Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
   4 * with Common Isochronous Packet (IEC 61883-1) headers
   5 *
   6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/firewire.h>
  12#include <linux/firewire-constants.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <sound/pcm.h>
  16#include <sound/pcm_params.h>
  17#include "amdtp-stream.h"
  18
  19#define TICKS_PER_CYCLE		3072
  20#define CYCLES_PER_SECOND	8000
  21#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
  22
  23#define OHCI_SECOND_MODULUS		8
  24
  25/* Always support Linux tracing subsystem. */
  26#define CREATE_TRACE_POINTS
  27#include "amdtp-stream-trace.h"
  28
  29#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
  30
  31/* isochronous header parameters */
  32#define ISO_DATA_LENGTH_SHIFT	16
  33#define TAG_NO_CIP_HEADER	0
  34#define TAG_CIP			1
  35
  36// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
  37#define CIP_HEADER_QUADLETS	2
  38#define CIP_EOH_SHIFT		31
  39#define CIP_EOH			(1u << CIP_EOH_SHIFT)
  40#define CIP_EOH_MASK		0x80000000
  41#define CIP_SID_SHIFT		24
  42#define CIP_SID_MASK		0x3f000000
  43#define CIP_DBS_MASK		0x00ff0000
  44#define CIP_DBS_SHIFT		16
  45#define CIP_SPH_MASK		0x00000400
  46#define CIP_SPH_SHIFT		10
  47#define CIP_DBC_MASK		0x000000ff
  48#define CIP_FMT_SHIFT		24
  49#define CIP_FMT_MASK		0x3f000000
  50#define CIP_FDF_MASK		0x00ff0000
  51#define CIP_FDF_SHIFT		16
  52#define CIP_FDF_NO_DATA		0xff
  53#define CIP_SYT_MASK		0x0000ffff
  54#define CIP_SYT_NO_INFO		0xffff
  55#define CIP_SYT_CYCLE_MODULUS	16
  56#define CIP_NO_DATA		((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
  57
  58#define CIP_HEADER_SIZE		(sizeof(__be32) * CIP_HEADER_QUADLETS)
  59
  60/* Audio and Music transfer protocol specific parameters */
  61#define CIP_FMT_AM		0x10
  62#define AMDTP_FDF_NO_DATA	0xff
  63
  64// For iso header and tstamp.
  65#define IR_CTX_HEADER_DEFAULT_QUADLETS	2
  66// Add nothing.
  67#define IR_CTX_HEADER_SIZE_NO_CIP	(sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
  68// Add two quadlets CIP header.
  69#define IR_CTX_HEADER_SIZE_CIP		(IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
  70#define HEADER_TSTAMP_MASK	0x0000ffff
  71
  72#define IT_PKT_HEADER_SIZE_CIP		CIP_HEADER_SIZE
  73#define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
  74
  75// The initial firmware of OXFW970 can postpone transmission of packet during finishing
  76// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
  77// overrun. Actual device can skip more, then this module stops the packet streaming.
  78#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES	5
  79
 
 
  80/**
  81 * amdtp_stream_init - initialize an AMDTP stream structure
  82 * @s: the AMDTP stream to initialize
  83 * @unit: the target of the stream
  84 * @dir: the direction of stream
  85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
  86 * @fmt: the value of fmt field in CIP header
  87 * @process_ctx_payloads: callback handler to process payloads of isoc context
  88 * @protocol_size: the size to allocate newly for protocol
  89 */
  90int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
  91		      enum amdtp_stream_direction dir, unsigned int flags,
  92		      unsigned int fmt,
  93		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
  94		      unsigned int protocol_size)
  95{
  96	if (process_ctx_payloads == NULL)
  97		return -EINVAL;
  98
  99	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
 100	if (!s->protocol)
 101		return -ENOMEM;
 102
 103	s->unit = unit;
 104	s->direction = dir;
 105	s->flags = flags;
 106	s->context = ERR_PTR(-1);
 107	mutex_init(&s->mutex);
 
 108	s->packet_index = 0;
 109
 110	init_waitqueue_head(&s->ready_wait);
 111
 112	s->fmt = fmt;
 113	s->process_ctx_payloads = process_ctx_payloads;
 114
 115	return 0;
 116}
 117EXPORT_SYMBOL(amdtp_stream_init);
 118
 119/**
 120 * amdtp_stream_destroy - free stream resources
 121 * @s: the AMDTP stream to destroy
 122 */
 123void amdtp_stream_destroy(struct amdtp_stream *s)
 124{
 125	/* Not initialized. */
 126	if (s->protocol == NULL)
 127		return;
 128
 129	WARN_ON(amdtp_stream_running(s));
 130	kfree(s->protocol);
 131	mutex_destroy(&s->mutex);
 132}
 133EXPORT_SYMBOL(amdtp_stream_destroy);
 134
 135const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
 136	[CIP_SFC_32000]  =  8,
 137	[CIP_SFC_44100]  =  8,
 138	[CIP_SFC_48000]  =  8,
 139	[CIP_SFC_88200]  = 16,
 140	[CIP_SFC_96000]  = 16,
 141	[CIP_SFC_176400] = 32,
 142	[CIP_SFC_192000] = 32,
 143};
 144EXPORT_SYMBOL(amdtp_syt_intervals);
 145
 146const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
 147	[CIP_SFC_32000]  =  32000,
 148	[CIP_SFC_44100]  =  44100,
 149	[CIP_SFC_48000]  =  48000,
 150	[CIP_SFC_88200]  =  88200,
 151	[CIP_SFC_96000]  =  96000,
 152	[CIP_SFC_176400] = 176400,
 153	[CIP_SFC_192000] = 192000,
 154};
 155EXPORT_SYMBOL(amdtp_rate_table);
 156
 157static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
 158				    struct snd_pcm_hw_rule *rule)
 159{
 160	struct snd_interval *s = hw_param_interval(params, rule->var);
 161	const struct snd_interval *r =
 162		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
 163	struct snd_interval t = {0};
 164	unsigned int step = 0;
 165	int i;
 166
 167	for (i = 0; i < CIP_SFC_COUNT; ++i) {
 168		if (snd_interval_test(r, amdtp_rate_table[i]))
 169			step = max(step, amdtp_syt_intervals[i]);
 170	}
 171
 
 
 
 172	t.min = roundup(s->min, step);
 173	t.max = rounddown(s->max, step);
 174	t.integer = 1;
 175
 176	return snd_interval_refine(s, &t);
 177}
 178
 179/**
 180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 181 * @s:		the AMDTP stream, which must be initialized.
 182 * @runtime:	the PCM substream runtime
 183 */
 184int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
 185					struct snd_pcm_runtime *runtime)
 186{
 187	struct snd_pcm_hardware *hw = &runtime->hw;
 188	unsigned int ctx_header_size;
 189	unsigned int maximum_usec_per_period;
 190	int err;
 191
 192	hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
 193		   SNDRV_PCM_INFO_INTERLEAVED |
 194		   SNDRV_PCM_INFO_JOINT_DUPLEX |
 195		   SNDRV_PCM_INFO_MMAP |
 196		   SNDRV_PCM_INFO_MMAP_VALID |
 197		   SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
 198
 199	hw->periods_min = 2;
 200	hw->periods_max = UINT_MAX;
 201
 202	/* bytes for a frame */
 203	hw->period_bytes_min = 4 * hw->channels_max;
 204
 205	/* Just to prevent from allocating much pages. */
 206	hw->period_bytes_max = hw->period_bytes_min * 2048;
 207	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
 208
 209	// Linux driver for 1394 OHCI controller voluntarily flushes isoc
 210	// context when total size of accumulated context header reaches
 211	// PAGE_SIZE. This kicks work for the isoc context and brings
 212	// callback in the middle of scheduled interrupts.
 213	// Although AMDTP streams in the same domain use the same events per
 214	// IRQ, use the largest size of context header between IT/IR contexts.
 215	// Here, use the value of context header in IR context is for both
 216	// contexts.
 217	if (!(s->flags & CIP_NO_HEADER))
 218		ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
 219	else
 220		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
 221	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
 222				  CYCLES_PER_SECOND / ctx_header_size;
 223
 224	// In IEC 61883-6, one isoc packet can transfer events up to the value
 225	// of syt interval. This comes from the interval of isoc cycle. As 1394
 226	// OHCI controller can generate hardware IRQ per isoc packet, the
 227	// interval is 125 usec.
 228	// However, there are two ways of transmission in IEC 61883-6; blocking
 229	// and non-blocking modes. In blocking mode, the sequence of isoc packet
 230	// includes 'empty' or 'NODATA' packets which include no event. In
 231	// non-blocking mode, the number of events per packet is variable up to
 232	// the syt interval.
 233	// Due to the above protocol design, the minimum PCM frames per
 234	// interrupt should be double of the value of syt interval, thus it is
 235	// 250 usec.
 236	err = snd_pcm_hw_constraint_minmax(runtime,
 237					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 238					   250, maximum_usec_per_period);
 239	if (err < 0)
 240		goto end;
 241
 242	/* Non-Blocking stream has no more constraints */
 243	if (!(s->flags & CIP_BLOCKING))
 244		goto end;
 245
 246	/*
 247	 * One AMDTP packet can include some frames. In blocking mode, the
 248	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
 249	 * depending on its sampling rate. For accurate period interrupt, it's
 250	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
 251	 */
 252	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 253				  apply_constraint_to_size, NULL,
 254				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 255				  SNDRV_PCM_HW_PARAM_RATE, -1);
 256	if (err < 0)
 257		goto end;
 258	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 259				  apply_constraint_to_size, NULL,
 260				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 261				  SNDRV_PCM_HW_PARAM_RATE, -1);
 262	if (err < 0)
 263		goto end;
 264end:
 265	return err;
 266}
 267EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
 268
 269/**
 270 * amdtp_stream_set_parameters - set stream parameters
 271 * @s: the AMDTP stream to configure
 272 * @rate: the sample rate
 273 * @data_block_quadlets: the size of a data block in quadlet unit
 
 
 274 *
 275 * The parameters must be set before the stream is started, and must not be
 276 * changed while the stream is running.
 277 */
 278int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
 279				unsigned int data_block_quadlets)
 280{
 281	unsigned int sfc;
 282
 283	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
 284		if (amdtp_rate_table[sfc] == rate)
 285			break;
 286	}
 287	if (sfc == ARRAY_SIZE(amdtp_rate_table))
 288		return -EINVAL;
 289
 290	s->sfc = sfc;
 291	s->data_block_quadlets = data_block_quadlets;
 292	s->syt_interval = amdtp_syt_intervals[sfc];
 293
 294	// default buffering in the device.
 295	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
 296
 297	// additional buffering needed to adjust for no-data packets.
 298	if (s->flags & CIP_BLOCKING)
 299		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
 300
 
 
 301	return 0;
 302}
 303EXPORT_SYMBOL(amdtp_stream_set_parameters);
 304
 305// The CIP header is processed in context header apart from context payload.
 306static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
 307{
 308	unsigned int multiplier;
 309
 310	if (s->flags & CIP_JUMBO_PAYLOAD)
 311		multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
 312	else
 313		multiplier = 1;
 314
 315	return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
 316}
 317
 318/**
 319 * amdtp_stream_get_max_payload - get the stream's packet size
 320 * @s: the AMDTP stream
 321 *
 322 * This function must not be called before the stream has been configured
 323 * with amdtp_stream_set_parameters().
 324 */
 325unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
 326{
 327	unsigned int cip_header_size;
 328
 329	if (!(s->flags & CIP_NO_HEADER))
 330		cip_header_size = CIP_HEADER_SIZE;
 331	else
 332		cip_header_size = 0;
 333
 334	return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
 335}
 336EXPORT_SYMBOL(amdtp_stream_get_max_payload);
 337
 338/**
 339 * amdtp_stream_pcm_prepare - prepare PCM device for running
 340 * @s: the AMDTP stream
 341 *
 342 * This function should be called from the PCM device's .prepare callback.
 343 */
 344void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
 345{
 
 346	s->pcm_buffer_pointer = 0;
 347	s->pcm_period_pointer = 0;
 348}
 349EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
 350
 
 
 
 351static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
 352				      const unsigned int seq_size, unsigned int seq_tail,
 353				      unsigned int count)
 354{
 355	const unsigned int syt_interval = s->syt_interval;
 356	int i;
 357
 358	for (i = 0; i < count; ++i) {
 359		struct seq_desc *desc = descs + seq_tail;
 360
 361		if (desc->syt_offset != CIP_SYT_NO_INFO)
 362			desc->data_blocks = syt_interval;
 363		else
 364			desc->data_blocks = 0;
 365
 366		seq_tail = (seq_tail + 1) % seq_size;
 367	}
 368}
 369
 370static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
 371					       const unsigned int seq_size, unsigned int seq_tail,
 372					       unsigned int count)
 373{
 374	const enum cip_sfc sfc = s->sfc;
 375	unsigned int state = s->ctx_data.rx.data_block_state;
 376	int i;
 377
 378	for (i = 0; i < count; ++i) {
 379		struct seq_desc *desc = descs + seq_tail;
 380
 381		if (!cip_sfc_is_base_44100(sfc)) {
 382			// Sample_rate / 8000 is an integer, and precomputed.
 383			desc->data_blocks = state;
 384		} else {
 385			unsigned int phase = state;
 386
 387		/*
 388		 * This calculates the number of data blocks per packet so that
 389		 * 1) the overall rate is correct and exactly synchronized to
 390		 *    the bus clock, and
 391		 * 2) packets with a rounded-up number of blocks occur as early
 392		 *    as possible in the sequence (to prevent underruns of the
 393		 *    device's buffer).
 394		 */
 395			if (sfc == CIP_SFC_44100)
 396				/* 6 6 5 6 5 6 5 ... */
 397				desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
 398			else
 399				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
 400				desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
 401			if (++phase >= (80 >> (sfc >> 1)))
 402				phase = 0;
 403			state = phase;
 404		}
 405
 406		seq_tail = (seq_tail + 1) % seq_size;
 407	}
 408
 409	s->ctx_data.rx.data_block_state = state;
 410}
 411
 412static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
 413			unsigned int *syt_offset_state, enum cip_sfc sfc)
 414{
 415	unsigned int syt_offset;
 416
 417	if (*last_syt_offset < TICKS_PER_CYCLE) {
 418		if (!cip_sfc_is_base_44100(sfc))
 419			syt_offset = *last_syt_offset + *syt_offset_state;
 420		else {
 421		/*
 422		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
 423		 *   n * SYT_INTERVAL * 24576000 / sample_rate
 424		 * Modulo TICKS_PER_CYCLE, the difference between successive
 425		 * elements is about 1386.23.  Rounding the results of this
 426		 * formula to the SYT precision results in a sequence of
 427		 * differences that begins with:
 428		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
 429		 * This code generates _exactly_ the same sequence.
 430		 */
 431			unsigned int phase = *syt_offset_state;
 432			unsigned int index = phase % 13;
 433
 434			syt_offset = *last_syt_offset;
 435			syt_offset += 1386 + ((index && !(index & 3)) ||
 436					      phase == 146);
 437			if (++phase >= 147)
 438				phase = 0;
 439			*syt_offset_state = phase;
 440		}
 441	} else
 442		syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
 443	*last_syt_offset = syt_offset;
 444
 445	if (syt_offset >= TICKS_PER_CYCLE)
 446		syt_offset = CIP_SYT_NO_INFO;
 447
 448	return syt_offset;
 449}
 450
 451static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
 452				   const unsigned int seq_size, unsigned int seq_tail,
 453				   unsigned int count)
 454{
 455	const enum cip_sfc sfc = s->sfc;
 456	unsigned int last = s->ctx_data.rx.last_syt_offset;
 457	unsigned int state = s->ctx_data.rx.syt_offset_state;
 458	int i;
 459
 460	for (i = 0; i < count; ++i) {
 461		struct seq_desc *desc = descs + seq_tail;
 462
 463		desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
 464
 465		seq_tail = (seq_tail + 1) % seq_size;
 466	}
 467
 468	s->ctx_data.rx.last_syt_offset = last;
 469	s->ctx_data.rx.syt_offset_state = state;
 470}
 471
 472static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
 473				       unsigned int transfer_delay)
 474{
 475	unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
 476	unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
 477	unsigned int syt_offset;
 478
 479	// Round up.
 480	if (syt_cycle_lo < cycle_lo)
 481		syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
 482	syt_cycle_lo -= cycle_lo;
 483
 484	// Subtract transfer delay so that the synchronization offset is not so large
 485	// at transmission.
 486	syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
 487	if (syt_offset < transfer_delay)
 488		syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
 489
 490	return syt_offset - transfer_delay;
 491}
 492
 493// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
 494// Additionally, the sequence of tx packets is severely checked against any discontinuity
 495// before filling entries in the queue. The calculation is safe even if it looks fragile by
 496// overrun.
 497static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
 498{
 499	const unsigned int cache_size = s->ctx_data.tx.cache.size;
 500	unsigned int cycles = s->ctx_data.tx.cache.tail;
 501
 502	if (cycles < head)
 503		cycles += cache_size;
 504	cycles -= head;
 505
 506	return cycles;
 507}
 508
 509static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count)
 510{
 511	const unsigned int transfer_delay = s->transfer_delay;
 512	const unsigned int cache_size = s->ctx_data.tx.cache.size;
 513	struct seq_desc *cache = s->ctx_data.tx.cache.descs;
 514	unsigned int cache_tail = s->ctx_data.tx.cache.tail;
 515	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
 516	int i;
 517
 518	for (i = 0; i < desc_count; ++i) {
 519		struct seq_desc *dst = cache + cache_tail;
 520		const struct pkt_desc *src = descs + i;
 521
 522		if (aware_syt && src->syt != CIP_SYT_NO_INFO)
 523			dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
 524		else
 525			dst->syt_offset = CIP_SYT_NO_INFO;
 526		dst->data_blocks = src->data_blocks;
 527
 528		cache_tail = (cache_tail + 1) % cache_size;
 
