Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 | // SPDX-License-Identifier: GPL-2.0-only /* * Audio and Music Data Transmission Protocol (IEC 61883-6) streams * with Common Isochronous Packet (IEC 61883-1) headers * * Copyright (c) Clemens Ladisch <clemens@ladisch.de> */ #include <linux/device.h> #include <linux/err.h> #include <linux/firewire.h> #include <linux/firewire-constants.h> #include <linux/module.h> #include <linux/slab.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include "amdtp-stream.h" #define TICKS_PER_CYCLE 3072 #define CYCLES_PER_SECOND 8000 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) #define OHCI_SECOND_MODULUS 8 /* Always support Linux tracing subsystem. */ #define CREATE_TRACE_POINTS #include "amdtp-stream-trace.h" #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ /* isochronous header parameters */ #define ISO_DATA_LENGTH_SHIFT 16 #define TAG_NO_CIP_HEADER 0 #define TAG_CIP 1 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. #define CIP_HEADER_QUADLETS 2 #define CIP_EOH_SHIFT 31 #define CIP_EOH (1u << CIP_EOH_SHIFT) #define CIP_EOH_MASK 0x80000000 #define CIP_SID_SHIFT 24 #define CIP_SID_MASK 0x3f000000 #define CIP_DBS_MASK 0x00ff0000 #define CIP_DBS_SHIFT 16 #define CIP_SPH_MASK 0x00000400 #define CIP_SPH_SHIFT 10 #define CIP_DBC_MASK 0x000000ff #define CIP_FMT_SHIFT 24 #define CIP_FMT_MASK 0x3f000000 #define CIP_FDF_MASK 0x00ff0000 #define CIP_FDF_SHIFT 16 #define CIP_FDF_NO_DATA 0xff #define CIP_SYT_MASK 0x0000ffff #define CIP_SYT_NO_INFO 0xffff #define CIP_SYT_CYCLE_MODULUS 16 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) /* Audio and Music transfer protocol specific parameters */ #define CIP_FMT_AM 0x10 #define AMDTP_FDF_NO_DATA 0xff // For iso header and tstamp. #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 // Add nothing. #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) // Add two quadlets CIP header. #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) #define HEADER_TSTAMP_MASK 0x0000ffff #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. // The initial firmware of OXFW970 can postpone transmission of packet during finishing // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer // overrun. Actual device can skip more, then this module stops the packet streaming. #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 /** * amdtp_stream_init - initialize an AMDTP stream structure * @s: the AMDTP stream to initialize * @unit: the target of the stream * @dir: the direction of stream * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. * @fmt: the value of fmt field in CIP header * @process_ctx_payloads: callback handler to process payloads of isoc context * @protocol_size: the size to allocate newly for protocol */ int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, enum amdtp_stream_direction dir, unsigned int flags, unsigned int fmt, amdtp_stream_process_ctx_payloads_t process_ctx_payloads, unsigned int protocol_size) { if (process_ctx_payloads == NULL) return -EINVAL; s->protocol = kzalloc(protocol_size, GFP_KERNEL); if (!s->protocol) return -ENOMEM; s->unit = unit; s->direction = dir; s->flags = flags; s->context = ERR_PTR(-1); mutex_init(&s->mutex); s->packet_index = 0; init_waitqueue_head(&s->ready_wait); s->fmt = fmt; s->process_ctx_payloads = process_ctx_payloads; return 0; } EXPORT_SYMBOL(amdtp_stream_init); /** * amdtp_stream_destroy - free stream resources * @s: the AMDTP stream to destroy */ void amdtp_stream_destroy(struct amdtp_stream *s) { /* Not initialized. */ if (s->protocol == NULL) return; WARN_ON(amdtp_stream_running(s)); kfree(s->protocol); mutex_destroy(&s->mutex); } EXPORT_SYMBOL(amdtp_stream_destroy); const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { [CIP_SFC_32000] = 8, [CIP_SFC_44100] = 8, [CIP_SFC_48000] = 8, [CIP_SFC_88200] = 16, [CIP_SFC_96000] = 16, [CIP_SFC_176400] = 32, [CIP_SFC_192000] = 32, }; EXPORT_SYMBOL(amdtp_syt_intervals); const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { [CIP_SFC_32000] = 32000, [CIP_SFC_44100] = 44100, [CIP_SFC_48000] = 48000, [CIP_SFC_88200] = 88200, [CIP_SFC_96000] = 96000, [CIP_SFC_176400] = 176400, [CIP_SFC_192000] = 192000, }; EXPORT_SYMBOL(amdtp_rate_table); static int apply_constraint_to_size(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule) { struct snd_interval *s = hw_param_interval(params, rule->var); const struct snd_interval *r = hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); struct snd_interval t = {0}; unsigned int step = 0; int i; for (i = 0; i < CIP_SFC_COUNT; ++i) { if (snd_interval_test(r, amdtp_rate_table[i])) step = max(step, amdtp_syt_intervals[i]); } t.min = roundup(s->min, step); t.max = rounddown(s->max, step); t.integer = 1; return snd_interval_refine(s, &t); } /** * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream * @s: the AMDTP stream, which must be initialized. * @runtime: the PCM substream runtime */ int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, struct snd_pcm_runtime *runtime) { struct snd_pcm_hardware *hw = &runtime->hw; unsigned int ctx_header_size; unsigned int maximum_usec_per_period; int err; hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_JOINT_DUPLEX | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; hw->periods_min = 2; hw->periods_max = UINT_MAX; /* bytes for a frame */ hw->period_bytes_min = 4 * hw->channels_max; /* Just to prevent from allocating much pages. */ hw->period_bytes_max = hw->period_bytes_min * 2048; hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; // Linux driver for 1394 OHCI controller voluntarily flushes isoc // context when total size of accumulated context header reaches // PAGE_SIZE. This kicks work for the isoc context and brings // callback in the middle of scheduled interrupts. // Although AMDTP streams in the same domain use the same events per // IRQ, use the largest size of context header between IT/IR contexts. // Here, use the value of context header in IR context is for both // contexts. if (!