Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright © 2014-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include "display/intel_dp.h"
  25
 
  26#include "intel_de.h"
 
  27#include "intel_display_types.h"
 
  28#include "intel_dpio_phy.h"
  29#include "intel_sideband.h"
  30
  31/**
  32 * DOC: DPIO
  33 *
  34 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
  35 * ports. DPIO is the name given to such a display PHY. These PHYs
  36 * don't follow the standard programming model using direct MMIO
  37 * registers, and instead their registers must be accessed trough IOSF
  38 * sideband. VLV has one such PHY for driving ports B and C, and CHV
  39 * adds another PHY for driving port D. Each PHY responds to specific
  40 * IOSF-SB port.
  41 *
  42 * Each display PHY is made up of one or two channels. Each channel
  43 * houses a common lane part which contains the PLL and other common
  44 * logic. CH0 common lane also contains the IOSF-SB logic for the
  45 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
  46 * must be running when any DPIO registers are accessed.
  47 *
  48 * In addition to having their own registers, the PHYs are also
  49 * controlled through some dedicated signals from the display
  50 * controller. These include PLL reference clock enable, PLL enable,
  51 * and CRI clock selection, for example.
  52 *
  53 * Eeach channel also has two splines (also called data lanes), and
  54 * each spline is made up of one Physical Access Coding Sub-Layer
  55 * (PCS) block and two TX lanes. So each channel has two PCS blocks
  56 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
  57 * data/clock pairs depending on the output type.
  58 *
  59 * Additionally the PHY also contains an AUX lane with AUX blocks
  60 * for each channel. This is used for DP AUX communication, but
  61 * this fact isn't really relevant for the driver since AUX is
  62 * controlled from the display controller side. No DPIO registers
  63 * need to be accessed during AUX communication,
  64 *
  65 * Generally on VLV/CHV the common lane corresponds to the pipe and
  66 * the spline (PCS/TX) corresponds to the port.
  67 *
  68 * For dual channel PHY (VLV/CHV):
  69 *
  70 *  pipe A == CMN/PLL/REF CH0
  71 *
  72 *  pipe B == CMN/PLL/REF CH1
  73 *
  74 *  port B == PCS/TX CH0
  75 *
  76 *  port C == PCS/TX CH1
  77 *
  78 * This is especially important when we cross the streams
  79 * ie. drive port B with pipe B, or port C with pipe A.
  80 *
  81 * For single channel PHY (CHV):
  82 *
  83 *  pipe C == CMN/PLL/REF CH0
  84 *
  85 *  port D == PCS/TX CH0
  86 *
  87 * On BXT the entire PHY channel corresponds to the port. That means
  88 * the PLL is also now associated with the port rather than the pipe,
  89 * and so the clock needs to be routed to the appropriate transcoder.
  90 * Port A PLL is directly connected to transcoder EDP and port B/C
  91 * PLLs can be routed to any transcoder A/B/C.
  92 *
  93 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
  94 * digital port D (CHV) or port A (BXT). ::
  95 *
  96 *
  97 *     Dual channel PHY (VLV/CHV/BXT)
  98 *     ---------------------------------
  99 *     |      CH0      |      CH1      |
 100 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 101 *     |---------------|---------------| Display PHY
 102 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 103 *     |-------|-------|-------|-------|
 104 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 105 *     ---------------------------------
 106 *     |     DDI0      |     DDI1      | DP/HDMI ports
 107 *     ---------------------------------
 108 *
 109 *     Single channel PHY (CHV/BXT)
 110 *     -----------------
 111 *     |      CH0      |
 112 *     |  CMN/PLL/REF  |
 113 *     |---------------| Display PHY
 114 *     | PCS01 | PCS23 |
 115 *     |-------|-------|
 116 *     |TX0|TX1|TX2|TX3|
 117 *     -----------------
 118 *     |     DDI2      | DP/HDMI port
 119 *     -----------------
 120 */
 121
 122/**
 123 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
 124 */
 125struct bxt_ddi_phy_info {
 126	/**
 127	 * @dual_channel: true if this phy has a second channel.
 128	 */
 129	bool dual_channel;
 130
 131	/**
 132	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
 133	 * Otherwise the GRC value will be copied from the phy indicated by
 134	 * this field.
 135	 */
 136	enum dpio_phy rcomp_phy;
 137
 138	/**
 139	 * @reset_delay: delay in us to wait before setting the common reset
 140	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
 141	 */
 142	int reset_delay;
 143
 144	/**
 145	 * @pwron_mask: Mask with the appropriate bit set that would cause the
 146	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
 147	 */
 148	u32 pwron_mask;
 149
 150	/**
 151	 * @channel: struct containing per channel information.
 152	 */
 153	struct {
 154		/**
 155		 * @channel.port: which port maps to this channel.
 156		 */
 157		enum port port;
 158	} channel[2];
 159};
 160
 161static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
 162	[DPIO_PHY0] = {
 163		.dual_channel = true,
 164		.rcomp_phy = DPIO_PHY1,
 165		.pwron_mask = BIT(0),
 166
 167		.channel = {
 168			[DPIO_CH0] = { .port = PORT_B },
 169			[DPIO_CH1] = { .port = PORT_C },
 170		}
 171	},
 172	[DPIO_PHY1] = {
 173		.dual_channel = false,
 174		.rcomp_phy = -1,
 175		.pwron_mask = BIT(1),
 176
 177		.channel = {
 178			[DPIO_CH0] = { .port = PORT_A },
 179		}
 180	},
 181};
 182
 183static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
 184	[DPIO_PHY0] = {
 185		.dual_channel = false,
 186		.rcomp_phy = DPIO_PHY1,
 187		.pwron_mask = BIT(0),
 188		.reset_delay = 20,
 189
 190		.channel = {
 191			[DPIO_CH0] = { .port = PORT_B },
 192		}
 193	},
 194	[DPIO_PHY1] = {
 195		.dual_channel = false,
 196		.rcomp_phy = -1,
 197		.pwron_mask = BIT(3),
 198		.reset_delay = 20,
 199
 200		.channel = {
 201			[DPIO_CH0] = { .port = PORT_A },
 202		}
 203	},
 204	[DPIO_PHY2] = {
 205		.dual_channel = false,
 206		.rcomp_phy = DPIO_PHY1,
 207		.pwron_mask = BIT(1),
 208		.reset_delay = 20,
 209
 210		.channel = {
 211			[DPIO_CH0] = { .port = PORT_C },
 212		}
 213	},
 214};
 215
 216static const struct bxt_ddi_phy_info *
 217bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
 218{
 219	if (IS_GEMINILAKE(dev_priv)) {
 220		*count =  ARRAY_SIZE(glk_ddi_phy_info);
 221		return glk_ddi_phy_info;
 222	} else {
 223		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
 224		return bxt_ddi_phy_info;
 225	}
 226}
 227
 228static const struct bxt_ddi_phy_info *
 229bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 230{
 231	int count;
 232	const struct bxt_ddi_phy_info *phy_list =
 233		bxt_get_phy_list(dev_priv, &count);
 234
 235	return &phy_list[phy];
 236}
 237
 238void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
 239			     enum dpio_phy *phy, enum dpio_channel *ch)
 240{
 241	const struct bxt_ddi_phy_info *phy_info, *phys;
 242	int i, count;
 243
 244	phys = bxt_get_phy_list(dev_priv, &count);
 245
 246	for (i = 0; i < count; i++) {
 247		phy_info = &phys[i];
 248
 249		if (port == phy_info->channel[DPIO_CH0].port) {
 250			*phy = i;
 251			*ch = DPIO_CH0;
 252			return;
 253		}
 254
 255		if (phy_info->dual_channel &&
 256		    port == phy_info->channel[DPIO_CH1].port) {
 257			*phy = i;
 258			*ch = DPIO_CH1;
 259			return;
 260		}
 261	}
 262
 263	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
 264		 port_name(port));
 265	*phy = DPIO_PHY0;
 266	*ch = DPIO_CH0;
 267}
 268
 269void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
 270				  enum port port, u32 margin, u32 scale,
 271				  u32 enable, u32 deemphasis)
 272{
 273	u32 val;
 274	enum dpio_phy phy;
 
 275	enum dpio_channel ch;
 
 
 
 276
 277	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 
 
 
 
 278
 279	/*
 280	 * While we write to the group register to program all lanes at once we
 281	 * can read only lane registers and we pick lanes 0/1 for that.
