Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23
24STATIC struct xfs_btree_cur *
25xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27{
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_ag.agbp;
39 struct xfs_agf *agf = agbp->b_addr;
40 int btnum = cur->bc_btnum;
41
42 ASSERT(ptr->s != 0);
43
44 agf->agf_roots[btnum] = ptr->s;
45 be32_add_cpu(&agf->agf_levels[btnum], inc);
46 cur->bc_ag.pag->pagf_levels[btnum] += inc;
47
48 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
49}
50
51STATIC int
52xfs_allocbt_alloc_block(
53 struct xfs_btree_cur *cur,
54 union xfs_btree_ptr *start,
55 union xfs_btree_ptr *new,
56 int *stat)
57{
58 int error;
59 xfs_agblock_t bno;
60
61 /* Allocate the new block from the freelist. If we can't, give up. */
62 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
63 &bno, 1);
64 if (error)
65 return error;
66
67 if (bno == NULLAGBLOCK) {
68 *stat = 0;
69 return 0;
70 }
71
72 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
73 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
74
75 new->s = cpu_to_be32(bno);
76
77 *stat = 1;
78 return 0;
79}
80
81STATIC int
82xfs_allocbt_free_block(
83 struct xfs_btree_cur *cur,
84 struct xfs_buf *bp)
85{
86 struct xfs_buf *agbp = cur->bc_ag.agbp;
87 xfs_agblock_t bno;
88 int error;
89
90 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
91 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
92 if (error)
93 return error;
94
95 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
96 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
97 XFS_EXTENT_BUSY_SKIP_DISCARD);
98 return 0;
99}
100
101/*
102 * Update the longest extent in the AGF
103 */
104STATIC void
105xfs_allocbt_update_lastrec(
106 struct xfs_btree_cur *cur,
107 struct xfs_btree_block *block,
108 union xfs_btree_rec *rec,
109 int ptr,
110 int reason)
111{
112 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
113 struct xfs_perag *pag;
114 __be32 len;
115 int numrecs;
116
117 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
118
119 switch (reason) {
120 case LASTREC_UPDATE:
121 /*
122 * If this is the last leaf block and it's the last record,
123 * then update the size of the longest extent in the AG.
124 */
125 if (ptr != xfs_btree_get_numrecs(block))
126 return;
127 len = rec->alloc.ar_blockcount;
128 break;
129 case LASTREC_INSREC:
130 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
131 be32_to_cpu(agf->agf_longest))
132 return;
133 len = rec->alloc.ar_blockcount;
134 break;
135 case LASTREC_DELREC:
136 numrecs = xfs_btree_get_numrecs(block);
137 if (ptr <= numrecs)
138 return;
139 ASSERT(ptr == numrecs + 1);
140
141 if (numrecs) {
142 xfs_alloc_rec_t *rrp;
143
144 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
145 len = rrp->ar_blockcount;
146 } else {
147 len = 0;
148 }
149
150 break;
151 default:
152 ASSERT(0);
153 return;
154 }
155
156 agf->agf_longest = len;
157 pag = cur->bc_ag.agbp->b_pag;
158 pag->pagf_longest = be32_to_cpu(len);
159 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
160}
161
162STATIC int
163xfs_allocbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166{
167 return cur->bc_mp->m_alloc_mnr[level != 0];
168}
169
170STATIC int
171xfs_allocbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174{
175 return cur->bc_mp->m_alloc_mxr[level != 0];
176}
177
178STATIC void
179xfs_allocbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182{
183 key->alloc.ar_startblock = rec->alloc.ar_startblock;
184 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
185}
186
187STATIC void
188xfs_bnobt_init_high_key_from_rec(
189 union xfs_btree_key *key,
190 union xfs_btree_rec *rec)
191{
192 __u32 x;
193
194 x = be32_to_cpu(rec->alloc.ar_startblock);
195 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
196 key->alloc.ar_startblock = cpu_to_be32(x);
197 key->alloc.ar_blockcount = 0;
198}
199
200STATIC void
201xfs_cntbt_init_high_key_from_rec(
202 union xfs_btree_key *key,
203 union xfs_btree_rec *rec)
204{
205 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
206 key->alloc.ar_startblock = 0;
207}
208
209STATIC void
210xfs_allocbt_init_rec_from_cur(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_rec *rec)
213{
