Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_trace.h"
 20#include "xfs_trans.h"
 21#include "xfs_ag.h"
 22
 
 23
 24STATIC struct xfs_btree_cur *
 25xfs_allocbt_dup_cursor(
 26	struct xfs_btree_cur	*cur)
 27{
 28	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 29			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 30}
 31
 32STATIC void
 33xfs_allocbt_set_root(
 34	struct xfs_btree_cur	*cur,
 35	union xfs_btree_ptr	*ptr,
 36	int			inc)
 37{
 38	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 39	struct xfs_agf		*agf = agbp->b_addr;
 40	int			btnum = cur->bc_btnum;
 41
 42	ASSERT(ptr->s != 0);
 43
 44	agf->agf_roots[btnum] = ptr->s;
 45	be32_add_cpu(&agf->agf_levels[btnum], inc);
 46	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 47
 48	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 49}
 50
 51STATIC int
 52xfs_allocbt_alloc_block(
 53	struct xfs_btree_cur	*cur,
 54	union xfs_btree_ptr	*start,
 55	union xfs_btree_ptr	*new,
 56	int			*stat)
 57{
 58	int			error;
 59	xfs_agblock_t		bno;
 60
 61	/* Allocate the new block from the freelist. If we can't, give up.  */
 62	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
 63				       &bno, 1);
 64	if (error)
 65		return error;
 66
 67	if (bno == NULLAGBLOCK) {
 68		*stat = 0;
 69		return 0;
 70	}
 71
 72	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 73	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
 74
 75	new->s = cpu_to_be32(bno);
 76
 77	*stat = 1;
 78	return 0;
 79}
 80
 81STATIC int
 82xfs_allocbt_free_block(
 83	struct xfs_btree_cur	*cur,
 84	struct xfs_buf		*bp)
 85{
 86	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 87	xfs_agblock_t		bno;
 88	int			error;
 89
 90	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
 91	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
 
 92	if (error)
 93		return error;
 94
 95	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
 96	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
 97			      XFS_EXTENT_BUSY_SKIP_DISCARD);
 98	return 0;
 99}
100
101/*
102 * Update the longest extent in the AGF
103 */
104STATIC void
105xfs_allocbt_update_lastrec(
106	struct xfs_btree_cur	*cur,
107	struct xfs_btree_block	*block,
108	union xfs_btree_rec	*rec,
109	int			ptr,
110	int			reason)
111{
112	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
113	struct xfs_perag	*pag;
114	__be32			len;
115	int			numrecs;
116
117	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
118
119	switch (reason) {
120	case LASTREC_UPDATE:
121		/*
122		 * If this is the last leaf block and it's the last record,
123		 * then update the size of the longest extent in the AG.
124		 */
125		if (ptr != xfs_btree_get_numrecs(block))
126			return;
127		len = rec->alloc.ar_blockcount;
128		break;
129	case LASTREC_INSREC:
130		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
131		    be32_to_cpu(agf->agf_longest))
132			return;
133		len = rec->alloc.ar_blockcount;
134		break;
135	case LASTREC_DELREC:
136		numrecs = xfs_btree_get_numrecs(block);
137		if (ptr <= numrecs)
138			return;
139		ASSERT(ptr == numrecs + 1);
140
141		if (numrecs) {
142			xfs_alloc_rec_t *rrp;
143
144			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
145			len = rrp->ar_blockcount;
146		} else {
147			len = 0;
148		}
149
150		break;
151	default:
152		ASSERT(0);
153		return;
154	}
155
156	agf->agf_longest = len;
157	pag = cur->bc_ag.agbp->b_pag;
158	pag->pagf_longest = be32_to_cpu(len);
159	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
160}
161
162STATIC int
163xfs_allocbt_get_minrecs(
164	struct xfs_btree_cur	*cur,
165	int			level)
166{
167	return cur->bc_mp->m_alloc_mnr[level != 0];
168}
169
170STATIC int
