Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/signal.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   8 *
   9 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
  10 *		Changes to use preallocated sigqueue structures
  11 *		to allow signals to be sent reliably.
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/init.h>
  17#include <linux/sched/mm.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/debug.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/task_stack.h>
  22#include <linux/sched/cputime.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/proc_fs.h>
  26#include <linux/tty.h>
  27#include <linux/binfmts.h>
  28#include <linux/coredump.h>
  29#include <linux/security.h>
  30#include <linux/syscalls.h>
  31#include <linux/ptrace.h>
  32#include <linux/signal.h>
  33#include <linux/signalfd.h>
  34#include <linux/ratelimit.h>
  35#include <linux/tracehook.h>
  36#include <linux/capability.h>
  37#include <linux/freezer.h>
  38#include <linux/pid_namespace.h>
  39#include <linux/nsproxy.h>
  40#include <linux/user_namespace.h>
  41#include <linux/uprobes.h>
  42#include <linux/compat.h>
  43#include <linux/cn_proc.h>
  44#include <linux/compiler.h>
  45#include <linux/posix-timers.h>
  46#include <linux/cgroup.h>
  47#include <linux/audit.h>
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/signal.h>
  51
  52#include <asm/param.h>
  53#include <linux/uaccess.h>
  54#include <asm/unistd.h>
  55#include <asm/siginfo.h>
  56#include <asm/cacheflush.h>
 
  57
  58/*
  59 * SLAB caches for signal bits.
  60 */
  61
  62static struct kmem_cache *sigqueue_cachep;
  63
  64int print_fatal_signals __read_mostly;
  65
  66static void __user *sig_handler(struct task_struct *t, int sig)
  67{
  68	return t->sighand->action[sig - 1].sa.sa_handler;
  69}
  70
  71static inline bool sig_handler_ignored(void __user *handler, int sig)
  72{
  73	/* Is it explicitly or implicitly ignored? */
  74	return handler == SIG_IGN ||
  75	       (handler == SIG_DFL && sig_kernel_ignore(sig));
  76}
  77
  78static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
  79{
  80	void __user *handler;
  81
  82	handler = sig_handler(t, sig);
  83
  84	/* SIGKILL and SIGSTOP may not be sent to the global init */
  85	if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
  86		return true;
  87
  88	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  89	    handler == SIG_DFL && !(force && sig_kernel_only(sig)))
  90		return true;
  91
  92	/* Only allow kernel generated signals to this kthread */
  93	if (unlikely((t->flags & PF_KTHREAD) &&
  94		     (handler == SIG_KTHREAD_KERNEL) && !force))
  95		return true;
  96
  97	return sig_handler_ignored(handler, sig);
  98}
  99
 100static bool sig_ignored(struct task_struct *t, int sig, bool force)
 101{
 102	/*
 103	 * Blocked signals are never ignored, since the
 104	 * signal handler may change by the time it is
 105	 * unblocked.
 106	 */
 107	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
 108		return false;
 
 
 
 109
 110	/*
 111	 * Tracers may want to know about even ignored signal unless it
 112	 * is SIGKILL which can't be reported anyway but can be ignored
 113	 * by SIGNAL_UNKILLABLE task.
 114	 */
 115	if (t->ptrace && sig != SIGKILL)
 116		return false;
 117
 118	return sig_task_ignored(t, sig, force);
 119}
 120
 121/*
 122 * Re-calculate pending state from the set of locally pending
 123 * signals, globally pending signals, and blocked signals.
 124 */
 125static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
 126{
 127	unsigned long ready;
 128	long i;
 129
 130	switch (_NSIG_WORDS) {
 131	default:
 132		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 133			ready |= signal->sig[i] &~ blocked->sig[i];
 134		break;
 135
 136	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 137		ready |= signal->sig[2] &~ blocked->sig[2];
 138		ready |= signal->sig[1] &~ blocked->sig[1];
 139		ready |= signal->sig[0] &~ blocked->sig[0];
 140		break;
 141
 142	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 143		ready |= signal->sig[0] &~ blocked->sig[0];
 144		break;
 145
 146	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 147	}
 148	return ready !=	0;
 149}
 150
 151#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 152
 153static bool recalc_sigpending_tsk(struct task_struct *t)
 154{
 155	if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
 156	    PENDING(&t->pending, &t->blocked) ||
 157	    PENDING(&t->signal->shared_pending, &t->blocked) ||
 158	    cgroup_task_frozen(t)) {
 159		set_tsk_thread_flag(t, TIF_SIGPENDING);
 160		return true;
 161	}
 162
 163	/*
 164	 * We must never clear the flag in another thread, or in current
 165	 * when it's possible the current syscall is returning -ERESTART*.
 166	 * So we don't clear it here, and only callers who know they should do.
 167	 */
 168	return false;
 169}
 170
 171/*
 172 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 173 * This is superfluous when called on current, the wakeup is a harmless no-op.
 174 */
 175void recalc_sigpending_and_wake(struct task_struct *t)
 176{
 177	if (recalc_sigpending_tsk(t))
 178		signal_wake_up(t, 0);
 179}
 180
 181void recalc_sigpending(void)
 182{
 183	if (!recalc_sigpending_tsk(current) && !freezing(current))
 184		clear_thread_flag(TIF_SIGPENDING);
 185
 186}
 187EXPORT_SYMBOL(recalc_sigpending);
 188
 189void calculate_sigpending(void)
 190{
 191	/* Have any signals or users of TIF_SIGPENDING been delayed
 192	 * until after fork?
 193	 */
 194	spin_lock_irq(&current->sighand->siglock);
 195	set_tsk_thread_flag(current, TIF_SIGPENDING);
 196	recalc_sigpending();
 197	spin_unlock_irq(&current->sighand->siglock);
 198}
 199
 200/* Given the mask, find the first available signal that should be serviced. */
 201
 202#define SYNCHRONOUS_MASK \
 203	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 204	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 205
 206int next_signal(struct sigpending *pending, sigset_t *mask)
 207{
 208	unsigned long i, *s, *m, x;
 209	int sig = 0;
 210
 211	s = pending->signal.sig;
 212	m = mask->sig;
 213
 214	/*
 215	 * Handle the first word specially: it contains the
 216	 * synchronous signals that need to be dequeued first.
 217	 */
 218	x = *s &~ *m;
 219	if (x) {
 220		if (x & SYNCHRONOUS_MASK)
 221			x &= SYNCHRONOUS_MASK;
 222		sig = ffz(~x) + 1;
 223		return sig;
 224	}
 225
 226	switch (_NSIG_WORDS) {
 227	default:
 228		for (i = 1; i < _NSIG_WORDS; ++i) {
 229			x = *++s &~ *++m;
 230			if (!x)
 231				continue;
 232			sig = ffz(~x) + i*_NSIG_BPW + 1;
 233			break;
 234		}
 235		break;
 236
 237	case 2:
 238		x = s[1] &~ m[1];
 239		if (!x)
 240			break;
 241		sig = ffz(~x) + _NSIG_BPW + 1;
 242		break;
 243
 244	case 1:
 245		/* Nothing to do */
 246		break;
 247	}
 248
 249	return sig;
 250}
 251
 252static inline void print_dropped_signal(int sig)
 253{
 254	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 255
 256	if (!print_fatal_signals)
 257		return;
 258
 259	if (!__ratelimit(&ratelimit_state))
 260		return;
 261
 262	pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 263				current->comm, current->pid, sig);
 264}
 265
 266/**
 267 * task_set_jobctl_pending - set jobctl pending bits
 268 * @task: target task
 269 * @mask: pending bits to set
 270 *
 271 * Clear @mask from @task->jobctl.  @mask must be subset of
 272 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 273 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 274 * cleared.  If @task is already being killed or exiting, this function
 275 * becomes noop.
 276 *
 277 * CONTEXT:
 278 * Must be called with @task->sighand->siglock held.
 279 *
 280 * RETURNS:
 281 * %true if @mask is set, %false if made noop because @task was dying.
 282 */
 283bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 284{
 285	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 286			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 287	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 288
 289	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 290		return false;
 291
 292	if (mask & JOBCTL_STOP_SIGMASK)
 293		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 294
 295	task->jobctl |= mask;
 296	return true;
 297}
 298
 299/**
 300 * task_clear_jobctl_trapping - clear jobctl trapping bit
 301 * @task: target task
 302 *
 303 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 304 * Clear it and wake up the ptracer.  Note that we don't need any further
 305 * locking.  @task->siglock guarantees that @task->parent points to the
 306 * ptracer.
 307 *
 308 * CONTEXT:
 309 * Must be called with @task->sighand->siglock held.
 310 */
 311void task_clear_jobctl_trapping(struct task_struct *task)
 312{
 313	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 314		task->jobctl &= ~JOBCTL_TRAPPING;
 315		smp_mb();	/* advised by wake_up_bit() */
 316		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 317	}
 318}
 319
 320/**
 321 * task_clear_jobctl_pending - clear jobctl pending bits
 322 * @task: target task
 323 * @mask: pending bits to clear
 324 *
 325 * Clear @mask from @task->jobctl.  @mask must be subset of
 326 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 327 * STOP bits are cleared together.
 328 *
 329 * If clearing of @mask leaves no stop or trap pending, this function calls
 330 * task_clear_jobctl_trapping().
 331 *
 332 * CONTEXT:
 333 * Must be called with @task->sighand->siglock held.
 334 */
 335void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 336{
 337	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 338
 339	if (mask & JOBCTL_STOP_PENDING)
 340		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 341
 342	task->jobctl &= ~mask;
 343
 344	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 345		task_clear_jobctl_trapping(task);
 346}
 347
 348/**
 349 * task_participate_group_stop - participate in a group stop
 350 * @task: task participating in a group stop
 351 *
 352 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 353 * Group stop states are cleared and the group stop count is consumed if
 354 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 355 * stop, the appropriate `SIGNAL_*` flags are set.
 356 *
 357 * CONTEXT:
 358 * Must be called with @task->sighand->siglock held.
 359 *
 360 * RETURNS:
 361 * %true if group stop completion should be notified to the parent, %false
 362 * otherwise.
 363 */
 364static bool task_participate_group_stop(struct task_struct *task)
 365{
 366	struct signal_struct *sig = task->signal;
 367	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 368
 369	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 370
 371	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 372
 373	if (!consume)
 374		return false;
 375
 376	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 377		sig->group_stop_count--;
 378
 379	/*
 380	 * Tell the caller to notify completion iff we are entering into a
 381	 * fresh group stop.  Read comment in do_signal_stop() for details.
 382	 */
 383	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 384		signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
 385		return true;
 386	}
 387	return false;
 388}
 389
 390void task_join_group_stop(struct task_struct *task)
 391{
 392	unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
 393	struct signal_struct *sig = current->signal;
 394
 395	if (sig->group_stop_count) {
 396		sig->group_stop_count++;
 397		mask |= JOBCTL_STOP_CONSUME;
 398	} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
 399		return;
 400
 401	/* Have the new thread join an on-going signal group stop */
 402	task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
 403}
 404
 405/*
 406 * allocate a new signal queue record
 407 * - this may be called without locks if and only if t == current, otherwise an
 408 *   appropriate lock must be held to stop the target task from exiting
 409 */
 410static struct sigqueue *
 411__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
 412		 int override_rlimit, const unsigned int sigqueue_flags)
 413{
 414	struct sigqueue *q = NULL;
 415	struct ucounts *ucounts = NULL;
 416	long sigpending;
 417
 418	/*
 419	 * Protect access to @t credentials. This can go away when all
 420	 * callers hold rcu read lock.
 421	 *
 422	 * NOTE! A pending signal will hold on to the user refcount,
 423	 * and we get/put the refcount only when the sigpending count
 424	 * changes from/to zero.
 425	 */
 426	rcu_read_lock();
 427	ucounts = task_ucounts(t);
 428	sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 429	rcu_read_unlock();
 430	if (!sigpending)
 431		return NULL;
 432
 433	if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
 434		q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
 
 
 435	} else {
 436		print_dropped_signal(sig);
 437	}
 438
 439	if (unlikely(q == NULL)) {
 440		dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
 
 441	} else {
 442		INIT_LIST_HEAD(&q->list);
 443		q->flags = sigqueue_flags;
 444		q->ucounts = ucounts;
 445	}
 
 446	return q;
 447}
 448
 449static void __sigqueue_free(struct sigqueue *q)
 450{
 451	if (q->flags & SIGQUEUE_PREALLOC)
 452		return;
 453	if (q->ucounts) {
 454		dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
 455		q->ucounts = NULL;
 456	}
 457	kmem_cache_free(sigqueue_cachep, q);
 458}
 459
 460void flush_sigqueue(struct sigpending *queue)
 461{
 462	struct sigqueue *q;
 463
 464	sigemptyset(&queue->signal);
 465	while (!list_empty(&queue->list)) {
 466		q = list_entry(queue->list.next, struct sigqueue , list);
 467		list_del_init(&q->list);
 468		__sigqueue_free(q);
 469	}
 470}
 471
 472/*
 473 * Flush all pending signals for this kthread.
 474 */
 
 
 
 
 
 
 
 475void flush_signals(struct task_struct *t)
 476{
 477	unsigned long flags;
 478
 479	spin_lock_irqsave(&t->sighand->siglock, flags);
 480	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 481	flush_sigqueue(&t->pending);
 482	flush_sigqueue(&t->signal->shared_pending);
 483	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 484}
 485EXPORT_SYMBOL(flush_signals);
 486
 487#ifdef CONFIG_POSIX_TIMERS
 488static void __flush_itimer_signals(struct sigpending *pending)
 489{
 490	sigset_t signal, retain;
 491	struct sigqueue *q, *n;
 492
 493	signal = pending->signal;
 494	sigemptyset(&retain);
 495
 496	list_for_each_entry_safe(q, n, &pending->list, list) {
 497		int sig = q->info.si_signo;
 498
 499		if (likely(q->info.si_code != SI_TIMER)) {
 500			sigaddset(&retain, sig);
 501		} else {
 502			sigdelset(&signal, sig);
 503			list_del_init(&q->list);
 504			__sigqueue_free(q);
 505		}
 506	}
 507
 508	sigorsets(&pending->signal, &signal, &retain);
 509}
 510
 511void flush_itimer_signals(void)
 512{
 513	struct task_struct *tsk = current;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 517	__flush_itimer_signals(&tsk->pending);
 518	__flush_itimer_signals(&tsk->signal->shared_pending);
 519	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 520}
 521#endif
 522
 523void ignore_signals(struct task_struct *t)
 524{
 525	int i;
 526
 527	for (i = 0; i < _NSIG; ++i)
 528		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 529
 530	flush_signals(t);
 531}
 532
 533/*
 534 * Flush all handlers for a task.
 535 */
 536
 537void
 538flush_signal_handlers(struct task_struct *t, int force_default)
 539{
 540	int i;
 541	struct k_sigaction *ka = &t->sighand->action[0];
 542	for (i = _NSIG ; i != 0 ; i--) {
 543		if (force_default || ka->sa.sa_handler != SIG_IGN)
 544			ka->sa.sa_handler = SIG_DFL;
 545		ka->sa.sa_flags = 0;
 546#ifdef __ARCH_HAS_SA_RESTORER
 547		ka->sa.sa_restorer = NULL;
 548#endif
 549		sigemptyset(&ka->sa.sa_mask);
 550		ka++;
 551	}
 552}
 553
 554bool unhandled_signal(struct task_struct *tsk, int sig)
 555{
 556	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 557	if (is_global_init(tsk))
 558		return true;
 559
 560	if (handler != SIG_IGN && handler != SIG_DFL)
 561		return false;
 562
 563	/* if ptraced, let the tracer determine */
 564	return !tsk->ptrace;
 565}
 566
 567static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
 568			   bool *resched_timer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569{
 570	struct sigqueue *q, *first = NULL;
 571
 572	/*
 573	 * Collect the siginfo appropriate to this signal.  Check if
 574	 * there is another siginfo for the same signal.
 575	*/
 576	list_for_each_entry(q, &list->list, list) {
 577		if (q->info.si_signo == sig) {
 578			if (first)
 579				goto still_pending;
 580			first = q;
 581		}
 582	}
 583
 584	sigdelset(&list->signal, sig);
 585
 586	if (first) {
 587still_pending:
 588		list_del_init(&first->list);
 589		copy_siginfo(info, &first->info);
 590
 591		*resched_timer =
 592			(first->flags & SIGQUEUE_PREALLOC) &&
 593			(info->si_code == SI_TIMER) &&
 594			(info->si_sys_private);
 595
 596		__sigqueue_free(first);
 597	} else {
 598		/*
 599		 * Ok, it wasn't in the queue.  This must be
 600		 * a fast-pathed signal or we must have been
 601		 * out of queue space.  So zero out the info.
 602		 */
 603		clear_siginfo(info);
 604		info->si_signo = sig;
 605		info->si_errno = 0;
 606		info->si_code = SI_USER;
 607		info->si_pid = 0;
 608		info->si_uid = 0;
 609	}
 610}
 611
 612static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 613			kernel_siginfo_t *info, bool *resched_timer)
 614{
 615	int sig = next_signal(pending, mask);
 616
 617	if (sig)
 618		collect_signal(sig, pending, info, resched_timer);
 
 
 
 
 
 
 
 
 
 
 