 282	 */
 283	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 284	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
 285	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 286
 287	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
 288	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
 289	val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
 
 290	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
 291
 292	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
 293	val &= ~SCALE_DCOMP_METHOD;
 294	if (enable)
 295		val |= SCALE_DCOMP_METHOD;
 296
 297	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
 298		drm_err(&dev_priv->drm,
 299			"Disabled scaling while ouniqetrangenmethod was set");
 300
 301	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
 302
 303	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
 304	val &= ~DE_EMPHASIS;
 305	val |= deemphasis << DEEMPH_SHIFT;
 306	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
 307
 308	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 309	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
 310	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 311}
 312
 313bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
 314			    enum dpio_phy phy)
 315{
 316	const struct bxt_ddi_phy_info *phy_info;
 317
 318	phy_info = bxt_get_phy_info(dev_priv, phy);
 319
 320	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
 321		return false;
 322
 323	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
 324	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
 325		drm_dbg(&dev_priv->drm,
 326			"DDI PHY %d powered, but power hasn't settled\n", phy);
 327
 328		return false;
 329	}
 330
 331	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
 332		drm_dbg(&dev_priv->drm,
 333			"DDI PHY %d powered, but still in reset\n", phy);
 334
 335		return false;
 336	}
 337
 338	return true;
 339}
 340
 341static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 342{
 343	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
 344
 345	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
 346}
 347
 348static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
 349				  enum dpio_phy phy)
 350{
 351	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
 352				  GRC_DONE, 10))
 353		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
 354			phy);
 355}
 356
 357static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
 358			      enum dpio_phy phy)
 359{
 360	const struct bxt_ddi_phy_info *phy_info;
 361	u32 val;
 362
 363	phy_info = bxt_get_phy_info(dev_priv, phy);
 364
 365	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
 366		/* Still read out the GRC value for state verification */
 367		if (phy_info->rcomp_phy != -1)
 368			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
 369
 370		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
 371			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
 372				"won't reprogram it\n", phy);
 373			return;
 374		}
 375
 376		drm_dbg(&dev_priv->drm,
 377			"DDI PHY %d enabled with invalid state, "
 378			"force reprogramming it\n", phy);
 379	}
 380
 381	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
 382	val |= phy_info->pwron_mask;
 383	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
 384
 385	/*
 386	 * The PHY registers start out inaccessible and respond to reads with
 387	 * all 1s.  Eventually they become accessible as they power up, then
 388	 * the reserved bit will give the default 0.  Poll on the reserved bit
 389	 * becoming 0 to find when the PHY is accessible.
 390	 * The flag should get set in 100us according to the HW team, but
 391	 * use 1ms due to occasional timeouts observed with that.
 392	 */
 393	if (intel_wait_for_register_fw(&dev_priv->uncore,
 394				       BXT_PORT_CL1CM_DW0(phy),
 395				       PHY_RESERVED | PHY_POWER_GOOD,
 396				       PHY_POWER_GOOD,
 397				       1))
 398		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
 399			phy);
 400
 401	/* Program PLL Rcomp code offset */
 402	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
 403	val &= ~IREF0RC_OFFSET_MASK;
 404	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
 405	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
 406
 407	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
 408	val &= ~IREF1RC_OFFSET_MASK;
 409	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
 410	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
 411
 412	/* Program power gating */
 413	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
 414	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
 415		SUS_CLK_CONFIG;
 416	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
 417
 418	if (phy_info->dual_channel) {
 419		val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
 420		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
 421		intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
 422	}
 423
 424	if (phy_info->rcomp_phy != -1) {
 425		u32 grc_code;
 426
 427		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
 428
 429		/*
 430		 * PHY0 isn't connected to an RCOMP resistor so copy over
 431		 * the corresponding calibrated value from PHY1, and disable
 432		 * the automatic calibration on PHY0.
 433		 */
 434		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
 435							  phy_info->rcomp_phy);
 436		grc_code = val << GRC_CODE_FAST_SHIFT |
 437			   val << GRC_CODE_SLOW_SHIFT |
 438			   val;
 439		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
 440
 441		val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
 442		val |= GRC_DIS | GRC_RDY_OVRD;
 443		intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
 444	}
 445
 446	if (phy_info->reset_delay)
 447		udelay(phy_info->reset_delay);
 448
 449	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
 450	val |= COMMON_RESET_DIS;
 451	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
 452}
 453
 454void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 455{
 456	const struct bxt_ddi_phy_info *phy_info;
 457	u32 val;
 458
 459	phy_info = bxt_get_phy_info(dev_priv, phy);
 460
 461	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
 462	val &= ~COMMON_RESET_DIS;
 463	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
 464
 465	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
 466	val &= ~phy_info->pwron_mask;
 467	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
 468}
 469
 470void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 471{
 472	const struct bxt_ddi_phy_info *phy_info =
 473		bxt_get_phy_info(dev_priv, phy);
 474	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
 475	bool was_enabled;
 476
 477	lockdep_assert_held(&dev_priv->power_domains.lock);
 478
 479	was_enabled = true;
 480	if (rcomp_phy != -1)
 481		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
 482
 483	/*
 484	 * We need to copy the GRC calibration value from rcomp_phy,
 485	 * so make sure it's powered up.
 486	 */
 487	if (!was_enabled)
 488		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
 489
 490	_bxt_ddi_phy_init(dev_priv, phy);
 491
 492	if (!was_enabled)
 493		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
 494}
 495
 496static bool __printf(6, 7)
 497__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
 498		       i915_reg_t reg, u32 mask, u32 expected,
 499		       const char *reg_fmt, ...)
