pid(struct pid *pid, int sig, int priv)
1917{
1918	return kill_pid_info(sig, __si_special(priv), pid);
1919}
1920EXPORT_SYMBOL(kill_pid);
1921
1922/*
1923 * These functions support sending signals using preallocated sigqueue
1924 * structures.  This is needed "because realtime applications cannot
1925 * afford to lose notifications of asynchronous events, like timer
1926 * expirations or I/O completions".  In the case of POSIX Timers
1927 * we allocate the sigqueue structure from the timer_create.  If this
1928 * allocation fails we are able to report the failure to the application
1929 * with an EAGAIN error.
1930 */
1931struct sigqueue *sigqueue_alloc(void)
1932{
1933	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
1934}
1935
1936void sigqueue_free(struct sigqueue *q)
1937{
1938	unsigned long flags;
1939	spinlock_t *lock = &current->sighand->siglock;
1940
1941	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1942	/*
1943	 * We must hold ->siglock while testing q->list
1944	 * to serialize with collect_signal() or with
1945	 * __exit_signal()->flush_sigqueue().
1946	 */
1947	spin_lock_irqsave(lock, flags);
1948	q->flags &= ~SIGQUEUE_PREALLOC;
1949	/*
1950	 * If it is queued it will be freed when dequeued,
1951	 * like the "regular" sigqueue.
1952	 */
1953	if (!list_empty(&q->list))
1954		q = NULL;
1955	spin_unlock_irqrestore(lock, flags);
1956
1957	if (q)
1958		__sigqueue_free(q);
1959}
1960
1961int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1962{
1963	int sig = q->info.si_signo;
1964	struct sigpending *pending;
1965	struct task_struct *t;
1966	unsigned long flags;
1967	int ret, result;
1968
1969	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1970
1971	ret = -1;
1972	rcu_read_lock();
1973	t = pid_task(pid, type);
1974	if (!t || !likely(lock_task_sighand(t, &flags)))
1975		goto ret;
1976
1977	ret = 1; /* the signal is ignored */
1978	result = TRACE_SIGNAL_IGNORED;
1979	if (!prepare_signal(sig, t, false))
1980		goto out;
1981
1982	ret = 0;
1983	if (unlikely(!list_empty(&q->list))) {
1984		/*
1985		 * If an SI_TIMER entry is already queue just increment
1986		 * the overrun count.
1987		 */
1988		BUG_ON(q->info.si_code != SI_TIMER);
1989		q->info.si_overrun++;
1990		result = TRACE_SIGNAL_ALREADY_PENDING;
1991		goto out;
1992	}
1993	q->info.si_overrun = 0;
1994
1995	signalfd_notify(t, sig);
1996	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1997	list_add_tail(&q->list, &pending->list);
1998	sigaddset(&pending->signal, sig);
1999	complete_signal(sig, t, type);
2000	result = TRACE_SIGNAL_DELIVERED;
2001out:
2002	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
2003	unlock_task_sighand(t, &flags);
2004ret:
2005	rcu_read_unlock();
2006	return ret;
2007}
2008
2009static void do_notify_pidfd(struct task_struct *task)
2010{
2011	struct pid *pid;
2012
2013	WARN_ON(task->exit_state == 0);
2014	pid = task_pid(task);
2015	wake_up_all(&pid->wait_pidfd);
2016}
2017
2018/*
2019 * Let a parent know about the death of a child.
2020 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
2021 *
2022 * Returns true if our parent ignored us and so we've switched to
2023 * self-reaping.
2024 */
2025bool do_notify_parent(struct task_struct *tsk, int sig)
2026{
2027	struct kernel_siginfo info;
2028	unsigned long flags;
2029	struct sighand_struct *psig;
2030	bool autoreap = false;
2031	u64 utime, stime;
2032
2033	WARN_ON_ONCE(sig == -1);
2034
2035	/* do_notify_parent_cldstop should have been called instead.  */
2036	WARN_ON_ONCE(task_is_stopped_or_traced(tsk));
2037
2038	WARN_ON_ONCE(!tsk->ptrace &&
2039	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
2040
2041	/* Wake up all pidfd waiters */
2042	do_notify_pidfd(tsk);
2043
2044	if (sig != SIGCHLD) {
2045		/*
2046		 * This is only possible if parent == real_parent.
2047		 * Check if it has changed security domain.
2048		 */
2049		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
2050			sig = SIGCHLD;
2051	}
2052
2053	clear_siginfo(&info);
2054	info.si_signo = sig;
2055	info.si_errno = 0;
2056	/*
2057	 * We are under tasklist_lock here so our parent is tied to
2058	 * us and cannot change.
2059	 *
2060	 * task_active_pid_ns will always return the same pid namespace
2061	 * until a task passes through release_task.
2062	 *
2063	 * write_lock() currently calls preempt_disable() which is the
2064	 * same as rcu_read_lock(), but according to Oleg, this is not
2065	 * correct to rely on this
2066	 */
2067	rcu_read_lock();
2068	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
2069	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
2070				       task_uid(tsk));
2071	rcu_read_unlock();
2072
2073	task_cputime(tsk, &utime, &stime);
2074	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
2075	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
2076
2077	info.si_status = tsk->exit_code & 0x7f;
2078	if (tsk->exit_code & 0x80)
2079		info.si_code = CLD_DUMPED;
2080	else if (tsk->exit_code & 0x7f)
2081		info.si_code = CLD_KILLED;
2082	else {
2083		info.si_code = CLD_EXITED;
2084		info.si_status = tsk->exit_code >> 8;
2085	}
2086
2087	psig = tsk->parent->sighand;
2088	spin_lock_irqsave(&psig->siglock, flags);
2089	if (!tsk->ptrace && sig == SIGCHLD &&
2090	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
2091	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
2092		/*
2093		 * We are exiting and our parent doesn't care.  POSIX.1
2094		 * defines special semantics for setting SIGCHLD to SIG_IGN
2095		 * or setting the SA_NOCLDWAIT flag: we should be reaped
2096		 * automatically and not left for our parent's wait4 call.
2097		 * Rather than having the parent do it as a magic kind of
2098		 * signal handler, we just set this to tell do_exit that we
2099		 * can be cleaned up without becoming a zombie.  Note that
2100		 * we still call __wake_up_parent in this case, because a
2101		 * blocked sys_wait4 might now return -ECHILD.
2102		 *
2103		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
2104		 * is implementation-defined: we do (if you don't want
2105		 * it, just use SIG_IGN instead).
2106		 */
2107		autoreap = true;
2108		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2109			sig = 0;
2110	}
2111	/*
2112	 * Send with __send_signal as si_pid and si_uid are in the
2113	 * parent's namespaces.
2114	 */
2115	if (valid_signal(sig) && sig)
2116		__send_signal_locked(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2117	__wake_up_parent(tsk, tsk->parent);
2118	spin_unlock_irqrestore(&psig->siglock, flags);
2119
2120	return autoreap;
2121}
2122
2123/**
2124 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2125 * @tsk: task reporting the state change
2126 * @for_ptracer: the notification is for ptracer
2127 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2128 *
2129 * Notify @tsk's parent that the stopped/continued state has changed.  If
2130 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2131 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2132 *
2133 * CONTEXT:
2134 * Must be called with tasklist_lock at least read locked.
2135 */
2136static void do_notify_parent_cldstop(struct task_struct *tsk,
2137				     bool for_ptracer, int why)
2138{
2139	struct kernel_siginfo info;
2140	unsigned long flags;
2141	struct task_struct *parent;
2142	struct sighand_struct *sighand;
2143	u64 utime, stime;
2144
2145	if (for_ptracer) {
2146		parent = tsk->parent;
2147	} else {
2148		tsk = tsk->group_leader;
2149		parent = tsk->real_parent;
2150	}
2151
2152	clear_siginfo(&info);
2153	info.si_signo = SIGCHLD;
2154	info.si_errno = 0;
2155	/*
2156	 * see comment in do_notify_parent() about the following 4 lines
2157	 */
2158	rcu_read_lock();
2159	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2160	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2161	rcu_read_unlock();
2162
2163	task_cputime(tsk, &utime, &stime);
2164	info.si_utime = nsec_to_clock_t(utime);
2165	info.si_stime = nsec_to_clock_t(stime);
2166
2167 	info.si_code = why;
2168 	switch (why) {
2169 	case CLD_CONTINUED:
2170 		info.si_status = SIGCONT;
2171 		break;
2172 	case CLD_STOPPED:
2173 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2174 		break;
2175 	case CLD_TRAPPED:
2176 		info.si_status = tsk->exit_code & 0x7f;
2177 		break;
2178 	default:
2179 		BUG();
2180 	}
2181
2182	sighand = parent->sighand;
2183	spin_lock_irqsave(&sighand->siglock, flags);
2184	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2185	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2186		send_signal_locked(SIGCHLD, &info, parent, PIDTYPE_TGID);
2187	/*
2188	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2189	 */
2190	__wake_up_parent(tsk, parent);
2191	spin_unlock_irqrestore(&sighand->siglock, flags);
2192}
2193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2194/*
2195 * This must be called with current->sighand->siglock held.
2196 *
2197 * This should be the path for all ptrace stops.
2198 * We always set current->last_siginfo while stopped here.
2199 * That makes it a way to test a stopped process for
2200 * being ptrace-stopped vs being job-control-stopped.
2201 *
2202 * Returns the signal the ptracer requested the code resume
2203 * with.  If the code did not stop because the tracer is gone,
2204 * the stop signal remains unchanged unless clear_code.
2205 */
2206static int ptrace_stop(int exit_code, int why, unsigned long message,
2207		       kernel_siginfo_t *info)
2208	__releases(&current->sighand->siglock)
2209	__acquires(&current->sighand->siglock)
2210{
2211	bool gstop_done = false;
2212
2213	if (arch_ptrace_stop_needed()) {
2214		/*
2215		 * The arch code has something special to do before a
2216		 * ptrace stop.  This is allowed to block, e.g. for faults
2217		 * on user stack pages.  We can't keep the siglock while
2218		 * calling arch_ptrace_stop, so we must release it now.
2219		 * To preserve proper semantics, we must do this before
2220		 * any signal bookkeeping like checking group_stop_count.
 