 619	return sig;
 620}
 621
 622/*
 623 * Dequeue a signal and return the element to the caller, which is
 624 * expected to free it.
 625 *
 626 * All callers have to hold the siglock.
 627 */
 628int dequeue_signal(struct task_struct *tsk, sigset_t *mask, kernel_siginfo_t *info)
 629{
 630	bool resched_timer = false;
 631	int signr;
 632
 633	/* We only dequeue private signals from ourselves, we don't let
 634	 * signalfd steal them
 635	 */
 636	signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
 637	if (!signr) {
 638		signr = __dequeue_signal(&tsk->signal->shared_pending,
 639					 mask, info, &resched_timer);
 640#ifdef CONFIG_POSIX_TIMERS
 641		/*
 642		 * itimer signal ?
 643		 *
 644		 * itimers are process shared and we restart periodic
 645		 * itimers in the signal delivery path to prevent DoS
 646		 * attacks in the high resolution timer case. This is
 647		 * compliant with the old way of self-restarting
 648		 * itimers, as the SIGALRM is a legacy signal and only
 649		 * queued once. Changing the restart behaviour to
 650		 * restart the timer in the signal dequeue path is
 651		 * reducing the timer noise on heavy loaded !highres
 652		 * systems too.
 653		 */
 654		if (unlikely(signr == SIGALRM)) {
 655			struct hrtimer *tmr = &tsk->signal->real_timer;
 656
 657			if (!hrtimer_is_queued(tmr) &&
 658			    tsk->signal->it_real_incr != 0) {
 659				hrtimer_forward(tmr, tmr->base->get_time(),
 660						tsk->signal->it_real_incr);
 661				hrtimer_restart(tmr);
 662			}
 663		}
 664#endif
 665	}
 666
 667	recalc_sigpending();
 668	if (!signr)
 669		return 0;
 670
 671	if (unlikely(sig_kernel_stop(signr))) {
 672		/*
 673		 * Set a marker that we have dequeued a stop signal.  Our
 674		 * caller might release the siglock and then the pending
 675		 * stop signal it is about to process is no longer in the
 676		 * pending bitmasks, but must still be cleared by a SIGCONT
 677		 * (and overruled by a SIGKILL).  So those cases clear this
 678		 * shared flag after we've set it.  Note that this flag may
 679		 * remain set after the signal we return is ignored or
 680		 * handled.  That doesn't matter because its only purpose
 681		 * is to alert stop-signal processing code when another
 682		 * processor has come along and cleared the flag.
 683		 */
 684		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 685	}
 686#ifdef CONFIG_POSIX_TIMERS
 687	if (resched_timer) {
 688		/*
 689		 * Release the siglock to ensure proper locking order
 690		 * of timer locks outside of siglocks.  Note, we leave
 691		 * irqs disabled here, since the posix-timers code is
 692		 * about to disable them again anyway.
 693		 */
 694		spin_unlock(&tsk->sighand->siglock);
 695		posixtimer_rearm(info);
 696		spin_lock(&tsk->sighand->siglock);
 697
 698		/* Don't expose the si_sys_private value to userspace */
 699		info->si_sys_private = 0;
 700	}
 701#endif
 702	return signr;
 703}
 704EXPORT_SYMBOL_GPL(dequeue_signal);
 705
 706static int dequeue_synchronous_signal(kernel_siginfo_t *info)
 707{
 708	struct task_struct *tsk = current;
 709	struct sigpending *pending = &tsk->pending;
 710	struct sigqueue *q, *sync = NULL;
 711
 712	/*
 713	 * Might a synchronous signal be in the queue?
 714	 */
 715	if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
 716		return 0;
 717
 718	/*
 719	 * Return the first synchronous signal in the queue.
 720	 */
 721	list_for_each_entry(q, &pending->list, list) {
 722		/* Synchronous signals have a positive si_code */
 723		if ((q->info.si_code > SI_USER) &&
 724		    (sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
 725			sync = q;
 726			goto next;
 727		}
 728	}
 729	return 0;
 730next:
 731	/*
 732	 * Check if there is another siginfo for the same signal.
 733	 */
 734	list_for_each_entry_continue(q, &pending->list, list) {
 735		if (q->info.si_signo == sync->info.si_signo)
 736			goto still_pending;
 737	}
 738
 739	sigdelset(&pending->signal, sync->info.si_signo);
 740	recalc_sigpending();
 741still_pending:
 742	list_del_init(&sync->list);
 743	copy_siginfo(info, &sync->info);
 744	__sigqueue_free(sync);
 745	return info->si_signo;
 746}
 747
 748/*
 749 * Tell a process that it has a new active signal..
 750 *
 751 * NOTE! we rely on the previous spin_lock to
 752 * lock interrupts for us! We can only be called with
 753 * "siglock" held, and the local interrupt must
 754 * have been disabled when that got acquired!
 755 *
 756 * No need to set need_resched since signal event passing
 757 * goes through ->blocked
 758 */
 759void signal_wake_up_state(struct task_struct *t, unsigned int state)
 760{
 761	set_tsk_thread_flag(t, TIF_SIGPENDING);
 762	/*
 763	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 764	 * case. We don't check t->state here because there is a race with it
 765	 * executing another processor and just now entering stopped state.
 766	 * By using wake_up_state, we ensure the process will wake up and
 767	 * handle its death signal.
 768	 */
 769	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 770		kick_process(t);
 771}
 772
 773/*
 774 * Remove signals in mask from the pending set and queue.
 775 * Returns 1 if any signals were found.
 776 *
 777 * All callers must be holding the siglock.
 
 
 
 778 */
 779static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 780{
 781	struct sigqueue *q, *n;
 782	sigset_t m;
 783
 784	sigandsets(&m, mask, &s->signal);
 785	if (sigisemptyset(&m))
 786		return;
 787
 788	sigandnsets(&s->signal, &s->signal, mask);
 789	list_for_each_entry_safe(q, n, &s->list, list) {
 790		if (sigismember(mask, q->info.si_signo)) {
 791			list_del_init(&q->list);
 792			__sigqueue_free(q);
 793		}
 794	}
 
 795}
 
 
 
 
 
 
 
 
 
 
 
 
 796
 797static inline int is_si_special(const struct kernel_siginfo *info)
 
 
 
 
 
 
 
 
 
 
 
 798{
 799	return info <= SEND_SIG_PRIV;
 800}
 801
 802static inline bool si_fromuser(const struct kernel_siginfo *info)
 803{
 804	return info == SEND_SIG_NOINFO ||
 805		(!is_si_special(info) && SI_FROMUSER(info));
 806}
 807
 808/*
 809 * called with RCU read lock from check_kill_permission()
 810 */
 811static bool kill_ok_by_cred(struct task_struct *t)
 812{
 813	const struct cred *cred = current_cred();
 814	const struct cred *tcred = __task_cred(t);
 815
 816	return uid_eq(cred->euid, tcred->suid) ||
 817	       uid_eq(cred->euid, tcred->uid) ||
 818	       uid_eq(cred->uid, tcred->suid) ||
 819	       uid_eq(cred->uid, tcred->uid) ||
 820	       ns_capable(tcred->user_ns, CAP_KILL);
 
 
 
 
 
 821}
 822
 823/*
 824 * Bad permissions for sending the signal
 825 * - the caller must hold the RCU read lock
 826 */
 827static int check_kill_permission(int sig, struct kernel_siginfo *info,
 828				 struct task_struct *t)
 829{
 830	struct pid *sid;
 831	int error;
 832
 833	if (!valid_signal(sig))
 834		return -EINVAL;
 835
 836	if (!si_fromuser(info))
 837		return 0;
 838
 839	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 840	if (error)
 841		return error;
 842
 843	if (!same_thread_group(current, t) &&
 844	    !kill_ok_by_cred(t)) {
 845		switch (sig) {
 846		case SIGCONT:
 847			sid = task_session(t);
 848			/*
 849			 * We don't return the error if sid == NULL. The
 850			 * task was unhashed, the caller must notice this.
 851			 */
 852			if (!sid || sid == task_session(current))
 853				break;
 854			fallthrough;
 855		default:
 856			return -EPERM;
 857		}
 858	}
 859
 860	return security_task_kill(t, info, sig, NULL);
 861}
 862
 863/**
 864 * ptrace_trap_notify - schedule trap to notify ptracer
 865 * @t: tracee wanting to notify tracer
 866 *
 867 * This function schedules sticky ptrace trap which is cleared on the next
 868 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 869 * ptracer.
 870 *
 871 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 872 * ptracer is listening for events, tracee is woken up so that it can
 873 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 874 * eventually taken without returning to userland after the existing traps
 875 * are finished by PTRACE_CONT.
 876 *
 877 * CONTEXT:
 878 * Must be called with @task->sighand->siglock held.
 879 */
 880static void ptrace_trap_notify(struct task_struct *t)
 881{
 882	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 883	assert_spin_locked(&t->sighand->siglock);
 884
 885	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 886	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 887}
 888
 889/*
 890 * Handle magic process-wide effects of stop/continue signals. Unlike
 891 * the signal actions, these happen immediately at signal-generation
 892 * time regardless of blocking, ignoring, or handling.  This does the
 893 * actual continuing for SIGCONT, but not the actual stopping for stop
 894 * signals. The process stop is done as a signal action for SIG_DFL.
 895 *
 896 * Returns true if the signal should be actually delivered, otherwise
 897 * it should be dropped.
 898 */
 899static bool prepare_signal(int sig, struct task_struct *p, bool force)
 900{
 901	struct signal_struct *signal = p->signal;
 902	struct task_struct *t;
 903	sigset_t flush;
 904
 905	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 906		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 907			return sig == SIGKILL;
 908		/*
 909		 * The process is in the middle of dying, nothing to do.
 910		 */
 911	} else if (sig_kernel_stop(sig)) {
 912		/*
 913		 * This is a stop signal.  Remove SIGCONT from all queues.
 914		 */
 915		siginitset(&flush, sigmask(SIGCONT));
 916		flush_sigqueue_mask(&flush, &signal->shared_pending);
 917		for_each_thread(p, t)
 918			flush_sigqueue_mask(&flush, &t->pending);
 
 919	} else if (sig == SIGCONT) {
 920		unsigned int why;
 921		/*
 922		 * Remove all stop signals from all queues, wake all threads.
 923		 */
 924		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 925		flush_sigqueue_mask(&flush, &signal->shared_pending);
 926		for_each_thread(p, t) {
 927			flush_sigqueue_mask(&flush, &t->pending);
 928			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 929			if (likely(!(t->ptrace & PT_SEIZED)))
 930				wake_up_state(t, __TASK_STOPPED);
 931			else
 932				ptrace_trap_notify(t);
 933		}
 934
 935		/*
 936		 * Notify the parent with CLD_CONTINUED if we were stopped.
 937		 *
 938		 * If we were in the middle of a group stop, we pretend it
 939		 * was already finished, and then continued. Since SIGCHLD
 940		 * doesn't queue we report only CLD_STOPPED, as if the next
 941		 * CLD_CONTINUED was dropped.
 942		 */
 943		why = 0;
 944		if (signal->flags & SIGNAL_STOP_STOPPED)
 945			why |= SIGNAL_CLD_CONTINUED;
 946		else if (signal->group_stop_count)
 947			why |= SIGNAL_CLD_STOPPED;
 948
 949		if (why) {
 950			/*
 951			 * The first thread which returns from do_signal_stop()
 952			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 953			 * notify its parent. See get_signal().
 954			 */
 955			signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
 956			signal->group_stop_count = 0;
 957			signal->group_exit_code = 0;
 958		}
 959	}
 960
 961	return !sig_ignored(p, sig, force);
 962}
 963
 964/*
 965 * Test if P wants to take SIG.  After we've checked all threads with this,
 966 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 967 * blocking SIG were ruled out because they are not running and already
 968 * have pending signals.  Such threads will dequeue from the shared queue
 969 * as soon as they're available, so putting the signal on the shared queue
 970 * will be equivalent to sending it to one such thread.
 971 */
 972static inline bool wants_signal(int sig, struct task_struct *p)
 973{
 974	if (sigismember(&p->blocked, sig))
 975		return false;
 976
 977	if (p->flags & PF_EXITING)
 978		return false;
 979
 980	if (sig == SIGKILL)
 981		return true;
 982
 983	if (task_is_stopped_or_traced(p))
 984		return false;
 985
 986	return task_curr(p) || !task_sigpending(p);
 987}
 988
 989static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
 990{
 991	struct signal_struct *signal = p->signal;
 992	struct task_struct *t;
 993
 994	/*
 995	 * Now find a thread we can wake up to take the signal off the queue.
 996	 *
 997	 * If the main thread wants the signal, it gets first crack.
 998	 * Probably the least surprising to the average bear.
 999	 */
1000	if (wants_signal(sig, p))
1001		t = p;
1002	else if ((type == PIDTYPE_PID) || thread_group_empty(p))
1003		/*
1004		 * There is just one thread and it does not need to be woken.
1005		 * It will dequeue unblocked signals before it runs again.
1006		 */
1007		return;
1008	else {
1009		/*
1010		 * Otherwise try to find a suitable thread.
1011		 */
1012		t = signal->curr_target;
1013		while (!wants_signal(sig, t)) {
1014			t = next_thread(t);
1015			if (t == signal->curr_target)
1016				/*
1017				 * No thread needs to be woken.
1018				 * Any eligible threads will see
1019				 * the signal in the queue soon.
1020				 */
1021				return;
1022		}
1023		signal->curr_target = t;
1024	}
1025
1026	/*
1027	 * Found a killable thread.  If the signal will be fatal,
1028	 * then start taking the whole group down immediately.
1029	 */
1030	if (sig_fatal(p, sig) &&
1031	    !(signal->flags & SIGNAL_GROUP_EXIT) &&
1032	    !sigismember(&t->real_blocked, sig) &&
1033	    (sig == SIGKILL || !p->ptrace)) {
1034		/*
1035		 * This signal will be fatal to the whole group.
1036		 */
1037		if (!sig_kernel_coredump(sig)) {
1038			/*
1039			 * Start a group exit and wake everybody up.
1040			 * This way we don't have other threads
1041			 * running and doing things after a slower
1042			 * thread has the fatal signal pending.
1043			 */
1044			signal->flags = SIGNAL_GROUP_EXIT;
1045			signal->group_exit_code = sig;
1046			signal->group_stop_count = 0;
1047			t = p;
1048			do {
1049				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1050				sigaddset(&t->pending.signal, SIGKILL);
1051				signal_wake_up(t, 1);
1052			} while_each_thread(p, t);
1053			return;
1054		}
1055	}
1056
1057	/*
1058	 * The signal is already in the shared-pending queue.
1059	 * Tell the chosen thread to wake up and dequeue it.
1060	 */
1061	signal_wake_up(t, sig == SIGKILL);
1062	return;
1063}
1064
1065static inline bool legacy_queue(struct sigpending *signals, int sig)
1066{
1067	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1068}
1069
1070static int __send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1071			enum pid_type type, bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072{
1073	struct sigpending *pending;
1074	struct sigqueue *q;
1075	int override_rlimit;
1076	int ret = 0, result;
1077
1078	assert_spin_locked(&t->sighand->siglock);
1079
1080	result = TRACE_SIGNAL_IGNORED;
1081	if (!prepare_signal(sig, t, force))
 
1082		goto ret;
1083
1084	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1085	/*
1086	 * Short-circuit ignored signals and support queuing
1087	 * exactly one non-rt signal, so that we can get more
1088	 * detailed information about the cause of the signal.
1089	 */
1090	result = TRACE_SIGNAL_ALREADY_PENDING;
1091	if (legacy_queue(pending, sig))
1092		goto ret;
1093
1094	result = TRACE_SIGNAL_DELIVERED;
1095	/*
1096	 * Skip useless siginfo allocation for SIGKILL and kernel threads.
 
1097	 */
1098	if ((sig == SIGKILL) || (t->flags & PF_KTHREAD))
1099		goto out_set;
1100
1101	/*
1102	 * Real-time signals must be queued if sent by sigqueue, or
1103	 * some other real-time mechanism.  It is implementation
1104	 * defined whether kill() does so.  We attempt to do so, on
1105	 * the principle of least surprise, but since kill is not
1106	 * allowed to fail with EAGAIN when low on memory we just
1107	 * make sure at least one signal gets delivered and don't
1108	 * pass on the info struct.
1109	 */
1110	if (sig < SIGRTMIN)
1111		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1112	else
1113		override_rlimit = 0;
1114
1115	q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
1116
1117	if (q) {
1118		list_add_tail(&q->list, &pending->list);
1119		switch ((unsigned long) info) {
1120		case (unsigned long) SEND_SIG_NOINFO:
1121			clear_siginfo(&q->info);
1122			q->info.si_signo = sig;
1123			q->info.si_errno = 0;
1124			q->info.si_code = SI_USER;
1125			q->info.si_pid = task_tgid_nr_ns(current,
1126							task_active_pid_ns(t));
1127			rcu_read_lock();
1128			q->info.si_uid =
1129				from_kuid_munged(task_cred_xxx(t, user_ns),
1130						 current_uid());
1131			rcu_read_unlock();
1132			break;
1133		case (unsigned long) SEND_SIG_PRIV:
1134			clear_siginfo(&q->info);
1135			q->info.si_signo = sig;
1136			q->info.si_errno = 0;
1137			q->info.si_code = SI_KERNEL;
1138			q->info.si_pid = 0;
1139			q->info.si_uid = 0;
1140			break;
1141		default:
1142			copy_siginfo(&q->info, info);
 
 
1143			break;
1144		}
1145	} else if (!is_si_special(info) &&
1146		   sig >= SIGRTMIN && info->si_code != SI_USER) {
1147		/*
1148		 * Queue overflow, abort.  We may abort if the
1149		 * signal was rt and sent by user using something
1150		 * other than kill().
1151		 */
1152		result = TRACE_SIGNAL_OVERFLOW_FAIL;
1153		ret = -EAGAIN;
1154		goto ret;
1155	} else {
1156		/*
1157		 * This is a silent loss of information.  We still
1158		 * send the signal, but the *info bits are lost.
1159		 */
1160		result = TRACE_SIGNAL_LOSE_INFO;
1161	}
1162
1163out_set:
1164	signalfd_notify(t, sig);
1165	sigaddset(&pending->signal, sig);
1166
1167	/* Let multiprocess signals appear after on-going forks */
1168	if (type > PIDTYPE_TGID) {
1169		struct multiprocess_signals *delayed;
1170		hlist_for_each_entry(delayed, &t->signal->multiprocess, node) {
1171			sigset_t *signal = &delayed->signal;
1172			/* Can't queue both a stop and a continue signal */
1173			if (sig == SIGCONT)
1174				sigdelsetmask(signal, SIG_KERNEL_STOP_MASK);
1175			else if (sig_kernel_stop(sig))
1176				sigdelset(signal, SIGCONT);
1177			sigaddset(signal, sig);
 
 
 
 
 
1178		}
1179	}
1180
1181	complete_signal(sig, t, type);
 
 
 
1182ret:
1183	trace_signal_generate(sig, info, t, type != PIDTYPE_PID, result);
1184	return ret;
1185}
1186
1187static inline bool has_si_pid_and_uid(struct kernel_siginfo *info)
 
1188{
1189	bool ret = false;
1190	switch (siginfo_layout(info->si_signo, info->si_code)) {
1191	case SIL_KILL:
1192	case SIL_CHLD:
1193	case SIL_RT:
1194		ret = true;
1195		break;
1196	case SIL_TIMER:
1197	case SIL_POLL:
1198	case SIL_FAULT:
1199	case SIL_FAULT_TRAPNO:
1200	case SIL_FAULT_MCEERR:
1201	case SIL_FAULT_BNDERR:
1202	case SIL_FAULT_PKUERR:
1203	case SIL_PERF_EVENT:
1204	case SIL_SYS:
1205		ret = false;
1206		break;
1207	}
1208	return ret;
1209}
1210
1211static int send_signal(int sig, struct kernel_siginfo *info, struct task_struct *t,
1212			enum pid_type type)
1213{
1214	/* Should SIGKILL or SIGSTOP be received by a pid namespace init? */
1215	bool force = false;
1216
1217	if (info == SEND_SIG_NOINFO) {
1218		/* Force if sent from an ancestor pid namespace */
1219		force = !task_pid_nr_ns(current, task_active_pid_ns(t));
1220	} else if (info == SEND_SIG_PRIV) {
1221		/* Don't ignore kernel generated signals */
1222		force = true;
1223	} else if (has_si_pid_and_uid(info)) {
1224		/* SIGKILL and SIGSTOP is special or has ids */
1225		struct user_namespace *t_user_ns;
1226
1227		rcu_read_lock();
1228		t_user_ns = task_cred_xxx(t, user_ns);
1229		if (current_user_ns() != t_user_ns) {
1230			kuid_t uid = make_kuid(current_user_ns(), info->si_uid);
1231			info->si_uid = from_kuid_munged(t_user_ns, uid);
1232		}
1233		rcu_read_unlock();
1234
1235		/* A kernel generated signal? */
1236		force = (info->si_code == SI_KERNEL);
 
 
1237
1238		/* From an ancestor pid namespace? */
1239		if (!task_pid_nr_ns(current, task_active_pid_ns(t))) {
1240			info->si_pid = 0;
1241			force = true;
1242		}
1243	}
1244	return __send_signal(sig, info, t, type, force);
1245}
1246
1247static void print_fatal_signal(int signr)
1248{
1249	struct pt_regs *regs = signal_pt_regs();
1250	pr_info("potentially unexpected fatal signal %d.\n", signr);
1251
1252#if defined(__i386__) && !defined(__arch_um__)
1253	pr_info("code at %08lx: ", regs->ip);
1254	{
1255		int i;
1256		for (i = 0; i < 16; i++) {
1257			unsigned char insn;
1258
1259			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1260				break;
1261			pr_cont("%02x ", insn);
1262		}
1263	}
1264	pr_cont("\n");
1265#endif
1266	preempt_disable();
1267	show_regs(regs);
1268	preempt_enable();
1269}
1270
1271static int __init setup_print_fatal_signals(char *str)
1272{
1273	get_option (&str, &print_fatal_signals);
1274
1275	return 1;
1276}
1277
1278__setup("print-fatal-signals=", setup_print_fatal_signals);
1279
1280int
1281__group_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1282{
1283	return send_signal(sig, info, p, PIDTYPE_TGID);
1284}
1285
1286int do_send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p,
1287			enum pid_type type)
 