171xfs_allocbt_get_maxrecs(
172	struct xfs_btree_cur	*cur,
173	int			level)
174{
175	return cur->bc_mp->m_alloc_mxr[level != 0];
176}
177
178STATIC void
179xfs_allocbt_init_key_from_rec(
180	union xfs_btree_key	*key,
181	union xfs_btree_rec	*rec)
182{
183	key->alloc.ar_startblock = rec->alloc.ar_startblock;
184	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
185}
186
187STATIC void
188xfs_bnobt_init_high_key_from_rec(
189	union xfs_btree_key	*key,
190	union xfs_btree_rec	*rec)
191{
192	__u32			x;
193
194	x = be32_to_cpu(rec->alloc.ar_startblock);
195	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
196	key->alloc.ar_startblock = cpu_to_be32(x);
197	key->alloc.ar_blockcount = 0;
198}
199
200STATIC void
201xfs_cntbt_init_high_key_from_rec(
202	union xfs_btree_key	*key,
203	union xfs_btree_rec	*rec)
204{
205	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
206	key->alloc.ar_startblock = 0;
207}
208
209STATIC void
210xfs_allocbt_init_rec_from_cur(
211	struct xfs_btree_cur	*cur,
212	union xfs_btree_rec	*rec)
213{
214	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
215	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
216}
217
218STATIC void
219xfs_allocbt_init_ptr_from_cur(
220	struct xfs_btree_cur	*cur,
221	union xfs_btree_ptr	*ptr)
222{
223	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
224
225	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227	ptr->s = agf->agf_roots[cur->bc_btnum];
228}
229
230STATIC int64_t
231xfs_bnobt_key_diff(
232	struct xfs_btree_cur	*cur,
233	union xfs_btree_key	*key)
234{
235	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
236	xfs_alloc_key_t		*kp = &key->alloc;
237
238	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
239}
240
241STATIC int64_t
242xfs_cntbt_key_diff(
243	struct xfs_btree_cur	*cur,
244	union xfs_btree_key	*key)
245{
246	xfs_alloc_rec_incore_t	*rec = &cur->bc_rec.a;
247	xfs_alloc_key_t		*kp = &key->alloc;
248	int64_t			diff;
249
250	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
251	if (diff)
252		return diff;
253
254	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
255}
256
257STATIC int64_t
258xfs_bnobt_diff_two_keys(
259	struct xfs_btree_cur	*cur,
260	union xfs_btree_key	*k1,
261	union xfs_btree_key	*k2)
262{
263	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
264			  be32_to_cpu(k2->alloc.ar_startblock);
265}
266
267STATIC int64_t
268xfs_cntbt_diff_two_keys(
269	struct xfs_btree_cur	*cur,
270	union xfs_btree_key	*k1,
271	union xfs_btree_key	*k2)
272{
273	int64_t			diff;
274
275	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
276		be32_to_cpu(k2->alloc.ar_blockcount);
277	if (diff)
278		return diff;
279
280	return  be32_to_cpu(k1->alloc.ar_startblock) -
281		be32_to_cpu(k2->alloc.ar_startblock);
282}
283
284static xfs_failaddr_t
285xfs_allocbt_verify(
286	struct xfs_buf		*bp)
287{
288	struct xfs_mount	*mp = bp->b_mount;
289	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
290	struct xfs_perag	*pag = bp->b_pag;
291	xfs_failaddr_t		fa;
292	unsigned int		level;
293	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
294
295	if (!xfs_verify_magic(bp, block->bb_magic))
296		return __this_address;
297
298	if (xfs_sb_version_hascrc(&mp->m_sb)) {
299		fa = xfs_btree_sblock_v5hdr_verify(bp);
300		if (fa)
301			return fa;
302	}
303
304	/*
305	 * The perag may not be attached during grow operations or fully
306	 * initialized from the AGF during log recovery. Therefore we can only
307	 * check against maximum tree depth from those contexts.
308	 *
309	 * Otherwise check against the per-tree limit. Peek at one of the
310	 * verifier magic values to determine the type of tree we're verifying
311	 * against.