 529	}
 530
 531	s->ctx_data.tx.cache.tail = cache_tail;
 532}
 533
 534static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count)
 
 535{
 536	struct seq_desc *descs = s->ctx_data.rx.seq.descs;
 537	unsigned int seq_tail = s->ctx_data.rx.seq.tail;
 538	const unsigned int seq_size = s->ctx_data.rx.seq.size;
 539
 540	pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count);
 541
 542	if (s->flags & CIP_BLOCKING)
 543		pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count);
 544	else
 545		pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count);
 546
 547	s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size;
 548}
 549
 550static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count)
 
 551{
 552	struct amdtp_stream *target = s->ctx_data.rx.replay_target;
 553	const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
 554	const unsigned int cache_size = target->ctx_data.tx.cache.size;
 555	unsigned int cache_head = s->ctx_data.rx.cache_head;
 556	struct seq_desc *descs = s->ctx_data.rx.seq.descs;
 557	const unsigned int seq_size = s->ctx_data.rx.seq.size;
 558	unsigned int seq_tail = s->ctx_data.rx.seq.tail;
 559	int i;
 560
 561	for (i = 0; i < count; ++i) {
 562		descs[seq_tail] = cache[cache_head];
 563		seq_tail = (seq_tail + 1) % seq_size;
 564		cache_head = (cache_head + 1) % cache_size;
 565	}
 566
 567	s->ctx_data.rx.seq.tail = seq_tail;
 568	s->ctx_data.rx.cache_head = cache_head;
 569}
 570
 571static void pool_seq_descs(struct amdtp_stream *s, unsigned int count)
 
 572{
 573	struct amdtp_domain *d = s->domain;
 
 
 574
 575	if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
 576		pool_ideal_seq_descs(s, count);
 577	} else {
 578		if (!d->replay.on_the_fly) {
 579			pool_replayed_seq(s, count);
 580		} else {
 581			struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
 582			const unsigned int cache_size = tx->ctx_data.tx.cache.size;
 583			const unsigned int cache_head = s->ctx_data.rx.cache_head;
 584			unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head);
 585
 586			if (cached_cycles > count && cached_cycles > cache_size / 2)
 587				pool_replayed_seq(s, count);
 588			else
 589				pool_ideal_seq_descs(s, count);
 590		}
 591	}
 
 
 592}
 593
 594static void update_pcm_pointers(struct amdtp_stream *s,
 595				struct snd_pcm_substream *pcm,
 596				unsigned int frames)
 597{
 598	unsigned int ptr;
 599
 600	ptr = s->pcm_buffer_pointer + frames;
 601	if (ptr >= pcm->runtime->buffer_size)
 602		ptr -= pcm->runtime->buffer_size;
 603	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
 604
 605	s->pcm_period_pointer += frames;
 606	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
 607		s->pcm_period_pointer -= pcm->runtime->period_size;
 608
 609		// The program in user process should periodically check the status of intermediate
 610		// buffer associated to PCM substream to process PCM frames in the buffer, instead
 611		// of receiving notification of period elapsed by poll wait.
 612		if (!pcm->runtime->no_period_wakeup) {
 613			if (in_softirq()) {
 614				// In software IRQ context for 1394 OHCI.
 615				snd_pcm_period_elapsed(pcm);
 616			} else {
 617				// In process context of ALSA PCM application under acquired lock of
 618				// PCM substream.
 619				snd_pcm_period_elapsed_under_stream_lock(pcm);
 620			}
 621		}
 
 
 
 
 
 
 
 
 622	}
 623}
 624
 
 
 
 
 
 
 
 
 
 
 625static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
 626			bool sched_irq)
 627{
 628	int err;
 629
 630	params->interrupt = sched_irq;
 631	params->tag = s->tag;
 632	params->sy = 0;
 633
 634	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
 635				   s->buffer.packets[s->packet_index].offset);
 636	if (err < 0) {
 637		dev_err(&s->unit->device, "queueing error: %d\n", err);
 638		goto end;
 639	}
 640
 641	if (++s->packet_index >= s->queue_size)
 642		s->packet_index = 0;
 643end:
 644	return err;
 645}
 646
 647static inline int queue_out_packet(struct amdtp_stream *s,
 648				   struct fw_iso_packet *params, bool sched_irq)
 649{
 650	params->skip =
 651		!!(params->header_length == 0 && params->payload_length == 0);
 652	return queue_packet(s, params, sched_irq);
 653}
 654
 655static inline int queue_in_packet(struct amdtp_stream *s,
 656				  struct fw_iso_packet *params)
 657{
 658	// Queue one packet for IR context.
 659	params->header_length = s->ctx_data.tx.ctx_header_size;
 660	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
 661	params->skip = false;
 662	return queue_packet(s, params, false);
 663}
 664
 665static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
 666			unsigned int data_block_counter, unsigned int syt)
 667{
 668	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
 669				(s->data_block_quadlets << CIP_DBS_SHIFT) |
 670				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
 671				data_block_counter);
 672	cip_header[1] = cpu_to_be32(CIP_EOH |
 673			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
 674			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
 675			(syt & CIP_SYT_MASK));
 676}
 677
 678static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
 679				struct fw_iso_packet *params, unsigned int header_length,
 680				unsigned int data_blocks,
 681				unsigned int data_block_counter,
 682				unsigned int syt, unsigned int index)
 683{
 684	unsigned int payload_length;
 685	__be32 *cip_header;
 686
 687	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
 688	params->payload_length = payload_length;
 689
 690	if (header_length > 0) {
 691		cip_header = (__be32 *)params->header;
 692		generate_cip_header(s, cip_header, data_block_counter, syt);
 693		params->header_length = header_length;
 694	} else {
 695		cip_header = NULL;
 696	}
 697
 698	trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
 699			   data_block_counter, s->packet_index, index);
 700}
 701
 702static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
 703			    unsigned int payload_length,
 704			    unsigned int *data_blocks,
 705			    unsigned int *data_block_counter, unsigned int *syt)
 706{
 707	u32 cip_header[2];
 708	unsigned int sph;
 709	unsigned int fmt;
 710	unsigned int fdf;
 711	unsigned int dbc;
 712	bool lost;
 713
 714	cip_header[0] = be32_to_cpu(buf[0]);
 715	cip_header[1] = be32_to_cpu(buf[1]);
 716
 717	/*
 718	 * This module supports 'Two-quadlet CIP header with SYT field'.
 719	 * For convenience, also check FMT field is AM824 or not.
 720	 */
 721	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
 722	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
 723	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
 724		dev_info_ratelimited(&s->unit->device,
 725				"Invalid CIP header for AMDTP: %08X:%08X\n",
 726				cip_header[0], cip_header[1]);
 727		return -EAGAIN;
 728	}
 729
 730	/* Check valid protocol or not. */
 731	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
 732	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
 733	if (sph != s->sph || fmt != s->fmt) {
 734		dev_info_ratelimited(&s->unit->device,
 735				     "Detect unexpected protocol: %08x %08x\n",
 736				     cip_header[0], cip_header[1]);
 737		return -EAGAIN;
 738	}
 739
 740	/* Calculate data blocks */
 741	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
 742	if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
 743		*data_blocks = 0;
 744	} else {
 745		unsigned int data_block_quadlets =
 746				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
 747		/* avoid division by zero */
 748		if (data_block_quadlets == 0) {
 749			dev_err(&s->unit->device,
 750				"Detect invalid value in dbs field: %08X\n",
 751				cip_header[0]);
 752			return -EPROTO;
 753		}
 754		if (s->flags & CIP_WRONG_DBS)
 755			data_block_quadlets = s->data_block_quadlets;
 756
 757		*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
 758	}
 759
 760	/* Check data block counter continuity */
 761	dbc = cip_header[0] & CIP_DBC_MASK;
 762	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
 763	    *data_block_counter != UINT_MAX)
 764		dbc = *data_block_counter;
 765
 766	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
 767	    *data_block_counter == UINT_MAX) {
 768		lost = false;
 769	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
 770		lost = dbc != *data_block_counter;
 771	} else {
 772		unsigned int dbc_interval;
 773
 774		if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
 775			dbc_interval = s->ctx_data.tx.dbc_interval;
 776		else
 777			dbc_interval = *data_blocks;
 
 
 
 
 778
 779		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
 780	}
 781
 782	if (lost) {
 783		dev_err(&s->unit->device,
 784			"Detect discontinuity of CIP: %02X %02X\n",
 785			*data_block_counter, dbc);
 786		return -EIO;
 787	}
 788
 789	*data_block_counter = dbc;
 790
 791	if (!(s->flags & CIP_UNAWARE_SYT))
 792		*syt = cip_header[1] & CIP_SYT_MASK;
 793
 794	return 0;
 795}
 796
 797static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
 798			       const __be32 *ctx_header,
 799			       unsigned int *data_blocks,
 800			       unsigned int *data_block_counter,
 801			       unsigned int *syt, unsigned int packet_index, unsigned int index)
 
 802{
 803	unsigned int payload_length;
 804	const __be32 *cip_header;
 805	unsigned int cip_header_size;
 806
 807	payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
 808
 809	if (!(s->flags & CIP_NO_HEADER))
 810		cip_header_size = CIP_HEADER_SIZE;
 811	else
 812		cip_header_size = 0;
 813
 814	if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
 815		dev_err(&s->unit->device,
 816			"Detect jumbo payload: %04x %04x\n",
 817			payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
 818		return -EIO;
 819	}
 820
 821	if (cip_header_size > 0) {
 822		if (payload_length >= cip_header_size) {
 823			int err;
 824
 825			cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
 826			err = check_cip_header(s, cip_header, payload_length - cip_header_size,
 827					       data_blocks, data_block_counter, syt);
 828			if (err < 0)
 829				return err;
 830		} else {
 831			// Handle the cycle so that empty packet arrives.
 832			cip_header = NULL;
 833			*data_blocks = 0;
 834			*syt = 0;
 835		}
 836	} else {
 837		cip_header = NULL;
 838		*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
 839		*syt = 0;
 840
 841		if (*data_block_counter == UINT_MAX)
 842			*data_block_counter = 0;
 843	}
 844
 845	trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
 846			   *data_block_counter, packet_index, index);
 847
 848	return 0;
 849}
 850
 851// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 852// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 853// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 
 
 
 
 
 854static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
 855{
 856	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
 857	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
 858}
 859
 860static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
 861{
 862	cycle += addend;
 863	if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
 864		cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
 865	return cycle;
 866}
 867
 
 
 
 
 
 
 
 
 868static int compare_ohci_cycle_count(u32 lval, u32 rval)
 869{
 870	if (lval == rval)
 871		return 0;
 872	else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
 873		return -1;
 874	else
 875		return 1;
 876}
 877
 878// Align to actual cycle count for the packet which is going to be scheduled.
 879// This module queued the same number of isochronous cycle as the size of queue
 880// to kip isochronous cycle, therefore it's OK to just increment the cycle by
 881// the size of queue for scheduled cycle.
 882static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
 883					unsigned int queue_size)
 884{
 885	u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
 886	return increment_ohci_cycle_count(cycle, queue_size);
 887}
 888
 889static int generate_device_pkt_descs(struct amdtp_stream *s,
 890				     struct pkt_desc *descs,
 891				     const __be32 *ctx_header,
 892				     unsigned int packets,
 893				     unsigned int *desc_count)
 894{
 895	unsigned int next_cycle = s->next_cycle;
 896	unsigned int dbc = s->data_block_counter;
 897	unsigned int packet_index = s->packet_index;
 898	unsigned int queue_size = s->queue_size;
 
 899	int i;
 900	int err;
 901
 
 
 
 902	*desc_count = 0;
 903	for (i = 0; i < packets; ++i) {
 904		struct pkt_desc *desc = descs + *desc_count;
 905		unsigned int cycle;
 906		bool lost;
 907		unsigned int data_blocks;
 908		unsigned int syt;
 909
 910		cycle = compute_ohci_cycle_count(ctx_header[1]);
 911		lost = (next_cycle != cycle);
 912		if (lost) {
 913			if (s->flags & CIP_NO_HEADER) {
 914				// Fireface skips transmission just for an isoc cycle corresponding
 915				// to empty packet.
 916				unsigned int prev_cycle = next_cycle;
 917
 918				next_cycle = increment_ohci_cycle_count(next_cycle, 1);
 919				lost = (next_cycle != cycle);
 920				if (!lost) {
 921					// Prepare a description for the skipped cycle for
 922					// sequence replay.
 923					desc->cycle = prev_cycle;
 924					desc->syt = 0;
 925					desc->data_blocks = 0;
 926					desc->data_block_counter = dbc;
 927					desc->ctx_payload = NULL;
 928					++desc;
 929					++(*desc_count);
 930				}
 931			} else if (s->flags & CIP_JUMBO_PAYLOAD) {
 932				// OXFW970 skips transmission for several isoc cycles during
 933				// asynchronous transaction. The sequence replay is impossible due
 934				// to the reason.
 935				unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
 936								IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
 937				lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0);
 938			}
 939			if (lost) {
 940				dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
 941					next_cycle, cycle);
 942				return -EIO;
 943			}
 944		}
 945
 946		err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
 947					  packet_index, i);
 948		if (err < 0)
 949			return err;
 950
 951		desc->cycle = cycle;
 952		desc->syt = syt;
 953		desc->data_blocks = data_blocks;
 954		desc->data_block_counter = dbc;
 955		desc->ctx_payload = s->buffer.packets[packet_index].buffer;
 956
 957		if (!(s->flags & CIP_DBC_IS_END_EVENT))
 958			dbc = (dbc + desc->data_blocks) & 0xff;
 959
 960		next_cycle = increment_ohci_cycle_count(next_cycle, 1);
 
 961		++(*desc_count);
 962		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
 963		packet_index = (packet_index + 1) % queue_size;
 964	}
 965
 966	s->next_cycle = next_cycle;
 967	s->data_block_counter = dbc;
 968
 969	return 0;
 970}
 971
 972static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
 973				unsigned int transfer_delay)
 974{
 975	unsigned int syt;
 976
 977	syt_offset += transfer_delay;
 978	syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
 979	      (syt_offset % TICKS_PER_CYCLE);
 980	return syt & CIP_SYT_MASK;
 981}
 982
 983static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets)
 
 984{
 985	struct pkt_desc *descs = s->pkt_descs;
 986	const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
 987	const unsigned int seq_size = s->ctx_data.rx.seq.size;
 988	unsigned int dbc = s->data_block_counter;
 989	unsigned int seq_head = s->ctx_data.rx.seq.head;
 990	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
 991	int i;
 992
 993	for (i = 0; i < packets; ++i) {
 994		struct pkt_desc *desc = descs + i;
 