214 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
215 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
216}
217
218STATIC void
219xfs_allocbt_init_ptr_from_cur(
220 struct xfs_btree_cur *cur,
221 union xfs_btree_ptr *ptr)
222{
223 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
224
225 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227 ptr->s = agf->agf_roots[cur->bc_btnum];
228}
229
230STATIC int64_t
231xfs_bnobt_key_diff(
232 struct xfs_btree_cur *cur,
233 union xfs_btree_key *key)
234{
235 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
236 xfs_alloc_key_t *kp = &key->alloc;
237
238 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
239}
240
241STATIC int64_t
242xfs_cntbt_key_diff(
243 struct xfs_btree_cur *cur,
244 union xfs_btree_key *key)
245{
246 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
247 xfs_alloc_key_t *kp = &key->alloc;
248 int64_t diff;
249
250 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
251 if (diff)
252 return diff;
253
254 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
255}
256
257STATIC int64_t
258xfs_bnobt_diff_two_keys(
259 struct xfs_btree_cur *cur,
260 union xfs_btree_key *k1,
261 union xfs_btree_key *k2)
262{
263 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
264 be32_to_cpu(k2->alloc.ar_startblock);
265}
266
267STATIC int64_t
268xfs_cntbt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 union xfs_btree_key *k1,
271 union xfs_btree_key *k2)
272{
273 int64_t diff;
274
275 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
276 be32_to_cpu(k2->alloc.ar_blockcount);
277 if (diff)
278 return diff;
279
280 return be32_to_cpu(k1->alloc.ar_startblock) -
281 be32_to_cpu(k2->alloc.ar_startblock);
282}
283
284static xfs_failaddr_t
285xfs_allocbt_verify(
286 struct xfs_buf *bp)
287{
288 struct xfs_mount *mp = bp->b_mount;
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_perag *pag = bp->b_pag;
291 xfs_failaddr_t fa;
292 unsigned int level;
293 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
294
295 if (!xfs_verify_magic(bp, block->bb_magic))
296 return __this_address;
297
298 if (xfs_sb_version_hascrc(&mp->m_sb)) {
299 fa = xfs_btree_sblock_v5hdr_verify(bp);
300 if (fa)
301 return fa;
302 }
303
304 /*
305 * The perag may not be attached during grow operations or fully
306 * initialized from the AGF during log recovery. Therefore we can only
307 * check against maximum tree depth from those contexts.
308 *
309 * Otherwise check against the per-tree limit. Peek at one of the
310 * verifier magic values to determine the type of tree we're verifying
311 * against.
312 */
313 level = be16_to_cpu(block->bb_level);
314 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
315 btnum = XFS_BTNUM_CNTi;
316 if (pag && pag->pagf_init) {
317 if (level >= pag->pagf_levels[btnum])
318 return __this_address;
319 } else if (level >= mp->m_ag_maxlevels)
320 return __this_address;
321
322 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
323}
324
325static void
326xfs_allocbt_read_verify(
327 struct xfs_buf *bp)
328{
329 xfs_failaddr_t fa;
330
331 if (!xfs_btree_sblock_verify_crc(bp))
332 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333 else {
334 fa = xfs_allocbt_verify(bp);
335 if (fa)
336 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337 }
338
339 if (bp->b_error)
340 trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_allocbt_write_verify(
345 struct xfs_buf *bp)
346{
347 xfs_failaddr_t fa;
348
349 fa = xfs_allocbt_verify(bp);
350 if (fa) {
351 trace_xfs_btree_corrupt(bp, _RET_IP_);
352 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353 return;
354 }
355 xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_bnobt_buf_ops = {
360 .name = "xfs_bnobt",
361 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
362 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
363 .verify_read = xfs_allocbt_read_verify,
364 .verify_write = xfs_allocbt_write_verify,
365 .verify_struct = xfs_allocbt_verify,
366};
367
368const struct xfs_buf_ops xfs_cntbt_buf_ops = {
369 .name = "xfs_cntbt",
370 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
371 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