 
 
2221		 */
2222		spin_unlock_irq(&current->sighand->siglock);
2223		arch_ptrace_stop();
2224		spin_lock_irq(&current->sighand->siglock);
 
 
2225	}
2226
2227	/*
2228	 * After this point ptrace_signal_wake_up or signal_wake_up
2229	 * will clear TASK_TRACED if ptrace_unlink happens or a fatal
2230	 * signal comes in.  Handle previous ptrace_unlinks and fatal
2231	 * signals here to prevent ptrace_stop sleeping in schedule.
2232	 */
2233	if (!current->ptrace || __fatal_signal_pending(current))
2234		return exit_code;
2235
2236	set_special_state(TASK_TRACED);
2237	current->jobctl |= JOBCTL_TRACED;
2238
2239	/*
2240	 * We're committing to trapping.  TRACED should be visible before
2241	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2242	 * Also, transition to TRACED and updates to ->jobctl should be
2243	 * atomic with respect to siglock and should be done after the arch
2244	 * hook as siglock is released and regrabbed across it.
2245	 *
2246	 *     TRACER				    TRACEE
2247	 *
2248	 *     ptrace_attach()
2249	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2250	 *     do_wait()
2251	 *       set_current_state()                smp_wmb();
2252	 *       ptrace_do_wait()
2253	 *         wait_task_stopped()
2254	 *           task_stopped_code()
2255	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2256	 */
2257	smp_wmb();
2258
2259	current->ptrace_message = message;
2260	current->last_siginfo = info;
2261	current->exit_code = exit_code;
2262
2263	/*
2264	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2265	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2266	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2267	 * could be clear now.  We act as if SIGCONT is received after
2268	 * TASK_TRACED is entered - ignore it.
2269	 */
2270	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2271		gstop_done = task_participate_group_stop(current);
2272
2273	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2274	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2275	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2276		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2277
2278	/* entering a trap, clear TRAPPING */
2279	task_clear_jobctl_trapping(current);
2280
2281	spin_unlock_irq(&current->sighand->siglock);
2282	read_lock(&tasklist_lock);
2283	/*
2284	 * Notify parents of the stop.
2285	 *
2286	 * While ptraced, there are two parents - the ptracer and
2287	 * the real_parent of the group_leader.  The ptracer should
2288	 * know about every stop while the real parent is only
2289	 * interested in the completion of group stop.  The states
2290	 * for the two don't interact with each other.  Notify
2291	 * separately unless they're gonna be duplicates.
2292	 */
2293	if (current->ptrace)
2294		do_notify_parent_cldstop(current, true, why);
2295	if (gstop_done && (!current->ptrace || ptrace_reparented(current)))
2296		do_notify_parent_cldstop(current, false, why);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2297
2298	/*
2299	 * Don't want to allow preemption here, because
2300	 * sys_ptrace() needs this task to be inactive.
2301	 *
2302	 * XXX: implement read_unlock_no_resched().
2303	 */
2304	preempt_disable();
2305	read_unlock(&tasklist_lock);
2306	cgroup_enter_frozen();
2307	preempt_enable_no_resched();
2308	schedule();
2309	cgroup_leave_frozen(true);
2310
2311	/*
2312	 * We are back.  Now reacquire the siglock before touching
2313	 * last_siginfo, so that we are sure to have synchronized with
2314	 * any signal-sending on another CPU that wants to examine it.
2315	 */
2316	spin_lock_irq(&current->sighand->siglock);
2317	exit_code = current->exit_code;
2318	current->last_siginfo = NULL;
2319	current->ptrace_message = 0;
2320	current->exit_code = 0;
2321
2322	/* LISTENING can be set only during STOP traps, clear it */
2323	current->jobctl &= ~(JOBCTL_LISTENING | JOBCTL_PTRACE_FROZEN);
2324
2325	/*
2326	 * Queued signals ignored us while we were stopped for tracing.
2327	 * So check for any that we should take before resuming user mode.
2328	 * This sets TIF_SIGPENDING, but never clears it.
2329	 */
2330	recalc_sigpending_tsk(current);
2331	return exit_code;
2332}
2333
2334static int ptrace_do_notify(int signr, int exit_code, int why, unsigned long message)
2335{
2336	kernel_siginfo_t info;
2337
2338	clear_siginfo(&info);
2339	info.si_signo = signr;
2340	info.si_code = exit_code;
2341	info.si_pid = task_pid_vnr(current);
2342	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2343
2344	/* Let the debugger run.  */
2345	return ptrace_stop(exit_code, why, message, &info);
2346}
2347
2348int ptrace_notify(int exit_code, unsigned long message)
2349{
2350	int signr;
2351
2352	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2353	if (unlikely(task_work_pending(current)))
2354		task_work_run();
2355
2356	spin_lock_irq(&current->sighand->siglock);
2357	signr = ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED, message);
2358	spin_unlock_irq(&current->sighand->siglock);
2359	return signr;
2360}
2361
2362/**
2363 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2364 * @signr: signr causing group stop if initiating
2365 *
2366 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2367 * and participate in it.  If already set, participate in the existing
2368 * group stop.  If participated in a group stop (and thus slept), %true is
2369 * returned with siglock released.
2370 *
2371 * If ptraced, this function doesn't handle stop itself.  Instead,
2372 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2373 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2374 * places afterwards.
2375 *
2376 * CONTEXT:
2377 * Must be called with @current->sighand->siglock held, which is released
2378 * on %true return.
2379 *
2380 * RETURNS:
2381 * %false if group stop is already cancelled or ptrace trap is scheduled.
2382 * %true if participated in group stop.
2383 */
2384static bool do_signal_stop(int signr)
2385	__releases(&current->sighand->siglock)
2386{
2387	struct signal_struct *sig = current->signal;
2388
2389	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2390		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2391		struct task_struct *t;
2392
2393		/* signr will be recorded in task->jobctl for retries */
2394		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2395
2396		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2397		    unlikely(sig->flags & SIGNAL_GROUP_EXIT) ||
2398		    unlikely(sig->group_exec_task))
2399			return false;
2400		/*
2401		 * There is no group stop already in progress.  We must
2402		 * initiate one now.
2403		 *
2404		 * While ptraced, a task may be resumed while group stop is
2405		 * still in effect and then receive a stop signal and
2406		 * initiate another group stop.  This deviates from the
2407		 * usual behavior as two consecutive stop signals can't
2408		 * cause two group stops when !ptraced.  That is why we
2409		 * also check !task_is_stopped(t) below.
2410		 *
2411		 * The condition can be distinguished by testing whether
2412		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2413		 * group_exit_code in such case.
2414		 *
2415		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2416		 * an intervening stop signal is required to cause two
2417		 * continued events regardless of ptrace.
2418		 */
2419		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2420			sig->group_exit_code = signr;
2421
2422		sig->group_stop_count = 0;
2423
2424		if (task_set_jobctl_pending(current, signr | gstop))
2425			sig->group_stop_count++;
2426
2427		t = current;
2428		while_each_thread(current, t) {
2429			/*
2430			 * Setting state to TASK_STOPPED for a group
2431			 * stop is always done with the siglock held,
2432			 * so this check has no races.
2433			 */
2434			if (!task_is_stopped(t) &&
2435			    task_set_jobctl_pending(t, signr | gstop)) {
2436				sig->group_stop_count++;
2437				if (likely(!(t->ptrace & PT_SEIZED)))
2438					signal_wake_up(t, 0);
2439				else
2440					ptrace_trap_notify(t);
2441			}
2442		}
2443	}
2444
2445	if (likely(!current->ptrace)) {
2446		int notify = 0;
2447
2448		/*
2449		 * If there are no other threads in the group, or if there
2450		 * is a group stop in progress and we are the last to stop,
2451		 * report to the parent.
2452		 */
2453		if (task_participate_group_stop(current))
2454			notify = CLD_STOPPED;
2455
2456		current->jobctl |= JOBCTL_STOPPED;
2457		set_special_state(TASK_STOPPED);
2458		spin_unlock_irq(&current->sighand->siglock);
2459
2460		/*
2461		 * Notify the parent of the group stop completion.  Because
2462		 * we're not holding either the siglock or tasklist_lock
2463		 * here, ptracer may attach inbetween; however, this is for
2464		 * group stop and should always be delivered to the real
2465		 * parent of the group leader.  The new ptracer will get
2466		 * its notification when this task transitions into
2467		 * TASK_TRACED.
2468		 */
2469		if (notify) {
2470			read_lock(&tasklist_lock);
2471			do_notify_parent_cldstop(current, false, notify);
2472			read_unlock(&tasklist_lock);
2473		}
2474
2475		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2476		cgroup_enter_frozen();
2477		schedule();
2478		return true;
2479	} else {
2480		/*
2481		 * While ptraced, group stop is handled by STOP trap.
2482		 * Schedule it and let the caller deal with it.
2483		 */
2484		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2485		return false;
2486	}
2487}
2488
2489/**
2490 * do_jobctl_trap - take care of ptrace jobctl traps
2491 *
2492 * When PT_SEIZED, it's used for both group stop and explicit
2493 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2494 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2495 * the stop signal; otherwise, %SIGTRAP.
2496 *
2497 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2498 * number as exit_code and no siginfo.
2499 *
2500 * CONTEXT:
2501 * Must be called with @current->sighand->siglock held, which may be
2502 * released and re-acquired before returning with intervening sleep.
2503 */
2504static void do_jobctl_trap(void)
2505{
2506	struct signal_struct *signal = current->signal;
2507	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2508
2509	if (current->ptrace & PT_SEIZED) {
2510		if (!signal->group_stop_count &&
2511		    !(signal->flags & SIGNAL_STOP_STOPPED))
2512			signr = SIGTRAP;
2513		WARN_ON_ONCE(!signr);
2514		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2515				 CLD_STOPPED, 0);
2516	} else {
2517		WARN_ON_ONCE(!signr);
2518		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
 
2519	}
2520}
2521
2522/**
2523 * do_freezer_trap - handle the freezer jobctl trap
2524 *
2525 * Puts the task into frozen state, if only the task is not about to quit.
2526 * In this case it drops JOBCTL_TRAP_FREEZE.
2527 *
2528 * CONTEXT:
2529 * Must be called with @current->sighand->siglock held,
2530 * which is always released before returning.
2531 */
2532static void do_freezer_trap(void)
2533	__releases(&current->sighand->siglock)
2534{
2535	/*
2536	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2537	 * let's make another loop to give it a chance to be handled.
2538	 * In any case, we'll return back.
2539	 */
2540	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2541	     JOBCTL_TRAP_FREEZE) {
2542		spin_unlock_irq(&current->sighand->siglock);
2543		return;
2544	}
2545
2546	/*
2547	 * Now we're sure that there is no pending fatal signal and no
2548	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2549	 * immediately (if there is a non-fatal signal pending), and
2550	 * put the task into sleep.
2551	 */
2552	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2553	clear_thread_flag(TIF_SIGPENDING);
2554	spin_unlock_irq(&current->sighand->siglock);
2555	cgroup_enter_frozen();
2556	schedule();
2557}
2558
2559static int ptrace_signal(int signr, kernel_siginfo_t *info, enum pid_type type)
2560{
2561	/*
2562	 * We do not check sig_kernel_stop(signr) but set this marker
2563	 * unconditionally because we do not know whether debugger will
2564	 * change signr. This flag has no meaning unless we are going
2565	 * to stop after return from ptrace_stop(). In this case it will
2566	 * be checked in do_signal_stop(), we should only stop if it was
2567	 * not cleared by SIGCONT while we were sleeping. See also the
2568	 * comment in dequeue_signal().
2569	 */
2570	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2571	signr = ptrace_stop(signr, CLD_TRAPPED, 0, info);
2572
2573	/* We're back.  Did the debugger cancel the sig?  */
 