 995		unsigned int index = (s->packet_index + i) % s->queue_size;
 996		const struct seq_desc *seq = seq_descs + seq_head;
 997
 998		desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
 999
1000		if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1001			desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1002		else
1003			desc->syt = CIP_SYT_NO_INFO;
1004
1005		desc->data_blocks = seq->data_blocks;
1006
1007		if (s->flags & CIP_DBC_IS_END_EVENT)
1008			dbc = (dbc + desc->data_blocks) & 0xff;
1009
1010		desc->data_block_counter = dbc;
1011
1012		if (!(s->flags & CIP_DBC_IS_END_EVENT))
1013			dbc = (dbc + desc->data_blocks) & 0xff;
1014
1015		desc->ctx_payload = s->buffer.packets[index].buffer;
1016
1017		seq_head = (seq_head + 1) % seq_size;
 
1018
1019		++ctx_header;
1020	}
1021
1022	s->data_block_counter = dbc;
1023	s->ctx_data.rx.seq.head = seq_head;
1024}
1025
1026static inline void cancel_stream(struct amdtp_stream *s)
1027{
 
 
1028	s->packet_index = -1;
1029	if (in_softirq())
 
 
 
 
 
1030		amdtp_stream_pcm_abort(s);
1031	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1032}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034static void process_ctx_payloads(struct amdtp_stream *s,
1035				 const struct pkt_desc *descs,
1036				 unsigned int packets)
1037{
1038	struct snd_pcm_substream *pcm;
1039	unsigned int pcm_frames;
1040
1041	pcm = READ_ONCE(s->pcm);
1042	pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
1043	if (pcm)
1044		update_pcm_pointers(s, pcm, pcm_frames);
 
 
 
 
 
 
 
 
 
 
 
1045}
1046
1047static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1048			       void *header, void *private_data)
1049{
1050	struct amdtp_stream *s = private_data;
1051	const struct amdtp_domain *d = s->domain;
1052	const __be32 *ctx_header = header;
1053	const unsigned int events_per_period = d->events_per_period;
1054	unsigned int event_count = s->ctx_data.rx.event_count;
 
1055	unsigned int pkt_header_length;
1056	unsigned int packets;
 
1057	bool need_hw_irq;
1058	int i;
1059
1060	if (s->packet_index < 0)
1061		return;
1062
1063	// Calculate the number of packets in buffer and check XRUN.
1064	packets = header_length / sizeof(*ctx_header);
1065
1066	pool_seq_descs(s, packets);
1067
1068	generate_pkt_descs(s, ctx_header, packets);
1069
1070	process_ctx_payloads(s, s->pkt_descs, packets);
1071
1072	if (!(s->flags & CIP_NO_HEADER))
1073		pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1074	else
1075		pkt_header_length = 0;
1076
1077	if (s == d->irq_target) {
1078		// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1079		// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1080		// with some requests, instead of scheduled hardware IRQ of an IT context.
1081		struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1082		need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1083	} else {
1084		need_hw_irq = false;
1085	}
1086
 
 
 
1087	for (i = 0; i < packets; ++i) {
1088		const struct pkt_desc *desc = s->pkt_descs + i;
1089		struct {
1090			struct fw_iso_packet params;
1091			__be32 header[CIP_HEADER_QUADLETS];
1092		} template = { {0}, {0} };
1093		bool sched_irq = false;
1094
1095		build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1096				    desc->data_blocks, desc->data_block_counter,
1097				    desc->syt, i);
1098
1099		if (s == s->domain->irq_target) {
1100			event_count += desc->data_blocks;
1101			if (event_count >= events_per_period) {
1102				event_count -= events_per_period;
1103				sched_irq = need_hw_irq;
1104			}
1105		}
1106
1107		if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1108			cancel_stream(s);
1109			return;
1110		}
 
 
1111	}
1112
1113	s->ctx_data.rx.event_count = event_count;
 
1114}
1115
1116static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1117			    void *header, void *private_data)
1118{
1119	struct amdtp_stream *s = private_data;
1120	struct amdtp_domain *d = s->domain;
1121	const __be32 *ctx_header = header;
1122	unsigned int packets;
1123	unsigned int cycle;
1124	int i;
1125
1126	if (s->packet_index < 0)
1127		return;
1128
1129	packets = header_length / sizeof(*ctx_header);
1130
1131	cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1132	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1133
1134	for (i = 0; i < packets; ++i) {
1135		struct fw_iso_packet params = {
1136			.header_length = 0,
1137			.payload_length = 0,
1138		};
1139		bool sched_irq = (s == d->irq_target && i == packets - 1);
1140
1141		if (queue_out_packet(s, &params, sched_irq) < 0) {
1142			cancel_stream(s);
1143			return;
1144		}
1145	}
1146}
1147
1148static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1149				void *header, void *private_data);
1150
1151static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1152					size_t header_length, void *header, void *private_data)
1153{
1154	struct amdtp_stream *s = private_data;
1155	struct amdtp_domain *d = s->domain;
1156	__be32 *ctx_header = header;
1157	const unsigned int queue_size = s->queue_size;
1158	unsigned int packets;
1159	unsigned int offset;
1160
1161	if (s->packet_index < 0)
1162		return;
1163
1164	packets = header_length / sizeof(*ctx_header);
1165
1166	offset = 0;
1167	while (offset < packets) {
1168		unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1169
1170		if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1171			break;
1172
1173		++offset;
1174	}
1175
1176	if (offset > 0) {
1177		unsigned int length = sizeof(*ctx_header) * offset;
1178
1179		skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1180		if (amdtp_streaming_error(s))
1181			return;
1182
1183		ctx_header += offset;
1184		header_length -= length;
1185	}
1186
1187	if (offset < packets) {
1188		s->ready_processing = true;
1189		wake_up(&s->ready_wait);
1190
 
 
 
1191		process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1192		if (amdtp_streaming_error(s))
1193			return;
1194
1195		if (s == d->irq_target)
1196			s->context->callback.sc = irq_target_callback;
1197		else
1198			s->context->callback.sc = process_rx_packets;
1199	}
1200}
1201
1202static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1203			       void *header, void *private_data)
1204{
1205	struct amdtp_stream *s = private_data;
1206	__be32 *ctx_header = header;
1207	unsigned int packets;
 
1208	unsigned int desc_count;
1209	int i;
1210	int err;
1211
1212	if (s->packet_index < 0)
1213		return;
1214
1215	// Calculate the number of packets in buffer and check XRUN.
1216	packets = header_length / s->ctx_data.tx.ctx_header_size;
1217
1218	desc_count = 0;
1219	err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count);
1220	if (err < 0) {
1221		if (err != -EAGAIN) {
1222			cancel_stream(s);
1223			return;
1224		}
1225	} else {
1226		struct amdtp_domain *d = s->domain;
1227
1228		process_ctx_payloads(s, s->pkt_descs, desc_count);
1229
1230		if (d->replay.enable)
1231			cache_seq(s, s->pkt_descs, desc_count);
 
 
 
 
1232	}
1233
1234	for (i = 0; i < packets; ++i) {
1235		struct fw_iso_packet params = {0};
1236
1237		if (queue_in_packet(s, &params) < 0) {
1238			cancel_stream(s);
1239			return;
1240		}
1241	}
1242}
1243
1244static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1245			    void *header, void *private_data)
1246{
1247	struct amdtp_stream *s = private_data;
1248	const __be32 *ctx_header = header;
1249	unsigned int packets;
1250	unsigned int cycle;
1251	int i;
1252
1253	if (s->packet_index < 0)
1254		return;
1255
1256	packets = header_length / s->ctx_data.tx.ctx_header_size;
1257
1258	ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1259	cycle = compute_ohci_cycle_count(ctx_header[1]);
1260	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1261
1262	for (i = 0; i < packets; ++i) {
1263		struct fw_iso_packet params = {0};
1264
1265		if (queue_in_packet(s, &params) < 0) {
1266			cancel_stream(s);
1267			return;
1268		}
1269	}
1270}
1271
1272static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1273					size_t header_length, void *header, void *private_data)
1274{
1275	struct amdtp_stream *s = private_data;
1276	struct amdtp_domain *d = s->domain;
1277	__be32 *ctx_header;
1278	unsigned int packets;
1279	unsigned int offset;
1280
1281	if (s->packet_index < 0)
1282		return;
1283
1284	packets = header_length / s->ctx_data.tx.ctx_header_size;
1285
1286	offset = 0;
1287	ctx_header = header;
1288	while (offset < packets) {
1289		unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1290
1291		if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1292			break;
1293
1294		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1295		++offset;
1296	}
1297
1298	ctx_header = header;
1299
1300	if (offset > 0) {
1301		size_t length = s->ctx_data.tx.ctx_header_size * offset;
1302
1303		drop_tx_packets(context, tstamp, length, ctx_header, s);
1304		if (amdtp_streaming_error(s))
1305			return;
1306
1307		ctx_header += length / sizeof(*ctx_header);
1308		header_length -= length;
1309	}
1310
1311	if (offset < packets) {
1312		s->ready_processing = true;
1313		wake_up(&s->ready_wait);
1314
1315		process_tx_packets(context, tstamp, header_length, ctx_header, s);
1316		if (amdtp_streaming_error(s))
1317			return;
1318
1319		context->callback.sc = process_tx_packets;
1320	}
1321}
1322
1323static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1324				      size_t header_length, void *header, void *private_data)
1325{
1326	struct amdtp_stream *s = private_data;
1327	struct amdtp_domain *d = s->domain;
1328	__be32 *ctx_header;
1329	unsigned int count;
1330	unsigned int events;
1331	int i;
1332
1333	if (s->packet_index < 0)
1334		return;
1335
1336	count = header_length / s->ctx_data.tx.ctx_header_size;
1337
1338	// Attempt to detect any event in the batch of packets.
1339	events = 0;
1340	ctx_header = header;
1341	for (i = 0; i < count; ++i) {
1342		unsigned int payload_quads =
1343			(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1344		unsigned int data_blocks;
1345
1346		if (s->flags & CIP_NO_HEADER) {
1347			data_blocks = payload_quads / s->data_block_quadlets;
1348		} else {
1349			__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1350
1351			if (payload_quads < CIP_HEADER_QUADLETS) {
1352				data_blocks = 0;
1353			} else {
1354				payload_quads -= CIP_HEADER_QUADLETS;
1355
1356				if (s->flags & CIP_UNAWARE_SYT) {
1357					data_blocks = payload_quads / s->data_block_quadlets;
1358				} else {
1359					u32 cip1 = be32_to_cpu(cip_headers[1]);
1360
1361					// NODATA packet can includes any data blocks but they are
1362					// not available as event.
1363					if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1364						data_blocks = 0;
1365					else
1366						data_blocks = payload_quads / s->data_block_quadlets;
1367				}
1368			}
1369		}
1370
1371		events += data_blocks;
1372
1373		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1374	}
1375
1376	drop_tx_packets(context, tstamp, header_length, header, s);
1377
1378	if (events > 0)
1379		s->ctx_data.tx.event_starts = true;
1380
1381	// Decide the cycle count to begin processing content of packet in IR contexts.
1382	{
1383		unsigned int stream_count = 0;
1384		unsigned int event_starts_count = 0;
1385		unsigned int cycle = UINT_MAX;
1386
1387		list_for_each_entry(s, &d->streams, list) {
1388			if (s->direction == AMDTP_IN_STREAM) {
1389				++stream_count;
1390				if (s->ctx_data.tx.event_starts)
1391					++event_starts_count;
1392			}
1393		}
1394
1395		if (stream_count == event_starts_count) {
1396			unsigned int next_cycle;
1397
1398			list_for_each_entry(s, &d->streams, list) {
1399				if (s->direction != AMDTP_IN_STREAM)
1400					continue;
1401
1402				next_cycle = increment_ohci_cycle_count(s->next_cycle,
1403								d->processing_cycle.tx_init_skip);
1404				if (cycle == UINT_MAX ||
1405				    compare_ohci_cycle_count(next_cycle, cycle) > 0)
1406					cycle = next_cycle;
1407
1408				s->context->callback.sc = process_tx_packets_intermediately;
1409			}
1410
1411			d->processing_cycle.tx_start = cycle;
1412		}
1413	}
1414}
1415
1416static void process_ctxs_in_domain(struct amdtp_domain *d)
1417{
1418	struct amdtp_stream *s;
1419
1420	list_for_each_entry(s, &d->streams, list) {
1421		if (s != d->irq_target && amdtp_stream_running(s))
1422			fw_iso_context_flush_completions(s->context);
1423
1424		if (amdtp_streaming_error(s))
1425			goto error;
1426	}
1427
1428	return;
1429error:
1430	if (amdtp_stream_running(d->irq_target))
1431		cancel_stream(d->irq_target);
1432
1433	list_for_each_entry(s, &d->streams, list) {
1434		if (amdtp_stream_running(s))
1435			cancel_stream(s);
1436	}
1437}
1438
1439static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1440				void *header, void *private_data)
1441{
1442	struct amdtp_stream *s = private_data;
1443	struct amdtp_domain *d = s->domain;
1444
1445	process_rx_packets(context, tstamp, header_length, header, private_data);
1446	process_ctxs_in_domain(d);
1447}
1448
1449static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1450					size_t header_length, void *header, void *private_data)
1451{
1452	struct amdtp_stream *s = private_data;
1453	struct amdtp_domain *d = s->domain;
1454
1455	process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1456	process_ctxs_in_domain(d);
1457}
1458
1459static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1460				     size_t header_length, void *header, void *private_data)
1461{
1462	struct amdtp_stream *s = private_data;
1463	struct amdtp_domain *d = s->domain;
1464	bool ready_to_start;
1465
1466	skip_rx_packets(context, tstamp, header_length, header, private_data);
1467	process_ctxs_in_domain(d);
1468
1469	if (d->replay.enable && !d->replay.on_the_fly) {
1470		unsigned int rx_count = 0;
1471		unsigned int rx_ready_count = 0;
1472		struct amdtp_stream *rx;
1473
1474		list_for_each_entry(rx, &d->streams, list) {
1475			struct amdtp_stream *tx;
1476			unsigned int cached_cycles;
1477
1478			if (rx->direction != AMDTP_OUT_STREAM)
1479				continue;
1480			++rx_count;
1481
1482			tx = rx->ctx_data.rx.replay_target;
1483			cached_cycles = calculate_cached_cycle_count(tx, 0);
1484			if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1485				++rx_ready_count;
1486		}
1487
1488		ready_to_start = (rx_count == rx_ready_count);
1489	} else {
1490		ready_to_start = true;
1491	}
1492
1493	// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1494	// contexts are expected to start and get callback when reaching here.
1495	if (ready_to_start) {
1496		unsigned int cycle = s->next_cycle;
1497		list_for_each_entry(s, &d->streams, list) {
1498			if (s->direction != AMDTP_OUT_STREAM)
1499				continue;
1500
1501			if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1502				cycle = s->next_cycle;
1503
1504			if (s == d->irq_target)
1505				s->context->callback.sc = irq_target_callback_intermediately;
1506			else
1507				s->context->callback.sc = process_rx_packets_intermediately;
1508		}
1509
1510		d->processing_cycle.rx_start = cycle;
1511	}
1512}
1513
1514// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1515// transmit first packet.
1516static void amdtp_stream_first_callback(struct fw_iso_context *context,
1517					u32 tstamp, size_t header_length,
1518					void *header, void *private_data)
1519{
1520	struct amdtp_stream *s = private_data;
1521	struct amdtp_domain *d = s->domain;
1522
1523	if (s->direction == AMDTP_IN_STREAM) {
1524		context->callback.sc = drop_tx_packets_initially;
1525	} else {
1526		if (s == d->irq_target)
1527			context->callback.sc = irq_target_callback_skip;
1528		else
1529			context->callback.sc = skip_rx_packets;
1530	}
1531
1532	context->callback.sc(context, tstamp, header_length, header, s);
1533}
1534
1535/**
1536 * amdtp_stream_start - start transferring packets
1537 * @s: the AMDTP stream to start
1538 * @channel: the isochronous channel on the bus
1539 * @speed: firewire speed code
1540 * @queue_size: The number of packets in the queue.
1541 * @idle_irq_interval: the interval to queue packet during initial state.
1542 *
1543 * The stream cannot be started until it has been configured with
1544 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1545 * device can be started.
1546 */
1547static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1548			      unsigned int queue_size, unsigned int idle_irq_interval)
1549{
1550	bool is_irq_target = (s == s->domain->irq_target);
1551	unsigned int ctx_header_size;
1552	unsigned int max_ctx_payload_size;
1553	enum dma_data_direction dir;
1554	int type, tag, err;
 
