Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/of_device.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include "debug.h"
17#include "direct.h"
18
19bool dma_default_coherent;
20
21/*
22 * Managed DMA API
23 */
24struct dma_devres {
25 size_t size;
26 void *vaddr;
27 dma_addr_t dma_handle;
28 unsigned long attrs;
29};
30
31static void dmam_release(struct device *dev, void *res)
32{
33 struct dma_devres *this = res;
34
35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 this->attrs);
37}
38
39static int dmam_match(struct device *dev, void *res, void *match_data)
40{
41 struct dma_devres *this = res, *match = match_data;
42
43 if (this->vaddr == match->vaddr) {
44 WARN_ON(this->size != match->size ||
45 this->dma_handle != match->dma_handle);
46 return 1;
47 }
48 return 0;
49}
50
51/**
52 * dmam_free_coherent - Managed dma_free_coherent()
53 * @dev: Device to free coherent memory for
54 * @size: Size of allocation
55 * @vaddr: Virtual address of the memory to free
56 * @dma_handle: DMA handle of the memory to free
57 *
58 * Managed dma_free_coherent().
59 */
60void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 dma_addr_t dma_handle)
62{
63 struct dma_devres match_data = { size, vaddr, dma_handle };
64
65 dma_free_coherent(dev, size, vaddr, dma_handle);
66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67}
68EXPORT_SYMBOL(dmam_free_coherent);
69
70/**
71 * dmam_alloc_attrs - Managed dma_alloc_attrs()
72 * @dev: Device to allocate non_coherent memory for
73 * @size: Size of allocation
74 * @dma_handle: Out argument for allocated DMA handle
75 * @gfp: Allocation flags
76 * @attrs: Flags in the DMA_ATTR_* namespace.
77 *
78 * Managed dma_alloc_attrs(). Memory allocated using this function will be
79 * automatically released on driver detach.
80 *
81 * RETURNS:
82 * Pointer to allocated memory on success, NULL on failure.
83 */
84void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 gfp_t gfp, unsigned long attrs)
86{
87 struct dma_devres *dr;
88 void *vaddr;
89
90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 if (!dr)
92 return NULL;
93
94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 if (!vaddr) {
96 devres_free(dr);
97 return NULL;
98 }
99
100 dr->vaddr = vaddr;
101 dr->dma_handle = *dma_handle;
102 dr->size = size;
103 dr->attrs = attrs;
104
105 devres_add(dev, dr);
106
107 return vaddr;
108}
109EXPORT_SYMBOL(dmam_alloc_attrs);
110
111static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 const struct dma_map_ops *ops)
113{
114 if (likely(!ops))
115 return true;
116#ifdef CONFIG_DMA_OPS_BYPASS
117 if (dev->dma_ops_bypass)
118 return min_not_zero(mask, dev->bus_dma_limit) >=
119 dma_direct_get_required_mask(dev);
120#endif
121 return false;
122}
123
124
125/*
126 * Check if the devices uses a direct mapping for streaming DMA operations.
127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128 * enough.
129 */
130static inline bool dma_alloc_direct(struct device *dev,
131 const struct dma_map_ops *ops)
132{
133 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134}
135
136static inline bool dma_map_direct(struct device *dev,
137 const struct dma_map_ops *ops)
138{
139 return dma_go_direct(dev, *dev->dma_mask, ops);
140}
141
142dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 size_t offset, size_t size, enum dma_data_direction dir,
144 unsigned long attrs)
145{
146 const struct dma_map_ops *ops = get_dma_ops(dev);
147 dma_addr_t addr;
148
149 BUG_ON(!valid_dma_direction(dir));
150
151 if (WARN_ON_ONCE(!dev->dma_mask))
152 return DMA_MAPPING_ERROR;
153
154 if (dma_map_direct(dev, ops) ||
155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 else
158 addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 debug_dma_map_page(dev, page, offset, size, dir, addr);
160
161 return addr;
162}
163EXPORT_SYMBOL(dma_map_page_attrs);
164
165void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 enum dma_data_direction dir, unsigned long attrs)
167{
168 const struct dma_map_ops *ops = get_dma_ops(dev);
169
170 BUG_ON(!valid_dma_direction(dir));
171 if (dma_map_direct(dev, ops) ||
172 arch_dma_unmap_page_direct(dev, addr + size))
173 dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 else if (ops->unmap_page)
175 ops->unmap_page(dev, addr, size, dir, attrs);
176 debug_dma_unmap_page(dev, addr, size, dir);
177}
178EXPORT_SYMBOL(dma_unmap_page_attrs);
179
180/*
181 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
182 * It should never return a value < 0.