 500{
 501	struct va_format vaf;
 502	va_list args;
 503	u32 val;
 504
 505	val = intel_de_read(dev_priv, reg);
 506	if ((val & mask) == expected)
 507		return true;
 508
 509	va_start(args, reg_fmt);
 510	vaf.fmt = reg_fmt;
 511	vaf.va = &args;
 512
 513	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
 514			 "current %08x, expected %08x (mask %08x)\n",
 515			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
 516			 mask);
 517
 518	va_end(args);
 519
 520	return false;
 521}
 522
 523bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
 524			      enum dpio_phy phy)
 525{
 526	const struct bxt_ddi_phy_info *phy_info;
 527	u32 mask;
 528	bool ok;
 529
 530	phy_info = bxt_get_phy_info(dev_priv, phy);
 531
 532#define _CHK(reg, mask, exp, fmt, ...)					\
 533	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
 534			       ## __VA_ARGS__)
 535
 536	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
 537		return false;
 538
 539	ok = true;
 540
 541	/* PLL Rcomp code offset */
 542	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
 543		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
 544		    "BXT_PORT_CL1CM_DW9(%d)", phy);
 545	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
 546		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
 547		    "BXT_PORT_CL1CM_DW10(%d)", phy);
 548
 549	/* Power gating */
 550	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
 551	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
 552		    "BXT_PORT_CL1CM_DW28(%d)", phy);
 553
 554	if (phy_info->dual_channel)
 555		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
 556			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
 557			   "BXT_PORT_CL2CM_DW6(%d)", phy);
 558
 559	if (phy_info->rcomp_phy != -1) {
 560		u32 grc_code = dev_priv->bxt_phy_grc;
 561
 562		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
 563			   grc_code << GRC_CODE_SLOW_SHIFT |
 564			   grc_code;
 565		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
 566		       GRC_CODE_NOM_MASK;
 567		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
 568			   "BXT_PORT_REF_DW6(%d)", phy);
 569
 570		mask = GRC_DIS | GRC_RDY_OVRD;
 571		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
 572			    "BXT_PORT_REF_DW8(%d)", phy);
 573	}
 574
 575	return ok;
 576#undef _CHK
 577}
 578
 579u8
 580bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
 581{
 582	switch (lane_count) {
 583	case 1:
 584		return 0;
 585	case 2:
 586		return BIT(2) | BIT(0);
 587	case 4:
 588		return BIT(3) | BIT(2) | BIT(0);
 589	default:
 590		MISSING_CASE(lane_count);
 591
 592		return 0;
 593	}
 594}
 595
 596void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
 597				     u8 lane_lat_optim_mask)
 598{
 599	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 600	enum port port = encoder->port;
 601	enum dpio_phy phy;
 602	enum dpio_channel ch;
 603	int lane;
 604
 605	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 606
 607	for (lane = 0; lane < 4; lane++) {
 608		u32 val = intel_de_read(dev_priv,
 609					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 610
 611		/*
 612		 * Note that on CHV this flag is called UPAR, but has
 613		 * the same function.
 614		 */
 615		val &= ~LATENCY_OPTIM;
 616		if (lane_lat_optim_mask & BIT(lane))
 617			val |= LATENCY_OPTIM;
 618
 619		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
 620			       val);
 621	}
 622}
 623
 624u8
 625bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
 626{
 627	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 628	enum port port = encoder->port;
 629	enum dpio_phy phy;
 630	enum dpio_channel ch;
 631	int lane;
 632	u8 mask;
 633
 634	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 635
 636	mask = 0;
 637	for (lane = 0; lane < 4; lane++) {
 638		u32 val = intel_de_read(dev_priv,
 639					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 640
 641		if (val & LATENCY_OPTIM)
 642			mask |= BIT(lane);
 643	}
 644
 645	return mask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646}
 647
 648void chv_set_phy_signal_level(struct intel_encoder *encoder,
 649			      const struct intel_crtc_state *crtc_state,
 650			      u32 deemph_reg_value, u32 margin_reg_value,
 651			      bool uniq_trans_scale)
 652{
 653	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 654	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 655	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 656	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 657	enum pipe pipe = crtc->pipe;
 658	u32 val;
 659	int i;
 660
 661	vlv_dpio_get(dev_priv);
 662
 663	/* Clear calc init */
 664	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
 665	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 666	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 667	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 668	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
 669
 670	if (crtc_state->lane_count > 2) {
 671		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
 672		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 673		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 674		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 675		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
 676	}
 677
 678	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
 679	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 680	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 681	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
 682
 683	if (crtc_state->lane_count > 2) {
 684		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
 685		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 686		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 687		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
 688	}
 689
 690	/* Program swing deemph */
 691	for (i = 0; i < crtc_state->lane_count; i++) {
 692		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
 693		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
 694		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
 695		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
 696	}
 697
 698	/* Program swing margin */
 699	for (i = 0; i < crtc_state->lane_count; i++) {
 700		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
 701
 702		val &= ~DPIO_SWING_MARGIN000_MASK;
 703		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
 704
 705		/*
 706		 * Supposedly this value shouldn't matter when unique transition
 707		 * scale is disabled, but in fact it does matter. Let's just
 708		 * always program the same value and hope it's OK.
 709		 */
 710		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
 711		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
 712
 713		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
 714	}
 715
 716	/*
 717	 * The document said it needs to set bit 27 for ch0 and bit 26
 718	 * for ch1. Might be a typo in the doc.
 719	 * For now, for this unique transition scale selection, set bit
 720	 * 27 for ch0 and ch1.
 721	 */
 722	for (i = 0; i < crtc_state->lane_count; i++) {
 723		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
 724		if (uniq_trans_scale)
 725			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
 726		else
 727			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
 728		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
 729	}
 730
 731	/* Start swing calculation */
 732	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
 733	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 734	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
 735
 736	if (crtc_state->lane_count > 2) {
 737		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
 738		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 739		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
 740	}
 741
 742	vlv_dpio_put(dev_priv);
 743}
 744
 745void chv_data_lane_soft_reset(struct intel_encoder *encoder,
 746			      const struct intel_crtc_state *crtc_state,
 747			      bool reset)
 748{
 749	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 750	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
 751	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 752	enum pipe pipe = crtc->pipe;
 753	u32 val;
 754
 755	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
 756	if (reset)
 757		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 758	else
 759		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 760	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
 761
 762	if (crtc_state->lane_count > 2) {
 763		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
 764		if (reset)
 765			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 766		else
 767			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 768		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
 769	}
 770
 771	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
 772	val |= CHV_PCS_REQ_SOFTRESET_EN;
 773	if (reset)
 774		val &= ~DPIO_PCS_CLK_SOFT_RESET;
 775	else
 776		val |= DPIO_PCS_CLK_SOFT_RESET;
 777	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
 778
 779	if (crtc_state->lane_count > 2) {
 780		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
 781		val |= CHV_PCS_REQ_SOFTRESET_EN;
 782		if (reset)
 783			val &= ~DPIO_PCS_CLK_SOFT_RESET;
 784		else
 785			val |= DPIO_PCS_CLK_SOFT_RESET;
 786		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
 787	}
 788}
 789
 790void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
 791			    const struct intel_crtc_state *crtc_state)
 792{
 793	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 794	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 795	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 796	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 797	enum pipe pipe = crtc->pipe;
 798	unsigned int lane_mask =
 799		intel_dp_unused_lane_mask(crtc_state->lane_count);
 800	u32 val;
 801
 802	/*
 803	 * Must trick the second common lane into life.
 804	 * Otherwise we can't even access the PLL.
 805	 */
 806	if (ch == DPIO_CH0 && pipe == PIPE_B)
 807		dig_port->release_cl2_override =
 808			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
 809
 810	chv_phy_powergate_lanes(encoder, true, lane_mask);
 811
 812	vlv_dpio_get(dev_priv);
 813
 814	/* Assert data lane reset */
 815	chv_data_lane_soft_reset(encoder, crtc_state, true);
 816
 817	/* program left/right clock distribution */
 818	if (pipe != PIPE_B) {
 819		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
 820		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
 821		if (ch == DPIO_CH0)
 822			val |= CHV_BUFLEFTENA1_FORCE;
 823		if (ch == DPIO_CH1)
 824			val |= CHV_BUFRIGHTENA1_FORCE;
 825		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
 826	} else {
 827		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
 828		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
 829		if (ch == DPIO_CH0)
 830			val |= CHV_BUFLEFTENA2_FORCE;
 831		if (ch == DPIO_CH1)
 832			val |= CHV_BUFRIGHTENA2_FORCE;
 833		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
 834	}
 835
 836	/* program clock channel usage */
 837	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
 838	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 839	if (pipe != PIPE_B)
 840		val &= ~CHV_PCS_USEDCLKCHANNEL;
 841	else
 842		val |= CHV_PCS_USEDCLKCHANNEL;
 843	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
 844
 845	if (crtc_state->lane_count > 2) {
 846		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
 847		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 848		if (pipe != PIPE_B)
 849			val &= ~CHV_PCS_USEDCLKCHANNEL;
 850		else
 851			val |= CHV_PCS_USEDCLKCHANNEL;
 852		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
 853	}
 854
 855	/*
 856	 * This a a bit weird since generally CL
 857	 * matches the pipe, but here we need to
 858	 * pick the CL based on the port.