1555
1556	mutex_lock(&s->mutex);
1557
1558	if (WARN_ON(amdtp_stream_running(s) ||
1559		    (s->data_block_quadlets < 1))) {
1560		err = -EBADFD;
1561		goto err_unlock;
1562	}
1563
1564	if (s->direction == AMDTP_IN_STREAM) {
1565		// NOTE: IT context should be used for constant IRQ.
1566		if (is_irq_target) {
1567			err = -EINVAL;
1568			goto err_unlock;
1569		}
1570
1571		s->data_block_counter = UINT_MAX;
1572	} else {
1573		s->data_block_counter = 0;
1574	}
1575
1576	// initialize packet buffer.
1577	if (s->direction == AMDTP_IN_STREAM) {
1578		dir = DMA_FROM_DEVICE;
1579		type = FW_ISO_CONTEXT_RECEIVE;
1580		if (!(s->flags & CIP_NO_HEADER))
1581			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1582		else
1583			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1584	} else {
1585		dir = DMA_TO_DEVICE;
1586		type = FW_ISO_CONTEXT_TRANSMIT;
1587		ctx_header_size = 0;	// No effect for IT context.
1588	}
1589	max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1590
1591	err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1592	if (err < 0)
1593		goto err_unlock;
1594	s->queue_size = queue_size;
1595
1596	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1597					  type, channel, speed, ctx_header_size,
1598					  amdtp_stream_first_callback, s);
1599	if (IS_ERR(s->context)) {
1600		err = PTR_ERR(s->context);
1601		if (err == -EBUSY)
1602			dev_err(&s->unit->device,
1603				"no free stream on this controller\n");
1604		goto err_buffer;
1605	}
1606
1607	amdtp_stream_update(s);
1608
1609	if (s->direction == AMDTP_IN_STREAM) {
1610		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1611		s->ctx_data.tx.ctx_header_size = ctx_header_size;
1612		s->ctx_data.tx.event_starts = false;
1613
1614		if (s->domain->replay.enable) {
1615			// struct fw_iso_context.drop_overflow_headers is false therefore it's
1616			// possible to cache much unexpectedly.
1617			s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1618							  queue_size * 3 / 2);
1619			s->ctx_data.tx.cache.tail = 0;
1620			s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1621						sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1622			if (!s->ctx_data.tx.cache.descs) {
1623				err = -ENOMEM;
1624				goto err_context;
1625			}
1626		}
1627	} else {
1628		static const struct {
1629			unsigned int data_block;
1630			unsigned int syt_offset;
1631		} *entry, initial_state[] = {
1632			[CIP_SFC_32000]  = {  4, 3072 },
1633			[CIP_SFC_48000]  = {  6, 1024 },
1634			[CIP_SFC_96000]  = { 12, 1024 },
1635			[CIP_SFC_192000] = { 24, 1024 },
1636			[CIP_SFC_44100]  = {  0,   67 },
1637			[CIP_SFC_88200]  = {  0,   67 },
1638			[CIP_SFC_176400] = {  0,   67 },
1639		};
1640
1641		s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1642		if (!s->ctx_data.rx.seq.descs) {
1643			err = -ENOMEM;
1644			goto err_context;
1645		}
1646		s->ctx_data.rx.seq.size = queue_size;
1647		s->ctx_data.rx.seq.tail = 0;
1648		s->ctx_data.rx.seq.head = 0;
1649
1650		entry = &initial_state[s->sfc];
1651		s->ctx_data.rx.data_block_state = entry->data_block;
1652		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1653		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1654
1655		s->ctx_data.rx.event_count = 0;
1656	}
1657
1658	if (s->flags & CIP_NO_HEADER)
1659		s->tag = TAG_NO_CIP_HEADER;
1660	else
1661		s->tag = TAG_CIP;
1662
1663	s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1664			       GFP_KERNEL);
1665	if (!s->pkt_descs) {
 
 
 
1666		err = -ENOMEM;
1667		goto err_context;
1668	}
 
 
 
 
 
 
 
 
 
1669
1670	s->packet_index = 0;
1671	do {
1672		struct fw_iso_packet params;
1673
1674		if (s->direction == AMDTP_IN_STREAM) {
1675			err = queue_in_packet(s, &params);
1676		} else {
1677			bool sched_irq = false;
1678
1679			params.header_length = 0;
1680			params.payload_length = 0;
1681
1682			if (is_irq_target) {
1683				sched_irq = !((s->packet_index + 1) %
1684					      idle_irq_interval);
1685			}
1686
1687			err = queue_out_packet(s, &params, sched_irq);
1688		}
1689		if (err < 0)
1690			goto err_pkt_descs;
1691	} while (s->packet_index > 0);
1692
1693	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1694	tag = FW_ISO_CONTEXT_MATCH_TAG1;
1695	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1696		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1697
1698	s->ready_processing = false;
1699	err = fw_iso_context_start(s->context, -1, 0, tag);
1700	if (err < 0)
1701		goto err_pkt_descs;
1702
1703	mutex_unlock(&s->mutex);
1704
1705	return 0;
1706err_pkt_descs:
1707	kfree(s->pkt_descs);
 
1708err_context:
1709	if (s->direction == AMDTP_OUT_STREAM) {
1710		kfree(s->ctx_data.rx.seq.descs);
1711	} else {
1712		if (s->domain->replay.enable)
1713			kfree(s->ctx_data.tx.cache.descs);
1714	}
1715	fw_iso_context_destroy(s->context);
1716	s->context = ERR_PTR(-1);
1717err_buffer:
1718	iso_packets_buffer_destroy(&s->buffer, s->unit);
1719err_unlock:
1720	mutex_unlock(&s->mutex);
1721
1722	return err;
1723}
1724
1725/**
1726 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1727 * @d: the AMDTP domain.
1728 * @s: the AMDTP stream that transports the PCM data
1729 *
1730 * Returns the current buffer position, in frames.
1731 */
1732unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1733					      struct amdtp_stream *s)
1734{
1735	struct amdtp_stream *irq_target = d->irq_target;
1736
1737	// Process isochronous packets queued till recent isochronous cycle to handle PCM frames.
1738	if (irq_target && amdtp_stream_running(irq_target)) {
1739		// In software IRQ context, the call causes dead-lock to disable the tasklet
1740		// synchronously.
1741		if (!in_softirq())
 
1742			fw_iso_context_flush_completions(irq_target->context);
1743	}
1744
1745	return READ_ONCE(s->pcm_buffer_pointer);
1746}
1747EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1748
1749/**
1750 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1751 * @d: the AMDTP domain.
1752 * @s: the AMDTP stream that transfers the PCM frames
1753 *
1754 * Returns zero always.
1755 */
1756int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1757{
1758	struct amdtp_stream *irq_target = d->irq_target;
1759
1760	// Process isochronous packets for recent isochronous cycle to handle
1761	// queued PCM frames.
1762	if (irq_target && amdtp_stream_running(irq_target))
1763		fw_iso_context_flush_completions(irq_target->context);
1764
1765	return 0;
1766}
1767EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1768
1769/**
1770 * amdtp_stream_update - update the stream after a bus reset
1771 * @s: the AMDTP stream
1772 */
1773void amdtp_stream_update(struct amdtp_stream *s)
1774{
1775	/* Precomputing. */
1776	WRITE_ONCE(s->source_node_id_field,
1777                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1778}
1779EXPORT_SYMBOL(amdtp_stream_update);
1780
1781/**
1782 * amdtp_stream_stop - stop sending packets
1783 * @s: the AMDTP stream to stop
1784 *
1785 * All PCM and MIDI devices of the stream must be stopped before the stream
1786 * itself can be stopped.
1787 */
1788static void amdtp_stream_stop(struct amdtp_stream *s)
1789{
1790	mutex_lock(&s->mutex);
1791
1792	if (!amdtp_stream_running(s)) {
1793		mutex_unlock(&s->mutex);
1794		return;
1795	}
1796
 
1797	fw_iso_context_stop(s->context);
1798	fw_iso_context_destroy(s->context);
1799	s->context = ERR_PTR(-1);
1800	iso_packets_buffer_destroy(&s->buffer, s->unit);
1801	kfree(s->pkt_descs);
 