372 .verify_read = xfs_allocbt_read_verify,
373 .verify_write = xfs_allocbt_write_verify,
374 .verify_struct = xfs_allocbt_verify,
375};
376
377STATIC int
378xfs_bnobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 union xfs_btree_key *k1,
381 union xfs_btree_key *k2)
382{
383 return be32_to_cpu(k1->alloc.ar_startblock) <
384 be32_to_cpu(k2->alloc.ar_startblock);
385}
386
387STATIC int
388xfs_bnobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 union xfs_btree_rec *r1,
391 union xfs_btree_rec *r2)
392{
393 return be32_to_cpu(r1->alloc.ar_startblock) +
394 be32_to_cpu(r1->alloc.ar_blockcount) <=
395 be32_to_cpu(r2->alloc.ar_startblock);
396}
397
398STATIC int
399xfs_cntbt_keys_inorder(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_key *k1,
402 union xfs_btree_key *k2)
403{
404 return be32_to_cpu(k1->alloc.ar_blockcount) <
405 be32_to_cpu(k2->alloc.ar_blockcount) ||
406 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
407 be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock));
409}
410
411STATIC int
412xfs_cntbt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_blockcount) <
418 be32_to_cpu(r2->alloc.ar_blockcount) ||
419 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
420 be32_to_cpu(r1->alloc.ar_startblock) <
421 be32_to_cpu(r2->alloc.ar_startblock));
422}
423
424static const struct xfs_btree_ops xfs_bnobt_ops = {
425 .rec_len = sizeof(xfs_alloc_rec_t),
426 .key_len = sizeof(xfs_alloc_key_t),
427
428 .dup_cursor = xfs_allocbt_dup_cursor,
429 .set_root = xfs_allocbt_set_root,
430 .alloc_block = xfs_allocbt_alloc_block,
431 .free_block = xfs_allocbt_free_block,
432 .update_lastrec = xfs_allocbt_update_lastrec,
433 .get_minrecs = xfs_allocbt_get_minrecs,
434 .get_maxrecs = xfs_allocbt_get_maxrecs,
435 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
436 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
437 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
438 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
439 .key_diff = xfs_bnobt_key_diff,
440 .buf_ops = &xfs_bnobt_buf_ops,
441 .diff_two_keys = xfs_bnobt_diff_two_keys,
442 .keys_inorder = xfs_bnobt_keys_inorder,
443 .recs_inorder = xfs_bnobt_recs_inorder,
444};
445
446static const struct xfs_btree_ops xfs_cntbt_ops = {
447 .rec_len = sizeof(xfs_alloc_rec_t),
448 .key_len = sizeof(xfs_alloc_key_t),
449
450 .dup_cursor = xfs_allocbt_dup_cursor,
451 .set_root = xfs_allocbt_set_root,
452 .alloc_block = xfs_allocbt_alloc_block,
453 .free_block = xfs_allocbt_free_block,
454 .update_lastrec = xfs_allocbt_update_lastrec,
455 .get_minrecs = xfs_allocbt_get_minrecs,
456 .get_maxrecs = xfs_allocbt_get_maxrecs,
457 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
458 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
459 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
460 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
461 .key_diff = xfs_cntbt_key_diff,
462 .buf_ops = &xfs_cntbt_buf_ops,
463 .diff_two_keys = xfs_cntbt_diff_two_keys,
464 .keys_inorder = xfs_cntbt_keys_inorder,
465 .recs_inorder = xfs_cntbt_recs_inorder,
466};
467
468/* Allocate most of a new allocation btree cursor. */
469STATIC struct xfs_btree_cur *
470xfs_allocbt_init_common(
471 struct xfs_mount *mp,
472 struct xfs_trans *tp,
473 struct xfs_perag *pag,
474 xfs_btnum_t btnum)
475{
476 struct xfs_btree_cur *cur;
477
478 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
479
480 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
481
482 cur->bc_tp = tp;
483 cur->bc_mp = mp;
484 cur->bc_btnum = btnum;
485 cur->bc_blocklog = mp->m_sb.sb_blocklog;
486 cur->bc_ag.abt.active = false;
487
488 if (btnum == XFS_BTNUM_CNT) {
489 cur->bc_ops = &xfs_cntbt_ops;
490 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
491 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
492 } else {
493 cur->bc_ops = &xfs_bnobt_ops;
494 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
495 }
496
497 /* take a reference for the cursor */
498 atomic_inc(&pag->pag_ref);
499 cur->bc_ag.pag = pag;
500
501 if (xfs_sb_version_hascrc(&mp->m_sb))
502 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
503
504 return cur;
505}
506
507/*
508 * Allocate a new allocation btree cursor.