183 */
184int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
185 enum dma_data_direction dir, unsigned long attrs)
186{
187 const struct dma_map_ops *ops = get_dma_ops(dev);
188 int ents;
189
190 BUG_ON(!valid_dma_direction(dir));
191
192 if (WARN_ON_ONCE(!dev->dma_mask))
193 return 0;
194
195 if (dma_map_direct(dev, ops) ||
196 arch_dma_map_sg_direct(dev, sg, nents))
197 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
198 else
199 ents = ops->map_sg(dev, sg, nents, dir, attrs);
200 BUG_ON(ents < 0);
201 debug_dma_map_sg(dev, sg, nents, ents, dir);
202
203 return ents;
204}
205EXPORT_SYMBOL(dma_map_sg_attrs);
206
207void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
208 int nents, enum dma_data_direction dir,
209 unsigned long attrs)
210{
211 const struct dma_map_ops *ops = get_dma_ops(dev);
212
213 BUG_ON(!valid_dma_direction(dir));
214 debug_dma_unmap_sg(dev, sg, nents, dir);
215 if (dma_map_direct(dev, ops) ||
216 arch_dma_unmap_sg_direct(dev, sg, nents))
217 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
218 else if (ops->unmap_sg)
219 ops->unmap_sg(dev, sg, nents, dir, attrs);
220}
221EXPORT_SYMBOL(dma_unmap_sg_attrs);
222
223dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
224 size_t size, enum dma_data_direction dir, unsigned long attrs)
225{
226 const struct dma_map_ops *ops = get_dma_ops(dev);
227 dma_addr_t addr = DMA_MAPPING_ERROR;
228
229 BUG_ON(!valid_dma_direction(dir));
230
231 if (WARN_ON_ONCE(!dev->dma_mask))
232 return DMA_MAPPING_ERROR;
233
234 /* Don't allow RAM to be mapped */
235 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
236 return DMA_MAPPING_ERROR;
237
238 if (dma_map_direct(dev, ops))
239 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
240 else if (ops->map_resource)
241 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
242
243 debug_dma_map_resource(dev, phys_addr, size, dir, addr);
244 return addr;
245}
246EXPORT_SYMBOL(dma_map_resource);
247
248void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
249 enum dma_data_direction dir, unsigned long attrs)
250{
251 const struct dma_map_ops *ops = get_dma_ops(dev);
252
253 BUG_ON(!valid_dma_direction(dir));
254 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
255 ops->unmap_resource(dev, addr, size, dir, attrs);
256 debug_dma_unmap_resource(dev, addr, size, dir);
257}
258EXPORT_SYMBOL(dma_unmap_resource);
259
260void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
261 enum dma_data_direction dir)
262{
263 const struct dma_map_ops *ops = get_dma_ops(dev);
264
265 BUG_ON(!valid_dma_direction(dir));
266 if (dma_map_direct(dev, ops))
267 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
268 else if (ops->sync_single_for_cpu)
269 ops->sync_single_for_cpu(dev, addr, size, dir);
270 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
271}
272EXPORT_SYMBOL(dma_sync_single_for_cpu);
273
274void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
275 size_t size, enum dma_data_direction dir)
276{
277 const struct dma_map_ops *ops = get_dma_ops(dev);
278
279 BUG_ON(!valid_dma_direction(dir));
280 if (dma_map_direct(dev, ops))
281 dma_direct_sync_single_for_device(dev, addr, size, dir);
282 else if (ops->sync_single_for_device)
283 ops->sync_single_for_device(dev, addr, size, dir);
284 debug_dma_sync_single_for_device(dev, addr, size, dir);
285}
286EXPORT_SYMBOL(dma_sync_single_for_device);
287
288void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
289 int nelems, enum dma_data_direction dir)
290{
291 const struct dma_map_ops *ops = get_dma_ops(dev);
292
293 BUG_ON(!valid_dma_direction(dir));
294 if (dma_map_direct(dev, ops))
295 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
296 else if (ops->sync_sg_for_cpu)
297 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
298 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
299}
300EXPORT_SYMBOL(dma_sync_sg_for_cpu);
301
302void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
303 int nelems, enum dma_data_direction dir)
304{
305 const struct dma_map_ops *ops = get_dma_ops(dev);
306
307 BUG_ON(!valid_dma_direction(dir));
308 if (dma_map_direct(dev, ops))
309 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
310 else if (ops->sync_sg_for_device)
311 ops->sync_sg_for_device(dev, sg, nelems, dir);
312 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
313}
314EXPORT_SYMBOL(dma_sync_sg_for_device);
315
316/*
317 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
318 * that the intention is to allow exporting memory allocated via the
319 * coherent DMA APIs through the dma_buf API, which only accepts a
320 * scattertable. This presents a couple of problems:
321 * 1. Not all memory allocated via the coherent DMA APIs is backed by
322 * a struct page
323 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
324 * as we will try to flush the memory through a different alias to that
325 * actually being used (and the flushes are redundant.)
326 */
327int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
328 void *cpu_addr, dma_addr_t dma_addr, size_t size,
329 unsigned long attrs)
330{
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 if (dma_alloc_direct(dev, ops))
334 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
335 size, attrs);
336 if (!ops->get_sgtable)
337 return -ENXIO;
338 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
339}
340EXPORT_SYMBOL(dma_get_sgtable_attrs);
341
342#ifdef CONFIG_MMU
343/*
344 * Return the page attributes used for mapping dma_alloc_* memory, either in
345 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
346 */
347pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
348{
349 if (force_dma_unencrypted(dev))
350 prot = pgprot_decrypted(prot);
351 if (dev_is_dma_coherent(dev))
352 return prot;
353#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354 if (attrs & DMA_ATTR_WRITE_COMBINE)
355 return pgprot_writecombine(prot);
356#endif
357 return pgprot_dmacoherent(prot);
358}
359#endif /* CONFIG_MMU */
360
361/**
362 * dma_can_mmap - check if a given device supports dma_mmap_*
363 * @dev: device to check
364 *
365 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
366 * map DMA allocations to userspace.
367 */
368bool dma_can_mmap(struct device *dev)
369{
370 const struct dma_map_ops *ops = get_dma_ops(dev);
371
372 if (dma_alloc_direct(dev, ops))
373 return dma_direct_can_mmap(dev);
374 return ops->mmap != NULL;
375}
376EXPORT_SYMBOL_GPL(dma_can_mmap);
377
378/**
379 * dma_mmap_attrs - map a coherent DMA allocation into user space
380 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
381 * @vma: vm_area_struct describing requested user mapping
382 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
383 * @dma_addr: device-view address returned from dma_alloc_attrs
384 * @size: size of memory originally requested in dma_alloc_attrs
385 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
386 *
387 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
388 * space. The coherent DMA buffer must not be freed by the driver until the
389 * user space mapping has been released.