(s->flags & CIP_NO_HEADER)) ctx_header_size = IR_CTX_HEADER_SIZE_CIP; else ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / CYCLES_PER_SECOND / ctx_header_size; // In IEC 61883-6, one isoc packet can transfer events up to the value // of syt interval. This comes from the interval of isoc cycle. As 1394 // OHCI controller can generate hardware IRQ per isoc packet, the // interval is 125 usec. // However, there are two ways of transmission in IEC 61883-6; blocking // and non-blocking modes. In blocking mode, the sequence of isoc packet // includes 'empty' or 'NODATA' packets which include no event. In // non-blocking mode, the number of events per packet is variable up to // the syt interval. // Due to the above protocol design, the minimum PCM frames per // interrupt should be double of the value of syt interval, thus it is // 250 usec. err = snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 250, maximum_usec_per_period); if (err < 0) goto end; /* Non-Blocking stream has no more constraints */ if (!(s->flags & CIP_BLOCKING)) goto end; /* * One AMDTP packet can include some frames. In blocking mode, the * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, * depending on its sampling rate. For accurate period interrupt, it's * preferrable to align period/buffer sizes to current SYT_INTERVAL. */ err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, apply_constraint_to_size, NULL, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, apply_constraint_to_size, NULL, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, SNDRV_PCM_HW_PARAM_RATE, -1); if (err < 0) goto end; end: return err; } EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); /** * amdtp_stream_set_parameters - set stream parameters * @s: the AMDTP stream to configure * @rate: the sample rate * @data_block_quadlets: the size of a data block in quadlet unit * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP * events. * * The parameters must be set before the stream is started, and must not be * changed while the stream is running. */ int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) { unsigned int sfc; for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { if (amdtp_rate_table[sfc] == rate) break; } if (sfc == ARRAY_SIZE(amdtp_rate_table)) return -EINVAL; s->sfc = sfc; s->data_block_quadlets = data_block_quadlets; s->syt_interval = amdtp_syt_intervals[sfc]; // default buffering in the device. s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; // additional buffering needed to adjust for no-data packets. if (s->flags & CIP_BLOCKING) s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; s->pcm_frame_multiplier = pcm_frame_multiplier; return 0; } EXPORT_SYMBOL(amdtp_stream_set_parameters); // The CIP header is processed in context header apart from context payload. static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) { unsigned int multiplier; if (s->flags & CIP_JUMBO_PAYLOAD) multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; else multiplier = 1; return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; } /** * amdtp_stream_get_max_payload - get the stream's packet size * @s: the AMDTP stream * * This function must not be called before the stream has been configured * with amdtp_stream_set_parameters(). */ unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) { unsigned int cip_header_size; if (!(s->flags & CIP_NO_HEADER)) cip_header_size = CIP_HEADER_SIZE; else cip_header_size = 0; return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); } EXPORT_SYMBOL(amdtp_stream_get_max_payload); /** * amdtp_stream_pcm_prepare - prepare PCM device for running * @s: the AMDTP stream * * This function should be called from the PCM device's .prepare callback. */ void amdtp_stream_pcm_prepare(struct amdtp_stream *s) { s->pcm_buffer_pointer = 0; s->pcm_period_pointer = 0; } EXPORT_SYMBOL(amdtp_stream_pcm_prepare); #define prev_packet_desc(s, desc) \ list_prev_entry_circular(desc, &s->packet_descs_list, link) static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { const unsigned int syt_interval = s->syt_interval; int i; for (i = 0; i < count; ++i) { struct seq_desc *desc = descs + pos; if (desc->syt_offset != CIP_SYT_NO_INFO) desc->data_blocks = syt_interval; else desc->data_blocks = 0; pos = (pos + 1) % size; } } static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { const enum cip_sfc sfc = s->sfc; unsigned int state = s->ctx_data.rx.data_block_state; int i; for (i = 0; i < count; ++i) { struct seq_desc *desc = descs + pos; if (!cip_sfc_is_base_44100(sfc)) { // Sample_rate / 8000 is an integer, and precomputed. desc->data_blocks = state; } else { unsigned int phase = state; /* * This calculates the number of data blocks per packet so that * 1) the overall rate is correct and exactly synchronized to * the bus clock, and * 2) packets with a rounded-up number of blocks occur as early * as possible in the sequence (to prevent underruns of the * device's buffer). */ if (sfc == CIP_SFC_44100) /* 6 6 5 6 5 6 5 ... */ desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); else /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); if (++phase >= (80 >> (sfc >> 1))) phase = 0; state = phase; } pos = (pos + 