1802
1803	if (s->direction == AMDTP_OUT_STREAM) {
1804		kfree(s->ctx_data.rx.seq.descs);
1805	} else {
1806		if (s->domain->replay.enable)
1807			kfree(s->ctx_data.tx.cache.descs);
1808	}
1809
1810	mutex_unlock(&s->mutex);
1811}
1812
1813/**
1814 * amdtp_stream_pcm_abort - abort the running PCM device
1815 * @s: the AMDTP stream about to be stopped
1816 *
1817 * If the isochronous stream needs to be stopped asynchronously, call this
1818 * function first to stop the PCM device.
1819 */
1820void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1821{
1822	struct snd_pcm_substream *pcm;
1823
1824	pcm = READ_ONCE(s->pcm);
1825	if (pcm)
1826		snd_pcm_stop_xrun(pcm);
1827}
1828EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1829
1830/**
1831 * amdtp_domain_init - initialize an AMDTP domain structure
1832 * @d: the AMDTP domain to initialize.
1833 */
1834int amdtp_domain_init(struct amdtp_domain *d)
1835{
1836	INIT_LIST_HEAD(&d->streams);
1837
1838	d->events_per_period = 0;
1839
1840	return 0;
1841}
1842EXPORT_SYMBOL_GPL(amdtp_domain_init);
1843
1844/**
1845 * amdtp_domain_destroy - destroy an AMDTP domain structure
1846 * @d: the AMDTP domain to destroy.
1847 */
1848void amdtp_domain_destroy(struct amdtp_domain *d)
1849{
1850	// At present nothing to do.
1851	return;
1852}
1853EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1854
1855/**
1856 * amdtp_domain_add_stream - register isoc context into the domain.
1857 * @d: the AMDTP domain.
1858 * @s: the AMDTP stream.
1859 * @channel: the isochronous channel on the bus.
1860 * @speed: firewire speed code.
1861 */
1862int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1863			    int channel, int speed)
1864{
1865	struct amdtp_stream *tmp;
1866
1867	list_for_each_entry(tmp, &d->streams, list) {
1868		if (s == tmp)
1869			return -EBUSY;
1870	}
1871
1872	list_add(&s->list, &d->streams);
1873
1874	s->channel = channel;
1875	s->speed = speed;
1876	s->domain = d;
1877
1878	return 0;
1879}
1880EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1881
1882// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
1883// is less than the number of rx streams, the first tx stream is selected.
1884static int make_association(struct amdtp_domain *d)
1885{
1886	unsigned int dst_index = 0;
1887	struct amdtp_stream *rx;
1888
1889	// Make association to replay target.
1890	list_for_each_entry(rx, &d->streams, list) {
1891		if (rx->direction == AMDTP_OUT_STREAM) {
1892			unsigned int src_index = 0;
1893			struct amdtp_stream *tx = NULL;
1894			struct amdtp_stream *s;
1895
1896			list_for_each_entry(s, &d->streams, list) {
1897				if (s->direction == AMDTP_IN_STREAM) {
1898					if (dst_index == src_index) {
1899						tx = s;
1900						break;
1901					}
1902
1903					++src_index;
1904				}
1905			}
1906			if (!tx) {
1907				// Select the first entry.
1908				list_for_each_entry(s, &d->streams, list) {
1909					if (s->direction == AMDTP_IN_STREAM) {
1910						tx = s;
1911						break;
1912					}
1913				}
1914				// No target is available to replay sequence.
1915				if (!tx)
1916					return -EINVAL;
1917			}
1918
1919			rx->ctx_data.rx.replay_target = tx;
1920			rx->ctx_data.rx.cache_head = 0;
1921
1922			++dst_index;
1923		}
1924	}
1925
1926	return 0;
1927}
1928
1929/**
1930 * amdtp_domain_start - start sending packets for isoc context in the domain.
1931 * @d: the AMDTP domain.
1932 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
1933 *			 contexts.
1934 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
1935 *		IT context.
1936 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
1937 *		       according to arrival of events in tx packets.
1938 */
1939int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
1940		       bool replay_on_the_fly)
1941{
1942	unsigned int events_per_buffer = d->events_per_buffer;
1943	unsigned int events_per_period = d->events_per_period;
1944	unsigned int queue_size;
1945	struct amdtp_stream *s;
1946	bool found = false;
1947	int err;
1948
1949	if (replay_seq) {
1950		err = make_association(d);
1951		if (err < 0)
1952			return err;
1953	}
1954	d->replay.enable = replay_seq;
1955	d->replay.on_the_fly = replay_on_the_fly;
1956
1957	// Select an IT context as IRQ target.
1958	list_for_each_entry(s, &d->streams, list) {
1959		if (s->direction == AMDTP_OUT_STREAM) {
1960			found = true;
1961			break;
1962		}
1963	}
1964	if (!found)
1965		return -ENXIO;
1966	d->irq_target = s;
1967
1968	d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
1969
1970	// This is a case that AMDTP streams in domain run just for MIDI
1971	// substream. Use the number of events equivalent to 10 msec as
1972	// interval of hardware IRQ.
1973	if (events_per_period == 0)
1974		events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1975	if (events_per_buffer == 0)
1976		events_per_buffer = events_per_period * 3;
1977
1978	queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1979				  amdtp_rate_table[d->irq_target->sfc]);
1980
1981	list_for_each_entry(s, &d->streams, list) {
1982		unsigned int idle_irq_interval = 0;
1983
1984		if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
1985			idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1986							 amdtp_rate_table[d->irq_target->sfc]);
1987		}
1988
1989		// Starts immediately but actually DMA context starts several hundred cycles later.
1990		err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
1991		if (err < 0)
1992			goto error;
1993	}
1994
1995	return 0;
1996error:
1997	list_for_each_entry(s, &d->streams, list)
1998		amdtp_stream_stop(s);
1999	return err;
2000}
2001EXPORT_SYMBOL_GPL(amdtp_domain_start);
2002
2003/**
2004 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2005 * @d: the AMDTP domain to which the isoc contexts belong.
2006 */
2007void amdtp_domain_stop(struct amdtp_domain *d)
2008{
2009	struct amdtp_stream *s, *next;
2010
2011	if (d->irq_target)
2012		amdtp_stream_stop(d->irq_target);
2013
2014	list_for_each_entry_safe(s, next, &d->streams, list) {
2015		list_del(&s->list);
2016
2017		if (s != d->irq_target)
2018			amdtp_stream_stop(s);
2019	}
2020
2021	d->events_per_period = 0;
2022	d->irq_target = NULL;
2023}
2024EXPORT_SYMBOL_GPL(amdtp_domain_stop);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
   4 * with Common Isochronous Packet (IEC 61883-1) headers
   5 *
   6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/firewire.h>
  12#include <linux/firewire-constants.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <sound/pcm.h>
  16#include <sound/pcm_params.h>
  17#include "amdtp-stream.h"
  18
  19#define TICKS_PER_CYCLE		3072
  20#define CYCLES_PER_SECOND	8000
  21#define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
  22
  23#define OHCI_SECOND_MODULUS		8
  24
  25/* Always support Linux tracing subsystem. */
  26#define CREATE_TRACE_POINTS
  27#include "amdtp-stream-trace.h"
  28
  29#define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
  30
  31/* isochronous header parameters */
  32#define ISO_DATA_LENGTH_SHIFT	16
  33#define TAG_NO_CIP_HEADER	0
  34#define TAG_CIP			1
  35
  36// Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
  37#define CIP_HEADER_QUADLETS	2
  38#define CIP_EOH_SHIFT		31
  39#define CIP_EOH			(1u << CIP_EOH_SHIFT)
  40#define CIP_EOH_MASK		0x80000000
  41#define CIP_SID_SHIFT		24
  42#define CIP_SID_MASK		0x3f000000
  43#define CIP_DBS_MASK		0x00ff0000
  44#define CIP_DBS_SHIFT		16
  45#define CIP_SPH_MASK		0x00000400
  46#define CIP_SPH_SHIFT		10
  47#define CIP_DBC_MASK		0x000000ff
  48#define CIP_FMT_SHIFT		24
  49#define CIP_FMT_MASK		0x3f000000
  50#define CIP_FDF_MASK		0x00ff0000
  51#define CIP_FDF_SHIFT		16
  52#define CIP_FDF_NO_DATA		0xff
  53#define CIP_SYT_MASK		0x0000ffff
  54#define CIP_SYT_NO_INFO		0xffff
  55#define CIP_SYT_CYCLE_MODULUS	16
  56#define CIP_NO_DATA		((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
  57
  58#define CIP_HEADER_SIZE		(sizeof(__be32) * CIP_HEADER_QUADLETS)
  59
  60/* Audio and Music transfer protocol specific parameters */
  61#define CIP_FMT_AM		0x10
  62#define AMDTP_FDF_NO_DATA	0xff
  63
  64// For iso header and tstamp.
  65#define IR_CTX_HEADER_DEFAULT_QUADLETS	2
  66// Add nothing.
  67#define IR_CTX_HEADER_SIZE_NO_CIP	(sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
  68// Add two quadlets CIP header.
  69#define IR_CTX_HEADER_SIZE_CIP		(IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
  70#define HEADER_TSTAMP_MASK	0x0000ffff
  71
  72#define IT_PKT_HEADER_SIZE_CIP		CIP_HEADER_SIZE
  73#define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
  74
  75// The initial firmware of OXFW970 can postpone transmission of packet during finishing
  76// asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
  77// overrun. Actual device can skip more, then this module stops the packet streaming.
  78#define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES	5
  79
  80static void pcm_period_work(struct work_struct *work);
  81
  82/**
  83 * amdtp_stream_init - initialize an AMDTP stream structure
  84 * @s: the AMDTP stream to initialize
  85 * @unit: the target of the stream
  86 * @dir: the direction of stream
  87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
  88 * @fmt: the value of fmt field in CIP header
  89 * @process_ctx_payloads: callback handler to process payloads of isoc context
  90 * @protocol_size: the size to allocate newly for protocol
  91 */
  92int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
  93		      enum amdtp_stream_direction dir, unsigned int flags,
  94		      unsigned int fmt,
  95		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
  96		      unsigned int protocol_size)
  97{
  98	if (process_ctx_payloads == NULL)
  99		return -EINVAL;
 100
 101	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
 102	if (!s->protocol)
 103		return -ENOMEM;
 104
 105	s->unit = unit;
 106	s->direction = dir;
 107	s->flags = flags;
 108	s->context = ERR_PTR(-1);
 109	mutex_init(&s->mutex);
 110	INIT_WORK(&s->period_work, pcm_period_work);
 111	s->packet_index = 0;
 112
 113	init_waitqueue_head(&s->ready_wait);
 114
 115	s->fmt = fmt;
 116	s->process_ctx_payloads = process_ctx_payloads;
 117
 118	return 0;
 119}
 120EXPORT_SYMBOL(amdtp_stream_init);
 121
 122/**
 123 * amdtp_stream_destroy - free stream resources
 124 * @s: the AMDTP stream to destroy
 125 */
 126void amdtp_stream_destroy(struct amdtp_stream *s)
 127{
 128	/* Not initialized. */
 129	if (s->protocol == NULL)
 130		return;
 131
 132	WARN_ON(amdtp_stream_running(s));
 133	kfree(s->protocol);
 134	mutex_destroy(&s->mutex);
 135}
 136EXPORT_SYMBOL(amdtp_stream_destroy);
 137
 138const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
 139	[CIP_SFC_32000]  =  8,
 140	[CIP_SFC_44100]  =  8,
 141	[CIP_SFC_48000]  =  8,
 142	[CIP_SFC_88200]  = 16,
 143	[CIP_SFC_96000]  = 16,
 144	[CIP_SFC_176400] = 32,
 145	[CIP_SFC_192000] = 32,
 146};
 147EXPORT_SYMBOL(amdtp_syt_intervals);
 148
 149const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
 150	[CIP_SFC_32000]  =  32000,
 151	[CIP_SFC_44100]  =  44100,
 152	[CIP_SFC_48000]  =  48000,
 153	[CIP_SFC_88200]  =  88200,
 154	[CIP_SFC_96000]  =  96000,
 155	[CIP_SFC_176400] = 176400,
 156	[CIP_SFC_192000] = 192000,
 157};
 158EXPORT_SYMBOL(amdtp_rate_table);
 159
 160static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
 161				    struct snd_pcm_hw_rule *rule)
 162{
 163	struct snd_interval *s = hw_param_interval(params, rule->var);
 164	const struct snd_interval *r =
 165		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
 166	struct snd_interval t = {0};
 167	unsigned int step = 0;
 168	int i;
 169
 170	for (i = 0; i < CIP_SFC_COUNT; ++i) {
 171		if (snd_interval_test(r, amdtp_rate_table[i]))
 172			step = max(step, amdtp_syt_intervals[i]);
 173	}
 174
 175	if (step == 0)
 176		return -EINVAL;
 177
 178	t.min = roundup(s->min, step);
 179	t.max = rounddown(s->max, step);
 180	t.integer = 1;
 181
 182	return snd_interval_refine(s, &t);
 183}
 184
 185/**
 186 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 187 * @s:		the AMDTP stream, which must be initialized.
 188 * @runtime:	the PCM substream runtime
 189 */
 190int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
 191					struct snd_pcm_runtime *runtime)
 192{
 193	struct snd_pcm_hardware *hw = &runtime->hw;
 194	unsigned int ctx_header_size;
 195	unsigned int maximum_usec_per_period;
 196	int err;
 197
 198	hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
 199		   SNDRV_PCM_INFO_INTERLEAVED |
 200		   SNDRV_PCM_INFO_JOINT_DUPLEX |
 201		   SNDRV_PCM_INFO_MMAP |
 202		   SNDRV_PCM_INFO_MMAP_VALID |
 203		   SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
 204
 205	hw->periods_min = 2;
 206	hw->periods_max = UINT_MAX;
 207
 208	/* bytes for a frame */
 209	hw->period_bytes_min = 4 * hw->channels_max;
 210
 211	/* Just to prevent from allocating much pages. */
 212	hw->period_bytes_max = hw->period_bytes_min * 2048;
 213	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
 214
 215	// Linux driver for 1394 OHCI controller voluntarily flushes isoc
 216	// context when total size of accumulated context header reaches
 217	// PAGE_SIZE. This kicks work for the isoc context and brings
 218	// callback in the middle of scheduled interrupts.
 219	// Although AMDTP streams in the same domain use the same events per
 220	// IRQ, use the largest size of context header between IT/IR contexts.
 221	// Here, use the value of context header in IR context is for both
 222	// contexts.
 223	if (!(s->flags & CIP_NO_HEADER))
 224		ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
 225	else
 226		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
 227	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
 228				  CYCLES_PER_SECOND / ctx_header_size;
 229
 230	// In IEC 61883-6, one isoc packet can transfer events up to the value
 231	// of syt interval. This comes from the interval of isoc cycle. As 1394
 232	// OHCI controller can generate hardware IRQ per isoc packet, the
 233	// interval is 125 usec.
 234	// However, there are two ways of transmission in IEC 61883-6; blocking
 235	// and non-blocking modes. In blocking mode, the sequence of isoc packet
 236	// includes 'empty' or 'NODATA' packets which include no event. In
 237	// non-blocking mode, the number of events per packet is variable up to
 238	// the syt interval.
 239	// Due to the above protocol design, the minimum PCM frames per
 240	// interrupt should be double of the value of syt interval, thus it is
 241	// 250 usec.
 242	err = snd_pcm_hw_constraint_minmax(runtime,
 243					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 244					   250, maximum_usec_per_period);
 245	if (err < 0)
 246		goto end;
 247
 248	/* Non-Blocking stream has no more constraints */
 249	if (!(s->flags & CIP_BLOCKING))
 250		goto end;
 251
 252	/*
 253	 * One AMDTP packet can include some frames. In blocking mode, the
 254	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
 255	 * depending on its sampling rate. For accurate period interrupt, it's
 256	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
 257	 */
 258	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 259				  apply_constraint_to_size, NULL,
 260				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 261				  SNDRV_PCM_HW_PARAM_RATE, -1);
 262	if (err < 0)
 263		goto end;
 264	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 265				  apply_constraint_to_size, NULL,
 266				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 267				  SNDRV_PCM_HW_PARAM_RATE, -1);
 268	if (err < 0)
 269		goto end;
 270end:
 271	return err;
 272}
 273EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
 274
 275/**
 276 * amdtp_stream_set_parameters - set stream parameters
 277 * @s: the AMDTP stream to configure
 278 * @rate: the sample rate
 279 * @data_block_quadlets: the size of a data block in quadlet unit
 280 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
 281 *			  events.
 282 *
 283 * The parameters must be set before the stream is started, and must not be
 284 * changed while the stream is running.
 285 */
 286int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
 287				unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
 288{
 289	unsigned int sfc;
 290
 291	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
 292		if (amdtp_rate_table[sfc] == rate)
 293			break;
 294	}
 295	if (sfc == ARRAY_SIZE(amdtp_rate_table))
 296		return -EINVAL;
 297
 298	s->sfc = sfc;
 299	s->data_block_quadlets = data_block_quadlets;
 300	s->syt_interval = amdtp_syt_intervals[sfc];
 301
 302	// default buffering in the device.
 303	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
 304
 305	// additional buffering needed to adjust for no-data packets.
 306	if (s->flags & CIP_BLOCKING)
 307		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
 308
 309	s->pcm_frame_multiplier = pcm_frame_multiplier;
 310
 311	return 0;
 312}
 313EXPORT_SYMBOL(amdtp_stream_set_parameters);
 314
 315// The CIP header is processed in context header apart from context payload.
 316static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
 317{
 318	unsigned int multiplier;
 319
 320	if (s->flags & CIP_JUMBO_PAYLOAD)
 321		multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
 322	else
 323		multiplier = 1;
 324
 325	return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
 326}
 327
 328/**
 329 * amdtp_stream_get_max_payload - get the stream's packet size
 330 * @s: the AMDTP stream
 331 *
 332 * This function must not be called before the stream has been configured
 333 * with amdtp_stream_set_parameters().
 334 */
 335unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
 336{
 337	unsigned int cip_header_size;
 338
 339	if (!(s->flags & CIP_NO_HEADER))
 340		cip_header_size = CIP_HEADER_SIZE;
 341	else
 342		cip_header_size = 0;
 343
 344	return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
 345}
 346EXPORT_SYMBOL(amdtp_stream_get_max_payload);
 347
 348/**
 349 * amdtp_stream_pcm_prepare - prepare PCM device for running
 350 * @s: the AMDTP stream
 351 *
 352 * This function should be called from the PCM device's .prepare callback.
 353 */
 354void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
 355{
 356	cancel_work_sync(&s->period_work);
 357	s->pcm_buffer_pointer = 0;
 358	s->pcm_period_pointer = 0;
 359}
 360EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
 361
 362#define prev_packet_desc(s, desc) \
 363	list_prev_entry_circular(desc, &s->packet_descs_list, link)
 364
 365static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
 366				      unsigned int size, unsigned int pos, unsigned int count)
 
 367{
 368	const unsigned int syt_interval = s->syt_interval;
 369	int i;
 370
 371	for (i = 0; i < count; ++i) {
 372		struct seq_desc *desc = descs + pos;
 373
 374		if (desc->syt_offset != CIP_SYT_NO_INFO)
 375			desc->data_blocks = syt_interval;
 376		else
 377			desc->data_blocks = 0;
 378
 379		pos = (pos + 1) % size;
 380	}
 381}
 382
 383static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
 384					       unsigned int size, unsigned int pos,
 385					       unsigned int count)
 386{
 387	const enum cip_sfc sfc = s->sfc;
 388	unsigned int state = s->ctx_data.rx.data_block_state;
 389	int i;
 390
 391	for (i = 0; i < count; ++i) {
 392		struct seq_desc *desc = descs + pos;
 393
 394		if (!cip_sfc_is_base_44100(sfc)) {
 395			// Sample_rate / 8000 is an integer, and precomputed.
 396			desc->data_blocks = state;
 397		} else {
 398			unsigned int phase = state;
 399
 400		/*
 401		 * This calculates the number of data blocks per packet so that
 402		 * 1) the overall rate is correct and exactly synchronized to
 403		 *    the bus clock, and
 404		 * 2) packets with a rounded-up number of blocks occur as early
 405		 *    as possible in the sequence (to prevent underruns of the
 406		 *    device's buffer).
 407		 */
 408			if (sfc == CIP_SFC_44100)
 409				/* 6 6 5 6 5 6 5 ... */
 410				desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
 411			else
 412				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
 413				desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
 414			if (++phase >= (80 >> (sfc >> 1)))
 415				phase = 0;
 416			state = phase;
 417		}
 418
 419		pos = (pos + 1) % size;
 420	}
 421
 422	s->ctx_data.rx.data_block_state = state;
 423}
 424
 425static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
 426			unsigned int *syt_offset_state, enum cip_sfc sfc)
 427{
 428	unsigned int syt_offset;
 429
 430	if (*last_syt_offset < TICKS_PER_CYCLE) {
 431		if (!cip_sfc_is_base_44100(sfc))
 432			syt_offset = *last_syt_offset + *syt_offset_state;
 433		else {
 434		/*
 435		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
 436		 *   n * SYT_INTERVAL * 24576000 / sample_rate
 437		 * Modulo TICKS_PER_CYCLE, the difference between successive
 438		 * elements is about 1386.23.  Rounding the results of this
 439		 * formula to the SYT precision results in a sequence of
 440		 * differences that begins with:
 441		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
 442		 * This code generates _exactly_ the same sequence.
 443		 */
 444			unsigned int phase = *syt_offset_state;
 445			unsigned int index = phase % 13;
 446
 447			syt_offset = *last_syt_offset;
 448			syt_offset += 1386 + ((index && !(index & 3)) ||
 449					      phase == 146);
 450			if (++phase >= 147)
 451				phase = 0;
 452			*syt_offset_state = phase;
 453		}
 454	} else
 455		syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
 456	*last_syt_offset = syt_offset;
 457
 458	if (syt_offset >= TICKS_PER_CYCLE)
 459		syt_offset = CIP_SYT_NO_INFO;
 460
 461	return syt_offset;
 462}
 463
 464static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
 465				   unsigned int size, unsigned int pos, unsigned int count)
 
 466{
 467	const enum cip_sfc sfc = s->sfc;
 468	unsigned int last = s->ctx_data.rx.last_syt_offset;
 469	unsigned int state = s->ctx_data.rx.syt_offset_state;
 470	int i;
 471
 472	for (i = 0; i < count; ++i) {
 473		struct seq_desc *desc = descs + pos;
 474
 475		desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
 476
 477		pos = (pos + 1) % size;
 478	}
 479
 480	s->ctx_data.rx.last_syt_offset = last;
 481	s->ctx_data.rx.syt_offset_state = state;
 482}
 483
 484static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
 485				       unsigned int transfer_delay)
 486{
 487	unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
 488	unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
 489	unsigned int syt_offset;
 490
 491	// Round up.
 492	if (syt_cycle_lo < cycle_lo)
 493		syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
 494	syt_cycle_lo -= cycle_lo;
 495
 496	// Subtract transfer delay so that the synchronization offset is not so large
 497	// at transmission.
 498	syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
 499	if (syt_offset < transfer_delay)
 500		syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
 501
 502	return syt_offset - transfer_delay;
 503}
 504
 505// Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
 506// Additionally, the sequence of tx packets is severely checked against any discontinuity
 507// before filling entries in the queue. The calculation is safe even if it looks fragile by
 508// overrun.
 509static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
 510{
 511	const unsigned int cache_size = s->ctx_data.tx.cache.size;
 512	unsigned int cycles = s->ctx_data.tx.cache.pos;
 513
 514	if (cycles < head)
 515		cycles += cache_size;
 516	cycles -= head;
 517
 518	return cycles;
 519}
 520
 521static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
 522{
 523	const unsigned int transfer_delay = s->transfer_delay;
 524	const unsigned int cache_size = s->ctx_data.tx.cache.size;
 525	struct seq_desc *cache = s->ctx_data.tx.cache.descs;
 526	unsigned int cache_pos = s->ctx_data.tx.cache.pos;
 527	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
 528	int i;
 529
 530	for (i = 0; i < desc_count; ++i) {
 531		struct seq_desc *dst = cache + cache_pos;
 
 532
 533		if (aware_syt && src->syt != CIP_SYT_NO_INFO)
 534			dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
 535		else
 536			dst->syt_offset = CIP_SYT_NO_INFO;
 537		dst->data_blocks = src->data_blocks;
 538
 539		cache_pos = (cache_pos + 1) % cache_size;
 540		src = amdtp_stream_next_packet_desc(s, src);
 541	}
 542
 543	s->ctx_data.tx.cache.pos = cache_pos;
 544}
 545
 546static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
 547				 unsigned int pos, unsigned int count)
 548{
 549	pool_ideal_syt_offsets(s, descs, size, pos, count);
 
 
 
 
 550
 551	if (s->flags & CIP_BLOCKING)
 552		pool_blocking_data_blocks(s, descs, size, pos, count);
 553	else
 554		pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
 