390 */
391int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
392 void *cpu_addr, dma_addr_t dma_addr, size_t size,
393 unsigned long attrs)
394{
395 const struct dma_map_ops *ops = get_dma_ops(dev);
396
397 if (dma_alloc_direct(dev, ops))
398 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
399 attrs);
400 if (!ops->mmap)
401 return -ENXIO;
402 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
403}
404EXPORT_SYMBOL(dma_mmap_attrs);
405
406u64 dma_get_required_mask(struct device *dev)
407{
408 const struct dma_map_ops *ops = get_dma_ops(dev);
409
410 if (dma_alloc_direct(dev, ops))
411 return dma_direct_get_required_mask(dev);
412 if (ops->get_required_mask)
413 return ops->get_required_mask(dev);
414
415 /*
416 * We require every DMA ops implementation to at least support a 32-bit
417 * DMA mask (and use bounce buffering if that isn't supported in
418 * hardware). As the direct mapping code has its own routine to
419 * actually report an optimal mask we default to 32-bit here as that
420 * is the right thing for most IOMMUs, and at least not actively
421 * harmful in general.
422 */
423 return DMA_BIT_MASK(32);
424}
425EXPORT_SYMBOL_GPL(dma_get_required_mask);
426
427void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
428 gfp_t flag, unsigned long attrs)
429{
430 const struct dma_map_ops *ops = get_dma_ops(dev);
431 void *cpu_addr;
432
433 WARN_ON_ONCE(!dev->coherent_dma_mask);
434
435 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
436 return cpu_addr;
437
438 /* let the implementation decide on the zone to allocate from: */
439 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
440
441 if (dma_alloc_direct(dev, ops))
442 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
443 else if (ops->alloc)
444 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
445 else
446 return NULL;
447
448 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
449 return cpu_addr;
450}
451EXPORT_SYMBOL(dma_alloc_attrs);
452
453void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
454 dma_addr_t dma_handle, unsigned long attrs)
455{
456 const struct dma_map_ops *ops = get_dma_ops(dev);
457
458 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
459 return;
460 /*
461 * On non-coherent platforms which implement DMA-coherent buffers via
462 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
463 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
464 * sleep on some machines, and b) an indication that the driver is
465 * probably misusing the coherent API anyway.
466 */
467 WARN_ON(irqs_disabled());
468
469 if (!cpu_addr)
470 return;
471
472 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
473 if (dma_alloc_direct(dev, ops))
474 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
475 else if (ops->free)
476 ops->free(dev, size, cpu_addr, dma_handle, attrs);
477}
478EXPORT_SYMBOL(dma_free_attrs);
479
480static struct page *__dma_alloc_pages(struct device *dev, size_t size,
481 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
482{
483 const struct dma_map_ops *ops = get_dma_ops(dev);
484
485 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
486 return NULL;
487 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
488 return NULL;
489
490 size = PAGE_ALIGN(size);
491 if (dma_alloc_direct(dev, ops))
492 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
493 if (!ops->alloc_pages)
494 return NULL;
495 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
496}
497
498struct page *dma_alloc_pages(struct device *dev, size_t size,
499 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
500{
501 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
502
503 if (page)
504 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
505 return page;
506}
507EXPORT_SYMBOL_GPL(dma_alloc_pages);
508
509static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
510 dma_addr_t dma_handle, enum dma_data_direction dir)
511{
512 const struct dma_map_ops *ops = get_dma_ops(dev);
513
514 size = PAGE_ALIGN(size);
515 if (dma_alloc_direct(dev, ops))
516 dma_direct_free_pages(dev, size, page, dma_handle, dir);
517 else if (ops->free_pages)
518 ops->free_pages(dev, size, page, dma_handle, dir);
519}
520
521void dma_free_pages(struct device *dev, size_t size, struct page *page,
522 dma_addr_t dma_handle, enum dma_data_direction dir)
523{
524 debug_dma_unmap_page(dev, dma_handle, size, dir);
525 __dma_free_pages(dev, size, page, dma_handle, dir);
526}
527EXPORT_SYMBOL_GPL(dma_free_pages);
528
529int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
530 size_t size, struct page *page)
531{
532 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
533
534 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
535 return -ENXIO;
536 return remap_pfn_range(vma, vma->vm_start,
537 page_to_pfn(page) + vma->vm_pgoff,
538 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
539}
540EXPORT_SYMBOL_GPL(dma_mmap_pages);
541
542static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
543 enum dma_data_direction dir, gfp_t gfp)
544{
545 struct sg_table *sgt;
546 struct page *page;
547
548 sgt = kmalloc(sizeof(*sgt), gfp);
549 if (!sgt)
550 return NULL;
551 if (sg_alloc_table(sgt, 1, gfp))
552 goto out_free_sgt;
553 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
554 if (!page)
555 goto out_free_table;
556 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
557 sg_dma_len(sgt->sgl) = sgt->sgl->length;
558 return sgt;
559out_free_table:
560 sg_free_table(sgt);
561out_free_sgt:
562 kfree(sgt);
563 return NULL;
564}
565
566struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
567 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
568{
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570 struct sg_table *sgt;
571
572 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
573 return NULL;
574
575 if (ops && ops->alloc_noncontiguous)
576 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
577 else
578 sgt = alloc_single_sgt(dev, size, dir, gfp);
579
580 if (sgt) {
581 sgt->nents = 1;
582 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir);
583 }
584 return sgt;
585}
586EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
587
588static void free_single_sgt(struct device *dev, size_t size,
589 struct sg_table *sgt, enum dma_data_direction dir)
590{
591 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
592 dir);
593 sg_free_table(sgt);
594 kfree(sgt);
595}
596
597void dma_free_noncontiguous(struct device *dev, size_t size,
598 struct sg_table *sgt, enum dma_data_direction dir)
599{
600 const struct dma_map_ops *ops = get_dma_ops(dev);
601
602 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
603 if (ops && ops->free_noncontiguous)
604 ops->free_noncontiguous(dev, size, sgt, dir);
605 else
606 free_single_sgt(dev, size, sgt, dir);
607}
608EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
609
610void *dma_vmap_noncontiguous(struct device *dev, size_t size,
611 struct sg_table *sgt)
612{
613 const struct dma_map_ops *ops = get_dma_ops(dev);
614 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
615
616 if (ops && ops->alloc_noncontiguous)
617 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
618 return page_address(sg_page(sgt->sgl));
619}
620EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
621
622void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
623{
624 const struct dma_map_ops *ops = get_dma_ops(dev);
625
626 if (ops && ops->alloc_noncontiguous)
627 vunmap(vaddr);
628}
629EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
630
631int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
632 size_t size, struct sg_table *sgt)
633{
634 const struct dma_map_ops *ops = get_dma_ops(dev);
635
636 if (ops && ops->alloc_noncontiguous) {
637 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
638
639 if (vma->vm_pgoff >= count ||
640 vma_pages(vma) > count - vma->vm_pgoff)
641 return -ENXIO;
642 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
643 }
644 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
645}
646EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
647
648int dma_supported(struct device *dev, u64 mask)
649{
650 const struct dma_map_ops *ops = get_dma_ops(dev);
651
652 /*
653 * ->dma_supported sets the bypass flag, so we must always call
654 * into the method here unless the device is truly direct mapped.