312	 */
313	level = be16_to_cpu(block->bb_level);
314	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
315		btnum = XFS_BTNUM_CNTi;
316	if (pag && pag->pagf_init) {
317		if (level >= pag->pagf_levels[btnum])
318			return __this_address;
319	} else if (level >= mp->m_ag_maxlevels)
320		return __this_address;
321
322	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
323}
324
325static void
326xfs_allocbt_read_verify(
327	struct xfs_buf	*bp)
328{
329	xfs_failaddr_t	fa;
330
331	if (!xfs_btree_sblock_verify_crc(bp))
332		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333	else {
334		fa = xfs_allocbt_verify(bp);
335		if (fa)
336			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337	}
338
339	if (bp->b_error)
340		trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_allocbt_write_verify(
345	struct xfs_buf	*bp)
346{
347	xfs_failaddr_t	fa;
348
349	fa = xfs_allocbt_verify(bp);
350	if (fa) {
351		trace_xfs_btree_corrupt(bp, _RET_IP_);
352		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353		return;
354	}
355	xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_bnobt_buf_ops = {
360	.name = "xfs_bnobt",
361	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
362		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
363	.verify_read = xfs_allocbt_read_verify,
364	.verify_write = xfs_allocbt_write_verify,
365	.verify_struct = xfs_allocbt_verify,
366};
367
368const struct xfs_buf_ops xfs_cntbt_buf_ops = {
369	.name = "xfs_cntbt",
370	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
371		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
372	.verify_read = xfs_allocbt_read_verify,
373	.verify_write = xfs_allocbt_write_verify,
374	.verify_struct = xfs_allocbt_verify,
375};
376
377STATIC int
378xfs_bnobt_keys_inorder(
379	struct xfs_btree_cur	*cur,
380	union xfs_btree_key	*k1,
381	union xfs_btree_key	*k2)
382{
383	return be32_to_cpu(k1->alloc.ar_startblock) <
384	       be32_to_cpu(k2->alloc.ar_startblock);
385}
386
387STATIC int
388xfs_bnobt_recs_inorder(
389	struct xfs_btree_cur	*cur,
390	union xfs_btree_rec	*r1,
391	union xfs_btree_rec	*r2)
392{
393	return be32_to_cpu(r1->alloc.ar_startblock) +
394		be32_to_cpu(r1->alloc.ar_blockcount) <=
395		be32_to_cpu(r2->alloc.ar_startblock);
396}
397
398STATIC int
399xfs_cntbt_keys_inorder(
400	struct xfs_btree_cur	*cur,
401	union xfs_btree_key	*k1,
402	union xfs_btree_key	*k2)
403{
404	return be32_to_cpu(k1->alloc.ar_blockcount) <
405		be32_to_cpu(k2->alloc.ar_blockcount) ||
406		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
407		 be32_to_cpu(k1->alloc.ar_startblock) <
408		 be32_to_cpu(k2->alloc.ar_startblock));
409}
410
411STATIC int
412xfs_cntbt_recs_inorder(
413	struct xfs_btree_cur	*cur,
414	union xfs_btree_rec	*r1,
415	union xfs_btree_rec	*r2)
416{
417	return be32_to_cpu(r1->alloc.ar_blockcount) <
418		be32_to_cpu(r2->alloc.ar_blockcount) ||
419		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
420		 be32_to_cpu(r1->alloc.ar_startblock) <
421		 be32_to_cpu(r2->alloc.ar_startblock));
422}
423
424static const struct xfs_btree_ops xfs_bnobt_ops = {
425	.rec_len		= sizeof(xfs_alloc_rec_t),
426	.key_len		= sizeof(xfs_alloc_key_t),
427
428	.dup_cursor		= xfs_allocbt_dup_cursor,
429	.set_root		= xfs_allocbt_set_root,
430	.alloc_block		= xfs_allocbt_alloc_block,
431	.free_block		= xfs_allocbt_free_block,
432	.update_lastrec		= xfs_allocbt_update_lastrec,
433	.get_minrecs		= xfs_allocbt_get_minrecs,
434	.get_maxrecs		= xfs_allocbt_get_maxrecs,
435	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
436	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
437	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
438	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
439	.key_diff		= xfs_bnobt_key_diff,
440	.buf_ops		= &xfs_bnobt_buf_ops,
441	.diff_two_keys		= xfs_bnobt_diff_two_keys,
442	.keys_inorder		= xfs_bnobt_keys_inorder,
443	.recs_inorder		= xfs_bnobt_recs_inorder,
444};
445
446static const struct xfs_btree_ops xfs_cntbt_ops = {
447	.rec_len		= sizeof(xfs_alloc_rec_t),
448	.key_len		= sizeof(xfs_alloc_key_t),
449
450	.dup_cursor		= xfs_allocbt_dup_cursor,
451	.set_root		= xfs_allocbt_set_root,
452	.alloc_block		= xfs_allocbt_alloc_block,
453	.free_block		= xfs_allocbt_free_block,
454	.update_lastrec		= xfs_allocbt_update_lastrec,
455	.get_minrecs		= xfs_allocbt_get_minrecs,
456	.get_maxrecs		= xfs_allocbt_get_maxrecs,
457	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
458	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
459	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
460	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
461	.key_diff		= xfs_cntbt_key_diff,
462	.buf_ops		= &xfs_cntbt_buf_ops,
463	.diff_two_keys		= xfs_cntbt_diff_two_keys,
464	.keys_inorder		= xfs_cntbt_keys_inorder,
465	.recs_inorder		= xfs_cntbt_recs_inorder,
466};
467
468/* Allocate most of a new allocation btree cursor. */
469STATIC struct xfs_btree_cur *
470xfs_allocbt_init_common(
471	struct xfs_mount	*mp,
472	struct xfs_trans	*tp,
473	struct xfs_perag	*pag,
474	xfs_btnum_t		btnum)
475{
476	struct xfs_btree_cur	*cur;
477
478	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
479
480	cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
481
482	cur->bc_tp = tp;
483	cur->bc_mp = mp;
484	cur->bc_btnum = btnum;
485	cur->bc_blocklog = mp->m_sb.sb_blocklog;
486	cur->bc_ag.abt.active = false;
487
488	if (btnum == XFS_BTNUM_CNT) {
489		cur->bc_ops = &xfs_cntbt_ops;
490		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
491		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
492	} else {
493		cur->bc_ops = &xfs_bnobt_ops;
494		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
495	}
496
497	/* take a reference for the cursor */
498	atomic_inc(&pag->pag_ref);
499	cur->bc_ag.pag = pag;
500
501	if (xfs_sb_version_hascrc(&mp->m_sb))
502		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
503
504	return cur;
505}
506
507/*
508 * Allocate a new allocation btree cursor.
