Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32static int kexec_calculate_store_digests(struct kimage *image);
  33
  34/*
  35 * Currently this is the only default function that is exported as some
  36 * architectures need it to do additional handlings.
  37 * In the future, other default functions may be exported too if required.
  38 */
  39int kexec_image_probe_default(struct kimage *image, void *buf,
  40			      unsigned long buf_len)
  41{
  42	const struct kexec_file_ops * const *fops;
  43	int ret = -ENOEXEC;
  44
  45	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  46		ret = (*fops)->probe(buf, buf_len);
  47		if (!ret) {
  48			image->fops = *fops;
  49			return ret;
  50		}
  51	}
  52
  53	return ret;
  54}
  55
  56/* Architectures can provide this probe function */
  57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  58					 unsigned long buf_len)
  59{
  60	return kexec_image_probe_default(image, buf, buf_len);
  61}
  62
  63static void *kexec_image_load_default(struct kimage *image)
  64{
  65	if (!image->fops || !image->fops->load)
  66		return ERR_PTR(-ENOEXEC);
  67
  68	return image->fops->load(image, image->kernel_buf,
  69				 image->kernel_buf_len, image->initrd_buf,
  70				 image->initrd_buf_len, image->cmdline_buf,
  71				 image->cmdline_buf_len);
  72}
  73
  74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  75{
  76	return kexec_image_load_default(image);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  88{
  89	return kexec_image_post_load_cleanup_default(image);
  90}
  91
  92#ifdef CONFIG_KEXEC_SIG
  93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  94					  unsigned long buf_len)
  95{
  96	if (!image->fops || !image->fops->verify_sig) {
  97		pr_debug("kernel loader does not support signature verification.\n");
  98		return -EKEYREJECTED;
  99	}
 100
 101	return image->fops->verify_sig(buf, buf_len);
 102}
 103
 104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 105					unsigned long buf_len)
 106{
 107	return kexec_image_verify_sig_default(image, buf, buf_len);
 108}
 109#endif
 110
 111/*
 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 113 * @pi:		Purgatory to be relocated.
 114 * @section:	Section relocations applying to.
 115 * @relsec:	Section containing RELAs.
 116 * @symtab:	Corresponding symtab.
 117 *
 118 * Return: 0 on success, negative errno on error.
 119 */
 120int __weak
 121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 122				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 123{
 124	pr_err("RELA relocation unsupported.\n");
 125	return -ENOEXEC;
 126}
 127
 128/*
 129 * arch_kexec_apply_relocations - apply relocations of type REL
 130 * @pi:		Purgatory to be relocated.
 131 * @section:	Section relocations applying to.
 132 * @relsec:	Section containing RELs.
 133 * @symtab:	Corresponding symtab.
 134 *
 135 * Return: 0 on success, negative errno on error.
 136 */
 137int __weak
 138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 139			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 140{
 141	pr_err("REL relocation unsupported.\n");
 142	return -ENOEXEC;
 143}
 144
 145/*
 146 * Free up memory used by kernel, initrd, and command line. This is temporary
 147 * memory allocation which is not needed any more after these buffers have
 148 * been loaded into separate segments and have been copied elsewhere.
 149 */
 150void kimage_file_post_load_cleanup(struct kimage *image)
 151{
 152	struct purgatory_info *pi = &image->purgatory_info;
 153
 154	vfree(image->kernel_buf);
 155	image->kernel_buf = NULL;
 156
 157	vfree(image->initrd_buf);
 158	image->initrd_buf = NULL;
 159
 160	kfree(image->cmdline_buf);
 161	image->cmdline_buf = NULL;
 162
 163	vfree(pi->purgatory_buf);
 164	pi->purgatory_buf = NULL;
 165
 166	vfree(pi->sechdrs);
 167	pi->sechdrs = NULL;
 168
 169#ifdef CONFIG_IMA_KEXEC
 170	vfree(image->ima_buffer);
 171	image->ima_buffer = NULL;
 172#endif /* CONFIG_IMA_KEXEC */
 173
 174	/* See if architecture has anything to cleanup post load */
 175	arch_kimage_file_post_load_cleanup(image);
 176
 177	/*
 178	 * Above call should have called into bootloader to free up
 179	 * any data stored in kimage->image_loader_data. It should
 180	 * be ok now to free it up.
 181	 */
 182	kfree(image->image_loader_data);
 183	image->image_loader_data = NULL;
 184}
 185
 186#ifdef CONFIG_KEXEC_SIG
 187static int
 188kimage_validate_signature(struct kimage *image)
 189{
 190	int ret;
 191
 192	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 193					   image->kernel_buf_len);
 194	if (ret) {
 195
 196		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 197			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 198			return ret;
 199		}
 200
 201		/*
 202		 * If IMA is guaranteed to appraise a signature on the kexec
 203		 * image, permit it even if the kernel is otherwise locked
 204		 * down.
 205		 */
 206		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 207		    security_locked_down(LOCKDOWN_KEXEC))
 208			return -EPERM;
 209
 210		pr_debug("kernel signature verification failed (%d).\n", ret);
 211	}
 212
 213	return 0;
 214}
 215#endif
 216
 217/*
 218 * In file mode list of segments is prepared by kernel. Copy relevant
 219 * data from user space, do error checking, prepare segment list
 220 */
 221static int
 222kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 223			     const char __user *cmdline_ptr,
 224			     unsigned long cmdline_len, unsigned flags)
 225{
 226	int ret;
 227	void *ldata;
 
 228
 229	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 230				       INT_MAX, NULL, READING_KEXEC_IMAGE);
 231	if (ret < 0)
 232		return ret;
 233	image->kernel_buf_len = ret;
 234
 235	/* Call arch image probe handlers */
 236	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 237					    image->kernel_buf_len);
 238	if (ret)
 239		goto out;
 240
 241#ifdef CONFIG_KEXEC_SIG
 242	ret = kimage_validate_signature(image);
 243
 244	if (ret)
 245		goto out;
 246#endif
 247	/* It is possible that there no initramfs is being loaded */
 248	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 249		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 250					       INT_MAX, NULL,
 251					       READING_KEXEC_INITRAMFS);
 252		if (ret < 0)
 253			goto out;
 254		image->initrd_buf_len = ret;
 255		ret = 0;
 256	}
 257
 258	if (cmdline_len) {
 259		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 260		if (IS_ERR(image->cmdline_buf)) {
 261			ret = PTR_ERR(image->cmdline_buf);
 262			image->cmdline_buf = NULL;
 263			goto out;
 264		}
 265
 266		image->cmdline_buf_len = cmdline_len;
 267
 268		/* command line should be a string with last byte null */
 269		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 270			ret = -EINVAL;
 271			goto out;
 272		}
 273
 274		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 275				  image->cmdline_buf_len - 1);
 276	}
 277
 278	/* IMA needs to pass the measurement list to the next kernel. */
 279	ima_add_kexec_buffer(image);
 280
 281	/* Call arch image load handlers */
 282	ldata = arch_kexec_kernel_image_load(image);
 283
 284	if (IS_ERR(ldata)) {
 285		ret = PTR_ERR(ldata);
 286		goto out;
 287	}
 288
 289	image->image_loader_data = ldata;
 290out:
 291	/* In case of error, free up all allocated memory in this function */
 292	if (ret)
 293		kimage_file_post_load_cleanup(image);
 294	return ret;
 295}
 296
 297static int
 298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 299		       int initrd_fd, const char __user *cmdline_ptr,
 300		       unsigned long cmdline_len, unsigned long flags)
 301{
 302	int ret;
 303	struct kimage *image;
 304	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 305
 306	image = do_kimage_alloc_init();
 307	if (!image)
 308		return -ENOMEM;
 309
 310	image->file_mode = 1;
 311
 312	if (kexec_on_panic) {
 313		/* Enable special crash kernel control page alloc policy. */
 314		image->control_page = crashk_res.start;
 315		image->type = KEXEC_TYPE_CRASH;
 316	}
 317
 318	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 319					   cmdline_ptr, cmdline_len, flags);
 320	if (ret)
 321		goto out_free_image;
 322
 323	ret = sanity_check_segment_list(image);
 324	if (ret)
 325		goto out_free_post_load_bufs;
 326
 327	ret = -ENOMEM;
 328	image->control_code_page = kimage_alloc_control_pages(image,
 329					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 330	if (!image->control_code_page) {
 331		pr_err("Could not allocate control_code_buffer\n");
 332		goto out_free_post_load_bufs;
 333	}
 334
 335	if (!kexec_on_panic) {
 336		image->swap_page = kimage_alloc_control_pages(image, 0);
 337		if (!image->swap_page) {
 338			pr_err("Could not allocate swap buffer\n");
 339			goto out_free_control_pages;
 340		}
 341	}
 342
 343	*rimage = image;
 344	return 0;
 345out_free_control_pages:
 346	kimage_free_page_list(&image->control_pages);
 347out_free_post_load_bufs:
 348	kimage_file_post_load_cleanup(image);
 349out_free_image:
 350	kfree(image);
 351	return ret;
 352}
 353
 354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 355		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 356		unsigned long, flags)
 357{
 358	int ret = 0, i;
 359	struct kimage **dest_image, *image;
 360
 361	/* We only trust the superuser with rebooting the system. */
 362	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 363		return -EPERM;
 364
 365	/* Make sure we have a legal set of flags */
 366	if (flags != (flags & KEXEC_FILE_FLAGS))
 367		return -EINVAL;
 368
 369	image = NULL;
 370
 371	if (!mutex_trylock(&kexec_mutex))
 372		return -EBUSY;
 373
 374	dest_image = &kexec_image;
 375	if (flags & KEXEC_FILE_ON_CRASH) {
 376		dest_image = &kexec_crash_image;
 377		if (kexec_crash_image)
 378			arch_kexec_unprotect_crashkres();
 379	}
 380
 381	if (flags & KEXEC_FILE_UNLOAD)
 382		goto exchange;
 383
 384	/*
 385	 * In case of crash, new kernel gets loaded in reserved region. It is
 386	 * same memory where old crash kernel might be loaded. Free any
 387	 * current crash dump kernel before we corrupt it.