509 */
510struct xfs_btree_cur * /* new alloc btree cursor */
511xfs_allocbt_init_cursor(
512 struct xfs_mount *mp, /* file system mount point */
513 struct xfs_trans *tp, /* transaction pointer */
514 struct xfs_buf *agbp, /* buffer for agf structure */
515 struct xfs_perag *pag,
516 xfs_btnum_t btnum) /* btree identifier */
517{
518 struct xfs_agf *agf = agbp->b_addr;
519 struct xfs_btree_cur *cur;
520
521 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
522 if (btnum == XFS_BTNUM_CNT)
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
524 else
525 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
526
527 cur->bc_ag.agbp = agbp;
528
529 return cur;
530}
531
532/* Create a free space btree cursor with a fake root for staging. */
533struct xfs_btree_cur *
534xfs_allocbt_stage_cursor(
535 struct xfs_mount *mp,
536 struct xbtree_afakeroot *afake,
537 struct xfs_perag *pag,
538 xfs_btnum_t btnum)
539{
540 struct xfs_btree_cur *cur;
541
542 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
543 xfs_btree_stage_afakeroot(cur, afake);
544 return cur;
545}
546
547/*
548 * Install a new free space btree root. Caller is responsible for invalidating
549 * and freeing the old btree blocks.
550 */
551void
552xfs_allocbt_commit_staged_btree(
553 struct xfs_btree_cur *cur,
554 struct xfs_trans *tp,
555 struct xfs_buf *agbp)
556{
557 struct xfs_agf *agf = agbp->b_addr;
558 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
559
560 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
561
562 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
563 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
564 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
565
566 if (cur->bc_btnum == XFS_BTNUM_BNO) {
567 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
568 } else {
569 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
570 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
571 }
572}
573
574/*
575 * Calculate number of records in an alloc btree block.
576 */
577int
578xfs_allocbt_maxrecs(
579 struct xfs_mount *mp,
580 int blocklen,
581 int leaf)
582{
583 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
584
585 if (leaf)
586 return blocklen / sizeof(xfs_alloc_rec_t);
587 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
588}
589
590/* Calculate the freespace btree size for some records. */
591xfs_extlen_t
592xfs_allocbt_calc_size(
593 struct xfs_mount *mp,
594 unsigned long long len)
595{
596 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
597}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_btree.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21
22
23STATIC struct xfs_btree_cur *
24xfs_allocbt_dup_cursor(
25 struct xfs_btree_cur *cur)
26{
27 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
28 cur->bc_private.a.agbp, cur->bc_private.a.agno,
29 cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_private.a.agbp;
39 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
40 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
41 int btnum = cur->bc_btnum;
42 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
43
44 ASSERT(ptr->s != 0);
45
46 agf->agf_roots[btnum] = ptr->s;
47 be32_add_cpu(&agf->agf_levels[btnum], inc);
48 pag->pagf_levels[btnum] += inc;
49 xfs_perag_put(pag);
50
51 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
52}
53
54STATIC int
55xfs_allocbt_alloc_block(
56 struct xfs_btree_cur *cur,
57 union xfs_btree_ptr *start,
58 union xfs_btree_ptr *new,
59 int *stat)
60{
61 int error;
62 xfs_agblock_t bno;
63
64 /* Allocate the new block from the freelist. If we can't, give up. */
65 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
66 &bno, 1);
67 if (error)
68 return error;
69
70 if (bno == NULLAGBLOCK) {
71 *stat = 0;
72 return 0;
73 }
74
75 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
76
77 xfs_trans_agbtree_delta(cur->bc_tp, 1);
78 new->s = cpu_to_be32(bno);
79
80 *stat = 1;
81 return 0;
82}
83
84STATIC int
85xfs_allocbt_free_block(
86 struct xfs_btree_cur *cur,
87 struct xfs_buf *bp)
88{
89 struct xfs_buf *agbp = cur->bc_private.a.agbp;
90 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
91 xfs_agblock_t bno;
92 int error;
93
94 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
95 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
96 if (error)
97 return error;
98
99 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
100 XFS_EXTENT_BUSY_SKIP_DISCARD);
101 xfs_trans_agbtree_delta(cur->bc_tp, -1);
102 return 0;
103}
104
105/*
106 * Update the longest extent in the AGF
107 */
108STATIC void
109xfs_allocbt_update_lastrec(
110 struct xfs_btree_cur *cur,
111 struct xfs_btree_block *block,
112 union xfs_btree_rec *rec,
113 int ptr,
114 int reason)
115{
116 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
117 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
118 struct xfs_perag *pag;
119 __be32 len;
120 int numrecs;
121
122 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
123
124 switch (reason) {
125 case LASTREC_UPDATE:
126 /*
127 * If this is the last leaf block and it's the last record,
128 * then update the size of the longest extent in the AG.