 859	 */
 860	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
 861	if (pipe != PIPE_B)
 862		val &= ~CHV_CMN_USEDCLKCHANNEL;
 863	else
 864		val |= CHV_CMN_USEDCLKCHANNEL;
 865	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
 866
 867	vlv_dpio_put(dev_priv);
 868}
 869
 870void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
 871				const struct intel_crtc_state *crtc_state)
 872{
 873	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 874	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 875	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 876	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 877	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 878	enum pipe pipe = crtc->pipe;
 879	int data, i, stagger;
 880	u32 val;
 881
 882	vlv_dpio_get(dev_priv);
 883
 884	/* allow hardware to manage TX FIFO reset source */
 885	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
 886	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 887	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
 888
 889	if (crtc_state->lane_count > 2) {
 890		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
 891		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 892		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
 893	}
 894
 895	/* Program Tx lane latency optimal setting*/
 896	for (i = 0; i < crtc_state->lane_count; i++) {
 897		/* Set the upar bit */
 898		if (crtc_state->lane_count == 1)
 899			data = 0x0;
 900		else
 901			data = (i == 1) ? 0x0 : 0x1;
 902		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
 903				data << DPIO_UPAR_SHIFT);
 904	}
 905
 906	/* Data lane stagger programming */
 907	if (crtc_state->port_clock > 270000)
 908		stagger = 0x18;
 909	else if (crtc_state->port_clock > 135000)
 910		stagger = 0xd;
 911	else if (crtc_state->port_clock > 67500)
 912		stagger = 0x7;
 913	else if (crtc_state->port_clock > 33750)
 914		stagger = 0x4;
 915	else
 916		stagger = 0x2;
 917
 918	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
 919	val |= DPIO_TX2_STAGGER_MASK(0x1f);
 920	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
 921
 922	if (crtc_state->lane_count > 2) {
 923		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
 924		val |= DPIO_TX2_STAGGER_MASK(0x1f);
 925		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
 926	}
 927
 928	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
 929		       DPIO_LANESTAGGER_STRAP(stagger) |
 930		       DPIO_LANESTAGGER_STRAP_OVRD |
 931		       DPIO_TX1_STAGGER_MASK(0x1f) |
 932		       DPIO_TX1_STAGGER_MULT(6) |
 933		       DPIO_TX2_STAGGER_MULT(0));
 934
 935	if (crtc_state->lane_count > 2) {
 936		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
 937			       DPIO_LANESTAGGER_STRAP(stagger) |
 938			       DPIO_LANESTAGGER_STRAP_OVRD |
 939			       DPIO_TX1_STAGGER_MASK(0x1f) |
 940			       DPIO_TX1_STAGGER_MULT(7) |
 941			       DPIO_TX2_STAGGER_MULT(5));
 942	}
 943
 944	/* Deassert data lane reset */
 945	chv_data_lane_soft_reset(encoder, crtc_state, false);
 946
 947	vlv_dpio_put(dev_priv);
 948}
 949
 950void chv_phy_release_cl2_override(struct intel_encoder *encoder)
 951{
 952	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 953	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 954
 955	if (dig_port->release_cl2_override) {
 956		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
 957		dig_port->release_cl2_override = false;
 958	}
 959}
 960
 961void chv_phy_post_pll_disable(struct intel_encoder *encoder,
 962			      const struct intel_crtc_state *old_crtc_state)
 963{
 964	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 965	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
 966	u32 val;
 967
 968	vlv_dpio_get(dev_priv);
 969
 970	/* disable left/right clock distribution */
 971	if (pipe != PIPE_B) {
 972		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
 973		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
 974		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
 975	} else {
 976		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
 977		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
 978		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
 979	}
 980
 981	vlv_dpio_put(dev_priv);
 982
 983	/*
 984	 * Leave the power down bit cleared for at least one
 985	 * lane so that chv_powergate_phy_ch() will power
 986	 * on something when the channel is otherwise unused.
 987	 * When the port is off and the override is removed
 988	 * the lanes power down anyway, so otherwise it doesn't
 989	 * really matter what the state of power down bits is
 990	 * after this.
 991	 */
 992	chv_phy_powergate_lanes(encoder, false, 0x0);
 993}
 994
 995void vlv_set_phy_signal_level(struct intel_encoder *encoder,
 996			      const struct intel_crtc_state *crtc_state,
 997			      u32 demph_reg_value, u32 preemph_reg_value,
 998			      u32 uniqtranscale_reg_value, u32 tx3_demph)
 999{
1000	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1001	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1002	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1003	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1004	enum pipe pipe = crtc->pipe;
1005
1006	vlv_dpio_get(dev_priv);
1007
1008	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1009	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1010	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1011			 uniqtranscale_reg_value);
1012	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1013
1014	if (tx3_demph)
1015		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1016
1017	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1018	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1019	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1020
1021	vlv_dpio_put(dev_priv);
1022}
1023
1024void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1025			    const struct intel_crtc_state *crtc_state)
1026{
1027	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1028	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1029	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1030	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1031	enum pipe pipe = crtc->pipe;
1032
1033	/* Program Tx lane resets to default */
1034	vlv_dpio_get(dev_priv);
1035
1036	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1037			 DPIO_PCS_TX_LANE2_RESET |
1038			 DPIO_PCS_TX_LANE1_RESET);
1039	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1040			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1041			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1042			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1043				 DPIO_PCS_CLK_SOFT_RESET);
1044
1045	/* Fix up inter-pair skew failure */
1046	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1047	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1048	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1049
1050	vlv_dpio_put(dev_priv);
1051}
1052
1053void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1054				const struct intel_crtc_state *crtc_state)
1055{
1056	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1057	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1058	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1059	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1060	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1061	enum pipe pipe = crtc->pipe;
1062	u32 val;
1063
1064	vlv_dpio_get(dev_priv);
1065
1066	/* Enable clock channels for this port */
1067	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1068	val = 0;
1069	if (pipe)
1070		val |= (1<<21);
1071	else
1072		val &= ~(1<<21);
1073	val |= 0x001000c4;
1074	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1075
1076	/* Program lane clock */
1077	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1078	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1079
1080	vlv_dpio_put(dev_priv);
1081}
1082
1083void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1084			 const struct intel_crtc_state *old_crtc_state)
1085{
1086	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1087	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1088	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1089	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1090	enum pipe pipe = crtc->pipe;
1091
1092	vlv_dpio_get(dev_priv);
1093	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1094	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1095	vlv_dpio_put(dev_priv);
1096}
v6.2
   1/*
   2 * Copyright © 2014-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include "i915_reg.h"
  25#include "intel_ddi.h"
  26#include "intel_ddi_buf_trans.h"
  27#include "intel_de.h"
  28#include "intel_display_power_well.h"
  29#include "intel_display_types.h"
  30#include "intel_dp.h"
  31#include "intel_dpio_phy.h"
  32#include "vlv_sideband.h"
  33
  34/**
  35 * DOC: DPIO
  36 *
  37 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
  38 * ports. DPIO is the name given to such a display PHY. These PHYs
  39 * don't follow the standard programming model using direct MMIO
  40 * registers, and instead their registers must be accessed trough IOSF
  41 * sideband. VLV has one such PHY for driving ports B and C, and CHV
  42 * adds another PHY for driving port D. Each PHY responds to specific
  43 * IOSF-SB port.
  44 *
  45 * Each display PHY is made up of one or two channels. Each channel
  46 * houses a common lane part which contains the PLL and other common
  47 * logic. CH0 common lane also contains the IOSF-SB logic for the
  48 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
  49 * must be running when any DPIO registers are accessed.