 
 
 
 
 
1288{
1289	unsigned long flags;
1290	int ret = -ESRCH;
1291
1292	if (lock_task_sighand(p, &flags)) {
1293		ret = send_signal(sig, info, p, type);
1294		unlock_task_sighand(p, &flags);
1295	}
1296
1297	return ret;
1298}
1299
1300/*
1301 * Force a signal that the process can't ignore: if necessary
1302 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1303 *
1304 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1305 * since we do not want to have a signal handler that was blocked
1306 * be invoked when user space had explicitly blocked it.
1307 *
1308 * We don't want to have recursive SIGSEGV's etc, for example,
1309 * that is why we also clear SIGNAL_UNKILLABLE.
1310 */
1311static int
1312force_sig_info_to_task(struct kernel_siginfo *info, struct task_struct *t)
1313{
1314	unsigned long int flags;
1315	int ret, blocked, ignored;
1316	struct k_sigaction *action;
1317	int sig = info->si_signo;
1318
1319	spin_lock_irqsave(&t->sighand->siglock, flags);
1320	action = &t->sighand->action[sig-1];
1321	ignored = action->sa.sa_handler == SIG_IGN;
1322	blocked = sigismember(&t->blocked, sig);
1323	if (blocked || ignored) {
1324		action->sa.sa_handler = SIG_DFL;
1325		if (blocked) {
1326			sigdelset(&t->blocked, sig);
1327			recalc_sigpending_and_wake(t);
1328		}
1329	}
1330	/*
1331	 * Don't clear SIGNAL_UNKILLABLE for traced tasks, users won't expect
1332	 * debugging to leave init killable.
1333	 */
1334	if (action->sa.sa_handler == SIG_DFL && !t->ptrace)
1335		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1336	ret = send_signal(sig, info, t, PIDTYPE_PID);
1337	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1338
1339	return ret;
1340}
1341
1342int force_sig_info(struct kernel_siginfo *info)
1343{
1344	return force_sig_info_to_task(info, current);
1345}
1346
1347/*
1348 * Nuke all other threads in the group.
1349 */
1350int zap_other_threads(struct task_struct *p)
1351{
1352	struct task_struct *t = p;
1353	int count = 0;
1354
1355	p->signal->group_stop_count = 0;
1356
1357	while_each_thread(p, t) {
1358		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1359		count++;
1360
1361		/* Don't bother with already dead threads */
1362		if (t->exit_state)
1363			continue;
1364		sigaddset(&t->pending.signal, SIGKILL);
1365		signal_wake_up(t, 1);
1366	}
1367
1368	return count;
1369}
1370
1371struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1372					   unsigned long *flags)
1373{
1374	struct sighand_struct *sighand;
1375
1376	rcu_read_lock();
1377	for (;;) {
 
 
1378		sighand = rcu_dereference(tsk->sighand);
1379		if (unlikely(sighand == NULL))
 
 
1380			break;
 
1381
1382		/*
1383		 * This sighand can be already freed and even reused, but
1384		 * we rely on SLAB_TYPESAFE_BY_RCU and sighand_ctor() which
1385		 * initializes ->siglock: this slab can't go away, it has
1386		 * the same object type, ->siglock can't be reinitialized.
1387		 *
1388		 * We need to ensure that tsk->sighand is still the same
1389		 * after we take the lock, we can race with de_thread() or
1390		 * __exit_signal(). In the latter case the next iteration
1391		 * must see ->sighand == NULL.
1392		 */
1393		spin_lock_irqsave(&sighand->siglock, *flags);
1394		if (likely(sighand == rcu_access_pointer(tsk->sighand)))
1395			break;
1396		spin_unlock_irqrestore(&sighand->siglock, *flags);
 
 
 
1397	}
1398	rcu_read_unlock();
1399
1400	return sighand;
1401}
1402
1403/*
1404 * send signal info to all the members of a group
1405 */
1406int group_send_sig_info(int sig, struct kernel_siginfo *info,
1407			struct task_struct *p, enum pid_type type)
1408{
1409	int ret;
1410
1411	rcu_read_lock();
1412	ret = check_kill_permission(sig, info, p);
1413	rcu_read_unlock();
1414
1415	if (!ret && sig)
1416		ret = do_send_sig_info(sig, info, p, type);
1417
1418	return ret;
1419}
1420
1421/*
1422 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1423 * control characters do (^C, ^Z etc)
1424 * - the caller must hold at least a readlock on tasklist_lock
1425 */
1426int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
1427{
1428	struct task_struct *p = NULL;
1429	int retval, success;
1430
1431	success = 0;
1432	retval = -ESRCH;
1433	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1434		int err = group_send_sig_info(sig, info, p, PIDTYPE_PGID);
1435		success |= !err;
1436		retval = err;
1437	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1438	return success ? 0 : retval;
1439}
1440
1441int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
1442{
1443	int error = -ESRCH;
1444	struct task_struct *p;
1445
1446	for (;;) {
1447		rcu_read_lock();
1448		p = pid_task(pid, PIDTYPE_PID);
1449		if (p)
1450			error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
1451		rcu_read_unlock();
1452		if (likely(!p || error != -ESRCH))
1453			return error;
1454
1455		/*
1456		 * The task was unhashed in between, try again.  If it
1457		 * is dead, pid_task() will return NULL, if we race with
1458		 * de_thread() it will find the new leader.
1459		 */
1460	}
 
 
 
1461}
1462
1463static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
1464{
1465	int error;
1466	rcu_read_lock();
1467	error = kill_pid_info(sig, info, find_vpid(pid));
1468	rcu_read_unlock();
1469	return error;
1470}
1471
1472static inline bool kill_as_cred_perm(const struct cred *cred,
1473				     struct task_struct *target)
1474{
1475	const struct cred *pcred = __task_cred(target);
1476
1477	return uid_eq(cred->euid, pcred->suid) ||
1478	       uid_eq(cred->euid, pcred->uid) ||
1479	       uid_eq(cred->uid, pcred->suid) ||
1480	       uid_eq(cred->uid, pcred->uid);
1481}
1482
1483/*
1484 * The usb asyncio usage of siginfo is wrong.  The glibc support
1485 * for asyncio which uses SI_ASYNCIO assumes the layout is SIL_RT.
1486 * AKA after the generic fields:
1487 *	kernel_pid_t	si_pid;
1488 *	kernel_uid32_t	si_uid;
1489 *	sigval_t	si_value;
1490 *
1491 * Unfortunately when usb generates SI_ASYNCIO it assumes the layout
1492 * after the generic fields is:
1493 *	void __user 	*si_addr;
1494 *
1495 * This is a practical problem when there is a 64bit big endian kernel
1496 * and a 32bit userspace.  As the 32bit address will encoded in the low
1497 * 32bits of the pointer.  Those low 32bits will be stored at higher
1498 * address than appear in a 32 bit pointer.  So userspace will not
1499 * see the address it was expecting for it's completions.
1500 *
1501 * There is nothing in the encoding that can allow
1502 * copy_siginfo_to_user32 to detect this confusion of formats, so
1503 * handle this by requiring the caller of kill_pid_usb_asyncio to
1504 * notice when this situration takes place and to store the 32bit
1505 * pointer in sival_int, instead of sival_addr of the sigval_t addr
1506 * parameter.
1507 */
1508int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr,
1509			 struct pid *pid, const struct cred *cred)
1510{
1511	struct kernel_siginfo info;
1512	struct task_struct *p;
1513	unsigned long flags;
1514	int ret = -EINVAL;
1515
1516	if (!valid_signal(sig))
1517		return ret;
1518
1519	clear_siginfo(&info);
1520	info.si_signo = sig;
1521	info.si_errno = errno;
1522	info.si_code = SI_ASYNCIO;
1523	*((sigval_t *)&info.si_pid) = addr;
1524
1525	rcu_read_lock();
1526	p = pid_task(pid, PIDTYPE_PID);
1527	if (!p) {
1528		ret = -ESRCH;
1529		goto out_unlock;
1530	}
1531	if (!kill_as_cred_perm(cred, p)) {
1532		ret = -EPERM;
1533		goto out_unlock;
1534	}
1535	ret = security_task_kill(p, &info, sig, cred);
1536	if (ret)
1537		goto out_unlock;
1538
1539	if (sig) {
1540		if (lock_task_sighand(p, &flags)) {
1541			ret = __send_signal(sig, &info, p, PIDTYPE_TGID, false);
1542			unlock_task_sighand(p, &flags);
1543		} else
1544			ret = -ESRCH;
1545	}
1546out_unlock:
1547	rcu_read_unlock();
1548	return ret;
1549}
1550EXPORT_SYMBOL_GPL(kill_pid_usb_asyncio);
1551
1552/*
1553 * kill_something_info() interprets pid in interesting ways just like kill(2).
1554 *
1555 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1556 * is probably wrong.  Should make it like BSD or SYSV.
1557 */
1558
1559static int kill_something_info(int sig, struct kernel_siginfo *info, pid_t pid)
1560{
1561	int ret;
1562
1563	if (pid > 0)
1564		return kill_proc_info(sig, info, pid);
1565
1566	/* -INT_MIN is undefined.  Exclude this case to avoid a UBSAN warning */
1567	if (pid == INT_MIN)
1568		return -ESRCH;
1569
1570	read_lock(&tasklist_lock);
1571	if (pid != -1) {
1572		ret = __kill_pgrp_info(sig, info,
1573				pid ? find_vpid(-pid) : task_pgrp(current));
1574	} else {
1575		int retval = 0, count = 0;
1576		struct task_struct * p;
1577
1578		for_each_process(p) {
1579			if (task_pid_vnr(p) > 1 &&
1580					!same_thread_group(p, current)) {
1581				int err = group_send_sig_info(sig, info, p,
1582							      PIDTYPE_MAX);
1583				++count;
1584				if (err != -EPERM)
1585					retval = err;
1586			}
1587		}
1588		ret = count ? retval : -ESRCH;
1589	}
1590	read_unlock(&tasklist_lock);
1591
1592	return ret;
1593}
1594
1595/*
1596 * These are for backward compatibility with the rest of the kernel source.
1597 */
1598
1599int send_sig_info(int sig, struct kernel_siginfo *info, struct task_struct *p)
1600{
1601	/*
1602	 * Make sure legacy kernel users don't send in bad values
1603	 * (normal paths check this in check_kill_permission).
1604	 */
1605	if (!valid_signal(sig))
1606		return -EINVAL;
1607
1608	return do_send_sig_info(sig, info, p, PIDTYPE_PID);
1609}
1610EXPORT_SYMBOL(send_sig_info);
1611
1612#define __si_special(priv) \
1613	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1614
1615int
1616send_sig(int sig, struct task_struct *p, int priv)
1617{
1618	return send_sig_info(sig, __si_special(priv), p);
1619}
1620EXPORT_SYMBOL(send_sig);
1621
1622void force_sig(int sig)
 
1623{
1624	struct kernel_siginfo info;
1625
1626	clear_siginfo(&info);
1627	info.si_signo = sig;
1628	info.si_errno = 0;
1629	info.si_code = SI_KERNEL;
1630	info.si_pid = 0;
1631	info.si_uid = 0;
1632	force_sig_info(&info);
1633}
1634EXPORT_SYMBOL(force_sig);
1635
1636/*
1637 * When things go south during signal handling, we
1638 * will force a SIGSEGV. And if the signal that caused
1639 * the problem was already a SIGSEGV, we'll want to
1640 * make sure we don't even try to deliver the signal..
1641 */
1642void force_sigsegv(int sig)
 
1643{
1644	struct task_struct *p = current;
1645
1646	if (sig == SIGSEGV) {
1647		unsigned long flags;
1648		spin_lock_irqsave(&p->sighand->siglock, flags);
1649		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1650		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1651	}
1652	force_sig(SIGSEGV);
1653}
1654
1655int force_sig_fault_to_task(int sig, int code, void __user *addr
1656	___ARCH_SI_TRAPNO(int trapno)
1657	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1658	, struct task_struct *t)
1659{
1660	struct kernel_siginfo info;
1661
1662	clear_siginfo(&info);
1663	info.si_signo = sig;
1664	info.si_errno = 0;
1665	info.si_code  = code;
1666	info.si_addr  = addr;
1667#ifdef __ARCH_SI_TRAPNO
1668	info.si_trapno = trapno;
1669#endif
1670#ifdef __ia64__
1671	info.si_imm = imm;
1672	info.si_flags = flags;
1673	info.si_isr = isr;
1674#endif
1675	return force_sig_info_to_task(&info, t);
1676}
1677
1678int force_sig_fault(int sig, int code, void __user *addr
1679	___ARCH_SI_TRAPNO(int trapno)
1680	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr))
1681{
1682	return force_sig_fault_to_task(sig, code, addr
1683				       ___ARCH_SI_TRAPNO(trapno)
1684				       ___ARCH_SI_IA64(imm, flags, isr), current);
1685}
1686
1687int send_sig_fault(int sig, int code, void __user *addr
1688	___ARCH_SI_TRAPNO(int trapno)
1689	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
1690	, struct task_struct *t)
1691{
1692	struct kernel_siginfo info;
1693
1694	clear_siginfo(&info);
1695	info.si_signo = sig;
1696	info.si_errno = 0;
1697	info.si_code  = code;
1698	info.si_addr  = addr;
1699#ifdef __ARCH_SI_TRAPNO
1700	info.si_trapno = trapno;
1701#endif
1702#ifdef __ia64__
1703	info.si_imm = imm;
1704	info.si_flags = flags;
1705	info.si_isr = isr;
1706#endif
1707	return send_sig_info(info.si_signo, &info, t);
1708}
1709
1710int force_sig_mceerr(int code, void __user *addr, short lsb)
1711{
1712	struct kernel_siginfo info;
1713
1714	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1715	clear_siginfo(&info);
1716	info.si_signo = SIGBUS;
1717	info.si_errno = 0;
1718	info.si_code = code;
1719	info.si_addr = addr;
1720	info.si_addr_lsb = lsb;
1721	return force_sig_info(&info);
1722}
1723
1724int send_sig_mceerr(int code, void __user *addr, short lsb, struct task_struct *t)
1725{
1726	struct kernel_siginfo info;
1727
1728	WARN_ON((code != BUS_MCEERR_AO) && (code != BUS_MCEERR_AR));
1729	clear_siginfo(&info);
1730	info.si_signo = SIGBUS;
1731	info.si_errno = 0;
1732	info.si_code = code;
1733	info.si_addr = addr;
1734	info.si_addr_lsb = lsb;
1735	return send_sig_info(info.si_signo, &info, t);
1736}
1737EXPORT_SYMBOL(send_sig_mceerr);
1738
1739int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper)
1740{
1741	struct kernel_siginfo info;
1742
1743	clear_siginfo(&info);
1744	info.si_signo = SIGSEGV;
1745	info.si_errno = 0;
1746	info.si_code  = SEGV_BNDERR;
1747	info.si_addr  = addr;
1748	info.si_lower = lower;
1749	info.si_upper = upper;
1750	return force_sig_info(&info);
1751}
1752
1753#ifdef SEGV_PKUERR
1754int force_sig_pkuerr(void __user *addr, u32 pkey)
1755{
1756	struct kernel_siginfo info;
1757
1758	clear_siginfo(&info);
1759	info.si_signo = SIGSEGV;
1760	info.si_errno = 0;
1761	info.si_code  = SEGV_PKUERR;
1762	info.si_addr  = addr;
1763	info.si_pkey  = pkey;
1764	return force_sig_info(&info);
1765}
1766#endif
1767
1768int force_sig_perf(void __user *addr, u32 type, u64 sig_data)
1769{
1770	struct kernel_siginfo info;
1771
1772	clear_siginfo(&info);
1773	info.si_signo     = SIGTRAP;
1774	info.si_errno     = 0;
1775	info.si_code      = TRAP_PERF;
1776	info.si_addr      = addr;
1777	info.si_perf_data = sig_data;
1778	info.si_perf_type = type;
1779
1780	return force_sig_info(&info);
1781}
1782
1783/* For the crazy architectures that include trap information in
1784 * the errno field, instead of an actual errno value.
1785 */
1786int force_sig_ptrace_errno_trap(int errno, void __user *addr)
1787{
1788	struct kernel_siginfo info;
1789
1790	clear_siginfo(&info);
1791	info.si_signo = SIGTRAP;
1792	info.si_errno = errno;
1793	info.si_code  = TRAP_HWBKPT;
1794	info.si_addr  = addr;
1795	return force_sig_info(&info);
1796}
1797
1798int kill_pgrp(struct pid *pid, int sig, int priv)
1799{
1800	int ret;
1801
1802	read_lock(&tasklist_lock);
1803	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1804	read_unlock(&tasklist_lock);
1805
1806	return ret;
1807}
1808EXPORT_SYMBOL(kill_pgrp);
1809
1810int kill_pid(struct pid *pid, int sig, int priv)
1811{
1812	return kill_pid_info(sig, __si_special(priv), pid);
1813}
1814EXPORT_SYMBOL(kill_pid);
1815
1816/*
1817 * These functions support sending signals using preallocated sigqueue
1818 * structures.  This is needed "because realtime applications cannot
1819 * afford to lose notifications of asynchronous events, like timer
1820 * expirations or I/O completions".  In the case of POSIX Timers
1821 * we allocate the sigqueue structure from the timer_create.  If this
1822 * allocation fails we are able to report the failure to the application
1823 * with an EAGAIN error.
1824 */
1825struct sigqueue *sigqueue_alloc(void)
1826{
1827	return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
 
 
 
 
 