129 */
130 if (ptr != xfs_btree_get_numrecs(block))
131 return;
132 len = rec->alloc.ar_blockcount;
133 break;
134 case LASTREC_INSREC:
135 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
136 be32_to_cpu(agf->agf_longest))
137 return;
138 len = rec->alloc.ar_blockcount;
139 break;
140 case LASTREC_DELREC:
141 numrecs = xfs_btree_get_numrecs(block);
142 if (ptr <= numrecs)
143 return;
144 ASSERT(ptr == numrecs + 1);
145
146 if (numrecs) {
147 xfs_alloc_rec_t *rrp;
148
149 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
150 len = rrp->ar_blockcount;
151 } else {
152 len = 0;
153 }
154
155 break;
156 default:
157 ASSERT(0);
158 return;
159 }
160
161 agf->agf_longest = len;
162 pag = xfs_perag_get(cur->bc_mp, seqno);
163 pag->pagf_longest = be32_to_cpu(len);
164 xfs_perag_put(pag);
165 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
166}
167
168STATIC int
169xfs_allocbt_get_minrecs(
170 struct xfs_btree_cur *cur,
171 int level)
172{
173 return cur->bc_mp->m_alloc_mnr[level != 0];
174}
175
176STATIC int
177xfs_allocbt_get_maxrecs(
178 struct xfs_btree_cur *cur,
179 int level)
180{
181 return cur->bc_mp->m_alloc_mxr[level != 0];
182}
183
184STATIC void
185xfs_allocbt_init_key_from_rec(
186 union xfs_btree_key *key,
187 union xfs_btree_rec *rec)
188{
189 key->alloc.ar_startblock = rec->alloc.ar_startblock;
190 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
191}
192
193STATIC void
194xfs_bnobt_init_high_key_from_rec(
195 union xfs_btree_key *key,
196 union xfs_btree_rec *rec)
197{
198 __u32 x;
199
200 x = be32_to_cpu(rec->alloc.ar_startblock);
201 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
202 key->alloc.ar_startblock = cpu_to_be32(x);
203 key->alloc.ar_blockcount = 0;
204}
205
206STATIC void
207xfs_cntbt_init_high_key_from_rec(
208 union xfs_btree_key *key,
209 union xfs_btree_rec *rec)
210{
211 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
212 key->alloc.ar_startblock = 0;
213}
214
215STATIC void
216xfs_allocbt_init_rec_from_cur(
217 struct xfs_btree_cur *cur,
218 union xfs_btree_rec *rec)
219{
220 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
221 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
222}
223
224STATIC void
225xfs_allocbt_init_ptr_from_cur(
226 struct xfs_btree_cur *cur,
227 union xfs_btree_ptr *ptr)
228{
229 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
230
231 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
232
233 ptr->s = agf->agf_roots[cur->bc_btnum];
234}
235
236STATIC int64_t
237xfs_bnobt_key_diff(
238 struct xfs_btree_cur *cur,
239 union xfs_btree_key *key)
240{
241 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
242 xfs_alloc_key_t *kp = &key->alloc;
243
244 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
245}
246
247STATIC int64_t
248xfs_cntbt_key_diff(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_key *key)
251{
252 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
253 xfs_alloc_key_t *kp = &key->alloc;
254 int64_t diff;
255
256 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
257 if (diff)
258 return diff;
259
260 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
261}
262
263STATIC int64_t
264xfs_bnobt_diff_two_keys(
265 struct xfs_btree_cur *cur,
266 union xfs_btree_key *k1,
267 union xfs_btree_key *k2)
268{
269 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
270 be32_to_cpu(k2->alloc.ar_startblock);
271}
272
273STATIC int64_t
274xfs_cntbt_diff_two_keys(
275 struct xfs_btree_cur *cur,
276 union xfs_btree_key *k1,
277 union xfs_btree_key *k2)
278{
279 int64_t diff;
280
281 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
282 be32_to_cpu(k2->alloc.ar_blockcount);
283 if (diff)
284 return diff;
285
286 return be32_to_cpu(k1->alloc.ar_startblock) -
287 be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290static xfs_failaddr_t
291xfs_allocbt_verify(
292 struct xfs_buf *bp)
293{
294 struct xfs_mount *mp = bp->b_mount;
295 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
296 struct xfs_perag *pag = bp->b_pag;
297 xfs_failaddr_t fa;
298 unsigned int level;
299 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
300
301 if (!xfs_verify_magic(bp, block->bb_magic))
302 return __this_address;
303
304 if (xfs_sb_version_hascrc(&mp->m_sb)) {
305 fa = xfs_btree_sblock_v5hdr_verify(bp);
306 if (fa)
307 return fa;
308 }
309
310 /*
311 * The perag may not be attached during grow operations or fully
312 * initialized from the AGF during log recovery. Therefore we can only
313 * check against maximum tree depth from those contexts.