2574	if (signr == 0)
2575		return signr;
2576
 
 
2577	/*
2578	 * Update the siginfo structure if the signal has
2579	 * changed.  If the debugger wanted something
2580	 * specific in the siginfo structure then it should
2581	 * have updated *info via PTRACE_SETSIGINFO.
2582	 */
2583	if (signr != info->si_signo) {
2584		clear_siginfo(info);
2585		info->si_signo = signr;
2586		info->si_errno = 0;
2587		info->si_code = SI_USER;
2588		rcu_read_lock();
2589		info->si_pid = task_pid_vnr(current->parent);
2590		info->si_uid = from_kuid_munged(current_user_ns(),
2591						task_uid(current->parent));
2592		rcu_read_unlock();
2593	}
2594
2595	/* If the (new) signal is now blocked, requeue it.  */
2596	if (sigismember(&current->blocked, signr) ||
2597	    fatal_signal_pending(current)) {
2598		send_signal_locked(signr, info, current, type);
2599		signr = 0;
2600	}
2601
2602	return signr;
2603}
2604
2605static void hide_si_addr_tag_bits(struct ksignal *ksig)
2606{
2607	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2608	case SIL_FAULT:
2609	case SIL_FAULT_TRAPNO:
2610	case SIL_FAULT_MCEERR:
2611	case SIL_FAULT_BNDERR:
2612	case SIL_FAULT_PKUERR:
2613	case SIL_FAULT_PERF_EVENT:
2614		ksig->info.si_addr = arch_untagged_si_addr(
2615			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2616		break;
2617	case SIL_KILL:
2618	case SIL_TIMER:
2619	case SIL_POLL:
2620	case SIL_CHLD:
2621	case SIL_RT:
2622	case SIL_SYS:
2623		break;
2624	}
2625}
2626
2627bool get_signal(struct ksignal *ksig)
2628{
2629	struct sighand_struct *sighand = current->sighand;
2630	struct signal_struct *signal = current->signal;
2631	int signr;
2632
2633	clear_notify_signal();
2634	if (unlikely(task_work_pending(current)))
2635		task_work_run();
2636
2637	if (!task_sigpending(current))
2638		return false;
 
 
 
 
 
 
 
 
 
2639
2640	if (unlikely(uprobe_deny_signal()))
2641		return false;
2642
2643	/*
2644	 * Do this once, we can't return to user-mode if freezing() == T.
2645	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2646	 * thus do not need another check after return.
2647	 */
2648	try_to_freeze();
2649
2650relock:
2651	spin_lock_irq(&sighand->siglock);
2652
2653	/*
2654	 * Every stopped thread goes here after wakeup. Check to see if
2655	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2656	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2657	 */
2658	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2659		int why;
2660
2661		if (signal->flags & SIGNAL_CLD_CONTINUED)
2662			why = CLD_CONTINUED;
2663		else
2664			why = CLD_STOPPED;
2665
2666		signal->flags &= ~SIGNAL_CLD_MASK;
2667
2668		spin_unlock_irq(&sighand->siglock);
2669
2670		/*
2671		 * Notify the parent that we're continuing.  This event is
2672		 * always per-process and doesn't make whole lot of sense
2673		 * for ptracers, who shouldn't consume the state via
2674		 * wait(2) either, but, for backward compatibility, notify
2675		 * the ptracer of the group leader too unless it's gonna be
2676		 * a duplicate.
2677		 */
2678		read_lock(&tasklist_lock);
2679		do_notify_parent_cldstop(current, false, why);
2680
2681		if (ptrace_reparented(current->group_leader))
2682			do_notify_parent_cldstop(current->group_leader,
2683						true, why);
2684		read_unlock(&tasklist_lock);
2685
2686		goto relock;
2687	}
2688
 
 
 
 
 
 
 
 
 