655 */
656 if (!ops)
657 return dma_direct_supported(dev, mask);
658 if (!ops->dma_supported)
659 return 1;
660 return ops->dma_supported(dev, mask);
661}
662EXPORT_SYMBOL(dma_supported);
663
664#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
665void arch_dma_set_mask(struct device *dev, u64 mask);
666#else
667#define arch_dma_set_mask(dev, mask) do { } while (0)
668#endif
669
670int dma_set_mask(struct device *dev, u64 mask)
671{
672 /*
673 * Truncate the mask to the actually supported dma_addr_t width to
674 * avoid generating unsupportable addresses.
675 */
676 mask = (dma_addr_t)mask;
677
678 if (!dev->dma_mask || !dma_supported(dev, mask))
679 return -EIO;
680
681 arch_dma_set_mask(dev, mask);
682 *dev->dma_mask = mask;
683 return 0;
684}
685EXPORT_SYMBOL(dma_set_mask);
686
687#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
688int dma_set_coherent_mask(struct device *dev, u64 mask)
689{
690 /*
691 * Truncate the mask to the actually supported dma_addr_t width to
692 * avoid generating unsupportable addresses.
693 */
694 mask = (dma_addr_t)mask;
695
696 if (!dma_supported(dev, mask))
697 return -EIO;
698
699 dev->coherent_dma_mask = mask;
700 return 0;
701}
702EXPORT_SYMBOL(dma_set_coherent_mask);
703#endif
704
705size_t dma_max_mapping_size(struct device *dev)
706{
707 const struct dma_map_ops *ops = get_dma_ops(dev);
708 size_t size = SIZE_MAX;
709
710 if (dma_map_direct(dev, ops))
711 size = dma_direct_max_mapping_size(dev);
712 else if (ops && ops->max_mapping_size)
713 size = ops->max_mapping_size(dev);
714
715 return size;
716}
717EXPORT_SYMBOL_GPL(dma_max_mapping_size);
718
719bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
720{
721 const struct dma_map_ops *ops = get_dma_ops(dev);
722
723 if (dma_map_direct(dev, ops))
724 return dma_direct_need_sync(dev, dma_addr);
725 return ops->sync_single_for_cpu || ops->sync_single_for_device;
726}
727EXPORT_SYMBOL_GPL(dma_need_sync);
728
729unsigned long dma_get_merge_boundary(struct device *dev)
730{
731 const struct dma_map_ops *ops = get_dma_ops(dev);
732
733 if (!ops || !ops->get_merge_boundary)
734 return 0; /* can't merge */
735
736 return ops->get_merge_boundary(dev);
737}
738EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/kmsan.h>
14#include <linux/of_device.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include "debug.h"
18#include "direct.h"
19
20bool dma_default_coherent;
21
22/*
23 * Managed DMA API
24 */
25struct dma_devres {
26 size_t size;
27 void *vaddr;
28 dma_addr_t dma_handle;
29 unsigned long attrs;
30};
31
32static void dmam_release(struct device *dev, void *res)
33{
34 struct dma_devres *this = res;
35
36 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
37 this->attrs);
38}
39
40static int dmam_match(struct device *dev, void *res, void *match_data)
41{
42 struct dma_devres *this = res, *match = match_data;
43
44 if (this->vaddr == match->vaddr) {
45 WARN_ON(this->size != match->size ||
46 this->dma_handle != match->dma_handle);
47 return 1;
48 }
49 return 0;
50}
51
52/**
53 * dmam_free_coherent - Managed dma_free_coherent()
54 * @dev: Device to free coherent memory for
55 * @size: Size of allocation
56 * @vaddr: Virtual address of the memory to free
57 * @dma_handle: DMA handle of the memory to free
58 *
59 * Managed dma_free_coherent().
60 */
61void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
62 dma_addr_t dma_handle)
63{
64 struct dma_devres match_data = { size, vaddr, dma_handle };
65
66 dma_free_coherent(dev, size, vaddr, dma_handle);
67 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
68}
69EXPORT_SYMBOL(dmam_free_coherent);
70
71/**
72 * dmam_alloc_attrs - Managed dma_alloc_attrs()
73 * @dev: Device to allocate non_coherent memory for
74 * @size: Size of allocation
75 * @dma_handle: Out argument for allocated DMA handle
76 * @gfp: Allocation flags
77 * @attrs: Flags in the DMA_ATTR_* namespace.
78 *
79 * Managed dma_alloc_attrs(). Memory allocated using this function will be
80 * automatically released on driver detach.