1) % size; } s->ctx_data.rx.data_block_state = state; } static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, unsigned int *syt_offset_state, enum cip_sfc sfc) { unsigned int syt_offset; if (*last_syt_offset < TICKS_PER_CYCLE) { if (!cip_sfc_is_base_44100(sfc)) syt_offset = *last_syt_offset + *syt_offset_state; else { /* * The time, in ticks, of the n'th SYT_INTERVAL sample is: * n * SYT_INTERVAL * 24576000 / sample_rate * Modulo TICKS_PER_CYCLE, the difference between successive * elements is about 1386.23. Rounding the results of this * formula to the SYT precision results in a sequence of * differences that begins with: * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... * This code generates _exactly_ the same sequence. */ unsigned int phase = *syt_offset_state; unsigned int index = phase % 13; syt_offset = *last_syt_offset; syt_offset += 1386 + ((index && !(index & 3)) || phase == 146); if (++phase >= 147) phase = 0; *syt_offset_state = phase; } } else syt_offset = *last_syt_offset - TICKS_PER_CYCLE; *last_syt_offset = syt_offset; if (syt_offset >= TICKS_PER_CYCLE) syt_offset = CIP_SYT_NO_INFO; return syt_offset; } static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { const enum cip_sfc sfc = s->sfc; unsigned int last = s->ctx_data.rx.last_syt_offset; unsigned int state = s->ctx_data.rx.syt_offset_state; int i; for (i = 0; i < count; ++i) { struct seq_desc *desc = descs + pos; desc->syt_offset = calculate_syt_offset(&last, &state, sfc); pos = (pos + 1) % size; } s->ctx_data.rx.last_syt_offset = last; s->ctx_data.rx.syt_offset_state = state; } static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, unsigned int transfer_delay) { unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; unsigned int syt_offset; // Round up. if (syt_cycle_lo < cycle_lo) syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; syt_cycle_lo -= cycle_lo; // Subtract transfer delay so that the synchronization offset is not so large // at transmission. syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); if (syt_offset < transfer_delay) syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; return syt_offset - transfer_delay; } // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. // Additionally, the sequence of tx packets is severely checked against any discontinuity // before filling entries in the queue. The calculation is safe even if it looks fragile by // overrun. static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) { const unsigned int cache_size = s->ctx_data.tx.cache.size; unsigned int cycles = s->ctx_data.tx.cache.pos; if (cycles < head) cycles += cache_size; cycles -= head; return cycles; } static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) { const unsigned int transfer_delay = s->transfer_delay; const unsigned int cache_size = s->ctx_data.tx.cache.size; struct seq_desc *cache = s->ctx_data.tx.cache.descs; unsigned int cache_pos = s->ctx_data.tx.cache.pos; bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); int i; for (i = 0; i < desc_count; ++i) { struct seq_desc *dst = cache + cache_pos; if (aware_syt && src->syt != CIP_SYT_NO_INFO) dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); else dst->syt_offset = CIP_SYT_NO_INFO; dst->data_blocks = src->data_blocks; cache_pos = (cache_pos + 1) % cache_size; src = amdtp_stream_next_packet_desc(s, src); } s->ctx_data.tx.cache.pos = cache_pos; } static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { pool_ideal_syt_offsets(s, descs, size, pos, count); if (s->flags & CIP_BLOCKING) pool_blocking_data_blocks(s, descs, size, pos, count); else pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); } static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { struct amdtp_stream *target = s->ctx_data.rx.replay_target; const struct seq_desc *cache = target->ctx_data.tx.cache.descs; const unsigned int cache_size = target->ctx_data.tx.cache.size; unsigned int cache_pos = s->ctx_data.rx.cache_pos; int i; for (i = 0; i < count; ++i) { descs[pos] = cache[cache_pos]; cache_pos = (cache_pos + 1) % cache_size; pos = (pos + 1) % size; } s->ctx_data.rx.cache_pos = cache_pos; } static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count) { struct amdtp_domain *d = s->domain; void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, unsigned int pos, unsigned int count); if (!d->replay.enable || !s->ctx_data.rx.replay_target) { pool_seq_descs = pool_ideal_seq_descs; } else { if (!d->replay.on_the_fly) { pool_seq_descs = pool_replayed_seq; } else { struct amdtp_stream *tx = s->ctx_data.rx.replay_target; const unsigned int cache_size = tx->ctx_data.tx.cache.size; const unsigned int cache_pos = s->ctx_data.rx.cache_pos; unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); if (cached_cycles > count && cached_cycles > cache_size / 2) pool_seq_descs = pool_replayed_seq; else pool_seq_descs = pool_ideal_seq_descs; } } pool_seq_descs(s, descs, size, pos, count); } static void update_pcm_pointers(struct amdtp_stream *s, struct snd_pcm_substream *pcm, unsigned int frames) { unsigned int ptr; ptr = s->pcm_buffer_pointer + frames; if (ptr >= pcm->runtime->buffer_size) ptr -= pcm->runtime->buffer_size; WRITE_ONCE(s->pcm_buffer_pointer, ptr); s->pcm_period_pointer += frames; if (s->pcm_period_pointer >= pcm->runtime->period_size) { s->pcm_period_pointer -= pcm->runtime->period_size; // The program in user process should periodically check the status of intermediate // buffer associated to PCM substream to process PCM frames in the buffer, instead // of receiving notification of period elapsed by poll wait. if (!pcm->runtime->no_period_wakeup) { if (in_softirq()) { // In software IRQ context for 1394 OHCI. snd_pcm_period_elapsed(pcm); } else { // In process context of ALSA PCM application under acquired lock of // PCM substream. snd_pcm_period_elapsed_under_stream_lock(pcm); } } } } static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, bool sched_irq) { int err; params->interrupt = sched_irq; params->tag = s->tag; params->sy = 0; err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, s->buffer.packets[s->packet_index].offset); if (err < 0) { dev_err(&s->unit->device, "queueing error: %d\n", err); goto end; } if (++s->packet_index >= s->queue_size) s->packet_index = 0; end: return err; } static inline int queue_out_packet(struct amdtp_stream *s, struct fw_iso_packet *params, bool sched_irq) { params->skip = !!