1828}
1829
1830void sigqueue_free(struct sigqueue *q)
1831{
1832	unsigned long flags;
1833	spinlock_t *lock = &current->sighand->siglock;
1834
1835	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1836	/*
1837	 * We must hold ->siglock while testing q->list
1838	 * to serialize with collect_signal() or with
1839	 * __exit_signal()->flush_sigqueue().
1840	 */
1841	spin_lock_irqsave(lock, flags);
1842	q->flags &= ~SIGQUEUE_PREALLOC;
1843	/*
1844	 * If it is queued it will be freed when dequeued,
1845	 * like the "regular" sigqueue.
1846	 */
1847	if (!list_empty(&q->list))
1848		q = NULL;
1849	spin_unlock_irqrestore(lock, flags);
1850
1851	if (q)
1852		__sigqueue_free(q);
1853}
1854
1855int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
1856{
1857	int sig = q->info.si_signo;
1858	struct sigpending *pending;
1859	struct task_struct *t;
1860	unsigned long flags;
1861	int ret, result;
1862
1863	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1864
1865	ret = -1;
1866	rcu_read_lock();
1867	t = pid_task(pid, type);
1868	if (!t || !likely(lock_task_sighand(t, &flags)))
1869		goto ret;
1870
1871	ret = 1; /* the signal is ignored */
1872	result = TRACE_SIGNAL_IGNORED;
1873	if (!prepare_signal(sig, t, false))
1874		goto out;
1875
1876	ret = 0;
1877	if (unlikely(!list_empty(&q->list))) {
1878		/*
1879		 * If an SI_TIMER entry is already queue just increment
1880		 * the overrun count.
1881		 */
1882		BUG_ON(q->info.si_code != SI_TIMER);
1883		q->info.si_overrun++;
1884		result = TRACE_SIGNAL_ALREADY_PENDING;
1885		goto out;
1886	}
1887	q->info.si_overrun = 0;
1888
1889	signalfd_notify(t, sig);
1890	pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
1891	list_add_tail(&q->list, &pending->list);
1892	sigaddset(&pending->signal, sig);
1893	complete_signal(sig, t, type);
1894	result = TRACE_SIGNAL_DELIVERED;
1895out:
1896	trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
1897	unlock_task_sighand(t, &flags);
1898ret:
1899	rcu_read_unlock();
1900	return ret;
1901}
1902
1903static void do_notify_pidfd(struct task_struct *task)
1904{
1905	struct pid *pid;
1906
1907	WARN_ON(task->exit_state == 0);
1908	pid = task_pid(task);
1909	wake_up_all(&pid->wait_pidfd);
1910}
1911
1912/*
1913 * Let a parent know about the death of a child.
1914 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1915 *
1916 * Returns true if our parent ignored us and so we've switched to
1917 * self-reaping.
1918 */
1919bool do_notify_parent(struct task_struct *tsk, int sig)
1920{
1921	struct kernel_siginfo info;
1922	unsigned long flags;
1923	struct sighand_struct *psig;
1924	bool autoreap = false;
1925	u64 utime, stime;
1926
1927	BUG_ON(sig == -1);
1928
1929 	/* do_notify_parent_cldstop should have been called instead.  */
1930 	BUG_ON(task_is_stopped_or_traced(tsk));
1931
1932	BUG_ON(!tsk->ptrace &&
1933	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1934
1935	/* Wake up all pidfd waiters */
1936	do_notify_pidfd(tsk);
1937
1938	if (sig != SIGCHLD) {
1939		/*
1940		 * This is only possible if parent == real_parent.
1941		 * Check if it has changed security domain.
1942		 */
1943		if (tsk->parent_exec_id != READ_ONCE(tsk->parent->self_exec_id))
1944			sig = SIGCHLD;
1945	}
1946
1947	clear_siginfo(&info);
1948	info.si_signo = sig;
1949	info.si_errno = 0;
1950	/*
1951	 * We are under tasklist_lock here so our parent is tied to
1952	 * us and cannot change.
1953	 *
1954	 * task_active_pid_ns will always return the same pid namespace
1955	 * until a task passes through release_task.
1956	 *
1957	 * write_lock() currently calls preempt_disable() which is the
1958	 * same as rcu_read_lock(), but according to Oleg, this is not
1959	 * correct to rely on this
1960	 */
1961	rcu_read_lock();
1962	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1963	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1964				       task_uid(tsk));
1965	rcu_read_unlock();
1966
1967	task_cputime(tsk, &utime, &stime);
1968	info.si_utime = nsec_to_clock_t(utime + tsk->signal->utime);
1969	info.si_stime = nsec_to_clock_t(stime + tsk->signal->stime);
1970
1971	info.si_status = tsk->exit_code & 0x7f;
1972	if (tsk->exit_code & 0x80)
1973		info.si_code = CLD_DUMPED;
1974	else if (tsk->exit_code & 0x7f)
1975		info.si_code = CLD_KILLED;
1976	else {
1977		info.si_code = CLD_EXITED;
1978		info.si_status = tsk->exit_code >> 8;
1979	}
1980
1981	psig = tsk->parent->sighand;
1982	spin_lock_irqsave(&psig->siglock, flags);
1983	if (!tsk->ptrace && sig == SIGCHLD &&
1984	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1985	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1986		/*
1987		 * We are exiting and our parent doesn't care.  POSIX.1
1988		 * defines special semantics for setting SIGCHLD to SIG_IGN
1989		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1990		 * automatically and not left for our parent's wait4 call.
1991		 * Rather than having the parent do it as a magic kind of
1992		 * signal handler, we just set this to tell do_exit that we
1993		 * can be cleaned up without becoming a zombie.  Note that
1994		 * we still call __wake_up_parent in this case, because a
1995		 * blocked sys_wait4 might now return -ECHILD.
1996		 *
1997		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1998		 * is implementation-defined: we do (if you don't want
1999		 * it, just use SIG_IGN instead).
2000		 */
2001		autoreap = true;
2002		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
2003			sig = 0;
2004	}
2005	/*
2006	 * Send with __send_signal as si_pid and si_uid are in the
2007	 * parent's namespaces.
2008	 */
2009	if (valid_signal(sig) && sig)
2010		__send_signal(sig, &info, tsk->parent, PIDTYPE_TGID, false);
2011	__wake_up_parent(tsk, tsk->parent);
2012	spin_unlock_irqrestore(&psig->siglock, flags);
2013
2014	return autoreap;
2015}
2016
2017/**
2018 * do_notify_parent_cldstop - notify parent of stopped/continued state change
2019 * @tsk: task reporting the state change
2020 * @for_ptracer: the notification is for ptracer
2021 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
2022 *
2023 * Notify @tsk's parent that the stopped/continued state has changed.  If
2024 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
2025 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
2026 *
2027 * CONTEXT:
2028 * Must be called with tasklist_lock at least read locked.
2029 */
2030static void do_notify_parent_cldstop(struct task_struct *tsk,
2031				     bool for_ptracer, int why)
2032{
2033	struct kernel_siginfo info;
2034	unsigned long flags;
2035	struct task_struct *parent;
2036	struct sighand_struct *sighand;
2037	u64 utime, stime;
2038
2039	if (for_ptracer) {
2040		parent = tsk->parent;
2041	} else {
2042		tsk = tsk->group_leader;
2043		parent = tsk->real_parent;
2044	}
2045
2046	clear_siginfo(&info);
2047	info.si_signo = SIGCHLD;
2048	info.si_errno = 0;
2049	/*
2050	 * see comment in do_notify_parent() about the following 4 lines
2051	 */
2052	rcu_read_lock();
2053	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
2054	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
2055	rcu_read_unlock();
2056
2057	task_cputime(tsk, &utime, &stime);
2058	info.si_utime = nsec_to_clock_t(utime);
2059	info.si_stime = nsec_to_clock_t(stime);
2060
2061 	info.si_code = why;
2062 	switch (why) {
2063 	case CLD_CONTINUED:
2064 		info.si_status = SIGCONT;
2065 		break;
2066 	case CLD_STOPPED:
2067 		info.si_status = tsk->signal->group_exit_code & 0x7f;
2068 		break;
2069 	case CLD_TRAPPED:
2070 		info.si_status = tsk->exit_code & 0x7f;
2071 		break;
2072 	default:
2073 		BUG();
2074 	}
2075
2076	sighand = parent->sighand;
2077	spin_lock_irqsave(&sighand->siglock, flags);
2078	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
2079	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
2080		__group_send_sig_info(SIGCHLD, &info, parent);
2081	/*
2082	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
2083	 */
2084	__wake_up_parent(tsk, parent);
2085	spin_unlock_irqrestore(&sighand->siglock, flags);
2086}
2087
2088static inline bool may_ptrace_stop(void)
2089{
2090	if (!likely(current->ptrace))
2091		return false;
2092	/*
2093	 * Are we in the middle of do_coredump?
2094	 * If so and our tracer is also part of the coredump stopping
2095	 * is a deadlock situation, and pointless because our tracer
2096	 * is dead so don't allow us to stop.
2097	 * If SIGKILL was already sent before the caller unlocked
2098	 * ->siglock we must see ->core_state != NULL. Otherwise it
2099	 * is safe to enter schedule().
2100	 *
2101	 * This is almost outdated, a task with the pending SIGKILL can't
2102	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
2103	 * after SIGKILL was already dequeued.
2104	 */
2105	if (unlikely(current->mm->core_state) &&
2106	    unlikely(current->mm == current->parent->mm))
2107		return false;
2108
2109	return true;
2110}
2111
2112/*
2113 * Return non-zero if there is a SIGKILL that should be waking us up.
2114 * Called with the siglock held.
2115 */
2116static bool sigkill_pending(struct task_struct *tsk)
2117{
2118	return sigismember(&tsk->pending.signal, SIGKILL) ||
2119	       sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
2120}
2121
2122/*
2123 * This must be called with current->sighand->siglock held.
2124 *
2125 * This should be the path for all ptrace stops.
2126 * We always set current->last_siginfo while stopped here.
2127 * That makes it a way to test a stopped process for
2128 * being ptrace-stopped vs being job-control-stopped.
2129 *
2130 * If we actually decide not to stop at all because the tracer
2131 * is gone, we keep current->exit_code unless clear_code.
2132 */
2133static void ptrace_stop(int exit_code, int why, int clear_code, kernel_siginfo_t *info)
2134	__releases(&current->sighand->siglock)
2135	__acquires(&current->sighand->siglock)
2136{
2137	bool gstop_done = false;
2138
2139	if (arch_ptrace_stop_needed(exit_code, info)) {
2140		/*
2141		 * The arch code has something special to do before a
2142		 * ptrace stop.  This is allowed to block, e.g. for faults
2143		 * on user stack pages.  We can't keep the siglock while
2144		 * calling arch_ptrace_stop, so we must release it now.
2145		 * To preserve proper semantics, we must do this before
2146		 * any signal bookkeeping like checking group_stop_count.
2147		 * Meanwhile, a SIGKILL could come in before we retake the
2148		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
2149		 * So after regaining the lock, we must check for SIGKILL.
2150		 */
2151		spin_unlock_irq(&current->sighand->siglock);
2152		arch_ptrace_stop(exit_code, info);
2153		spin_lock_irq(&current->sighand->siglock);
2154		if (sigkill_pending(current))
2155			return;
2156	}
2157
2158	set_special_state(TASK_TRACED);
2159
2160	/*
2161	 * We're committing to trapping.  TRACED should be visible before
2162	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
2163	 * Also, transition to TRACED and updates to ->jobctl should be
2164	 * atomic with respect to siglock and should be done after the arch
2165	 * hook as siglock is released and regrabbed across it.
2166	 *
2167	 *     TRACER				    TRACEE
2168	 *
2169	 *     ptrace_attach()
2170	 * [L]   wait_on_bit(JOBCTL_TRAPPING)	[S] set_special_state(TRACED)
2171	 *     do_wait()
2172	 *       set_current_state()                smp_wmb();
2173	 *       ptrace_do_wait()
2174	 *         wait_task_stopped()
2175	 *           task_stopped_code()
2176	 * [L]         task_is_traced()		[S] task_clear_jobctl_trapping();
2177	 */
2178	smp_wmb();
2179
2180	current->last_siginfo = info;
2181	current->exit_code = exit_code;
2182
2183	/*
2184	 * If @why is CLD_STOPPED, we're trapping to participate in a group
2185	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
2186	 * across siglock relocks since INTERRUPT was scheduled, PENDING
2187	 * could be clear now.  We act as if SIGCONT is received after
2188	 * TASK_TRACED is entered - ignore it.
2189	 */
2190	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
2191		gstop_done = task_participate_group_stop(current);
2192
2193	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
2194	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
2195	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
2196		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
2197
2198	/* entering a trap, clear TRAPPING */
2199	task_clear_jobctl_trapping(current);
2200
2201	spin_unlock_irq(&current->sighand->siglock);
2202	read_lock(&tasklist_lock);
2203	if (may_ptrace_stop()) {
2204		/*
2205		 * Notify parents of the stop.
2206		 *
2207		 * While ptraced, there are two parents - the ptracer and
2208		 * the real_parent of the group_leader.  The ptracer should
2209		 * know about every stop while the real parent is only
2210		 * interested in the completion of group stop.  The states
2211		 * for the two don't interact with each other.  Notify
2212		 * separately unless they're gonna be duplicates.
2213		 */
2214		do_notify_parent_cldstop(current, true, why);
2215		if (gstop_done && ptrace_reparented(current))
2216			do_notify_parent_cldstop(current, false, why);
2217
2218		/*
2219		 * Don't want to allow preemption here, because
2220		 * sys_ptrace() needs this task to be inactive.
2221		 *
2222		 * XXX: implement read_unlock_no_resched().
2223		 */
2224		preempt_disable();
2225		read_unlock(&tasklist_lock);
2226		cgroup_enter_frozen();
2227		preempt_enable_no_resched();
2228		freezable_schedule();
2229		cgroup_leave_frozen(true);
2230	} else {
2231		/*
2232		 * By the time we got the lock, our tracer went away.
2233		 * Don't drop the lock yet, another tracer may come.
2234		 *
2235		 * If @gstop_done, the ptracer went away between group stop
2236		 * completion and here.  During detach, it would have set
2237		 * JOBCTL_STOP_PENDING on us and we'll re-enter
2238		 * TASK_STOPPED in do_signal_stop() on return, so notifying
2239		 * the real parent of the group stop completion is enough.
2240		 */
2241		if (gstop_done)
2242			do_notify_parent_cldstop(current, false, why);
2243
2244		/* tasklist protects us from ptrace_freeze_traced() */
2245		__set_current_state(TASK_RUNNING);
2246		if (clear_code)
2247			current->exit_code = 0;
2248		read_unlock(&tasklist_lock);
2249	}
2250
2251	/*
2252	 * We are back.  Now reacquire the siglock before touching
2253	 * last_siginfo, so that we are sure to have synchronized with
2254	 * any signal-sending on another CPU that wants to examine it.
2255	 */
2256	spin_lock_irq(&current->sighand->siglock);
2257	current->last_siginfo = NULL;
2258
2259	/* LISTENING can be set only during STOP traps, clear it */
2260	current->jobctl &= ~JOBCTL_LISTENING;
2261
2262	/*
2263	 * Queued signals ignored us while we were stopped for tracing.
2264	 * So check for any that we should take before resuming user mode.
2265	 * This sets TIF_SIGPENDING, but never clears it.
2266	 */
2267	recalc_sigpending_tsk(current);
2268}
2269
2270static void ptrace_do_notify(int signr, int exit_code, int why)
2271{
2272	kernel_siginfo_t info;
2273
2274	clear_siginfo(&info);
2275	info.si_signo = signr;
2276	info.si_code = exit_code;
2277	info.si_pid = task_pid_vnr(current);
2278	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2279
2280	/* Let the debugger run.  */
2281	ptrace_stop(exit_code, why, 1, &info);
2282}
2283
2284void ptrace_notify(int exit_code)
2285{
2286	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
2287	if (unlikely(current->task_works))
2288		task_work_run();
2289
2290	spin_lock_irq(&current->sighand->siglock);
2291	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
2292	spin_unlock_irq(&current->sighand->siglock);
2293}
2294
2295/**
2296 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
2297 * @signr: signr causing group stop if initiating
2298 *
2299 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
2300 * and participate in it.  If already set, participate in the existing
2301 * group stop.  If participated in a group stop (and thus slept), %true is
2302 * returned with siglock released.
2303 *
2304 * If ptraced, this function doesn't handle stop itself.  Instead,
2305 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
2306 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2307 * places afterwards.
2308 *
2309 * CONTEXT:
2310 * Must be called with @current->sighand->siglock held, which is released
2311 * on %true return.
2312 *
2313 * RETURNS:
2314 * %false if group stop is already cancelled or ptrace trap is scheduled.
2315 * %true if participated in group stop.
2316 */
2317static bool do_signal_stop(int signr)
2318	__releases(&current->sighand->siglock)
2319{
2320	struct signal_struct *sig = current->signal;
2321
2322	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2323		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2324		struct task_struct *t;
2325
2326		/* signr will be recorded in task->jobctl for retries */
2327		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2328
2329		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2330		    unlikely(signal_group_exit(sig)))
2331			return false;
2332		/*
2333		 * There is no group stop already in progress.  We must
2334		 * initiate one now.
2335		 *
2336		 * While ptraced, a task may be resumed while group stop is
2337		 * still in effect and then receive a stop signal and
2338		 * initiate another group stop.  This deviates from the
2339		 * usual behavior as two consecutive stop signals can't
2340		 * cause two group stops when !ptraced.  That is why we
2341		 * also check !task_is_stopped(t) below.
2342		 *
2343		 * The condition can be distinguished by testing whether
2344		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2345		 * group_exit_code in such case.
2346		 *
2347		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2348		 * an intervening stop signal is required to cause two
2349		 * continued events regardless of ptrace.
2350		 */
2351		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2352			sig->group_exit_code = signr;
2353
2354		sig->group_stop_count = 0;
2355
2356		if (task_set_jobctl_pending(current, signr | gstop))
2357			sig->group_stop_count++;
2358
2359		t = current;
2360		while_each_thread(current, t) {
2361			/*
2362			 * Setting state to TASK_STOPPED for a group
2363			 * stop is always done with the siglock held,
2364			 * so this check has no races.
2365			 */
2366			if (!task_is_stopped(t) &&
2367			    task_set_jobctl_pending(t, signr | gstop)) {
2368				sig->group_stop_count++;
2369				if (likely(!(t->ptrace & PT_SEIZED)))
2370					signal_wake_up(t, 0);
2371				else
2372					ptrace_trap_notify(t);
2373			}
2374		}
2375	}
2376
2377	if (likely(!current->ptrace)) {
2378		int notify = 0;
2379
2380		/*
2381		 * If there are no other threads in the group, or if there
2382		 * is a group stop in progress and we are the last to stop,
2383		 * report to the parent.
2384		 */
2385		if (task_participate_group_stop(current))
2386			notify = CLD_STOPPED;
2387
2388		set_special_state(TASK_STOPPED);
2389		spin_unlock_irq(&current->sighand->siglock);
2390
2391		/*
2392		 * Notify the parent of the group stop completion.  Because
2393		 * we're not holding either the siglock or tasklist_lock
2394		 * here, ptracer may attach inbetween; however, this is for
2395		 * group stop and should always be delivered to the real
2396		 * parent of the group leader.  The new ptracer will get
2397		 * its notification when this task transitions into
2398		 * TASK_TRACED.
2399		 */
2400		if (notify) {
2401			read_lock(&tasklist_lock);
2402			do_notify_parent_cldstop(current, false, notify);
2403			read_unlock(&tasklist_lock);
2404		}
2405
2406		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2407		cgroup_enter_frozen();
2408		freezable_schedule();
2409		return true;
2410	} else {
2411		/*
2412		 * While ptraced, group stop is handled by STOP trap.
2413		 * Schedule it and let the caller deal with it.
2414		 */
2415		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2416		return false;
2417	}
2418}
2419
2420/**
2421 * do_jobctl_trap - take care of ptrace jobctl traps
2422 *
2423 * When PT_SEIZED, it's used for both group stop and explicit
2424 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2425 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2426 * the stop signal; otherwise, %SIGTRAP.
2427 *
2428 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2429 * number as exit_code and no siginfo.
2430 *
2431 * CONTEXT:
2432 * Must be called with @current->sighand->siglock held, which may be
2433 * released and re-acquired before returning with intervening sleep.
2434 */
2435static void do_jobctl_trap(void)
2436{
2437	struct signal_struct *signal = current->signal;
2438	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2439
2440	if (current->ptrace & PT_SEIZED) {
2441		if (!signal->group_stop_count &&
2442		    !(signal->flags & SIGNAL_STOP_STOPPED))
2443			signr = SIGTRAP;
2444		WARN_ON_ONCE(!signr);
2445		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2446				 CLD_STOPPED);
2447	} else {
2448		WARN_ON_ONCE(!signr);
2449		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2450		current->exit_code = 0;
2451	}
2452}
2453
2454/**
2455 * do_freezer_trap - handle the freezer jobctl trap
2456 *
2457 * Puts the task into frozen state, if only the task is not about to quit.
2458 * In this case it drops JOBCTL_TRAP_FREEZE.
2459 *
2460 * CONTEXT:
2461 * Must be called with @current->sighand->siglock held,
2462 * which is always released before returning.
2463 */
2464static void do_freezer_trap(void)
2465	__releases(&current->sighand->siglock)
2466{
2467	/*
2468	 * If there are other trap bits pending except JOBCTL_TRAP_FREEZE,
2469	 * let's make another loop to give it a chance to be handled.
2470	 * In any case, we'll return back.
2471	 */
2472	if ((current->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) !=
2473	     JOBCTL_TRAP_FREEZE) {
2474		spin_unlock_irq(&current->sighand->siglock);
2475		return;
2476	}
2477
2478	/*
2479	 * Now we're sure that there is no pending fatal signal and no
2480	 * pending traps. Clear TIF_SIGPENDING to not get out of schedule()
2481	 * immediately (if there is a non-fatal signal pending), and
2482	 * put the task into sleep.
2483	 */
2484	__set_current_state(TASK_INTERRUPTIBLE);
2485	clear_thread_flag(TIF_SIGPENDING);
2486	spin_unlock_irq(&current->sighand->siglock);
2487	cgroup_enter_frozen();
2488	freezable_schedule();
2489}
2490
2491static int ptrace_signal(int signr, kernel_siginfo_t *info)
2492{
 