509 */
510struct xfs_btree_cur *			/* new alloc btree cursor */
511xfs_allocbt_init_cursor(
512	struct xfs_mount	*mp,		/* file system mount point */
513	struct xfs_trans	*tp,		/* transaction pointer */
514	struct xfs_buf		*agbp,		/* buffer for agf structure */
515	struct xfs_perag	*pag,
516	xfs_btnum_t		btnum)		/* btree identifier */
517{
518	struct xfs_agf		*agf = agbp->b_addr;
519	struct xfs_btree_cur	*cur;
520
521	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
522	if (btnum == XFS_BTNUM_CNT)
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
524	else
525		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
526
527	cur->bc_ag.agbp = agbp;
528
529	return cur;
530}
531
532/* Create a free space btree cursor with a fake root for staging. */
533struct xfs_btree_cur *
534xfs_allocbt_stage_cursor(
535	struct xfs_mount	*mp,
536	struct xbtree_afakeroot	*afake,
537	struct xfs_perag	*pag,
538	xfs_btnum_t		btnum)
539{
540	struct xfs_btree_cur	*cur;
541
542	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
543	xfs_btree_stage_afakeroot(cur, afake);
544	return cur;
545}
546
547/*
548 * Install a new free space btree root.  Caller is responsible for invalidating
549 * and freeing the old btree blocks.
550 */
551void
552xfs_allocbt_commit_staged_btree(
553	struct xfs_btree_cur	*cur,
554	struct xfs_trans	*tp,
555	struct xfs_buf		*agbp)
556{
557	struct xfs_agf		*agf = agbp->b_addr;
558	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
559
560	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
561
562	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
563	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
564	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
565
566	if (cur->bc_btnum == XFS_BTNUM_BNO) {
567		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
568	} else {
569		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
570		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
571	}
572}
573
 
 
 
 
 
 
 
 
 
 
 
574/*
575 * Calculate number of records in an alloc btree block.