 388	 */
 389	if (flags & KEXEC_FILE_ON_CRASH)
 390		kimage_free(xchg(&kexec_crash_image, NULL));
 391
 392	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 393				     cmdline_len, flags);
 394	if (ret)
 395		goto out;
 396
 397	ret = machine_kexec_prepare(image);
 398	if (ret)
 399		goto out;
 400
 401	/*
 402	 * Some architecture(like S390) may touch the crash memory before
 403	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 404	 */
 405	ret = kimage_crash_copy_vmcoreinfo(image);
 406	if (ret)
 407		goto out;
 408
 409	ret = kexec_calculate_store_digests(image);
 410	if (ret)
 411		goto out;
 412
 413	for (i = 0; i < image->nr_segments; i++) {
 414		struct kexec_segment *ksegment;
 415
 416		ksegment = &image->segment[i];
 417		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 418			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 419			 ksegment->memsz);
 420
 421		ret = kimage_load_segment(image, &image->segment[i]);
 422		if (ret)
 423			goto out;
 424	}
 425
 426	kimage_terminate(image);
 427
 428	ret = machine_kexec_post_load(image);
 429	if (ret)
 430		goto out;
 431
 432	/*
 433	 * Free up any temporary buffers allocated which are not needed
 434	 * after image has been loaded
 435	 */
 436	kimage_file_post_load_cleanup(image);
 437exchange:
 438	image = xchg(dest_image, image);
 439out:
 440	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 441		arch_kexec_protect_crashkres();
 442
 443	mutex_unlock(&kexec_mutex);
 444	kimage_free(image);
 445	return ret;
 446}
 447
 448static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 449				    struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_end = min(end, kbuf->buf_max);
 455	temp_start = temp_end - kbuf->memsz;
 456
 457	do {
 458		/* align down start */
 459		temp_start = temp_start & (~(kbuf->buf_align - 1));
 460
 461		if (temp_start < start || temp_start < kbuf->buf_min)
 462			return 0;
 463
 464		temp_end = temp_start + kbuf->memsz - 1;
 465
 466		/*
 467		 * Make sure this does not conflict with any of existing
 468		 * segments
 469		 */
 470		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 471			temp_start = temp_start - PAGE_SIZE;
 472			continue;
 473		}
 474
 475		/* We found a suitable memory range */
 476		break;
 477	} while (1);
 478
 479	/* If we are here, we found a suitable memory range */
 480	kbuf->mem = temp_start;
 481
 482	/* Success, stop navigating through remaining System RAM ranges */
 483	return 1;
 484}
 485
 486static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 487				     struct kexec_buf *kbuf)
 488{
 489	struct kimage *image = kbuf->image;
 490	unsigned long temp_start, temp_end;
 491
 492	temp_start = max(start, kbuf->buf_min);
 493
 494	do {
 495		temp_start = ALIGN(temp_start, kbuf->buf_align);
 496		temp_end = temp_start + kbuf->memsz - 1;
 497
 498		if (temp_end > end || temp_end > kbuf->buf_max)
 499			return 0;
 500		/*
 501		 * Make sure this does not conflict with any of existing
 502		 * segments
 503		 */
 504		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 505			temp_start = temp_start + PAGE_SIZE;
 506			continue;
 507		}
 508
 509		/* We found a suitable memory range */
 510		break;
 511	} while (1);
 512
 513	/* If we are here, we found a suitable memory range */
 514	kbuf->mem = temp_start;
 515
 516	/* Success, stop navigating through remaining System RAM ranges */
 517	return 1;
 518}
 519
 520static int locate_mem_hole_callback(struct resource *res, void *arg)
 521{
 522	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 523	u64 start = res->start, end = res->end;
 524	unsigned long sz = end - start + 1;
 525
 526	/* Returning 0 will take to next memory range */
 527
 528	/* Don't use memory that will be detected and handled by a driver. */
 529	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 530		return 0;
 531
 532	if (sz < kbuf->memsz)
 533		return 0;
 534
 535	if (end < kbuf->buf_min || start > kbuf->buf_max)
 536		return 0;
 537
 538	/*
 539	 * Allocate memory top down with-in ram range. Otherwise bottom up
 540	 * allocation.
 541	 */
 542	if (kbuf->top_down)
 543		return locate_mem_hole_top_down(start, end, kbuf);
 544	return locate_mem_hole_bottom_up(start, end, kbuf);
 545}
 546
 547#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 548static int kexec_walk_memblock(struct kexec_buf *kbuf,
 549			       int (*func)(struct resource *, void *))
 550{
 551	int ret = 0;
 552	u64 i;
 553	phys_addr_t mstart, mend;
 554	struct resource res = { };
 555
 556	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 557		return func(&crashk_res, kbuf);
 558
 559	if (kbuf->top_down) {
 560		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 561						&mstart, &mend, NULL) {
 562			/*
 563			 * In memblock, end points to the first byte after the
 564			 * range while in kexec, end points to the last byte
 565			 * in the range.
 566			 */
 567			res.start = mstart;
 568			res.end = mend - 1;
 569			ret = func(&res, kbuf);
 570			if (ret)
 571				break;
 572		}
 573	} else {
 574		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 575					&mstart, &mend, NULL) {
 576			/*
 577			 * In memblock, end points to the first byte after the
 578			 * range while in kexec, end points to the last byte
 579			 * in the range.
 580			 */
 581			res.start = mstart;
 582			res.end = mend - 1;
 583			ret = func(&res, kbuf);
 584			if (ret)
 585				break;
 586		}
 587	}
 588
 589	return ret;
 590}
 591#else
 592static int kexec_walk_memblock(struct kexec_buf *kbuf,
 593			       int (*func)(struct resource *, void *))
 594{
 595	return 0;
 596}
 597#endif
 598
 599/**
 600 * kexec_walk_resources - call func(data) on free memory regions
 601 * @kbuf:	Context info for the search. Also passed to @func.
 602 * @func:	Function to call for each memory region.
 603 *
 604 * Return: The memory walk will stop when func returns a non-zero value
 605 * and that value will be returned. If all free regions are visited without
 606 * func returning non-zero, then zero will be returned.
 607 */
 608static int kexec_walk_resources(struct kexec_buf *kbuf,
 609				int (*func)(struct resource *, void *))
 610{
 611	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 612		return walk_iomem_res_desc(crashk_res.desc,
 613					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 614					   crashk_res.start, crashk_res.end,
 615					   kbuf, func);
 616	else
 617		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 618}
 619
 620/**
 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 622 * @kbuf:	Parameters for the memory search.
 623 *
 624 * On success, kbuf->mem will have the start address of the memory region found.
 625 *
 626 * Return: 0 on success, negative errno on error.
 627 */
 628int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 629{
 630	int ret;
 631
 632	/* Arch knows where to place */
 633	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 634		return 0;
 635
 636	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 637		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 638	else
 639		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 640
 641	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 642}
 643
 644/**
 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 646 * @kbuf:                       Parameters for the memory search.
 647 *
 648 * On success, kbuf->mem will have the start address of the memory region found.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 653{
 654	return kexec_locate_mem_hole(kbuf);
 655}
 656
 657/**
 658 * kexec_add_buffer - place a buffer in a kexec segment
 659 * @kbuf:	Buffer contents and memory parameters.
 660 *
 661 * This function assumes that kexec_mutex is held.
 662 * On successful return, @kbuf->mem will have the physical address of
 663 * the buffer in memory.
 664 *
 665 * Return: 0 on success, negative errno on error.
 666 */
 667int kexec_add_buffer(struct kexec_buf *kbuf)
 668{
 669	struct kexec_segment *ksegment;
 670	int ret;
 671
 672	/* Currently adding segment this way is allowed only in file mode */
 673	if (!kbuf->image->file_mode)
 674		return -EINVAL;
 675
 676	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 677		return -EINVAL;
 678
 679	/*
 680	 * Make sure we are not trying to add buffer after allocating
 681	 * control pages. All segments need to be placed first before
 682	 * any control pages are allocated. As control page allocation
 683	 * logic goes through list of segments to make sure there are
 684	 * no destination overlaps.