 
 555}
 556
 557static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
 558			      unsigned int pos, unsigned int count)
 559{
 560	struct amdtp_stream *target = s->ctx_data.rx.replay_target;
 561	const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
 562	const unsigned int cache_size = target->ctx_data.tx.cache.size;
 563	unsigned int cache_pos = s->ctx_data.rx.cache_pos;
 
 
 
 564	int i;
 565
 566	for (i = 0; i < count; ++i) {
 567		descs[pos] = cache[cache_pos];
 568		cache_pos = (cache_pos + 1) % cache_size;
 569		pos = (pos + 1) % size;
 570	}
 571
 572	s->ctx_data.rx.cache_pos = cache_pos;
 
 573}
 574
 575static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
 576			   unsigned int pos, unsigned int count)
 577{
 578	struct amdtp_domain *d = s->domain;
 579	void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
 580			       unsigned int pos, unsigned int count);
 581
 582	if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
 583		pool_seq_descs = pool_ideal_seq_descs;
 584	} else {
 585		if (!d->replay.on_the_fly) {
 586			pool_seq_descs = pool_replayed_seq;
 587		} else {
 588			struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
 589			const unsigned int cache_size = tx->ctx_data.tx.cache.size;
 590			const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
 591			unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
 592
 593			if (cached_cycles > count && cached_cycles > cache_size / 2)
 594				pool_seq_descs = pool_replayed_seq;
 595			else
 596				pool_seq_descs = pool_ideal_seq_descs;
 597		}
 598	}
 599
 600	pool_seq_descs(s, descs, size, pos, count);
 601}
 602
 603static void update_pcm_pointers(struct amdtp_stream *s,
 604				struct snd_pcm_substream *pcm,
 605				unsigned int frames)
 606{
 607	unsigned int ptr;
 608
 609	ptr = s->pcm_buffer_pointer + frames;
 610	if (ptr >= pcm->runtime->buffer_size)
 611		ptr -= pcm->runtime->buffer_size;
 612	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
 613
 614	s->pcm_period_pointer += frames;
 615	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
 616		s->pcm_period_pointer -= pcm->runtime->period_size;
 617
 618		// The program in user process should periodically check the status of intermediate
 619		// buffer associated to PCM substream to process PCM frames in the buffer, instead
 620		// of receiving notification of period elapsed by poll wait.
 621		//
 622		// Use another work item for period elapsed event to prevent the following AB/BA
 623		// deadlock:
 624		//
 625		//             thread 1                            thread 2
 626		// =================================   =================================
 627		//       A.work item (process)                pcm ioctl (process)
 628		//                 v                                   v
 629		//       process_rx_packets()                  B.PCM stream lock
 630		//       process_tx_packets()                          v
 631		//                 v                        callbacks in snd_pcm_ops
 632		//       update_pcm_pointers()                         v
 633		//         snd_pcm_elapsed()           fw_iso_context_flush_completions()
 634		//  snd_pcm_stream_lock_irqsave()             disable_work_sync()
 635		//                 v                                   v
 636		//     wait until release of B                wait until A exits
 637		if (!pcm->runtime->no_period_wakeup)
 638			queue_work(system_highpri_wq, &s->period_work);
 639	}
 640}
 641
 642static void pcm_period_work(struct work_struct *work)
 643{
 644	struct amdtp_stream *s = container_of(work, struct amdtp_stream,
 645					      period_work);
 646	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
 647
 648	if (pcm)
 649		snd_pcm_period_elapsed(pcm);
 650}
 651
 652static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
 653			bool sched_irq)
 654{
 655	int err;
 656
 657	params->interrupt = sched_irq;
 658	params->tag = s->tag;
 659	params->sy = 0;
 660
 661	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
 662				   s->buffer.packets[s->packet_index].offset);
 663	if (err < 0) {
 664		dev_err(&s->unit->device, "queueing error: %d\n", err);
 665		goto end;
 666	}
 667
 668	if (++s->packet_index >= s->queue_size)
 669		s->packet_index = 0;
 670end:
 671	return err;
 672}
 673
 674static inline int queue_out_packet(struct amdtp_stream *s,
 675				   struct fw_iso_packet *params, bool sched_irq)
 676{
 677	params->skip =
 678		!!(params->header_length == 0 && params->payload_length == 0);
 679	return queue_packet(s, params, sched_irq);
 680}
 681
 682static inline int queue_in_packet(struct amdtp_stream *s,
 683				  struct fw_iso_packet *params)
 684{
 685	// Queue one packet for IR context.
 686	params->header_length = s->ctx_data.tx.ctx_header_size;
 687	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
 688	params->skip = false;
 689	return queue_packet(s, params, false);
 690}
 691
 692static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
 693			unsigned int data_block_counter, unsigned int syt)
 694{
 695	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
 696				(s->data_block_quadlets << CIP_DBS_SHIFT) |
 697				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
 698				data_block_counter);
 699	cip_header[1] = cpu_to_be32(CIP_EOH |
 700			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
 701			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
 702			(syt & CIP_SYT_MASK));
 703}
 704
 705static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
 706				struct fw_iso_packet *params, unsigned int header_length,
 707				unsigned int data_blocks,
 708				unsigned int data_block_counter,
 709				unsigned int syt, unsigned int index, u32 curr_cycle_time)
 710{
 711	unsigned int payload_length;
 712	__be32 *cip_header;
 713
 714	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
 715	params->payload_length = payload_length;
 716
 717	if (header_length > 0) {
 718		cip_header = (__be32 *)params->header;
 719		generate_cip_header(s, cip_header, data_block_counter, syt);
 720		params->header_length = header_length;
 721	} else {
 722		cip_header = NULL;
 723	}
 724
 725	trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
 726			   data_block_counter, s->packet_index, index, curr_cycle_time);
 727}
 728
 729static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
 730			    unsigned int payload_length,
 731			    unsigned int *data_blocks,
 732			    unsigned int *data_block_counter, unsigned int *syt)
 733{
 734	u32 cip_header[2];
 735	unsigned int sph;
 736	unsigned int fmt;
 737	unsigned int fdf;
 738	unsigned int dbc;
 739	bool lost;
 740
 741	cip_header[0] = be32_to_cpu(buf[0]);
 742	cip_header[1] = be32_to_cpu(buf[1]);
 743
 744	/*
 745	 * This module supports 'Two-quadlet CIP header with SYT field'.
 746	 * For convenience, also check FMT field is AM824 or not.
 747	 */
 748	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
 749	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
 750	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
 751		dev_info_ratelimited(&s->unit->device,
 752				"Invalid CIP header for AMDTP: %08X:%08X\n",
 753				cip_header[0], cip_header[1]);
 754		return -EAGAIN;
 755	}
 756
 757	/* Check valid protocol or not. */
 758	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
 759	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
 760	if (sph != s->sph || fmt != s->fmt) {
 761		dev_info_ratelimited(&s->unit->device,
 762				     "Detect unexpected protocol: %08x %08x\n",
 763				     cip_header[0], cip_header[1]);
 764		return -EAGAIN;
 765	}
 766
 767	/* Calculate data blocks */
 768	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
 769	if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
 770		*data_blocks = 0;
 771	} else {
 772		unsigned int data_block_quadlets =
 773				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
 774		/* avoid division by zero */
 775		if (data_block_quadlets == 0) {
 776			dev_err(&s->unit->device,
 777				"Detect invalid value in dbs field: %08X\n",
 778				cip_header[0]);
 779			return -EPROTO;
 780		}
 781		if (s->flags & CIP_WRONG_DBS)
 782			data_block_quadlets = s->data_block_quadlets;
 783
 784		*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
 785	}
 786
 787	/* Check data block counter continuity */
 788	dbc = cip_header[0] & CIP_DBC_MASK;
 789	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
 790	    *data_block_counter != UINT_MAX)
 791		dbc = *data_block_counter;
 792
 793	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
 794	    *data_block_counter == UINT_MAX) {
 795		lost = false;
 796	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
 797		lost = dbc != *data_block_counter;
 798	} else {
 799		unsigned int dbc_interval;
 800
 801		if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) {
 802			if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
 803				dbc_interval = s->ctx_data.tx.dbc_interval;
 804			else
 805				dbc_interval = *data_blocks;
 806		} else {
 807			dbc_interval = payload_length / sizeof(__be32);
 808		}
 809
 810		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
 811	}
 812
 813	if (lost) {
 814		dev_err(&s->unit->device,
 815			"Detect discontinuity of CIP: %02X %02X\n",
 816			*data_block_counter, dbc);
 817		return -EIO;
 818	}
 819
 820	*data_block_counter = dbc;
 821
 822	if (!(s->flags & CIP_UNAWARE_SYT))
 823		*syt = cip_header[1] & CIP_SYT_MASK;
 824
 825	return 0;
 826}
 827
 828static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
 829			       const __be32 *ctx_header,
 830			       unsigned int *data_blocks,
 831			       unsigned int *data_block_counter,
 832			       unsigned int *syt, unsigned int packet_index, unsigned int index,
 833			       u32 curr_cycle_time)
 834{
 835	unsigned int payload_length;
 836	const __be32 *cip_header;
 837	unsigned int cip_header_size;
 838
 839	payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
 840
 841	if (!(s->flags & CIP_NO_HEADER))
 842		cip_header_size = CIP_HEADER_SIZE;
 843	else
 844		cip_header_size = 0;
 845
 846	if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
 847		dev_err(&s->unit->device,
 848			"Detect jumbo payload: %04x %04x\n",
 849			payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
 850		return -EIO;
 851	}
 852
 853	if (cip_header_size > 0) {
 854		if (payload_length >= cip_header_size) {
 855			int err;
 856
 857			cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
 858			err = check_cip_header(s, cip_header, payload_length - cip_header_size,
 859					       data_blocks, data_block_counter, syt);
 860			if (err < 0)
 861				return err;
 862		} else {
 863			// Handle the cycle so that empty packet arrives.
 864			cip_header = NULL;
 865			*data_blocks = 0;
 866			*syt = 0;
 867		}
 868	} else {
 869		cip_header = NULL;
 870		*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
 871		*syt = 0;
 872
 873		if (*data_block_counter == UINT_MAX)
 874			*data_block_counter = 0;
 875	}
 876
 877	trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
 878			   *data_block_counter, packet_index, index, curr_cycle_time);
 879
 880	return 0;
 881}
 882
 883// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 884// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 885// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 886static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
 887{
 888	return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
 889}
 890
 891static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
 892{
 893	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
 894	return compute_ohci_iso_ctx_cycle_count(tstamp);
 895}
 896
 897static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
 898{
 899	cycle += addend;
 900	if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
 901		cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
 902	return cycle;
 903}
 904
 905static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
 906{
 907	if (minuend < subtrahend)
 908		minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
 909
 910	return minuend - subtrahend;
 911}
 912
 913static int compare_ohci_cycle_count(u32 lval, u32 rval)
 914{
 915	if (lval == rval)
 916		return 0;
 917	else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
 918		return -1;
 919	else
 920		return 1;
 921}
 922
 923// Align to actual cycle count for the packet which is going to be scheduled.
 924// This module queued the same number of isochronous cycle as the size of queue
 925// to kip isochronous cycle, therefore it's OK to just increment the cycle by
 926// the size of queue for scheduled cycle.
 927static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
 928					unsigned int queue_size)
 929{
 930	u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
 931	return increment_ohci_cycle_count(cycle, queue_size);
 932}
 933
 934static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
 935				    const __be32 *ctx_header, unsigned int packet_count,
 936				    unsigned int *desc_count)
 
 
 937{
 938	unsigned int next_cycle = s->next_cycle;
 939	unsigned int dbc = s->data_block_counter;
 940	unsigned int packet_index = s->packet_index;
 941	unsigned int queue_size = s->queue_size;
 942	u32 curr_cycle_time = 0;
 943	int i;
 944	int err;
 945
 946	if (trace_amdtp_packet_enabled())
 947		(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
 948
 949	*desc_count = 0;
 950	for (i = 0; i < packet_count; ++i) {
 
 951		unsigned int cycle;
 952		bool lost;
 953		unsigned int data_blocks;
 954		unsigned int syt;
 955
 956		cycle = compute_ohci_cycle_count(ctx_header[1]);
 957		lost = (next_cycle != cycle);
 958		if (lost) {
 959			if (s->flags & CIP_NO_HEADER) {
 960				// Fireface skips transmission just for an isoc cycle corresponding
 961				// to empty packet.
 962				unsigned int prev_cycle = next_cycle;
 963
 964				next_cycle = increment_ohci_cycle_count(next_cycle, 1);
 965				lost = (next_cycle != cycle);
 966				if (!lost) {
 967					// Prepare a description for the skipped cycle for
 968					// sequence replay.
 969					desc->cycle = prev_cycle;
 970					desc->syt = 0;
 971					desc->data_blocks = 0;
 972					desc->data_block_counter = dbc;
 973					desc->ctx_payload = NULL;
 974					desc = amdtp_stream_next_packet_desc(s, desc);
 975					++(*desc_count);
 976				}
 977			} else if (s->flags & CIP_JUMBO_PAYLOAD) {
 978				// OXFW970 skips transmission for several isoc cycles during
 979				// asynchronous transaction. The sequence replay is impossible due
 980				// to the reason.
 981				unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
 982								IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
 983				lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0);
 984			}
 985			if (lost) {
 986				dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
 987					next_cycle, cycle);
 988				return -EIO;
 989			}
 990		}
 991
 992		err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
 993					  packet_index, i, curr_cycle_time);
 994		if (err < 0)
 995			return err;
 996
 997		desc->cycle = cycle;
 998		desc->syt = syt;
 999		desc->data_blocks = data_blocks;
1000		desc->data_block_counter = dbc;
1001		desc->ctx_payload = s->buffer.packets[packet_index].buffer;
1002
1003		if (!(s->flags & CIP_DBC_IS_END_EVENT))
1004			dbc = (dbc + desc->data_blocks) & 0xff;
1005
1006		next_cycle = increment_ohci_cycle_count(next_cycle, 1);
1007		desc = amdtp_stream_next_packet_desc(s, desc);
1008		++(*desc_count);
1009		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1010		packet_index = (packet_index + 1) % queue_size;
1011	}
1012
1013	s->next_cycle = next_cycle;
1014	s->data_block_counter = dbc;
1015
1016	return 0;
1017}
1018
1019static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
1020				unsigned int transfer_delay)
1021{
1022	unsigned int syt;
1023
1024	syt_offset += transfer_delay;
1025	syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
1026	      (syt_offset % TICKS_PER_CYCLE);
1027	return syt & CIP_SYT_MASK;
1028}
1029
1030static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1031				     const __be32 *ctx_header, unsigned int packet_count)
1032{
1033	struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1034	unsigned int seq_size = s->ctx_data.rx.seq.size;
1035	unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1036	unsigned int dbc = s->data_block_counter;
 
