Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
 
 
 
 
 
 
 
 
 
  32static int kexec_calculate_store_digests(struct kimage *image);
  33
 
 
 
  34/*
  35 * Currently this is the only default function that is exported as some
  36 * architectures need it to do additional handlings.
  37 * In the future, other default functions may be exported too if required.
  38 */
  39int kexec_image_probe_default(struct kimage *image, void *buf,
  40			      unsigned long buf_len)
  41{
  42	const struct kexec_file_ops * const *fops;
  43	int ret = -ENOEXEC;
  44
  45	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  46		ret = (*fops)->probe(buf, buf_len);
  47		if (!ret) {
  48			image->fops = *fops;
  49			return ret;
  50		}
  51	}
  52
  53	return ret;
  54}
  55
  56/* Architectures can provide this probe function */
  57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  58					 unsigned long buf_len)
  59{
  60	return kexec_image_probe_default(image, buf, buf_len);
  61}
  62
  63static void *kexec_image_load_default(struct kimage *image)
  64{
  65	if (!image->fops || !image->fops->load)
  66		return ERR_PTR(-ENOEXEC);
  67
  68	return image->fops->load(image, image->kernel_buf,
  69				 image->kernel_buf_len, image->initrd_buf,
  70				 image->initrd_buf_len, image->cmdline_buf,
  71				 image->cmdline_buf_len);
  72}
  73
  74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  75{
  76	return kexec_image_load_default(image);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  88{
  89	return kexec_image_post_load_cleanup_default(image);
  90}
  91
  92#ifdef CONFIG_KEXEC_SIG
  93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  94					  unsigned long buf_len)
  95{
  96	if (!image->fops || !image->fops->verify_sig) {
  97		pr_debug("kernel loader does not support signature verification.\n");
  98		return -EKEYREJECTED;
  99	}
 100
 101	return image->fops->verify_sig(buf, buf_len);
 102}
 103
 104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 105					unsigned long buf_len)
 106{
 107	return kexec_image_verify_sig_default(image, buf, buf_len);
 108}
 109#endif
 110
 111/*
 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 113 * @pi:		Purgatory to be relocated.
 114 * @section:	Section relocations applying to.
 115 * @relsec:	Section containing RELAs.
 116 * @symtab:	Corresponding symtab.
 117 *
 118 * Return: 0 on success, negative errno on error.
 119 */
 120int __weak
 121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 122				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 123{
 124	pr_err("RELA relocation unsupported.\n");
 125	return -ENOEXEC;
 126}
 127
 128/*
 129 * arch_kexec_apply_relocations - apply relocations of type REL
 130 * @pi:		Purgatory to be relocated.
 131 * @section:	Section relocations applying to.
 132 * @relsec:	Section containing RELs.
 133 * @symtab:	Corresponding symtab.
 134 *
 135 * Return: 0 on success, negative errno on error.
 136 */
 137int __weak
 138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 139			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 140{
 141	pr_err("REL relocation unsupported.\n");
 142	return -ENOEXEC;
 143}
 144
 145/*
 146 * Free up memory used by kernel, initrd, and command line. This is temporary
 147 * memory allocation which is not needed any more after these buffers have
 148 * been loaded into separate segments and have been copied elsewhere.
 149 */
 150void kimage_file_post_load_cleanup(struct kimage *image)
 151{
 152	struct purgatory_info *pi = &image->purgatory_info;
 153
 154	vfree(image->kernel_buf);
 155	image->kernel_buf = NULL;
 156
 157	vfree(image->initrd_buf);
 158	image->initrd_buf = NULL;
 159
 160	kfree(image->cmdline_buf);
 161	image->cmdline_buf = NULL;
 162
 163	vfree(pi->purgatory_buf);
 164	pi->purgatory_buf = NULL;
 165
 166	vfree(pi->sechdrs);
 167	pi->sechdrs = NULL;
 168
 169#ifdef CONFIG_IMA_KEXEC
 170	vfree(image->ima_buffer);
 171	image->ima_buffer = NULL;
 172#endif /* CONFIG_IMA_KEXEC */
 173
 174	/* See if architecture has anything to cleanup post load */
 175	arch_kimage_file_post_load_cleanup(image);
 176
 177	/*
 178	 * Above call should have called into bootloader to free up
 179	 * any data stored in kimage->image_loader_data. It should
 180	 * be ok now to free it up.
 181	 */
 182	kfree(image->image_loader_data);
 183	image->image_loader_data = NULL;
 184}
 185
 186#ifdef CONFIG_KEXEC_SIG
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187static int
 188kimage_validate_signature(struct kimage *image)
 189{
 190	int ret;
 191
 192	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 193					   image->kernel_buf_len);
 194	if (ret) {
 195
 196		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 197			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 198			return ret;
 199		}
 200
 201		/*
 202		 * If IMA is guaranteed to appraise a signature on the kexec
 203		 * image, permit it even if the kernel is otherwise locked
 204		 * down.
 205		 */
 206		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 207		    security_locked_down(LOCKDOWN_KEXEC))
 208			return -EPERM;
 209
 210		pr_debug("kernel signature verification failed (%d).\n", ret);
 211	}
 212
 213	return 0;
 214}
 215#endif
 216
 217/*
 218 * In file mode list of segments is prepared by kernel. Copy relevant
 219 * data from user space, do error checking, prepare segment list
 220 */
 221static int
 222kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 223			     const char __user *cmdline_ptr,
 224			     unsigned long cmdline_len, unsigned flags)
 225{
 226	int ret;
 227	void *ldata;
 228
 229	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 230				       INT_MAX, NULL, READING_KEXEC_IMAGE);
 