81 *
82 * RETURNS:
83 * Pointer to allocated memory on success, NULL on failure.
84 */
85void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 gfp_t gfp, unsigned long attrs)
87{
88 struct dma_devres *dr;
89 void *vaddr;
90
91 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
92 if (!dr)
93 return NULL;
94
95 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
96 if (!vaddr) {
97 devres_free(dr);
98 return NULL;
99 }
100
101 dr->vaddr = vaddr;
102 dr->dma_handle = *dma_handle;
103 dr->size = size;
104 dr->attrs = attrs;
105
106 devres_add(dev, dr);
107
108 return vaddr;
109}
110EXPORT_SYMBOL(dmam_alloc_attrs);
111
112static bool dma_go_direct(struct device *dev, dma_addr_t mask,
113 const struct dma_map_ops *ops)
114{
115 if (likely(!ops))
116 return true;
117#ifdef CONFIG_DMA_OPS_BYPASS
118 if (dev->dma_ops_bypass)
119 return min_not_zero(mask, dev->bus_dma_limit) >=
120 dma_direct_get_required_mask(dev);
121#endif
122 return false;
123}
124
125
126/*
127 * Check if the devices uses a direct mapping for streaming DMA operations.
128 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
129 * enough.
130 */
131static inline bool dma_alloc_direct(struct device *dev,
132 const struct dma_map_ops *ops)
133{
134 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
135}
136
137static inline bool dma_map_direct(struct device *dev,
138 const struct dma_map_ops *ops)
139{
140 return dma_go_direct(dev, *dev->dma_mask, ops);
141}
142
143dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
144 size_t offset, size_t size, enum dma_data_direction dir,
145 unsigned long attrs)
146{
147 const struct dma_map_ops *ops = get_dma_ops(dev);
148 dma_addr_t addr;
149
150 BUG_ON(!valid_dma_direction(dir));
151
152 if (WARN_ON_ONCE(!dev->dma_mask))
153 return DMA_MAPPING_ERROR;
154
155 if (dma_map_direct(dev, ops) ||
156 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
157 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
158 else
159 addr = ops->map_page(dev, page, offset, size, dir, attrs);
160 kmsan_handle_dma(page, offset, size, dir);
161 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
162
163 return addr;
164}
165EXPORT_SYMBOL(dma_map_page_attrs);
166
167void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
168 enum dma_data_direction dir, unsigned long attrs)
169{
170 const struct dma_map_ops *ops = get_dma_ops(dev);
171
172 BUG_ON(!valid_dma_direction(dir));
173 if (dma_map_direct(dev, ops) ||
174 arch_dma_unmap_page_direct(dev, addr + size))
175 dma_direct_unmap_page(dev, addr, size, dir, attrs);
176 else if (ops->unmap_page)
177 ops->unmap_page(dev, addr, size, dir, attrs);
178 debug_dma_unmap_page(dev, addr, size, dir);
179}
180EXPORT_SYMBOL(dma_unmap_page_attrs);
181
182static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
183 int nents, enum dma_data_direction dir, unsigned long attrs)
184{
185 const struct dma_map_ops *ops = get_dma_ops(dev);
186 int ents;
187
188 BUG_ON(!valid_dma_direction(dir));
189
190 if (WARN_ON_ONCE(!dev->dma_mask))
191 return 0;
192
193 if (dma_map_direct(dev, ops) ||
194 arch_dma_map_sg_direct(dev, sg, nents))
195 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
196 else
197 ents = ops->map_sg(dev, sg, nents, dir, attrs);
198
199 if (ents > 0) {
200 kmsan_handle_dma_sg(sg, nents, dir);
201 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
202 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
203 ents != -EIO && ents != -EREMOTEIO)) {
204 return -EIO;
205 }
206
207 return ents;
208}
209
210/**
211 * dma_map_sg_attrs - Map the given buffer for DMA
212 * @dev: The device for which to perform the DMA operation
213 * @sg: The sg_table object describing the buffer
214 * @nents: Number of entries to map
215 * @dir: DMA direction
216 * @attrs: Optional DMA attributes for the map operation
217 *
218 * Maps a buffer described by a scatterlist passed in the sg argument with
219 * nents segments for the @dir DMA operation by the @dev device.
220 *
221 * Returns the number of mapped entries (which can be less than nents)
222 * on success. Zero is returned for any error.
223 *
224 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
225 * original sg and original nents (not the value returned by this funciton).
226 */
227unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
228 int nents, enum dma_data_direction dir, unsigned long attrs)
229{
230 int ret;
231
232 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
233 if (ret < 0)
234 return 0;
235 return ret;
236}
237EXPORT_SYMBOL(dma_map_sg_attrs);
238
239/**
240 * dma_map_sgtable - Map the given buffer for DMA
241 * @dev: The device for which to perform the DMA operation
242 * @sgt: The sg_table object describing the buffer
243 * @dir: DMA direction
244 * @attrs: Optional DMA attributes for the map operation
245 *
246 * Maps a buffer described by a scatterlist stored in the given sg_table
247 * object for the @dir DMA operation by the @dev device. After success, the
248 * ownership for the buffer is transferred to the DMA domain. One has to
249 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
250 * ownership of the buffer back to the CPU domain before touching the
251 * buffer by the CPU.
252 *
253 * Returns 0 on success or a negative error code on error. The following
254 * error codes are supported with the given meaning:
255 *
256 * -EINVAL An invalid argument, unaligned access or other error
257 * in usage. Will not succeed if retried.
258 * -ENOMEM Insufficient resources (like memory or IOVA space) to
259 * complete the mapping. Should succeed if retried later.
260 * -EIO Legacy error code with an unknown meaning. eg. this is
261 * returned if a lower level call returned
262 * DMA_MAPPING_ERROR.
263 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
264 * in the sg_table. This will not succeed if retried.