576 */
577int
578xfs_allocbt_maxrecs(
579	struct xfs_mount	*mp,
580	int			blocklen,
581	int			leaf)
582{
583	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
 
 
584
585	if (leaf)
586		return blocklen / sizeof(xfs_alloc_rec_t);
587	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588}
589
590/* Calculate the freespace btree size for some records. */
591xfs_extlen_t
592xfs_allocbt_calc_size(
593	struct xfs_mount	*mp,
594	unsigned long long	len)
595{
596	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_btree.h"
 14#include "xfs_btree_staging.h"
 15#include "xfs_alloc_btree.h"
 16#include "xfs_alloc.h"
 17#include "xfs_extent_busy.h"
 18#include "xfs_error.h"
 19#include "xfs_trace.h"
 20#include "xfs_trans.h"
 21#include "xfs_ag.h"
 22
 23static struct kmem_cache	*xfs_allocbt_cur_cache;
 24
 25STATIC struct xfs_btree_cur *
 26xfs_allocbt_dup_cursor(
 27	struct xfs_btree_cur	*cur)
 28{
 29	return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
 30			cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
 31}
 32
 33STATIC void
 34xfs_allocbt_set_root(
 35	struct xfs_btree_cur		*cur,
 36	const union xfs_btree_ptr	*ptr,
 37	int				inc)
 38{
 39	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 40	struct xfs_agf		*agf = agbp->b_addr;
 41	int			btnum = cur->bc_btnum;
 42
 43	ASSERT(ptr->s != 0);
 44
 45	agf->agf_roots[btnum] = ptr->s;
 46	be32_add_cpu(&agf->agf_levels[btnum], inc);
 47	cur->bc_ag.pag->pagf_levels[btnum] += inc;
 48
 49	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
 50}
 51
 52STATIC int
 53xfs_allocbt_alloc_block(
 54	struct xfs_btree_cur		*cur,
 55	const union xfs_btree_ptr	*start,
 56	union xfs_btree_ptr		*new,
 57	int				*stat)
 58{
 59	int			error;
 60	xfs_agblock_t		bno;
 61
 62	/* Allocate the new block from the freelist. If we can't, give up.  */
 63	error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
 64			cur->bc_ag.agbp, &bno, 1);
 65	if (error)
 66		return error;
 67
 68	if (bno == NULLAGBLOCK) {
 69		*stat = 0;
 70		return 0;
 71	}
 72
 73	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
 74	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
 75
 76	new->s = cpu_to_be32(bno);
 77
 78	*stat = 1;
 79	return 0;
 80}
 81
 82STATIC int
 83xfs_allocbt_free_block(
 84	struct xfs_btree_cur	*cur,
 85	struct xfs_buf		*bp)
 86{
 87	struct xfs_buf		*agbp = cur->bc_ag.agbp;
 88	xfs_agblock_t		bno;
 89	int			error;
 90
 91	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
 92	error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
 93			bno, 1);
 94	if (error)
 95		return error;
 96
 97	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
 98	xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
 99			      XFS_EXTENT_BUSY_SKIP_DISCARD);
100	return 0;
101}
102
103/*
104 * Update the longest extent in the AGF
105 */
106STATIC void
107xfs_allocbt_update_lastrec(
108	struct xfs_btree_cur		*cur,
109	const struct xfs_btree_block	*block,
110	const union xfs_btree_rec	*rec,
111	int				ptr,
112	int				reason)
113{
114	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
115	struct xfs_perag	*pag;
116	__be32			len;
117	int			numrecs;
118
119	ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121	switch (reason) {
122	case LASTREC_UPDATE:
123		/*
124		 * If this is the last leaf block and it's the last record,
125		 * then update the size of the longest extent in the AG.
126		 */
127		if (ptr != xfs_btree_get_numrecs(block))
128			return;
129		len = rec->alloc.ar_blockcount;
130		break;
131	case LASTREC_INSREC:
132		if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133		    be32_to_cpu(agf->agf_longest))
134			return;
135		len = rec->alloc.ar_blockcount;
136		break;
137	case LASTREC_DELREC:
138		numrecs = xfs_btree_get_numrecs(block);
139		if (ptr <= numrecs)
140			return;
141		ASSERT(ptr == numrecs + 1);
142
143		if (numrecs) {
144			xfs_alloc_rec_t *rrp;
145
146			rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147			len = rrp->ar_blockcount;
148		} else {
149			len = 0;
150		}
151
152		break;
153	default:
154		ASSERT(0);
155		return;
156	}
157
158	agf->agf_longest = len;
159	pag = cur->bc_ag.agbp->b_pag;
160	pag->pagf_longest = be32_to_cpu(len);
161	xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162}
163
164STATIC int
165xfs_allocbt_get_minrecs(
166	struct xfs_btree_cur	*cur,
167	int			level)
168{
169	return cur->bc_mp->m_alloc_mnr[level != 0];
170}
171
172STATIC int
173xfs_allocbt_get_maxrecs(
174	struct xfs_btree_cur	*cur,
175	int			level)
176{
177	return cur->bc_mp->m_alloc_mxr[level != 0];
178}
179
180STATIC void
181xfs_allocbt_init_key_from_rec(
182	union xfs_btree_key		*key,
183	const union xfs_btree_rec	*rec)
184{
185	key->alloc.ar_startblock = rec->alloc.ar_startblock;
186	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187}
188
189STATIC void
190xfs_bnobt_init_high_key_from_rec(
191	union xfs_btree_key		*key,
192	const union xfs_btree_rec	*rec)
193{
194	__u32				x;
195
196	x = be32_to_cpu(rec->alloc.ar_startblock);
197	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198	key->alloc.ar_startblock = cpu_to_be32(x);
199	key->alloc.ar_blockcount = 0;
200}
201
202STATIC void
203xfs_cntbt_init_high_key_from_rec(
204	union xfs_btree_key		*key,
205	const union xfs_btree_rec	*rec)
206{
207	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208	key->alloc.ar_startblock = 0;
209}
210
211STATIC void
212xfs_allocbt_init_rec_from_cur(
213	struct xfs_btree_cur	*cur,
214	union xfs_btree_rec	*rec)
215{
216	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218}
219
220STATIC void
221xfs_allocbt_init_ptr_from_cur(
222	struct xfs_btree_cur	*cur,
223	union xfs_btree_ptr	*ptr)
224{
225	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
226
227	ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229	ptr->s = agf->agf_roots[cur->bc_btnum];
230}
231
232STATIC int64_t
233xfs_bnobt_key_diff(
234	struct xfs_btree_cur		*cur,
235	const union xfs_btree_key	*key)
236{
237	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
238	const struct xfs_alloc_rec	*kp = &key->alloc;
239
240	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241}
242
243STATIC int64_t
244xfs_cntbt_key_diff(
245	struct xfs_btree_cur		*cur,
246	const union xfs_btree_key	*key)
247{
248	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
249	const struct xfs_alloc_rec	*kp = &key->alloc;
250	int64_t				diff;
251
252	diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253	if (diff)
254		return diff;
255
256	return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257}
258
259STATIC int64_t
260xfs_bnobt_diff_two_keys(
261	struct xfs_btree_cur		*cur,
262	const union xfs_btree_key	*k1,
263	const union xfs_btree_key	*k2)
264{
265	return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
266			  be32_to_cpu(k2->alloc.ar_startblock);
267}
268
269STATIC int64_t
270xfs_cntbt_diff_two_keys(
271	struct xfs_btree_cur		*cur,
272	const union xfs_btree_key	*k1,
273	const union xfs_btree_key	*k2)
274{
275	int64_t				diff;
276
277	diff =  be32_to_cpu(k1->alloc.ar_blockcount) -
278		be32_to_cpu(k2->alloc.ar_blockcount);
279	if (diff)
280		return diff;
281
282	return  be32_to_cpu(k1->alloc.ar_startblock) -
283		be32_to_cpu(k2->alloc.ar_startblock);
284}
285
286static xfs_failaddr_t
287xfs_allocbt_verify(
288	struct xfs_buf		*bp)
289{
290	struct xfs_mount	*mp = bp->b_mount;
291	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
292	struct xfs_perag	*pag = bp->b_pag;
293	xfs_failaddr_t		fa;
294	unsigned int		level;
295	xfs_btnum_t		btnum = XFS_BTNUM_BNOi;
296
297	if (!xfs_verify_magic(bp, block->bb_magic))
298		return __this_address;
299
300	if (xfs_has_crc(mp)) {
301		fa = xfs_btree_sblock_v5hdr_verify(bp);
302		if (fa)
303			return fa;
304	}
305
306	/*
307	 * The perag may not be attached during grow operations or fully
308	 * initialized from the AGF during log recovery. Therefore we can only
309	 * check against maximum tree depth from those contexts.
310	 *
311	 * Otherwise check against the per-tree limit. Peek at one of the
312	 * verifier magic values to determine the type of tree we're verifying
313	 * against.