(params->header_length == 0 && params->payload_length == 0); return queue_packet(s, params, sched_irq); } static inline int queue_in_packet(struct amdtp_stream *s, struct fw_iso_packet *params) { // Queue one packet for IR context. params->header_length = s->ctx_data.tx.ctx_header_size; params->payload_length = s->ctx_data.tx.max_ctx_payload_length; params->skip = false; return queue_packet(s, params, false); } static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], unsigned int data_block_counter, unsigned int syt) { cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | (s->data_block_quadlets << CIP_DBS_SHIFT) | ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | data_block_counter); cip_header[1] = cpu_to_be32(CIP_EOH | ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | (syt & CIP_SYT_MASK)); } static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, struct fw_iso_packet *params, unsigned int header_length, unsigned int data_blocks, unsigned int data_block_counter, unsigned int syt, unsigned int index, u32 curr_cycle_time) { unsigned int payload_length; __be32 *cip_header; payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; params->payload_length = payload_length; if (header_length > 0) { cip_header = (__be32 *)params->header; generate_cip_header(s, cip_header, data_block_counter, syt); params->header_length = header_length; } else { cip_header = NULL; } trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, data_block_counter, s->packet_index, index, curr_cycle_time); } static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, unsigned int payload_length, unsigned int *data_blocks, unsigned int *data_block_counter, unsigned int *syt) { u32 cip_header[2]; unsigned int sph; unsigned int fmt; unsigned int fdf; unsigned int dbc; bool lost; cip_header[0] = be32_to_cpu(buf[0]); cip_header[1] = be32_to_cpu(buf[1]); /* * This module supports 'Two-quadlet CIP header with SYT field'. * For convenience, also check FMT field is AM824 or not. */ if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { dev_info_ratelimited(&s->unit->device, "Invalid CIP header for AMDTP: %08X:%08X\n", cip_header[0], cip_header[1]); return -EAGAIN; } /* Check valid protocol or not. */ sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; if (sph != s->sph || fmt != s->fmt) { dev_info_ratelimited(&s->unit->device, "Detect unexpected protocol: %08x %08x\n", cip_header[0], cip_header[1]); return -EAGAIN; } /* Calculate data blocks */ fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { *data_blocks = 0; } else { unsigned int data_block_quadlets = (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; /* avoid division by zero */ if (data_block_quadlets == 0) { dev_err(&s->unit->device, "Detect invalid value in dbs field: %08X\n", cip_header[0]); return -EPROTO; } if (s->flags & CIP_WRONG_DBS) data_block_quadlets = s->data_block_quadlets; *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; } /* Check data block counter continuity */ dbc = cip_header[0] & CIP_DBC_MASK; if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && *data_block_counter != UINT_MAX) dbc = *data_block_counter; if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || *data_block_counter == UINT_MAX) { lost = false; } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { lost = dbc != *data_block_counter; } else { unsigned int dbc_interval; if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) dbc_interval = s->ctx_data.tx.dbc_interval; else dbc_interval = *data_blocks; } else { dbc_interval = payload_length / sizeof(__be32); } lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); } if (lost) { dev_err(&s->unit->device, "Detect discontinuity of CIP: %02X %02X\n", *data_block_counter, dbc); return -EIO; } *data_block_counter = dbc; if (!(s->flags & CIP_UNAWARE_SYT)) *syt = cip_header[1] & CIP_SYT_MASK; return 0; } static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, const __be32 *ctx_header, unsigned int *data_blocks, unsigned int *data_block_counter, unsigned int *syt, unsigned int packet_index, unsigned int index, u32 curr_cycle_time) { unsigned int payload_length; const __be32 *cip_header; unsigned int cip_header_size; payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; if (!