  50 *
  51 * In addition to having their own registers, the PHYs are also
  52 * controlled through some dedicated signals from the display
  53 * controller. These include PLL reference clock enable, PLL enable,
  54 * and CRI clock selection, for example.
  55 *
  56 * Eeach channel also has two splines (also called data lanes), and
  57 * each spline is made up of one Physical Access Coding Sub-Layer
  58 * (PCS) block and two TX lanes. So each channel has two PCS blocks
  59 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
  60 * data/clock pairs depending on the output type.
  61 *
  62 * Additionally the PHY also contains an AUX lane with AUX blocks
  63 * for each channel. This is used for DP AUX communication, but
  64 * this fact isn't really relevant for the driver since AUX is
  65 * controlled from the display controller side. No DPIO registers
  66 * need to be accessed during AUX communication,
  67 *
  68 * Generally on VLV/CHV the common lane corresponds to the pipe and
  69 * the spline (PCS/TX) corresponds to the port.
  70 *
  71 * For dual channel PHY (VLV/CHV):
  72 *
  73 *  pipe A == CMN/PLL/REF CH0
  74 *
  75 *  pipe B == CMN/PLL/REF CH1
  76 *
  77 *  port B == PCS/TX CH0
  78 *
  79 *  port C == PCS/TX CH1
  80 *
  81 * This is especially important when we cross the streams
  82 * ie. drive port B with pipe B, or port C with pipe A.
  83 *
  84 * For single channel PHY (CHV):
  85 *
  86 *  pipe C == CMN/PLL/REF CH0
  87 *
  88 *  port D == PCS/TX CH0
  89 *
  90 * On BXT the entire PHY channel corresponds to the port. That means
  91 * the PLL is also now associated with the port rather than the pipe,
  92 * and so the clock needs to be routed to the appropriate transcoder.
  93 * Port A PLL is directly connected to transcoder EDP and port B/C
  94 * PLLs can be routed to any transcoder A/B/C.
  95 *
  96 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
  97 * digital port D (CHV) or port A (BXT). ::
  98 *
  99 *
 100 *     Dual channel PHY (VLV/CHV/BXT)
 101 *     ---------------------------------
 102 *     |      CH0      |      CH1      |
 103 *     |  CMN/PLL/REF  |  CMN/PLL/REF  |
 104 *     |---------------|---------------| Display PHY
 105 *     | PCS01 | PCS23 | PCS01 | PCS23 |
 106 *     |-------|-------|-------|-------|
 107 *     |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
 108 *     ---------------------------------
 109 *     |     DDI0      |     DDI1      | DP/HDMI ports
 110 *     ---------------------------------
 111 *
 112 *     Single channel PHY (CHV/BXT)
 113 *     -----------------
 114 *     |      CH0      |
 115 *     |  CMN/PLL/REF  |
 116 *     |---------------| Display PHY
 117 *     | PCS01 | PCS23 |
 118 *     |-------|-------|
 119 *     |TX0|TX1|TX2|TX3|
 120 *     -----------------
 121 *     |     DDI2      | DP/HDMI port
 122 *     -----------------
 123 */
 124
 125/**
 126 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
 127 */
 128struct bxt_ddi_phy_info {
 129	/**
 130	 * @dual_channel: true if this phy has a second channel.
 131	 */
 132	bool dual_channel;
 133
 134	/**
 135	 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
 136	 * Otherwise the GRC value will be copied from the phy indicated by
 137	 * this field.
 138	 */
 139	enum dpio_phy rcomp_phy;
 140
 141	/**
 142	 * @reset_delay: delay in us to wait before setting the common reset
 143	 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
 144	 */
 145	int reset_delay;
 146
 147	/**
 148	 * @pwron_mask: Mask with the appropriate bit set that would cause the
 149	 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
 150	 */
 151	u32 pwron_mask;
 152
 153	/**
 154	 * @channel: struct containing per channel information.
 155	 */
 156	struct {
 157		/**
 158		 * @channel.port: which port maps to this channel.
 159		 */
 160		enum port port;
 161	} channel[2];
 162};
 163
 164static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
 165	[DPIO_PHY0] = {
 166		.dual_channel = true,
 167		.rcomp_phy = DPIO_PHY1,
 168		.pwron_mask = BIT(0),
 169
 170		.channel = {
 171			[DPIO_CH0] = { .port = PORT_B },
 172			[DPIO_CH1] = { .port = PORT_C },
 173		}
 174	},
 175	[DPIO_PHY1] = {
 176		.dual_channel = false,
 177		.rcomp_phy = -1,
 178		.pwron_mask = BIT(1),
 179
 180		.channel = {
 181			[DPIO_CH0] = { .port = PORT_A },
 182		}
 183	},
 184};
 185
 186static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
 187	[DPIO_PHY0] = {
 188		.dual_channel = false,
 189		.rcomp_phy = DPIO_PHY1,
 190		.pwron_mask = BIT(0),
 191		.reset_delay = 20,
 192
 193		.channel = {
 194			[DPIO_CH0] = { .port = PORT_B },
 195		}
 196	},
 197	[DPIO_PHY1] = {
 198		.dual_channel = false,
 199		.rcomp_phy = -1,
 200		.pwron_mask = BIT(3),
 201		.reset_delay = 20,
 202
 203		.channel = {
 204			[DPIO_CH0] = { .port = PORT_A },
 205		}
 206	},
 207	[DPIO_PHY2] = {
 208		.dual_channel = false,
 209		.rcomp_phy = DPIO_PHY1,
 210		.pwron_mask = BIT(1),
 211		.reset_delay = 20,
 212
 213		.channel = {
 214			[DPIO_CH0] = { .port = PORT_C },
 215		}
 216	},
 217};
 218
 219static const struct bxt_ddi_phy_info *
 220bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
 221{
 222	if (IS_GEMINILAKE(dev_priv)) {
 223		*count =  ARRAY_SIZE(glk_ddi_phy_info);
 224		return glk_ddi_phy_info;
 225	} else {
 226		*count =  ARRAY_SIZE(bxt_ddi_phy_info);
 227		return bxt_ddi_phy_info;
 228	}
 229}
 230
 231static const struct bxt_ddi_phy_info *
 232bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 233{
 234	int count;
 235	const struct bxt_ddi_phy_info *phy_list =
 236		bxt_get_phy_list(dev_priv, &count);
 237
 238	return &phy_list[phy];
 239}
 240
 241void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
 242			     enum dpio_phy *phy, enum dpio_channel *ch)
 243{
 244	const struct bxt_ddi_phy_info *phy_info, *phys;
 245	int i, count;
 246
 247	phys = bxt_get_phy_list(dev_priv, &count);
 248
 249	for (i = 0; i < count; i++) {
 250		phy_info = &phys[i];
 251
 252		if (port == phy_info->channel[DPIO_CH0].port) {
 253			*phy = i;
 254			*ch = DPIO_CH0;
 255			return;
 256		}
 257
 258		if (phy_info->dual_channel &&
 259		    port == phy_info->channel[DPIO_CH1].port) {
 260			*phy = i;
 261			*ch = DPIO_CH1;
 262			return;
 263		}
 264	}
 265
 266	drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
 267		 port_name(port));
 268	*phy = DPIO_PHY0;
 269	*ch = DPIO_CH0;
 270}
 271
 272void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
 273				   const struct intel_crtc_state *crtc_state)
 
 274{
 275	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 276	int level = intel_ddi_level(encoder, crtc_state, 0);
 277	const struct intel_ddi_buf_trans *trans;
 278	enum dpio_channel ch;
 279	enum dpio_phy phy;
 280	int n_entries;
 281	u32 val;
 282
 283	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
 284	if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
 285		return;
 286
 287	bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
 288
 289	/*
 290	 * While we write to the group register to program all lanes at once we
 291	 * can read only lane registers and we pick lanes 0/1 for that.