265 */
266int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
267 enum dma_data_direction dir, unsigned long attrs)
268{
269 int nents;
270
271 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
272 if (nents < 0)
273 return nents;
274 sgt->nents = nents;
275 return 0;
276}
277EXPORT_SYMBOL_GPL(dma_map_sgtable);
278
279void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
280 int nents, enum dma_data_direction dir,
281 unsigned long attrs)
282{
283 const struct dma_map_ops *ops = get_dma_ops(dev);
284
285 BUG_ON(!valid_dma_direction(dir));
286 debug_dma_unmap_sg(dev, sg, nents, dir);
287 if (dma_map_direct(dev, ops) ||
288 arch_dma_unmap_sg_direct(dev, sg, nents))
289 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
290 else if (ops->unmap_sg)
291 ops->unmap_sg(dev, sg, nents, dir, attrs);
292}
293EXPORT_SYMBOL(dma_unmap_sg_attrs);
294
295dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
296 size_t size, enum dma_data_direction dir, unsigned long attrs)
297{
298 const struct dma_map_ops *ops = get_dma_ops(dev);
299 dma_addr_t addr = DMA_MAPPING_ERROR;
300
301 BUG_ON(!valid_dma_direction(dir));
302
303 if (WARN_ON_ONCE(!dev->dma_mask))
304 return DMA_MAPPING_ERROR;
305
306 if (dma_map_direct(dev, ops))
307 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
308 else if (ops->map_resource)
309 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
310
311 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
312 return addr;
313}
314EXPORT_SYMBOL(dma_map_resource);
315
316void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
317 enum dma_data_direction dir, unsigned long attrs)
318{
319 const struct dma_map_ops *ops = get_dma_ops(dev);
320
321 BUG_ON(!valid_dma_direction(dir));
322 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
323 ops->unmap_resource(dev, addr, size, dir, attrs);
324 debug_dma_unmap_resource(dev, addr, size, dir);
325}
326EXPORT_SYMBOL(dma_unmap_resource);
327
328void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
329 enum dma_data_direction dir)
330{
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 BUG_ON(!valid_dma_direction(dir));
334 if (dma_map_direct(dev, ops))
335 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
336 else if (ops->sync_single_for_cpu)
337 ops->sync_single_for_cpu(dev, addr, size, dir);
338 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
339}
340EXPORT_SYMBOL(dma_sync_single_for_cpu);
341
342void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
343 size_t size, enum dma_data_direction dir)
344{
345 const struct dma_map_ops *ops = get_dma_ops(dev);
346
347 BUG_ON(!valid_dma_direction(dir));
348 if (dma_map_direct(dev, ops))
349 dma_direct_sync_single_for_device(dev, addr, size, dir);
350 else if (ops->sync_single_for_device)
351 ops->sync_single_for_device(dev, addr, size, dir);
352 debug_dma_sync_single_for_device(dev, addr, size, dir);
353}
354EXPORT_SYMBOL(dma_sync_single_for_device);
355
356void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
357 int nelems, enum dma_data_direction dir)
358{
359 const struct dma_map_ops *ops = get_dma_ops(dev);
360
361 BUG_ON(!valid_dma_direction(dir));
362 if (dma_map_direct(dev, ops))
363 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
364 else if (ops->sync_sg_for_cpu)
365 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
366 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
367}
368EXPORT_SYMBOL(dma_sync_sg_for_cpu);
369
370void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
371 int nelems, enum dma_data_direction dir)
372{
373 const struct dma_map_ops *ops = get_dma_ops(dev);
374
375 BUG_ON(!valid_dma_direction(dir));
376 if (dma_map_direct(dev, ops))
377 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
378 else if (ops->sync_sg_for_device)
379 ops->sync_sg_for_device(dev, sg, nelems, dir);
380 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
381}
382EXPORT_SYMBOL(dma_sync_sg_for_device);
383
384/*
385 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
386 * that the intention is to allow exporting memory allocated via the
387 * coherent DMA APIs through the dma_buf API, which only accepts a
388 * scattertable. This presents a couple of problems:
389 * 1. Not all memory allocated via the coherent DMA APIs is backed by
390 * a struct page
391 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
392 * as we will try to flush the memory through a different alias to that
393 * actually being used (and the flushes are redundant.)
394 */
395int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
396 void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 unsigned long attrs)
398{
399 const struct dma_map_ops *ops = get_dma_ops(dev);
400
401 if (dma_alloc_direct(dev, ops))
402 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
403 size, attrs);
404 if (!ops->get_sgtable)
405 return -ENXIO;
406 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
407}
408EXPORT_SYMBOL(dma_get_sgtable_attrs);
409
410#ifdef CONFIG_MMU
411/*
412 * Return the page attributes used for mapping dma_alloc_* memory, either in
413 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
414 */
415pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
416{
417 if (dev_is_dma_coherent(dev))
418 return prot;
419#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
420 if (attrs & DMA_ATTR_WRITE_COMBINE)
421 return pgprot_writecombine(prot);
422#endif
423 return pgprot_dmacoherent(prot);
424}
425#endif /* CONFIG_MMU */
426
427/**
428 * dma_can_mmap - check if a given device supports dma_mmap_*
429 * @dev: device to check
430 *
431 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
432 * map DMA allocations to userspace.
433 */
434bool dma_can_mmap(struct device *dev)
435{
436 const struct dma_map_ops *ops = get_dma_ops(dev);
437
438 if (dma_alloc_direct(dev, ops))
439 return dma_direct_can_mmap(dev);
440 return ops->mmap != NULL;
441}
442EXPORT_SYMBOL_GPL(dma_can_mmap);
443
444/**
445 * dma_mmap_attrs - map a coherent DMA allocation into user space
446 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
447 * @vma: vm_area_struct describing requested user mapping
448 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
449 * @dma_addr: device-view address returned from dma_alloc_attrs
450 * @size: size of memory originally requested in dma_alloc_attrs
451 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
452 *
453 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
454 * space. The coherent DMA buffer must not be freed by the driver until the
455 * user space mapping has been released.
456 */
457int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
458 void *cpu_addr, dma_addr_t dma_addr, size_t size,
459 unsigned long attrs)
460{
461 const struct dma_map_ops *ops = get_dma_ops(dev);
462
463 if (dma_alloc_direct(dev, ops))
464 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
465 attrs);
466 if (!ops->mmap)
467 return -ENXIO;
468 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
469}
470EXPORT_SYMBOL(dma_mmap_attrs);
471
472u64 dma_get_required_mask(struct device *dev)
473{
474 const struct dma_map_ops *ops = get_dma_ops(dev);
475
476 if (dma_alloc_direct(dev, ops))
477 return dma_direct_get_required_mask(dev);
478 if (ops->get_required_mask)
479 return ops->get_required_mask(dev);
480
481 /*
482 * We require every DMA ops implementation to at least support a 32-bit
483 * DMA mask (and use bounce buffering if that isn't supported in
484 * hardware). As the direct mapping code has its own routine to
485 * actually report an optimal mask we default to 32-bit here as that
486 * is the right thing for most IOMMUs, and at least not actively
487 * harmful in general.
488 */
489 return DMA_BIT_MASK(32);
490}
491EXPORT_SYMBOL_GPL(dma_get_required_mask);
492
493void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
494 gfp_t flag, unsigned long attrs)
495{
496 const struct dma_map_ops *ops = get_dma_ops(dev);
497 void *cpu_addr;
498
499 WARN_ON_ONCE(!dev->coherent_dma_mask);
500
501 /*
502 * DMA allocations can never be turned back into a page pointer, so
503 * requesting compound pages doesn't make sense (and can't even be
504 * supported at all by various backends).
505 */
506 if (WARN_ON_ONCE(flag & __GFP_COMP))
507 return NULL;
508
509 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
510 return cpu_addr;
511
512 /* let the implementation decide on the zone to allocate from: */
513 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
514
515 if (dma_alloc_direct(dev, ops))
516 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
517 else if (ops->alloc)
518 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
519 else
520 return NULL;
521
522 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
523 return cpu_addr;
524}
525EXPORT_SYMBOL(dma_alloc_attrs);
526
527void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
528 dma_addr_t dma_handle, unsigned long attrs)
529{
530 const struct dma_map_ops *ops = get_dma_ops(dev);
531
532 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
533 return;
534 /*
535 * On non-coherent platforms which implement DMA-coherent buffers via
536 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
537 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
538 * sleep on some machines, and b) an indication that the driver is
539 * probably misusing the coherent API anyway.
540 */
541 WARN_ON(irqs_disabled());
542
543 if (!cpu_addr)
544 return;
545
546 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
547 if (dma_alloc_direct(dev, ops))
548 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
549 else if (ops->free)
550 ops->free(dev, size, cpu_addr, dma_handle, attrs);
551}
552EXPORT_SYMBOL(dma_free_attrs);
553
554static struct page *__dma_alloc_pages(struct device *dev, size_t size,
555 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
556{
557 const struct dma_map_ops *ops = get_dma_ops(dev);
558
559 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
560 return NULL;
561 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
562 return NULL;
563 if (WARN_ON_ONCE(gfp & __GFP_COMP))
564 return NULL;
565
566 size = PAGE_ALIGN(size);
567 if (dma_alloc_direct(dev, ops))
568 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
569 if (!ops->alloc_pages)
570 return NULL;
571 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
572}
573
574struct page *dma_alloc_pages(struct device *dev, size_t size,
575 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
576{
577 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
578
579 if (page)
580 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
581 return page;
582}
583EXPORT_SYMBOL_GPL(dma_alloc_pages);
584
585static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
586 dma_addr_t dma_handle, enum dma_data_direction dir)
587{
588 const struct dma_map_ops *ops = get_dma_ops(dev);
589
590 size = PAGE_ALIGN(size);
591 if (dma_alloc_direct(dev, ops))
592 dma_direct_free_pages(dev, size, page, dma_handle, dir);
593 else if (ops->free_pages)
594 ops->free_pages(dev, size, page, dma_handle, dir);
595}
596
597void dma_free_pages(struct device *dev, size_t size, struct page *page,
598 dma_addr_t dma_handle, enum dma_data_direction dir)
599{
600 debug_dma_unmap_page(dev, dma_handle, size, dir);
601 __dma_free_pages(dev, size, page, dma_handle, dir);
602}
603EXPORT_SYMBOL_GPL(dma_free_pages);
604
605int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
606 size_t size, struct page *page)
607{
608 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
609
610 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
611 return -ENXIO;
612 return remap_pfn_range(vma, vma->vm_start,
613 page_to_pfn(page) + vma->vm_pgoff,
614 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
615}
616EXPORT_SYMBOL_GPL(dma_mmap_pages);
617
618static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
619 enum dma_data_direction dir, gfp_t gfp)
620{
621 struct sg_table *sgt;
622 struct page *page;
623
624 sgt = kmalloc(sizeof(*sgt), gfp);
625 if (!sgt)
626 return NULL;
627 if (sg_alloc_table(sgt, 1, gfp))
628 goto out_free_sgt;
629 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
630 if (!page)
631 goto out_free_table;
632 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
633 sg_dma_len(sgt->sgl) = sgt->sgl->length;
634 return sgt;
635out_free_table:
636 sg_free_table(sgt);
637out_free_sgt:
638 kfree(sgt);
639 return NULL;
640}
641
642struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
643 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
644{
645 const struct dma_map_ops *ops = get_dma_ops(dev);
646 struct sg_table *sgt;
647
648 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
649 return NULL;
650 if (WARN_ON_ONCE(gfp & __GFP_COMP))
651 return NULL;
652
653 if (ops && ops->alloc_noncontiguous)
654 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
655 else
656 sgt = alloc_single_sgt(dev, size, dir, gfp);
657
658 if (sgt) {
659 sgt->nents = 1;
660 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
661 }
662 return sgt;
663}
664EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
665
666static void free_single_sgt(struct device *dev, size_t size,
667 struct sg_table *sgt, enum dma_data_direction dir)
668{
669 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
670 dir);
671 sg_free_table(sgt);
672 kfree(sgt);
673}
674
675void dma_free_noncontiguous(struct device *dev, size_t size,
676 struct sg_table *sgt, enum dma_data_direction dir)
677{
678 const struct dma_map_ops *ops = get_dma_ops(dev);
679
680 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
681 if (ops && ops->free_noncontiguous)
682 ops->free_noncontiguous(dev, size, sgt, dir);
683 else
684 free_single_sgt(dev, size, sgt, dir);
685}
686EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
687
688void *dma_vmap_noncontiguous(struct device *dev, size_t size,
689 struct sg_table *sgt)
690{
691 const struct dma_map_ops *ops = get_dma_ops(dev);
692 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
693
694 if (ops && ops->alloc_noncontiguous)
695 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
696 return page_address(sg_page(sgt->sgl));
697}
698EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
699
700void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
701{
702 const struct dma_map_ops *ops = get_dma_ops(dev);
703
704 if (ops && ops->alloc_noncontiguous)
705 vunmap(vaddr);
706}
707EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
708
709int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
710 size_t size, struct sg_table *sgt)
711{
712 const struct dma_map_ops *ops = get_dma_ops(dev);
713
714 if (ops && ops->alloc_noncontiguous) {
715 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
716
717 if (vma->vm_pgoff >= count ||
718 vma_pages(vma) > count - vma->vm_pgoff)
719 return -ENXIO;
720 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
721 }
722 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
723}
724EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
725
726static int dma_supported(struct device *dev, u64 mask)
727{
728 const struct dma_map_ops *ops = get_dma_ops(dev);
729
730 /*
731 * ->dma_supported sets the bypass flag, so we must always call
732 * into the method here unless the device is truly direct mapped.
733 */
734 if (!ops)
735 return dma_direct_supported(dev, mask);
736 if (!ops->dma_supported)
737 return 1;
738 return ops->dma_supported(dev, mask);
739}
740
741bool dma_pci_p2pdma_supported(struct device *dev)
742{
743 const struct dma_map_ops *ops = get_dma_ops(dev);
744
745 /* if ops is not set, dma direct will be used which supports P2PDMA */
746 if (!ops)
747 return true;
748
749 /*
750 * Note: dma_ops_bypass is not checked here because P2PDMA should
751 * not be used with dma mapping ops that do not have support even
752 * if the specific device is bypassing them.
753 */
754
755 return ops->flags & DMA_F_PCI_P2PDMA_SUPPORTED;
756}
757EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
758
759#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
760void arch_dma_set_mask(struct device *dev, u64 mask);
761#else
762#define arch_dma_set_mask(dev, mask) do { } while (0)
763#endif
764
765int dma_set_mask(struct device *dev, u64 mask)
766{
767 /*
768 * Truncate the mask to the actually supported dma_addr_t width to
769 * avoid generating unsupportable addresses.
770 */
771 mask = (dma_addr_t)mask;
772
773 if (!dev->dma_mask || !dma_supported(dev, mask))
774 return -EIO;
775
776 arch_dma_set_mask(dev, mask);
777 *dev->dma_mask = mask;
778 return 0;
779}
780EXPORT_SYMBOL(dma_set_mask);
781
782int dma_set_coherent_mask(struct device *dev, u64 mask)
783{
784 /*
785 * Truncate the mask to the actually supported dma_addr_t width to
786 * avoid generating unsupportable addresses.
787 */
788 mask = (dma_addr_t)mask;
789
790 if (!dma_supported(dev, mask))
791 return -EIO;
792
793 dev->coherent_dma_mask = mask;
794 return 0;
795}
796EXPORT_SYMBOL(dma_set_coherent_mask);
797
798size_t dma_max_mapping_size(struct device *dev)
799{
800 const struct dma_map_ops *ops = get_dma_ops(dev);
801 size_t size = SIZE_MAX;
802
803 if (dma_map_direct(dev, ops))
804 size = dma_direct_max_mapping_size(dev);
805 else if (ops && ops->max_mapping_size)
806 size = ops->max_mapping_size(dev);
807
808 return size;
809}
810EXPORT_SYMBOL_GPL(dma_max_mapping_size);
811
812size_t dma_opt_mapping_size(struct device *dev)
813{
814 const struct dma_map_ops *ops = get_dma_ops(dev);
815 size_t size = SIZE_MAX;
816
817 if (ops && ops->opt_mapping_size)
818 size = ops->opt_mapping_size();
819
820 return min(dma_max_mapping_size(dev), size);
821}
822EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
823
824bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
825{
826 const struct dma_map_ops *ops = get_dma_ops(dev);
827
828 if (dma_map_direct(dev, ops))
829 return dma_direct_need_sync(dev, dma_addr);
830 return ops->sync_single_for_cpu || ops->sync_single_for_device;
831}
832EXPORT_SYMBOL_GPL(dma_need_sync);
833
834unsigned long dma_get_merge_boundary(struct device *dev)
835{
836 const struct dma_map_ops *ops = get_dma_ops(dev);
837
838 if (!ops || !ops->get_merge_boundary)
839 return 0; /* can't merge */
840
841 return ops->get_merge_boundary(dev);
842}
843EXPORT_SYMBOL_GPL(dma_get_merge_boundary);