 685	 */
 686	if (!list_empty(&kbuf->image->control_pages)) {
 687		WARN_ON(1);
 688		return -EINVAL;
 689	}
 690
 691	/* Ensure minimum alignment needed for segments. */
 692	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 693	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 694
 695	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 696	ret = arch_kexec_locate_mem_hole(kbuf);
 697	if (ret)
 698		return ret;
 699
 700	/* Found a suitable memory range */
 701	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 702	ksegment->kbuf = kbuf->buffer;
 703	ksegment->bufsz = kbuf->bufsz;
 704	ksegment->mem = kbuf->mem;
 705	ksegment->memsz = kbuf->memsz;
 706	kbuf->image->nr_segments++;
 707	return 0;
 708}
 709
 710/* Calculate and store the digest of segments */
 711static int kexec_calculate_store_digests(struct kimage *image)
 712{
 713	struct crypto_shash *tfm;
 714	struct shash_desc *desc;
 715	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 716	size_t desc_size, nullsz;
 717	char *digest;
 718	void *zero_buf;
 719	struct kexec_sha_region *sha_regions;
 720	struct purgatory_info *pi = &image->purgatory_info;
 721
 722	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 723		return 0;
 724
 725	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 726	zero_buf_sz = PAGE_SIZE;
 727
 728	tfm = crypto_alloc_shash("sha256", 0, 0);
 729	if (IS_ERR(tfm)) {
 730		ret = PTR_ERR(tfm);
 731		goto out;
 732	}
 733
 734	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 735	desc = kzalloc(desc_size, GFP_KERNEL);
 736	if (!desc) {
 737		ret = -ENOMEM;
 738		goto out_free_tfm;
 739	}
 740
 741	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 742	sha_regions = vzalloc(sha_region_sz);
 743	if (!sha_regions) {
 744		ret = -ENOMEM;
 745		goto out_free_desc;
 746	}
 747
 748	desc->tfm   = tfm;
 749
 750	ret = crypto_shash_init(desc);
 751	if (ret < 0)
 752		goto out_free_sha_regions;
 753
 754	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 755	if (!digest) {
 756		ret = -ENOMEM;
 757		goto out_free_sha_regions;
 758	}
 759
 760	for (j = i = 0; i < image->nr_segments; i++) {
 761		struct kexec_segment *ksegment;
 762
 763		ksegment = &image->segment[i];
 764		/*
 765		 * Skip purgatory as it will be modified once we put digest
 766		 * info in purgatory.
 767		 */
 768		if (ksegment->kbuf == pi->purgatory_buf)
 769			continue;
 770
 771		ret = crypto_shash_update(desc, ksegment->kbuf,
 772					  ksegment->bufsz);
 773		if (ret)
 774			break;
 775
 776		/*
 777		 * Assume rest of the buffer is filled with zero and
 778		 * update digest accordingly.
 779		 */
 780		nullsz = ksegment->memsz - ksegment->bufsz;
 781		while (nullsz) {
 782			unsigned long bytes = nullsz;
 783
 784			if (bytes > zero_buf_sz)
 785				bytes = zero_buf_sz;
 786			ret = crypto_shash_update(desc, zero_buf, bytes);
 787			if (ret)
 788				break;
 789			nullsz -= bytes;
 790		}
 791
 792		if (ret)
 793			break;
 794
 795		sha_regions[j].start = ksegment->mem;
 796		sha_regions[j].len = ksegment->memsz;
 797		j++;
 798	}
 799
 800	if (!ret) {
 801		ret = crypto_shash_final(desc, digest);
 802		if (ret)
 803			goto out_free_digest;
 804		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 805						     sha_regions, sha_region_sz, 0);
 806		if (ret)
 807			goto out_free_digest;
 808
 809		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 810						     digest, SHA256_DIGEST_SIZE, 0);
 811		if (ret)
 812			goto out_free_digest;
 813	}
 814
 815out_free_digest:
 816	kfree(digest);
 817out_free_sha_regions:
 818	vfree(sha_regions);
 819out_free_desc:
 820	kfree(desc);
 821out_free_tfm:
 822	kfree(tfm);
 823out:
 824	return ret;
 825}
 826
 827#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 828/*
 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 830 * @pi:		Purgatory to be loaded.
 831 * @kbuf:	Buffer to setup.
 832 *
 833 * Allocates the memory needed for the buffer. Caller is responsible to free
 834 * the memory after use.
 835 *
 836 * Return: 0 on success, negative errno on error.
 837 */
 838static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 839				      struct kexec_buf *kbuf)
 840{
 841	const Elf_Shdr *sechdrs;
 842	unsigned long bss_align;
 843	unsigned long bss_sz;
 844	unsigned long align;
 845	int i, ret;
 846
 847	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 848	kbuf->buf_align = bss_align = 1;
 849	kbuf->bufsz = bss_sz = 0;
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 853			continue;
 854
 855		align = sechdrs[i].sh_addralign;
 856		if (sechdrs[i].sh_type != SHT_NOBITS) {
 857			if (kbuf->buf_align < align)
 858				kbuf->buf_align = align;
 859			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 860			kbuf->bufsz += sechdrs[i].sh_size;
 861		} else {
 862			if (bss_align < align)
 863				bss_align = align;
 864			bss_sz = ALIGN(bss_sz, align);
 865			bss_sz += sechdrs[i].sh_size;
 866		}
 867	}
 868	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 869	kbuf->memsz = kbuf->bufsz + bss_sz;
 870	if (kbuf->buf_align < bss_align)
 871		kbuf->buf_align = bss_align;
 872
 873	kbuf->buffer = vzalloc(kbuf->bufsz);
 874	if (!kbuf->buffer)
 875		return -ENOMEM;
 876	pi->purgatory_buf = kbuf->buffer;
 877
 878	ret = kexec_add_buffer(kbuf);
 879	if (ret)
 880		goto out;
 881
 882	return 0;
 883out:
 884	vfree(pi->purgatory_buf);
 885	pi->purgatory_buf = NULL;
 886	return ret;
 887}
 888
 889/*
 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 891 * @pi:		Purgatory to be loaded.
 892 * @kbuf:	Buffer prepared to store purgatory.
 893 *
 894 * Allocates the memory needed for the buffer. Caller is responsible to free
 895 * the memory after use.
 896 *
 897 * Return: 0 on success, negative errno on error.
 898 */
 899static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 900					 struct kexec_buf *kbuf)
 901{
 902	unsigned long bss_addr;
 903	unsigned long offset;
 904	Elf_Shdr *sechdrs;
 905	int i;
 906
 907	/*
 908	 * The section headers in kexec_purgatory are read-only. In order to
 909	 * have them modifiable make a temporary copy.
 910	 */
 911	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 912	if (!sechdrs)
 913		return -ENOMEM;
 914	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 915	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 916	pi->sechdrs = sechdrs;
 917
 918	offset = 0;
 919	bss_addr = kbuf->mem + kbuf->bufsz;
 920	kbuf->image->start = pi->ehdr->e_entry;
 921
 922	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 923		unsigned long align;
 924		void *src, *dst;
 925
 926		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 927			continue;
 928
 929		align = sechdrs[i].sh_addralign;
 930		if (sechdrs[i].sh_type == SHT_NOBITS) {
 931			bss_addr = ALIGN(bss_addr, align);
 932			sechdrs[i].sh_addr = bss_addr;
 933			bss_addr += sechdrs[i].sh_size;
 934			continue;
 935		}
 936
 937		offset = ALIGN(offset, align);
 938		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 939		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 940		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 941					 + sechdrs[i].sh_size)) {
 942			kbuf->image->start -= sechdrs[i].sh_addr;
 943			kbuf->image->start += kbuf->mem + offset;
 944		}
 945
 946		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 947		dst = pi->purgatory_buf + offset;
 948		memcpy(dst, src, sechdrs[i].sh_size);
 949
 950		sechdrs[i].sh_addr = kbuf->mem + offset;
 951		sechdrs[i].sh_offset = offset;
 952		offset += sechdrs[i].sh_size;
 953	}
 954
 955	return 0;
 956}
 957
 958static int kexec_apply_relocations(struct kimage *image)
 959{
 960	int i, ret;
 961	struct purgatory_info *pi = &image->purgatory_info;
 962	const Elf_Shdr *sechdrs;
 963
 964	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 965
 966	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 967		const Elf_Shdr *relsec;
 968		const Elf_Shdr *symtab;
 969		Elf_Shdr *section;
 970
 971		relsec = sechdrs + i;
 972
 973		if (relsec->sh_type != SHT_RELA &&
 974		    relsec->sh_type != SHT_REL)
 975			continue;
 976
 977		/*
 978		 * For section of type SHT_RELA/SHT_REL,
 979		 * ->sh_link contains section header index of associated
 980		 * symbol table. And ->sh_info contains section header
 981		 * index of section to which relocations apply.
 982		 */
 983		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 984		    relsec->sh_link >= pi->ehdr->e_shnum)
 985			return -ENOEXEC;
 986
 987		section = pi->sechdrs + relsec->sh_info;
 988		symtab = sechdrs + relsec->sh_link;
 989
 990		if (!(section->sh_flags & SHF_ALLOC))
 991			continue;
 992
 993		/*
 994		 * symtab->sh_link contain section header index of associated
 995		 * string table.
 996		 */
 997		if (symtab->sh_link >= pi->ehdr->e_shnum)
 998			/* Invalid section number? */
 999			continue;
1000
1001		/*
1002		 * Respective architecture needs to provide support for applying
1003		 * relocations of type SHT_RELA/SHT_REL.
1004		 */
1005		if (relsec->sh_type == SHT_RELA)
1006			ret = arch_kexec_apply_relocations_add(pi, section,
1007							       relsec, symtab);
1008		else if (relsec->sh_type == SHT_REL)
1009			ret = arch_kexec_apply_relocations(pi, section,
1010							   relsec, symtab);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	return 0;
1016}
1017
1018/*
1019 * kexec_load_purgatory - Load and relocate the purgatory object.
1020 * @image:	Image to add the purgatory to.
1021 * @kbuf:	Memory parameters to use.
1022 *
1023 * Allocates the memory needed for image->purgatory_info.sechdrs and
1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1025 * to free the memory after use.
1026 *
1027 * Return: 0 on success, negative errno on error.