314 *
315 * Otherwise check against the per-tree limit. Peek at one of the
316 * verifier magic values to determine the type of tree we're verifying
317 * against.
318 */
319 level = be16_to_cpu(block->bb_level);
320 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
321 btnum = XFS_BTNUM_CNTi;
322 if (pag && pag->pagf_init) {
323 if (level >= pag->pagf_levels[btnum])
324 return __this_address;
325 } else if (level >= mp->m_ag_maxlevels)
326 return __this_address;
327
328 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
329}
330
331static void
332xfs_allocbt_read_verify(
333 struct xfs_buf *bp)
334{
335 xfs_failaddr_t fa;
336
337 if (!xfs_btree_sblock_verify_crc(bp))
338 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
339 else {
340 fa = xfs_allocbt_verify(bp);
341 if (fa)
342 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
343 }
344
345 if (bp->b_error)
346 trace_xfs_btree_corrupt(bp, _RET_IP_);
347}
348
349static void
350xfs_allocbt_write_verify(
351 struct xfs_buf *bp)
352{
353 xfs_failaddr_t fa;
354
355 fa = xfs_allocbt_verify(bp);
356 if (fa) {
357 trace_xfs_btree_corrupt(bp, _RET_IP_);
358 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
359 return;
360 }
361 xfs_btree_sblock_calc_crc(bp);
362
363}
364
365const struct xfs_buf_ops xfs_bnobt_buf_ops = {
366 .name = "xfs_bnobt",
367 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
368 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
369 .verify_read = xfs_allocbt_read_verify,
370 .verify_write = xfs_allocbt_write_verify,
371 .verify_struct = xfs_allocbt_verify,
372};
373
374const struct xfs_buf_ops xfs_cntbt_buf_ops = {
375 .name = "xfs_cntbt",
376 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
377 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
378 .verify_read = xfs_allocbt_read_verify,
379 .verify_write = xfs_allocbt_write_verify,
380 .verify_struct = xfs_allocbt_verify,
381};
382
383STATIC int
384xfs_bnobt_keys_inorder(
385 struct xfs_btree_cur *cur,
386 union xfs_btree_key *k1,
387 union xfs_btree_key *k2)
388{
389 return be32_to_cpu(k1->alloc.ar_startblock) <
390 be32_to_cpu(k2->alloc.ar_startblock);
391}
392
393STATIC int
394xfs_bnobt_recs_inorder(
395 struct xfs_btree_cur *cur,
396 union xfs_btree_rec *r1,
397 union xfs_btree_rec *r2)
398{
399 return be32_to_cpu(r1->alloc.ar_startblock) +
400 be32_to_cpu(r1->alloc.ar_blockcount) <=
401 be32_to_cpu(r2->alloc.ar_startblock);
402}
403
404STATIC int
405xfs_cntbt_keys_inorder(
406 struct xfs_btree_cur *cur,
407 union xfs_btree_key *k1,
408 union xfs_btree_key *k2)
409{
410 return be32_to_cpu(k1->alloc.ar_blockcount) <
411 be32_to_cpu(k2->alloc.ar_blockcount) ||
412 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
413 be32_to_cpu(k1->alloc.ar_startblock) <
414 be32_to_cpu(k2->alloc.ar_startblock));
415}
416
417STATIC int
418xfs_cntbt_recs_inorder(
419 struct xfs_btree_cur *cur,
420 union xfs_btree_rec *r1,
421 union xfs_btree_rec *r2)
422{
423 return be32_to_cpu(r1->alloc.ar_blockcount) <
424 be32_to_cpu(r2->alloc.ar_blockcount) ||
425 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
426 be32_to_cpu(r1->alloc.ar_startblock) <
427 be32_to_cpu(r2->alloc.ar_startblock));
428}
429
430static const struct xfs_btree_ops xfs_bnobt_ops = {
431 .rec_len = sizeof(xfs_alloc_rec_t),
432 .key_len = sizeof(xfs_alloc_key_t),
433
434 .dup_cursor = xfs_allocbt_dup_cursor,
435 .set_root = xfs_allocbt_set_root,
436 .alloc_block = xfs_allocbt_alloc_block,