 231	if (ret < 0)
 232		return ret;
 233	image->kernel_buf_len = ret;
 234
 235	/* Call arch image probe handlers */
 236	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 237					    image->kernel_buf_len);
 238	if (ret)
 239		goto out;
 240
 241#ifdef CONFIG_KEXEC_SIG
 242	ret = kimage_validate_signature(image);
 243
 244	if (ret)
 245		goto out;
 246#endif
 247	/* It is possible that there no initramfs is being loaded */
 248	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 249		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 250					       INT_MAX, NULL,
 251					       READING_KEXEC_INITRAMFS);
 252		if (ret < 0)
 253			goto out;
 254		image->initrd_buf_len = ret;
 255		ret = 0;
 256	}
 257
 258	if (cmdline_len) {
 259		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 260		if (IS_ERR(image->cmdline_buf)) {
 261			ret = PTR_ERR(image->cmdline_buf);
 262			image->cmdline_buf = NULL;
 263			goto out;
 264		}
 265
 266		image->cmdline_buf_len = cmdline_len;
 267
 268		/* command line should be a string with last byte null */
 269		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 270			ret = -EINVAL;
 271			goto out;
 272		}
 273
 274		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 275				  image->cmdline_buf_len - 1);
 276	}
 277
 278	/* IMA needs to pass the measurement list to the next kernel. */
 279	ima_add_kexec_buffer(image);
 280
 281	/* Call arch image load handlers */
 282	ldata = arch_kexec_kernel_image_load(image);
 283
 284	if (IS_ERR(ldata)) {
 285		ret = PTR_ERR(ldata);
 286		goto out;
 287	}
 288
 289	image->image_loader_data = ldata;
 290out:
 291	/* In case of error, free up all allocated memory in this function */
 292	if (ret)
 293		kimage_file_post_load_cleanup(image);
 294	return ret;
 295}
 296
 297static int
 298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 299		       int initrd_fd, const char __user *cmdline_ptr,
 300		       unsigned long cmdline_len, unsigned long flags)
 301{
 302	int ret;
 303	struct kimage *image;
 304	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 305
 306	image = do_kimage_alloc_init();
 307	if (!image)
 308		return -ENOMEM;
 309
 310	image->file_mode = 1;
 311
 312	if (kexec_on_panic) {
 313		/* Enable special crash kernel control page alloc policy. */
 314		image->control_page = crashk_res.start;
 315		image->type = KEXEC_TYPE_CRASH;
 316	}
 317
 318	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 319					   cmdline_ptr, cmdline_len, flags);
 320	if (ret)
 321		goto out_free_image;
 322
 323	ret = sanity_check_segment_list(image);
 324	if (ret)
 325		goto out_free_post_load_bufs;
 326
 327	ret = -ENOMEM;
 328	image->control_code_page = kimage_alloc_control_pages(image,
 329					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 330	if (!image->control_code_page) {
 331		pr_err("Could not allocate control_code_buffer\n");
 332		goto out_free_post_load_bufs;
 333	}
 334
 335	if (!kexec_on_panic) {
 336		image->swap_page = kimage_alloc_control_pages(image, 0);
 337		if (!image->swap_page) {
 338			pr_err("Could not allocate swap buffer\n");
 339			goto out_free_control_pages;
 340		}
 341	}
 342
 343	*rimage = image;
 344	return 0;
 345out_free_control_pages:
 346	kimage_free_page_list(&image->control_pages);
 347out_free_post_load_bufs:
 348	kimage_file_post_load_cleanup(image);
 349out_free_image:
 350	kfree(image);
 351	return ret;
 352}
 353
 354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 355		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 356		unsigned long, flags)
 357{
 358	int ret = 0, i;
 359	struct kimage **dest_image, *image;
 360
 361	/* We only trust the superuser with rebooting the system. */
 362	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 363		return -EPERM;
 364
 365	/* Make sure we have a legal set of flags */
 366	if (flags != (flags & KEXEC_FILE_FLAGS))
 367		return -EINVAL;
 368
 369	image = NULL;
 370
 371	if (!mutex_trylock(&kexec_mutex))
 372		return -EBUSY;
 373
 374	dest_image = &kexec_image;
 375	if (flags & KEXEC_FILE_ON_CRASH) {
 376		dest_image = &kexec_crash_image;
 377		if (kexec_crash_image)
 378			arch_kexec_unprotect_crashkres();
 379	}
 380
 381	if (flags & KEXEC_FILE_UNLOAD)
 382		goto exchange;
 383
 384	/*
 385	 * In case of crash, new kernel gets loaded in reserved region. It is
 386	 * same memory where old crash kernel might be loaded. Free any
 387	 * current crash dump kernel before we corrupt it.
 388	 */
 389	if (flags & KEXEC_FILE_ON_CRASH)
 390		kimage_free(xchg(&kexec_crash_image, NULL));
 391
 392	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 393				     cmdline_len, flags);
 394	if (ret)
 395		goto out;
 396
 397	ret = machine_kexec_prepare(image);
 398	if (ret)
 399		goto out;
 400
 401	/*
 402	 * Some architecture(like S390) may touch the crash memory before
 403	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 404	 */
 405	ret = kimage_crash_copy_vmcoreinfo(image);
 406	if (ret)
 407		goto out;
 408
 409	ret = kexec_calculate_store_digests(image);
 410	if (ret)
 411		goto out;
 412
 413	for (i = 0; i < image->nr_segments; i++) {
 414		struct kexec_segment *ksegment;
 415
 416		ksegment = &image->segment[i];
 417		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 418			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 419			 ksegment->memsz);
 420
 421		ret = kimage_load_segment(image, &image->segment[i]);
 422		if (ret)
 423			goto out;
 424	}
 425
 426	kimage_terminate(image);
 427
 428	ret = machine_kexec_post_load(image);
 429	if (ret)
 430		goto out;
 431
 432	/*
 433	 * Free up any temporary buffers allocated which are not needed
 434	 * after image has been loaded
 435	 */
 436	kimage_file_post_load_cleanup(image);
 437exchange:
 438	image = xchg(dest_image, image);
 439out:
 440	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 441		arch_kexec_protect_crashkres();
 442
 443	mutex_unlock(&kexec_mutex);
 444	kimage_free(image);
 445	return ret;
 446}
 447
 448static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 449				    struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_end = min(end, kbuf->buf_max);
 455	temp_start = temp_end - kbuf->memsz;
 456
 457	do {
 458		/* align down start */
 459		temp_start = temp_start & (~(kbuf->buf_align - 1));
 460
 461		if (temp_start < start || temp_start < kbuf->buf_min)
 462			return 0;
 463
 464		temp_end = temp_start + kbuf->memsz - 1;
 465
 466		/*
 467		 * Make sure this does not conflict with any of existing
 468		 * segments
 469		 */
 470		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 471			temp_start = temp_start - PAGE_SIZE;
 472			continue;
 473		}
 474
 475		/* We found a suitable memory range */
 476		break;
 477	} while (1);
 478
 479	/* If we are here, we found a suitable memory range */
 480	kbuf->mem = temp_start;
 481
 482	/* Success, stop navigating through remaining System RAM ranges */
 483	return 1;
 484}
 485
 486static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 487				     struct kexec_buf *kbuf)
 488{
 489	struct kimage *image = kbuf->image;
 490	unsigned long temp_start, temp_end;
 491
 492	temp_start = max(start, kbuf->buf_min);
 493
 494	do {
 495		temp_start = ALIGN(temp_start, kbuf->buf_align);
 496		temp_end = temp_start + kbuf->memsz - 1;
 497
 498		if (temp_end > end || temp_end > kbuf->buf_max)
 499			return 0;
 500		/*
 501		 * Make sure this does not conflict with any of existing
 502		 * segments
 503		 */
 504		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 505			temp_start = temp_start + PAGE_SIZE;
 506			continue;
 507		}
 508
 509		/* We found a suitable memory range */
 510		break;
 511	} while (1);
 512
 513	/* If we are here, we found a suitable memory range */
 514	kbuf->mem = temp_start;
 515
 516	/* Success, stop navigating through remaining System RAM ranges */
 517	return 1;
 518}
 519
 520static int locate_mem_hole_callback(struct resource *res, void *arg)
 521{
 522	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 523	u64 start = res->start, end = res->end;
 524	unsigned long sz = end - start + 1;
 525
 526	/* Returning 0 will take to next memory range */
 527
 528	/* Don't use memory that will be detected and handled by a driver. */
 529	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 530		return 0;
 531
 532	if (sz < kbuf->memsz)
 533		return 0;
 534
 535	if (end < kbuf->buf_min || start > kbuf->buf_max)
 536		return 0;
 537
 538	/*
 539	 * Allocate memory top down with-in ram range. Otherwise bottom up
 540	 * allocation.
 541	 */
 542	if (kbuf->top_down)
 543		return locate_mem_hole_top_down(start, end, kbuf);
 544	return locate_mem_hole_bottom_up(start, end, kbuf);
 545}
 546
 547#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 548static int kexec_walk_memblock(struct kexec_buf *kbuf,
 549			       int (*func)(struct resource *, void *))
 550{
 551	int ret = 0;
 552	u64 i;
 553	phys_addr_t mstart, mend;
 554	struct resource res = { };
 555
 556	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 557		return func(&crashk_res, kbuf);
 558
 
 
 
 
 