2493	/*
2494	 * We do not check sig_kernel_stop(signr) but set this marker
2495	 * unconditionally because we do not know whether debugger will
2496	 * change signr. This flag has no meaning unless we are going
2497	 * to stop after return from ptrace_stop(). In this case it will
2498	 * be checked in do_signal_stop(), we should only stop if it was
2499	 * not cleared by SIGCONT while we were sleeping. See also the
2500	 * comment in dequeue_signal().
2501	 */
2502	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2503	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2504
2505	/* We're back.  Did the debugger cancel the sig?  */
2506	signr = current->exit_code;
2507	if (signr == 0)
2508		return signr;
2509
2510	current->exit_code = 0;
2511
2512	/*
2513	 * Update the siginfo structure if the signal has
2514	 * changed.  If the debugger wanted something
2515	 * specific in the siginfo structure then it should
2516	 * have updated *info via PTRACE_SETSIGINFO.
2517	 */
2518	if (signr != info->si_signo) {
2519		clear_siginfo(info);
2520		info->si_signo = signr;
2521		info->si_errno = 0;
2522		info->si_code = SI_USER;
2523		rcu_read_lock();
2524		info->si_pid = task_pid_vnr(current->parent);
2525		info->si_uid = from_kuid_munged(current_user_ns(),
2526						task_uid(current->parent));
2527		rcu_read_unlock();
2528	}
2529
2530	/* If the (new) signal is now blocked, requeue it.  */
2531	if (sigismember(&current->blocked, signr)) {
2532		send_signal(signr, info, current, PIDTYPE_PID);
2533		signr = 0;
2534	}
2535
2536	return signr;
2537}
2538
2539static void hide_si_addr_tag_bits(struct ksignal *ksig)
2540{
2541	switch (siginfo_layout(ksig->sig, ksig->info.si_code)) {
2542	case SIL_FAULT:
2543	case SIL_FAULT_TRAPNO:
2544	case SIL_FAULT_MCEERR:
2545	case SIL_FAULT_BNDERR:
2546	case SIL_FAULT_PKUERR:
2547	case SIL_PERF_EVENT:
2548		ksig->info.si_addr = arch_untagged_si_addr(
2549			ksig->info.si_addr, ksig->sig, ksig->info.si_code);
2550		break;
2551	case SIL_KILL:
2552	case SIL_TIMER:
2553	case SIL_POLL:
2554	case SIL_CHLD:
2555	case SIL_RT:
2556	case SIL_SYS:
2557		break;
2558	}
2559}
2560
2561bool get_signal(struct ksignal *ksig)
2562{
2563	struct sighand_struct *sighand = current->sighand;
2564	struct signal_struct *signal = current->signal;
2565	int signr;
2566
2567	if (unlikely(current->task_works))
2568		task_work_run();
2569
2570	/*
2571	 * For non-generic architectures, check for TIF_NOTIFY_SIGNAL so
2572	 * that the arch handlers don't all have to do it. If we get here
2573	 * without TIF_SIGPENDING, just exit after running signal work.
2574	 */
2575	if (!IS_ENABLED(CONFIG_GENERIC_ENTRY)) {
2576		if (test_thread_flag(TIF_NOTIFY_SIGNAL))
2577			tracehook_notify_signal();
2578		if (!task_sigpending(current))
2579			return false;
2580	}
2581
2582	if (unlikely(uprobe_deny_signal()))
2583		return false;
2584
2585	/*
2586	 * Do this once, we can't return to user-mode if freezing() == T.
2587	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2588	 * thus do not need another check after return.
2589	 */
2590	try_to_freeze();
2591
2592relock:
2593	spin_lock_irq(&sighand->siglock);
2594
2595	/*
2596	 * Every stopped thread goes here after wakeup. Check to see if
2597	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2598	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2599	 */
2600	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2601		int why;
2602
2603		if (signal->flags & SIGNAL_CLD_CONTINUED)
2604			why = CLD_CONTINUED;
2605		else
2606			why = CLD_STOPPED;
2607
2608		signal->flags &= ~SIGNAL_CLD_MASK;
2609
2610		spin_unlock_irq(&sighand->siglock);
2611
2612		/*
2613		 * Notify the parent that we're continuing.  This event is
2614		 * always per-process and doesn't make whole lot of sense
2615		 * for ptracers, who shouldn't consume the state via
2616		 * wait(2) either, but, for backward compatibility, notify
2617		 * the ptracer of the group leader too unless it's gonna be
2618		 * a duplicate.
2619		 */
2620		read_lock(&tasklist_lock);
2621		do_notify_parent_cldstop(current, false, why);
2622
2623		if (ptrace_reparented(current->group_leader))
2624			do_notify_parent_cldstop(current->group_leader,
2625						true, why);
2626		read_unlock(&tasklist_lock);
2627
2628		goto relock;
2629	}
2630
2631	/* Has this task already been marked for death? */
2632	if (signal_group_exit(signal)) {
2633		ksig->info.si_signo = signr = SIGKILL;
2634		sigdelset(&current->pending.signal, SIGKILL);
2635		trace_signal_deliver(SIGKILL, SEND_SIG_NOINFO,
2636				&sighand->action[SIGKILL - 1]);
2637		recalc_sigpending();
2638		goto fatal;
2639	}
2640
2641	for (;;) {
2642		struct k_sigaction *ka;
2643
2644		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2645		    do_signal_stop(0))
2646			goto relock;
2647
2648		if (unlikely(current->jobctl &
2649			     (JOBCTL_TRAP_MASK | JOBCTL_TRAP_FREEZE))) {
2650			if (current->jobctl & JOBCTL_TRAP_MASK) {
2651				do_jobctl_trap();
2652				spin_unlock_irq(&sighand->siglock);
2653			} else if (current->jobctl & JOBCTL_TRAP_FREEZE)
2654				do_freezer_trap();
2655
2656			goto relock;
2657		}
2658
2659		/*
2660		 * If the task is leaving the frozen state, let's update
2661		 * cgroup counters and reset the frozen bit.
2662		 */
2663		if (unlikely(cgroup_task_frozen(current))) {
2664			spin_unlock_irq(&sighand->siglock);
2665			cgroup_leave_frozen(false);
2666			goto relock;
2667		}
2668
2669		/*
2670		 * Signals generated by the execution of an instruction
2671		 * need to be delivered before any other pending signals
2672		 * so that the instruction pointer in the signal stack
2673		 * frame points to the faulting instruction.
2674		 */
2675		signr = dequeue_synchronous_signal(&ksig->info);
2676		if (!signr)
2677			signr = dequeue_signal(current, &current->blocked, &ksig->info);
2678
2679		if (!signr)
2680			break; /* will return 0 */
2681
2682		if (unlikely(current->ptrace) && signr != SIGKILL) {
2683			signr = ptrace_signal(signr, &ksig->info);
2684			if (!signr)
2685				continue;
2686		}
2687
2688		ka = &sighand->action[signr-1];
2689
2690		/* Trace actually delivered signals. */
2691		trace_signal_deliver(signr, &ksig->info, ka);
2692
2693		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2694			continue;
2695		if (ka->sa.sa_handler != SIG_DFL) {
2696			/* Run the handler.  */
2697			ksig->ka = *ka;
2698
2699			if (ka->sa.sa_flags & SA_ONESHOT)
2700				ka->sa.sa_handler = SIG_DFL;
2701
2702			break; /* will return non-zero "signr" value */
2703		}
2704
2705		/*
2706		 * Now we are doing the default action for this signal.
2707		 */
2708		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2709			continue;
2710
2711		/*
2712		 * Global init gets no signals it doesn't want.
2713		 * Container-init gets no signals it doesn't want from same
2714		 * container.
2715		 *
2716		 * Note that if global/container-init sees a sig_kernel_only()
2717		 * signal here, the signal must have been generated internally
2718		 * or must have come from an ancestor namespace. In either
2719		 * case, the signal cannot be dropped.
2720		 */
2721		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2722				!sig_kernel_only(signr))
2723			continue;
2724
2725		if (sig_kernel_stop(signr)) {
2726			/*
2727			 * The default action is to stop all threads in
2728			 * the thread group.  The job control signals
2729			 * do nothing in an orphaned pgrp, but SIGSTOP
2730			 * always works.  Note that siglock needs to be
2731			 * dropped during the call to is_orphaned_pgrp()
2732			 * because of lock ordering with tasklist_lock.
2733			 * This allows an intervening SIGCONT to be posted.
2734			 * We need to check for that and bail out if necessary.
2735			 */
2736			if (signr != SIGSTOP) {
2737				spin_unlock_irq(&sighand->siglock);
2738
2739				/* signals can be posted during this window */
2740
2741				if (is_current_pgrp_orphaned())
2742					goto relock;
2743
2744				spin_lock_irq(&sighand->siglock);
2745			}
2746
2747			if (likely(do_signal_stop(ksig->info.si_signo))) {
2748				/* It released the siglock.  */
2749				goto relock;
2750			}
2751
2752			/*
2753			 * We didn't actually stop, due to a race
2754			 * with SIGCONT or something like that.
2755			 */
2756			continue;
2757		}
2758
2759	fatal:
2760		spin_unlock_irq(&sighand->siglock);
2761		if (unlikely(cgroup_task_frozen(current)))
2762			cgroup_leave_frozen(true);
2763
2764		/*
2765		 * Anything else is fatal, maybe with a core dump.
2766		 */
2767		current->flags |= PF_SIGNALED;
2768
2769		if (sig_kernel_coredump(signr)) {
2770			if (print_fatal_signals)
2771				print_fatal_signal(ksig->info.si_signo);
2772			proc_coredump_connector(current);
2773			/*
2774			 * If it was able to dump core, this kills all
2775			 * other threads in the group and synchronizes with
2776			 * their demise.  If we lost the race with another
2777			 * thread getting here, it set group_exit_code
2778			 * first and our do_group_exit call below will use
2779			 * that value and ignore the one we pass it.
2780			 */
2781			do_coredump(&ksig->info);
2782		}
2783
2784		/*
2785		 * PF_IO_WORKER threads will catch and exit on fatal signals
2786		 * themselves. They have cleanup that must be performed, so
2787		 * we cannot call do_exit() on their behalf.
2788		 */
2789		if (current->flags & PF_IO_WORKER)
2790			goto out;
2791
2792		/*
2793		 * Death signals, no core dump.
2794		 */
2795		do_group_exit(ksig->info.si_signo);
2796		/* NOTREACHED */
2797	}
2798	spin_unlock_irq(&sighand->siglock);
2799out:
2800	ksig->sig = signr;
2801
2802	if (!(ksig->ka.sa.sa_flags & SA_EXPOSE_TAGBITS))
2803		hide_si_addr_tag_bits(ksig);
2804
2805	return ksig->sig > 0;
2806}
2807
2808/**
2809 * signal_delivered - 
2810 * @ksig:		kernel signal struct
 
 
 
2811 * @stepping:		nonzero if debugger single-step or block-step in use
2812 *
2813 * This function should be called when a signal has successfully been
2814 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2815 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2816 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2817 */
2818static void signal_delivered(struct ksignal *ksig, int stepping)
 
2819{
2820	sigset_t blocked;
2821
2822	/* A signal was successfully delivered, and the
2823	   saved sigmask was stored on the signal frame,
2824	   and will be restored by sigreturn.  So we can
2825	   simply clear the restore sigmask flag.  */
2826	clear_restore_sigmask();
2827
2828	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2829	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2830		sigaddset(&blocked, ksig->sig);
2831	set_current_blocked(&blocked);
2832	if (current->sas_ss_flags & SS_AUTODISARM)
2833		sas_ss_reset(current);
2834	tracehook_signal_handler(stepping);
2835}
2836
2837void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2838{
2839	if (failed)
2840		force_sigsegv(ksig->sig);
2841	else
2842		signal_delivered(ksig, stepping);
 
2843}
2844
2845/*
2846 * It could be that complete_signal() picked us to notify about the
2847 * group-wide signal. Other threads should be notified now to take
2848 * the shared signals in @which since we will not.
2849 */
2850static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2851{
2852	sigset_t retarget;
2853	struct task_struct *t;
2854
2855	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2856	if (sigisemptyset(&retarget))
2857		return;
2858
2859	t = tsk;
2860	while_each_thread(tsk, t) {
2861		if (t->flags & PF_EXITING)
2862			continue;
2863
2864		if (!has_pending_signals(&retarget, &t->blocked))
2865			continue;
2866		/* Remove the signals this thread can handle. */
2867		sigandsets(&retarget, &retarget, &t->blocked);
2868
2869		if (!task_sigpending(t))
2870			signal_wake_up(t, 0);
2871
2872		if (sigisemptyset(&retarget))
2873			break;
2874	}
2875}
2876
2877void exit_signals(struct task_struct *tsk)
2878{
2879	int group_stop = 0;
2880	sigset_t unblocked;
2881
2882	/*
2883	 * @tsk is about to have PF_EXITING set - lock out users which
2884	 * expect stable threadgroup.
2885	 */
2886	cgroup_threadgroup_change_begin(tsk);
2887
2888	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2889		tsk->flags |= PF_EXITING;
2890		cgroup_threadgroup_change_end(tsk);
2891		return;
2892	}
2893
2894	spin_lock_irq(&tsk->sighand->siglock);
2895	/*
2896	 * From now this task is not visible for group-wide signals,
2897	 * see wants_signal(), do_signal_stop().
2898	 */
2899	tsk->flags |= PF_EXITING;
2900
2901	cgroup_threadgroup_change_end(tsk);
2902
2903	if (!task_sigpending(tsk))
2904		goto out;
2905
2906	unblocked = tsk->blocked;
2907	signotset(&unblocked);
2908	retarget_shared_pending(tsk, &unblocked);
2909
2910	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2911	    task_participate_group_stop(tsk))
2912		group_stop = CLD_STOPPED;
2913out:
2914	spin_unlock_irq(&tsk->sighand->siglock);
2915
2916	/*
2917	 * If group stop has completed, deliver the notification.  This
2918	 * should always go to the real parent of the group leader.
2919	 */
2920	if (unlikely(group_stop)) {
2921		read_lock(&tasklist_lock);
2922		do_notify_parent_cldstop(tsk, false, group_stop);
2923		read_unlock(&tasklist_lock);
2924	}
2925}
2926
 
 
 
 
 
 
 
 
 
 
 
2927/*
2928 * System call entry points.
2929 */
2930
2931/**
2932 *  sys_restart_syscall - restart a system call
2933 */
2934SYSCALL_DEFINE0(restart_syscall)
2935{
2936	struct restart_block *restart = &current->restart_block;
2937	return restart->fn(restart);
2938}
2939
2940long do_no_restart_syscall(struct restart_block *param)
2941{
2942	return -EINTR;
2943}
2944
2945static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2946{
2947	if (task_sigpending(tsk) && !thread_group_empty(tsk)) {
2948		sigset_t newblocked;
2949		/* A set of now blocked but previously unblocked signals. */
2950		sigandnsets(&newblocked, newset, &current->blocked);
2951		retarget_shared_pending(tsk, &newblocked);
2952	}
2953	tsk->blocked = *newset;
2954	recalc_sigpending();
2955}
2956
2957/**
2958 * set_current_blocked - change current->blocked mask
2959 * @newset: new mask
2960 *
2961 * It is wrong to change ->blocked directly, this helper should be used
2962 * to ensure the process can't miss a shared signal we are going to block.
2963 */
2964void set_current_blocked(sigset_t *newset)
2965{
2966	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2967	__set_current_blocked(newset);
2968}
2969
2970void __set_current_blocked(const sigset_t *newset)
2971{
2972	struct task_struct *tsk = current;
2973
2974	/*
2975	 * In case the signal mask hasn't changed, there is nothing we need
2976	 * to do. The current->blocked shouldn't be modified by other task.
2977	 */
2978	if (sigequalsets(&tsk->blocked, newset))
2979		return;
2980
2981	spin_lock_irq(&tsk->sighand->siglock);
2982	__set_task_blocked(tsk, newset);
2983	spin_unlock_irq(&tsk->sighand->siglock);
2984}
2985
2986/*
2987 * This is also useful for kernel threads that want to temporarily
2988 * (or permanently) block certain signals.
2989 *
2990 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2991 * interface happily blocks "unblockable" signals like SIGKILL
2992 * and friends.
2993 */
2994int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2995{
2996	struct task_struct *tsk = current;
2997	sigset_t newset;
2998
2999	/* Lockless, only current can change ->blocked, never from irq */
3000	if (oldset)
3001		*oldset = tsk->blocked;
3002
3003	switch (how) {
3004	case SIG_BLOCK:
3005		sigorsets(&newset, &tsk->blocked, set);
3006		break;
3007	case SIG_UNBLOCK:
3008		sigandnsets(&newset, &tsk->blocked, set);
3009		break;
3010	case SIG_SETMASK:
3011		newset = *set;
3012		break;
3013	default:
3014		return -EINVAL;
3015	}
3016
3017	__set_current_blocked(&newset);
3018	return 0;
3019}
3020EXPORT_SYMBOL(sigprocmask);
3021
3022/*
3023 * The api helps set app-provided sigmasks.
3024 *
3025 * This is useful for syscalls such as ppoll, pselect, io_pgetevents and
3026 * epoll_pwait where a new sigmask is passed from userland for the syscalls.
3027 *
3028 * Note that it does set_restore_sigmask() in advance, so it must be always
3029 * paired with restore_saved_sigmask_unless() before return from syscall.
3030 */
3031int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize)
3032{
3033	sigset_t kmask;
3034
3035	if (!umask)
3036		return 0;
3037	if (sigsetsize != sizeof(sigset_t))
3038		return -EINVAL;
3039	if (copy_from_user(&kmask, umask, sizeof(sigset_t)))
3040		return -EFAULT;
3041
3042	set_restore_sigmask();
3043	current->saved_sigmask = current->blocked;
3044	set_current_blocked(&kmask);
3045
3046	return 0;
3047}
3048
3049#ifdef CONFIG_COMPAT
3050int set_compat_user_sigmask(const compat_sigset_t __user *umask,
3051			    size_t sigsetsize)
3052{
3053	sigset_t kmask;
3054
3055	if (!umask)
3056		return 0;
3057	if (sigsetsize != sizeof(compat_sigset_t))
3058		return -EINVAL;
3059	if (get_compat_sigset(&kmask, umask))
3060		return -EFAULT;
3061
3062	set_restore_sigmask();
3063	current->saved_sigmask = current->blocked;
3064	set_current_blocked(&kmask);
3065
3066	return 0;
3067}
3068#endif
3069
3070/**
3071 *  sys_rt_sigprocmask - change the list of currently blocked signals
3072 *  @how: whether to add, remove, or set signals
3073 *  @nset: stores pending signals
3074 *  @oset: previous value of signal mask if non-null
3075 *  @sigsetsize: size of sigset_t type
3076 */
3077SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
3078		sigset_t __user *, oset, size_t, sigsetsize)
3079{
3080	sigset_t old_set, new_set;
3081	int error;
3082
3083	/* XXX: Don't preclude handling different sized sigset_t's.  */
3084	if (sigsetsize != sizeof(sigset_t))
3085		return -EINVAL;
3086
3087	old_set = current->blocked;
3088
3089	if (nset) {
3090		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
3091			return -EFAULT;
3092		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3093
3094		error = sigprocmask(how, &new_set, NULL);
3095		if (error)
3096			return error;
3097	}
3098
3099	if (oset) {
3100		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
3101			return -EFAULT;
3102	}
3103
3104	return 0;
3105}
3106
3107#ifdef CONFIG_COMPAT
3108COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
3109		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
3110{
 