 292	 */
 293	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 294	val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
 295	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 296
 297	val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
 298	val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
 299	val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
 300		trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
 301	intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
 302
 303	val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
 304	val &= ~SCALE_DCOMP_METHOD;
 305	if (trans->entries[level].bxt.enable)
 306		val |= SCALE_DCOMP_METHOD;
 307
 308	if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
 309		drm_err(&dev_priv->drm,
 310			"Disabled scaling while ouniqetrangenmethod was set");
 311
 312	intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
 313
 314	val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
 315	val &= ~DE_EMPHASIS;
 316	val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
 317	intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
 318
 319	val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
 320	val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
 321	intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
 322}
 323
 324bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
 325			    enum dpio_phy phy)
 326{
 327	const struct bxt_ddi_phy_info *phy_info;
 328
 329	phy_info = bxt_get_phy_info(dev_priv, phy);
 330
 331	if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
 332		return false;
 333
 334	if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
 335	     (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
 336		drm_dbg(&dev_priv->drm,
 337			"DDI PHY %d powered, but power hasn't settled\n", phy);
 338
 339		return false;
 340	}
 341
 342	if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
 343		drm_dbg(&dev_priv->drm,
 344			"DDI PHY %d powered, but still in reset\n", phy);
 345
 346		return false;
 347	}
 348
 349	return true;
 350}
 351
 352static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 353{
 354	u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
 355
 356	return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
 357}
 358
 359static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
 360				  enum dpio_phy phy)
 361{
 362	if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
 363				  GRC_DONE, 10))
 364		drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
 365			phy);
 366}
 367
 368static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
 369			      enum dpio_phy phy)
 370{
 371	const struct bxt_ddi_phy_info *phy_info;
 372	u32 val;
 373
 374	phy_info = bxt_get_phy_info(dev_priv, phy);
 375
 376	if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
 377		/* Still read out the GRC value for state verification */
 378		if (phy_info->rcomp_phy != -1)
 379			dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
 380
 381		if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
 382			drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
 383				"won't reprogram it\n", phy);
 384			return;
 385		}
 386
 387		drm_dbg(&dev_priv->drm,
 388			"DDI PHY %d enabled with invalid state, "
 389			"force reprogramming it\n", phy);
 390	}
 391
 392	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
 393	val |= phy_info->pwron_mask;
 394	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
 395
 396	/*
 397	 * The PHY registers start out inaccessible and respond to reads with
 398	 * all 1s.  Eventually they become accessible as they power up, then
 399	 * the reserved bit will give the default 0.  Poll on the reserved bit
 400	 * becoming 0 to find when the PHY is accessible.
 401	 * The flag should get set in 100us according to the HW team, but
 402	 * use 1ms due to occasional timeouts observed with that.
 403	 */
 404	if (intel_wait_for_register_fw(&dev_priv->uncore,
 405				       BXT_PORT_CL1CM_DW0(phy),
 406				       PHY_RESERVED | PHY_POWER_GOOD,
 407				       PHY_POWER_GOOD,
 408				       1))
 409		drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
 410			phy);
 411
 412	/* Program PLL Rcomp code offset */
 413	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
 414	val &= ~IREF0RC_OFFSET_MASK;
 415	val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
 416	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
 417
 418	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
 419	val &= ~IREF1RC_OFFSET_MASK;
 420	val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
 421	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
 422
 423	/* Program power gating */
 424	val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
 425	val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
 426		SUS_CLK_CONFIG;
 427	intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
 428
 429	if (phy_info->dual_channel) {
 430		val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
 431		val |= DW6_OLDO_DYN_PWR_DOWN_EN;
 432		intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
 433	}
 434
 435	if (phy_info->rcomp_phy != -1) {
 436		u32 grc_code;
 437
 438		bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
 439
 440		/*
 441		 * PHY0 isn't connected to an RCOMP resistor so copy over
 442		 * the corresponding calibrated value from PHY1, and disable
 443		 * the automatic calibration on PHY0.
 444		 */
 445		val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
 446							  phy_info->rcomp_phy);
 447		grc_code = val << GRC_CODE_FAST_SHIFT |
 448			   val << GRC_CODE_SLOW_SHIFT |
 449			   val;
 450		intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
 451
 452		val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
 453		val |= GRC_DIS | GRC_RDY_OVRD;
 454		intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
 455	}
 456
 457	if (phy_info->reset_delay)
 458		udelay(phy_info->reset_delay);
 459
 460	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
 461	val |= COMMON_RESET_DIS;
 462	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
 463}
 464
 465void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 466{
 467	const struct bxt_ddi_phy_info *phy_info;
 468	u32 val;
 469
 470	phy_info = bxt_get_phy_info(dev_priv, phy);
 471
 472	val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
 473	val &= ~COMMON_RESET_DIS;
 474	intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
 475
 476	val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
 477	val &= ~phy_info->pwron_mask;
 478	intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
 479}
 480
 481void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
 482{
 483	const struct bxt_ddi_phy_info *phy_info =
 484		bxt_get_phy_info(dev_priv, phy);
 485	enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
 486	bool was_enabled;
 487
 488	lockdep_assert_held(&dev_priv->display.power.domains.lock);
 489
 490	was_enabled = true;
 491	if (rcomp_phy != -1)
 492		was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
 493
 494	/*
 495	 * We need to copy the GRC calibration value from rcomp_phy,
 496	 * so make sure it's powered up.
 497	 */
 498	if (!was_enabled)
 499		_bxt_ddi_phy_init(dev_priv, rcomp_phy);
 500
 501	_bxt_ddi_phy_init(dev_priv, phy);
 502
 503	if (!was_enabled)
 504		bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
 505}
 506
 507static bool __printf(6, 7)
 508__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
 509		       i915_reg_t reg, u32 mask, u32 expected,
 510		       const char *reg_fmt, ...)
 511{
 512	struct va_format vaf;
 513	va_list args;
 514	u32 val;
 515
 516	val = intel_de_read(dev_priv, reg);
 517	if ((val & mask) == expected)
 518		return true;
 519
 520	va_start(args, reg_fmt);
 521	vaf.fmt = reg_fmt;
 522	vaf.va = &args;
 523
 524	drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
 525			 "current %08x, expected %08x (mask %08x)\n",
 526			 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
 527			 mask);
 528
 529	va_end(args);
 530
 531	return false;
 532}
 533
 534bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
 535			      enum dpio_phy phy)
 536{
 537	const struct bxt_ddi_phy_info *phy_info;
 538	u32 mask;
 539	bool ok;
 540
 541	phy_info = bxt_get_phy_info(dev_priv, phy);
 542
 543#define _CHK(reg, mask, exp, fmt, ...)					\
 544	__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt,	\
 545			       ## __VA_ARGS__)
 546
 547	if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
 548		return false;
 549
 550	ok = true;
 551
 552	/* PLL Rcomp code offset */
 553	ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
 554		    IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
 555		    "BXT_PORT_CL1CM_DW9(%d)", phy);
 556	ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
 557		    IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
 558		    "BXT_PORT_CL1CM_DW10(%d)", phy);
 559
 560	/* Power gating */
 561	mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
 562	ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
 563		    "BXT_PORT_CL1CM_DW28(%d)", phy);
 564
 565	if (phy_info->dual_channel)
 566		ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
 567			   DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
 568			   "BXT_PORT_CL2CM_DW6(%d)", phy);
 569
 570	if (phy_info->rcomp_phy != -1) {
 571		u32 grc_code = dev_priv->bxt_phy_grc;
 572
 573		grc_code = grc_code << GRC_CODE_FAST_SHIFT |
 574			   grc_code << GRC_CODE_SLOW_SHIFT |
 575			   grc_code;
 576		mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
 577		       GRC_CODE_NOM_MASK;
 578		ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
 579			   "BXT_PORT_REF_DW6(%d)", phy);
 580
 581		mask = GRC_DIS | GRC_RDY_OVRD;
 582		ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
 583			    "BXT_PORT_REF_DW8(%d)", phy);
 584	}
 585
 586	return ok;
 587#undef _CHK
 588}
 589
 590u8
 591bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
 592{
 593	switch (lane_count) {
 594	case 1:
 595		return 0;
 596	case 2:
 597		return BIT(2) | BIT(0);
 598	case 4:
 599		return BIT(3) | BIT(2) | BIT(0);
 600	default:
 601		MISSING_CASE(lane_count);
 602
 603		return 0;
 604	}
 605}
 606
 607void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
 608				     u8 lane_lat_optim_mask)
 609{
 610	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 611	enum port port = encoder->port;
 612	enum dpio_phy phy;
 613	enum dpio_channel ch;
 614	int lane;
 615
 616	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 617
 618	for (lane = 0; lane < 4; lane++) {
 619		u32 val = intel_de_read(dev_priv,
 620					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 621
 622		/*
 623		 * Note that on CHV this flag is called UPAR, but has
 624		 * the same function.