 559	if (kbuf->top_down) {
 560		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 561						&mstart, &mend, NULL) {
 562			/*
 563			 * In memblock, end points to the first byte after the
 564			 * range while in kexec, end points to the last byte
 565			 * in the range.
 566			 */
 567			res.start = mstart;
 568			res.end = mend - 1;
 569			ret = func(&res, kbuf);
 570			if (ret)
 571				break;
 572		}
 573	} else {
 574		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 575					&mstart, &mend, NULL) {
 576			/*
 577			 * In memblock, end points to the first byte after the
 578			 * range while in kexec, end points to the last byte
 579			 * in the range.
 580			 */
 581			res.start = mstart;
 582			res.end = mend - 1;
 583			ret = func(&res, kbuf);
 584			if (ret)
 585				break;
 586		}
 587	}
 588
 589	return ret;
 590}
 591#else
 592static int kexec_walk_memblock(struct kexec_buf *kbuf,
 593			       int (*func)(struct resource *, void *))
 594{
 595	return 0;
 596}
 597#endif
 598
 599/**
 600 * kexec_walk_resources - call func(data) on free memory regions
 601 * @kbuf:	Context info for the search. Also passed to @func.
 602 * @func:	Function to call for each memory region.
 603 *
 604 * Return: The memory walk will stop when func returns a non-zero value
 605 * and that value will be returned. If all free regions are visited without
 606 * func returning non-zero, then zero will be returned.
 607 */
 608static int kexec_walk_resources(struct kexec_buf *kbuf,
 609				int (*func)(struct resource *, void *))
 610{
 611	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 612		return walk_iomem_res_desc(crashk_res.desc,
 613					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 614					   crashk_res.start, crashk_res.end,
 615					   kbuf, func);
 616	else
 617		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 618}
 619
 620/**
 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 622 * @kbuf:	Parameters for the memory search.
 623 *
 624 * On success, kbuf->mem will have the start address of the memory region found.
 625 *
 626 * Return: 0 on success, negative errno on error.
 627 */
 628int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 629{
 630	int ret;
 631
 632	/* Arch knows where to place */
 633	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 634		return 0;
 635
 636	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 637		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 638	else
 639		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 640
 641	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 642}
 643
 644/**
 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 646 * @kbuf:                       Parameters for the memory search.
 647 *
 648 * On success, kbuf->mem will have the start address of the memory region found.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 653{
 654	return kexec_locate_mem_hole(kbuf);
 655}
 656
 657/**
 658 * kexec_add_buffer - place a buffer in a kexec segment
 659 * @kbuf:	Buffer contents and memory parameters.
 660 *
 661 * This function assumes that kexec_mutex is held.
 662 * On successful return, @kbuf->mem will have the physical address of
 663 * the buffer in memory.
 664 *
 665 * Return: 0 on success, negative errno on error.
 666 */
 667int kexec_add_buffer(struct kexec_buf *kbuf)
 668{
 669	struct kexec_segment *ksegment;
 670	int ret;
 671
 672	/* Currently adding segment this way is allowed only in file mode */
 673	if (!kbuf->image->file_mode)
 674		return -EINVAL;
 675
 676	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 677		return -EINVAL;
 678
 679	/*
 680	 * Make sure we are not trying to add buffer after allocating
 681	 * control pages. All segments need to be placed first before
 682	 * any control pages are allocated. As control page allocation
 683	 * logic goes through list of segments to make sure there are
 684	 * no destination overlaps.
 685	 */
 686	if (!list_empty(&kbuf->image->control_pages)) {
 687		WARN_ON(1);
 688		return -EINVAL;
 689	}
 690
 691	/* Ensure minimum alignment needed for segments. */
 692	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 693	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 694
 695	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 696	ret = arch_kexec_locate_mem_hole(kbuf);
 697	if (ret)
 698		return ret;
 699
 700	/* Found a suitable memory range */
 701	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 702	ksegment->kbuf = kbuf->buffer;
 703	ksegment->bufsz = kbuf->bufsz;
 704	ksegment->mem = kbuf->mem;
 705	ksegment->memsz = kbuf->memsz;
 706	kbuf->image->nr_segments++;
 707	return 0;
 708}
 709
 710/* Calculate and store the digest of segments */
 711static int kexec_calculate_store_digests(struct kimage *image)
 712{
 713	struct crypto_shash *tfm;
 714	struct shash_desc *desc;
 715	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 716	size_t desc_size, nullsz;
 717	char *digest;
 718	void *zero_buf;
 719	struct kexec_sha_region *sha_regions;
 720	struct purgatory_info *pi = &image->purgatory_info;
 721
 722	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 723		return 0;
 724
 725	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 726	zero_buf_sz = PAGE_SIZE;
 727
 728	tfm = crypto_alloc_shash("sha256", 0, 0);
 729	if (IS_ERR(tfm)) {
 730		ret = PTR_ERR(tfm);
 731		goto out;
 732	}
 733
 734	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 735	desc = kzalloc(desc_size, GFP_KERNEL);
 736	if (!desc) {
 737		ret = -ENOMEM;
 738		goto out_free_tfm;
 739	}
 740
 741	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 742	sha_regions = vzalloc(sha_region_sz);
 743	if (!sha_regions) {
 744		ret = -ENOMEM;
 745		goto out_free_desc;
 746	}
 747
 748	desc->tfm   = tfm;
 749
 750	ret = crypto_shash_init(desc);
 751	if (ret < 0)
 752		goto out_free_sha_regions;
 753
 754	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 755	if (!digest) {
 756		ret = -ENOMEM;
 757		goto out_free_sha_regions;
 758	}
 759
 760	for (j = i = 0; i < image->nr_segments; i++) {
 761		struct kexec_segment *ksegment;
 762
 763		ksegment = &image->segment[i];
 764		/*
 765		 * Skip purgatory as it will be modified once we put digest
 766		 * info in purgatory.
 767		 */
 768		if (ksegment->kbuf == pi->purgatory_buf)
 769			continue;
 770
 771		ret = crypto_shash_update(desc, ksegment->kbuf,
 772					  ksegment->bufsz);
 773		if (ret)
 774			break;
 775
 776		/*
 777		 * Assume rest of the buffer is filled with zero and
 778		 * update digest accordingly.
 779		 */
 780		nullsz = ksegment->memsz - ksegment->bufsz;
 781		while (nullsz) {
 782			unsigned long bytes = nullsz;
 783
 784			if (bytes > zero_buf_sz)
 785				bytes = zero_buf_sz;
 786			ret = crypto_shash_update(desc, zero_buf, bytes);
 787			if (ret)
 788				break;
 789			nullsz -= bytes;
 790		}
 791
 792		if (ret)
 793			break;
 794
 795		sha_regions[j].start = ksegment->mem;
 796		sha_regions[j].len = ksegment->memsz;
 797		j++;
 798	}
 799
 800	if (!ret) {
 801		ret = crypto_shash_final(desc, digest);
 802		if (ret)
 803			goto out_free_digest;
 804		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 805						     sha_regions, sha_region_sz, 0);
 806		if (ret)
 807			goto out_free_digest;
 808
 809		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 810						     digest, SHA256_DIGEST_SIZE, 0);
 811		if (ret)
 812			goto out_free_digest;
 813	}
 814
 815out_free_digest:
 816	kfree(digest);
 817out_free_sha_regions:
 818	vfree(sha_regions);
 819out_free_desc:
 820	kfree(desc);
 821out_free_tfm:
 822	kfree(tfm);
 823out:
 824	return ret;
 825}
 826
 827#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 828/*
 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 830 * @pi:		Purgatory to be loaded.
 831 * @kbuf:	Buffer to setup.
 832 *
 833 * Allocates the memory needed for the buffer. Caller is responsible to free
 834 * the memory after use.
 835 *
 836 * Return: 0 on success, negative errno on error.
 837 */
 838static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 839				      struct kexec_buf *kbuf)
 840{
 841	const Elf_Shdr *sechdrs;
 842	unsigned long bss_align;
 843	unsigned long bss_sz;
 844	unsigned long align;
 845	int i, ret;
 846
 847	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 848	kbuf->buf_align = bss_align = 1;
 849	kbuf->bufsz = bss_sz = 0;
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 853			continue;
 854
 855		align = sechdrs[i].sh_addralign;
 856		if (sechdrs[i].sh_type != SHT_NOBITS) {
 857			if (kbuf->buf_align < align)
 858				kbuf->buf_align = align;
 859			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 860			kbuf->bufsz += sechdrs[i].sh_size;
 861		} else {
 862			if (bss_align < align)
 863				bss_align = align;
 864			bss_sz = ALIGN(bss_sz, align);
 865			bss_sz += sechdrs[i].sh_size;
 866		}
 867	}
 868	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 869	kbuf->memsz = kbuf->bufsz + bss_sz;
 870	if (kbuf->buf_align < bss_align)
 871		kbuf->buf_align = bss_align;
 872
 873	kbuf->buffer = vzalloc(kbuf->bufsz);
 874	if (!kbuf->buffer)
 875		return -ENOMEM;
 876	pi->purgatory_buf = kbuf->buffer;
 877
 878	ret = kexec_add_buffer(kbuf);
 879	if (ret)
 880		goto out;
 881
 882	return 0;
 883out:
 884	vfree(pi->purgatory_buf);
 885	pi->purgatory_buf = NULL;
 886	return ret;
 887}
 888
 889/*
 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 891 * @pi:		Purgatory to be loaded.
 892 * @kbuf:	Buffer prepared to store purgatory.
 893 *
 894 * Allocates the memory needed for the buffer. Caller is responsible to free
 895 * the memory after use.
 896 *
 897 * Return: 0 on success, negative errno on error.
 898 */
 899static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 900					 struct kexec_buf *kbuf)
 901{
 902	unsigned long bss_addr;
 903	unsigned long offset;
 904	Elf_Shdr *sechdrs;
 905	int i;
 906
 907	/*
 908	 * The section headers in kexec_purgatory are read-only. In order to
 909	 * have them modifiable make a temporary copy.
 910	 */
 911	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 912	if (!sechdrs)
 913		return -ENOMEM;
 914	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 915	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 916	pi->sechdrs = sechdrs;
 917
 918	offset = 0;
 919	bss_addr = kbuf->mem + kbuf->bufsz;
 920	kbuf->image->start = pi->ehdr->e_entry;
 921
 922	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 923		unsigned long align;
 924		void *src, *dst;
 925
 926		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 927			continue;
 928
 929		align = sechdrs[i].sh_addralign;
 930		if (sechdrs[i].sh_type == SHT_NOBITS) {
 931			bss_addr = ALIGN(bss_addr, align);
 932			sechdrs[i].sh_addr = bss_addr;
 933			bss_addr += sechdrs[i].sh_size;
 934			continue;
 935		}
 936
 937		offset = ALIGN(offset, align);
 938		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 939		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 940		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 941					 + sechdrs[i].sh_size)) {
 942			kbuf->image->start -= sechdrs[i].sh_addr;
 943			kbuf->image->start += kbuf->mem + offset;
 944		}
 945
 946		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 947		dst = pi->purgatory_buf + offset;
 948		memcpy(dst, src, sechdrs[i].sh_size);
 949
 950		sechdrs[i].sh_addr = kbuf->mem + offset;
 951		sechdrs[i].sh_offset = offset;
 952		offset += sechdrs[i].sh_size;
 953	}
 954
 955	return 0;
 956}
 957
 958static int kexec_apply_relocations(struct kimage *image)
 959{
 960	int i, ret;
 961	struct purgatory_info *pi = &image->purgatory_info;
 962	const Elf_Shdr *sechdrs;
 963
 964	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 965
 966	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 967		const Elf_Shdr *relsec;
 968		const Elf_Shdr *symtab;
 969		Elf_Shdr *section;
 970
 971		relsec = sechdrs + i;
 972
 973		if (relsec->sh_type != SHT_RELA &&
 974		    relsec->sh_type != SHT_REL)
 975			continue;
 976
 977		/*
 978		 * For section of type SHT_RELA/SHT_REL,
 979		 * ->sh_link contains section header index of associated
 980		 * symbol table. And ->sh_info contains section header