3111	sigset_t old_set = current->blocked;
3112
3113	/* XXX: Don't preclude handling different sized sigset_t's.  */
3114	if (sigsetsize != sizeof(sigset_t))
3115		return -EINVAL;
3116
3117	if (nset) {
 
3118		sigset_t new_set;
3119		int error;
3120		if (get_compat_sigset(&new_set, nset))
3121			return -EFAULT;
 
 
3122		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
3123
3124		error = sigprocmask(how, &new_set, NULL);
3125		if (error)
3126			return error;
3127	}
3128	return oset ? put_compat_sigset(oset, &old_set, sizeof(*oset)) : 0;
 
 
 
 
 
 
 
 
 
 
3129}
3130#endif
3131
3132static void do_sigpending(sigset_t *set)
3133{
 
 
 
3134	spin_lock_irq(&current->sighand->siglock);
3135	sigorsets(set, &current->pending.signal,
3136		  &current->signal->shared_pending.signal);
3137	spin_unlock_irq(&current->sighand->siglock);
3138
3139	/* Outside the lock because only this thread touches it.  */
3140	sigandsets(set, &current->blocked, set);
 
3141}
3142
3143/**
3144 *  sys_rt_sigpending - examine a pending signal that has been raised
3145 *			while blocked
3146 *  @uset: stores pending signals
3147 *  @sigsetsize: size of sigset_t type or larger
3148 */
3149SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
3150{
3151	sigset_t set;
3152
3153	if (sigsetsize > sizeof(*uset))
3154		return -EINVAL;
3155
3156	do_sigpending(&set);
3157
3158	if (copy_to_user(uset, &set, sigsetsize))
3159		return -EFAULT;
3160
3161	return 0;
3162}
3163
3164#ifdef CONFIG_COMPAT
3165COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
3166		compat_size_t, sigsetsize)
3167{
 
3168	sigset_t set;
3169
3170	if (sigsetsize > sizeof(*uset))
3171		return -EINVAL;
3172
3173	do_sigpending(&set);
3174
3175	return put_compat_sigset(uset, &set, sigsetsize);
 
 
 
 
 
3176}
3177#endif
3178
3179static const struct {
3180	unsigned char limit, layout;
3181} sig_sicodes[] = {
3182	[SIGILL]  = { NSIGILL,  SIL_FAULT },
3183	[SIGFPE]  = { NSIGFPE,  SIL_FAULT },
3184	[SIGSEGV] = { NSIGSEGV, SIL_FAULT },
3185	[SIGBUS]  = { NSIGBUS,  SIL_FAULT },
3186	[SIGTRAP] = { NSIGTRAP, SIL_FAULT },
3187#if defined(SIGEMT)
3188	[SIGEMT]  = { NSIGEMT,  SIL_FAULT },
3189#endif
3190	[SIGCHLD] = { NSIGCHLD, SIL_CHLD },
3191	[SIGPOLL] = { NSIGPOLL, SIL_POLL },
3192	[SIGSYS]  = { NSIGSYS,  SIL_SYS },
3193};
3194
3195static bool known_siginfo_layout(unsigned sig, int si_code)
3196{
3197	if (si_code == SI_KERNEL)
3198		return true;
3199	else if ((si_code > SI_USER)) {
3200		if (sig_specific_sicodes(sig)) {
3201			if (si_code <= sig_sicodes[sig].limit)
3202				return true;
3203		}
3204		else if (si_code <= NSIGPOLL)
3205			return true;
3206	}
3207	else if (si_code >= SI_DETHREAD)
3208		return true;
3209	else if (si_code == SI_ASYNCNL)
3210		return true;
3211	return false;
3212}
3213
3214enum siginfo_layout siginfo_layout(unsigned sig, int si_code)
3215{
3216	enum siginfo_layout layout = SIL_KILL;
3217	if ((si_code > SI_USER) && (si_code < SI_KERNEL)) {
3218		if ((sig < ARRAY_SIZE(sig_sicodes)) &&
3219		    (si_code <= sig_sicodes[sig].limit)) {
3220			layout = sig_sicodes[sig].layout;
3221			/* Handle the exceptions */
3222			if ((sig == SIGBUS) &&
3223			    (si_code >= BUS_MCEERR_AR) && (si_code <= BUS_MCEERR_AO))
3224				layout = SIL_FAULT_MCEERR;
3225			else if ((sig == SIGSEGV) && (si_code == SEGV_BNDERR))
3226				layout = SIL_FAULT_BNDERR;
3227#ifdef SEGV_PKUERR
3228			else if ((sig == SIGSEGV) && (si_code == SEGV_PKUERR))
3229				layout = SIL_FAULT_PKUERR;
3230#endif
3231			else if ((sig == SIGTRAP) && (si_code == TRAP_PERF))
3232				layout = SIL_PERF_EVENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233#ifdef __ARCH_SI_TRAPNO
3234			else if (layout == SIL_FAULT)
3235				layout = SIL_FAULT_TRAPNO;
3236#endif
3237		}
3238		else if (si_code <= NSIGPOLL)
3239			layout = SIL_POLL;
3240	} else {
3241		if (si_code == SI_TIMER)
3242			layout = SIL_TIMER;
3243		else if (si_code == SI_SIGIO)
3244			layout = SIL_POLL;
3245		else if (si_code < 0)
3246			layout = SIL_RT;
3247	}
3248	return layout;
3249}
3250
3251static inline char __user *si_expansion(const siginfo_t __user *info)
3252{
3253	return ((char __user *)info) + sizeof(struct kernel_siginfo);
3254}
3255
3256int copy_siginfo_to_user(siginfo_t __user *to, const kernel_siginfo_t *from)
3257{
3258	char __user *expansion = si_expansion(to);
3259	if (copy_to_user(to, from , sizeof(struct kernel_siginfo)))
3260		return -EFAULT;
3261	if (clear_user(expansion, SI_EXPANSION_SIZE))
3262		return -EFAULT;
3263	return 0;
3264}
3265
3266static int post_copy_siginfo_from_user(kernel_siginfo_t *info,
3267				       const siginfo_t __user *from)
3268{
3269	if (unlikely(!known_siginfo_layout(info->si_signo, info->si_code))) {
3270		char __user *expansion = si_expansion(from);
3271		char buf[SI_EXPANSION_SIZE];
3272		int i;
3273		/*
3274		 * An unknown si_code might need more than
3275		 * sizeof(struct kernel_siginfo) bytes.  Verify all of the
3276		 * extra bytes are 0.  This guarantees copy_siginfo_to_user
3277		 * will return this data to userspace exactly.
3278		 */
3279		if (copy_from_user(&buf, expansion, SI_EXPANSION_SIZE))
3280			return -EFAULT;
3281		for (i = 0; i < SI_EXPANSION_SIZE; i++) {
3282			if (buf[i] != 0)
3283				return -E2BIG;
3284		}
3285	}
3286	return 0;
3287}
3288
3289static int __copy_siginfo_from_user(int signo, kernel_siginfo_t *to,
3290				    const siginfo_t __user *from)
3291{
3292	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3293		return -EFAULT;
3294	to->si_signo = signo;
3295	return post_copy_siginfo_from_user(to, from);
3296}
3297
3298int copy_siginfo_from_user(kernel_siginfo_t *to, const siginfo_t __user *from)
3299{
3300	if (copy_from_user(to, from, sizeof(struct kernel_siginfo)))
3301		return -EFAULT;
3302	return post_copy_siginfo_from_user(to, from);
3303}
3304
3305#ifdef CONFIG_COMPAT
3306/**
3307 * copy_siginfo_to_external32 - copy a kernel siginfo into a compat user siginfo
3308 * @to: compat siginfo destination
3309 * @from: kernel siginfo source
3310 *
3311 * Note: This function does not work properly for the SIGCHLD on x32, but
3312 * fortunately it doesn't have to.  The only valid callers for this function are
3313 * copy_siginfo_to_user32, which is overriden for x32 and the coredump code.
3314 * The latter does not care because SIGCHLD will never cause a coredump.
3315 */
3316void copy_siginfo_to_external32(struct compat_siginfo *to,
3317		const struct kernel_siginfo *from)
3318{
3319	memset(to, 0, sizeof(*to));
3320
3321	to->si_signo = from->si_signo;
3322	to->si_errno = from->si_errno;
3323	to->si_code  = from->si_code;
3324	switch(siginfo_layout(from->si_signo, from->si_code)) {
3325	case SIL_KILL:
3326		to->si_pid = from->si_pid;
3327		to->si_uid = from->si_uid;
3328		break;
3329	case SIL_TIMER:
3330		to->si_tid     = from->si_tid;
3331		to->si_overrun = from->si_overrun;
3332		to->si_int     = from->si_int;
3333		break;
3334	case SIL_POLL:
3335		to->si_band = from->si_band;
3336		to->si_fd   = from->si_fd;
3337		break;
3338	case SIL_FAULT:
3339		to->si_addr = ptr_to_compat(from->si_addr);
3340		break;
3341	case SIL_FAULT_TRAPNO:
3342		to->si_addr = ptr_to_compat(from->si_addr);
3343		to->si_trapno = from->si_trapno;
3344		break;
3345	case SIL_FAULT_MCEERR:
3346		to->si_addr = ptr_to_compat(from->si_addr);
3347		to->si_addr_lsb = from->si_addr_lsb;
3348		break;
3349	case SIL_FAULT_BNDERR:
3350		to->si_addr = ptr_to_compat(from->si_addr);
3351		to->si_lower = ptr_to_compat(from->si_lower);
3352		to->si_upper = ptr_to_compat(from->si_upper);
3353		break;
3354	case SIL_FAULT_PKUERR:
3355		to->si_addr = ptr_to_compat(from->si_addr);
3356		to->si_pkey = from->si_pkey;
3357		break;
3358	case SIL_PERF_EVENT:
3359		to->si_addr = ptr_to_compat(from->si_addr);
3360		to->si_perf_data = from->si_perf_data;
3361		to->si_perf_type = from->si_perf_type;
3362		break;
3363	case SIL_CHLD:
3364		to->si_pid = from->si_pid;
3365		to->si_uid = from->si_uid;
3366		to->si_status = from->si_status;
3367		to->si_utime = from->si_utime;
3368		to->si_stime = from->si_stime;
3369		break;
3370	case SIL_RT:
3371		to->si_pid = from->si_pid;
3372		to->si_uid = from->si_uid;
3373		to->si_int = from->si_int;
3374		break;
3375	case SIL_SYS:
3376		to->si_call_addr = ptr_to_compat(from->si_call_addr);
3377		to->si_syscall   = from->si_syscall;
3378		to->si_arch      = from->si_arch;
3379		break;
3380	}
3381}
3382
3383int __copy_siginfo_to_user32(struct compat_siginfo __user *to,
3384			   const struct kernel_siginfo *from)
3385{
3386	struct compat_siginfo new;
3387
3388	copy_siginfo_to_external32(&new, from);
3389	if (copy_to_user(to, &new, sizeof(struct compat_siginfo)))
3390		return -EFAULT;
3391	return 0;
3392}
3393
3394static int post_copy_siginfo_from_user32(kernel_siginfo_t *to,
3395					 const struct compat_siginfo *from)
3396{
3397	clear_siginfo(to);
3398	to->si_signo = from->si_signo;
3399	to->si_errno = from->si_errno;
3400	to->si_code  = from->si_code;
3401	switch(siginfo_layout(from->si_signo, from->si_code)) {
3402	case SIL_KILL:
3403		to->si_pid = from->si_pid;
3404		to->si_uid = from->si_uid;
3405		break;
3406	case SIL_TIMER:
3407		to->si_tid     = from->si_tid;
3408		to->si_overrun = from->si_overrun;
3409		to->si_int     = from->si_int;
3410		break;
3411	case SIL_POLL:
3412		to->si_band = from->si_band;
3413		to->si_fd   = from->si_fd;
3414		break;
3415	case SIL_FAULT:
3416		to->si_addr = compat_ptr(from->si_addr);
3417		break;
3418	case SIL_FAULT_TRAPNO:
3419		to->si_addr = compat_ptr(from->si_addr);
3420		to->si_trapno = from->si_trapno;
3421		break;
3422	case SIL_FAULT_MCEERR:
3423		to->si_addr = compat_ptr(from->si_addr);
3424		to->si_addr_lsb = from->si_addr_lsb;
3425		break;
3426	case SIL_FAULT_BNDERR:
3427		to->si_addr = compat_ptr(from->si_addr);
3428		to->si_lower = compat_ptr(from->si_lower);
3429		to->si_upper = compat_ptr(from->si_upper);
 
 
3430		break;
3431	case SIL_FAULT_PKUERR:
3432		to->si_addr = compat_ptr(from->si_addr);
3433		to->si_pkey = from->si_pkey;
 
 
3434		break;
3435	case SIL_PERF_EVENT:
3436		to->si_addr = compat_ptr(from->si_addr);
3437		to->si_perf_data = from->si_perf_data;
3438		to->si_perf_type = from->si_perf_type;
 
3439		break;
3440	case SIL_CHLD:
3441		to->si_pid    = from->si_pid;
3442		to->si_uid    = from->si_uid;
3443		to->si_status = from->si_status;
3444#ifdef CONFIG_X86_X32_ABI
3445		if (in_x32_syscall()) {
3446			to->si_utime = from->_sifields._sigchld_x32._utime;
3447			to->si_stime = from->_sifields._sigchld_x32._stime;
3448		} else
3449#endif
3450		{
3451			to->si_utime = from->si_utime;
3452			to->si_stime = from->si_stime;
3453		}
3454		break;
3455	case SIL_RT:
3456		to->si_pid = from->si_pid;
3457		to->si_uid = from->si_uid;
3458		to->si_int = from->si_int;
3459		break;
3460	case SIL_SYS:
3461		to->si_call_addr = compat_ptr(from->si_call_addr);
3462		to->si_syscall   = from->si_syscall;
3463		to->si_arch      = from->si_arch;
3464		break;
3465	}
3466	return 0;
3467}
3468
3469static int __copy_siginfo_from_user32(int signo, struct kernel_siginfo *to,
3470				      const struct compat_siginfo __user *ufrom)
3471{
3472	struct compat_siginfo from;
3473
3474	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3475		return -EFAULT;
3476
3477	from.si_signo = signo;
3478	return post_copy_siginfo_from_user32(to, &from);
3479}
3480
3481int copy_siginfo_from_user32(struct kernel_siginfo *to,
3482			     const struct compat_siginfo __user *ufrom)
3483{
3484	struct compat_siginfo from;
3485
3486	if (copy_from_user(&from, ufrom, sizeof(struct compat_siginfo)))
3487		return -EFAULT;
3488
3489	return post_copy_siginfo_from_user32(to, &from);
3490}
3491#endif /* CONFIG_COMPAT */
3492
3493/**
3494 *  do_sigtimedwait - wait for queued signals specified in @which
3495 *  @which: queued signals to wait for
3496 *  @info: if non-null, the signal's siginfo is returned here
3497 *  @ts: upper bound on process time suspension
3498 */
3499static int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info,
3500		    const struct timespec64 *ts)
3501{
3502	ktime_t *to = NULL, timeout = KTIME_MAX;
3503	struct task_struct *tsk = current;
 
3504	sigset_t mask = *which;
3505	int sig, ret = 0;
3506
3507	if (ts) {
3508		if (!timespec64_valid(ts))
3509			return -EINVAL;
3510		timeout = timespec64_to_ktime(*ts);
3511		to = &timeout;
 
 
 
 
 