 625		 */
 626		val &= ~LATENCY_OPTIM;
 627		if (lane_lat_optim_mask & BIT(lane))
 628			val |= LATENCY_OPTIM;
 629
 630		intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
 631			       val);
 632	}
 633}
 634
 635u8
 636bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
 637{
 638	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 639	enum port port = encoder->port;
 640	enum dpio_phy phy;
 641	enum dpio_channel ch;
 642	int lane;
 643	u8 mask;
 644
 645	bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
 646
 647	mask = 0;
 648	for (lane = 0; lane < 4; lane++) {
 649		u32 val = intel_de_read(dev_priv,
 650					BXT_PORT_TX_DW14_LN(phy, ch, lane));
 651
 652		if (val & LATENCY_OPTIM)
 653			mask |= BIT(lane);
 654	}
 655
 656	return mask;
 657}
 658
 659enum dpio_channel vlv_dig_port_to_channel(struct intel_digital_port *dig_port)
 660{
 661	switch (dig_port->base.port) {
 662	default:
 663		MISSING_CASE(dig_port->base.port);
 664		fallthrough;
 665	case PORT_B:
 666	case PORT_D:
 667		return DPIO_CH0;
 668	case PORT_C:
 669		return DPIO_CH1;
 670	}
 671}
 672
 673enum dpio_phy vlv_dig_port_to_phy(struct intel_digital_port *dig_port)
 674{
 675	switch (dig_port->base.port) {
 676	default:
 677		MISSING_CASE(dig_port->base.port);
 678		fallthrough;
 679	case PORT_B:
 680	case PORT_C:
 681		return DPIO_PHY0;
 682	case PORT_D:
 683		return DPIO_PHY1;
 684	}
 685}
 686
 687enum dpio_channel vlv_pipe_to_channel(enum pipe pipe)
 688{
 689	switch (pipe) {
 690	default:
 691		MISSING_CASE(pipe);
 692		fallthrough;
 693	case PIPE_A:
 694	case PIPE_C:
 695		return DPIO_CH0;
 696	case PIPE_B:
 697		return DPIO_CH1;
 698	}
 699}
 700
 701void chv_set_phy_signal_level(struct intel_encoder *encoder,
 702			      const struct intel_crtc_state *crtc_state,
 703			      u32 deemph_reg_value, u32 margin_reg_value,
 704			      bool uniq_trans_scale)
 705{
 706	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 707	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 708	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 709	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 710	enum pipe pipe = crtc->pipe;
 711	u32 val;
 712	int i;
 713
 714	vlv_dpio_get(dev_priv);
 715
 716	/* Clear calc init */
 717	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
 718	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 719	val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 720	val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 721	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
 722
 723	if (crtc_state->lane_count > 2) {
 724		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
 725		val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
 726		val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
 727		val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
 728		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
 729	}
 730
 731	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
 732	val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 733	val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 734	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
 735
 736	if (crtc_state->lane_count > 2) {
 737		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
 738		val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
 739		val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
 740		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
 741	}
 742
 743	/* Program swing deemph */
 744	for (i = 0; i < crtc_state->lane_count; i++) {
 745		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
 746		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
 747		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
 748		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
 749	}
 750
 751	/* Program swing margin */
 752	for (i = 0; i < crtc_state->lane_count; i++) {
 753		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
 754
 755		val &= ~DPIO_SWING_MARGIN000_MASK;
 756		val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
 757
 758		/*
 759		 * Supposedly this value shouldn't matter when unique transition
 760		 * scale is disabled, but in fact it does matter. Let's just
 761		 * always program the same value and hope it's OK.
 762		 */
 763		val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
 764		val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
 765
 766		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
 767	}
 768
 769	/*
 770	 * The document said it needs to set bit 27 for ch0 and bit 26
 771	 * for ch1. Might be a typo in the doc.
 772	 * For now, for this unique transition scale selection, set bit
 773	 * 27 for ch0 and ch1.
 774	 */
 775	for (i = 0; i < crtc_state->lane_count; i++) {
 776		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
 777		if (uniq_trans_scale)
 778			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
 779		else
 780			val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
 781		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
 782	}
 783
 784	/* Start swing calculation */
 785	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
 786	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 787	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
 788
 789	if (crtc_state->lane_count > 2) {
 790		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
 791		val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
 792		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
 793	}
 794
 795	vlv_dpio_put(dev_priv);
 796}
 797
 798void chv_data_lane_soft_reset(struct intel_encoder *encoder,
 799			      const struct intel_crtc_state *crtc_state,
 800			      bool reset)
 801{
 802	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 803	enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
 804	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 805	enum pipe pipe = crtc->pipe;
 806	u32 val;
 807
 808	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
 809	if (reset)
 810		val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 811	else
 812		val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 813	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
 814
 815	if (crtc_state->lane_count > 2) {
 816		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
 817		if (reset)
 818			val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
 819		else
 820			val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
 821		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
 822	}
 823
 824	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
 825	val |= CHV_PCS_REQ_SOFTRESET_EN;
 826	if (reset)
 827		val &= ~DPIO_PCS_CLK_SOFT_RESET;
 828	else
 829		val |= DPIO_PCS_CLK_SOFT_RESET;
 830	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
 831
 832	if (crtc_state->lane_count > 2) {
 833		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
 834		val |= CHV_PCS_REQ_SOFTRESET_EN;
 835		if (reset)
 836			val &= ~DPIO_PCS_CLK_SOFT_RESET;
 837		else
 838			val |= DPIO_PCS_CLK_SOFT_RESET;
 839		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
 840	}
 841}
 842
 843void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
 844			    const struct intel_crtc_state *crtc_state)
 845{
 846	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
 847	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 848	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 849	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 850	enum pipe pipe = crtc->pipe;
 851	unsigned int lane_mask =
 852		intel_dp_unused_lane_mask(crtc_state->lane_count);
 853	u32 val;
 854
 855	/*
 856	 * Must trick the second common lane into life.
 857	 * Otherwise we can't even access the PLL.