(s->flags & CIP_NO_HEADER)) cip_header_size = CIP_HEADER_SIZE; else cip_header_size = 0; if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { dev_err(&s->unit->device, "Detect jumbo payload: %04x %04x\n", payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); return -EIO; } if (cip_header_size > 0) { if (payload_length >= cip_header_size) { int err; cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; err = check_cip_header(s, cip_header, payload_length - cip_header_size, data_blocks, data_block_counter, syt); if (err < 0) return err; } else { // Handle the cycle so that empty packet arrives. cip_header = NULL; *data_blocks = 0; *syt = 0; } } else { cip_header = NULL; *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; *syt = 0; if (*data_block_counter == UINT_MAX) *data_block_counter = 0; } trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, *data_block_counter, packet_index, index, curr_cycle_time); return 0; } // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) { return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); } static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) { u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; return compute_ohci_iso_ctx_cycle_count(tstamp); } static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) { cycle += addend; if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; return cycle; } static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) { if (minuend < subtrahend) minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; return minuend - subtrahend; } static int compare_ohci_cycle_count(u32 lval, u32 rval) { if (lval == rval) return 0; else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) return -1; else return 1; } // Align to actual cycle count for the packet which is going to be scheduled. // This module queued the same number of isochronous cycle as the size of queue // to kip isochronous cycle, therefore it's OK to just increment the cycle by // the size of queue for scheduled cycle. static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, unsigned int queue_size) { u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); return increment_ohci_cycle_count(cycle, queue_size); } static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, const __be32 *ctx_header, unsigned int packet_count, unsigned int *desc_count) { unsigned int next_cycle = s->next_cycle; unsigned int dbc = s->data_block_counter; unsigned int packet_index = s->packet_index; unsigned int queue_size = s->queue_size; u32 curr_cycle_time = 0; int i; int err; if (trace_amdtp_packet_enabled()) (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); *desc_count = 0; for (i = 0; i < packet_count; ++i) { unsigned int cycle; bool lost; unsigned int data_blocks; unsigned int syt; cycle = compute_ohci_cycle_count(ctx_header[1]); lost = (next_cycle != cycle); if (lost) { if (s->flags & CIP_NO_HEADER) { // Fireface skips transmission just for an isoc cycle corresponding // to empty packet. unsigned int prev_cycle = next_cycle; next_cycle = increment_ohci_cycle_count(next_cycle, 1); lost = (next_cycle != cycle); if (!lost) { // Prepare a description for the skipped cycle for // sequence replay. desc->cycle = prev_cycle; desc->syt = 0; desc->data_blocks = 0; desc->data_block_counter = dbc; desc->ctx_payload = NULL; desc = amdtp_stream_next_packet_desc(s, desc); ++(*desc_count); } } else if (s->flags & CIP_JUMBO_PAYLOAD) { // OXFW970 skips transmission for several isoc cycles during // asynchronous transaction. The sequence replay is impossible due // to the reason. unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); } if (lost) { dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", next_cycle, cycle); return -EIO; } } err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, packet_index, i, curr_cycle_time); if (err < 0) return err; desc->cycle = cycle; desc->syt = syt; desc->data_blocks = data_blocks; desc->data_block_counter = dbc; desc->ctx_payload = s->buffer.packets[packet_index].buffer; if (!(s->flags & CIP_DBC_IS_END_EVENT)) dbc = (dbc + desc->data_blocks) & 0xff; next_cycle = increment_ohci_cycle_count(next_cycle, 1); desc = amdtp_stream_next_packet_desc(s, desc); ++(*desc_count); ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); packet_index = (packet_index + 1) % queue_size; } s->next_cycle = next_cycle; s->data_block_counter = dbc; return 0; } static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, unsigned int transfer_delay) { unsigned int syt; syt_offset += transfer_delay; syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | (syt_offset % TICKS_PER_CYCLE); return syt & CIP_SYT_MASK; } static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, const __be32 *ctx_header, unsigned int packet_count) { struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; unsigned int seq_size = s->ctx_data.rx.seq.size; unsigned int seq_pos = s->ctx_data.rx.seq.pos; unsigned int dbc = s->data_block_counter; bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); int i; pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); for (i = 0; i < packet_count; ++i) { unsigned int index = (s->packet_index + i) % s->queue_size; const struct seq_desc *seq = seq_descs + seq_pos; desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); else desc->syt = CIP_SYT_NO_INFO; desc->data_blocks = seq->data_blocks; if (s->flags & CIP_DBC_IS_END_EVENT) dbc = (dbc + desc->data_blocks) & 0xff; desc->data_block_counter = dbc; if (!