1028 */
1029int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1030{
1031	struct purgatory_info *pi = &image->purgatory_info;
1032	int ret;
1033
1034	if (kexec_purgatory_size <= 0)
1035		return -EINVAL;
1036
1037	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1038
1039	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1040	if (ret)
1041		return ret;
1042
1043	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1044	if (ret)
1045		goto out_free_kbuf;
1046
1047	ret = kexec_apply_relocations(image);
1048	if (ret)
1049		goto out;
1050
1051	return 0;
1052out:
1053	vfree(pi->sechdrs);
1054	pi->sechdrs = NULL;
1055out_free_kbuf:
1056	vfree(pi->purgatory_buf);
1057	pi->purgatory_buf = NULL;
1058	return ret;
1059}
1060
1061/*
1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1063 * @pi:		Purgatory to search in.
1064 * @name:	Name of the symbol.
1065 *
1066 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1067 */
1068static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1069						  const char *name)
1070{
1071	const Elf_Shdr *sechdrs;
1072	const Elf_Ehdr *ehdr;
1073	const Elf_Sym *syms;
1074	const char *strtab;
1075	int i, k;
1076
1077	if (!pi->ehdr)
1078		return NULL;
1079
1080	ehdr = pi->ehdr;
1081	sechdrs = (void *)ehdr + ehdr->e_shoff;
1082
1083	for (i = 0; i < ehdr->e_shnum; i++) {
1084		if (sechdrs[i].sh_type != SHT_SYMTAB)
1085			continue;
1086
1087		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1088			/* Invalid strtab section number */
1089			continue;
1090		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1091		syms = (void *)ehdr + sechdrs[i].sh_offset;
1092
1093		/* Go through symbols for a match */
1094		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1095			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1096				continue;
1097
1098			if (strcmp(strtab + syms[k].st_name, name) != 0)
1099				continue;
1100
1101			if (syms[k].st_shndx == SHN_UNDEF ||
1102			    syms[k].st_shndx >= ehdr->e_shnum) {
1103				pr_debug("Symbol: %s has bad section index %d.\n",
1104						name, syms[k].st_shndx);
1105				return NULL;
1106			}
1107
1108			/* Found the symbol we are looking for */
1109			return &syms[k];
1110		}
1111	}
1112
1113	return NULL;
1114}
1115
1116void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1117{
1118	struct purgatory_info *pi = &image->purgatory_info;
1119	const Elf_Sym *sym;
1120	Elf_Shdr *sechdr;
1121
1122	sym = kexec_purgatory_find_symbol(pi, name);
1123	if (!sym)
1124		return ERR_PTR(-EINVAL);
1125
1126	sechdr = &pi->sechdrs[sym->st_shndx];
1127
1128	/*
1129	 * Returns the address where symbol will finally be loaded after
1130	 * kexec_load_segment()
1131	 */
1132	return (void *)(sechdr->sh_addr + sym->st_value);
1133}
1134
1135/*
1136 * Get or set value of a symbol. If "get_value" is true, symbol value is
1137 * returned in buf otherwise symbol value is set based on value in buf.
1138 */
1139int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1140				   void *buf, unsigned int size, bool get_value)
1141{
1142	struct purgatory_info *pi = &image->purgatory_info;
1143	const Elf_Sym *sym;
1144	Elf_Shdr *sec;
1145	char *sym_buf;
1146
1147	sym = kexec_purgatory_find_symbol(pi, name);
1148	if (!sym)
1149		return -EINVAL;
1150
1151	if (sym->st_size != size) {
1152		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1153		       name, (unsigned long)sym->st_size, size);
1154		return -EINVAL;
1155	}
1156
1157	sec = pi->sechdrs + sym->st_shndx;
1158
1159	if (sec->sh_type == SHT_NOBITS) {
1160		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1161		       get_value ? "get" : "set");
1162		return -EINVAL;
1163	}
1164
1165	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1166
1167	if (get_value)
1168		memcpy((void *)buf, sym_buf, size);
1169	else
1170		memcpy((void *)sym_buf, buf, size);
1171
1172	return 0;
1173}
1174#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1175
1176int crash_exclude_mem_range(struct crash_mem *mem,
1177			    unsigned long long mstart, unsigned long long mend)
1178{
1179	int i, j;
1180	unsigned long long start, end, p_start, p_end;
1181	struct crash_mem_range temp_range = {0, 0};
1182
1183	for (i = 0; i < mem->nr_ranges; i++) {
1184		start = mem->ranges[i].start;
1185		end = mem->ranges[i].end;
1186		p_start = mstart;
1187		p_end = mend;
1188
1189		if (mstart > end || mend < start)
1190			continue;
1191
1192		/* Truncate any area outside of range */
1193		if (mstart < start)
1194			p_start = start;
1195		if (mend > end)
1196			p_end = end;
1197
1198		/* Found completely overlapping range */
1199		if (p_start == start && p_end == end) {
1200			mem->ranges[i].start = 0;
1201			mem->ranges[i].end = 0;
1202			if (i < mem->nr_ranges - 1) {
1203				/* Shift rest of the ranges to left */
1204				for (j = i; j < mem->nr_ranges - 1; j++) {
1205					mem->ranges[j].start =
1206						mem->ranges[j+1].start;
1207					mem->ranges[j].end =
1208							mem->ranges[j+1].end;
1209				}
1210
1211				/*
1212				 * Continue to check if there are another overlapping ranges
1213				 * from the current position because of shifting the above
1214				 * mem ranges.
1215				 */
1216				i--;
1217				mem->nr_ranges--;
1218				continue;
1219			}
1220			mem->nr_ranges--;
1221			return 0;
1222		}
1223
1224		if (p_start > start && p_end < end) {
1225			/* Split original range */
1226			mem->ranges[i].end = p_start - 1;
1227			temp_range.start = p_end + 1;
1228			temp_range.end = end;
1229		} else if (p_start != start)
1230			mem->ranges[i].end = p_start - 1;
1231		else
1232			mem->ranges[i].start = p_end + 1;
1233		break;
1234	}
1235
1236	/* If a split happened, add the split to array */
1237	if (!temp_range.end)
1238		return 0;
1239
1240	/* Split happened */
1241	if (i == mem->max_nr_ranges - 1)
1242		return -ENOMEM;
1243
1244	/* Location where new range should go */
1245	j = i + 1;
1246	if (j < mem->nr_ranges) {
1247		/* Move over all ranges one slot towards the end */
1248		for (i = mem->nr_ranges - 1; i >= j; i--)
1249			mem->ranges[i + 1] = mem->ranges[i];
1250	}
1251
1252	mem->ranges[j].start = temp_range.start;
1253	mem->ranges[j].end = temp_range.end;
1254	mem->nr_ranges++;
1255	return 0;
1256}
1257
1258int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1259			  void **addr, unsigned long *sz)
1260{
1261	Elf64_Ehdr *ehdr;
1262	Elf64_Phdr *phdr;
1263	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1264	unsigned char *buf;
1265	unsigned int cpu, i;
1266	unsigned long long notes_addr;
1267	unsigned long mstart, mend;
1268
1269	/* extra phdr for vmcoreinfo ELF note */
1270	nr_phdr = nr_cpus + 1;
1271	nr_phdr += mem->nr_ranges;
1272
1273	/*
1274	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1275	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1276	 * I think this is required by tools like gdb. So same physical
1277	 * memory will be mapped in two ELF headers. One will contain kernel
1278	 * text virtual addresses and other will have __va(physical) addresses.
1279	 */
1280
1281	nr_phdr++;
1282	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1283	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1284
1285	buf = vzalloc(elf_sz);
1286	if (!buf)
1287		return -ENOMEM;
1288
1289	ehdr = (Elf64_Ehdr *)buf;
1290	phdr = (Elf64_Phdr *)(ehdr + 1);
1291	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1292	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1293	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1294	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1295	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1296	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1297	ehdr->e_type = ET_CORE;
1298	ehdr->e_machine = ELF_ARCH;
1299	ehdr->e_version = EV_CURRENT;
1300	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1301	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1302	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1303
1304	/* Prepare one phdr of type PT_NOTE for each present CPU */
1305	for_each_present_cpu(cpu) {
1306		phdr->p_type = PT_NOTE;
1307		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1308		phdr->p_offset = phdr->p_paddr = notes_addr;
1309		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1310		(ehdr->e_phnum)++;
1311		phdr++;
1312	}
1313
1314	/* Prepare one PT_NOTE header for vmcoreinfo */
1315	phdr->p_type = PT_NOTE;
1316	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1317	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1318	(ehdr->e_phnum)++;
1319	phdr++;
1320
1321	/* Prepare PT_LOAD type program header for kernel text region */
1322	if (kernel_map) {
1323		phdr->p_type = PT_LOAD;
1324		phdr->p_flags = PF_R|PF_W|PF_X;
1325		phdr->p_vaddr = (unsigned long) _text;
1326		phdr->p_filesz = phdr->p_memsz = _end - _text;
1327		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1328		ehdr->e_phnum++;
1329		phdr++;
1330	}
1331
1332	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1333	for (i = 0; i < mem->nr_ranges; i++) {
1334		mstart = mem->ranges[i].start;
1335		mend = mem->ranges[i].end;
1336
1337		phdr->p_type = PT_LOAD;
1338		phdr->p_flags = PF_R|PF_W|PF_X;
1339		phdr->p_offset  = mstart;
1340
1341		phdr->p_paddr = mstart;
1342		phdr->p_vaddr = (unsigned long) __va(mstart);
1343		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1344		phdr->p_align = 0;
1345		ehdr->e_phnum++;
1346		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1347			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1348			ehdr->e_phnum, phdr->p_offset);
1349		phdr++;
1350	}
1351
1352	*addr = buf;
1353	*sz = elf_sz;
1354	return 0;
1355}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
 
  27#include <linux/syscalls.h>
  28#include <linux/vmalloc.h>
  29#include "kexec_internal.h"
  30
  31static int kexec_calculate_store_digests(struct kimage *image);
  32
  33/*
  34 * Currently this is the only default function that is exported as some
  35 * architectures need it to do additional handlings.