 858	 */
 859	if (ch == DPIO_CH0 && pipe == PIPE_B)
 860		dig_port->release_cl2_override =
 861			!chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
 862
 863	chv_phy_powergate_lanes(encoder, true, lane_mask);
 864
 865	vlv_dpio_get(dev_priv);
 866
 867	/* Assert data lane reset */
 868	chv_data_lane_soft_reset(encoder, crtc_state, true);
 869
 870	/* program left/right clock distribution */
 871	if (pipe != PIPE_B) {
 872		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
 873		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
 874		if (ch == DPIO_CH0)
 875			val |= CHV_BUFLEFTENA1_FORCE;
 876		if (ch == DPIO_CH1)
 877			val |= CHV_BUFRIGHTENA1_FORCE;
 878		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
 879	} else {
 880		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
 881		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
 882		if (ch == DPIO_CH0)
 883			val |= CHV_BUFLEFTENA2_FORCE;
 884		if (ch == DPIO_CH1)
 885			val |= CHV_BUFRIGHTENA2_FORCE;
 886		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
 887	}
 888
 889	/* program clock channel usage */
 890	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
 891	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 892	if (pipe != PIPE_B)
 893		val &= ~CHV_PCS_USEDCLKCHANNEL;
 894	else
 895		val |= CHV_PCS_USEDCLKCHANNEL;
 896	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
 897
 898	if (crtc_state->lane_count > 2) {
 899		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
 900		val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
 901		if (pipe != PIPE_B)
 902			val &= ~CHV_PCS_USEDCLKCHANNEL;
 903		else
 904			val |= CHV_PCS_USEDCLKCHANNEL;
 905		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
 906	}
 907
 908	/*
 909	 * This a a bit weird since generally CL
 910	 * matches the pipe, but here we need to
 911	 * pick the CL based on the port.
 912	 */
 913	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
 914	if (pipe != PIPE_B)
 915		val &= ~CHV_CMN_USEDCLKCHANNEL;
 916	else
 917		val |= CHV_CMN_USEDCLKCHANNEL;
 918	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
 919
 920	vlv_dpio_put(dev_priv);
 921}
 922
 923void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
 924				const struct intel_crtc_state *crtc_state)
 925{
 926	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
 927	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
 928	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
 929	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
 930	enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
 931	enum pipe pipe = crtc->pipe;
 932	int data, i, stagger;
 933	u32 val;
 934
 935	vlv_dpio_get(dev_priv);
 936
 937	/* allow hardware to manage TX FIFO reset source */
 938	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
 939	val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 940	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
 941
 942	if (crtc_state->lane_count > 2) {
 943		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
 944		val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
 945		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
 946	}
 947
 948	/* Program Tx lane latency optimal setting*/
 949	for (i = 0; i < crtc_state->lane_count; i++) {
 950		/* Set the upar bit */
 951		if (crtc_state->lane_count == 1)
 952			data = 0x0;
 953		else
 954			data = (i == 1) ? 0x0 : 0x1;
 955		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
 956				data << DPIO_UPAR_SHIFT);
 957	}
 958
 959	/* Data lane stagger programming */
 960	if (crtc_state->port_clock > 270000)
 961		stagger = 0x18;
 962	else if (crtc_state->port_clock > 135000)
 963		stagger = 0xd;
 964	else if (crtc_state->port_clock > 67500)
 965		stagger = 0x7;
 966	else if (crtc_state->port_clock > 33750)
 967		stagger = 0x4;
 968	else
 969		stagger = 0x2;
 970
 971	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
 972	val |= DPIO_TX2_STAGGER_MASK(0x1f);
 973	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
 974
 975	if (crtc_state->lane_count > 2) {
 976		val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
 977		val |= DPIO_TX2_STAGGER_MASK(0x1f);
 978		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
 979	}
 980
 981	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
 982		       DPIO_LANESTAGGER_STRAP(stagger) |
 983		       DPIO_LANESTAGGER_STRAP_OVRD |
 984		       DPIO_TX1_STAGGER_MASK(0x1f) |
 985		       DPIO_TX1_STAGGER_MULT(6) |
 986		       DPIO_TX2_STAGGER_MULT(0));
 987
 988	if (crtc_state->lane_count > 2) {
 989		vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
 990			       DPIO_LANESTAGGER_STRAP(stagger) |
 991			       DPIO_LANESTAGGER_STRAP_OVRD |
 992			       DPIO_TX1_STAGGER_MASK(0x1f) |
 993			       DPIO_TX1_STAGGER_MULT(7) |
 994			       DPIO_TX2_STAGGER_MULT(5));
 995	}
 996
 997	/* Deassert data lane reset */
 998	chv_data_lane_soft_reset(encoder, crtc_state, false);
 999
1000	vlv_dpio_put(dev_priv);
1001}
1002
1003void chv_phy_release_cl2_override(struct intel_encoder *encoder)
1004{
1005	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1006	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1007
1008	if (dig_port->release_cl2_override) {
1009		chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
1010		dig_port->release_cl2_override = false;
1011	}
1012}
1013
1014void chv_phy_post_pll_disable(struct intel_encoder *encoder,
1015			      const struct intel_crtc_state *old_crtc_state)
1016{
1017	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1018	enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
1019	u32 val;
1020
1021	vlv_dpio_get(dev_priv);
1022
1023	/* disable left/right clock distribution */
1024	if (pipe != PIPE_B) {
1025		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1026		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1027		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1028	} else {
1029		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1030		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1031		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1032	}
1033
1034	vlv_dpio_put(dev_priv);
1035
1036	/*
1037	 * Leave the power down bit cleared for at least one
1038	 * lane so that chv_powergate_phy_ch() will power
1039	 * on something when the channel is otherwise unused.
1040	 * When the port is off and the override is removed
1041	 * the lanes power down anyway, so otherwise it doesn't
1042	 * really matter what the state of power down bits is
1043	 * after this.
1044	 */
1045	chv_phy_powergate_lanes(encoder, false, 0x0);
1046}
1047
1048void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1049			      const struct intel_crtc_state *crtc_state,
1050			      u32 demph_reg_value, u32 preemph_reg_value,
1051			      u32 uniqtranscale_reg_value, u32 tx3_demph)
1052{
1053	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1054	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1055	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1056	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1057	enum pipe pipe = crtc->pipe;
1058
1059	vlv_dpio_get(dev_priv);
1060
1061	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1062	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1063	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1064			 uniqtranscale_reg_value);
1065	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1066
1067	if (tx3_demph)
1068		vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1069
1070	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1071	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1072	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1073
1074	vlv_dpio_put(dev_priv);
1075}
1076
1077void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1078			    const struct intel_crtc_state *crtc_state)
1079{
1080	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1081	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1082	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1083	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1084	enum pipe pipe = crtc->pipe;
1085
1086	/* Program Tx lane resets to default */
1087	vlv_dpio_get(dev_priv);
1088
1089	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1090			 DPIO_PCS_TX_LANE2_RESET |
1091			 DPIO_PCS_TX_LANE1_RESET);
1092	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1093			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1094			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1095			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1096				 DPIO_PCS_CLK_SOFT_RESET);
1097
1098	/* Fix up inter-pair skew failure */
1099	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1100	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1101	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1102
1103	vlv_dpio_put(dev_priv);
1104}
1105
1106void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1107				const struct intel_crtc_state *crtc_state)
1108{
1109	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1110	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1111	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1112	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1113	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1114	enum pipe pipe = crtc->pipe;
1115	u32 val;
1116
1117	vlv_dpio_get(dev_priv);
1118
1119	/* Enable clock channels for this port */
1120	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1121	val = 0;
1122	if (pipe)
1123		val |= (1<<21);
1124	else
1125		val &= ~(1<<21);
1126	val |= 0x001000c4;
1127	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1128
1129	/* Program lane clock */
1130	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1131	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1132
1133	vlv_dpio_put(dev_priv);
1134}
1135
1136void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1137			 const struct intel_crtc_state *old_crtc_state)
1138{
1139	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1140	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1141	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1142	enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1143	enum pipe pipe = crtc->pipe;
1144
1145	vlv_dpio_get(dev_priv);
1146	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1147	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1148	vlv_dpio_put(dev_priv);
1149}