 
2689	for (;;) {
2690		struct k_sigaction *ka;
2691		enum pid_type type;
2692
2693		/* Has this task already been marked for death? */
2694		if ((signal->flags & SIGNAL_GROUP_EXIT) ||
2695		     signal->group_exec_task) {
2696			clear_siginfo(&ksig->info);
2697			ksig->info.si_signo = signr = SIGKILL;
2698			sigdelset(&current->pending.signal, SIGKILL);
2699			trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2700				&sighand->action[SIGKILL - 1]);
2701			recalc_sigpending();
2702			goto fatal;
2703		}
2704
2705		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2706		    do_signal_stop(0))
2707			goto relock;
2708
2709		if (unlikely(current->jobctl &
2710			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2711			if (current->jobctl & JOBCTL_TRAP_MASK) {
2712				do_jobctl_trap();
2713				spin_unlock_irq(&sighand->siglock);
2714			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2715				do_freezer_trap();
2716
2717			goto relock;
2718		}
2719
2720		/*
2721		 * If the task is leaving the frozen state, let's update
2722		 * cgroup counters and reset the frozen bit.
2723		 */
2724		if (unlikely(cgroup_task_frozen(current))) {
2725			spin_unlock_irq(&sighand->siglock);
2726			cgroup_leave_frozen(false);
2727			goto relock;
2728		}
2729
2730		/*
2731		 * Signals generated by the execution of an instruction
2732		 * need to be delivered before any other pending signals
2733		 * so that the instruction pointer in the signal stack
2734		 * frame points to the faulting instruction.
2735		 */
2736		type = PIDTYPE_PID;
2737		signr = dequeue_synchronous_signal(&ksig->info);
2738		if (!signr)
2739			signr = dequeue_signal(current, &current->blocked,
2740					       &ksig->info, &type);
2741
2742		if (!signr)
2743			break; /* will return 0 */
2744
2745		if (unlikely(current->ptrace) && (signr != SIGKILL) &&
2746		    !(sighand->action[signr -1].sa.sa_flags & SA_IMMUTABLE)) {
2747			signr = ptrace_signal(signr, &ksig->info, type);
2748			if (!signr)
2749				continue;
2750		}
2751
2752		ka = &sighand->action[signr-1];
2753
2754		/* Trace actually delivered signals. */
2755		trace_signal_deliver(signr, &ksig->info, ka);
2756
2757		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2758			continue;
2759		if (ka->sa.sa_handler != SIG_DFL) {
2760			/* Run the handler.  */
2761			ksig->ka = *ka;
2762
2763			if (ka->sa.sa_flags & SA_ONESHOT)
2764				ka->sa.sa_handler = SIG_DFL;
2765
2766			break; /* will return non-zero "signr" value */
2767		}
2768
2769		/*
2770		 * Now we are doing the default action for this signal.
2771		 */
2772		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2773			continue;
2774
2775		/*
2776		 * Global init gets no signals it doesn't want.
2777		 * Container-init gets no signals it doesn't want from same
2778		 * container.
2779		 *
2780		 * Note that if global/container-init sees a sig_kernel_only()
2781		 * signal here, the signal must have been generated internally
2782		 * or must have come from an ancestor namespace. In either
2783		 * case, the signal cannot be dropped.
2784		 */
2785		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2786				!sig_kernel_only(signr))
2787			continue;
2788
2789		if (sig_kernel_stop(signr)) {
2790			/*
2791			 * The default action is to stop all threads in
2792			 * the thread group.  The job control signals
2793			 * do nothing in an orphaned pgrp, but SIGSTOP
2794			 * always works.  Note that siglock needs to be
2795			 * dropped during the call to is_orphaned_pgrp()
2796			 * because of lock ordering with tasklist_lock.
2797			 * This allows an intervening SIGCONT to be posted.
2798			 * We need to check for that and bail out if necessary.
2799			 */
2800			if (signr != SIGSTOP) {
2801				spin_unlock_irq(&sighand->siglock);
2802
2803				/* signals can be posted during this window */
2804
2805				if (is_current_pgrp_orphaned())
2806					goto relock;
2807
2808				spin_lock_irq(&sighand->siglock);
2809			}
2810
2811			if (likely(do_signal_stop(ksig->info.si_signo))) {
2812				/* It released the siglock.  */
2813				goto relock;
2814			}
2815
2816			/*
2817			 * We didn't actually stop, due to a race
2818			 * with SIGCONT or something like that.
2819			 */
2820			continue;
2821		}
2822
2823	fatal:
2824		spin_unlock_irq(&sighand->siglock);
2825		if (unlikely(cgroup_task_frozen(current)))
2826			cgroup_leave_frozen(true);
2827
2828		/*
2829		 * Anything else is fatal, maybe with a core dump.
2830		 */
2831		current->flags |= PF_SIGNALED;
2832
2833		if (sig_kernel_coredump(signr)) {
2834			if (print_fatal_signals)
2835				print_fatal_signal(ksig->info.si_signo);
2836			proc_coredump_connector(current);
2837			/*
2838			 * If it was able to dump core, this kills all
2839			 * other threads in the group and synchronizes with
2840			 * their demise.  If we lost the race with another
2841			 * thread getting here, it set group_exit_code
2842			 * first and our do_group_exit call below will use
2843			 * that value and ignore the one we pass it.
2844			 */
2845			do_coredump(&ksig->info);
2846		}
2847
2848		/*
2849		 * PF_IO_WORKER threads will catch and exit on fatal signals
2850		 * themselves. They have cleanup that must be performed, so
2851		 * we cannot call do_exit() on their behalf.
2852		 */
2853		if (current->flags & PF_IO_WORKER)
2854			goto out;
2855
2856		/*
2857		 * Death signals, no core dump.
2858		 */
2859		do_group_exit(ksig->info.si_signo);
2860		/* NOTREACHED */
2861	}
2862	spin_unlock_irq(&sighand->siglock);
2863out:
2864	ksig->sig = signr;
2865
2866	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2867		hide_si_addr_tag_bits(ksig);
2868
2869	return ksig->sig > 0;
2870}
2871
2872/**
2873 * signal_delivered - called after signal delivery to update blocked signals
2874 * @ksig:		kernel signal struct
2875 * @stepping:		nonzero if debugger single-step or block-step in use
2876 *
2877 * This function should be called when a signal has successfully been
2878 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2879 * is always blocked), and the signal itself is blocked unless %SA_NODEFER
2880 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2881 */
2882static void signal_delivered(struct ksignal *ksig, int stepping)
2883{
2884	sigset_t blocked;
2885
2886	/* A signal was successfully delivered, and the
2887	   saved sigmask was stored on the signal frame,
2888	   and will be restored by sigreturn.  So we can
2889	   simply clear the restore sigmask flag.  */
2890	clear_restore_sigmask();
2891
2892	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2893	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2894		sigaddset(&blocked, ksig->sig);
2895	set_current_blocked(&blocked);
2896	if (current->sas_ss_flags & SS_AUTODISARM)
2897		sas_ss_reset(current);
2898	if (stepping)
2899		ptrace_notify(SIGTRAP, 0);
2900}
2901
2902void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2903{
2904	if (failed)
2905		force_sigsegv(ksig->sig);
2906	else
2907		signal_delivered(ksig, stepping);
2908}
2909
2910/*
2911 * It could be that complete_signal() picked us to notify about the
2912 * group-wide signal. Other threads should be notified now to take
2913 * the shared signals in @which since we will not.
2914 */
2915static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2916{
2917	sigset_t retarget;
2918	struct task_struct *t;
2919
2920	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2921	if (sigisemptyset(&retarget))
2922		return;
2923
2924	t = tsk;
2925	while_each_thread(tsk, t) {
2926		if (t->flags & PF_EXITING)
2927			continue;
2928
2929		if (!has_pending_signals(&retarget, &t->blocked))
2930			continue;
2931		/* Remove the signals this thread can handle. */
2932		sigandsets(&retarget, &retarget, &t->blocked);
2933
2934		if (!task_sigpending(t))
2935			signal_wake_up(t, 0);
2936
2937		if (sigisemptyset(&retarget))
2938			break;
2939	}
2940}
2941
2942void exit_signals(struct task_struct *tsk)
2943{
2944	int group_stop = 0;
2945	sigset_t unblocked;
2946
2947	/*
2948	 * @tsk is about to have PF_EXITING set - lock out users which
2949	 * expect stable threadgroup.
2950	 */
2951	cgroup_threadgroup_change_begin(tsk);
2952
2953	if (thread_group_empty(tsk) || (tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
2954		tsk->flags |= PF_EXITING;
2955		cgroup_threadgroup_change_end(tsk);
2956		return;
2957	}
2958
2959	spin_lock_irq(&tsk->sighand->siglock);
2960	/*
2961	 * From now this task is not visible for group-wide signals,
2962	 * see wants_signal(), do_signal_stop().
2963	 */
2964	tsk->flags |= PF_EXITING;
2965
2966	cgroup_threadgroup_change_end(tsk);
2967
2968	if (!task_sigpending(tsk))
2969		goto out;
2970
2971	unblocked = tsk->blocked;
2972	signotset(&unblocked);
2973	retarget_shared_pending(tsk, &unblocked);
2974
2975	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2976	    task_participate_group_stop(tsk))
2977		group_stop = CLD_STOPPED;
2978out:
2979	spin_unlock_irq(&tsk->sighand->siglock);
2980
2981	/*
2982	 * If group stop has completed, deliver the notification.  This
2983	 * should always go to the real parent of the group leader.
2984	 */
2985	if (unlikely(group_stop)) {
2986		read_lock(&tasklist_lock);
2987		do_notify_parent_cldstop(tsk, false, group_stop);
2988		read_unlock(&tasklist_lock);
2989	}
2990}
2991
2992/*
2993 * System call entry points.
2994 */
2995
2996/**
2997 *  sys_restart_syscall - restart a system call
2998 */
2999SYSCALL_DEFINE0(restart_syscall)
3000{
3001	struct restart_block *restart = &current->restart_block;
3002	return restart->fn(restart);
3003}
3004
3005long do_no_restart_syscall(struct restart_block *param)
3006{
3007	return -EINTR;
3008}
3009
3010static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
3011{
3012	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
3013		sigset_t newblocked;
3014		/* A set of now blocked but previously unblocked signals. */
3015		sigandnsets(&newblocked, newset, &current->blocked);
3016		retarget_shared_pending(tsk, &newblocked);
3017	}
3018	tsk->blocked = *newset;
3019	recalc_sigpending();
3020}
3021
3022/**
3023 * set_current_blocked - change current->blocked mask
3024 * @newset: new mask
3025 *
3026 * It is wrong to change ->blocked directly, this helper should be used
3027 * to ensure the process can't miss a shared signal we are going to block.
3028 */
3029void set_current_blocked(sigset_t *newset)
3030{
3031	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
3032	__set_current_blocked(newset);
3033}
3034
3035void __set_current_blocked(const sigset_t *newset)
3036{
3037	struct task_struct *tsk = current;
3038
3039	/*
3040	 * In case the signal mask hasn't changed, there is nothing we need
3041	 * to do. The current->blocked shouldn't be modified by other task.
3042	 */
3043	if (sigequalsets(&tsk->blocked, newset))
3044		return;
3045
3046	spin_lock_irq(&tsk->sighand->siglock);
3047	__set_task_blocked(tsk, newset);
3048	spin_unlock_irq(&tsk->sighand->siglock);
3049}
3050
3051/*
3052 * This is also useful for kernel threads that want to temporarily
3053 * (or permanently) block certain signals.
3054 *
3055 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
3056 * interface happily blocks "unblockable" signals like SIGKILL
3057 * and friends.
3058 */
3059int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
3060{
3061	struct task_struct *tsk = current;
3062	sigset_t newset;
3063
3064	/* Lockless, only current can change ->blocked, never from irq */
3065	if (oldset)
3066		*oldset = tsk->blocked;
3067
3068	switch (how) {
3069	case SIG_BLOCK:
3070		sigorsets(&newset, &tsk->blocked, set);
3071		break;
3072	case SIG_UNBLOCK:
3073		sigandnsets(&newset, &tsk->blocked, set);
3074		break;
3075	case SIG_SETMASK:
3076		newset = *set;
3077		break;
3078	default:
3079		return -EINVAL;
3080	}
3081
3082	__set_current_blocked(&newset);
3083	return 0;
3084}
3085EXPORT_SYMBOL(sigprocmask);
3086
3087/*
3088 * The api helps set app-provided sigmasks.
3089 *
3090 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3091 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3092 *
3093 * Note that it does set_restore_sigmask() in advance, so it must be always
3094 * paired with restore_saved_sigmask_unless() before return from syscall.
3095 */
3096int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3097{
3098	sigset_t kmask;
3099
3100	if (!umask)
3101		return 0;
3102	if (sigsetsize != sizeof(sigset_t))
3103		return -EINVAL;
3104	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3105		return -EFAULT;
3106
3107	set_restore_sigmask();
3108	current->saved_sigmask = current->blocked;
3109	set_current_blocked(&kmask);
3110
3111	return 0;
3112}
3113
3114#ifdef CONFIG_COMPAT
3115int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3116			    size_t sigsetsize)
3117{
3118	sigset_t kmask;
3119
3120	if (!umask)
3121		return 0;
3122	if (sigsetsize != sizeof(compat_sigset_t))
3123		return -EINVAL;
3124	if (get_compat_sigset(&kmask, umask))
3125		return -EFAULT;
3126
3127	set_restore_sigmask();
3128	current->saved_sigmask = current->blocked;
3129	set_current_blocked(&kmask);
3130
3131	return 0;
3132}
3133#endif
3134
3135/**
3136 *  sys_rt_sigprocmask - change the list of currently blocked signals
3137 *  @how: whether to add, remove, or set signals
3138 *  @nset: stores pending signals
3139 *  @oset: previous value of signal mask if non-null
3140 *  @sigsetsize: size of sigset_t type
3141 */
3142SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3143		sigset_t __user *, oset, size_t, sigsetsize)
3144{
3145	sigset_t old_set, new_set;
3146	int error;
3147
3148	/* XXX: Don't preclude handling different sized sigset_t's.  */
3149	if (sigsetsize != sizeof(sigset_t))
3150		return -EINVAL;
3151
3152	old_set = current->blocked;
3153
3154	if (nset) {
3155		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3156			return -EFAULT;
3157		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3158
3159		error = sigprocmask(how, &new_set, NULL);
3160		if (error)
3161			return error;
3162	}
3163
3164	if (oset) {
3165		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3166			return -EFAULT;
3167	}
3168
3169	return 0;
3170}
3171
3172#ifdef CONFIG_COMPAT
3173COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3174		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3175{
3176	sigset_t old_set = current->blocked;
3177
3178	/* XXX: Don't preclude handling different sized sigset_t's.  */
3179	if (sigsetsize != sizeof(sigset_t))
3180		return -EINVAL;
3181
3182	if (nset) {
3183		sigset_t new_set;
3184		int error;
3185		if (get_compat_sigset(&new_set, nset))
3186			return -EFAULT;
3187		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3188
3189		error = sigprocmask(how, &new_set, NULL);
3190		if (error)
3191			return error;
3192	}
3193	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
3194}
3195#endif
3196
3197static void do_sigpending(sigset_t *set)
3198{
3199	spin_lock_irq(&current->sighand->siglock);
3200	sigorsets(set, &current->pending.signal,
3201		  &current->signal->shared_pending.signal);
3202	spin_unlock_irq(&current->sighand->siglock);
3203
3204	/* Outside the lock because only this thread touches it.  */
3205	sigandsets(set, &current->blocked, set);
3206}
3207
3208/**
3209 *  sys_rt_sigpending - examine a pending signal that has been raised
3210 *			while blocked
3211 *  @uset: stores pending signals
3212 *  @sigsetsize: size of sigset_t type or larger
3213 */
3214SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3215{
3216	sigset_t set;
3217
3218	if (sigsetsize > sizeof(*uset))
3219		return -EINVAL;
3220
3221	do_sigpending(&set);
3222
3223	if (copy_to_user(uset, &set, sigsetsize))
3224		return -EFAULT;
3225
3226	return 0;
3227}
3228
3229#ifdef CONFIG_COMPAT
3230COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3231		compat_size_t, sigsetsize)
3232{
3233	sigset_t set;
3234
3235	if (sigsetsize > sizeof(*uset))
3236		return -EINVAL;
3237
3238	do_sigpending(&set);
3239
3240	return put_compat_sigset(uset, &set, sigsetsize);
3241}
3242#endif
3243
3244static const struct {
3245	unsigned char limit, layout;
3246} sig_sicodes[] = {
3247	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3248	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3249	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3250	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3251	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3252#if defined(SIGEMT)
3253	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3254#endif
3255	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3256	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3257	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3258};
3259
3260static bool known_siginfo_layout(unsigned sig, int si_code)
3261{
3262	if (si_code == SI_KERNEL)
3263		return true;
3264	else if ((si_code > SI_USER)) {
3265		if (sig_specific_sicodes(sig)) {
3266			if (si_code <= sig_sicodes[sig].limit)
3267				return true;
3268		}
3269		else if (si_code <= NSIGPOLL)
3270			return true;
3271	}
3272	else if (si_code >= SI_DETHREAD)
3273		return true;
3274	else if (si_code == SI_ASYNCNL)
3275		return true;
3276	return false;
3277}
3278
3279enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3280{
3281	enum siginfo_layout layout = SIL_KILL;
3282	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3283		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3284		    (si_code <= sig_sicodes[sig].limit)) {
3285			layout = sig_sicodes[sig].layout;
3286			/* Handle the exceptions */
3287			if ((sig == SIGBUS) &&
3288			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3289				layout = SIL_FAULT_MCEERR;
3290			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3291				layout = SIL_FAULT_BNDERR;
3292#ifdef SEGV_PKUERR
3293			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3294				layout = SIL_FAULT_PKUERR;
3295#endif
3296			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3297				layout = SIL_FAULT_PERF_EVENT;
3298			else if (IS_ENABLED(CONFIG_SPARC) &&
3299				 (sig == SIGILL) && (si_code == ILL_ILLTRP))
3300				layout = SIL_FAULT_TRAPNO;
3301			else if (IS_ENABLED(CONFIG_ALPHA) &&
3302				 ((sig == SIGFPE) ||
3303				  ((sig == SIGTRAP) && (si_code == TRAP_UNK))))
3304				layout = SIL_FAULT_TRAPNO;
 