  36 * In the future, other default functions may be exported too if required.
  37 */
  38int kexec_image_probe_default(struct kimage *image, void *buf,
  39			      unsigned long buf_len)
  40{
  41	const struct kexec_file_ops * const *fops;
  42	int ret = -ENOEXEC;
  43
  44	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  45		ret = (*fops)->probe(buf, buf_len);
  46		if (!ret) {
  47			image->fops = *fops;
  48			return ret;
  49		}
  50	}
  51
  52	return ret;
  53}
  54
  55/* Architectures can provide this probe function */
  56int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  57					 unsigned long buf_len)
  58{
  59	return kexec_image_probe_default(image, buf, buf_len);
  60}
  61
  62static void *kexec_image_load_default(struct kimage *image)
  63{
  64	if (!image->fops || !image->fops->load)
  65		return ERR_PTR(-ENOEXEC);
  66
  67	return image->fops->load(image, image->kernel_buf,
  68				 image->kernel_buf_len, image->initrd_buf,
  69				 image->initrd_buf_len, image->cmdline_buf,
  70				 image->cmdline_buf_len);
  71}
  72
  73void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  74{
  75	return kexec_image_load_default(image);
  76}
  77
  78int kexec_image_post_load_cleanup_default(struct kimage *image)
  79{
  80	if (!image->fops || !image->fops->cleanup)
  81		return 0;
  82
  83	return image->fops->cleanup(image->image_loader_data);
  84}
  85
  86int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	return kexec_image_post_load_cleanup_default(image);
  89}
  90
  91#ifdef CONFIG_KEXEC_SIG
  92static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  93					  unsigned long buf_len)
  94{
  95	if (!image->fops || !image->fops->verify_sig) {
  96		pr_debug("kernel loader does not support signature verification.\n");
  97		return -EKEYREJECTED;
  98	}
  99
 100	return image->fops->verify_sig(buf, buf_len);
 101}
 102
 103int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 104					unsigned long buf_len)
 105{
 106	return kexec_image_verify_sig_default(image, buf, buf_len);
 107}
 108#endif
 109
 110/*
 111 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 112 * @pi:		Purgatory to be relocated.
 113 * @section:	Section relocations applying to.
 114 * @relsec:	Section containing RELAs.
 115 * @symtab:	Corresponding symtab.
 116 *
 117 * Return: 0 on success, negative errno on error.
 118 */
 119int __weak
 120arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 121				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 122{
 123	pr_err("RELA relocation unsupported.\n");
 124	return -ENOEXEC;
 125}
 126
 127/*
 128 * arch_kexec_apply_relocations - apply relocations of type REL
 129 * @pi:		Purgatory to be relocated.
 130 * @section:	Section relocations applying to.
 131 * @relsec:	Section containing RELs.
 132 * @symtab:	Corresponding symtab.
 133 *
 134 * Return: 0 on success, negative errno on error.
 135 */
 136int __weak
 137arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 138			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 139{
 140	pr_err("REL relocation unsupported.\n");
 141	return -ENOEXEC;
 142}
 143
 144/*
 145 * Free up memory used by kernel, initrd, and command line. This is temporary
 146 * memory allocation which is not needed any more after these buffers have
 147 * been loaded into separate segments and have been copied elsewhere.
 148 */
 149void kimage_file_post_load_cleanup(struct kimage *image)
 150{
 151	struct purgatory_info *pi = &image->purgatory_info;
 152
 153	vfree(image->kernel_buf);
 154	image->kernel_buf = NULL;
 155
 156	vfree(image->initrd_buf);
 157	image->initrd_buf = NULL;
 158
 159	kfree(image->cmdline_buf);
 160	image->cmdline_buf = NULL;
 161
 162	vfree(pi->purgatory_buf);
 163	pi->purgatory_buf = NULL;
 164
 165	vfree(pi->sechdrs);
 166	pi->sechdrs = NULL;
 167
 
 
 
 
 
 168	/* See if architecture has anything to cleanup post load */
 169	arch_kimage_file_post_load_cleanup(image);
 170
 171	/*
 172	 * Above call should have called into bootloader to free up
 173	 * any data stored in kimage->image_loader_data. It should
 174	 * be ok now to free it up.
 175	 */
 176	kfree(image->image_loader_data);
 177	image->image_loader_data = NULL;
 178}
 179
 180#ifdef CONFIG_KEXEC_SIG
 181static int
 182kimage_validate_signature(struct kimage *image)
 183{
 184	int ret;
 185
 186	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 187					   image->kernel_buf_len);
 188	if (ret) {
 189
 190		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 191			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 192			return ret;
 193		}
 194
 195		/*
 196		 * If IMA is guaranteed to appraise a signature on the kexec
 197		 * image, permit it even if the kernel is otherwise locked
 198		 * down.
 199		 */
 200		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 201		    security_locked_down(LOCKDOWN_KEXEC))
 202			return -EPERM;
 203
 204		pr_debug("kernel signature verification failed (%d).\n", ret);
 205	}
 206
 207	return 0;
 208}
 209#endif
 210
 211/*
 212 * In file mode list of segments is prepared by kernel. Copy relevant
 213 * data from user space, do error checking, prepare segment list
 214 */
 215static int
 216kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 217			     const char __user *cmdline_ptr,
 218			     unsigned long cmdline_len, unsigned flags)
 219{
 220	int ret;
 221	void *ldata;
 222	loff_t size;
 223
 224	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 225				       &size, INT_MAX, READING_KEXEC_IMAGE);
 226	if (ret)
 227		return ret;
 228	image->kernel_buf_len = size;
 229
 230	/* Call arch image probe handlers */
 231	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 232					    image->kernel_buf_len);
 233	if (ret)
 234		goto out;
 235
 236#ifdef CONFIG_KEXEC_SIG
 237	ret = kimage_validate_signature(image);
 238
 239	if (ret)
 240		goto out;
 241#endif
 242	/* It is possible that there no initramfs is being loaded */
 243	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 244		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 245					       &size, INT_MAX,
 246					       READING_KEXEC_INITRAMFS);
 247		if (ret)
 248			goto out;
 249		image->initrd_buf_len = size;
 
 250	}
 251
 252	if (cmdline_len) {
 253		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 254		if (IS_ERR(image->cmdline_buf)) {
 255			ret = PTR_ERR(image->cmdline_buf);
 256			image->cmdline_buf = NULL;
 257			goto out;
 258		}
 259
 260		image->cmdline_buf_len = cmdline_len;
 261
 262		/* command line should be a string with last byte null */
 263		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 264			ret = -EINVAL;
 265			goto out;
 266		}
 267
 268		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 269				  image->cmdline_buf_len - 1);
 270	}
 271
 272	/* IMA needs to pass the measurement list to the next kernel. */
 273	ima_add_kexec_buffer(image);
 274
 275	/* Call arch image load handlers */
 276	ldata = arch_kexec_kernel_image_load(image);
 277
 278	if (IS_ERR(ldata)) {
 279		ret = PTR_ERR(ldata);
 280		goto out;
 281	}
 282
 283	image->image_loader_data = ldata;
 284out:
 285	/* In case of error, free up all allocated memory in this function */
 286	if (ret)
 287		kimage_file_post_load_cleanup(image);
 288	return ret;
 289}
 290
 291static int
 292kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 293		       int initrd_fd, const char __user *cmdline_ptr,
 294		       unsigned long cmdline_len, unsigned long flags)
 295{
 296	int ret;
 297	struct kimage *image;
 298	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 299
 300	image = do_kimage_alloc_init();
 301	if (!image)
 302		return -ENOMEM;
 303
 304	image->file_mode = 1;
 305
 306	if (kexec_on_panic) {
 307		/* Enable special crash kernel control page alloc policy. */
 308		image->control_page = crashk_res.start;
 309		image->type = KEXEC_TYPE_CRASH;
 310	}
 311
 312	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 313					   cmdline_ptr, cmdline_len, flags);
 314	if (ret)
 315		goto out_free_image;
 316
 317	ret = sanity_check_segment_list(image);
 318	if (ret)
 319		goto out_free_post_load_bufs;
 320
 321	ret = -ENOMEM;
 322	image->control_code_page = kimage_alloc_control_pages(image,
 323					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 324	if (!image->control_code_page) {
 325		pr_err("Could not allocate control_code_buffer\n");
 326		goto out_free_post_load_bufs;
 327	}
 328
 329	if (!kexec_on_panic) {
 330		image->swap_page = kimage_alloc_control_pages(image, 0);
 331		if (!image->swap_page) {
 332			pr_err("Could not allocate swap buffer\n");
 333			goto out_free_control_pages;
 334		}
 335	}
 336
 337	*rimage = image;
 338	return 0;
 339out_free_control_pages:
 340	kimage_free_page_list(&image->control_pages);
 341out_free_post_load_bufs:
 342	kimage_file_post_load_cleanup(image);
 343out_free_image:
 344	kfree(image);
 345	return ret;
 346}
 347
 348SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 349		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 350		unsigned long, flags)
 351{
 352	int ret = 0, i;
 353	struct kimage **dest_image, *image;
 354
 355	/* We only trust the superuser with rebooting the system. */
 356	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 357		return -EPERM;
 358
 359	/* Make sure we have a legal set of flags */
 360	if (flags != (flags & KEXEC_FILE_FLAGS))
 361		return -EINVAL;
 362
 363	image = NULL;
 364
 365	if (!mutex_trylock(&kexec_mutex))
 366		return -EBUSY;
 367
 368	dest_image = &kexec_image;
 369	if (flags & KEXEC_FILE_ON_CRASH) {
 370		dest_image = &kexec_crash_image;
 371		if (kexec_crash_image)
 372			arch_kexec_unprotect_crashkres();
 373	}
 374
 375	if (flags & KEXEC_FILE_UNLOAD)
 376		goto exchange;
 377
 378	/*
 379	 * In case of crash, new kernel gets loaded in reserved region. It is
 380	 * same memory where old crash kernel might be loaded. Free any
 381	 * current crash dump kernel before we corrupt it.