 981		 * index of section to which relocations apply.
 982		 */
 983		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 984		    relsec->sh_link >= pi->ehdr->e_shnum)
 985			return -ENOEXEC;
 986
 987		section = pi->sechdrs + relsec->sh_info;
 988		symtab = sechdrs + relsec->sh_link;
 989
 990		if (!(section->sh_flags & SHF_ALLOC))
 991			continue;
 992
 993		/*
 994		 * symtab->sh_link contain section header index of associated
 995		 * string table.
 996		 */
 997		if (symtab->sh_link >= pi->ehdr->e_shnum)
 998			/* Invalid section number? */
 999			continue;
1000
1001		/*
1002		 * Respective architecture needs to provide support for applying
1003		 * relocations of type SHT_RELA/SHT_REL.
1004		 */
1005		if (relsec->sh_type == SHT_RELA)
1006			ret = arch_kexec_apply_relocations_add(pi, section,
1007							       relsec, symtab);
1008		else if (relsec->sh_type == SHT_REL)
1009			ret = arch_kexec_apply_relocations(pi, section,
1010							   relsec, symtab);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	return 0;
1016}
1017
1018/*
1019 * kexec_load_purgatory - Load and relocate the purgatory object.
1020 * @image:	Image to add the purgatory to.
1021 * @kbuf:	Memory parameters to use.
1022 *
1023 * Allocates the memory needed for image->purgatory_info.sechdrs and
1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1025 * to free the memory after use.
1026 *
1027 * Return: 0 on success, negative errno on error.
1028 */
1029int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1030{
1031	struct purgatory_info *pi = &image->purgatory_info;
1032	int ret;
1033
1034	if (kexec_purgatory_size <= 0)
1035		return -EINVAL;
1036
1037	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1038
1039	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1040	if (ret)
1041		return ret;
1042
1043	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1044	if (ret)
1045		goto out_free_kbuf;
1046
1047	ret = kexec_apply_relocations(image);
1048	if (ret)
1049		goto out;
1050
1051	return 0;
1052out:
1053	vfree(pi->sechdrs);
1054	pi->sechdrs = NULL;
1055out_free_kbuf:
1056	vfree(pi->purgatory_buf);
1057	pi->purgatory_buf = NULL;
1058	return ret;
1059}
1060
1061/*
1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1063 * @pi:		Purgatory to search in.
1064 * @name:	Name of the symbol.
1065 *
1066 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1067 */
1068static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1069						  const char *name)
1070{
1071	const Elf_Shdr *sechdrs;
1072	const Elf_Ehdr *ehdr;
1073	const Elf_Sym *syms;
1074	const char *strtab;
1075	int i, k;
1076
1077	if (!pi->ehdr)
1078		return NULL;
1079
1080	ehdr = pi->ehdr;
1081	sechdrs = (void *)ehdr + ehdr->e_shoff;
1082
1083	for (i = 0; i < ehdr->e_shnum; i++) {
1084		if (sechdrs[i].sh_type != SHT_SYMTAB)
1085			continue;
1086
1087		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1088			/* Invalid strtab section number */
1089			continue;
1090		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1091		syms = (void *)ehdr + sechdrs[i].sh_offset;
1092
1093		/* Go through symbols for a match */
1094		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1095			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1096				continue;
1097
1098			if (strcmp(strtab + syms[k].st_name, name) != 0)
1099				continue;
1100
1101			if (syms[k].st_shndx == SHN_UNDEF ||
1102			    syms[k].st_shndx >= ehdr->e_shnum) {
1103				pr_debug("Symbol: %s has bad section index %d.\n",
1104						name, syms[k].st_shndx);
1105				return NULL;
1106			}
1107
1108			/* Found the symbol we are looking for */
1109			return &syms[k];
1110		}
1111	}
1112
1113	return NULL;
1114}
1115
1116void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1117{
1118	struct purgatory_info *pi = &image->purgatory_info;
1119	const Elf_Sym *sym;
1120	Elf_Shdr *sechdr;
1121
1122	sym = kexec_purgatory_find_symbol(pi, name);
1123	if (!sym)
1124		return ERR_PTR(-EINVAL);
1125
1126	sechdr = &pi->sechdrs[sym->st_shndx];
1127
1128	/*
1129	 * Returns the address where symbol will finally be loaded after
1130	 * kexec_load_segment()
1131	 */
1132	return (void *)(sechdr->sh_addr + sym->st_value);
1133}
1134
1135/*
1136 * Get or set value of a symbol. If "get_value" is true, symbol value is
1137 * returned in buf otherwise symbol value is set based on value in buf.
1138 */
1139int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1140				   void *buf, unsigned int size, bool get_value)
1141{
1142	struct purgatory_info *pi = &image->purgatory_info;
1143	const Elf_Sym *sym;
1144	Elf_Shdr *sec;
1145	char *sym_buf;
1146
1147	sym = kexec_purgatory_find_symbol(pi, name);
1148	if (!sym)
1149		return -EINVAL;
1150
1151	if (sym->st_size != size) {
1152		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1153		       name, (unsigned long)sym->st_size, size);
1154		return -EINVAL;
1155	}
1156
1157	sec = pi->sechdrs + sym->st_shndx;
1158
1159	if (sec->sh_type == SHT_NOBITS) {
1160		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1161		       get_value ? "get" : "set");
1162		return -EINVAL;
1163	}
1164
1165	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1166
1167	if (get_value)
1168		memcpy((void *)buf, sym_buf, size);
1169	else
1170		memcpy((void *)sym_buf, buf, size);
1171
1172	return 0;
1173}
1174#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1175
1176int crash_exclude_mem_range(struct crash_mem *mem,
1177			    unsigned long long mstart, unsigned long long mend)
1178{
1179	int i, j;
1180	unsigned long long start, end, p_start, p_end;
1181	struct crash_mem_range temp_range = {0, 0};
1182
1183	for (i = 0; i < mem->nr_ranges; i++) {
1184		start = mem->ranges[i].start;
1185		end = mem->ranges[i].end;
1186		p_start = mstart;
1187		p_end = mend;
1188
1189		if (mstart > end || mend < start)
1190			continue;
1191
1192		/* Truncate any area outside of range */
1193		if (mstart < start)
1194			p_start = start;
1195		if (mend > end)
1196			p_end = end;
1197
1198		/* Found completely overlapping range */
1199		if (p_start == start && p_end == end) {
1200			mem->ranges[i].start = 0;
1201			mem->ranges[i].end = 0;
1202			if (i < mem->nr_ranges - 1) {
1203				/* Shift rest of the ranges to left */
1204				for (j = i; j < mem->nr_ranges - 1; j++) {
1205					mem->ranges[j].start =
1206						mem->ranges[j+1].start;
1207					mem->ranges[j].end =
1208							mem->ranges[j+1].end;
1209				}
1210
1211				/*
1212				 * Continue to check if there are another overlapping ranges
1213				 * from the current position because of shifting the above
1214				 * mem ranges.
1215				 */
1216				i--;
1217				mem->nr_ranges--;
1218				continue;
1219			}
1220			mem->nr_ranges--;
1221			return 0;
1222		}
1223
1224		if (p_start > start && p_end < end) {
1225			/* Split original range */
1226			mem->ranges[i].end = p_start - 1;
1227			temp_range.start = p_end + 1;
1228			temp_range.end = end;
1229		} else if (p_start != start)
1230			mem->ranges[i].end = p_start - 1;
1231		else
1232			mem->ranges[i].start = p_end + 1;
1233		break;
1234	}
1235
1236	/* If a split happened, add the split to array */
1237	if (!temp_range.end)
1238		return 0;
1239
1240	/* Split happened */
1241	if (i == mem->max_nr_ranges - 1)
1242		return -ENOMEM;
1243
1244	/* Location where new range should go */
1245	j = i + 1;
1246	if (j < mem->nr_ranges) {
1247		/* Move over all ranges one slot towards the end */
1248		for (i = mem->nr_ranges - 1; i >= j; i--)
1249			mem->ranges[i + 1] = mem->ranges[i];
1250	}
1251
1252	mem->ranges[j].start = temp_range.start;
1253	mem->ranges[j].end = temp_range.end;
1254	mem->nr_ranges++;
1255	return 0;
1256}
1257
1258int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1259			  void **addr, unsigned long *sz)
1260{
1261	Elf64_Ehdr *ehdr;
1262	Elf64_Phdr *phdr;
1263	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1264	unsigned char *buf;
1265	unsigned int cpu, i;
1266	unsigned long long notes_addr;
1267	unsigned long mstart, mend;
1268
1269	/* extra phdr for vmcoreinfo ELF note */
1270	nr_phdr = nr_cpus + 1;
1271	nr_phdr += mem->nr_ranges;
1272
1273	/*
1274	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1275	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1276	 * I think this is required by tools like gdb. So same physical
1277	 * memory will be mapped in two ELF headers. One will contain kernel
1278	 * text virtual addresses and other will have __va(physical) addresses.
1279	 */
1280
1281	nr_phdr++;
1282	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1283	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1284
1285	buf = vzalloc(elf_sz);
1286	if (!buf)
1287		return -ENOMEM;
1288
1289	ehdr = (Elf64_Ehdr *)buf;
1290	phdr = (Elf64_Phdr *)(ehdr + 1);
1291	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1292	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1293	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1294	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1295	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1296	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1297	ehdr->e_type = ET_CORE;
1298	ehdr->e_machine = ELF_ARCH;
1299	ehdr->e_version = EV_CURRENT;
1300	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1301	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1302	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1303
1304	/* Prepare one phdr of type PT_NOTE for each present CPU */
1305	for_each_present_cpu(cpu) {
1306		phdr->p_type = PT_NOTE;
1307		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1308		phdr->p_offset = phdr->p_paddr = notes_addr;
1309		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1310		(ehdr->e_phnum)++;
1311		phdr++;
1312	}
1313
1314	/* Prepare one PT_NOTE header for vmcoreinfo */
1315	phdr->p_type = PT_NOTE;
1316	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1317	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1318	(ehdr->e_phnum)++;
1319	phdr++;
1320
1321	/* Prepare PT_LOAD type program header for kernel text region */
1322	if (kernel_map) {
1323		phdr->p_type = PT_LOAD;
1324		phdr->p_flags = PF_R|PF_W|PF_X;
1325		phdr->p_vaddr = (unsigned long) _text;
1326		phdr->p_filesz = phdr->p_memsz = _end - _text;
1327		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1328		ehdr->e_phnum++;
1329		phdr++;
1330	}
1331
1332	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1333	for (i = 0; i < mem->nr_ranges; i++) {
1334		mstart = mem->ranges[i].start;
1335		mend = mem->ranges[i].end;
1336
1337		phdr->p_type = PT_LOAD;
1338		phdr->p_flags = PF_R|PF_W|PF_X;
1339		phdr->p_offset  = mstart;
1340
1341		phdr->p_paddr = mstart;
1342		phdr->p_vaddr = (unsigned long) __va(mstart);
1343		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1344		phdr->p_align = 0;
1345		ehdr->e_phnum++;
1346		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1347			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1348			ehdr->e_phnum, phdr->p_offset);
1349		phdr++;
1350	}
1351
1352	*addr = buf;
1353	*sz = elf_sz;
1354	return 0;
1355}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32#ifdef CONFIG_KEXEC_SIG
  33static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
  34
  35void set_kexec_sig_enforced(void)
  36{
  37	sig_enforce = true;
  38}
  39#endif
  40
  41static int kexec_calculate_store_digests(struct kimage *image);
  42
  43/* Maximum size in bytes for kernel/initrd files. */
  44#define KEXEC_FILE_SIZE_MAX	min_t(s64, 4LL << 30, SSIZE_MAX)
  45
  46/*
  47 * Currently this is the only default function that is exported as some
  48 * architectures need it to do additional handlings.
  49 * In the future, other default functions may be exported too if required.
  50 */
  51int kexec_image_probe_default(struct kimage *image, void *buf,
  52			      unsigned long buf_len)
  53{
  54	const struct kexec_file_ops * const *fops;
  55	int ret = -ENOEXEC;
  56
  57	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  58		ret = (*fops)->probe(buf, buf_len);
  59		if (!ret) {
  60			image->fops = *fops;
  61			return ret;
  62		}
  63	}
  64
  65	return ret;
  66}
  67
  68void *kexec_image_load_default(struct kimage *image)
 