3305		}
3306		else if (si_code <= NSIGPOLL)
3307			layout = SIL_POLL;
3308	} else {
3309		if (si_code == SI_TIMER)
3310			layout = SIL_TIMER;
3311		else if (si_code == SI_SIGIO)
3312			layout = SIL_POLL;
3313		else if (si_code < 0)
3314			layout = SIL_RT;
3315	}
3316	return layout;
3317}
3318
3319static inline char __user *si_expansion(const siginfo_t __user *info)
3320{
3321	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3322}
3323
3324int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3325{
3326	char __user *expansion = si_expansion(to);
3327	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3328		return -EFAULT;
3329	if (clear_user(expansion, SI_EXPANSION_SIZE))
3330		return -EFAULT;
3331	return 0;
3332}
3333
3334static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3335				       const siginfo_t __user *from)
3336{
3337	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3338		char __user *expansion = si_expansion(from);
3339		char buf[SI_EXPANSION_SIZE];
3340		int i;
3341		/*
3342		 * An unknown si_code might need more than
3343		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3344		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3345		 * will return this data to userspace exactly.
3346		 */
3347		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3348			return -EFAULT;
3349		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3350			if (buf[i] != 0)
3351				return -E2BIG;
3352		}
3353	}
3354	return 0;
3355}
3356
3357static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3358				    const siginfo_t __user *from)
3359{
3360	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3361		return -EFAULT;
3362	to->si_signo = signo;
3363	return post_copy_siginfo_from_user(to, from);
3364}
3365
3366int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3367{
3368	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3369		return -EFAULT;
3370	return post_copy_siginfo_from_user(to, from);
3371}
3372
3373#ifdef CONFIG_COMPAT
3374/**
3375 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3376 * @to: compat siginfo destination
3377 * @from: kernel siginfo source
3378 *
3379 * Note: This function does not work properly for the SIGCHLD on x32, but
3380 * fortunately it doesn't have to.  The only valid callers for this function are
3381 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3382 * The latter does not care because SIGCHLD will never cause a coredump.
3383 */
3384void copy_siginfo_to_external32(struct compat_siginfo *to,
3385		const struct kernel_siginfo *from)
3386{
3387	memset(to, 0, sizeof(*to));
3388
3389	to->si_signo = from->si_signo;
3390	to->si_errno = from->si_errno;
3391	to->si_code  = from->si_code;
3392	switch(siginfo_layout(from->si_signo, from->si_code)) {
3393	case SIL_KILL:
3394		to->si_pid = from->si_pid;
3395		to->si_uid = from->si_uid;
3396		break;
3397	case SIL_TIMER:
3398		to->si_tid     = from->si_tid;
3399		to->si_overrun = from->si_overrun;
3400		to->si_int     = from->si_int;
3401		break;
3402	case SIL_POLL:
3403		to->si_band = from->si_band;
3404		to->si_fd   = from->si_fd;
3405		break;
3406	case SIL_FAULT:
3407		to->si_addr = ptr_to_compat(from->si_addr);
3408		break;
3409	case SIL_FAULT_TRAPNO:
3410		to->si_addr = ptr_to_compat(from->si_addr);
3411		to->si_trapno = from->si_trapno;
3412		break;
3413	case SIL_FAULT_MCEERR:
3414		to->si_addr = ptr_to_compat(from->si_addr);
3415		to->si_addr_lsb = from->si_addr_lsb;
3416		break;
3417	case SIL_FAULT_BNDERR:
3418		to->si_addr = ptr_to_compat(from->si_addr);
3419		to->si_lower = ptr_to_compat(from->si_lower);
3420		to->si_upper = ptr_to_compat(from->si_upper);
3421		break;
3422	case SIL_FAULT_PKUERR:
3423		to->si_addr = ptr_to_compat(from->si_addr);
3424		to->si_pkey = from->si_pkey;
3425		break;
3426	case SIL_FAULT_PERF_EVENT:
3427		to->si_addr = ptr_to_compat(from->si_addr);
3428		to->si_perf_data = from->si_perf_data;
3429		to->si_perf_type = from->si_perf_type;
3430		to->si_perf_flags = from->si_perf_flags;
3431		break;
3432	case SIL_CHLD:
3433		to->si_pid = from->si_pid;
3434		to->si_uid = from->si_uid;
3435		to->si_status = from->si_status;
3436		to->si_utime = from->si_utime;
3437		to->si_stime = from->si_stime;
3438		break;
3439	case SIL_RT:
3440		to->si_pid = from->si_pid;
3441		to->si_uid = from->si_uid;
3442		to->si_int = from->si_int;
3443		break;
3444	case SIL_SYS:
3445		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3446		to->si_syscall   = from->si_syscall;
3447		to->si_arch      = from->si_arch;
3448		break;
3449	}
3450}
3451
3452int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3453			   const struct kernel_siginfo *from)
3454{
3455	struct compat_siginfo new;
3456
3457	copy_siginfo_to_external32(&new, from);
3458	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3459		return -EFAULT;
3460	return 0;
3461}
3462
3463static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3464					 const struct compat_siginfo *from)
3465{
3466	clear_siginfo(to);
3467	to->si_signo = from->si_signo;
3468	to->si_errno = from->si_errno;
3469	to->si_code  = from->si_code;
3470	switch(siginfo_layout(from->si_signo, from->si_code)) {
3471	case SIL_KILL:
3472		to->si_pid = from->si_pid;
3473		to->si_uid = from->si_uid;
3474		break;
3475	case SIL_TIMER:
3476		to->si_tid     = from->si_tid;
3477		to->si_overrun = from->si_overrun;
3478		to->si_int     = from->si_int;
3479		break;
3480	case SIL_POLL:
3481		to->si_band = from->si_band;
3482		to->si_fd   = from->si_fd;
3483		break;
3484	case SIL_FAULT:
3485		to->si_addr = compat_ptr(from->si_addr);
3486		break;
3487	case SIL_FAULT_TRAPNO:
3488		to->si_addr = compat_ptr(from->si_addr);
3489		to->si_trapno = from->si_trapno;
3490		break;
3491	case SIL_FAULT_MCEERR:
3492		to->si_addr = compat_ptr(from->si_addr);
3493		to->si_addr_lsb = from->si_addr_lsb;
3494		break;
3495	case SIL_FAULT_BNDERR:
3496		to->si_addr = compat_ptr(from->si_addr);
3497		to->si_lower = compat_ptr(from->si_lower);
3498		to->si_upper = compat_ptr(from->si_upper);
3499		break;
3500	case SIL_FAULT_PKUERR:
3501		to->si_addr = compat_ptr(from->si_addr);
3502		to->si_pkey = from->si_pkey;
3503		break;
3504	case SIL_FAULT_PERF_EVENT:
3505		to->si_addr = compat_ptr(from->si_addr);
3506		to->si_perf_data = from->si_perf_data;
3507		to->si_perf_type = from->si_perf_type;
3508		to->si_perf_flags = from->si_perf_flags;
3509		break;
3510	case SIL_CHLD:
3511		to->si_pid    = from->si_pid;
3512		to->si_uid    = from->si_uid;
3513		to->si_status = from->si_status;
3514#ifdef CONFIG_X86_X32_ABI
3515		if (in_x32_syscall()) {
3516			to->si_utime = from->_sifields._sigchld_x32._utime;
3517			to->si_stime = from->_sifields._sigchld_x32._stime;
3518		} else
3519#endif
3520		{
3521			to->si_utime = from->si_utime;
3522			to->si_stime = from->si_stime;
3523		}
3524		break;
3525	case SIL_RT:
3526		to->si_pid = from->si_pid;
3527		to->si_uid = from->si_uid;
3528		to->si_int = from->si_int;
3529		break;
3530	case SIL_SYS:
3531		to->si_call_addr = compat_ptr(from->si_call_addr);
3532		to->si_syscall   = from->si_syscall;
3533		to->si_arch      = from->si_arch;
3534		break;
3535	}
3536	return 0;
3537}
3538
3539static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3540				      const struct compat_siginfo __user *ufrom)
3541{
3542	struct compat_siginfo from;
3543
3544	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3545		return -EFAULT;
3546
3547	from.si_signo = signo;
3548	return post_copy_siginfo_from_user32(to, &from);
3549}
3550
3551int copy_siginfo_from_user32(struct kernel_siginfo *to,
3552			     const struct compat_siginfo __user *ufrom)
3553{
3554	struct compat_siginfo from;
3555
3556	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3557		return -EFAULT;
3558
3559	return post_copy_siginfo_from_user32(to, &from);
3560}
3561#endif /* CONFIG_COMPAT */
3562
3563/**
3564 *  do_sigtimedwait - wait for queued signals specified in @which
3565 *  @which: queued signals to wait for
3566 *  @info: if non-null, the signal's siginfo is returned here
3567 *  @ts: upper bound on process time suspension
3568 */
3569static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3570		    const struct timespec64 *ts)
3571{
3572	ktime_t *to = NULL, timeout = KTIME_MAX;
3573	struct task_struct *tsk = current;
3574	sigset_t mask = *which;
3575	enum pid_type type;
3576	int sig, ret = 0;
3577
3578	if (ts) {
3579		if (!timespec64_valid(ts))
3580			return -EINVAL;
3581		timeout = timespec64_to_ktime(*ts);
3582		to = &timeout;
3583	}
3584
3585	/*
3586	 * Invert the set of allowed signals to get those we want to block.
3587	 */
3588	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3589	signotset(&mask);
3590
3591	spin_lock_irq(&tsk->sighand->siglock);
3592	sig = dequeue_signal(tsk, &mask, info, &type);
3593	if (!sig && timeout) {
3594		/*
3595		 * None ready, temporarily unblock those we're interested
3596		 * while we are sleeping in so that we'll be awakened when
3597		 * they arrive. Unblocking is always fine, we can avoid
3598		 * set_current_blocked().
3599		 */
3600		tsk->real_blocked = tsk->blocked;
3601		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3602		recalc_sigpending();
3603		spin_unlock_irq(&tsk->sighand->siglock);
3604
3605		__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
3606		ret = schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3607					       HRTIMER_MODE_REL);
3608		spin_lock_irq(&tsk->sighand->siglock);
3609		__set_task_blocked(tsk, &tsk->real_blocked);
3610		sigemptyset(&tsk->real_blocked);
3611		sig = dequeue_signal(tsk, &mask, info, &type);
3612	}
3613	spin_unlock_irq(&tsk->sighand->siglock);
3614
3615	if (sig)
3616		return sig;
3617	return ret ? -EINTR : -EAGAIN;
3618}
3619
3620/**
3621 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3622 *			in @uthese
3623 *  @uthese: queued signals to wait for
3624 *  @uinfo: if non-null, the signal's siginfo is returned here
3625 *  @uts: upper bound on process time suspension
3626 *  @sigsetsize: size of sigset_t type
3627 */
3628SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3629		siginfo_t __user *, uinfo,
3630		const struct __kernel_timespec __user *, uts,
3631		size_t, sigsetsize)
3632{
3633	sigset_t these;
3634	struct timespec64 ts;
3635	kernel_siginfo_t info;
3636	int ret;
3637
3638	/* XXX: Don't preclude handling different sized sigset_t's.  */
3639	if (sigsetsize != sizeof(sigset_t))
3640		return -EINVAL;
3641
3642	if (copy_from_user(&these, uthese, sizeof(these)))
3643		return -EFAULT;
3644
3645	if (uts) {
3646		if (get_timespec64(&ts, uts))
3647			return -EFAULT;
3648	}
3649
3650	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3651
3652	if (ret > 0 && uinfo) {