314	 */
315	level = be16_to_cpu(block->bb_level);
316	if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
317		btnum = XFS_BTNUM_CNTi;
318	if (pag && pag->pagf_init) {
319		if (level >= pag->pagf_levels[btnum])
320			return __this_address;
321	} else if (level >= mp->m_alloc_maxlevels)
322		return __this_address;
323
324	return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
325}
326
327static void
328xfs_allocbt_read_verify(
329	struct xfs_buf	*bp)
330{
331	xfs_failaddr_t	fa;
332
333	if (!xfs_btree_sblock_verify_crc(bp))
334		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335	else {
336		fa = xfs_allocbt_verify(bp);
337		if (fa)
338			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339	}
340
341	if (bp->b_error)
342		trace_xfs_btree_corrupt(bp, _RET_IP_);
343}
344
345static void
346xfs_allocbt_write_verify(
347	struct xfs_buf	*bp)
348{
349	xfs_failaddr_t	fa;
350
351	fa = xfs_allocbt_verify(bp);
352	if (fa) {
353		trace_xfs_btree_corrupt(bp, _RET_IP_);
354		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355		return;
356	}
357	xfs_btree_sblock_calc_crc(bp);
358
359}
360
361const struct xfs_buf_ops xfs_bnobt_buf_ops = {
362	.name = "xfs_bnobt",
363	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
364		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
365	.verify_read = xfs_allocbt_read_verify,
366	.verify_write = xfs_allocbt_write_verify,
367	.verify_struct = xfs_allocbt_verify,
368};
369
370const struct xfs_buf_ops xfs_cntbt_buf_ops = {
371	.name = "xfs_cntbt",
372	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
373		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
374	.verify_read = xfs_allocbt_read_verify,
375	.verify_write = xfs_allocbt_write_verify,
376	.verify_struct = xfs_allocbt_verify,
377};
378
379STATIC int
380xfs_bnobt_keys_inorder(
381	struct xfs_btree_cur		*cur,
382	const union xfs_btree_key	*k1,
383	const union xfs_btree_key	*k2)
384{
385	return be32_to_cpu(k1->alloc.ar_startblock) <
386	       be32_to_cpu(k2->alloc.ar_startblock);
387}
388
389STATIC int
390xfs_bnobt_recs_inorder(
391	struct xfs_btree_cur		*cur,
392	const union xfs_btree_rec	*r1,
393	const union xfs_btree_rec	*r2)
394{
395	return be32_to_cpu(r1->alloc.ar_startblock) +
396		be32_to_cpu(r1->alloc.ar_blockcount) <=
397		be32_to_cpu(r2->alloc.ar_startblock);
398}
399
400STATIC int
401xfs_cntbt_keys_inorder(
402	struct xfs_btree_cur		*cur,
403	const union xfs_btree_key	*k1,
404	const union xfs_btree_key	*k2)
405{
406	return be32_to_cpu(k1->alloc.ar_blockcount) <
407		be32_to_cpu(k2->alloc.ar_blockcount) ||
408		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
409		 be32_to_cpu(k1->alloc.ar_startblock) <
410		 be32_to_cpu(k2->alloc.ar_startblock));
411}
412
413STATIC int
414xfs_cntbt_recs_inorder(
415	struct xfs_btree_cur		*cur,
416	const union xfs_btree_rec	*r1,
417	const union xfs_btree_rec	*r2)
418{
419	return be32_to_cpu(r1->alloc.ar_blockcount) <
420		be32_to_cpu(r2->alloc.ar_blockcount) ||
421		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
422		 be32_to_cpu(r1->alloc.ar_startblock) <
423		 be32_to_cpu(r2->alloc.ar_startblock));
424}
425
426static const struct xfs_btree_ops xfs_bnobt_ops = {
427	.rec_len		= sizeof(xfs_alloc_rec_t),
428	.key_len		= sizeof(xfs_alloc_key_t),
429
430	.dup_cursor		= xfs_allocbt_dup_cursor,
431	.set_root		= xfs_allocbt_set_root,
432	.alloc_block		= xfs_allocbt_alloc_block,
433	.free_block		= xfs_allocbt_free_block,
434	.update_lastrec		= xfs_allocbt_update_lastrec,
435	.get_minrecs		= xfs_allocbt_get_minrecs,
436	.get_maxrecs		= xfs_allocbt_get_maxrecs,
437	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
438	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
439	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
440	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
441	.key_diff		= xfs_bnobt_key_diff,
442	.buf_ops		= &xfs_bnobt_buf_ops,
443	.diff_two_keys		= xfs_bnobt_diff_two_keys,
444	.keys_inorder		= xfs_bnobt_keys_inorder,
445	.recs_inorder		= xfs_bnobt_recs_inorder,
446};
447
448static const struct xfs_btree_ops xfs_cntbt_ops = {
449	.rec_len		= sizeof(xfs_alloc_rec_t),
450	.key_len		= sizeof(xfs_alloc_key_t),
451
452	.dup_cursor		= xfs_allocbt_dup_cursor,
453	.set_root		= xfs_allocbt_set_root,
454	.alloc_block		= xfs_allocbt_alloc_block,
455	.free_block		= xfs_allocbt_free_block,
456	.update_lastrec		= xfs_allocbt_update_lastrec,
457	.get_minrecs		= xfs_allocbt_get_minrecs,
458	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
461	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463	.key_diff		= xfs_cntbt_key_diff,
464	.buf_ops		= &xfs_cntbt_buf_ops,
465	.diff_two_keys		= xfs_cntbt_diff_two_keys,
466	.keys_inorder		= xfs_cntbt_keys_inorder,
467	.recs_inorder		= xfs_cntbt_recs_inorder,
468};
469
470/* Allocate most of a new allocation btree cursor. */
471STATIC struct xfs_btree_cur *
472xfs_allocbt_init_common(
473	struct xfs_mount	*mp,
474	struct xfs_trans	*tp,
475	struct xfs_perag	*pag,
476	xfs_btnum_t		btnum)
477{
478	struct xfs_btree_cur	*cur;
479
480	ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
481
482	cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
483			xfs_allocbt_cur_cache);
 
 
 
 
484	cur->bc_ag.abt.active = false;
485
486	if (btnum == XFS_BTNUM_CNT) {
487		cur->bc_ops = &xfs_cntbt_ops;
488		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
489		cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
490	} else {
491		cur->bc_ops = &xfs_bnobt_ops;
492		cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
493	}
494
495	/* take a reference for the cursor */
496	atomic_inc(&pag->pag_ref);
497	cur->bc_ag.pag = pag;
498
499	if (xfs_has_crc(mp))
500		cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
501
502	return cur;
503}
504
505/*
506 * Allocate a new allocation btree cursor.