 
 
 
 
 
 
  69{
  70	if (!image->fops || !image->fops->load)
  71		return ERR_PTR(-ENOEXEC);
  72
  73	return image->fops->load(image, image->kernel_buf,
  74				 image->kernel_buf_len, image->initrd_buf,
  75				 image->initrd_buf_len, image->cmdline_buf,
  76				 image->cmdline_buf_len);
  77}
  78
 
 
 
 
 
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87/*
  88 * Free up memory used by kernel, initrd, and command line. This is temporary
  89 * memory allocation which is not needed any more after these buffers have
  90 * been loaded into separate segments and have been copied elsewhere.
  91 */
  92void kimage_file_post_load_cleanup(struct kimage *image)
  93{
  94	struct purgatory_info *pi = &image->purgatory_info;
  95
  96	vfree(image->kernel_buf);
  97	image->kernel_buf = NULL;
  98
  99	vfree(image->initrd_buf);
 100	image->initrd_buf = NULL;
 101
 102	kfree(image->cmdline_buf);
 103	image->cmdline_buf = NULL;
 104
 105	vfree(pi->purgatory_buf);
 106	pi->purgatory_buf = NULL;
 107
 108	vfree(pi->sechdrs);
 109	pi->sechdrs = NULL;
 110
 111#ifdef CONFIG_IMA_KEXEC
 112	vfree(image->ima_buffer);
 113	image->ima_buffer = NULL;
 114#endif /* CONFIG_IMA_KEXEC */
 115
 116	/* See if architecture has anything to cleanup post load */
 117	arch_kimage_file_post_load_cleanup(image);
 118
 119	/*
 120	 * Above call should have called into bootloader to free up
 121	 * any data stored in kimage->image_loader_data. It should
 122	 * be ok now to free it up.
 123	 */
 124	kfree(image->image_loader_data);
 125	image->image_loader_data = NULL;
 126}
 127
 128#ifdef CONFIG_KEXEC_SIG
 129#ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
 130int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
 131{
 132	int ret;
 133
 134	ret = verify_pefile_signature(kernel, kernel_len,
 135				      VERIFY_USE_SECONDARY_KEYRING,
 136				      VERIFYING_KEXEC_PE_SIGNATURE);
 137	if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
 138		ret = verify_pefile_signature(kernel, kernel_len,
 139					      VERIFY_USE_PLATFORM_KEYRING,
 140					      VERIFYING_KEXEC_PE_SIGNATURE);
 141	}
 142	return ret;
 143}
 144#endif
 145
 146static int kexec_image_verify_sig(struct kimage *image, void *buf,
 147				  unsigned long buf_len)
 148{
 149	if (!image->fops || !image->fops->verify_sig) {
 150		pr_debug("kernel loader does not support signature verification.\n");
 151		return -EKEYREJECTED;
 152	}
 153
 154	return image->fops->verify_sig(buf, buf_len);
 155}
 156
 157static int
 158kimage_validate_signature(struct kimage *image)
 159{
 160	int ret;
 161
 162	ret = kexec_image_verify_sig(image, image->kernel_buf,
 163				     image->kernel_buf_len);
 164	if (ret) {
 165
 166		if (sig_enforce) {
 167			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 168			return ret;
 169		}
 170
 171		/*
 172		 * If IMA is guaranteed to appraise a signature on the kexec
 173		 * image, permit it even if the kernel is otherwise locked
 174		 * down.
 175		 */
 176		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 177		    security_locked_down(LOCKDOWN_KEXEC))
 178			return -EPERM;
 179
 180		pr_debug("kernel signature verification failed (%d).\n", ret);
 181	}
 182
 183	return 0;
 184}
 185#endif
 186
 187/*
 188 * In file mode list of segments is prepared by kernel. Copy relevant
 189 * data from user space, do error checking, prepare segment list
 190 */
 191static int
 192kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 193			     const char __user *cmdline_ptr,
 194			     unsigned long cmdline_len, unsigned flags)
 195{
 196	ssize_t ret;
 197	void *ldata;
 198
 199	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 200				       KEXEC_FILE_SIZE_MAX, NULL,
 201				       READING_KEXEC_IMAGE);
 202	if (ret < 0)
 203		return ret;
 204	image->kernel_buf_len = ret;
 205
 206	/* Call arch image probe handlers */
 207	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 208					    image->kernel_buf_len);
 209	if (ret)
 210		goto out;
 211
 212#ifdef CONFIG_KEXEC_SIG
 213	ret = kimage_validate_signature(image);
 214
 215	if (ret)
 216		goto out;
 217#endif
 218	/* It is possible that there no initramfs is being loaded */
 219	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 220		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 221					       KEXEC_FILE_SIZE_MAX, NULL,
 222					       READING_KEXEC_INITRAMFS);
 223		if (ret < 0)
 224			goto out;
 225		image->initrd_buf_len = ret;
 226		ret = 0;
 227	}
 228
 229	if (cmdline_len) {
 230		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 231		if (IS_ERR(image->cmdline_buf)) {
 232			ret = PTR_ERR(image->cmdline_buf);
 233			image->cmdline_buf = NULL;
 234			goto out;
 235		}
 236
 237		image->cmdline_buf_len = cmdline_len;
 238
 239		/* command line should be a string with last byte null */
 240		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 241			ret = -EINVAL;
 242			goto out;
 243		}
 244
 245		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 246				  image->cmdline_buf_len - 1);
 247	}
 248
 249	/* IMA needs to pass the measurement list to the next kernel. */
 250	ima_add_kexec_buffer(image);
 251
 252	/* Call arch image load handlers */
 253	ldata = arch_kexec_kernel_image_load(image);
 254
 255	if (IS_ERR(ldata)) {
 256		ret = PTR_ERR(ldata);
 257		goto out;
 258	}
 259
 260	image->image_loader_data = ldata;
 261out:
 262	/* In case of error, free up all allocated memory in this function */
 263	if (ret)
 264		kimage_file_post_load_cleanup(image);
 265	return ret;
 266}
 267
 268static int
 269kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 270		       int initrd_fd, const char __user *cmdline_ptr,
 271		       unsigned long cmdline_len, unsigned long flags)
 272{
 273	int ret;
 274	struct kimage *image;
 275	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 276
 277	image = do_kimage_alloc_init();
 278	if (!image)
 279		return -ENOMEM;
 280
 281	image->file_mode = 1;
 282
 283	if (kexec_on_panic) {
 284		/* Enable special crash kernel control page alloc policy. */
 285		image->control_page = crashk_res.start;
 286		image->type = KEXEC_TYPE_CRASH;
 287	}
 288
 289	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 290					   cmdline_ptr, cmdline_len, flags);
 291	if (ret)
 292		goto out_free_image;
 293
 294	ret = sanity_check_segment_list(image);
 295	if (ret)
 296		goto out_free_post_load_bufs;
 297
 298	ret = -ENOMEM;
 299	image->control_code_page = kimage_alloc_control_pages(image,
 300					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 301	if (!image->control_code_page) {
 302		pr_err("Could not allocate control_code_buffer\n");
 303		goto out_free_post_load_bufs;
 304	}
 305
 306	if (!kexec_on_panic) {
 307		image->swap_page = kimage_alloc_control_pages(image, 0);
 308		if (!image->swap_page) {
 309			pr_err("Could not allocate swap buffer\n");
 310			goto out_free_control_pages;
 311		}
 312	}
 313
 314	*rimage = image;
 315	return 0;
 316out_free_control_pages:
 317	kimage_free_page_list(&image->control_pages);
 318out_free_post_load_bufs:
 319	kimage_file_post_load_cleanup(image);
 320out_free_image:
 321	kfree(image);
 322	return ret;
 323}
 324
 325SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 326		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 327		unsigned long, flags)
 328{
 329	int ret = 0, i;
 330	struct kimage **dest_image, *image;
 331
 332	/* We only trust the superuser with rebooting the system. */
 333	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 334		return -EPERM;
 335
 336	/* Make sure we have a legal set of flags */
 337	if (flags != (flags & KEXEC_FILE_FLAGS))
 338		return -EINVAL;
 339
 340	image = NULL;
 341
 342	if (!kexec_trylock())
 343		return -EBUSY;
 344
 345	dest_image = &kexec_image;
 346	if (flags & KEXEC_FILE_ON_CRASH) {
 347		dest_image = &kexec_crash_image;
 348		if (kexec_crash_image)
 349			arch_kexec_unprotect_crashkres();
 350	}
 351
 352	if (flags & KEXEC_FILE_UNLOAD)
 353		goto exchange;
 354
 355	/*
 356	 * In case of crash, new kernel gets loaded in reserved region. It is
 357	 * same memory where old crash kernel might be loaded. Free any
 358	 * current crash dump kernel before we corrupt it.
 359	 */
 360	if (flags & KEXEC_FILE_ON_CRASH)
 361		kimage_free(xchg(&kexec_crash_image, NULL));
 362
 363	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 364				     cmdline_len, flags);
 365	if (ret)
 366		goto out;
 367
 368	ret = machine_kexec_prepare(image);
 369	if (ret)
 370		goto out;
 371
 372	/*
 373	 * Some architecture(like S390) may touch the crash memory before
 374	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 375	 */
 376	ret = kimage_crash_copy_vmcoreinfo(image);
 377	if (ret)
 378		goto out;
 379
 380	ret = kexec_calculate_store_digests(image);
 381	if (ret)
 382		goto out;
 383
 384	for (i = 0; i < image->nr_segments; i++) {
 385		struct kexec_segment *ksegment;
 386
 387		ksegment = &image->segment[i];