1037	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1038	int i;
1039
1040	pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1041
1042	for (i = 0; i < packet_count; ++i) {
1043		unsigned int index = (s->packet_index + i) % s->queue_size;
1044		const struct seq_desc *seq = seq_descs + seq_pos;
1045
1046		desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1047
1048		if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1049			desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1050		else
1051			desc->syt = CIP_SYT_NO_INFO;
1052
1053		desc->data_blocks = seq->data_blocks;
1054
1055		if (s->flags & CIP_DBC_IS_END_EVENT)
1056			dbc = (dbc + desc->data_blocks) & 0xff;
1057
1058		desc->data_block_counter = dbc;
1059
1060		if (!(s->flags & CIP_DBC_IS_END_EVENT))
1061			dbc = (dbc + desc->data_blocks) & 0xff;
1062
1063		desc->ctx_payload = s->buffer.packets[index].buffer;
1064
1065		seq_pos = (seq_pos + 1) % seq_size;
1066		desc = amdtp_stream_next_packet_desc(s, desc);
1067
1068		++ctx_header;
1069	}
1070
1071	s->data_block_counter = dbc;
1072	s->ctx_data.rx.seq.pos = seq_pos;
1073}
1074
1075static inline void cancel_stream(struct amdtp_stream *s)
1076{
1077	struct work_struct *work = current_work();
1078
1079	s->packet_index = -1;
1080
1081	// Detect work items for any isochronous context. The work item for pcm_period_work()
1082	// should be avoided since the call of snd_pcm_period_elapsed() can reach via
1083	// snd_pcm_ops.pointer() under acquiring PCM stream(group) lock and causes dead lock at
1084	// snd_pcm_stop_xrun().
1085	if (work && work != &s->period_work)
1086		amdtp_stream_pcm_abort(s);
1087	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1088}
1089
1090static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1091						 const struct pkt_desc *desc, unsigned int count)
1092{
1093	unsigned int data_block_count = 0;
1094	u32 latest_cycle;
1095	u32 cycle_time;
1096	u32 curr_cycle;
1097	u32 cycle_gap;
1098	int i, err;
1099
1100	if (count == 0)
1101		goto end;
1102
1103	// Forward to the latest record.
1104	for (i = 0; i < count - 1; ++i)
1105		desc = amdtp_stream_next_packet_desc(s, desc);
1106	latest_cycle = desc->cycle;
1107
1108	err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1109	if (err < 0)
1110		goto end;
1111
1112	// Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1113	// format of 1394 OHCI isochronous context.
1114	curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1115
1116	if (s->direction == AMDTP_IN_STREAM) {
1117		// NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1118		// it corresponds to arrived isochronous packet.
1119		if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1120			goto end;
1121		cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1122
1123		// NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1124		// value expectedly corresponds to a few packets (0-2) since the packet arrived at
1125		// the most recent isochronous cycle has been already processed.
1126		for (i = 0; i < cycle_gap; ++i) {
1127			desc = amdtp_stream_next_packet_desc(s, desc);
1128			data_block_count += desc->data_blocks;
1129		}
1130	} else {
1131		// NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1132		// since it was already scheduled.
1133		if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1134			goto end;
1135		cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1136
1137		// NOTE: use history of scheduled packets.
1138		for (i = 0; i < cycle_gap; ++i) {
1139			data_block_count += desc->data_blocks;
1140			desc = prev_packet_desc(s, desc);
1141		}
1142	}
1143end:
1144	return data_block_count * s->pcm_frame_multiplier;
1145}
1146
1147static void process_ctx_payloads(struct amdtp_stream *s,
1148				 const struct pkt_desc *desc,
1149				 unsigned int count)
1150{
1151	struct snd_pcm_substream *pcm;
1152	int i;
1153
1154	pcm = READ_ONCE(s->pcm);
1155	s->process_ctx_payloads(s, desc, count, pcm);
1156
1157	if (pcm) {
1158		unsigned int data_block_count = 0;
1159
1160		pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1161
1162		for (i = 0; i < count; ++i) {
1163			data_block_count += desc->data_blocks;
1164			desc = amdtp_stream_next_packet_desc(s, desc);
1165		}
1166
1167		update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1168	}
1169}
1170
1171static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1172			       void *header, void *private_data)
1173{
1174	struct amdtp_stream *s = private_data;
1175	const struct amdtp_domain *d = s->domain;
1176	const __be32 *ctx_header = header;
1177	const unsigned int events_per_period = d->events_per_period;
1178	unsigned int event_count = s->ctx_data.rx.event_count;
1179	struct pkt_desc *desc = s->packet_descs_cursor;
1180	unsigned int pkt_header_length;
1181	unsigned int packets;
1182	u32 curr_cycle_time;
1183	bool need_hw_irq;
1184	int i;
1185
1186	if (s->packet_index < 0)
1187		return;
1188
1189	// Calculate the number of packets in buffer and check XRUN.
1190	packets = header_length / sizeof(*ctx_header);
1191
1192	generate_rx_packet_descs(s, desc, ctx_header, packets);
 
 
1193
1194	process_ctx_payloads(s, desc, packets);
1195
1196	if (!(s->flags & CIP_NO_HEADER))
1197		pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1198	else
1199		pkt_header_length = 0;
1200
1201	if (s == d->irq_target) {
1202		// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1203		// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1204		// with some requests, instead of scheduled hardware IRQ of an IT context.
1205		struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1206		need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1207	} else {
1208		need_hw_irq = false;
1209	}
1210
1211	if (trace_amdtp_packet_enabled())
1212		(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1213
1214	for (i = 0; i < packets; ++i) {
1215		DEFINE_RAW_FLEX(struct fw_iso_packet, template, header, CIP_HEADER_QUADLETS);
 
 
 
 
1216		bool sched_irq = false;
1217
1218		build_it_pkt_header(s, desc->cycle, template, pkt_header_length,
1219				    desc->data_blocks, desc->data_block_counter,
1220				    desc->syt, i, curr_cycle_time);
1221
1222		if (s == s->domain->irq_target) {
1223			event_count += desc->data_blocks;
1224			if (event_count >= events_per_period) {
1225				event_count -= events_per_period;
1226				sched_irq = need_hw_irq;
1227			}
1228		}
1229
1230		if (queue_out_packet(s, template, sched_irq) < 0) {
1231			cancel_stream(s);
1232			return;
1233		}
1234
1235		desc = amdtp_stream_next_packet_desc(s, desc);
1236	}
1237
1238	s->ctx_data.rx.event_count = event_count;
1239	s->packet_descs_cursor = desc;
1240}
1241
1242static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1243			    void *header, void *private_data)
1244{
1245	struct amdtp_stream *s = private_data;
1246	struct amdtp_domain *d = s->domain;
1247	const __be32 *ctx_header = header;
1248	unsigned int packets;
1249	unsigned int cycle;
1250	int i;
1251
1252	if (s->packet_index < 0)
1253		return;
1254
1255	packets = header_length / sizeof(*ctx_header);
1256
1257	cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1258	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1259
1260	for (i = 0; i < packets; ++i) {
1261		struct fw_iso_packet params = {
1262			.header_length = 0,
1263			.payload_length = 0,
1264		};
1265		bool sched_irq = (s == d->irq_target && i == packets - 1);
1266
1267		if (queue_out_packet(s, &params, sched_irq) < 0) {
1268			cancel_stream(s);
1269			return;
1270		}
1271	}
1272}
1273
1274static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1275				void *header, void *private_data);
1276
1277static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1278					size_t header_length, void *header, void *private_data)
1279{
1280	struct amdtp_stream *s = private_data;
1281	struct amdtp_domain *d = s->domain;
1282	__be32 *ctx_header = header;
1283	const unsigned int queue_size = s->queue_size;
1284	unsigned int packets;
1285	unsigned int offset;
1286
1287	if (s->packet_index < 0)
1288		return;
1289
1290	packets = header_length / sizeof(*ctx_header);
1291
1292	offset = 0;
1293	while (offset < packets) {
1294		unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1295
1296		if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1297			break;
1298
1299		++offset;
1300	}
1301
1302	if (offset > 0) {
1303		unsigned int length = sizeof(*ctx_header) * offset;
1304
1305		skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1306		if (amdtp_streaming_error(s))
1307			return;
1308
1309		ctx_header += offset;
1310		header_length -= length;
1311	}
1312
1313	if (offset < packets) {
1314		s->ready_processing = true;
1315		wake_up(&s->ready_wait);
1316
1317		if (d->replay.enable)
1318			s->ctx_data.rx.cache_pos = 0;
1319
1320		process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1321		if (amdtp_streaming_error(s))
1322			return;
1323
1324		if (s == d->irq_target)
1325			s->context->callback.sc = irq_target_callback;
1326		else
1327			s->context->callback.sc = process_rx_packets;
1328	}
1329}
1330
1331static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1332			       void *header, void *private_data)
1333{
1334	struct amdtp_stream *s = private_data;
1335	__be32 *ctx_header = header;
1336	struct pkt_desc *desc = s->packet_descs_cursor;
1337	unsigned int packet_count;
1338	unsigned int desc_count;
1339	int i;
1340	int err;
1341
1342	if (s->packet_index < 0)
1343		return;
1344
1345	// Calculate the number of packets in buffer and check XRUN.
1346	packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1347
1348	desc_count = 0;
1349	err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1350	if (err < 0) {
1351		if (err != -EAGAIN) {
1352			cancel_stream(s);
1353			return;
1354		}
1355	} else {
1356		struct amdtp_domain *d = s->domain;
1357
1358		process_ctx_payloads(s, desc, desc_count);
1359
1360		if (d->replay.enable)
1361			cache_seq(s, desc, desc_count);
1362
1363		for (i = 0; i < desc_count; ++i)
1364			desc = amdtp_stream_next_packet_desc(s, desc);
1365		s->packet_descs_cursor = desc;
1366	}
1367
1368	for (i = 0; i < packet_count; ++i) {
1369		struct fw_iso_packet params = {0};
1370
1371		if (queue_in_packet(s, &params) < 0) {
1372			cancel_stream(s);
1373			return;
1374		}
1375	}
1376}
1377
1378static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1379			    void *header, void *private_data)
1380{
1381	struct amdtp_stream *s = private_data;
1382	const __be32 *ctx_header = header;
1383	unsigned int packets;
1384	unsigned int cycle;
1385	int i;
1386
1387	if (s->packet_index < 0)
1388		return;
1389
1390	packets = header_length / s->ctx_data.tx.ctx_header_size;
1391
1392	ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1393	cycle = compute_ohci_cycle_count(ctx_header[1]);
1394	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1395
1396	for (i = 0; i < packets; ++i) {
1397		struct fw_iso_packet params = {0};
1398
1399		if (queue_in_packet(s, &params) < 0) {
1400			cancel_stream(s);
1401			return;
1402		}
1403	}
1404}
1405
1406static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1407					size_t header_length, void *header, void *private_data)
1408{
1409	struct amdtp_stream *s = private_data;
1410	struct amdtp_domain *d = s->domain;
1411	__be32 *ctx_header;
1412	unsigned int packets;
1413	unsigned int offset;
1414
1415	if (s->packet_index < 0)
1416		return;
1417
1418	packets = header_length / s->ctx_data.tx.ctx_header_size;
1419
1420	offset = 0;
1421	ctx_header = header;
1422	while (offset < packets) {
1423		unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1424
1425		if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1426			break;
1427
1428		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1429		++offset;
1430	}
1431
1432	ctx_header = header;
1433
1434	if (offset > 0) {
1435		size_t length = s->ctx_data.tx.ctx_header_size * offset;
1436
1437		drop_tx_packets(context, tstamp, length, ctx_header, s);
1438		if (amdtp_streaming_error(s))
1439			return;
1440
1441		ctx_header += length / sizeof(*ctx_header);
1442		header_length -= length;
1443	}
1444
1445	if (offset < packets) {
1446		s->ready_processing = true;
1447		wake_up(&s->ready_wait);
1448
1449		process_tx_packets(context, tstamp, header_length, ctx_header, s);
1450		if (amdtp_streaming_error(s))
1451			return;
1452
1453		context->callback.sc = process_tx_packets;
1454	}
1455}
1456
1457static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1458				      size_t header_length, void *header, void *private_data)
1459{
1460	struct amdtp_stream *s = private_data;
1461	struct amdtp_domain *d = s->domain;
1462	__be32 *ctx_header;
1463	unsigned int count;
1464	unsigned int events;
1465	int i;
1466
1467	if (s->packet_index < 0)
1468		return;
1469
1470	count = header_length / s->ctx_data.tx.ctx_header_size;
1471
1472	// Attempt to detect any event in the batch of packets.
1473	events = 0;
1474	ctx_header = header;
1475	for (i = 0; i < count; ++i) {
1476		unsigned int payload_quads =
1477			(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1478		unsigned int data_blocks;
1479
1480		if (s->flags & CIP_NO_HEADER) {
1481			data_blocks = payload_quads / s->data_block_quadlets;
1482		} else {
1483			__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1484
1485			if (payload_quads < CIP_HEADER_QUADLETS) {
1486				data_blocks = 0;
1487			} else {
1488				payload_quads -= CIP_HEADER_QUADLETS;
1489
1490				if (s->flags & CIP_UNAWARE_SYT) {
1491					data_blocks = payload_quads / s->data_block_quadlets;
1492				} else {
1493					u32 cip1 = be32_to_cpu(cip_headers[1]);
1494
1495					// NODATA packet can includes any data blocks but they are
1496					// not available as event.
1497					if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1498						data_blocks = 0;
1499					else
1500						data_blocks = payload_quads / s->data_block_quadlets;
1501				}
1502			}
1503		}
1504
1505		events += data_blocks;
1506
1507		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1508	}
1509
1510	drop_tx_packets(context, tstamp, header_length, header, s);
1511
1512	if (events > 0)
1513		s->ctx_data.tx.event_starts = true;
1514
1515	// Decide the cycle count to begin processing content of packet in IR contexts.
1516	{
1517		unsigned int stream_count = 0;
1518		unsigned int event_starts_count = 0;
1519		unsigned int cycle = UINT_MAX;
1520
1521		list_for_each_entry(s, &d->streams, list) {
1522			if (s->direction == AMDTP_IN_STREAM) {
1523				++stream_count;
1524				if (s->ctx_data.tx.event_starts)
1525					++event_starts_count;
1526			}
1527		}
1528
1529		if (stream_count == event_starts_count) {
1530			unsigned int next_cycle;
1531
1532			list_for_each_entry(s, &d->streams, list) {
1533				if (s->direction != AMDTP_IN_STREAM)
1534					continue;
1535
1536				next_cycle = increment_ohci_cycle_count(s->next_cycle,
1537								d->processing_cycle.tx_init_skip);
1538				if (cycle == UINT_MAX ||
1539				    compare_ohci_cycle_count(next_cycle, cycle) > 0)
1540					cycle = next_cycle;
1541
1542				s->context->callback.sc = process_tx_packets_intermediately;
1543			}
1544
1545			d->processing_cycle.tx_start = cycle;
1546		}
1547	}
1548}
1549
1550static void process_ctxs_in_domain(struct amdtp_domain *d)
1551{
1552	struct amdtp_stream *s;
1553
1554	list_for_each_entry(s, &d->streams, list) {
1555		if (s != d->irq_target && amdtp_stream_running(s))
1556			fw_iso_context_flush_completions(s->context);
1557
1558		if (amdtp_streaming_error(s))
1559			goto error;
1560	}
1561
1562	return;
1563error:
1564	if (amdtp_stream_running(d->irq_target))
1565		cancel_stream(d->irq_target);
1566
1567	list_for_each_entry(s, &d->streams, list) {
1568		if (amdtp_stream_running(s))
1569			cancel_stream(s);
1570	}
1571}
1572
1573static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1574				void *header, void *private_data)
1575{
1576	struct amdtp_stream *s = private_data;
1577	struct amdtp_domain *d = s->domain;
1578
1579	process_rx_packets(context, tstamp, header_length, header, private_data);
1580	process_ctxs_in_domain(d);
1581}
1582
1583static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1584					size_t header_length, void *header, void *private_data)
1585{
1586	struct amdtp_stream *s = private_data;
1587	struct amdtp_domain *d = s->domain;
1588
1589	process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1590	process_ctxs_in_domain(d);
1591}
1592
1593static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1594				     size_t header_length, void *header, void *private_data)
1595{
1596	struct amdtp_stream *s = private_data;
1597	struct amdtp_domain *d = s->domain;
1598	bool ready_to_start;
1599
1600	skip_rx_packets(context, tstamp, header_length, header, private_data);
1601	process_ctxs_in_domain(d);
1602
1603	if (d->replay.enable && !d->replay.on_the_fly) {
1604		unsigned int rx_count = 0;
1605		unsigned int rx_ready_count = 0;
1606		struct amdtp_stream *rx;
1607
1608		list_for_each_entry(rx, &d->streams, list) {
1609			struct amdtp_stream *tx;
1610			unsigned int cached_cycles;
1611
1612			if (rx->direction != AMDTP_OUT_STREAM)
1613				continue;
1614			++rx_count;
1615
1616			tx = rx->ctx_data.rx.replay_target;
1617			cached_cycles = calculate_cached_cycle_count(tx, 0);
1618			if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1619				++rx_ready_count;
1620		}
1621
1622		ready_to_start = (rx_count == rx_ready_count);
1623	} else {
1624		ready_to_start = true;
1625	}
1626
1627	// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1628	// contexts are expected to start and get callback when reaching here.
1629	if (ready_to_start) {
1630		unsigned int cycle = s->next_cycle;
1631		list_for_each_entry(s, &d->streams, list) {
1632			if (s->direction != AMDTP_OUT_STREAM)
1633				continue;
1634
1635			if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1636				cycle = s->next_cycle;
1637
1638			if (s == d->irq_target)
1639				s->context->callback.sc = irq_target_callback_intermediately;
1640			else
1641				s->context->callback.sc = process_rx_packets_intermediately;
1642		}
1643
1644		d->processing_cycle.rx_start = cycle;
1645	}
1646}
1647
1648// This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1649// transmit first packet.
1650static void amdtp_stream_first_callback(struct fw_iso_context *context,
1651					u32 tstamp, size_t header_length,
1652					void *header, void *private_data)
1653{
1654	struct amdtp_stream *s = private_data;
1655	struct amdtp_domain *d = s->domain;
1656
1657	if (s->direction == AMDTP_IN_STREAM) {
1658		context->callback.sc = drop_tx_packets_initially;
1659	} else {
1660		if (s == d->irq_target)
1661			context->callback.sc = irq_target_callback_skip;
1662		else
1663			context->callback.sc = skip_rx_packets;
1664	}
1665
1666	context->callback.sc(context, tstamp, header_length, header, s);
1667}
1668
1669/**
1670 * amdtp_stream_start - start transferring packets
1671 * @s: the AMDTP stream to start
1672 * @channel: the isochronous channel on the bus
1673 * @speed: firewire speed code
1674 * @queue_size: The number of packets in the queue.
1675 * @idle_irq_interval: the interval to queue packet during initial state.
1676 *
1677 * The stream cannot be started until it has been configured with
1678 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1679 * device can be started.
1680 */
1681static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1682			      unsigned int queue_size, unsigned int idle_irq_interval)
1683{
1684	bool is_irq_target = (s == s->domain->irq_target);
1685	unsigned int ctx_header_size;
1686	unsigned int max_ctx_payload_size;
1687	enum dma_data_direction dir;
1688	struct pkt_desc *descs;
1689	int i, type, tag, err;
1690
1691	mutex_lock(&s->mutex);
1692
1693	if (WARN_ON(amdtp_stream_running(s) ||
1694		    (s->data_block_quadlets < 1))) {
1695		err = -EBADFD;
1696		goto err_unlock;
1697	}
1698
1699	if (s->direction == AMDTP_IN_STREAM) {
1700		// NOTE: IT context should be used for constant IRQ.
1701		if (is_irq_target) {
1702			err = -EINVAL;
1703			goto err_unlock;
1704		}
1705
1706		s->data_block_counter = UINT_MAX;
1707	} else {
1708		s->data_block_counter = 0;
1709	}
1710
1711	// initialize packet buffer.
1712	if (s->direction == AMDTP_IN_STREAM) {
1713		dir = DMA_FROM_DEVICE;
1714		type = FW_ISO_CONTEXT_RECEIVE;
1715		if (!(s->flags & CIP_NO_HEADER))
1716			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1717		else
1718			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1719	} else {
1720		dir = DMA_TO_DEVICE;
1721		type = FW_ISO_CONTEXT_TRANSMIT;
1722		ctx_header_size = 0;	// No effect for IT context.
1723	}
1724	max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1725
1726	err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1727	if (err < 0)
1728		goto err_unlock;
1729	s->queue_size = queue_size;
1730
1731	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1732					  type, channel, speed, ctx_header_size,
1733					  amdtp_stream_first_callback, s);
1734	if (IS_ERR(s->context)) {
1735		err = PTR_ERR(s->context);
1736		if (err == -EBUSY)
1737			dev_err(&s->unit->device,
1738				"no free stream on this controller\n");
1739		goto err_buffer;
1740	}
1741
1742	amdtp_stream_update(s);
1743
1744	if (s->direction == AMDTP_IN_STREAM) {
1745		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1746		s->ctx_data.tx.ctx_header_size = ctx_header_size;
1747		s->ctx_data.tx.event_starts = false;
1748
1749		if (s->domain->replay.enable) {
1750			// struct fw_iso_context.drop_overflow_headers is false therefore it's
1751			// possible to cache much unexpectedly.
1752			s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1753							  queue_size * 3 / 2);
1754			s->ctx_data.tx.cache.pos = 0;
1755			s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1756						sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1757			if (!s->ctx_data.tx.cache.descs) {
1758				err = -ENOMEM;
1759				goto err_context;
1760			}
1761		}
1762	} else {
1763		static const struct {
1764			unsigned int data_block;
1765			unsigned int syt_offset;
1766		} *entry, initial_state[] = {
1767			[CIP_SFC_32000]  = {  4, 3072 },
1768			[CIP_SFC_48000]  = {  6, 1024 },
1769			[CIP_SFC_96000]  = { 12, 1024 },
1770			[CIP_SFC_192000] = { 24, 1024 },
1771			[CIP_SFC_44100]  = {  0,   67 },
1772			[CIP_SFC_88200]  = {  0,   67 },
1773			[CIP_SFC_176400] = {  0,   67 },
1774		};
1775
1776		s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1777		if (!s->ctx_data.rx.seq.descs) {
1778			err = -ENOMEM;
1779			goto err_context;
1780		}
1781		s->ctx_data.rx.seq.size = queue_size;
1782		s->ctx_data.rx.seq.pos = 0;
 