3512	}
3513
3514	/*
3515	 * Invert the set of allowed signals to get those we want to block.
3516	 */
3517	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
3518	signotset(&mask);
3519
3520	spin_lock_irq(&tsk->sighand->siglock);
3521	sig = dequeue_signal(tsk, &mask, info);
3522	if (!sig && timeout) {
3523		/*
3524		 * None ready, temporarily unblock those we're interested
3525		 * while we are sleeping in so that we'll be awakened when
3526		 * they arrive. Unblocking is always fine, we can avoid
3527		 * set_current_blocked().
3528		 */
3529		tsk->real_blocked = tsk->blocked;
3530		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
3531		recalc_sigpending();
3532		spin_unlock_irq(&tsk->sighand->siglock);
3533
3534		__set_current_state(TASK_INTERRUPTIBLE);
3535		ret = freezable_schedule_hrtimeout_range(to, tsk->timer_slack_ns,
3536							 HRTIMER_MODE_REL);
3537		spin_lock_irq(&tsk->sighand->siglock);
3538		__set_task_blocked(tsk, &tsk->real_blocked);
3539		sigemptyset(&tsk->real_blocked);
3540		sig = dequeue_signal(tsk, &mask, info);
3541	}
3542	spin_unlock_irq(&tsk->sighand->siglock);
3543
3544	if (sig)
3545		return sig;
3546	return ret ? -EINTR : -EAGAIN;
3547}
3548
3549/**
3550 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
3551 *			in @uthese
3552 *  @uthese: queued signals to wait for
3553 *  @uinfo: if non-null, the signal's siginfo is returned here
3554 *  @uts: upper bound on process time suspension
3555 *  @sigsetsize: size of sigset_t type
3556 */
3557SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
3558		siginfo_t __user *, uinfo,
3559		const struct __kernel_timespec __user *, uts,
3560		size_t, sigsetsize)
3561{
3562	sigset_t these;
3563	struct timespec64 ts;
3564	kernel_siginfo_t info;
3565	int ret;
3566
3567	/* XXX: Don't preclude handling different sized sigset_t's.  */
3568	if (sigsetsize != sizeof(sigset_t))
3569		return -EINVAL;
3570
3571	if (copy_from_user(&these, uthese, sizeof(these)))
3572		return -EFAULT;
3573
3574	if (uts) {
3575		if (get_timespec64(&ts, uts))
3576			return -EFAULT;
3577	}
3578
3579	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3580
3581	if (ret > 0 && uinfo) {
3582		if (copy_siginfo_to_user(uinfo, &info))
3583			ret = -EFAULT;
3584	}
3585
3586	return ret;
3587}
3588
3589#ifdef CONFIG_COMPAT_32BIT_TIME
3590SYSCALL_DEFINE4(rt_sigtimedwait_time32, const sigset_t __user *, uthese,
3591		siginfo_t __user *, uinfo,
3592		const struct old_timespec32 __user *, uts,
3593		size_t, sigsetsize)
3594{
3595	sigset_t these;
3596	struct timespec64 ts;
3597	kernel_siginfo_t info;
3598	int ret;
3599
3600	if (sigsetsize != sizeof(sigset_t))
3601		return -EINVAL;
3602
3603	if (copy_from_user(&these, uthese, sizeof(these)))
3604		return -EFAULT;
3605
3606	if (uts) {
3607		if (get_old_timespec32(&ts, uts))
3608			return -EFAULT;
3609	}
3610
3611	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
3612
3613	if (ret > 0 && uinfo) {
3614		if (copy_siginfo_to_user(uinfo, &info))
3615			ret = -EFAULT;
3616	}
3617
3618	return ret;
3619}
3620#endif
3621
3622#ifdef CONFIG_COMPAT
3623COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time64, compat_sigset_t __user *, uthese,
3624		struct compat_siginfo __user *, uinfo,
3625		struct __kernel_timespec __user *, uts, compat_size_t, sigsetsize)
3626{
3627	sigset_t s;
3628	struct timespec64 t;
3629	kernel_siginfo_t info;
3630	long ret;
3631
3632	if (sigsetsize != sizeof(sigset_t))
3633		return -EINVAL;
3634
3635	if (get_compat_sigset(&s, uthese))
3636		return -EFAULT;
3637
3638	if (uts) {
3639		if (get_timespec64(&t, uts))
3640			return -EFAULT;
3641	}
3642
3643	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3644
3645	if (ret > 0 && uinfo) {
3646		if (copy_siginfo_to_user32(uinfo, &info))
3647			ret = -EFAULT;
3648	}
3649
3650	return ret;
3651}
3652
3653#ifdef CONFIG_COMPAT_32BIT_TIME
3654COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
3655		struct compat_siginfo __user *, uinfo,
3656		struct old_timespec32 __user *, uts, compat_size_t, sigsetsize)
3657{
3658	sigset_t s;
3659	struct timespec64 t;
3660	kernel_siginfo_t info;
3661	long ret;
3662
3663	if (sigsetsize != sizeof(sigset_t))
3664		return -EINVAL;
3665
3666	if (get_compat_sigset(&s, uthese))
3667		return -EFAULT;
3668
3669	if (uts) {
3670		if (get_old_timespec32(&t, uts))
3671			return -EFAULT;
3672	}
3673
3674	ret = do_sigtimedwait(&s, &info, uts ? &t : NULL);
3675
3676	if (ret > 0 && uinfo) {
3677		if (copy_siginfo_to_user32(uinfo, &info))
3678			ret = -EFAULT;
3679	}
3680
3681	return ret;
3682}
3683#endif
3684#endif
3685
3686static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
3687{
3688	clear_siginfo(info);
3689	info->si_signo = sig;
3690	info->si_errno = 0;
3691	info->si_code = SI_USER;
3692	info->si_pid = task_tgid_vnr(current);
3693	info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
3694}
3695
3696/**
3697 *  sys_kill - send a signal to a process
3698 *  @pid: the PID of the process
3699 *  @sig: signal to be sent
3700 */
3701SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
3702{
3703	struct kernel_siginfo info;
3704
3705	prepare_kill_siginfo(sig, &info);
 
 
 
 
3706
3707	return kill_something_info(sig, &info, pid);
3708}
3709
3710/*
3711 * Verify that the signaler and signalee either are in the same pid namespace
3712 * or that the signaler's pid namespace is an ancestor of the signalee's pid
3713 * namespace.
3714 */
3715static bool access_pidfd_pidns(struct pid *pid)
3716{
3717	struct pid_namespace *active = task_active_pid_ns(current);
3718	struct pid_namespace *p = ns_of_pid(pid);
3719
3720	for (;;) {
3721		if (!p)
3722			return false;
3723		if (p == active)
3724			break;
3725		p = p->parent;
3726	}
3727
3728	return true;
3729}
3730
3731static int copy_siginfo_from_user_any(kernel_siginfo_t *kinfo,
3732		siginfo_t __user *info)
3733{
3734#ifdef CONFIG_COMPAT
3735	/*
3736	 * Avoid hooking up compat syscalls and instead handle necessary
3737	 * conversions here. Note, this is a stop-gap measure and should not be
3738	 * considered a generic solution.
3739	 */
3740	if (in_compat_syscall())
3741		return copy_siginfo_from_user32(
3742			kinfo, (struct compat_siginfo __user *)info);
3743#endif
3744	return copy_siginfo_from_user(kinfo, info);
3745}
3746
3747static struct pid *pidfd_to_pid(const struct file *file)
3748{
3749	struct pid *pid;
3750
3751	pid = pidfd_pid(file);
3752	if (!IS_ERR(pid))
3753		return pid;
3754
3755	return tgid_pidfd_to_pid(file);
3756}
3757
3758/**
3759 * sys_pidfd_send_signal - Signal a process through a pidfd
3760 * @pidfd:  file descriptor of the process
3761 * @sig:    signal to send
3762 * @info:   signal info
3763 * @flags:  future flags
3764 *
3765 * The syscall currently only signals via PIDTYPE_PID which covers
3766 * kill(<positive-pid>, <signal>. It does not signal threads or process
3767 * groups.
3768 * In order to extend the syscall to threads and process groups the @flags
3769 * argument should be used. In essence, the @flags argument will determine
3770 * what is signaled and not the file descriptor itself. Put in other words,
3771 * grouping is a property of the flags argument not a property of the file
3772 * descriptor.
3773 *
3774 * Return: 0 on success, negative errno on failure
3775 */
3776SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
3777		siginfo_t __user *, info, unsigned int, flags)
3778{
3779	int ret;
3780	struct fd f;
3781	struct pid *pid;
3782	kernel_siginfo_t kinfo;
3783
3784	/* Enforce flags be set to 0 until we add an extension. */
3785	if (flags)
3786		return -EINVAL;
3787
3788	f = fdget(pidfd);
3789	if (!f.file)
3790		return -EBADF;
3791
3792	/* Is this a pidfd? */
3793	pid = pidfd_to_pid(f.file);
3794	if (IS_ERR(pid)) {
3795		ret = PTR_ERR(pid);
3796		goto err;
3797	}
3798
3799	ret = -EINVAL;
3800	if (!access_pidfd_pidns(pid))
3801		goto err;
3802
3803	if (info) {
3804		ret = copy_siginfo_from_user_any(&kinfo, info);
3805		if (unlikely(ret))
3806			goto err;
3807
3808		ret = -EINVAL;
3809		if (unlikely(sig != kinfo.si_signo))
3810			goto err;
3811
3812		/* Only allow sending arbitrary signals to yourself. */
3813		ret = -EPERM;
3814		if ((task_pid(current) != pid) &&
3815		    (kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
3816			goto err;
3817	} else {
3818		prepare_kill_siginfo(sig, &kinfo);
3819	}
3820
3821	ret = kill_pid_info(sig, &kinfo, pid);
3822
3823err:
3824	fdput(f);
3825	return ret;
3826}
3827
3828static int
3829do_send_specific(pid_t tgid, pid_t pid, int sig, struct kernel_siginfo *info)
3830{
3831	struct task_struct *p;
3832	int error = -ESRCH;
3833
3834	rcu_read_lock();
3835	p = find_task_by_vpid(pid);
3836	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
3837		error = check_kill_permission(sig, info, p);
3838		/*
3839		 * The null signal is a permissions and process existence
3840		 * probe.  No signal is actually delivered.
3841		 */
3842		if (!error && sig) {
3843			error = do_send_sig_info(sig, info, p, PIDTYPE_PID);
3844			/*
3845			 * If lock_task_sighand() failed we pretend the task
3846			 * dies after receiving the signal. The window is tiny,
3847			 * and the signal is private anyway.
3848			 */
3849			if (unlikely(error == -ESRCH))
3850				error = 0;
3851		}
3852	}
3853	rcu_read_unlock();
3854
3855	return error;
3856}
3857
3858static int do_tkill(pid_t tgid, pid_t pid, int sig)
3859{
3860	struct kernel_siginfo info;
3861
3862	clear_siginfo(&info);
3863	info.si_signo = sig;
3864	info.si_errno = 0;
3865	info.si_code = SI_TKILL;
3866	info.si_pid = task_tgid_vnr(current);
3867	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
3868
3869	return do_send_specific(tgid, pid, sig, &info);
3870}
3871
3872/**
3873 *  sys_tgkill - send signal to one specific thread
3874 *  @tgid: the thread group ID of the thread
3875 *  @pid: the PID of the thread
3876 *  @sig: signal to be sent
3877 *
3878 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
3879 *  exists but it's not belonging to the target process anymore. This
3880 *  method solves the problem of threads exiting and PIDs getting reused.
3881 */
3882SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
3883{
3884	/* This is only valid for single tasks */
3885	if (pid <= 0 || tgid <= 0)
3886		return -EINVAL;
3887
3888	return do_tkill(tgid, pid, sig);
3889}
3890
3891/**
3892 *  sys_tkill - send signal to one specific task
3893 *  @pid: the PID of the task
3894 *  @sig: signal to be sent
3895 *
3896 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
3897 */
3898SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
3899{
3900	/* This is only valid for single tasks */
3901	if (pid <= 0)
3902		return -EINVAL;
3903
3904	return do_tkill(0, pid, sig);
3905}
3906
3907static int do_rt_sigqueueinfo(pid_t pid, int sig, kernel_siginfo_t *info)
3908{
3909	/* Not even root can pretend to send signals from the kernel.
3910	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3911	 */
3912	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3913	    (task_pid_vnr(current) != pid))
 
 
3914		return -EPERM;
 
 
3915
3916	/* POSIX.1b doesn't mention process groups.  */
3917	return kill_proc_info(sig, info, pid);
3918}
3919
3920/**
3921 *  sys_rt_sigqueueinfo - send signal information to a signal
3922 *  @pid: the PID of the thread
3923 *  @sig: signal to be sent
3924 *  @uinfo: signal info to be sent
3925 */
3926SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3927		siginfo_t __user *, uinfo)
3928{
3929	kernel_siginfo_t info;
3930	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3931	if (unlikely(ret))
3932		return ret;
3933	return do_rt_sigqueueinfo(pid, sig, &info);
3934}
3935
3936#ifdef CONFIG_COMPAT
3937COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3938			compat_pid_t, pid,
3939			int, sig,
3940			struct compat_siginfo __user *, uinfo)
3941{
3942	kernel_siginfo_t info;
3943	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3944	if (unlikely(ret))
3945		return ret;
3946	return do_rt_sigqueueinfo(pid, sig, &info);
3947}
3948#endif
3949
3950static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, kernel_siginfo_t *info)
3951{
3952	/* This is only valid for single tasks */
3953	if (pid <= 0 || tgid <= 0)
3954		return -EINVAL;
3955
3956	/* Not even root can pretend to send signals from the kernel.
3957	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3958	 */
3959	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3960	    (task_pid_vnr(current) != pid))
 
 
3961		return -EPERM;
 
 
3962
3963	return do_send_specific(tgid, pid, sig, info);
3964}
3965
3966SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3967		siginfo_t __user *, uinfo)
3968{
3969	kernel_siginfo_t info;
3970	int ret = __copy_siginfo_from_user(sig, &info, uinfo);
3971	if (unlikely(ret))
3972		return ret;
 
3973	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3974}
3975
3976#ifdef CONFIG_COMPAT
3977COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3978			compat_pid_t, tgid,
3979			compat_pid_t, pid,
3980			int, sig,
3981			struct compat_siginfo __user *, uinfo)
3982{
3983	kernel_siginfo_t info;
3984	int ret = __copy_siginfo_from_user32(sig, &info, uinfo);
3985	if (unlikely(ret))
3986		return ret;
3987	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3988}
3989#endif
3990
3991/*
3992 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3993 */
3994void kernel_sigaction(int sig, __sighandler_t action)
3995{
3996	spin_lock_irq(&current->sighand->siglock);
3997	current->sighand->action[sig - 1].sa.sa_handler = action;
3998	if (action == SIG_IGN) {
3999		sigset_t mask;
4000
4001		sigemptyset(&mask);
4002		sigaddset(&mask, sig);
4003
4004		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
4005		flush_sigqueue_mask(&mask, &current->pending);
4006		recalc_sigpending();
4007	}
4008	spin_unlock_irq(&current->sighand->siglock);
4009}
4010EXPORT_SYMBOL(kernel_sigaction);
4011
4012void __weak sigaction_compat_abi(struct k_sigaction *act,
4013		struct k_sigaction *oact)
4014{
4015}
4016
4017int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
4018{
4019	struct task_struct *p = current, *t;
4020	struct k_sigaction *k;
4021	sigset_t mask;
4022
4023	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
4024		return -EINVAL;
4025
4026	k = &p->sighand->action[sig-1];
4027
4028	spin_lock_irq(&p->sighand->siglock);
4029	if (oact)
4030		*oact = *k;
4031
4032	/*
4033	 * Make sure that we never accidentally claim to support SA_UNSUPPORTED,
4034	 * e.g. by having an architecture use the bit in their uapi.
4035	 */
4036	BUILD_BUG_ON(UAPI_SA_FLAGS & SA_UNSUPPORTED);
4037
4038	/*
4039	 * Clear unknown flag bits in order to allow userspace to detect missing
4040	 * support for flag bits and to allow the kernel to use non-uapi bits
4041	 * internally.
4042	 */
4043	if (act)
4044		act->sa.sa_flags &= UAPI_SA_FLAGS;
4045	if (oact)
4046		oact->sa.sa_flags &= UAPI_SA_FLAGS;
4047
4048	sigaction_compat_abi(act, oact);
4049
4050	if (act) {
4051		sigdelsetmask(&act->sa.sa_mask,
4052			      sigmask(SIGKILL) | sigmask(SIGSTOP));
4053		*k = *act;
4054		/*
4055		 * POSIX 3.3.1.3:
4056		 *  "Setting a signal action to SIG_IGN for a signal that is
4057		 *   pending shall cause the pending signal to be discarded,
4058		 *   whether or not it is blocked."
4059		 *
4060		 *  "Setting a signal action to SIG_DFL for a signal that is
4061		 *   pending and whose default action is to ignore the signal
4062		 *   (for example, SIGCHLD), shall cause the pending signal to
4063		 *   be discarded, whether or not it is blocked"
4064		 */
4065		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
4066			sigemptyset(&mask);
4067			sigaddset(&mask, sig);
4068			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
4069			for_each_thread(p, t)
4070				flush_sigqueue_mask(&mask, &t->pending);
 
4071		}
4072	}
4073
4074	spin_unlock_irq(&p->sighand->siglock);
4075	return 0;
4076}
4077
4078static int
4079do_sigaltstack (const stack_t *ss, stack_t *oss, unsigned long sp,
4080		size_t min_ss_size)
4081{
4082	struct task_struct *t = current;
 
4083
4084	if (oss) {
4085		memset(oss, 0, sizeof(stack_t));
4086		oss->ss_sp = (void __user *) t->sas_ss_sp;
4087		oss->ss_size = t->sas_ss_size;
4088		oss->ss_flags = sas_ss_flags(sp) |
4089			(current->sas_ss_flags & SS_FLAG_BITS);
4090	}
 
4091
4092	if (ss) {
4093		void __user *ss_sp = ss->ss_sp;
4094		size_t ss_size = ss->ss_size;
4095		unsigned ss_flags = ss->ss_flags;
4096		int ss_mode;
 
 
 
4097
4098		if (unlikely(on_sig_stack(sp)))
4099			return -EPERM;
 
4100
4101		ss_mode = ss_flags & ~SS_FLAG_BITS;
4102		if (unlikely(ss_mode != SS_DISABLE && ss_mode != SS_ONSTACK &&
4103				ss_mode != 0))
4104			return -EINVAL;
 
 
 
 
 
 
4105
4106		if (ss_mode == SS_DISABLE) {
4107			ss_size = 0;
4108			ss_sp = NULL;
4109		} else {
4110			if (unlikely(ss_size < min_ss_size))
4111				return -ENOMEM;
 
4112		}
4113
4114		t->sas_ss_sp = (unsigned long) ss_sp;
4115		t->sas_ss_size = ss_size;
4116		t->sas_ss_flags = ss_flags;
 
 
 
 
 
 
 
 
 
4117	}
4118	return 0;
4119}
4120
 
 
 
4121SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
4122{
4123	stack_t new, old;
4124	int err;
4125	if (uss && copy_from_user(&new, uss, sizeof(stack_t)))
4126		return -EFAULT;
4127	err = do_sigaltstack(uss ? &new : NULL, uoss ? &old : NULL,
4128			      current_user_stack_pointer(),
4129			      MINSIGSTKSZ);
4130	if (!err && uoss && copy_to_user(uoss, &old, sizeof(stack_t)))
4131		err = -EFAULT;
4132	return err;
4133}
4134
4135int restore_altstack(const stack_t __user *uss)
4136{
4137	stack_t new;
4138	if (copy_from_user(&new, uss, sizeof(stack_t)))
4139		return -EFAULT;
4140	(void)do_sigaltstack(&new, NULL, current_user_stack_pointer(),
4141			     MINSIGSTKSZ);
4142	/* squash all but EFAULT for now */
4143	return 0;
4144}
4145
4146int __save_altstack(stack_t __user *uss, unsigned long sp)
4147{
4148	struct task_struct *t = current;
4149	int err = __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
4150		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4151		__put_user(t->sas_ss_size, &uss->ss_size);
4152	return err;
4153}
4154
4155#ifdef CONFIG_COMPAT
4156static int do_compat_sigaltstack(const compat_stack_t __user *uss_ptr,
4157				 compat_stack_t __user *uoss_ptr)
 
4158{
4159	stack_t uss, uoss;
4160	int ret;
 
4161
4162	if (uss_ptr) {
4163		compat_stack_t uss32;
 
 
4164		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
4165			return -EFAULT;
4166		uss.ss_sp = compat_ptr(uss32.ss_sp);
4167		uss.ss_flags = uss32.ss_flags;
4168		uss.ss_size = uss32.ss_size;
4169	}
4170	ret = do_sigaltstack(uss_ptr ? &uss : NULL, &uoss,
4171			     compat_user_stack_pointer(),
4172			     COMPAT_MINSIGSTKSZ);
 
 
 