3653		if (copy_siginfo_to_user(uinfo, &info))
3654			ret = -EFAULT;
3655	}
3656
3657	return ret;
3658}
3659
3660#ifdef CONFIG_COMPAT_32BIT_TIME
3661SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3662		siginfo_t __user *, uinfo,
3663		const struct old_timespec32 __user *, uts,
3664		size_t, sigsetsize)
3665{
3666	sigset_t these;
3667	struct timespec64 ts;
3668	kernel_siginfo_t info;
3669	int ret;
3670
3671	if (sigsetsize != sizeof(sigset_t))
3672		return -EINVAL;
3673
3674	if (copy_from_user(&these, uthese, sizeof(these)))
3675		return -EFAULT;
3676
3677	if (uts) {
3678		if (get_old_timespec32(&ts, uts))
3679			return -EFAULT;
3680	}
3681
3682	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3683
3684	if (ret > 0 && uinfo) {
3685		if (copy_siginfo_to_user(uinfo, &info))
3686			ret = -EFAULT;
3687	}
3688
3689	return ret;
3690}
3691#endif
3692
3693#ifdef CONFIG_COMPAT
3694COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3695		struct compat_siginfo __user *, uinfo,
3696		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3697{
3698	sigset_t s;
3699	struct timespec64 t;
3700	kernel_siginfo_t info;
3701	long ret;
3702
3703	if (sigsetsize != sizeof(sigset_t))
3704		return -EINVAL;
3705
3706	if (get_compat_sigset(&s, uthese))
3707		return -EFAULT;
3708
3709	if (uts) {
3710		if (get_timespec64(&t, uts))
3711			return -EFAULT;
3712	}
3713
3714	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3715
3716	if (ret > 0 && uinfo) {
3717		if (copy_siginfo_to_user32(uinfo, &info))
3718			ret = -EFAULT;
3719	}
3720
3721	return ret;
3722}
3723
3724#ifdef CONFIG_COMPAT_32BIT_TIME
3725COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3726		struct compat_siginfo __user *, uinfo,
3727		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3728{
3729	sigset_t s;
3730	struct timespec64 t;
3731	kernel_siginfo_t info;
3732	long ret;
3733
3734	if (sigsetsize != sizeof(sigset_t))
3735		return -EINVAL;
3736
3737	if (get_compat_sigset(&s, uthese))
3738		return -EFAULT;
3739
3740	if (uts) {
3741		if (get_old_timespec32(&t, uts))
3742			return -EFAULT;
3743	}
3744
3745	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3746
3747	if (ret > 0 && uinfo) {
3748		if (copy_siginfo_to_user32(uinfo, &info))
3749			ret = -EFAULT;
3750	}
3751
3752	return ret;
3753}
3754#endif
3755#endif
3756
3757static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3758{
3759	clear_siginfo(info);
3760	info->si_signo = sig;
3761	info->si_errno = 0;
3762	info->si_code = SI_USER;
3763	info->si_pid = task_tgid_vnr(current);
3764	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3765}
3766
3767/**
3768 *  sys_kill - send a signal to a process
3769 *  @pid: the PID of the process
3770 *  @sig: signal to be sent
3771 */
3772SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3773{
3774	struct kernel_siginfo info;
3775
3776	prepare_kill_siginfo(sig, &info);
3777
3778	return kill_something_info(sig, &info, pid);
3779}
3780
3781/*
3782 * Verify that the signaler and signalee either are in the same pid namespace
3783 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3784 * namespace.
3785 */
3786static bool access_pidfd_pidns(struct pid *pid)
3787{
3788	struct pid_namespace *active = task_active_pid_ns(current);
3789	struct pid_namespace *p = ns_of_pid(pid);
3790
3791	for (;;) {
3792		if (!p)
3793			return false;
3794		if (p == active)
3795			break;
3796		p = p->parent;
3797	}
3798
3799	return true;
3800}
3801
3802static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3803		siginfo_t __user *info)
3804{
3805#ifdef CONFIG_COMPAT
3806	/*
3807	 * Avoid hooking up compat syscalls and instead handle necessary
3808	 * conversions here. Note, this is a stop-gap measure and should not be
3809	 * considered a generic solution.
3810	 */
3811	if (in_compat_syscall())
3812		return copy_siginfo_from_user32(
3813			kinfo, (struct compat_siginfo __user *)info);
3814#endif
3815	return copy_siginfo_from_user(kinfo, info);
3816}
3817
3818static struct pid *pidfd_to_pid(const struct file *file)
3819{
3820	struct pid *pid;
3821
3822	pid = pidfd_pid(file);
3823	if (!IS_ERR(pid))
3824		return pid;
3825
3826	return tgid_pidfd_to_pid(file);
3827}
3828
3829/**
3830 * sys_pidfd_send_signal - Signal a process through a pidfd
3831 * @pidfd:  file descriptor of the process
3832 * @sig:    signal to send
3833 * @info:   signal info
3834 * @flags:  future flags
3835 *
3836 * The syscall currently only signals via PIDTYPE_PID which covers
3837 * kill(<positive-pid>, <signal>. It does not signal threads or process
3838 * groups.
3839 * In order to extend the syscall to threads and process groups the @flags
3840 * argument should be used. In essence, the @flags argument will determine
3841 * what is signaled and not the file descriptor itself. Put in other words,
3842 * grouping is a property of the flags argument not a property of the file
3843 * descriptor.
3844 *
3845 * Return: 0 on success, negative errno on failure
3846 */
3847SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3848		siginfo_t __user *, info, unsigned int, flags)
3849{
3850	int ret;
3851	struct fd f;
3852	struct pid *pid;
3853	kernel_siginfo_t kinfo;
3854
3855	/* Enforce flags be set to 0 until we add an extension. */
3856	if (flags)
3857		return -EINVAL;
3858
3859	f = fdget(pidfd);
3860	if (!f.file)
3861		return -EBADF;
3862
3863	/* Is this a pidfd? */
3864	pid = pidfd_to_pid(f.file);
3865	if (IS_ERR(pid)) {
3866		ret = PTR_ERR(pid);
3867		goto err;
3868	}
3869
3870	ret = -EINVAL;
3871	if (!access_pidfd_pidns(pid))
3872		goto err;
3873
3874	if (info) {
3875		ret = copy_siginfo_from_user_any(&kinfo, info);
3876		if (unlikely(ret))
3877			goto err;
3878
3879		ret = -EINVAL;
3880		if (unlikely(sig != kinfo.si_signo))
3881			goto err;
3882
3883		/* Only allow sending arbitrary signals to yourself. */
3884		ret = -EPERM;
3885		if ((task_pid(current) != pid) &&
3886		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3887			goto err;
3888	} else {
3889		prepare_kill_siginfo(sig, &kinfo);
3890	}
3891
3892	ret = kill_pid_info(sig, &kinfo, pid);
3893
3894err:
3895	fdput(f);
3896	return ret;
3897}
3898
3899static int
3900do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3901{
3902	struct task_struct *p;
3903	int error = -ESRCH;
3904
3905	rcu_read_lock();
3906	p = find_task_by_vpid(pid);
3907	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3908		error = check_kill_permission(sig, info, p);
3909		/*
3910		 * The null signal is a permissions and process existence
3911		 * probe.  No signal is actually delivered.
3912		 */
3913		if (!error && sig) {
3914			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3915			/*
3916			 * If lock_task_sighand() failed we pretend the task
3917			 * dies after receiving the signal. The window is tiny,
3918			 * and the signal is private anyway.
3919			 */
3920			if (unlikely(error == -ESRCH))
3921				error = 0;
3922		}
3923	}
3924	rcu_read_unlock();
3925
3926	return error;
3927}
3928
3929static int do_tkill(pid_t tgid, pid_t pid, int sig)
3930{
3931	struct kernel_siginfo info;
3932
3933	clear_siginfo(&info);
3934	info.si_signo = sig;
3935	info.si_errno = 0;
3936	info.si_code = SI_TKILL;
3937	info.si_pid = task_tgid_vnr(current);
3938	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3939
3940	return do_send_specific(tgid, pid, sig, &info);
3941}
3942
3943/**
3944 *  sys_tgkill - send signal to one specific thread
3945 *  @tgid: the thread group ID of the thread
3946 *  @pid: the PID of the thread
3947 *  @sig: signal to be sent
3948 *
3949 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3950 *  exists but it's not belonging to the target process anymore. This
3951 *  method solves the problem of threads exiting and PIDs getting reused.
3952 */
3953SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3954{
3955	/* This is only valid for single tasks */
3956	if (pid <= 0 || tgid <= 0)
3957		return -EINVAL;
3958
3959	return do_tkill(tgid, pid, sig);
3960}
3961
3962/**
3963 *  sys_tkill - send signal to one specific task
3964 *  @pid: the PID of the task
3965 *  @sig: signal to be sent
3966 *
3967 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3968 */
3969SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3970{
3971	/* This is only valid for single tasks */
3972	if (pid <= 0)
3973		return -EINVAL;
3974
3975	return do_tkill(0, pid, sig);
3976}
3977
3978static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3979{
3980	/* Not even root can pretend to send signals from the kernel.
3981	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3982	 */
3983	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3984	    (task_pid_vnr(current) != pid))
3985		return -EPERM;
3986
3987	/* POSIX.1b doesn't mention process groups.  */
3988	return kill_proc_info(sig, info, pid);
3989}
3990
3991/**
3992 *  sys_rt_sigqueueinfo - send signal information to a signal
3993 *  @pid: the PID of the thread
3994 *  @sig: signal to be sent
3995 *  @uinfo: signal info to be sent
3996 */
3997SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3998		siginfo_t __user *, uinfo)
3999{
4000	kernel_siginfo_t info;
4001	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4002	if (unlikely(ret))
4003		return ret;
4004	return do_rt_sigqueueinfo(pid, sig, &info);
4005}
4006
4007#ifdef CONFIG_COMPAT
4008COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
4009			compat_pid_t, pid,
4010			int, sig,
4011			struct compat_siginfo __user *, uinfo)
4012{
4013	kernel_siginfo_t info;
4014	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4015	if (unlikely(ret))
4016		return ret;
4017	return do_rt_sigqueueinfo(pid, sig, &info);
4018}
4019#endif
4020
4021static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
4022{
4023	/* This is only valid for single tasks */
4024	if (pid <= 0 || tgid <= 0)
4025		return -EINVAL;
4026
4027	/* Not even root can pretend to send signals from the kernel.
4028	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
4029	 */
4030	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
4031	    (task_pid_vnr(current) != pid))
4032		return -EPERM;
4033
4034	return do_send_specific(tgid, pid, sig, info);
4035}
4036
4037SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
4038		siginfo_t __user *, uinfo)
4039{
4040	kernel_siginfo_t info;
4041	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
4042	if (unlikely(ret))
4043		return ret;
4044	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4045}
4046
4047#ifdef CONFIG_COMPAT
4048COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
4049			compat_pid_t, tgid,
4050			compat_pid_t, pid,
4051			int, sig,
4052			struct compat_siginfo __user *, uinfo)