 382	 */
 383	if (flags & KEXEC_FILE_ON_CRASH)
 384		kimage_free(xchg(&kexec_crash_image, NULL));
 385
 386	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 387				     cmdline_len, flags);
 388	if (ret)
 389		goto out;
 390
 391	ret = machine_kexec_prepare(image);
 392	if (ret)
 393		goto out;
 394
 395	/*
 396	 * Some architecture(like S390) may touch the crash memory before
 397	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 398	 */
 399	ret = kimage_crash_copy_vmcoreinfo(image);
 400	if (ret)
 401		goto out;
 402
 403	ret = kexec_calculate_store_digests(image);
 404	if (ret)
 405		goto out;
 406
 407	for (i = 0; i < image->nr_segments; i++) {
 408		struct kexec_segment *ksegment;
 409
 410		ksegment = &image->segment[i];
 411		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 412			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 413			 ksegment->memsz);
 414
 415		ret = kimage_load_segment(image, &image->segment[i]);
 416		if (ret)
 417			goto out;
 418	}
 419
 420	kimage_terminate(image);
 421
 422	ret = machine_kexec_post_load(image);
 423	if (ret)
 424		goto out;
 425
 426	/*
 427	 * Free up any temporary buffers allocated which are not needed
 428	 * after image has been loaded
 429	 */
 430	kimage_file_post_load_cleanup(image);
 431exchange:
 432	image = xchg(dest_image, image);
 433out:
 434	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 435		arch_kexec_protect_crashkres();
 436
 437	mutex_unlock(&kexec_mutex);
 438	kimage_free(image);
 439	return ret;
 440}
 441
 442static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 443				    struct kexec_buf *kbuf)
 444{
 445	struct kimage *image = kbuf->image;
 446	unsigned long temp_start, temp_end;
 447
 448	temp_end = min(end, kbuf->buf_max);
 449	temp_start = temp_end - kbuf->memsz;
 450
 451	do {
 452		/* align down start */
 453		temp_start = temp_start & (~(kbuf->buf_align - 1));
 454
 455		if (temp_start < start || temp_start < kbuf->buf_min)
 456			return 0;
 457
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		/*
 461		 * Make sure this does not conflict with any of existing
 462		 * segments
 463		 */
 464		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 465			temp_start = temp_start - PAGE_SIZE;
 466			continue;
 467		}
 468
 469		/* We found a suitable memory range */
 470		break;
 471	} while (1);
 472
 473	/* If we are here, we found a suitable memory range */
 474	kbuf->mem = temp_start;
 475
 476	/* Success, stop navigating through remaining System RAM ranges */
 477	return 1;
 478}
 479
 480static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 481				     struct kexec_buf *kbuf)
 482{
 483	struct kimage *image = kbuf->image;
 484	unsigned long temp_start, temp_end;
 485
 486	temp_start = max(start, kbuf->buf_min);
 487
 488	do {
 489		temp_start = ALIGN(temp_start, kbuf->buf_align);
 490		temp_end = temp_start + kbuf->memsz - 1;
 491
 492		if (temp_end > end || temp_end > kbuf->buf_max)
 493			return 0;
 494		/*
 495		 * Make sure this does not conflict with any of existing
 496		 * segments
 497		 */
 498		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 499			temp_start = temp_start + PAGE_SIZE;
 500			continue;
 501		}
 502
 503		/* We found a suitable memory range */
 504		break;
 505	} while (1);
 506
 507	/* If we are here, we found a suitable memory range */
 508	kbuf->mem = temp_start;
 509
 510	/* Success, stop navigating through remaining System RAM ranges */
 511	return 1;
 512}
 513
 514static int locate_mem_hole_callback(struct resource *res, void *arg)
 515{
 516	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 517	u64 start = res->start, end = res->end;
 518	unsigned long sz = end - start + 1;
 519
 520	/* Returning 0 will take to next memory range */
 521
 522	/* Don't use memory that will be detected and handled by a driver. */
 523	if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
 524		return 0;
 525
 526	if (sz < kbuf->memsz)
 527		return 0;
 528
 529	if (end < kbuf->buf_min || start > kbuf->buf_max)
 530		return 0;
 531
 532	/*
 533	 * Allocate memory top down with-in ram range. Otherwise bottom up
 534	 * allocation.
 535	 */
 536	if (kbuf->top_down)
 537		return locate_mem_hole_top_down(start, end, kbuf);
 538	return locate_mem_hole_bottom_up(start, end, kbuf);
 539}
 540
 541#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 542static int kexec_walk_memblock(struct kexec_buf *kbuf,
 543			       int (*func)(struct resource *, void *))
 544{
 545	int ret = 0;
 546	u64 i;
 547	phys_addr_t mstart, mend;
 548	struct resource res = { };
 549
 550	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 551		return func(&crashk_res, kbuf);
 552
 553	if (kbuf->top_down) {
 554		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 555						&mstart, &mend, NULL) {
 556			/*
 557			 * In memblock, end points to the first byte after the
 558			 * range while in kexec, end points to the last byte
 559			 * in the range.
 560			 */
 561			res.start = mstart;
 562			res.end = mend - 1;
 563			ret = func(&res, kbuf);
 564			if (ret)
 565				break;
 566		}
 567	} else {
 568		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 569					&mstart, &mend, NULL) {
 570			/*
 571			 * In memblock, end points to the first byte after the
 572			 * range while in kexec, end points to the last byte
 573			 * in the range.
 574			 */
 575			res.start = mstart;
 576			res.end = mend - 1;
 577			ret = func(&res, kbuf);
 578			if (ret)
 579				break;
 580		}
 581	}
 582
 583	return ret;
 584}
 585#else
 586static int kexec_walk_memblock(struct kexec_buf *kbuf,
 587			       int (*func)(struct resource *, void *))
 588{
 589	return 0;
 590}
 591#endif
 592
 593/**
 594 * kexec_walk_resources - call func(data) on free memory regions
 595 * @kbuf:	Context info for the search. Also passed to @func.
 596 * @func:	Function to call for each memory region.
 597 *
 598 * Return: The memory walk will stop when func returns a non-zero value
 599 * and that value will be returned. If all free regions are visited without
 600 * func returning non-zero, then zero will be returned.
 601 */
 602static int kexec_walk_resources(struct kexec_buf *kbuf,
 603				int (*func)(struct resource *, void *))
 604{
 605	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 606		return walk_iomem_res_desc(crashk_res.desc,
 607					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 608					   crashk_res.start, crashk_res.end,
 609					   kbuf, func);
 610	else
 611		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 612}
 613
 614/**
 615 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 616 * @kbuf:	Parameters for the memory search.
 617 *
 618 * On success, kbuf->mem will have the start address of the memory region found.
 619 *
 620 * Return: 0 on success, negative errno on error.
 621 */
 622int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 623{
 624	int ret;
 625
 626	/* Arch knows where to place */
 627	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 628		return 0;
 629
 630	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 631		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 632	else
 633		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 634
 635	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 636}
 637
 638/**
 639 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 640 * @kbuf:                       Parameters for the memory search.
 641 *
 642 * On success, kbuf->mem will have the start address of the memory region found.
 643 *
 644 * Return: 0 on success, negative errno on error.
 645 */
 646int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 647{
 648	return kexec_locate_mem_hole(kbuf);
 649}
 650
 651/**
 652 * kexec_add_buffer - place a buffer in a kexec segment
 653 * @kbuf:	Buffer contents and memory parameters.
 654 *
 655 * This function assumes that kexec_mutex is held.
 656 * On successful return, @kbuf->mem will have the physical address of
 657 * the buffer in memory.
 658 *
 659 * Return: 0 on success, negative errno on error.
 660 */
 661int kexec_add_buffer(struct kexec_buf *kbuf)
 662{
 663	struct kexec_segment *ksegment;
 664	int ret;
 665
 666	/* Currently adding segment this way is allowed only in file mode */
 667	if (!kbuf->image->file_mode)
 668		return -EINVAL;
 669
 670	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 671		return -EINVAL;
 672
 673	/*
 674	 * Make sure we are not trying to add buffer after allocating
 675	 * control pages. All segments need to be placed first before
 676	 * any control pages are allocated. As control page allocation
 677	 * logic goes through list of segments to make sure there are
 678	 * no destination overlaps.