 388		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 389			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 390			 ksegment->memsz);
 391
 392		ret = kimage_load_segment(image, &image->segment[i]);
 393		if (ret)
 394			goto out;
 395	}
 396
 397	kimage_terminate(image);
 398
 399	ret = machine_kexec_post_load(image);
 400	if (ret)
 401		goto out;
 402
 403	/*
 404	 * Free up any temporary buffers allocated which are not needed
 405	 * after image has been loaded
 406	 */
 407	kimage_file_post_load_cleanup(image);
 408exchange:
 409	image = xchg(dest_image, image);
 410out:
 411	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 412		arch_kexec_protect_crashkres();
 413
 414	kexec_unlock();
 415	kimage_free(image);
 416	return ret;
 417}
 418
 419static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 420				    struct kexec_buf *kbuf)
 421{
 422	struct kimage *image = kbuf->image;
 423	unsigned long temp_start, temp_end;
 424
 425	temp_end = min(end, kbuf->buf_max);
 426	temp_start = temp_end - kbuf->memsz;
 427
 428	do {
 429		/* align down start */
 430		temp_start = temp_start & (~(kbuf->buf_align - 1));
 431
 432		if (temp_start < start || temp_start < kbuf->buf_min)
 433			return 0;
 434
 435		temp_end = temp_start + kbuf->memsz - 1;
 436
 437		/*
 438		 * Make sure this does not conflict with any of existing
 439		 * segments
 440		 */
 441		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 442			temp_start = temp_start - PAGE_SIZE;
 443			continue;
 444		}
 445
 446		/* We found a suitable memory range */
 447		break;
 448	} while (1);
 449
 450	/* If we are here, we found a suitable memory range */
 451	kbuf->mem = temp_start;
 452
 453	/* Success, stop navigating through remaining System RAM ranges */
 454	return 1;
 455}
 456
 457static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 458				     struct kexec_buf *kbuf)
 459{
 460	struct kimage *image = kbuf->image;
 461	unsigned long temp_start, temp_end;
 462
 463	temp_start = max(start, kbuf->buf_min);
 464
 465	do {
 466		temp_start = ALIGN(temp_start, kbuf->buf_align);
 467		temp_end = temp_start + kbuf->memsz - 1;
 468
 469		if (temp_end > end || temp_end > kbuf->buf_max)
 470			return 0;
 471		/*
 472		 * Make sure this does not conflict with any of existing
 473		 * segments
 474		 */
 475		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 476			temp_start = temp_start + PAGE_SIZE;
 477			continue;
 478		}
 479
 480		/* We found a suitable memory range */
 481		break;
 482	} while (1);
 483
 484	/* If we are here, we found a suitable memory range */
 485	kbuf->mem = temp_start;
 486
 487	/* Success, stop navigating through remaining System RAM ranges */
 488	return 1;
 489}
 490
 491static int locate_mem_hole_callback(struct resource *res, void *arg)
 492{
 493	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 494	u64 start = res->start, end = res->end;
 495	unsigned long sz = end - start + 1;
 496
 497	/* Returning 0 will take to next memory range */
 498
 499	/* Don't use memory that will be detected and handled by a driver. */
 500	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 501		return 0;
 502
 503	if (sz < kbuf->memsz)
 504		return 0;
 505
 506	if (end < kbuf->buf_min || start > kbuf->buf_max)
 507		return 0;
 508
 509	/*
 510	 * Allocate memory top down with-in ram range. Otherwise bottom up
 511	 * allocation.
 512	 */
 513	if (kbuf->top_down)
 514		return locate_mem_hole_top_down(start, end, kbuf);
 515	return locate_mem_hole_bottom_up(start, end, kbuf);
 516}
 517
 518#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 519static int kexec_walk_memblock(struct kexec_buf *kbuf,
 520			       int (*func)(struct resource *, void *))
 521{
 522	int ret = 0;
 523	u64 i;
 524	phys_addr_t mstart, mend;
 525	struct resource res = { };
 526
 527	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 528		return func(&crashk_res, kbuf);
 529
 530	/*
 531	 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
 532	 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
 533	 * locate_mem_hole_callback().
 534	 */
 535	if (kbuf->top_down) {
 536		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 537						&mstart, &mend, NULL) {
 538			/*
 539			 * In memblock, end points to the first byte after the
 540			 * range while in kexec, end points to the last byte
 541			 * in the range.
 542			 */
 543			res.start = mstart;
 544			res.end = mend - 1;
 545			ret = func(&res, kbuf);
 546			if (ret)
 547				break;
 548		}
 549	} else {
 550		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 551					&mstart, &mend, NULL) {
 552			/*
 553			 * In memblock, end points to the first byte after the
 554			 * range while in kexec, end points to the last byte
 555			 * in the range.
 556			 */
 557			res.start = mstart;
 558			res.end = mend - 1;
 559			ret = func(&res, kbuf);
 560			if (ret)
 561				break;
 562		}
 563	}
 564
 565	return ret;
 566}
 567#else
 568static int kexec_walk_memblock(struct kexec_buf *kbuf,
 569			       int (*func)(struct resource *, void *))
 570{
 571	return 0;
 572}
 573#endif
 574
 575/**
 576 * kexec_walk_resources - call func(data) on free memory regions
 577 * @kbuf:	Context info for the search. Also passed to @func.
 578 * @func:	Function to call for each memory region.
 579 *
 580 * Return: The memory walk will stop when func returns a non-zero value
 581 * and that value will be returned. If all free regions are visited without
 582 * func returning non-zero, then zero will be returned.
 583 */
 584static int kexec_walk_resources(struct kexec_buf *kbuf,
 585				int (*func)(struct resource *, void *))
 586{
 587	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 588		return walk_iomem_res_desc(crashk_res.desc,
 589					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 590					   crashk_res.start, crashk_res.end,
 591					   kbuf, func);
 592	else
 593		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 594}
 595
 596/**
 597 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 598 * @kbuf:	Parameters for the memory search.
 599 *
 600 * On success, kbuf->mem will have the start address of the memory region found.
 601 *
 602 * Return: 0 on success, negative errno on error.
 603 */
 604int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 605{
 606	int ret;
 607
 608	/* Arch knows where to place */
 609	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 610		return 0;
 611
 612	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 613		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 614	else
 615		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 616
 617	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 618}
 619
 620/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 621 * kexec_add_buffer - place a buffer in a kexec segment
 622 * @kbuf:	Buffer contents and memory parameters.
 623 *
 624 * This function assumes that kexec_mutex is held.
 625 * On successful return, @kbuf->mem will have the physical address of
 626 * the buffer in memory.
 627 *
 628 * Return: 0 on success, negative errno on error.
 629 */
 630int kexec_add_buffer(struct kexec_buf *kbuf)
 631{
 632	struct kexec_segment *ksegment;
 633	int ret;
 634
 635	/* Currently adding segment this way is allowed only in file mode */
 636	if (!kbuf->image->file_mode)
 637		return -EINVAL;
 638
 639	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 640		return -EINVAL;
 641
 642	/*
 643	 * Make sure we are not trying to add buffer after allocating
 644	 * control pages. All segments need to be placed first before
 645	 * any control pages are allocated. As control page allocation
 646	 * logic goes through list of segments to make sure there are
 647	 * no destination overlaps.
 648	 */
 649	if (!list_empty(&kbuf->image->control_pages)) {
 650		WARN_ON(1);
 651		return -EINVAL;
 652	}
 653
 654	/* Ensure minimum alignment needed for segments. */
 655	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 656	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 657
 658	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 659	ret = arch_kexec_locate_mem_hole(kbuf);
 660	if (ret)
 661		return ret;
 662
 663	/* Found a suitable memory range */
 664	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 665	ksegment->kbuf = kbuf->buffer;
 666	ksegment->bufsz = kbuf->bufsz;
 667	ksegment->mem = kbuf->mem;
 668	ksegment->memsz = kbuf->memsz;
 669	kbuf->image->nr_segments++;
 670	return 0;
 671}
 672
 673/* Calculate and store the digest of segments */
 674static int kexec_calculate_store_digests(struct kimage *image)
 675{
 676	struct crypto_shash *tfm;
 677	struct shash_desc *desc;
 678	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 679	size_t desc_size, nullsz;
 680	char *digest;
 681	void *zero_buf;
 682	struct kexec_sha_region *sha_regions;
 683	struct purgatory_info *pi = &image->purgatory_info;
 684
 685	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 686		return 0;
 687
 688	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 689	zero_buf_sz = PAGE_SIZE;