507 */
508struct xfs_btree_cur *			/* new alloc btree cursor */
509xfs_allocbt_init_cursor(
510	struct xfs_mount	*mp,		/* file system mount point */
511	struct xfs_trans	*tp,		/* transaction pointer */
512	struct xfs_buf		*agbp,		/* buffer for agf structure */
513	struct xfs_perag	*pag,
514	xfs_btnum_t		btnum)		/* btree identifier */
515{
516	struct xfs_agf		*agf = agbp->b_addr;
517	struct xfs_btree_cur	*cur;
518
519	cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
520	if (btnum == XFS_BTNUM_CNT)
521		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
522	else
523		cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524
525	cur->bc_ag.agbp = agbp;
526
527	return cur;
528}
529
530/* Create a free space btree cursor with a fake root for staging. */
531struct xfs_btree_cur *
532xfs_allocbt_stage_cursor(
533	struct xfs_mount	*mp,
534	struct xbtree_afakeroot	*afake,
535	struct xfs_perag	*pag,
536	xfs_btnum_t		btnum)
537{
538	struct xfs_btree_cur	*cur;
539
540	cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
541	xfs_btree_stage_afakeroot(cur, afake);
542	return cur;
543}
544
545/*
546 * Install a new free space btree root.  Caller is responsible for invalidating
547 * and freeing the old btree blocks.
548 */
549void
550xfs_allocbt_commit_staged_btree(
551	struct xfs_btree_cur	*cur,
552	struct xfs_trans	*tp,
553	struct xfs_buf		*agbp)
554{
555	struct xfs_agf		*agf = agbp->b_addr;
556	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
557
558	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
559
560	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
561	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
562	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
563
564	if (cur->bc_btnum == XFS_BTNUM_BNO) {
565		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
566	} else {
567		cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
568		xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
569	}
570}
571
572/* Calculate number of records in an alloc btree block. */
573static inline unsigned int
574xfs_allocbt_block_maxrecs(
575	unsigned int		blocklen,
576	bool			leaf)
577{
578	if (leaf)
579		return blocklen / sizeof(xfs_alloc_rec_t);
580	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
581}
582
583/*
584 * Calculate number of records in an alloc btree block.
585 */
586int
587xfs_allocbt_maxrecs(
588	struct xfs_mount	*mp,
589	int			blocklen,
590	int			leaf)
591{
592	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
593	return xfs_allocbt_block_maxrecs(blocklen, leaf);
594}
595
596/* Free space btrees are at their largest when every other block is free. */
597#define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
598
599/* Compute the max possible height for free space btrees. */
600unsigned int
601xfs_allocbt_maxlevels_ondisk(void)
602{
603	unsigned int		minrecs[2];
604	unsigned int		blocklen;
605
606	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
607		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
608
609	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
610	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
611
612	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
613}
614
615/* Calculate the freespace btree size for some records. */
616xfs_extlen_t
617xfs_allocbt_calc_size(
618	struct xfs_mount	*mp,
619	unsigned long long	len)
620{
621	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
622}
623
624int __init
625xfs_allocbt_init_cur_cache(void)
626{
627	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
628			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
629			0, 0, NULL);
630
631	if (!xfs_allocbt_cur_cache)
632		return -ENOMEM;
633	return 0;
634}
635
636void
637xfs_allocbt_destroy_cur_cache(void)
638{
639	kmem_cache_destroy(xfs_allocbt_cur_cache);
640	xfs_allocbt_cur_cache = NULL;
641}