4053{
4054	kernel_siginfo_t info;
4055	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
4056	if (unlikely(ret))
4057		return ret;
4058	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
4059}
4060#endif
4061
4062/*
4063 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
4064 */
4065void kernel_sigaction(int sig, __sighandler_t action)
4066{
4067	spin_lock_irq(&current->sighand->siglock);
4068	current->sighand->action[sig - 1].sa.sa_handler = action;
4069	if (action == SIG_IGN) {
4070		sigset_t mask;
4071
4072		sigemptyset(&mask);
4073		sigaddset(&mask, sig);
4074
4075		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4076		flush_sigqueue_mask(&mask, &current->pending);
4077		recalc_sigpending();
4078	}
4079	spin_unlock_irq(&current->sighand->siglock);
4080}
4081EXPORT_SYMBOL(kernel_sigaction);
4082
4083void __weak sigaction_compat_abi(struct k_sigaction *act,
4084		struct k_sigaction *oact)
4085{
4086}
4087
4088int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4089{
4090	struct task_struct *p = current, *t;
4091	struct k_sigaction *k;
4092	sigset_t mask;
4093
4094	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4095		return -EINVAL;
4096
4097	k = &p->sighand->action[sig-1];
4098
4099	spin_lock_irq(&p->sighand->siglock);
4100	if (k->sa.sa_flags & SA_IMMUTABLE) {
4101		spin_unlock_irq(&p->sighand->siglock);
4102		return -EINVAL;
4103	}
4104	if (oact)
4105		*oact = *k;
4106
4107	/*
4108	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4109	 * e.g. by having an architecture use the bit in their uapi.
4110	 */
4111	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4112
4113	/*
4114	 * Clear unknown flag bits in order to allow userspace to detect missing
4115	 * support for flag bits and to allow the kernel to use non-uapi bits
4116	 * internally.
4117	 */
4118	if (act)
4119		act->sa.sa_flags &= UAPI_SA_FLAGS;
4120	if (oact)
4121		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4122
4123	sigaction_compat_abi(act, oact);
4124
4125	if (act) {
4126		sigdelsetmask(&act->sa.sa_mask,
4127			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4128		*k = *act;
4129		/*
4130		 * POSIX 3.3.1.3:
4131		 *  "Setting a signal action to SIG_IGN for a signal that is
4132		 *   pending shall cause the pending signal to be discarded,
4133		 *   whether or not it is blocked."
4134		 *
4135		 *  "Setting a signal action to SIG_DFL for a signal that is
4136		 *   pending and whose default action is to ignore the signal
4137		 *   (for example, SIGCHLD), shall cause the pending signal to
4138		 *   be discarded, whether or not it is blocked"
4139		 */
4140		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4141			sigemptyset(&mask);
4142			sigaddset(&mask, sig);
4143			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4144			for_each_thread(p, t)
4145				flush_sigqueue_mask(&mask, &t->pending);
4146		}
4147	}
4148
4149	spin_unlock_irq(&p->sighand->siglock);
4150	return 0;
4151}
4152
4153#ifdef CONFIG_DYNAMIC_SIGFRAME
4154static inline void sigaltstack_lock(void)
4155	__acquires(&current->sighand->siglock)
4156{
4157	spin_lock_irq(&current->sighand->siglock);
4158}
4159
4160static inline void sigaltstack_unlock(void)
4161	__releases(&current->sighand->siglock)
4162{
4163	spin_unlock_irq(&current->sighand->siglock);
4164}
4165#else
4166static inline void sigaltstack_lock(void) { }
4167static inline void sigaltstack_unlock(void) { }
4168#endif
4169
4170static int
4171do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4172		size_t min_ss_size)
4173{
4174	struct task_struct *t = current;
4175	int ret = 0;
4176
4177	if (oss) {
4178		memset(oss, 0, sizeof(stack_t));
4179		oss->ss_sp = (void __user *) t->sas_ss_sp;
4180		oss->ss_size = t->sas_ss_size;
4181		oss->ss_flags = sas_ss_flags(sp) |
4182			(current->sas_ss_flags & SS_FLAG_BITS);
4183	}
4184
4185	if (ss) {
4186		void __user *ss_sp = ss->ss_sp;
4187		size_t ss_size = ss->ss_size;
4188		unsigned ss_flags = ss->ss_flags;
4189		int ss_mode;
4190
4191		if (unlikely(on_sig_stack(sp)))
4192			return -EPERM;
4193
4194		ss_mode = ss_flags & ~SS_FLAG_BITS;
4195		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4196				ss_mode != 0))
4197			return -EINVAL;
4198
4199		/*
4200		 * Return before taking any locks if no actual
4201		 * sigaltstack changes were requested.
4202		 */
4203		if (t->sas_ss_sp == (unsigned long)ss_sp &&
4204		    t->sas_ss_size == ss_size &&
4205		    t->sas_ss_flags == ss_flags)
4206			return 0;
4207
4208		sigaltstack_lock();
4209		if (ss_mode == SS_DISABLE) {
4210			ss_size = 0;
4211			ss_sp = NULL;
4212		} else {
4213			if (unlikely(ss_size < min_ss_size))
4214				ret = -ENOMEM;
4215			if (!sigaltstack_size_valid(ss_size))
4216				ret = -ENOMEM;
4217		}
4218		if (!ret) {
4219			t->sas_ss_sp = (unsigned long) ss_sp;
4220			t->sas_ss_size = ss_size;
4221			t->sas_ss_flags = ss_flags;
4222		}
4223		sigaltstack_unlock();
4224	}
4225	return ret;
4226}
4227
4228SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4229{
4230	stack_t new, old;
4231	int err;
4232	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4233		return -EFAULT;
4234	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4235			      current_user_stack_pointer(),
4236			      MINSIGSTKSZ);
4237	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4238		err = -EFAULT;
4239	return err;
4240}
4241
4242int restore_altstack(const stack_t __user *uss)
4243{
4244	stack_t new;
4245	if (copy_from_user(&new, uss, sizeof(stack_t)))
4246		return -EFAULT;
4247	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4248			     MINSIGSTKSZ);
4249	/* squash all but EFAULT for now */
4250	return 0;
4251}
4252
4253int __save_altstack(stack_t __user *uss, unsigned long sp)
4254{
4255	struct task_struct *t = current;
4256	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4257		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4258		__put_user(t->sas_ss_size, &uss->ss_size);
4259	return err;
4260}
4261
4262#ifdef CONFIG_COMPAT
4263static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4264				 compat_stack_t __user *uoss_ptr)
4265{
4266	stack_t uss, uoss;
4267	int ret;
4268
4269	if (uss_ptr) {
4270		compat_stack_t uss32;
4271		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4272			return -EFAULT;
4273		uss.ss_sp = compat_ptr(uss32.ss_sp);
4274		uss.ss_flags = uss32.ss_flags;
4275		uss.ss_size = uss32.ss_size;
4276	}
4277	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4278			     compat_user_stack_pointer(),
4279			     COMPAT_MINSIGSTKSZ);
4280	if (ret >= 0 && uoss_ptr)  {
4281		compat_stack_t old;
4282		memset(&old, 0, sizeof(old));
4283		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4284		old.ss_flags = uoss.ss_flags;
4285		old.ss_size = uoss.ss_size;
4286		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4287			ret = -EFAULT;
4288	}
4289	return ret;
4290}
4291
4292COMPAT_SYSCALL_DEFINE2(sigaltstack,
4293			const compat_stack_t __user *, uss_ptr,
4294			compat_stack_t __user *, uoss_ptr)
4295{
4296	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4297}
4298
4299int compat_restore_altstack(const compat_stack_t __user *uss)
4300{
4301	int err = do_compat_sigaltstack(uss, NULL);
4302	/* squash all but -EFAULT for now */
4303	return err == -EFAULT ? err : 0;
4304}
4305
4306int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4307{
4308	int err;
4309	struct task_struct *t = current;
4310	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4311			 &uss->ss_sp) |
4312		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4313		__put_user(t->sas_ss_size, &uss->ss_size);
4314	return err;
4315}
4316#endif
4317
4318#ifdef __ARCH_WANT_SYS_SIGPENDING
4319
4320/**
4321 *  sys_sigpending - examine pending signals
4322 *  @uset: where mask of pending signal is returned
4323 */
4324SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4325{
4326	sigset_t set;
4327
4328	if (sizeof(old_sigset_t) > sizeof(*uset))
4329		return -EINVAL;
4330
4331	do_sigpending(&set);
4332
4333	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4334		return -EFAULT;
4335
4336	return 0;
4337}
4338
4339#ifdef CONFIG_COMPAT
4340COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4341{
4342	sigset_t set;
4343
4344	do_sigpending(&set);
4345
4346	return put_user(set.sig[0], set32);
4347}
4348#endif
4349
4350#endif
4351
4352#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4353/**
4354 *  sys_sigprocmask - examine and change blocked signals
4355 *  @how: whether to add, remove, or set signals
4356 *  @nset: signals to add or remove (if non-null)
4357 *  @oset: previous value of signal mask if non-null
4358 *
4359 * Some platforms have their own version with special arguments;
4360 * others support only sys_rt_sigprocmask.
4361 */
4362
4363SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4364		old_sigset_t __user *, oset)
4365{
4366	old_sigset_t old_set, new_set;
4367	sigset_t new_blocked;
4368
4369	old_set = current->blocked.sig[0];
4370
4371	if (nset) {
4372		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4373			return -EFAULT;
4374
4375		new_blocked = current->blocked;
4376
4377		switch (how) {
4378		case SIG_BLOCK:
4379			sigaddsetmask(&new_blocked, new_set);
4380			break;
4381		case SIG_UNBLOCK:
4382			sigdelsetmask(&new_blocked, new_set);
4383			break;
4384		case SIG_SETMASK:
4385			new_blocked.sig[0] = new_set;
4386			break;
4387		default:
4388			return -EINVAL;
4389		}
4390
4391		set_current_blocked(&new_blocked);
4392	}
4393
4394	if (oset) {
4395		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4396			return -EFAULT;
4397	}
4398
4399	return 0;
4400}
4401#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4402
4403#ifndef CONFIG_ODD_RT_SIGACTION
4404/**
4405 *  sys_rt_sigaction - alter an action taken by a process
4406 *  @sig: signal to be sent
4407 *  @act: new sigaction
4408 *  @oact: used to save the previous sigaction
4409 *  @sigsetsize: size of sigset_t type
4410 */
4411SYSCALL_DEFINE4(rt_sigaction, int, sig,
4412		const struct sigaction __user *, act,
4413		struct sigaction __user *, oact,
4414		size_t, sigsetsize)
4415{
4416	struct k_sigaction new_sa, old_sa;
4417	int ret;
4418
4419	/* XXX: Don't preclude handling different sized sigset_t's.  */
4420	if (sigsetsize != sizeof(sigset_t))
4421		return -EINVAL;
4422
4423	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4424		return -EFAULT;
4425
4426	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4427	if (ret)
4428		return ret;
4429
4430	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4431		return -EFAULT;
4432
4433	return 0;
4434}
4435#ifdef CONFIG_COMPAT
4436COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4437		const struct compat_sigaction __user *, act,