4173	if (ret >= 0 && uoss_ptr)  {
4174		compat_stack_t old;
4175		memset(&old, 0, sizeof(old));
4176		old.ss_sp = ptr_to_compat(uoss.ss_sp);
4177		old.ss_flags = uoss.ss_flags;
4178		old.ss_size = uoss.ss_size;
4179		if (copy_to_user(uoss_ptr, &old, sizeof(compat_stack_t)))
4180			ret = -EFAULT;
4181	}
4182	return ret;
4183}
4184
4185COMPAT_SYSCALL_DEFINE2(sigaltstack,
4186			const compat_stack_t __user *, uss_ptr,
4187			compat_stack_t __user *, uoss_ptr)
4188{
4189	return do_compat_sigaltstack(uss_ptr, uoss_ptr);
4190}
4191
4192int compat_restore_altstack(const compat_stack_t __user *uss)
4193{
4194	int err = do_compat_sigaltstack(uss, NULL);
4195	/* squash all but -EFAULT for now */
4196	return err == -EFAULT ? err : 0;
4197}
4198
4199int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
4200{
4201	int err;
4202	struct task_struct *t = current;
4203	err = __put_user(ptr_to_compat((void __user *)t->sas_ss_sp),
4204			 &uss->ss_sp) |
4205		__put_user(t->sas_ss_flags, &uss->ss_flags) |
4206		__put_user(t->sas_ss_size, &uss->ss_size);
4207	return err;
4208}
4209#endif
4210
4211#ifdef __ARCH_WANT_SYS_SIGPENDING
4212
4213/**
4214 *  sys_sigpending - examine pending signals
4215 *  @uset: where mask of pending signal is returned
4216 */
4217SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, uset)
4218{
4219	sigset_t set;
4220
4221	if (sizeof(old_sigset_t) > sizeof(*uset))
4222		return -EINVAL;
4223
4224	do_sigpending(&set);
4225
4226	if (copy_to_user(uset, &set, sizeof(old_sigset_t)))
4227		return -EFAULT;
4228
4229	return 0;
4230}
4231
4232#ifdef CONFIG_COMPAT
4233COMPAT_SYSCALL_DEFINE1(sigpending, compat_old_sigset_t __user *, set32)
4234{
4235	sigset_t set;
4236
4237	do_sigpending(&set);
4238
4239	return put_user(set.sig[0], set32);
4240}
4241#endif
4242
4243#endif
4244
4245#ifdef __ARCH_WANT_SYS_SIGPROCMASK
4246/**
4247 *  sys_sigprocmask - examine and change blocked signals
4248 *  @how: whether to add, remove, or set signals
4249 *  @nset: signals to add or remove (if non-null)
4250 *  @oset: previous value of signal mask if non-null
4251 *
4252 * Some platforms have their own version with special arguments;
4253 * others support only sys_rt_sigprocmask.
4254 */
4255
4256SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
4257		old_sigset_t __user *, oset)
4258{
4259	old_sigset_t old_set, new_set;
4260	sigset_t new_blocked;
4261
4262	old_set = current->blocked.sig[0];
4263
4264	if (nset) {
4265		if (copy_from_user(&new_set, nset, sizeof(*nset)))
4266			return -EFAULT;
4267
4268		new_blocked = current->blocked;
4269
4270		switch (how) {
4271		case SIG_BLOCK:
4272			sigaddsetmask(&new_blocked, new_set);
4273			break;
4274		case SIG_UNBLOCK:
4275			sigdelsetmask(&new_blocked, new_set);
4276			break;
4277		case SIG_SETMASK:
4278			new_blocked.sig[0] = new_set;
4279			break;
4280		default:
4281			return -EINVAL;
4282		}
4283
4284		set_current_blocked(&new_blocked);
4285	}
4286
4287	if (oset) {
4288		if (copy_to_user(oset, &old_set, sizeof(*oset)))
4289			return -EFAULT;
4290	}
4291
4292	return 0;
4293}
4294#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
4295
4296#ifndef CONFIG_ODD_RT_SIGACTION
4297/**
4298 *  sys_rt_sigaction - alter an action taken by a process
4299 *  @sig: signal to be sent
4300 *  @act: new sigaction
4301 *  @oact: used to save the previous sigaction
4302 *  @sigsetsize: size of sigset_t type
4303 */
4304SYSCALL_DEFINE4(rt_sigaction, int, sig,
4305		const struct sigaction __user *, act,
4306		struct sigaction __user *, oact,
4307		size_t, sigsetsize)
4308{
4309	struct k_sigaction new_sa, old_sa;
4310	int ret;
4311
4312	/* XXX: Don't preclude handling different sized sigset_t's.  */
4313	if (sigsetsize != sizeof(sigset_t))
4314		return -EINVAL;
4315
4316	if (act && copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
4317		return -EFAULT;
 
 
4318
4319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
4320	if (ret)
4321		return ret;
4322
4323	if (oact && copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
4324		return -EFAULT;
4325
4326	return 0;
 
 
4327}
4328#ifdef CONFIG_COMPAT
4329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
4330		const struct compat_sigaction __user *, act,
4331		struct compat_sigaction __user *, oact,
4332		compat_size_t, sigsetsize)
4333{
4334	struct k_sigaction new_ka, old_ka;
 
4335#ifdef __ARCH_HAS_SA_RESTORER
4336	compat_uptr_t restorer;
4337#endif
4338	int ret;
4339
4340	/* XXX: Don't preclude handling different sized sigset_t's.  */
4341	if (sigsetsize != sizeof(compat_sigset_t))
4342		return -EINVAL;
4343
4344	if (act) {
4345		compat_uptr_t handler;
4346		ret = get_user(handler, &act->sa_handler);
4347		new_ka.sa.sa_handler = compat_ptr(handler);
4348#ifdef __ARCH_HAS_SA_RESTORER
4349		ret |= get_user(restorer, &act->sa_restorer);
4350		new_ka.sa.sa_restorer = compat_ptr(restorer);
4351#endif
4352		ret |= get_compat_sigset(&new_ka.sa.sa_mask, &act->sa_mask);
4353		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
4354		if (ret)
4355			return -EFAULT;
 
4356	}
4357
4358	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4359	if (!ret && oact) {
 
4360		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
4361			       &oact->sa_handler);
4362		ret |= put_compat_sigset(&oact->sa_mask, &old_ka.sa.sa_mask,
4363					 sizeof(oact->sa_mask));
4364		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
4365#ifdef __ARCH_HAS_SA_RESTORER
4366		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4367				&oact->sa_restorer);
4368#endif
4369	}
4370	return ret;
4371}
4372#endif
4373#endif /* !CONFIG_ODD_RT_SIGACTION */
4374
4375#ifdef CONFIG_OLD_SIGACTION
4376SYSCALL_DEFINE3(sigaction, int, sig,
4377		const struct old_sigaction __user *, act,
4378	        struct old_sigaction __user *, oact)
4379{
4380	struct k_sigaction new_ka, old_ka;
4381	int ret;
4382
4383	if (act) {
4384		old_sigset_t mask;
4385		if (!access_ok(act, sizeof(*act)) ||
4386		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
4387		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
4388		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4389		    __get_user(mask, &act->sa_mask))
4390			return -EFAULT;
4391#ifdef __ARCH_HAS_KA_RESTORER
4392		new_ka.ka_restorer = NULL;
4393#endif
4394		siginitset(&new_ka.sa.sa_mask, mask);
4395	}
4396
4397	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4398
4399	if (!ret && oact) {
4400		if (!access_ok(oact, sizeof(*oact)) ||
4401		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
4402		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
4403		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4404		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4405			return -EFAULT;
4406	}
4407
4408	return ret;
4409}
4410#endif
4411#ifdef CONFIG_COMPAT_OLD_SIGACTION
4412COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
4413		const struct compat_old_sigaction __user *, act,
4414	        struct compat_old_sigaction __user *, oact)
4415{
4416	struct k_sigaction new_ka, old_ka;
4417	int ret;
4418	compat_old_sigset_t mask;
4419	compat_uptr_t handler, restorer;
4420
4421	if (act) {
4422		if (!access_ok(act, sizeof(*act)) ||
4423		    __get_user(handler, &act->sa_handler) ||
4424		    __get_user(restorer, &act->sa_restorer) ||
4425		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
4426		    __get_user(mask, &act->sa_mask))
4427			return -EFAULT;
4428
4429#ifdef __ARCH_HAS_KA_RESTORER
4430		new_ka.ka_restorer = NULL;
4431#endif
4432		new_ka.sa.sa_handler = compat_ptr(handler);
4433		new_ka.sa.sa_restorer = compat_ptr(restorer);
4434		siginitset(&new_ka.sa.sa_mask, mask);
4435	}
4436
4437	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
4438
4439	if (!ret && oact) {
4440		if (!access_ok(oact, sizeof(*oact)) ||
4441		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
4442			       &oact->sa_handler) ||
4443		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
4444			       &oact->sa_restorer) ||
4445		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
4446		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
4447			return -EFAULT;
4448	}
4449	return ret;
4450}
4451#endif
4452
4453#ifdef CONFIG_SGETMASK_SYSCALL
4454
4455/*
4456 * For backwards compatibility.  Functionality superseded by sigprocmask.
4457 */
4458SYSCALL_DEFINE0(sgetmask)
4459{
4460	/* SMP safe */
4461	return current->blocked.sig[0];
4462}
4463
4464SYSCALL_DEFINE1(ssetmask, int, newmask)
4465{
4466	int old = current->blocked.sig[0];
4467	sigset_t newset;
4468
4469	siginitset(&newset, newmask);
4470	set_current_blocked(&newset);
4471
4472	return old;
4473}
4474#endif /* CONFIG_SGETMASK_SYSCALL */
4475
4476#ifdef __ARCH_WANT_SYS_SIGNAL
4477/*
4478 * For backwards compatibility.  Functionality superseded by sigaction.
4479 */
4480SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
4481{
4482	struct k_sigaction new_sa, old_sa;
4483	int ret;
4484
4485	new_sa.sa.sa_handler = handler;
4486	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
4487	sigemptyset(&new_sa.sa.sa_mask);
4488
4489	ret = do_sigaction(sig, &new_sa, &old_sa);
4490
4491	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
4492}
4493#endif /* __ARCH_WANT_SYS_SIGNAL */
4494
4495#ifdef __ARCH_WANT_SYS_PAUSE
4496
4497SYSCALL_DEFINE0(pause)
4498{
4499	while (!signal_pending(current)) {
4500		__set_current_state(TASK_INTERRUPTIBLE);
4501		schedule();
4502	}
4503	return -ERESTARTNOHAND;
4504}
4505
4506#endif
4507
4508static int sigsuspend(sigset_t *set)
4509{
4510	current->saved_sigmask = current->blocked;
4511	set_current_blocked(set);
4512
4513	while (!signal_pending(current)) {
4514		__set_current_state(TASK_INTERRUPTIBLE);
4515		schedule();
4516	}
4517	set_restore_sigmask();
4518	return -ERESTARTNOHAND;
4519}
4520
4521/**
4522 *  sys_rt_sigsuspend - replace the signal mask for a value with the
4523 *	@unewset value until a signal is received
4524 *  @unewset: new signal mask value
4525 *  @sigsetsize: size of sigset_t type
4526 */
4527SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
4528{
4529	sigset_t newset;
4530
4531	/* XXX: Don't preclude handling different sized sigset_t's.  */
4532	if (sigsetsize != sizeof(sigset_t))
4533		return -EINVAL;
4534
4535	if (copy_from_user(&newset, unewset, sizeof(newset)))
4536		return -EFAULT;
4537	return sigsuspend(&newset);
4538}
4539 
4540#ifdef CONFIG_COMPAT
4541COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
4542{
 
4543	sigset_t newset;
 
4544
4545	/* XXX: Don't preclude handling different sized sigset_t's.  */
4546	if (sigsetsize != sizeof(sigset_t))
4547		return -EINVAL;
4548
4549	if (get_compat_sigset(&newset, unewset))
4550		return -EFAULT;
 
4551	return sigsuspend(&newset);
 
 
 
 
4552}
4553#endif
4554
4555#ifdef CONFIG_OLD_SIGSUSPEND
4556SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
4557{
4558	sigset_t blocked;
4559	siginitset(&blocked, mask);
4560	return sigsuspend(&blocked);
4561}
4562#endif
4563#ifdef CONFIG_OLD_SIGSUSPEND3
4564SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
4565{
4566	sigset_t blocked;
4567	siginitset(&blocked, mask);
4568	return sigsuspend(&blocked);
4569}
4570#endif
4571
4572__weak const char *arch_vma_name(struct vm_area_struct *vma)
4573{
4574	return NULL;
4575}
4576
4577static inline void siginfo_buildtime_checks(void)
4578{
4579	BUILD_BUG_ON(sizeof(struct siginfo) != SI_MAX_SIZE);
4580
4581	/* Verify the offsets in the two siginfos match */
4582#define CHECK_OFFSET(field) \
4583	BUILD_BUG_ON(offsetof(siginfo_t, field) != offsetof(kernel_siginfo_t, field))
4584
4585	/* kill */
4586	CHECK_OFFSET(si_pid);
4587	CHECK_OFFSET(si_uid);
4588
4589	/* timer */
4590	CHECK_OFFSET(si_tid);
4591	CHECK_OFFSET(si_overrun);
4592	CHECK_OFFSET(si_value);
4593
4594	/* rt */
4595	CHECK_OFFSET(si_pid);
4596	CHECK_OFFSET(si_uid);
4597	CHECK_OFFSET(si_value);
4598
4599	/* sigchld */
4600	CHECK_OFFSET(si_pid);
4601	CHECK_OFFSET(si_uid);
4602	CHECK_OFFSET(si_status);
4603	CHECK_OFFSET(si_utime);
4604	CHECK_OFFSET(si_stime);
4605
4606	/* sigfault */
4607	CHECK_OFFSET(si_addr);
4608	CHECK_OFFSET(si_trapno);
4609	CHECK_OFFSET(si_addr_lsb);
4610	CHECK_OFFSET(si_lower);
4611	CHECK_OFFSET(si_upper);
4612	CHECK_OFFSET(si_pkey);
4613	CHECK_OFFSET(si_perf_data);
4614	CHECK_OFFSET(si_perf_type);
4615
4616	/* sigpoll */
4617	CHECK_OFFSET(si_band);
4618	CHECK_OFFSET(si_fd);
4619
4620	/* sigsys */
4621	CHECK_OFFSET(si_call_addr);
4622	CHECK_OFFSET(si_syscall);
4623	CHECK_OFFSET(si_arch);
4624#undef CHECK_OFFSET
4625
4626	/* usb asyncio */
4627	BUILD_BUG_ON(offsetof(struct siginfo, si_pid) !=
4628		     offsetof(struct siginfo, si_addr));
4629	if (sizeof(int) == sizeof(void __user *)) {
4630		BUILD_BUG_ON(sizeof_field(struct siginfo, si_pid) !=
4631			     sizeof(void __user *));
4632	} else {
4633		BUILD_BUG_ON((sizeof_field(struct siginfo, si_pid) +
4634			      sizeof_field(struct siginfo, si_uid)) !=
4635			     sizeof(void __user *));
4636		BUILD_BUG_ON(offsetofend(struct siginfo, si_pid) !=
4637			     offsetof(struct siginfo, si_uid));
4638	}
4639#ifdef CONFIG_COMPAT
4640	BUILD_BUG_ON(offsetof(struct compat_siginfo, si_pid) !=
4641		     offsetof(struct compat_siginfo, si_addr));
4642	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4643		     sizeof(compat_uptr_t));
4644	BUILD_BUG_ON(sizeof_field(struct compat_siginfo, si_pid) !=
4645		     sizeof_field(struct siginfo, si_pid));
4646#endif
4647}
4648
4649void __init signals_init(void)
4650{
4651	siginfo_buildtime_checks();
4652
4653	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
4654}
4655
4656#ifdef CONFIG_KGDB_KDB
4657#include <linux/kdb.h>
4658/*
4659 * kdb_send_sig - Allows kdb to send signals without exposing
4660 * signal internals.  This function checks if the required locks are
4661 * available before calling the main signal code, to avoid kdb
4662 * deadlocks.
4663 */
4664void kdb_send_sig(struct task_struct *t, int sig)
 
4665{
4666	static struct task_struct *kdb_prev_t;
4667	int new_t, ret;
4668	if (!spin_trylock(&t->sighand->siglock)) {
4669		kdb_printf("Can't do kill command now.\n"
4670			   "The sigmask lock is held somewhere else in "
4671			   "kernel, try again later\n");
4672		return;
4673	}
 
4674	new_t = kdb_prev_t != t;
4675	kdb_prev_t = t;
4676	if (!task_is_running(t) && new_t) {
4677		spin_unlock(&t->sighand->siglock);
4678		kdb_printf("Process is not RUNNING, sending a signal from "
4679			   "kdb risks deadlock\n"
4680			   "on the run queue locks. "
4681			   "The signal has _not_ been sent.\n"
4682			   "Reissue the kill command if you want to risk "
4683			   "the deadlock.\n");
4684		return;
4685	}
4686	ret = send_signal(sig, SEND_SIG_PRIV, t, PIDTYPE_PID);
4687	spin_unlock(&t->sighand->siglock);
4688	if (ret)
4689		kdb_printf("Fail to deliver Signal %d to process %d.\n",
4690			   sig, t->pid);
4691	else
4692		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
4693}
4694#endif	/* CONFIG_KGDB_KDB */
v3.15
 
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
 
 
 
 
 
 
  17#include <linux/fs.h>
 
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
 
 
 
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
 
 
 
 
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
 
 
 
 
 
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
 
 
  96	 */
  97	return !t->ptrace;
 
 
 
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 
 
 
 
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 
 
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 
 
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 
 
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 
 433
 
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 
 
 
 
 
 
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 610{
 
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 617	if (!signr) {
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 
 
 
 674	}
 
 675	return signr;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 
 937	if (p->flags & PF_EXITING)
 938		return 0;
 
 939	if (sig == SIGKILL)
 940		return 1;
 
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 943	return task_curr(p) || !signal_pending(p);
 
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
 
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
 
 
 
 
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
 
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121
1122		userns_fixup_signal_uid(&q->info, t);
 
 
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
 
 
 
 
 
 
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
 
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
1248		if (blocked) {
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
 
 
 
 
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
 
 
 
 
 
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
 
1290	for (;;) {
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
 
1309
1310	return sighand;
1311}
1312
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
 
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
 
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
 
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
 
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
 
 
 
 
 
 
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
 
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
 
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
 
1497
1498void
1499force_sig(int sig, struct task_struct *p)
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
 
 
 
 
 
 
 
 
1502}
 
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
 
 
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
 
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
1595	if (!likely(lock_task_sighand(t, &flags)))
 
 
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
 
1626	return ret;
1627}
1628
 
 
 
 
 
 
 
 
 
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
 
 
 
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
 
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
 
 
 
 
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
 
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
 
 
1866	/*
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
 
 
 
 
 
 
 
 
 
 
 
1872	 */
1873	set_current_state(TASK_TRACED);
1874
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
 
1921		preempt_enable_no_resched();
1922		freezable_schedule();
 
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
1950	current->last_siginfo = NULL;
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
 
2100		freezable_schedule();
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
 
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
2202		task_work_run();
2203
 
 
 
 
 
 
 
 
 
 
 
 
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
 
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
 
 
 
 
 
 
 
 
 
 
2252	for (;;) {
2253		struct k_sigaction *ka;
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261			spin_unlock_irq(&sighand->siglock);
 
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
 
 
 
 
 
 
 
 
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
 
2347		spin_unlock_irq(&sighand->siglock);
 
 
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
 
 
 
 
 
 
 
 
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
 
 
 
 
 
 
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
 
 
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
 
 
 
 
 
 
 
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
 
 
 
 
 
 
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2722#endif
2723}
2724#endif
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
 
2767#endif
2768#ifdef BUS_MCEERR_AO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
 
 
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
2795		break;
 
 
 
 
 
 
 
 
 
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
 
 
 
 
 
 
 
 
 
 
 
2800		break;
2801	}
2802	return err;
 
 
 
 
 
 
 
 
 
 
 
 
2803}
2804
2805#endif
 
 
 
 
 
 
 
 
 
 
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
 
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
 
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
 
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2905
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
 
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
 
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
3106	if (oact)
3107		*oact = *k;
3108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
 
3140{
3141	stack_t oss;
3142	int error;
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
3176
3177		if (ss_flags == SS_DISABLE) {
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
 
 
3199
3200out:
3201	return error;
3202}
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
 
 
 
 
 
 
 
 
 
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
 
 
 
 
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
 
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
 
 
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
 
 
 
 
 
 
 
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
 
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
 
3270		__put_user(t->sas_ss_size, &uss->ss_size);
 
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
 
 
 
 
3283}
 
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
 
 
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
 
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
 
 
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628void __init signals_init(void)
3629{
 
 
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
 
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
 
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */