Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/of_device.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include "debug.h"
17#include "direct.h"
18
19bool dma_default_coherent;
20
21/*
22 * Managed DMA API
23 */
24struct dma_devres {
25 size_t size;
26 void *vaddr;
27 dma_addr_t dma_handle;
28 unsigned long attrs;
29};
30
31static void dmam_release(struct device *dev, void *res)
32{
33 struct dma_devres *this = res;
34
35 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
36 this->attrs);
37}
38
39static int dmam_match(struct device *dev, void *res, void *match_data)
40{
41 struct dma_devres *this = res, *match = match_data;
42
43 if (this->vaddr == match->vaddr) {
44 WARN_ON(this->size != match->size ||
45 this->dma_handle != match->dma_handle);
46 return 1;
47 }
48 return 0;
49}
50
51/**
52 * dmam_free_coherent - Managed dma_free_coherent()
53 * @dev: Device to free coherent memory for
54 * @size: Size of allocation
55 * @vaddr: Virtual address of the memory to free
56 * @dma_handle: DMA handle of the memory to free
57 *
58 * Managed dma_free_coherent().
59 */
60void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
61 dma_addr_t dma_handle)
62{
63 struct dma_devres match_data = { size, vaddr, dma_handle };
64
65 dma_free_coherent(dev, size, vaddr, dma_handle);
66 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
67}
68EXPORT_SYMBOL(dmam_free_coherent);
69
70/**
71 * dmam_alloc_attrs - Managed dma_alloc_attrs()
72 * @dev: Device to allocate non_coherent memory for
73 * @size: Size of allocation
74 * @dma_handle: Out argument for allocated DMA handle
75 * @gfp: Allocation flags
76 * @attrs: Flags in the DMA_ATTR_* namespace.
77 *
78 * Managed dma_alloc_attrs(). Memory allocated using this function will be
79 * automatically released on driver detach.
80 *
81 * RETURNS:
82 * Pointer to allocated memory on success, NULL on failure.
83 */
84void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
85 gfp_t gfp, unsigned long attrs)
86{
87 struct dma_devres *dr;
88 void *vaddr;
89
90 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
91 if (!dr)
92 return NULL;
93
94 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
95 if (!vaddr) {
96 devres_free(dr);
97 return NULL;
98 }
99
100 dr->vaddr = vaddr;
101 dr->dma_handle = *dma_handle;
102 dr->size = size;
103 dr->attrs = attrs;
104
105 devres_add(dev, dr);
106
107 return vaddr;
108}
109EXPORT_SYMBOL(dmam_alloc_attrs);
110
111static bool dma_go_direct(struct device *dev, dma_addr_t mask,
112 const struct dma_map_ops *ops)
113{
114 if (likely(!ops))
115 return true;
116#ifdef CONFIG_DMA_OPS_BYPASS
117 if (dev->dma_ops_bypass)
118 return min_not_zero(mask, dev->bus_dma_limit) >=
119 dma_direct_get_required_mask(dev);
120#endif
121 return false;
122}
123
124
125/*
126 * Check if the devices uses a direct mapping for streaming DMA operations.
127 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
128 * enough.
129 */
130static inline bool dma_alloc_direct(struct device *dev,
131 const struct dma_map_ops *ops)
132{
133 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
134}
135
136static inline bool dma_map_direct(struct device *dev,
137 const struct dma_map_ops *ops)
138{
139 return dma_go_direct(dev, *dev->dma_mask, ops);
140}
141
142dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
143 size_t offset, size_t size, enum dma_data_direction dir,
144 unsigned long attrs)
145{
146 const struct dma_map_ops *ops = get_dma_ops(dev);
147 dma_addr_t addr;
148
149 BUG_ON(!valid_dma_direction(dir));
150
151 if (WARN_ON_ONCE(!dev->dma_mask))
152 return DMA_MAPPING_ERROR;
153
154 if (dma_map_direct(dev, ops) ||
155 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
156 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
157 else
158 addr = ops->map_page(dev, page, offset, size, dir, attrs);
159 debug_dma_map_page(dev, page, offset, size, dir, addr);
160
161 return addr;
162}
163EXPORT_SYMBOL(dma_map_page_attrs);
164
165void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
166 enum dma_data_direction dir, unsigned long attrs)
167{
168 const struct dma_map_ops *ops = get_dma_ops(dev);
169
170 BUG_ON(!valid_dma_direction(dir));
171 if (dma_map_direct(dev, ops) ||
172 arch_dma_unmap_page_direct(dev, addr + size))
173 dma_direct_unmap_page(dev, addr, size, dir, attrs);
174 else if (ops->unmap_page)
175 ops->unmap_page(dev, addr, size, dir, attrs);
176 debug_dma_unmap_page(dev, addr, size, dir);
177}
178EXPORT_SYMBOL(dma_unmap_page_attrs);
179
180/*
181 * dma_maps_sg_attrs returns 0 on error and > 0 on success.
182 * It should never return a value < 0.
183 */
184int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, int nents,
185 enum dma_data_direction dir, unsigned long attrs)
186{
187 const struct dma_map_ops *ops = get_dma_ops(dev);
188 int ents;
189
190 BUG_ON(!valid_dma_direction(dir));
191
192 if (WARN_ON_ONCE(!dev->dma_mask))
193 return 0;
194
195 if (dma_map_direct(dev, ops) ||
196 arch_dma_map_sg_direct(dev, sg, nents))
197 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
198 else
199 ents = ops->map_sg(dev, sg, nents, dir, attrs);
200 BUG_ON(ents < 0);
201 debug_dma_map_sg(dev, sg, nents, ents, dir);
202
203 return ents;
204}
205EXPORT_SYMBOL(dma_map_sg_attrs);
206
207void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
208 int nents, enum dma_data_direction dir,
209 unsigned long attrs)
210{
211 const struct dma_map_ops *ops = get_dma_ops(dev);
212
213 BUG_ON(!valid_dma_direction(dir));
214 debug_dma_unmap_sg(dev, sg, nents, dir);
215 if (dma_map_direct(dev, ops) ||
216 arch_dma_unmap_sg_direct(dev, sg, nents))
217 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
218 else if (ops->unmap_sg)
219 ops->unmap_sg(dev, sg, nents, dir, attrs);
220}
221EXPORT_SYMBOL(dma_unmap_sg_attrs);
222
223dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
224 size_t size, enum dma_data_direction dir, unsigned long attrs)
225{
226 const struct dma_map_ops *ops = get_dma_ops(dev);
227 dma_addr_t addr = DMA_MAPPING_ERROR;
228
229 BUG_ON(!valid_dma_direction(dir));
230
231 if (WARN_ON_ONCE(!dev->dma_mask))
232 return DMA_MAPPING_ERROR;
233
234 /* Don't allow RAM to be mapped */
235 if (WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
236 return DMA_MAPPING_ERROR;
237
238 if (dma_map_direct(dev, ops))
239 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
240 else if (ops->map_resource)
241 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
242
243 debug_dma_map_resource(dev, phys_addr, size, dir, addr);
244 return addr;
245}
246EXPORT_SYMBOL(dma_map_resource);
247
248void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
249 enum dma_data_direction dir, unsigned long attrs)
250{
251 const struct dma_map_ops *ops = get_dma_ops(dev);
252
253 BUG_ON(!valid_dma_direction(dir));
254 if (!dma_map_direct(dev, ops) && ops->unmap_resource)
255 ops->unmap_resource(dev, addr, size, dir, attrs);
256 debug_dma_unmap_resource(dev, addr, size, dir);
257}
258EXPORT_SYMBOL(dma_unmap_resource);
259
260void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
261 enum dma_data_direction dir)
262{
263 const struct dma_map_ops *ops = get_dma_ops(dev);
264
265 BUG_ON(!valid_dma_direction(dir));
266 if (dma_map_direct(dev, ops))
267 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
268 else if (ops->sync_single_for_cpu)
269 ops->sync_single_for_cpu(dev, addr, size, dir);
270 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
271}
272EXPORT_SYMBOL(dma_sync_single_for_cpu);
273
274void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
275 size_t size, enum dma_data_direction dir)
276{
277 const struct dma_map_ops *ops = get_dma_ops(dev);
278
279 BUG_ON(!valid_dma_direction(dir));
280 if (dma_map_direct(dev, ops))
281 dma_direct_sync_single_for_device(dev, addr, size, dir);
282 else if (ops->sync_single_for_device)
283 ops->sync_single_for_device(dev, addr, size, dir);
284 debug_dma_sync_single_for_device(dev, addr, size, dir);
285}
286EXPORT_SYMBOL(dma_sync_single_for_device);
287
288void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
289 int nelems, enum dma_data_direction dir)
290{
291 const struct dma_map_ops *ops = get_dma_ops(dev);
292
293 BUG_ON(!valid_dma_direction(dir));
294 if (dma_map_direct(dev, ops))
295 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
296 else if (ops->sync_sg_for_cpu)
297 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
298 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
299}
300EXPORT_SYMBOL(dma_sync_sg_for_cpu);
301
302void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
303 int nelems, enum dma_data_direction dir)
304{
305 const struct dma_map_ops *ops = get_dma_ops(dev);
306
307 BUG_ON(!valid_dma_direction(dir));
308 if (dma_map_direct(dev, ops))
309 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
310 else if (ops->sync_sg_for_device)
311 ops->sync_sg_for_device(dev, sg, nelems, dir);
312 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
313}
314EXPORT_SYMBOL(dma_sync_sg_for_device);
315
316/*
317 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
318 * that the intention is to allow exporting memory allocated via the
319 * coherent DMA APIs through the dma_buf API, which only accepts a
320 * scattertable. This presents a couple of problems:
321 * 1. Not all memory allocated via the coherent DMA APIs is backed by
322 * a struct page
323 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
324 * as we will try to flush the memory through a different alias to that
325 * actually being used (and the flushes are redundant.)
326 */
327int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
328 void *cpu_addr, dma_addr_t dma_addr, size_t size,
329 unsigned long attrs)
330{
331 const struct dma_map_ops *ops = get_dma_ops(dev);
332
333 if (dma_alloc_direct(dev, ops))
334 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
335 size, attrs);
336 if (!ops->get_sgtable)
337 return -ENXIO;
338 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
339}
340EXPORT_SYMBOL(dma_get_sgtable_attrs);
341
342#ifdef CONFIG_MMU
343/*
344 * Return the page attributes used for mapping dma_alloc_* memory, either in
345 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
346 */
347pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
348{
349 if (force_dma_unencrypted(dev))
350 prot = pgprot_decrypted(prot);
351 if (dev_is_dma_coherent(dev))
352 return prot;
353#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
354 if (attrs & DMA_ATTR_WRITE_COMBINE)
355 return pgprot_writecombine(prot);
356#endif
357 return pgprot_dmacoherent(prot);
358}
359#endif /* CONFIG_MMU */
360
361/**
362 * dma_can_mmap - check if a given device supports dma_mmap_*
363 * @dev: device to check
364 *
365 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
366 * map DMA allocations to userspace.
367 */
368bool dma_can_mmap(struct device *dev)
369{
370 const struct dma_map_ops *ops = get_dma_ops(dev);
371
372 if (dma_alloc_direct(dev, ops))
373 return dma_direct_can_mmap(dev);
374 return ops->mmap != NULL;
375}
376EXPORT_SYMBOL_GPL(dma_can_mmap);
377
378/**
379 * dma_mmap_attrs - map a coherent DMA allocation into user space
380 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
381 * @vma: vm_area_struct describing requested user mapping
382 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
383 * @dma_addr: device-view address returned from dma_alloc_attrs
384 * @size: size of memory originally requested in dma_alloc_attrs
385 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
386 *
387 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
388 * space. The coherent DMA buffer must not be freed by the driver until the
389 * user space mapping has been released.
390 */
391int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
392 void *cpu_addr, dma_addr_t dma_addr, size_t size,
393 unsigned long attrs)
394{
395 const struct dma_map_ops *ops = get_dma_ops(dev);
396
397 if (dma_alloc_direct(dev, ops))
398 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
399 attrs);
400 if (!ops->mmap)
401 return -ENXIO;
402 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
403}
404EXPORT_SYMBOL(dma_mmap_attrs);
405
406u64 dma_get_required_mask(struct device *dev)
407{
408 const struct dma_map_ops *ops = get_dma_ops(dev);
409
410 if (dma_alloc_direct(dev, ops))
411 return dma_direct_get_required_mask(dev);
412 if (ops->get_required_mask)
413 return ops->get_required_mask(dev);
414
415 /*
416 * We require every DMA ops implementation to at least support a 32-bit
417 * DMA mask (and use bounce buffering if that isn't supported in
418 * hardware). As the direct mapping code has its own routine to
419 * actually report an optimal mask we default to 32-bit here as that
420 * is the right thing for most IOMMUs, and at least not actively
421 * harmful in general.
422 */
423 return DMA_BIT_MASK(32);
424}
425EXPORT_SYMBOL_GPL(dma_get_required_mask);
426
427void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
428 gfp_t flag, unsigned long attrs)
429{
430 const struct dma_map_ops *ops = get_dma_ops(dev);
431 void *cpu_addr;
432
433 WARN_ON_ONCE(!dev->coherent_dma_mask);
434
435 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
436 return cpu_addr;
437
438 /* let the implementation decide on the zone to allocate from: */
439 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
440
441 if (dma_alloc_direct(dev, ops))
442 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
443 else if (ops->alloc)
444 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
445 else
446 return NULL;
447
448 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
449 return cpu_addr;
450}
451EXPORT_SYMBOL(dma_alloc_attrs);
452
453void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
454 dma_addr_t dma_handle, unsigned long attrs)
455{
456 const struct dma_map_ops *ops = get_dma_ops(dev);
457
458 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
459 return;
460 /*
461 * On non-coherent platforms which implement DMA-coherent buffers via
462 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
463 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
464 * sleep on some machines, and b) an indication that the driver is
465 * probably misusing the coherent API anyway.
466 */
467 WARN_ON(irqs_disabled());
468
469 if (!cpu_addr)
470 return;
471
472 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
473 if (dma_alloc_direct(dev, ops))
474 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
475 else if (ops->free)
476 ops->free(dev, size, cpu_addr, dma_handle, attrs);
477}
478EXPORT_SYMBOL(dma_free_attrs);
479
480static struct page *__dma_alloc_pages(struct device *dev, size_t size,
481 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
482{
483 const struct dma_map_ops *ops = get_dma_ops(dev);
484
485 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
486 return NULL;
487 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
488 return NULL;
489
490 size = PAGE_ALIGN(size);
491 if (dma_alloc_direct(dev, ops))
492 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
493 if (!ops->alloc_pages)
494 return NULL;
495 return ops->alloc_pages(dev, size, dma_handle, dir, gfp);
496}
497
498struct page *dma_alloc_pages(struct device *dev, size_t size,
499 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
500{
501 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
502
503 if (page)
504 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle);
505 return page;
506}
507EXPORT_SYMBOL_GPL(dma_alloc_pages);
508
509static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
510 dma_addr_t dma_handle, enum dma_data_direction dir)
511{
512 const struct dma_map_ops *ops = get_dma_ops(dev);
513
514 size = PAGE_ALIGN(size);
515 if (dma_alloc_direct(dev, ops))
516 dma_direct_free_pages(dev, size, page, dma_handle, dir);
517 else if (ops->free_pages)
518 ops->free_pages(dev, size, page, dma_handle, dir);
519}
520
521void dma_free_pages(struct device *dev, size_t size, struct page *page,
522 dma_addr_t dma_handle, enum dma_data_direction dir)
523{
524 debug_dma_unmap_page(dev, dma_handle, size, dir);
525 __dma_free_pages(dev, size, page, dma_handle, dir);
526}
527EXPORT_SYMBOL_GPL(dma_free_pages);
528
529int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
530 size_t size, struct page *page)
531{
532 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
533
534 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
535 return -ENXIO;
536 return remap_pfn_range(vma, vma->vm_start,
537 page_to_pfn(page) + vma->vm_pgoff,
538 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
539}
540EXPORT_SYMBOL_GPL(dma_mmap_pages);
541
542static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
543 enum dma_data_direction dir, gfp_t gfp)
544{
545 struct sg_table *sgt;
546 struct page *page;
547
548 sgt = kmalloc(sizeof(*sgt), gfp);
549 if (!sgt)
550 return NULL;
551 if (sg_alloc_table(sgt, 1, gfp))
552 goto out_free_sgt;
553 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
554 if (!page)
555 goto out_free_table;
556 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
557 sg_dma_len(sgt->sgl) = sgt->sgl->length;
558 return sgt;
559out_free_table:
560 sg_free_table(sgt);
561out_free_sgt:
562 kfree(sgt);
563 return NULL;
564}
565
566struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
567 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
568{
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570 struct sg_table *sgt;
571
572 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
573 return NULL;
574
575 if (ops && ops->alloc_noncontiguous)
576 sgt = ops->alloc_noncontiguous(dev, size, dir, gfp, attrs);
577 else
578 sgt = alloc_single_sgt(dev, size, dir, gfp);
579
580 if (sgt) {
581 sgt->nents = 1;
582 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir);
583 }
584 return sgt;
585}
586EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
587
588static void free_single_sgt(struct device *dev, size_t size,
589 struct sg_table *sgt, enum dma_data_direction dir)
590{
591 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
592 dir);
593 sg_free_table(sgt);
594 kfree(sgt);
595}
596
597void dma_free_noncontiguous(struct device *dev, size_t size,
598 struct sg_table *sgt, enum dma_data_direction dir)
599{
600 const struct dma_map_ops *ops = get_dma_ops(dev);
601
602 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
603 if (ops && ops->free_noncontiguous)
604 ops->free_noncontiguous(dev, size, sgt, dir);
605 else
606 free_single_sgt(dev, size, sgt, dir);
607}
608EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
609
610void *dma_vmap_noncontiguous(struct device *dev, size_t size,
611 struct sg_table *sgt)
612{
613 const struct dma_map_ops *ops = get_dma_ops(dev);
614 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
615
616 if (ops && ops->alloc_noncontiguous)
617 return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
618 return page_address(sg_page(sgt->sgl));
619}
620EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
621
622void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
623{
624 const struct dma_map_ops *ops = get_dma_ops(dev);
625
626 if (ops && ops->alloc_noncontiguous)
627 vunmap(vaddr);
628}
629EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
630
631int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
632 size_t size, struct sg_table *sgt)
633{
634 const struct dma_map_ops *ops = get_dma_ops(dev);
635
636 if (ops && ops->alloc_noncontiguous) {
637 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
638
639 if (vma->vm_pgoff >= count ||
640 vma_pages(vma) > count - vma->vm_pgoff)
641 return -ENXIO;
642 return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
643 }
644 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
645}
646EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
647
648int dma_supported(struct device *dev, u64 mask)
649{
650 const struct dma_map_ops *ops = get_dma_ops(dev);
651
652 /*
653 * ->dma_supported sets the bypass flag, so we must always call
654 * into the method here unless the device is truly direct mapped.
655 */
656 if (!ops)
657 return dma_direct_supported(dev, mask);
658 if (!ops->dma_supported)
659 return 1;
660 return ops->dma_supported(dev, mask);
661}
662EXPORT_SYMBOL(dma_supported);
663
664#ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
665void arch_dma_set_mask(struct device *dev, u64 mask);
666#else
667#define arch_dma_set_mask(dev, mask) do { } while (0)
668#endif
669
670int dma_set_mask(struct device *dev, u64 mask)
671{
672 /*
673 * Truncate the mask to the actually supported dma_addr_t width to
674 * avoid generating unsupportable addresses.
675 */
676 mask = (dma_addr_t)mask;
677
678 if (!dev->dma_mask || !dma_supported(dev, mask))
679 return -EIO;
680
681 arch_dma_set_mask(dev, mask);
682 *dev->dma_mask = mask;
683 return 0;
684}
685EXPORT_SYMBOL(dma_set_mask);
686
687#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
688int dma_set_coherent_mask(struct device *dev, u64 mask)
689{
690 /*
691 * Truncate the mask to the actually supported dma_addr_t width to
692 * avoid generating unsupportable addresses.
693 */
694 mask = (dma_addr_t)mask;
695
696 if (!dma_supported(dev, mask))
697 return -EIO;
698
699 dev->coherent_dma_mask = mask;
700 return 0;
701}
702EXPORT_SYMBOL(dma_set_coherent_mask);
703#endif
704
705size_t dma_max_mapping_size(struct device *dev)
706{
707 const struct dma_map_ops *ops = get_dma_ops(dev);
708 size_t size = SIZE_MAX;
709
710 if (dma_map_direct(dev, ops))
711 size = dma_direct_max_mapping_size(dev);
712 else if (ops && ops->max_mapping_size)
713 size = ops->max_mapping_size(dev);
714
715 return size;
716}
717EXPORT_SYMBOL_GPL(dma_max_mapping_size);
718
719bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
720{
721 const struct dma_map_ops *ops = get_dma_ops(dev);
722
723 if (dma_map_direct(dev, ops))
724 return dma_direct_need_sync(dev, dma_addr);
725 return ops->sync_single_for_cpu || ops->sync_single_for_device;
726}
727EXPORT_SYMBOL_GPL(dma_need_sync);
728
729unsigned long dma_get_merge_boundary(struct device *dev)
730{
731 const struct dma_map_ops *ops = get_dma_ops(dev);
732
733 if (!ops || !ops->get_merge_boundary)
734 return 0; /* can't merge */
735
736 return ops->get_merge_boundary(dev);
737}
738EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8#include <linux/memblock.h> /* for max_pfn */
9#include <linux/acpi.h>
10#include <linux/dma-map-ops.h>
11#include <linux/export.h>
12#include <linux/gfp.h>
13#include <linux/iommu-dma.h>
14#include <linux/kmsan.h>
15#include <linux/of_device.h>
16#include <linux/slab.h>
17#include <linux/vmalloc.h>
18#include "debug.h"
19#include "direct.h"
20
21#define CREATE_TRACE_POINTS
22#include <trace/events/dma.h>
23
24#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28#endif
29
30/*
31 * Managed DMA API
32 */
33struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38};
39
40static void dmam_release(struct device *dev, void *res)
41{
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46}
47
48static int dmam_match(struct device *dev, void *res, void *match_data)
49{
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58}
59
60/**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
69void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71{
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76}
77EXPORT_SYMBOL(dmam_free_coherent);
78
79/**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
93void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95{
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117}
118EXPORT_SYMBOL(dmam_alloc_attrs);
119
120static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122{
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129#ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133#endif
134 return false;
135}
136
137
138/*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
143static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145{
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147}
148
149static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151{
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153}
154
155dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 size_t offset, size_t size, enum dma_data_direction dir,
157 unsigned long attrs)
158{
159 const struct dma_map_ops *ops = get_dma_ops(dev);
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 else
173 addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 kmsan_handle_dma(page, offset, size, dir);
175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 attrs);
177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179 return addr;
180}
181EXPORT_SYMBOL(dma_map_page_attrs);
182
183void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 enum dma_data_direction dir, unsigned long attrs)
185{
186 const struct dma_map_ops *ops = get_dma_ops(dev);
187
188 BUG_ON(!valid_dma_direction(dir));
189 if (dma_map_direct(dev, ops) ||
190 arch_dma_unmap_page_direct(dev, addr + size))
191 dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 else if (use_dma_iommu(dev))
193 iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 else
195 ops->unmap_page(dev, addr, size, dir, attrs);
196 trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 debug_dma_unmap_page(dev, addr, size, dir);
198}
199EXPORT_SYMBOL(dma_unmap_page_attrs);
200
201static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 int nents, enum dma_data_direction dir, unsigned long attrs)
203{
204 const struct dma_map_ops *ops = get_dma_ops(dev);
205 int ents;
206
207 BUG_ON(!valid_dma_direction(dir));
208
209 if (WARN_ON_ONCE(!dev->dma_mask))
210 return 0;
211
212 if (dma_map_direct(dev, ops) ||
213 arch_dma_map_sg_direct(dev, sg, nents))
214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 else if (use_dma_iommu(dev))
216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 else
218 ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220 if (ents > 0) {
221 kmsan_handle_dma_sg(sg, nents, dir);
222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 ents != -EIO && ents != -EREMOTEIO)) {
226 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227 return -EIO;
228 }
229
230 return ents;
231}
232
233/**
234 * dma_map_sg_attrs - Map the given buffer for DMA
235 * @dev: The device for which to perform the DMA operation
236 * @sg: The sg_table object describing the buffer
237 * @nents: Number of entries to map
238 * @dir: DMA direction
239 * @attrs: Optional DMA attributes for the map operation
240 *
241 * Maps a buffer described by a scatterlist passed in the sg argument with
242 * nents segments for the @dir DMA operation by the @dev device.
243 *
244 * Returns the number of mapped entries (which can be less than nents)
245 * on success. Zero is returned for any error.
246 *
247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248 * original sg and original nents (not the value returned by this funciton).
249 */
250unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251 int nents, enum dma_data_direction dir, unsigned long attrs)
252{
253 int ret;
254
255 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256 if (ret < 0)
257 return 0;
258 return ret;
259}
260EXPORT_SYMBOL(dma_map_sg_attrs);
261
262/**
263 * dma_map_sgtable - Map the given buffer for DMA
264 * @dev: The device for which to perform the DMA operation
265 * @sgt: The sg_table object describing the buffer
266 * @dir: DMA direction
267 * @attrs: Optional DMA attributes for the map operation
268 *
269 * Maps a buffer described by a scatterlist stored in the given sg_table
270 * object for the @dir DMA operation by the @dev device. After success, the
271 * ownership for the buffer is transferred to the DMA domain. One has to
272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273 * ownership of the buffer back to the CPU domain before touching the
274 * buffer by the CPU.
275 *
276 * Returns 0 on success or a negative error code on error. The following
277 * error codes are supported with the given meaning:
278 *
279 * -EINVAL An invalid argument, unaligned access or other error
280 * in usage. Will not succeed if retried.
281 * -ENOMEM Insufficient resources (like memory or IOVA space) to
282 * complete the mapping. Should succeed if retried later.
283 * -EIO Legacy error code with an unknown meaning. eg. this is
284 * returned if a lower level call returned
285 * DMA_MAPPING_ERROR.
286 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
287 * in the sg_table. This will not succeed if retried.
288 */
289int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290 enum dma_data_direction dir, unsigned long attrs)
291{
292 int nents;
293
294 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295 if (nents < 0)
296 return nents;
297 sgt->nents = nents;
298 return 0;
299}
300EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
302void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303 int nents, enum dma_data_direction dir,
304 unsigned long attrs)
305{
306 const struct dma_map_ops *ops = get_dma_ops(dev);
307
308 BUG_ON(!valid_dma_direction(dir));
309 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310 debug_dma_unmap_sg(dev, sg, nents, dir);
311 if (dma_map_direct(dev, ops) ||
312 arch_dma_unmap_sg_direct(dev, sg, nents))
313 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314 else if (use_dma_iommu(dev))
315 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316 else if (ops->unmap_sg)
317 ops->unmap_sg(dev, sg, nents, dir, attrs);
318}
319EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
321dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322 size_t size, enum dma_data_direction dir, unsigned long attrs)
323{
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325 dma_addr_t addr = DMA_MAPPING_ERROR;
326
327 BUG_ON(!valid_dma_direction(dir));
328
329 if (WARN_ON_ONCE(!dev->dma_mask))
330 return DMA_MAPPING_ERROR;
331
332 if (dma_map_direct(dev, ops))
333 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334 else if (use_dma_iommu(dev))
335 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336 else if (ops->map_resource)
337 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341 return addr;
342}
343EXPORT_SYMBOL(dma_map_resource);
344
345void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346 enum dma_data_direction dir, unsigned long attrs)
347{
348 const struct dma_map_ops *ops = get_dma_ops(dev);
349
350 BUG_ON(!valid_dma_direction(dir));
351 if (dma_map_direct(dev, ops))
352 ; /* nothing to do: uncached and no swiotlb */
353 else if (use_dma_iommu(dev))
354 iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355 else if (ops->unmap_resource)
356 ops->unmap_resource(dev, addr, size, dir, attrs);
357 trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358 debug_dma_unmap_resource(dev, addr, size, dir);
359}
360EXPORT_SYMBOL(dma_unmap_resource);
361
362#ifdef CONFIG_DMA_NEED_SYNC
363void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364 enum dma_data_direction dir)
365{
366 const struct dma_map_ops *ops = get_dma_ops(dev);
367
368 BUG_ON(!valid_dma_direction(dir));
369 if (dma_map_direct(dev, ops))
370 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371 else if (use_dma_iommu(dev))
372 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373 else if (ops->sync_single_for_cpu)
374 ops->sync_single_for_cpu(dev, addr, size, dir);
375 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377}
378EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
380void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381 size_t size, enum dma_data_direction dir)
382{
383 const struct dma_map_ops *ops = get_dma_ops(dev);
384
385 BUG_ON(!valid_dma_direction(dir));
386 if (dma_map_direct(dev, ops))
387 dma_direct_sync_single_for_device(dev, addr, size, dir);
388 else if (use_dma_iommu(dev))
389 iommu_dma_sync_single_for_device(dev, addr, size, dir);
390 else if (ops->sync_single_for_device)
391 ops->sync_single_for_device(dev, addr, size, dir);
392 trace_dma_sync_single_for_device(dev, addr, size, dir);
393 debug_dma_sync_single_for_device(dev, addr, size, dir);
394}
395EXPORT_SYMBOL(__dma_sync_single_for_device);
396
397void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398 int nelems, enum dma_data_direction dir)
399{
400 const struct dma_map_ops *ops = get_dma_ops(dev);
401
402 BUG_ON(!valid_dma_direction(dir));
403 if (dma_map_direct(dev, ops))
404 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405 else if (use_dma_iommu(dev))
406 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407 else if (ops->sync_sg_for_cpu)
408 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411}
412EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
414void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415 int nelems, enum dma_data_direction dir)
416{
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418
419 BUG_ON(!valid_dma_direction(dir));
420 if (dma_map_direct(dev, ops))
421 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422 else if (use_dma_iommu(dev))
423 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424 else if (ops->sync_sg_for_device)
425 ops->sync_sg_for_device(dev, sg, nelems, dir);
426 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428}
429EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
431bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432{
433 const struct dma_map_ops *ops = get_dma_ops(dev);
434
435 if (dma_map_direct(dev, ops))
436 /*
437 * dma_skip_sync could've been reset on first SWIOTLB buffer
438 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439 * In this case, fall back to more granular check.
440 */
441 return dma_direct_need_sync(dev, dma_addr);
442 return true;
443}
444EXPORT_SYMBOL_GPL(__dma_need_sync);
445
446static void dma_setup_need_sync(struct device *dev)
447{
448 const struct dma_map_ops *ops = get_dma_ops(dev);
449
450 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
451 /*
452 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
453 * mapping, if any. During the device initialization, it's
454 * enough to check only for the DMA coherence.
455 */
456 dev->dma_skip_sync = dev_is_dma_coherent(dev);
457 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
458 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
459 /*
460 * Synchronization is not possible when none of DMA sync ops
461 * is set.
462 */
463 dev->dma_skip_sync = true;
464 else
465 dev->dma_skip_sync = false;
466}
467#else /* !CONFIG_DMA_NEED_SYNC */
468static inline void dma_setup_need_sync(struct device *dev) { }
469#endif /* !CONFIG_DMA_NEED_SYNC */
470
471/*
472 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
473 * that the intention is to allow exporting memory allocated via the
474 * coherent DMA APIs through the dma_buf API, which only accepts a
475 * scattertable. This presents a couple of problems:
476 * 1. Not all memory allocated via the coherent DMA APIs is backed by
477 * a struct page
478 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
479 * as we will try to flush the memory through a different alias to that
480 * actually being used (and the flushes are redundant.)
481 */
482int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
483 void *cpu_addr, dma_addr_t dma_addr, size_t size,
484 unsigned long attrs)
485{
486 const struct dma_map_ops *ops = get_dma_ops(dev);
487
488 if (dma_alloc_direct(dev, ops))
489 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
490 size, attrs);
491 if (use_dma_iommu(dev))
492 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
493 size, attrs);
494 if (!ops->get_sgtable)
495 return -ENXIO;
496 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
497}
498EXPORT_SYMBOL(dma_get_sgtable_attrs);
499
500#ifdef CONFIG_MMU
501/*
502 * Return the page attributes used for mapping dma_alloc_* memory, either in
503 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
504 */
505pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
506{
507 if (dev_is_dma_coherent(dev))
508 return prot;
509#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
510 if (attrs & DMA_ATTR_WRITE_COMBINE)
511 return pgprot_writecombine(prot);
512#endif
513 return pgprot_dmacoherent(prot);
514}
515#endif /* CONFIG_MMU */
516
517/**
518 * dma_can_mmap - check if a given device supports dma_mmap_*
519 * @dev: device to check
520 *
521 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
522 * map DMA allocations to userspace.
523 */
524bool dma_can_mmap(struct device *dev)
525{
526 const struct dma_map_ops *ops = get_dma_ops(dev);
527
528 if (dma_alloc_direct(dev, ops))
529 return dma_direct_can_mmap(dev);
530 if (use_dma_iommu(dev))
531 return true;
532 return ops->mmap != NULL;
533}
534EXPORT_SYMBOL_GPL(dma_can_mmap);
535
536/**
537 * dma_mmap_attrs - map a coherent DMA allocation into user space
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @vma: vm_area_struct describing requested user mapping
540 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
541 * @dma_addr: device-view address returned from dma_alloc_attrs
542 * @size: size of memory originally requested in dma_alloc_attrs
543 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
544 *
545 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
546 * space. The coherent DMA buffer must not be freed by the driver until the
547 * user space mapping has been released.