 679	 */
 680	if (!list_empty(&kbuf->image->control_pages)) {
 681		WARN_ON(1);
 682		return -EINVAL;
 683	}
 684
 685	/* Ensure minimum alignment needed for segments. */
 686	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 687	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 688
 689	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 690	ret = arch_kexec_locate_mem_hole(kbuf);
 691	if (ret)
 692		return ret;
 693
 694	/* Found a suitable memory range */
 695	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 696	ksegment->kbuf = kbuf->buffer;
 697	ksegment->bufsz = kbuf->bufsz;
 698	ksegment->mem = kbuf->mem;
 699	ksegment->memsz = kbuf->memsz;
 700	kbuf->image->nr_segments++;
 701	return 0;
 702}
 703
 704/* Calculate and store the digest of segments */
 705static int kexec_calculate_store_digests(struct kimage *image)
 706{
 707	struct crypto_shash *tfm;
 708	struct shash_desc *desc;
 709	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 710	size_t desc_size, nullsz;
 711	char *digest;
 712	void *zero_buf;
 713	struct kexec_sha_region *sha_regions;
 714	struct purgatory_info *pi = &image->purgatory_info;
 715
 716	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 717		return 0;
 718
 719	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 720	zero_buf_sz = PAGE_SIZE;
 721
 722	tfm = crypto_alloc_shash("sha256", 0, 0);
 723	if (IS_ERR(tfm)) {
 724		ret = PTR_ERR(tfm);
 725		goto out;
 726	}
 727
 728	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 729	desc = kzalloc(desc_size, GFP_KERNEL);
 730	if (!desc) {
 731		ret = -ENOMEM;
 732		goto out_free_tfm;
 733	}
 734
 735	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 736	sha_regions = vzalloc(sha_region_sz);
 737	if (!sha_regions)
 
 738		goto out_free_desc;
 
 739
 740	desc->tfm   = tfm;
 741
 742	ret = crypto_shash_init(desc);
 743	if (ret < 0)
 744		goto out_free_sha_regions;
 745
 746	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 747	if (!digest) {
 748		ret = -ENOMEM;
 749		goto out_free_sha_regions;
 750	}
 751
 752	for (j = i = 0; i < image->nr_segments; i++) {
 753		struct kexec_segment *ksegment;
 754
 755		ksegment = &image->segment[i];
 756		/*
 757		 * Skip purgatory as it will be modified once we put digest
 758		 * info in purgatory.
 759		 */
 760		if (ksegment->kbuf == pi->purgatory_buf)
 761			continue;
 762
 763		ret = crypto_shash_update(desc, ksegment->kbuf,
 764					  ksegment->bufsz);
 765		if (ret)
 766			break;
 767
 768		/*
 769		 * Assume rest of the buffer is filled with zero and
 770		 * update digest accordingly.
 771		 */
 772		nullsz = ksegment->memsz - ksegment->bufsz;
 773		while (nullsz) {
 774			unsigned long bytes = nullsz;
 775
 776			if (bytes > zero_buf_sz)
 777				bytes = zero_buf_sz;
 778			ret = crypto_shash_update(desc, zero_buf, bytes);
 779			if (ret)
 780				break;
 781			nullsz -= bytes;
 782		}
 783
 784		if (ret)
 785			break;
 786
 787		sha_regions[j].start = ksegment->mem;
 788		sha_regions[j].len = ksegment->memsz;
 789		j++;
 790	}
 791
 792	if (!ret) {
 793		ret = crypto_shash_final(desc, digest);
 794		if (ret)
 795			goto out_free_digest;
 796		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 797						     sha_regions, sha_region_sz, 0);
 798		if (ret)
 799			goto out_free_digest;
 800
 801		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 802						     digest, SHA256_DIGEST_SIZE, 0);
 803		if (ret)
 804			goto out_free_digest;
 805	}
 806
 807out_free_digest:
 808	kfree(digest);
 809out_free_sha_regions:
 810	vfree(sha_regions);
 811out_free_desc:
 812	kfree(desc);
 813out_free_tfm:
 814	kfree(tfm);
 815out:
 816	return ret;
 817}
 818
 819#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 820/*
 821 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 822 * @pi:		Purgatory to be loaded.
 823 * @kbuf:	Buffer to setup.
 824 *
 825 * Allocates the memory needed for the buffer. Caller is responsible to free
 826 * the memory after use.
 827 *
 828 * Return: 0 on success, negative errno on error.
 829 */
 830static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 831				      struct kexec_buf *kbuf)
 832{
 833	const Elf_Shdr *sechdrs;
 834	unsigned long bss_align;
 835	unsigned long bss_sz;
 836	unsigned long align;
 837	int i, ret;
 838
 839	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 840	kbuf->buf_align = bss_align = 1;
 841	kbuf->bufsz = bss_sz = 0;
 842
 843	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 844		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 845			continue;
 846
 847		align = sechdrs[i].sh_addralign;
 848		if (sechdrs[i].sh_type != SHT_NOBITS) {
 849			if (kbuf->buf_align < align)
 850				kbuf->buf_align = align;
 851			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 852			kbuf->bufsz += sechdrs[i].sh_size;
 853		} else {
 854			if (bss_align < align)
 855				bss_align = align;
 856			bss_sz = ALIGN(bss_sz, align);
 857			bss_sz += sechdrs[i].sh_size;
 858		}
 859	}
 860	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 861	kbuf->memsz = kbuf->bufsz + bss_sz;
 862	if (kbuf->buf_align < bss_align)
 863		kbuf->buf_align = bss_align;
 864
 865	kbuf->buffer = vzalloc(kbuf->bufsz);
 866	if (!kbuf->buffer)
 867		return -ENOMEM;
 868	pi->purgatory_buf = kbuf->buffer;
 869
 870	ret = kexec_add_buffer(kbuf);
 871	if (ret)
 872		goto out;
 873
 874	return 0;
 875out:
 876	vfree(pi->purgatory_buf);
 877	pi->purgatory_buf = NULL;
 878	return ret;
 879}
 880
 881/*
 882 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 883 * @pi:		Purgatory to be loaded.
 884 * @kbuf:	Buffer prepared to store purgatory.
 885 *
 886 * Allocates the memory needed for the buffer. Caller is responsible to free
 887 * the memory after use.
 888 *
 889 * Return: 0 on success, negative errno on error.
 890 */
 891static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 892					 struct kexec_buf *kbuf)
 893{
 894	unsigned long bss_addr;
 895	unsigned long offset;
 896	Elf_Shdr *sechdrs;
 897	int i;
 898
 899	/*
 900	 * The section headers in kexec_purgatory are read-only. In order to
 901	 * have them modifiable make a temporary copy.
 902	 */
 903	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 904	if (!sechdrs)
 905		return -ENOMEM;
 906	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 907	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 908	pi->sechdrs = sechdrs;
 909
 910	offset = 0;
 911	bss_addr = kbuf->mem + kbuf->bufsz;
 912	kbuf->image->start = pi->ehdr->e_entry;
 913
 914	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 915		unsigned long align;
 916		void *src, *dst;
 917
 918		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 919			continue;
 920
 921		align = sechdrs[i].sh_addralign;
 922		if (sechdrs[i].sh_type == SHT_NOBITS) {
 923			bss_addr = ALIGN(bss_addr, align);
 924			sechdrs[i].sh_addr = bss_addr;
 925			bss_addr += sechdrs[i].sh_size;
 926			continue;
 927		}
 928
 929		offset = ALIGN(offset, align);
 930		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 931		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 932		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 933					 + sechdrs[i].sh_size)) {
 934			kbuf->image->start -= sechdrs[i].sh_addr;
 935			kbuf->image->start += kbuf->mem + offset;
 936		}
 937
 938		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 939		dst = pi->purgatory_buf + offset;
 940		memcpy(dst, src, sechdrs[i].sh_size);
 941
 942		sechdrs[i].sh_addr = kbuf->mem + offset;
 943		sechdrs[i].sh_offset = offset;
 944		offset += sechdrs[i].sh_size;
 945	}
 946
 947	return 0;
 948}
 949
 950static int kexec_apply_relocations(struct kimage *image)
 951{
 952	int i, ret;
 953	struct purgatory_info *pi = &image->purgatory_info;
 954	const Elf_Shdr *sechdrs;
 955
 956	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 957
 958	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 959		const Elf_Shdr *relsec;
 960		const Elf_Shdr *symtab;
 961		Elf_Shdr *section;
 962
 963		relsec = sechdrs + i;
 964
 965		if (relsec->sh_type != SHT_RELA &&
 966		    relsec->sh_type != SHT_REL)
 967			continue;
 968
 969		/*
 970		 * For section of type SHT_RELA/SHT_REL,
 971		 * ->sh_link contains section header index of associated
 972		 * symbol table. And ->sh_info contains section header
 973		 * index of section to which relocations apply.
 974		 */
 975		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 976		    relsec->sh_link >= pi->ehdr->e_shnum)
 977			return -ENOEXEC;
 978
 979		section = pi->sechdrs + relsec->sh_info;
 980		symtab = sechdrs + relsec->sh_link;
 981
 982		if (!(section->sh_flags & SHF_ALLOC))
 983			continue;
 984
 985		/*
 986		 * symtab->sh_link contain section header index of associated
 987		 * string table.
 988		 */
 989		if (symtab->sh_link >= pi->ehdr->e_shnum)
 990			/* Invalid section number? */
 991			continue;
 992
 993		/*
 994		 * Respective architecture needs to provide support for applying
 995		 * relocations of type SHT_RELA/SHT_REL.
 996		 */
 997		if (relsec->sh_type == SHT_RELA)
 998			ret = arch_kexec_apply_relocations_add(pi, section,
 999							       relsec, symtab);
1000		else if (relsec->sh_type == SHT_REL)
1001			ret = arch_kexec_apply_relocations(pi, section,
1002							   relsec, symtab);
1003		if (ret)
1004			return ret;
1005	}
1006
1007	return 0;
1008}
1009
1010/*
1011 * kexec_load_purgatory - Load and relocate the purgatory object.
1012 * @image:	Image to add the purgatory to.
1013 * @kbuf:	Memory parameters to use.
1014 *
1015 * Allocates the memory needed for image->purgatory_info.sechdrs and
1016 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1017 * to free the memory after use.
1018 *
1019 * Return: 0 on success, negative errno on error.