 690
 691	tfm = crypto_alloc_shash("sha256", 0, 0);
 692	if (IS_ERR(tfm)) {
 693		ret = PTR_ERR(tfm);
 694		goto out;
 695	}
 696
 697	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 698	desc = kzalloc(desc_size, GFP_KERNEL);
 699	if (!desc) {
 700		ret = -ENOMEM;
 701		goto out_free_tfm;
 702	}
 703
 704	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 705	sha_regions = vzalloc(sha_region_sz);
 706	if (!sha_regions) {
 707		ret = -ENOMEM;
 708		goto out_free_desc;
 709	}
 710
 711	desc->tfm   = tfm;
 712
 713	ret = crypto_shash_init(desc);
 714	if (ret < 0)
 715		goto out_free_sha_regions;
 716
 717	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 718	if (!digest) {
 719		ret = -ENOMEM;
 720		goto out_free_sha_regions;
 721	}
 722
 723	for (j = i = 0; i < image->nr_segments; i++) {
 724		struct kexec_segment *ksegment;
 725
 726		ksegment = &image->segment[i];
 727		/*
 728		 * Skip purgatory as it will be modified once we put digest
 729		 * info in purgatory.
 730		 */
 731		if (ksegment->kbuf == pi->purgatory_buf)
 732			continue;
 733
 734		ret = crypto_shash_update(desc, ksegment->kbuf,
 735					  ksegment->bufsz);
 736		if (ret)
 737			break;
 738
 739		/*
 740		 * Assume rest of the buffer is filled with zero and
 741		 * update digest accordingly.
 742		 */
 743		nullsz = ksegment->memsz - ksegment->bufsz;
 744		while (nullsz) {
 745			unsigned long bytes = nullsz;
 746
 747			if (bytes > zero_buf_sz)
 748				bytes = zero_buf_sz;
 749			ret = crypto_shash_update(desc, zero_buf, bytes);
 750			if (ret)
 751				break;
 752			nullsz -= bytes;
 753		}
 754
 755		if (ret)
 756			break;
 757
 758		sha_regions[j].start = ksegment->mem;
 759		sha_regions[j].len = ksegment->memsz;
 760		j++;
 761	}
 762
 763	if (!ret) {
 764		ret = crypto_shash_final(desc, digest);
 765		if (ret)
 766			goto out_free_digest;
 767		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 768						     sha_regions, sha_region_sz, 0);
 769		if (ret)
 770			goto out_free_digest;
 771
 772		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 773						     digest, SHA256_DIGEST_SIZE, 0);
 774		if (ret)
 775			goto out_free_digest;
 776	}
 777
 778out_free_digest:
 779	kfree(digest);
 780out_free_sha_regions:
 781	vfree(sha_regions);
 782out_free_desc:
 783	kfree(desc);
 784out_free_tfm:
 785	kfree(tfm);
 786out:
 787	return ret;
 788}
 789
 790#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 791/*
 792 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 793 * @pi:		Purgatory to be loaded.
 794 * @kbuf:	Buffer to setup.
 795 *
 796 * Allocates the memory needed for the buffer. Caller is responsible to free
 797 * the memory after use.
 798 *
 799 * Return: 0 on success, negative errno on error.
 800 */
 801static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 802				      struct kexec_buf *kbuf)
 803{
 804	const Elf_Shdr *sechdrs;
 805	unsigned long bss_align;
 806	unsigned long bss_sz;
 807	unsigned long align;
 808	int i, ret;
 809
 810	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 811	kbuf->buf_align = bss_align = 1;
 812	kbuf->bufsz = bss_sz = 0;
 813
 814	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 815		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 816			continue;
 817
 818		align = sechdrs[i].sh_addralign;
 819		if (sechdrs[i].sh_type != SHT_NOBITS) {
 820			if (kbuf->buf_align < align)
 821				kbuf->buf_align = align;
 822			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 823			kbuf->bufsz += sechdrs[i].sh_size;
 824		} else {
 825			if (bss_align < align)
 826				bss_align = align;
 827			bss_sz = ALIGN(bss_sz, align);
 828			bss_sz += sechdrs[i].sh_size;
 829		}
 830	}
 831	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 832	kbuf->memsz = kbuf->bufsz + bss_sz;
 833	if (kbuf->buf_align < bss_align)
 834		kbuf->buf_align = bss_align;
 835
 836	kbuf->buffer = vzalloc(kbuf->bufsz);
 837	if (!kbuf->buffer)
 838		return -ENOMEM;
 839	pi->purgatory_buf = kbuf->buffer;
 840
 841	ret = kexec_add_buffer(kbuf);
 842	if (ret)
 843		goto out;
 844
 845	return 0;
 846out:
 847	vfree(pi->purgatory_buf);
 848	pi->purgatory_buf = NULL;
 849	return ret;
 850}
 851
 852/*
 853 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 854 * @pi:		Purgatory to be loaded.
 855 * @kbuf:	Buffer prepared to store purgatory.
 856 *
 857 * Allocates the memory needed for the buffer. Caller is responsible to free
 858 * the memory after use.
 859 *
 860 * Return: 0 on success, negative errno on error.
 861 */
 862static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 863					 struct kexec_buf *kbuf)
 864{
 865	unsigned long bss_addr;
 866	unsigned long offset;
 867	Elf_Shdr *sechdrs;
 868	int i;
 869
 870	/*
 871	 * The section headers in kexec_purgatory are read-only. In order to
 872	 * have them modifiable make a temporary copy.
 873	 */
 874	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 875	if (!sechdrs)
 876		return -ENOMEM;
 877	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 878	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 879	pi->sechdrs = sechdrs;
 880
 881	offset = 0;
 882	bss_addr = kbuf->mem + kbuf->bufsz;
 883	kbuf->image->start = pi->ehdr->e_entry;
 884
 885	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 886		unsigned long align;
 887		void *src, *dst;
 888
 889		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 890			continue;
 891
 892		align = sechdrs[i].sh_addralign;
 893		if (sechdrs[i].sh_type == SHT_NOBITS) {
 894			bss_addr = ALIGN(bss_addr, align);
 895			sechdrs[i].sh_addr = bss_addr;
 896			bss_addr += sechdrs[i].sh_size;
 897			continue;
 898		}
 899
 900		offset = ALIGN(offset, align);
 901		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 902		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 903		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 904					 + sechdrs[i].sh_size)) {
 905			kbuf->image->start -= sechdrs[i].sh_addr;
 906			kbuf->image->start += kbuf->mem + offset;
 907		}
 908
 909		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 910		dst = pi->purgatory_buf + offset;
 911		memcpy(dst, src, sechdrs[i].sh_size);
 912
 913		sechdrs[i].sh_addr = kbuf->mem + offset;
 914		sechdrs[i].sh_offset = offset;
 915		offset += sechdrs[i].sh_size;
 916	}
 917
 918	return 0;
 919}
 920
 921static int kexec_apply_relocations(struct kimage *image)
 922{
 923	int i, ret;
 924	struct purgatory_info *pi = &image->purgatory_info;
 925	const Elf_Shdr *sechdrs;
 926
 927	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 928
 929	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 930		const Elf_Shdr *relsec;
 931		const Elf_Shdr *symtab;
 932		Elf_Shdr *section;
 933
 934		relsec = sechdrs + i;
 935
 936		if (relsec->sh_type != SHT_RELA &&
 937		    relsec->sh_type != SHT_REL)
 938			continue;
 939
 940		/*
 941		 * For section of type SHT_RELA/SHT_REL,
 942		 * ->sh_link contains section header index of associated
 943		 * symbol table. And ->sh_info contains section header
 944		 * index of section to which relocations apply.
 945		 */
 946		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 947		    relsec->sh_link >= pi->ehdr->e_shnum)
 948			return -ENOEXEC;
 949
 950		section = pi->sechdrs + relsec->sh_info;
 951		symtab = sechdrs + relsec->sh_link;
 952
 953		if (!(section->sh_flags & SHF_ALLOC))
 954			continue;
 955
 956		/*
 957		 * symtab->sh_link contain section header index of associated
 958		 * string table.
 959		 */
 960		if (symtab->sh_link >= pi->ehdr->e_shnum)
 961			/* Invalid section number? */
 962			continue;
 963
 964		/*
 965		 * Respective architecture needs to provide support for applying
 966		 * relocations of type SHT_RELA/SHT_REL.
 967		 */
 968		if (relsec->sh_type == SHT_RELA)
 969			ret = arch_kexec_apply_relocations_add(pi, section,
 970							       relsec, symtab);
 971		else if (relsec->sh_type == SHT_REL)
 972			ret = arch_kexec_apply_relocations(pi, section,
 973							   relsec, symtab);
 974		if (ret)
 975			return ret;
 976	}
 977
 978	return 0;
 979}
 980
 981/*
 982 * kexec_load_purgatory - Load and relocate the purgatory object.
 983 * @image:	Image to add the purgatory to.
 984 * @kbuf:	Memory parameters to use.
 985 *
 986 * Allocates the memory needed for image->purgatory_info.sechdrs and
 987 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 988 * to free the memory after use.
 989 *
 990 * Return: 0 on success, negative errno on error.
 991 */
 992int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 993{
 994	struct purgatory_info *pi = &image->purgatory_info;
 995	int ret;
 996
 997	if (kexec_purgatory_size <= 0)
 998		return -EINVAL;
 999
1000	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1001
1002	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1003	if (ret)
1004		return ret;
1005
1006	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1007	if (ret)
1008		goto out_free_kbuf;
1009
1010	ret = kexec_apply_relocations(image);
1011	if (ret)
1012		goto out;
1013