548 */
549int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
550 void *cpu_addr, dma_addr_t dma_addr, size_t size,
551 unsigned long attrs)
552{
553 const struct dma_map_ops *ops = get_dma_ops(dev);
554
555 if (dma_alloc_direct(dev, ops))
556 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
557 attrs);
558 if (use_dma_iommu(dev))
559 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
560 attrs);
561 if (!ops->mmap)
562 return -ENXIO;
563 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
564}
565EXPORT_SYMBOL(dma_mmap_attrs);
566
567u64 dma_get_required_mask(struct device *dev)
568{
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570
571 if (dma_alloc_direct(dev, ops))
572 return dma_direct_get_required_mask(dev);
573
574 if (use_dma_iommu(dev))
575 return DMA_BIT_MASK(32);
576
577 if (ops->get_required_mask)
578 return ops->get_required_mask(dev);
579
580 /*
581 * We require every DMA ops implementation to at least support a 32-bit
582 * DMA mask (and use bounce buffering if that isn't supported in
583 * hardware). As the direct mapping code has its own routine to
584 * actually report an optimal mask we default to 32-bit here as that
585 * is the right thing for most IOMMUs, and at least not actively
586 * harmful in general.
587 */
588 return DMA_BIT_MASK(32);
589}
590EXPORT_SYMBOL_GPL(dma_get_required_mask);
591
592void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
593 gfp_t flag, unsigned long attrs)
594{
595 const struct dma_map_ops *ops = get_dma_ops(dev);
596 void *cpu_addr;
597
598 WARN_ON_ONCE(!dev->coherent_dma_mask);
599
600 /*
601 * DMA allocations can never be turned back into a page pointer, so
602 * requesting compound pages doesn't make sense (and can't even be
603 * supported at all by various backends).
604 */
605 if (WARN_ON_ONCE(flag & __GFP_COMP))
606 return NULL;
607
608 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
609 trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
610 DMA_BIDIRECTIONAL, flag, attrs);
611 return cpu_addr;
612 }
613
614 /* let the implementation decide on the zone to allocate from: */
615 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
616
617 if (dma_alloc_direct(dev, ops)) {
618 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
619 } else if (use_dma_iommu(dev)) {
620 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
621 } else if (ops->alloc) {
622 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
623 } else {
624 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
625 attrs);
626 return NULL;
627 }
628
629 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
630 flag, attrs);
631 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
632 return cpu_addr;
633}
634EXPORT_SYMBOL(dma_alloc_attrs);
635
636void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
637 dma_addr_t dma_handle, unsigned long attrs)
638{
639 const struct dma_map_ops *ops = get_dma_ops(dev);
640
641 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
642 return;
643 /*
644 * On non-coherent platforms which implement DMA-coherent buffers via
645 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
646 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
647 * sleep on some machines, and b) an indication that the driver is
648 * probably misusing the coherent API anyway.
649 */
650 WARN_ON(irqs_disabled());
651
652 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
653 attrs);
654 if (!cpu_addr)
655 return;
656
657 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
658 if (dma_alloc_direct(dev, ops))
659 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
660 else if (use_dma_iommu(dev))
661 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
662 else if (ops->free)
663 ops->free(dev, size, cpu_addr, dma_handle, attrs);
664}
665EXPORT_SYMBOL(dma_free_attrs);
666
667static struct page *__dma_alloc_pages(struct device *dev, size_t size,
668 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
669{
670 const struct dma_map_ops *ops = get_dma_ops(dev);
671
672 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
673 return NULL;
674 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
675 return NULL;
676 if (WARN_ON_ONCE(gfp & __GFP_COMP))
677 return NULL;
678
679 size = PAGE_ALIGN(size);
680 if (dma_alloc_direct(dev, ops))
681 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
682 if (use_dma_iommu(dev))
683 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
684 if (!ops->alloc_pages_op)
685 return NULL;
686 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
687}
688
689struct page *dma_alloc_pages(struct device *dev, size_t size,
690 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
691{
692 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
693
694 if (page) {
695 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
696 size, dir, gfp, 0);
697 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
698 } else {
699 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
700 }
701 return page;
702}
703EXPORT_SYMBOL_GPL(dma_alloc_pages);
704
705static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
706 dma_addr_t dma_handle, enum dma_data_direction dir)
707{
708 const struct dma_map_ops *ops = get_dma_ops(dev);
709
710 size = PAGE_ALIGN(size);
711 if (dma_alloc_direct(dev, ops))
712 dma_direct_free_pages(dev, size, page, dma_handle, dir);
713 else if (use_dma_iommu(dev))
714 dma_common_free_pages(dev, size, page, dma_handle, dir);
715 else if (ops->free_pages)
716 ops->free_pages(dev, size, page, dma_handle, dir);
717}
718
719void dma_free_pages(struct device *dev, size_t size, struct page *page,
720 dma_addr_t dma_handle, enum dma_data_direction dir)
721{
722 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
723 debug_dma_unmap_page(dev, dma_handle, size, dir);
724 __dma_free_pages(dev, size, page, dma_handle, dir);
725}
726EXPORT_SYMBOL_GPL(dma_free_pages);
727
728int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
729 size_t size, struct page *page)
730{
731 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732
733 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
734 return -ENXIO;
735 return remap_pfn_range(vma, vma->vm_start,
736 page_to_pfn(page) + vma->vm_pgoff,
737 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
738}
739EXPORT_SYMBOL_GPL(dma_mmap_pages);
740
741static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
742 enum dma_data_direction dir, gfp_t gfp)
743{
744 struct sg_table *sgt;
745 struct page *page;
746