437 .free_block = xfs_allocbt_free_block,
438 .update_lastrec = xfs_allocbt_update_lastrec,
439 .get_minrecs = xfs_allocbt_get_minrecs,
440 .get_maxrecs = xfs_allocbt_get_maxrecs,
441 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
442 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
443 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
444 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
445 .key_diff = xfs_bnobt_key_diff,
446 .buf_ops = &xfs_bnobt_buf_ops,
447 .diff_two_keys = xfs_bnobt_diff_two_keys,
448 .keys_inorder = xfs_bnobt_keys_inorder,
449 .recs_inorder = xfs_bnobt_recs_inorder,
450};
451
452static const struct xfs_btree_ops xfs_cntbt_ops = {
453 .rec_len = sizeof(xfs_alloc_rec_t),
454 .key_len = sizeof(xfs_alloc_key_t),
455
456 .dup_cursor = xfs_allocbt_dup_cursor,
457 .set_root = xfs_allocbt_set_root,
458 .alloc_block = xfs_allocbt_alloc_block,
459 .free_block = xfs_allocbt_free_block,
460 .update_lastrec = xfs_allocbt_update_lastrec,
461 .get_minrecs = xfs_allocbt_get_minrecs,
462 .get_maxrecs = xfs_allocbt_get_maxrecs,
463 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
464 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
465 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
466 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
467 .key_diff = xfs_cntbt_key_diff,
468 .buf_ops = &xfs_cntbt_buf_ops,
469 .diff_two_keys = xfs_cntbt_diff_two_keys,
470 .keys_inorder = xfs_cntbt_keys_inorder,
471 .recs_inorder = xfs_cntbt_recs_inorder,
472};
473
474/*
475 * Allocate a new allocation btree cursor.
476 */
477struct xfs_btree_cur * /* new alloc btree cursor */
478xfs_allocbt_init_cursor(
479 struct xfs_mount *mp, /* file system mount point */
480 struct xfs_trans *tp, /* transaction pointer */
481 struct xfs_buf *agbp, /* buffer for agf structure */
482 xfs_agnumber_t agno, /* allocation group number */
483 xfs_btnum_t btnum) /* btree identifier */
484{
485 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
486 struct xfs_btree_cur *cur;
487
488 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
489
490 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
491
492 cur->bc_tp = tp;
493 cur->bc_mp = mp;
494 cur->bc_btnum = btnum;
495 cur->bc_blocklog = mp->m_sb.sb_blocklog;
496
497 if (btnum == XFS_BTNUM_CNT) {
498 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
499 cur->bc_ops = &xfs_cntbt_ops;
500 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
501 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
502 } else {
503 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
504 cur->bc_ops = &xfs_bnobt_ops;
505 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
506 }
507
508 cur->bc_private.a.agbp = agbp;
509 cur->bc_private.a.agno = agno;
510
511 if (xfs_sb_version_hascrc(&mp->m_sb))
512 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
513
514 return cur;
515}
516
517/*
518 * Calculate number of records in an alloc btree block.
519 */
520int
521xfs_allocbt_maxrecs(
522 struct xfs_mount *mp,
523 int blocklen,
524 int leaf)
525{
526 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
527
528 if (leaf)
529 return blocklen / sizeof(xfs_alloc_rec_t);
530 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
531}
532
533/* Calculate the freespace btree size for some records. */
534xfs_extlen_t
535xfs_allocbt_calc_size(
536 struct xfs_mount *mp,
537 unsigned long long len)
538{
539 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
540}