1014	return 0;
1015out:
1016	vfree(pi->sechdrs);
1017	pi->sechdrs = NULL;
1018out_free_kbuf:
1019	vfree(pi->purgatory_buf);
1020	pi->purgatory_buf = NULL;
1021	return ret;
1022}
1023
1024/*
1025 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1026 * @pi:		Purgatory to search in.
1027 * @name:	Name of the symbol.
1028 *
1029 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1030 */
1031static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1032						  const char *name)
1033{
1034	const Elf_Shdr *sechdrs;
1035	const Elf_Ehdr *ehdr;
1036	const Elf_Sym *syms;
1037	const char *strtab;
1038	int i, k;
1039
1040	if (!pi->ehdr)
1041		return NULL;
1042
1043	ehdr = pi->ehdr;
1044	sechdrs = (void *)ehdr + ehdr->e_shoff;
1045
1046	for (i = 0; i < ehdr->e_shnum; i++) {
1047		if (sechdrs[i].sh_type != SHT_SYMTAB)
1048			continue;
1049
1050		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1051			/* Invalid strtab section number */
1052			continue;
1053		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1054		syms = (void *)ehdr + sechdrs[i].sh_offset;
1055
1056		/* Go through symbols for a match */
1057		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1058			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1059				continue;
1060
1061			if (strcmp(strtab + syms[k].st_name, name) != 0)
1062				continue;
1063
1064			if (syms[k].st_shndx == SHN_UNDEF ||
1065			    syms[k].st_shndx >= ehdr->e_shnum) {
1066				pr_debug("Symbol: %s has bad section index %d.\n",
1067						name, syms[k].st_shndx);
1068				return NULL;
1069			}
1070
1071			/* Found the symbol we are looking for */
1072			return &syms[k];
1073		}
1074	}
1075
1076	return NULL;
1077}
1078
1079void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1080{
1081	struct purgatory_info *pi = &image->purgatory_info;
1082	const Elf_Sym *sym;
1083	Elf_Shdr *sechdr;
1084
1085	sym = kexec_purgatory_find_symbol(pi, name);
1086	if (!sym)
1087		return ERR_PTR(-EINVAL);
1088
1089	sechdr = &pi->sechdrs[sym->st_shndx];
1090
1091	/*
1092	 * Returns the address where symbol will finally be loaded after
1093	 * kexec_load_segment()
1094	 */
1095	return (void *)(sechdr->sh_addr + sym->st_value);
1096}
1097
1098/*
1099 * Get or set value of a symbol. If "get_value" is true, symbol value is
1100 * returned in buf otherwise symbol value is set based on value in buf.
1101 */
1102int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1103				   void *buf, unsigned int size, bool get_value)
1104{
1105	struct purgatory_info *pi = &image->purgatory_info;
1106	const Elf_Sym *sym;
1107	Elf_Shdr *sec;
1108	char *sym_buf;
1109
1110	sym = kexec_purgatory_find_symbol(pi, name);
1111	if (!sym)
1112		return -EINVAL;
1113
1114	if (sym->st_size != size) {
1115		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1116		       name, (unsigned long)sym->st_size, size);
1117		return -EINVAL;
1118	}
1119
1120	sec = pi->sechdrs + sym->st_shndx;
1121
1122	if (sec->sh_type == SHT_NOBITS) {
1123		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1124		       get_value ? "get" : "set");
1125		return -EINVAL;
1126	}
1127
1128	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1129
1130	if (get_value)
1131		memcpy((void *)buf, sym_buf, size);
1132	else
1133		memcpy((void *)sym_buf, buf, size);
1134
1135	return 0;
1136}
1137#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1138
1139int crash_exclude_mem_range(struct crash_mem *mem,
1140			    unsigned long long mstart, unsigned long long mend)
1141{
1142	int i, j;
1143	unsigned long long start, end, p_start, p_end;
1144	struct range temp_range = {0, 0};
1145
1146	for (i = 0; i < mem->nr_ranges; i++) {
1147		start = mem->ranges[i].start;
1148		end = mem->ranges[i].end;
1149		p_start = mstart;
1150		p_end = mend;
1151
1152		if (mstart > end || mend < start)
1153			continue;
1154
1155		/* Truncate any area outside of range */
1156		if (mstart < start)
1157			p_start = start;
1158		if (mend > end)
1159			p_end = end;
1160
1161		/* Found completely overlapping range */
1162		if (p_start == start && p_end == end) {
1163			mem->ranges[i].start = 0;
1164			mem->ranges[i].end = 0;
1165			if (i < mem->nr_ranges - 1) {
1166				/* Shift rest of the ranges to left */
1167				for (j = i; j < mem->nr_ranges - 1; j++) {
1168					mem->ranges[j].start =
1169						mem->ranges[j+1].start;
1170					mem->ranges[j].end =
1171							mem->ranges[j+1].end;
1172				}
1173
1174				/*
1175				 * Continue to check if there are another overlapping ranges
1176				 * from the current position because of shifting the above
1177				 * mem ranges.
1178				 */
1179				i--;
1180				mem->nr_ranges--;
1181				continue;
1182			}
1183			mem->nr_ranges--;
1184			return 0;
1185		}
1186
1187		if (p_start > start && p_end < end) {
1188			/* Split original range */
1189			mem->ranges[i].end = p_start - 1;
1190			temp_range.start = p_end + 1;
1191			temp_range.end = end;
1192		} else if (p_start != start)
1193			mem->ranges[i].end = p_start - 1;
1194		else
1195			mem->ranges[i].start = p_end + 1;
1196		break;
1197	}
1198
1199	/* If a split happened, add the split to array */
1200	if (!temp_range.end)
1201		return 0;
1202
1203	/* Split happened */
1204	if (i == mem->max_nr_ranges - 1)
1205		return -ENOMEM;
1206
1207	/* Location where new range should go */
1208	j = i + 1;
1209	if (j < mem->nr_ranges) {
1210		/* Move over all ranges one slot towards the end */
1211		for (i = mem->nr_ranges - 1; i >= j; i--)
1212			mem->ranges[i + 1] = mem->ranges[i];
1213	}
1214
1215	mem->ranges[j].start = temp_range.start;
1216	mem->ranges[j].end = temp_range.end;
1217	mem->nr_ranges++;
1218	return 0;
1219}
1220
1221int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
1222			  void **addr, unsigned long *sz)
1223{
1224	Elf64_Ehdr *ehdr;
1225	Elf64_Phdr *phdr;
1226	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1227	unsigned char *buf;
1228	unsigned int cpu, i;
1229	unsigned long long notes_addr;
1230	unsigned long mstart, mend;
1231
1232	/* extra phdr for vmcoreinfo ELF note */
1233	nr_phdr = nr_cpus + 1;
1234	nr_phdr += mem->nr_ranges;
1235
1236	/*
1237	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1238	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1239	 * I think this is required by tools like gdb. So same physical
1240	 * memory will be mapped in two ELF headers. One will contain kernel
1241	 * text virtual addresses and other will have __va(physical) addresses.
1242	 */
1243
1244	nr_phdr++;
1245	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1246	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1247
1248	buf = vzalloc(elf_sz);
1249	if (!buf)
1250		return -ENOMEM;
1251
1252	ehdr = (Elf64_Ehdr *)buf;
1253	phdr = (Elf64_Phdr *)(ehdr + 1);
1254	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1255	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1256	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1257	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1258	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1259	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1260	ehdr->e_type = ET_CORE;
1261	ehdr->e_machine = ELF_ARCH;
1262	ehdr->e_version = EV_CURRENT;
1263	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1264	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1265	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1266
1267	/* Prepare one phdr of type PT_NOTE for each present CPU */
1268	for_each_present_cpu(cpu) {
1269		phdr->p_type = PT_NOTE;
1270		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1271		phdr->p_offset = phdr->p_paddr = notes_addr;
1272		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1273		(ehdr->e_phnum)++;
1274		phdr++;
1275	}
1276
1277	/* Prepare one PT_NOTE header for vmcoreinfo */
1278	phdr->p_type = PT_NOTE;
1279	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1280	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1281	(ehdr->e_phnum)++;
1282	phdr++;
1283
1284	/* Prepare PT_LOAD type program header for kernel text region */
1285	if (need_kernel_map) {
1286		phdr->p_type = PT_LOAD;
1287		phdr->p_flags = PF_R|PF_W|PF_X;
1288		phdr->p_vaddr = (unsigned long) _text;
1289		phdr->p_filesz = phdr->p_memsz = _end - _text;
1290		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1291		ehdr->e_phnum++;
1292		phdr++;
1293	}
1294
1295	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1296	for (i = 0; i < mem->nr_ranges; i++) {
1297		mstart = mem->ranges[i].start;
1298		mend = mem->ranges[i].end;
1299
1300		phdr->p_type = PT_LOAD;
1301		phdr->p_flags = PF_R|PF_W|PF_X;
1302		phdr->p_offset  = mstart;
1303
1304		phdr->p_paddr = mstart;
1305		phdr->p_vaddr = (unsigned long) __va(mstart);
1306		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1307		phdr->p_align = 0;
1308		ehdr->e_phnum++;
1309		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1310			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1311			ehdr->e_phnum, phdr->p_offset);
1312		phdr++;
1313	}
1314
1315	*addr = buf;
1316	*sz = elf_sz;
1317	return 0;
1318}