4438		struct compat_sigaction __user *, oact,
4439		compat_size_t, sigsetsize)
4440{
4441	struct k_sigaction new_ka, old_ka;
4442#ifdef __ARCH_HAS_SA_RESTORER
4443	compat_uptr_t restorer;
4444#endif
4445	int ret;
4446
4447	/* XXX: Don't preclude handling different sized sigset_t's.  */
4448	if (sigsetsize != sizeof(compat_sigset_t))
4449		return -EINVAL;
4450
4451	if (act) {
4452		compat_uptr_t handler;
4453		ret = get_user(handler, &act->sa_handler);
4454		new_ka.sa.sa_handler = compat_ptr(handler);
4455#ifdef __ARCH_HAS_SA_RESTORER
4456		ret |= get_user(restorer, &act->sa_restorer);
4457		new_ka.sa.sa_restorer = compat_ptr(restorer);
4458#endif
4459		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4460		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4461		if (ret)
4462			return -EFAULT;
4463	}
4464
4465	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4466	if (!ret && oact) {
4467		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4468			       &oact->sa_handler);
4469		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4470					 sizeof(oact->sa_mask));
4471		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4472#ifdef __ARCH_HAS_SA_RESTORER
4473		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4474				&oact->sa_restorer);
4475#endif
4476	}
4477	return ret;
4478}
4479#endif
4480#endif /* !CONFIG_ODD_RT_SIGACTION */
4481
4482#ifdef CONFIG_OLD_SIGACTION
4483SYSCALL_DEFINE3(sigaction, int, sig,
4484		const struct old_sigaction __user *, act,
4485	        struct old_sigaction __user *, oact)
4486{
4487	struct k_sigaction new_ka, old_ka;
4488	int ret;
4489
4490	if (act) {
4491		old_sigset_t mask;
4492		if (!access_ok(act, sizeof(*act)) ||
4493		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4494		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4495		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4496		    __get_user(mask, &act->sa_mask))
4497			return -EFAULT;
4498#ifdef __ARCH_HAS_KA_RESTORER
4499		new_ka.ka_restorer = NULL;
4500#endif
4501		siginitset(&new_ka.sa.sa_mask, mask);
4502	}
4503
4504	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4505
4506	if (!ret && oact) {
4507		if (!access_ok(oact, sizeof(*oact)) ||
4508		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4509		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4510		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4511		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4512			return -EFAULT;
4513	}
4514
4515	return ret;
4516}
4517#endif
4518#ifdef CONFIG_COMPAT_OLD_SIGACTION
4519COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4520		const struct compat_old_sigaction __user *, act,
4521	        struct compat_old_sigaction __user *, oact)
4522{
4523	struct k_sigaction new_ka, old_ka;
4524	int ret;
4525	compat_old_sigset_t mask;
4526	compat_uptr_t handler, restorer;
4527
4528	if (act) {
4529		if (!access_ok(act, sizeof(*act)) ||
4530		    __get_user(handler, &act->sa_handler) ||
4531		    __get_user(restorer, &act->sa_restorer) ||
4532		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4533		    __get_user(mask, &act->sa_mask))
4534			return -EFAULT;
4535
4536#ifdef __ARCH_HAS_KA_RESTORER
4537		new_ka.ka_restorer = NULL;
4538#endif
4539		new_ka.sa.sa_handler = compat_ptr(handler);
4540		new_ka.sa.sa_restorer = compat_ptr(restorer);
4541		siginitset(&new_ka.sa.sa_mask, mask);
4542	}
4543
4544	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4545
4546	if (!ret && oact) {
4547		if (!access_ok(oact, sizeof(*oact)) ||
4548		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4549			       &oact->sa_handler) ||
4550		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4551			       &oact->sa_restorer) ||
4552		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4553		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4554			return -EFAULT;
4555	}
4556	return ret;
4557}
4558#endif
4559
4560#ifdef CONFIG_SGETMASK_SYSCALL
4561
4562/*
4563 * For backwards compatibility.  Functionality superseded by sigprocmask.
4564 */
4565SYSCALL_DEFINE0(sgetmask)
4566{
4567	/* SMP safe */
4568	return current->blocked.sig[0];
4569}
4570
4571SYSCALL_DEFINE1(ssetmask, int, newmask)
4572{
4573	int old = current->blocked.sig[0];
4574	sigset_t newset;
4575
4576	siginitset(&newset, newmask);
4577	set_current_blocked(&newset);
4578
4579	return old;
4580}
4581#endif /* CONFIG_SGETMASK_SYSCALL */
4582
4583#ifdef __ARCH_WANT_SYS_SIGNAL
4584/*
4585 * For backwards compatibility.  Functionality superseded by sigaction.
4586 */
4587SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4588{
4589	struct k_sigaction new_sa, old_sa;
4590	int ret;
4591
4592	new_sa.sa.sa_handler = handler;
4593	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4594	sigemptyset(&new_sa.sa.sa_mask);
4595
4596	ret = do_sigaction(sig, &new_sa, &old_sa);
4597
4598	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4599}
4600#endif /* __ARCH_WANT_SYS_SIGNAL */
4601
4602#ifdef __ARCH_WANT_SYS_PAUSE
4603
4604SYSCALL_DEFINE0(pause)
4605{
4606	while (!signal_pending(current)) {
4607		__set_current_state(TASK_INTERRUPTIBLE);
4608		schedule();
4609	}
4610	return -ERESTARTNOHAND;
4611}
4612
4613#endif
4614
4615static int sigsuspend(sigset_t *set)
4616{
4617	current->saved_sigmask = current->blocked;
4618	set_current_blocked(set);
4619
4620	while (!signal_pending(current)) {
4621		__set_current_state(TASK_INTERRUPTIBLE);
4622		schedule();
4623	}
4624	set_restore_sigmask();
4625	return -ERESTARTNOHAND;
4626}
4627
4628/**
4629 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4630 *	@unewset value until a signal is received
4631 *  @unewset: new signal mask value
4632 *  @sigsetsize: size of sigset_t type
4633 */
4634SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4635{
4636	sigset_t newset;
4637
4638	/* XXX: Don't preclude handling different sized sigset_t's.  */
4639	if (sigsetsize != sizeof(sigset_t))
4640		return -EINVAL;
4641
4642	if (copy_from_user(&newset, unewset, sizeof(newset)))
4643		return -EFAULT;
4644	return sigsuspend(&newset);
4645}
4646 
4647#ifdef CONFIG_COMPAT
4648COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4649{
4650	sigset_t newset;
4651
4652	/* XXX: Don't preclude handling different sized sigset_t's.  */
4653	if (sigsetsize != sizeof(sigset_t))
4654		return -EINVAL;
4655
4656	if (get_compat_sigset(&newset, unewset))
4657		return -EFAULT;
4658	return sigsuspend(&newset);
4659}
4660#endif
4661
4662#ifdef CONFIG_OLD_SIGSUSPEND
4663SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4664{
4665	sigset_t blocked;
4666	siginitset(&blocked, mask);
4667	return sigsuspend(&blocked);
4668}
4669#endif
4670#ifdef CONFIG_OLD_SIGSUSPEND3
4671SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4672{
4673	sigset_t blocked;
4674	siginitset(&blocked, mask);
4675	return sigsuspend(&blocked);
4676}
4677#endif
4678
4679__weak const char *arch_vma_name(struct vm_area_struct *vma)
4680{
4681	return NULL;
4682}
4683
4684static inline void siginfo_buildtime_checks(void)
4685{
4686	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4687
4688	/* Verify the offsets in the two siginfos match */
4689#define CHECK_OFFSET(field) \
4690	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4691
4692	/* kill */
4693	CHECK_OFFSET(si_pid);
4694	CHECK_OFFSET(si_uid);
4695
4696	/* timer */
4697	CHECK_OFFSET(si_tid);
4698	CHECK_OFFSET(si_overrun);
4699	CHECK_OFFSET(si_value);
4700
4701	/* rt */
4702	CHECK_OFFSET(si_pid);
4703	CHECK_OFFSET(si_uid);
4704	CHECK_OFFSET(si_value);
4705
4706	/* sigchld */
4707	CHECK_OFFSET(si_pid);
4708	CHECK_OFFSET(si_uid);
4709	CHECK_OFFSET(si_status);
4710	CHECK_OFFSET(si_utime);
4711	CHECK_OFFSET(si_stime);
4712
4713	/* sigfault */
4714	CHECK_OFFSET(si_addr);
4715	CHECK_OFFSET(si_trapno);
4716	CHECK_OFFSET(si_addr_lsb);
4717	CHECK_OFFSET(si_lower);
4718	CHECK_OFFSET(si_upper);
4719	CHECK_OFFSET(si_pkey);
4720	CHECK_OFFSET(si_perf_data);
4721	CHECK_OFFSET(si_perf_type);
4722	CHECK_OFFSET(si_perf_flags);
4723
4724	/* sigpoll */
4725	CHECK_OFFSET(si_band);
4726	CHECK_OFFSET(si_fd);
4727
4728	/* sigsys */
4729	CHECK_OFFSET(si_call_addr);
4730	CHECK_OFFSET(si_syscall);
4731	CHECK_OFFSET(si_arch);
4732#undef CHECK_OFFSET
4733
4734	/* usb asyncio */
4735	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4736		     offsetof(struct siginfo, si_addr));
4737	if (sizeof(int) == sizeof(void __user *)) {
4738		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4739			     sizeof(void __user *));
4740	} else {
4741		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4742			      sizeof_field(struct siginfo, si_uid)) !=
4743			     sizeof(void __user *));
4744		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4745			     offsetof(struct siginfo, si_uid));
4746	}
4747#ifdef CONFIG_COMPAT
4748	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4749		     offsetof(struct compat_siginfo, si_addr));
4750	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4751		     sizeof(compat_uptr_t));
4752	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4753		     sizeof_field(struct siginfo, si_pid));
4754#endif
4755}
4756
4757void __init signals_init(void)
4758{
4759	siginfo_buildtime_checks();
4760
4761	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC | SLAB_ACCOUNT);
4762}
4763
4764#ifdef CONFIG_KGDB_KDB
4765#include <linux/kdb.h>
4766/*
4767 * kdb_send_sig - Allows kdb to send signals without exposing
4768 * signal internals.  This function checks if the required locks are
4769 * available before calling the main signal code, to avoid kdb
4770 * deadlocks.
4771 */
4772void kdb_send_sig(struct task_struct *t, int sig)
4773{
4774	static struct task_struct *kdb_prev_t;
4775	int new_t, ret;
4776	if (!spin_trylock(&t->sighand->siglock)) {
4777		kdb_printf("Can't do kill command now.\n"
4778			   "The sigmask lock is held somewhere else in "
4779			   "kernel, try again later\n");
4780		return;
4781	}
4782	new_t = kdb_prev_t != t;
4783	kdb_prev_t = t;
4784	if (!task_is_running(t) && new_t) {
4785		spin_unlock(&t->sighand->siglock);
4786		kdb_printf("Process is not RUNNING, sending a signal from "
4787			   "kdb risks deadlock\n"
4788			   "on the run queue locks. "
4789			   "The signal has _not_ been sent.\n"
4790			   "Reissue the kill command if you want to risk "
4791			   "the deadlock.\n");
4792		return;
4793	}
4794	ret = send_signal_locked(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4795	spin_unlock(&t->sighand->siglock);
4796	if (ret)
4797		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4798			   sig, t->pid);
4799	else
4800		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4801}
4802#endif	/* CONFIG_KGDB_KDB */