1020 */
1021int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1022{
1023	struct purgatory_info *pi = &image->purgatory_info;
1024	int ret;
1025
1026	if (kexec_purgatory_size <= 0)
1027		return -EINVAL;
1028
1029	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1030
1031	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1032	if (ret)
1033		return ret;
1034
1035	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1036	if (ret)
1037		goto out_free_kbuf;
1038
1039	ret = kexec_apply_relocations(image);
1040	if (ret)
1041		goto out;
1042
1043	return 0;
1044out:
1045	vfree(pi->sechdrs);
1046	pi->sechdrs = NULL;
1047out_free_kbuf:
1048	vfree(pi->purgatory_buf);
1049	pi->purgatory_buf = NULL;
1050	return ret;
1051}
1052
1053/*
1054 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1055 * @pi:		Purgatory to search in.
1056 * @name:	Name of the symbol.
1057 *
1058 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1059 */
1060static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1061						  const char *name)
1062{
1063	const Elf_Shdr *sechdrs;
1064	const Elf_Ehdr *ehdr;
1065	const Elf_Sym *syms;
1066	const char *strtab;
1067	int i, k;
1068
1069	if (!pi->ehdr)
1070		return NULL;
1071
1072	ehdr = pi->ehdr;
1073	sechdrs = (void *)ehdr + ehdr->e_shoff;
1074
1075	for (i = 0; i < ehdr->e_shnum; i++) {
1076		if (sechdrs[i].sh_type != SHT_SYMTAB)
1077			continue;
1078
1079		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1080			/* Invalid strtab section number */
1081			continue;
1082		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1083		syms = (void *)ehdr + sechdrs[i].sh_offset;
1084
1085		/* Go through symbols for a match */
1086		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1087			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1088				continue;
1089
1090			if (strcmp(strtab + syms[k].st_name, name) != 0)
1091				continue;
1092
1093			if (syms[k].st_shndx == SHN_UNDEF ||
1094			    syms[k].st_shndx >= ehdr->e_shnum) {
1095				pr_debug("Symbol: %s has bad section index %d.\n",
1096						name, syms[k].st_shndx);
1097				return NULL;
1098			}
1099
1100			/* Found the symbol we are looking for */
1101			return &syms[k];
1102		}
1103	}
1104
1105	return NULL;
1106}
1107
1108void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1109{
1110	struct purgatory_info *pi = &image->purgatory_info;
1111	const Elf_Sym *sym;
1112	Elf_Shdr *sechdr;
1113
1114	sym = kexec_purgatory_find_symbol(pi, name);
1115	if (!sym)
1116		return ERR_PTR(-EINVAL);
1117
1118	sechdr = &pi->sechdrs[sym->st_shndx];
1119
1120	/*
1121	 * Returns the address where symbol will finally be loaded after
1122	 * kexec_load_segment()
1123	 */
1124	return (void *)(sechdr->sh_addr + sym->st_value);
1125}
1126
1127/*
1128 * Get or set value of a symbol. If "get_value" is true, symbol value is
1129 * returned in buf otherwise symbol value is set based on value in buf.
1130 */
1131int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1132				   void *buf, unsigned int size, bool get_value)
1133{
1134	struct purgatory_info *pi = &image->purgatory_info;
1135	const Elf_Sym *sym;
1136	Elf_Shdr *sec;
1137	char *sym_buf;
1138
1139	sym = kexec_purgatory_find_symbol(pi, name);
1140	if (!sym)
1141		return -EINVAL;
1142
1143	if (sym->st_size != size) {
1144		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1145		       name, (unsigned long)sym->st_size, size);
1146		return -EINVAL;
1147	}
1148
1149	sec = pi->sechdrs + sym->st_shndx;
1150
1151	if (sec->sh_type == SHT_NOBITS) {
1152		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1153		       get_value ? "get" : "set");
1154		return -EINVAL;
1155	}
1156
1157	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1158
1159	if (get_value)
1160		memcpy((void *)buf, sym_buf, size);
1161	else
1162		memcpy((void *)sym_buf, buf, size);
1163
1164	return 0;
1165}
1166#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1167
1168int crash_exclude_mem_range(struct crash_mem *mem,
1169			    unsigned long long mstart, unsigned long long mend)
1170{
1171	int i, j;
1172	unsigned long long start, end, p_start, p_end;
1173	struct crash_mem_range temp_range = {0, 0};
1174
1175	for (i = 0; i < mem->nr_ranges; i++) {
1176		start = mem->ranges[i].start;
1177		end = mem->ranges[i].end;
1178		p_start = mstart;
1179		p_end = mend;
1180
1181		if (mstart > end || mend < start)
1182			continue;
1183
1184		/* Truncate any area outside of range */
1185		if (mstart < start)
1186			p_start = start;
1187		if (mend > end)
1188			p_end = end;
1189
1190		/* Found completely overlapping range */
1191		if (p_start == start && p_end == end) {
1192			mem->ranges[i].start = 0;
1193			mem->ranges[i].end = 0;
1194			if (i < mem->nr_ranges - 1) {
1195				/* Shift rest of the ranges to left */
1196				for (j = i; j < mem->nr_ranges - 1; j++) {
1197					mem->ranges[j].start =
1198						mem->ranges[j+1].start;
1199					mem->ranges[j].end =
1200							mem->ranges[j+1].end;
1201				}
1202
1203				/*
1204				 * Continue to check if there are another overlapping ranges
1205				 * from the current position because of shifting the above
1206				 * mem ranges.
1207				 */
1208				i--;
1209				mem->nr_ranges--;
1210				continue;
1211			}
1212			mem->nr_ranges--;
1213			return 0;
1214		}
1215
1216		if (p_start > start && p_end < end) {
1217			/* Split original range */
1218			mem->ranges[i].end = p_start - 1;
1219			temp_range.start = p_end + 1;
1220			temp_range.end = end;
1221		} else if (p_start != start)
1222			mem->ranges[i].end = p_start - 1;
1223		else
1224			mem->ranges[i].start = p_end + 1;
1225		break;
1226	}
1227
1228	/* If a split happened, add the split to array */
1229	if (!temp_range.end)
1230		return 0;
1231
1232	/* Split happened */
1233	if (i == mem->max_nr_ranges - 1)
1234		return -ENOMEM;
1235
1236	/* Location where new range should go */
1237	j = i + 1;
1238	if (j < mem->nr_ranges) {
1239		/* Move over all ranges one slot towards the end */
1240		for (i = mem->nr_ranges - 1; i >= j; i--)
1241			mem->ranges[i + 1] = mem->ranges[i];
1242	}
1243
1244	mem->ranges[j].start = temp_range.start;
1245	mem->ranges[j].end = temp_range.end;
1246	mem->nr_ranges++;
1247	return 0;
1248}
1249
1250int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1251			  void **addr, unsigned long *sz)
1252{
1253	Elf64_Ehdr *ehdr;
1254	Elf64_Phdr *phdr;
1255	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1256	unsigned char *buf;
1257	unsigned int cpu, i;
1258	unsigned long long notes_addr;
1259	unsigned long mstart, mend;
1260
1261	/* extra phdr for vmcoreinfo ELF note */
1262	nr_phdr = nr_cpus + 1;
1263	nr_phdr += mem->nr_ranges;
1264
1265	/*
1266	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1267	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1268	 * I think this is required by tools like gdb. So same physical
1269	 * memory will be mapped in two ELF headers. One will contain kernel
1270	 * text virtual addresses and other will have __va(physical) addresses.
1271	 */
1272
1273	nr_phdr++;
1274	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1275	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1276
1277	buf = vzalloc(elf_sz);
1278	if (!buf)
1279		return -ENOMEM;
1280
1281	ehdr = (Elf64_Ehdr *)buf;
1282	phdr = (Elf64_Phdr *)(ehdr + 1);
1283	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1284	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1285	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1286	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1287	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1288	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1289	ehdr->e_type = ET_CORE;
1290	ehdr->e_machine = ELF_ARCH;
1291	ehdr->e_version = EV_CURRENT;
1292	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1293	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1294	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1295
1296	/* Prepare one phdr of type PT_NOTE for each present CPU */
1297	for_each_present_cpu(cpu) {
1298		phdr->p_type = PT_NOTE;
1299		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1300		phdr->p_offset = phdr->p_paddr = notes_addr;
1301		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1302		(ehdr->e_phnum)++;
1303		phdr++;
1304	}
1305
1306	/* Prepare one PT_NOTE header for vmcoreinfo */
1307	phdr->p_type = PT_NOTE;
1308	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1309	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1310	(ehdr->e_phnum)++;
1311	phdr++;
1312
1313	/* Prepare PT_LOAD type program header for kernel text region */
1314	if (kernel_map) {
1315		phdr->p_type = PT_LOAD;
1316		phdr->p_flags = PF_R|PF_W|PF_X;
1317		phdr->p_vaddr = (unsigned long) _text;
1318		phdr->p_filesz = phdr->p_memsz = _end - _text;
1319		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1320		ehdr->e_phnum++;
1321		phdr++;
1322	}
1323
1324	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1325	for (i = 0; i < mem->nr_ranges; i++) {
1326		mstart = mem->ranges[i].start;
1327		mend = mem->ranges[i].end;
1328
1329		phdr->p_type = PT_LOAD;
1330		phdr->p_flags = PF_R|PF_W|PF_X;
1331		phdr->p_offset  = mstart;
1332
1333		phdr->p_paddr = mstart;
1334		phdr->p_vaddr = (unsigned long) __va(mstart);
1335		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1336		phdr->p_align = 0;
1337		ehdr->e_phnum++;
1338		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1339			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1340			ehdr->e_phnum, phdr->p_offset);
1341		phdr++;
1342	}
1343
1344	*addr = buf;
1345	*sz = elf_sz;
1346	return 0;
1347}