1783
1784		entry = &initial_state[s->sfc];
1785		s->ctx_data.rx.data_block_state = entry->data_block;
1786		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1787		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1788
1789		s->ctx_data.rx.event_count = 0;
1790	}
1791
1792	if (s->flags & CIP_NO_HEADER)
1793		s->tag = TAG_NO_CIP_HEADER;
1794	else
1795		s->tag = TAG_CIP;
1796
1797	// NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1798	// for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1799	// could take a round over queue of AMDTP packet descriptors and small loss of history. For
1800	// safe, keep more 8 elements for the queue, equivalent to 1 ms.
1801	descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1802	if (!descs) {
1803		err = -ENOMEM;
1804		goto err_context;
1805	}
1806	s->packet_descs = descs;
1807
1808	INIT_LIST_HEAD(&s->packet_descs_list);
1809	for (i = 0; i < s->queue_size; ++i) {
1810		INIT_LIST_HEAD(&descs->link);
1811		list_add_tail(&descs->link, &s->packet_descs_list);
1812		++descs;
1813	}
1814	s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1815
1816	s->packet_index = 0;
1817	do {
1818		struct fw_iso_packet params;
1819
1820		if (s->direction == AMDTP_IN_STREAM) {
1821			err = queue_in_packet(s, &params);
1822		} else {
1823			bool sched_irq = false;
1824
1825			params.header_length = 0;
1826			params.payload_length = 0;
1827
1828			if (is_irq_target) {
1829				sched_irq = !((s->packet_index + 1) %
1830					      idle_irq_interval);
1831			}
1832
1833			err = queue_out_packet(s, &params, sched_irq);
1834		}
1835		if (err < 0)
1836			goto err_pkt_descs;
1837	} while (s->packet_index > 0);
1838
1839	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1840	tag = FW_ISO_CONTEXT_MATCH_TAG1;
1841	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1842		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1843
1844	s->ready_processing = false;
1845	err = fw_iso_context_start(s->context, -1, 0, tag);
1846	if (err < 0)
1847		goto err_pkt_descs;
1848
1849	mutex_unlock(&s->mutex);
1850
1851	return 0;
1852err_pkt_descs:
1853	kfree(s->packet_descs);
1854	s->packet_descs = NULL;
1855err_context:
1856	if (s->direction == AMDTP_OUT_STREAM) {
1857		kfree(s->ctx_data.rx.seq.descs);
1858	} else {
1859		if (s->domain->replay.enable)
1860			kfree(s->ctx_data.tx.cache.descs);
1861	}
1862	fw_iso_context_destroy(s->context);
1863	s->context = ERR_PTR(-1);
1864err_buffer:
1865	iso_packets_buffer_destroy(&s->buffer, s->unit);
1866err_unlock:
1867	mutex_unlock(&s->mutex);
1868
1869	return err;
1870}
1871
1872/**
1873 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1874 * @d: the AMDTP domain.
1875 * @s: the AMDTP stream that transports the PCM data
1876 *
1877 * Returns the current buffer position, in frames.
1878 */
1879unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1880					      struct amdtp_stream *s)
1881{
1882	struct amdtp_stream *irq_target = d->irq_target;
1883
 
1884	if (irq_target && amdtp_stream_running(irq_target)) {
1885		// The work item to call snd_pcm_period_elapsed() can reach here by the call of
1886		// snd_pcm_ops.pointer(), however less packets would be available then. Therefore
1887		// the following call is just for user process contexts.
1888		if (current_work() != &s->period_work)
1889			fw_iso_context_flush_completions(irq_target->context);
1890	}
1891
1892	return READ_ONCE(s->pcm_buffer_pointer);
1893}
1894EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1895
1896/**
1897 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1898 * @d: the AMDTP domain.
1899 * @s: the AMDTP stream that transfers the PCM frames
1900 *
1901 * Returns zero always.
1902 */
1903int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1904{
1905	struct amdtp_stream *irq_target = d->irq_target;
1906
1907	// Process isochronous packets for recent isochronous cycle to handle
1908	// queued PCM frames.
1909	if (irq_target && amdtp_stream_running(irq_target))
1910		fw_iso_context_flush_completions(irq_target->context);
1911
1912	return 0;
1913}
1914EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1915
1916/**
1917 * amdtp_stream_update - update the stream after a bus reset
1918 * @s: the AMDTP stream
1919 */
1920void amdtp_stream_update(struct amdtp_stream *s)
1921{
1922	/* Precomputing. */
1923	WRITE_ONCE(s->source_node_id_field,
1924                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1925}
1926EXPORT_SYMBOL(amdtp_stream_update);
1927
1928/**
1929 * amdtp_stream_stop - stop sending packets
1930 * @s: the AMDTP stream to stop
1931 *
1932 * All PCM and MIDI devices of the stream must be stopped before the stream
1933 * itself can be stopped.
1934 */
1935static void amdtp_stream_stop(struct amdtp_stream *s)
1936{
1937	mutex_lock(&s->mutex);
1938
1939	if (!amdtp_stream_running(s)) {
1940		mutex_unlock(&s->mutex);
1941		return;
1942	}
1943
1944	cancel_work_sync(&s->period_work);
1945	fw_iso_context_stop(s->context);
1946	fw_iso_context_destroy(s->context);
1947	s->context = ERR_PTR(-1);
1948	iso_packets_buffer_destroy(&s->buffer, s->unit);
1949	kfree(s->packet_descs);
1950	s->packet_descs = NULL;
1951
1952	if (s->direction == AMDTP_OUT_STREAM) {
1953		kfree(s->ctx_data.rx.seq.descs);
1954	} else {
1955		if (s->domain->replay.enable)
1956			kfree(s->ctx_data.tx.cache.descs);
1957	}
1958
1959	mutex_unlock(&s->mutex);
1960}
1961
1962/**
1963 * amdtp_stream_pcm_abort - abort the running PCM device
1964 * @s: the AMDTP stream about to be stopped
1965 *
1966 * If the isochronous stream needs to be stopped asynchronously, call this
1967 * function first to stop the PCM device.
1968 */
1969void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1970{
1971	struct snd_pcm_substream *pcm;
1972
1973	pcm = READ_ONCE(s->pcm);
1974	if (pcm)
1975		snd_pcm_stop_xrun(pcm);
1976}
1977EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1978
1979/**
1980 * amdtp_domain_init - initialize an AMDTP domain structure
1981 * @d: the AMDTP domain to initialize.
1982 */
1983int amdtp_domain_init(struct amdtp_domain *d)
1984{
1985	INIT_LIST_HEAD(&d->streams);
1986
1987	d->events_per_period = 0;
1988
1989	return 0;
1990}
1991EXPORT_SYMBOL_GPL(amdtp_domain_init);
1992
1993/**
1994 * amdtp_domain_destroy - destroy an AMDTP domain structure
1995 * @d: the AMDTP domain to destroy.
1996 */
1997void amdtp_domain_destroy(struct amdtp_domain *d)
1998{
1999	// At present nothing to do.
2000	return;
2001}
2002EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
2003
2004/**
2005 * amdtp_domain_add_stream - register isoc context into the domain.
2006 * @d: the AMDTP domain.
2007 * @s: the AMDTP stream.
2008 * @channel: the isochronous channel on the bus.
2009 * @speed: firewire speed code.
2010 */
2011int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
2012			    int channel, int speed)
2013{
2014	struct amdtp_stream *tmp;
2015
2016	list_for_each_entry(tmp, &d->streams, list) {
2017		if (s == tmp)
2018			return -EBUSY;
2019	}
2020
2021	list_add(&s->list, &d->streams);
2022
2023	s->channel = channel;
2024	s->speed = speed;
2025	s->domain = d;
2026
2027	return 0;
2028}
2029EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
2030
2031// Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
2032// is less than the number of rx streams, the first tx stream is selected.
2033static int make_association(struct amdtp_domain *d)
2034{
2035	unsigned int dst_index = 0;
2036	struct amdtp_stream *rx;
2037
2038	// Make association to replay target.
2039	list_for_each_entry(rx, &d->streams, list) {
2040		if (rx->direction == AMDTP_OUT_STREAM) {
2041			unsigned int src_index = 0;
2042			struct amdtp_stream *tx = NULL;
2043			struct amdtp_stream *s;
2044
2045			list_for_each_entry(s, &d->streams, list) {
2046				if (s->direction == AMDTP_IN_STREAM) {
2047					if (dst_index == src_index) {
2048						tx = s;
2049						break;
2050					}
2051
2052					++src_index;
2053				}
2054			}
2055			if (!tx) {
2056				// Select the first entry.
2057				list_for_each_entry(s, &d->streams, list) {
2058					if (s->direction == AMDTP_IN_STREAM) {
2059						tx = s;
2060						break;
2061					}
2062				}
2063				// No target is available to replay sequence.
2064				if (!tx)
2065					return -EINVAL;
2066			}
2067
2068			rx->ctx_data.rx.replay_target = tx;
 
2069
2070			++dst_index;
2071		}
2072	}
2073
2074	return 0;
2075}
2076
2077/**
2078 * amdtp_domain_start - start sending packets for isoc context in the domain.
2079 * @d: the AMDTP domain.
2080 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2081 *			 contexts.
2082 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2083 *		IT context.
2084 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2085 *		       according to arrival of events in tx packets.
2086 */
2087int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2088		       bool replay_on_the_fly)
2089{
2090	unsigned int events_per_buffer = d->events_per_buffer;
2091	unsigned int events_per_period = d->events_per_period;
2092	unsigned int queue_size;
2093	struct amdtp_stream *s;
2094	bool found = false;
2095	int err;
2096
2097	if (replay_seq) {
2098		err = make_association(d);
2099		if (err < 0)
2100			return err;
2101	}
2102	d->replay.enable = replay_seq;
2103	d->replay.on_the_fly = replay_on_the_fly;
2104
2105	// Select an IT context as IRQ target.
2106	list_for_each_entry(s, &d->streams, list) {
2107		if (s->direction == AMDTP_OUT_STREAM) {
2108			found = true;
2109			break;
2110		}
2111	}
2112	if (!found)
2113		return -ENXIO;
2114	d->irq_target = s;
2115
2116	d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2117
2118	// This is a case that AMDTP streams in domain run just for MIDI
2119	// substream. Use the number of events equivalent to 10 msec as
2120	// interval of hardware IRQ.
2121	if (events_per_period == 0)
2122		events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2123	if (events_per_buffer == 0)
2124		events_per_buffer = events_per_period * 3;
2125
2126	queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2127				  amdtp_rate_table[d->irq_target->sfc]);
2128
2129	list_for_each_entry(s, &d->streams, list) {
2130		unsigned int idle_irq_interval = 0;
2131
2132		if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2133			idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2134							 amdtp_rate_table[d->irq_target->sfc]);
2135		}
2136
2137		// Starts immediately but actually DMA context starts several hundred cycles later.
2138		err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2139		if (err < 0)
2140			goto error;
2141	}
2142
2143	return 0;
2144error:
2145	list_for_each_entry(s, &d->streams, list)
2146		amdtp_stream_stop(s);
2147	return err;
2148}
2149EXPORT_SYMBOL_GPL(amdtp_domain_start);
2150
2151/**
2152 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2153 * @d: the AMDTP domain to which the isoc contexts belong.
2154 */
2155void amdtp_domain_stop(struct amdtp_domain *d)
2156{
2157	struct amdtp_stream *s, *next;
2158
2159	if (d->irq_target)
2160		amdtp_stream_stop(d->irq_target);
2161
2162	list_for_each_entry_safe(s, next, &d->streams, list) {
2163		list_del(&s->list);
2164
2165		if (s != d->irq_target)
2166			amdtp_stream_stop(s);
2167	}
2168
2169	d->events_per_period = 0;
2170	d->irq_target = NULL;
2171}
2172EXPORT_SYMBOL_GPL(amdtp_domain_stop);