747 sgt = kmalloc(sizeof(*sgt), gfp);
748 if (!sgt)
749 return NULL;
750 if (sg_alloc_table(sgt, 1, gfp))
751 goto out_free_sgt;
752 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
753 if (!page)
754 goto out_free_table;
755 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
756 sg_dma_len(sgt->sgl) = sgt->sgl->length;
757 return sgt;
758out_free_table:
759 sg_free_table(sgt);
760out_free_sgt:
761 kfree(sgt);
762 return NULL;
763}
764
765struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
766 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
767{
768 struct sg_table *sgt;
769
770 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
771 return NULL;
772 if (WARN_ON_ONCE(gfp & __GFP_COMP))
773 return NULL;
774
775 if (use_dma_iommu(dev))
776 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
777 else
778 sgt = alloc_single_sgt(dev, size, dir, gfp);
779
780 if (sgt) {
781 sgt->nents = 1;
782 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
783 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
784 } else {
785 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
786 }
787 return sgt;
788}
789EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
790
791static void free_single_sgt(struct device *dev, size_t size,
792 struct sg_table *sgt, enum dma_data_direction dir)
793{
794 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
795 dir);
796 sg_free_table(sgt);
797 kfree(sgt);
798}
799
800void dma_free_noncontiguous(struct device *dev, size_t size,
801 struct sg_table *sgt, enum dma_data_direction dir)
802{
803 trace_dma_free_sgt(dev, sgt, size, dir);
804 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
805
806 if (use_dma_iommu(dev))
807 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
808 else
809 free_single_sgt(dev, size, sgt, dir);
810}
811EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
812
813void *dma_vmap_noncontiguous(struct device *dev, size_t size,
814 struct sg_table *sgt)
815{
816
817 if (use_dma_iommu(dev))
818 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
819
820 return page_address(sg_page(sgt->sgl));
821}
822EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
823
824void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
825{
826 if (use_dma_iommu(dev))
827 iommu_dma_vunmap_noncontiguous(dev, vaddr);
828}
829EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
830
831int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
832 size_t size, struct sg_table *sgt)
833{
834 if (use_dma_iommu(dev))
835 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
836 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837}
838EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839
840static int dma_supported(struct device *dev, u64 mask)
841{
842 const struct dma_map_ops *ops = get_dma_ops(dev);
843
844 if (use_dma_iommu(dev)) {
845 if (WARN_ON(ops))
846 return false;
847 return true;
848 }
849
850 /*
851 * ->dma_supported sets and clears the bypass flag, so ignore it here
852 * and always call into the method if there is one.
853 */
854 if (ops) {
855 if (!ops->dma_supported)
856 return true;
857 return ops->dma_supported(dev, mask);
858 }
859
860 return dma_direct_supported(dev, mask);
861}
862
863bool dma_pci_p2pdma_supported(struct device *dev)
864{
865 const struct dma_map_ops *ops = get_dma_ops(dev);
866
867 /*
868 * Note: dma_ops_bypass is not checked here because P2PDMA should
869 * not be used with dma mapping ops that do not have support even
870 * if the specific device is bypassing them.
871 */
872
873 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
874 return !ops;
875}
876EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877
878int dma_set_mask(struct device *dev, u64 mask)
879{
880 /*
881 * Truncate the mask to the actually supported dma_addr_t width to
882 * avoid generating unsupportable addresses.
883 */
884 mask = (dma_addr_t)mask;
885
886 if (!dev->dma_mask || !dma_supported(dev, mask))
887 return -EIO;
888
889 arch_dma_set_mask(dev, mask);
890 *dev->dma_mask = mask;
891 dma_setup_need_sync(dev);
892
893 return 0;
894}
895EXPORT_SYMBOL(dma_set_mask);
896
897int dma_set_coherent_mask(struct device *dev, u64 mask)
898{
899 /*
900 * Truncate the mask to the actually supported dma_addr_t width to
901 * avoid generating unsupportable addresses.
902 */
903 mask = (dma_addr_t)mask;
904
905 if (!dma_supported(dev, mask))
906 return -EIO;
907
908 dev->coherent_dma_mask = mask;
909 return 0;
910}
911EXPORT_SYMBOL(dma_set_coherent_mask);
912
913/**
914 * dma_addressing_limited - return if the device is addressing limited
915 * @dev: device to check
916 *
917 * Return %true if the devices DMA mask is too small to address all memory in
918 * the system, else %false. Lack of addressing bits is the prime reason for
919 * bounce buffering, but might not be the only one.
920 */
921bool dma_addressing_limited(struct device *dev)
922{
923 const struct dma_map_ops *ops = get_dma_ops(dev);
924
925 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926 dma_get_required_mask(dev))
927 return true;
928
929 if (unlikely(ops) || use_dma_iommu(dev))
930 return false;
931 return !dma_direct_all_ram_mapped(dev);
932}
933EXPORT_SYMBOL_GPL(dma_addressing_limited);
934
935size_t dma_max_mapping_size(struct device *dev)
936{
937 const struct dma_map_ops *ops = get_dma_ops(dev);
938 size_t size = SIZE_MAX;
939
940 if (dma_map_direct(dev, ops))
941 size = dma_direct_max_mapping_size(dev);
942 else if (use_dma_iommu(dev))
943 size = iommu_dma_max_mapping_size(dev);
944 else if (ops && ops->max_mapping_size)
945 size = ops->max_mapping_size(dev);
946
947 return size;
948}
949EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950
951size_t dma_opt_mapping_size(struct device *dev)
952{
953 const struct dma_map_ops *ops = get_dma_ops(dev);
954 size_t size = SIZE_MAX;
955
956 if (use_dma_iommu(dev))
957 size = iommu_dma_opt_mapping_size();
958 else if (ops && ops->opt_mapping_size)
959 size = ops->opt_mapping_size();
960
961 return min(dma_max_mapping_size(dev), size);
962}
963EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964
965unsigned long dma_get_merge_boundary(struct device *dev)
966{
967 const struct dma_map_ops *ops = get_dma_ops(dev);
968
969 if (use_dma_iommu(dev))
970 return iommu_dma_get_merge_boundary(dev);
971
972 if (!ops || !ops->get_merge_boundary)
973 return 0; /* can't merge */
974
975 return ops->get_merge_boundary(dev);
976}
977EXPORT_SYMBOL_GPL(dma_get_merge_boundary);