(s->flags & CIP_DBC_IS_END_EVENT)) dbc = (dbc + desc->data_blocks) & 0xff; desc->ctx_payload = s->buffer.packets[index].buffer; seq_pos = (seq_pos + 1) % seq_size; desc = amdtp_stream_next_packet_desc(s, desc); ++ctx_header; } s->data_block_counter = dbc; s->ctx_data.rx.seq.pos = seq_pos; } static inline void cancel_stream(struct amdtp_stream *s) { s->packet_index = -1; if (in_softirq()) amdtp_stream_pcm_abort(s); WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); } static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count) { unsigned int data_block_count = 0; u32 latest_cycle; u32 cycle_time; u32 curr_cycle; u32 cycle_gap; int i, err; if (count == 0) goto end; // Forward to the latest record. for (i = 0; i < count - 1; ++i) desc = amdtp_stream_next_packet_desc(s, desc); latest_cycle = desc->cycle; err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); if (err < 0) goto end; // Compute cycle count with lower 3 bits of second field and cycle field like timestamp // format of 1394 OHCI isochronous context. curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); if (s->direction == AMDTP_IN_STREAM) { // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since // it corresponds to arrived isochronous packet. if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) goto end; cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated // value expectedly corresponds to a few packets (0-2) since the packet arrived at // the most recent isochronous cycle has been already processed. for (i = 0; i < cycle_gap; ++i) { desc = amdtp_stream_next_packet_desc(s, desc); data_block_count += desc->data_blocks; } } else { // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle // since it was already scheduled. if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) goto end; cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); // NOTE: use history of scheduled packets. for (i = 0; i < cycle_gap; ++i) { data_block_count += desc->data_blocks; desc = prev_packet_desc(s, desc); } } end: return data_block_count * s->pcm_frame_multiplier; } static void process_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, unsigned int count) { struct snd_pcm_substream *pcm; int i; pcm = READ_ONCE(s->pcm); s->process_ctx_payloads(s, desc, count, pcm); if (pcm) { unsigned int data_block_count = 0; pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); for (i = 0; i < count; ++i) { data_block_count += desc->data_blocks; desc = amdtp_stream_next_packet_desc(s, desc); } update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); } } static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; const struct amdtp_domain *d = s->domain; const __be32 *ctx_header = header; const unsigned int events_per_period = d->events_per_period; unsigned int event_count = s->ctx_data.rx.event_count; struct pkt_desc *desc = s->packet_descs_cursor; unsigned int pkt_header_length; unsigned int packets; u32 curr_cycle_time; bool need_hw_irq; int i; if (s->packet_index < 0) return; // Calculate the number of packets in buffer and check XRUN. packets = header_length / sizeof(*ctx_header); generate_rx_packet_descs(s, desc, ctx_header, packets); process_ctx_payloads(s, desc, packets); if (!(s->flags & CIP_NO_HEADER)) pkt_header_length = IT_PKT_HEADER_SIZE_CIP; else pkt_header_length = 0; if (s == d->irq_target) { // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by // the tasks of user process operating ALSA PCM character device by calling ioctl(2) // with some requests, instead of scheduled hardware IRQ of an IT context. struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; } else { need_hw_irq = false; } if (trace_amdtp_packet_enabled()) (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); for (i = 0; i < packets; ++i) { struct { struct fw_iso_packet params; __be32 header[CIP_HEADER_QUADLETS]; } template = { {0}, {0} }; bool sched_irq = false; build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, desc->data_blocks, desc->data_block_counter, desc->syt, i, curr_cycle_time); if (s == s->domain->irq_target) { event_count += desc->data_blocks; if (event_count >= events_per_period) { event_count -= events_per_period; sched_irq = need_hw_irq; } } if (queue_out_packet(s, &template.params, sched_irq) < 0) { cancel_stream(s); return; } desc = amdtp_stream_next_packet_desc(s, desc); } s->ctx_data.rx.event_count = event_count; s->packet_descs_cursor = desc; } static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; const __be32 *ctx_header = header; unsigned int packets; unsigned int cycle; int i; if (s->packet_index < 0) return; packets = header_length / sizeof(*ctx_header); cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); s->next_cycle = increment_ohci_cycle_count(cycle, 1); for (i = 0; i < packets; ++i) { struct fw_iso_packet params = { .header_length = 0, .payload_length = 0, }; bool sched_irq = (s == d->irq_target && i == packets - 1); if (queue_out_packet(s, ¶ms, sched_irq) < 0) { cancel_stream(s); return; } } } static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data); static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; __be32 *ctx_header = header; const unsigned int queue_size = s->queue_size; unsigned int packets; unsigned int offset; if (s->packet_index < 0) return; packets = header_length / sizeof(*ctx_header); offset = 0; while (offset < packets) { unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) break; ++offset; } if (offset > 0) { unsigned int length = sizeof(*ctx_header) * offset; skip_rx_packets(context, tstamp, length, ctx_header, private_data); if (amdtp_streaming_error(s)) return; ctx_header += offset; header_length -= length; } if (offset < packets) { s->ready_processing = true; wake_up(&s->ready_wait); if (d->replay.enable) s->ctx_data.rx.cache_pos = 0; process_rx_packets(context, tstamp, header_length, ctx_header, private_data); if (amdtp_streaming_error(s)) return; if (s == d->irq_target) s->context->callback.sc = irq_target_callback; else s->context->callback.sc = process_rx_packets; } } static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; __be32 *ctx_header = header; struct pkt_desc *desc = s->packet_descs_cursor; unsigned int packet_count; unsigned int desc_count; int i; int err; if (s->packet_index < 0) return; // Calculate the number of packets in buffer and check XRUN. packet_count = header_length / s->ctx_data.tx.ctx_header_size; desc_count = 0; err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); if (err < 0) { if (err != -EAGAIN) { cancel_stream(s); return; } } else { struct amdtp_domain *d = s->domain; process_ctx_payloads(s, desc, desc_count); if (d->replay.enable) cache_seq(s, desc, desc_count); for (i = 0; i < desc_count; ++i) desc = amdtp_stream_next_packet_desc(s, desc); s->packet_descs_cursor = desc; } for (i = 0; i < packet_count; ++i) { struct fw_iso_packet params = {0}; if (queue_in_packet(s, ¶ms) < 0) { cancel_stream(s); return; } } } static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; const __be32 *ctx_header = header; unsigned int packets; unsigned int cycle; int i; if (s->packet_index < 0) return; packets = header_length / s->ctx_data.tx.ctx_header_size; ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); cycle = compute_ohci_cycle_count(ctx_header[1]); s->next_cycle = increment_ohci_cycle_count(cycle, 1); for (i = 0; i < packets; ++i) { struct fw_iso_packet params = {0}; if (queue_in_packet(s, ¶ms) < 0) { cancel_stream(s); return; } } } static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; __be32 *ctx_header; unsigned int packets; unsigned int offset; if (s->packet_index < 0) return; packets = header_length / s->ctx_data.tx.ctx_header_size; offset = 0; ctx_header = header; while (offset < packets) { unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) break; ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); ++offset; } ctx_header = header; if (offset > 0) { size_t length = s->ctx_data.tx.ctx_header_size * offset; drop_tx_packets(context, tstamp, length, ctx_header, s); if (amdtp_streaming_error(s)) return; ctx_header += length / sizeof(*ctx_header); header_length -= length; } if (offset < packets) { s->ready_processing = true; wake_up(&s->ready_wait); process_tx_packets(context, tstamp, header_length, ctx_header, s); if (amdtp_streaming_error(s)) return; context->callback.sc = process_tx_packets; } } static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; __be32 *ctx_header; unsigned int count; unsigned int events; int i; if (s->packet_index < 0) return; count = header_length / s->ctx_data.tx.ctx_header_size; // Attempt to detect any event in the batch of packets. events = 0; ctx_header = header; for (i = 0; i < count; ++i) { unsigned int payload_quads = (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); unsigned int data_blocks; if (s->flags & CIP_NO_HEADER) { data_blocks = payload_quads / s->data_block_quadlets; } else { __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; if (payload_quads < CIP_HEADER_QUADLETS) { data_blocks = 0; } else { payload_quads -= CIP_HEADER_QUADLETS; if (s->flags & CIP_UNAWARE_SYT) { data_blocks = payload_quads / s->data_block_quadlets; } else { u32 cip1 = be32_to_cpu(cip_headers[1]); // NODATA packet can includes any data blocks but they are // not available as event. if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) data_blocks = 0; else data_blocks = payload_quads / s->data_block_quadlets; } } } events += data_blocks; ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); } drop_tx_packets(context, tstamp, header_length, header, s); if (events > 0) s->ctx_data.tx.event_starts = true; // Decide the cycle count to begin processing content of packet in IR contexts. { unsigned int stream_count = 0; unsigned int event_starts_count = 0; unsigned int cycle = UINT_MAX; list_for_each_entry(s, &d->streams, list) { if (s->direction == AMDTP_IN_STREAM) { ++stream_count; if (s->ctx_data.tx.event_starts) ++event_starts_count; } } if (stream_count == event_starts_count) { unsigned int next_cycle; list_for_each_entry(s, &d->streams, list) { if (s->direction != AMDTP_IN_STREAM) continue; next_cycle = increment_ohci_cycle_count(s->next_cycle, d->processing_cycle.tx_init_skip); if (cycle == UINT_MAX || compare_ohci_cycle_count(next_cycle, cycle) > 0) cycle = next_cycle; s->context->callback.sc = process_tx_packets_intermediately; } d->processing_cycle.tx_start = cycle; } } } static void process_ctxs_in_domain(struct amdtp_domain *d) { struct amdtp_stream *s; list_for_each_entry(s, &d->streams, list) { if (s != d->irq_target && amdtp_stream_running(s)) fw_iso_context_flush_completions(s->context); if (amdtp_streaming_error(s)) goto error; } return; error: if (amdtp_stream_running(d->irq_target)) cancel_stream(d->irq_target); list_for_each_entry(s, &d->streams, list) { if (amdtp_stream_running(s)) cancel_stream(s); } } static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; process_rx_packets(context, tstamp, header_length, header, private_data); process_ctxs_in_domain(d); } static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); process_ctxs_in_domain(d); } static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; bool ready_to_start; skip_rx_packets(context, tstamp, header_length, header, private_data); process_ctxs_in_domain(d); if (d->replay.enable && !d->replay.on_the_fly) { unsigned int rx_count = 0; unsigned int rx_ready_count = 0; struct amdtp_stream *rx; list_for_each_entry(rx, &d->streams, list) { struct amdtp_stream *tx; unsigned int cached_cycles; if (rx->direction != AMDTP_OUT_STREAM) continue; ++rx_count; tx = rx->ctx_data.rx.replay_target; cached_cycles = calculate_cached_cycle_count(tx, 0); if (cached_cycles > tx->ctx_data.tx.cache.size / 2) ++rx_ready_count; } ready_to_start = (rx_count == rx_ready_count); } else { ready_to_start = true; } // Decide the cycle count to begin processing content of packet in IT contexts. All of IT // contexts are expected to start and get callback when reaching here. if (ready_to_start) { unsigned int cycle = s->next_cycle; list_for_each_entry(s, &d->streams, list) { if (s->direction != AMDTP_OUT_STREAM) continue; if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) cycle = s->next_cycle; if (s == d->irq_target) s->context->callback.sc = irq_target_callback_intermediately; else s->context->callback.sc = process_rx_packets_intermediately; } d->processing_cycle.rx_start = cycle; } } // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to // transmit first packet. static void amdtp_stream_first_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, void *header, void *private_data) { struct amdtp_stream *s = private_data; struct amdtp_domain *d = s->domain; if (s->direction == AMDTP_IN_STREAM) { context->callback.sc = drop_tx_packets_initially; } else { if (s == d->irq_target) context->callback.sc = irq_target_callback_skip; else context->callback.sc = skip_rx_packets; } context->callback.sc(context, tstamp, header_length, header, s); } /** * amdtp_stream_start - start transferring packets * @s: the AMDTP stream to start * @channel: the isochronous channel on the bus * @speed: firewire speed code * @queue_size: The number of packets in the queue. * @idle_irq_interval: the interval to queue packet during initial state. * * The stream cannot be started until it has been configured with * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI * device can be started. */ static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, unsigned int queue_size, unsigned int idle_irq_interval) { bool is_irq_target = (s == s->domain->irq_target); unsigned int ctx_header_size; unsigned int max_ctx_payload_size; enum dma_data_direction dir; struct pkt_desc *descs; int i, type, tag, err; mutex_lock(&s->mutex); if (WARN_ON(amdtp_stream_running(s) || (s->data_block_quadlets < 1))) { err = -EBADFD; goto err_unlock; } if (s->direction == AMDTP_IN_STREAM) { // NOTE: IT context should be used for constant IRQ. if (is_irq_target) { err = -EINVAL; goto err_unlock; } s->data_block_counter = UINT_MAX; } else { s->data_block_counter = 0; } // initialize packet buffer. if (s->direction == AMDTP_IN_STREAM) { dir = DMA_FROM_DEVICE; type = FW_ISO_CONTEXT_RECEIVE; if (!(s->flags & CIP_NO_HEADER)) ctx_header_size = IR_CTX_HEADER_SIZE_CIP; else ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; } else { dir = DMA_TO_DEVICE; type = FW_ISO_CONTEXT_TRANSMIT; ctx_header_size = 0; // No effect for IT context. } max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); if (err < 0) goto err_unlock; s->queue_size = queue_size; s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, type, channel, speed, ctx_header_size, amdtp_stream_first_callback, s); if (IS_ERR(s->context)) { err = PTR_ERR(s->context); if (err == -EBUSY) dev_err(&s->unit->device, "no free stream on this controller\n"); goto err_buffer; } amdtp_stream_update(s); if (s->direction == AMDTP_IN_STREAM) { s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; s->ctx_data.tx.ctx_header_size = ctx_header_size; s->ctx_data.tx.event_starts = false; if (s->domain->replay.enable) { // struct fw_iso_context.drop_overflow_headers is false therefore it's // possible to cache much unexpectedly. s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, queue_size * 3 / 2); s->ctx_data.tx.cache.pos = 0; s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); if (!s->ctx_data.tx.cache.descs) { err = -ENOMEM; goto err_context; } } } else { static const struct { unsigned int data_block; unsigned int syt_offset; } *entry, initial_state[] = { [CIP_SFC_32000] = { 4, 3072 }, [CIP_SFC_48000] = { 6, 1024 }, [CIP_SFC_96000] = { 12, 1024 }, [CIP_SFC_192000] = { 24, 1024 }, [CIP_SFC_44100] = { 0, 67 }, [CIP_SFC_88200] = { 0, 67 }, [CIP_SFC_176400] = { 0, 67 }, }; s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); if (!s->ctx_data.rx.seq.descs) { err = -ENOMEM; goto err_context; } s->ctx_data.rx.seq.size = queue_size; s->ctx_data.rx.seq.pos = 0; entry = &initial_state[s->sfc]; s->ctx_data.rx.data_block_state = entry->data_block; s->ctx_data.rx.syt_offset_state = entry->syt_offset; s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; s->ctx_data.rx.event_count = 0; } if (s->flags & CIP_NO_HEADER) s->tag = TAG_NO_CIP_HEADER; else s->tag = TAG_CIP; // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It // could take a round over queue of AMDTP packet descriptors and small loss of history. For // safe, keep more 8 elements for the queue, equivalent to 1 ms. descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); if (!descs) { err = -ENOMEM; goto err_context; } s->packet_descs = descs; INIT_LIST_HEAD(&s->packet_descs_list); for (i = 0; i < s->queue_size; ++i) { INIT_LIST_HEAD(&descs->link); list_add_tail(&descs->link, &s->packet_descs_list); ++descs; } s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); s->packet_index = 0; do { struct fw_iso_packet params; if (s->direction == AMDTP_IN_STREAM) { err = queue_in_packet(s, ¶ms); } else { bool sched_irq = false; params.header_length = 0; params.payload_length = 0; if (is_irq_target) { sched_irq = !((s->packet_index + 1) % idle_irq_interval); } err = queue_out_packet(s, ¶ms, sched_irq); } if (err < 0) goto err_pkt_descs; } while (s->packet_index > 0); /* NOTE: TAG1 matches CIP. This just affects in stream. */ tag = FW_ISO_CONTEXT_MATCH_TAG1; if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) tag |= FW_ISO_CONTEXT_MATCH_TAG0; s->ready_processing = false; err = fw_iso_context_start(s->context, -1, 0, tag); if (err < 0) goto err_pkt_descs; mutex_unlock(&s->mutex); return 0; err_pkt_descs: kfree(s->packet_descs); s->packet_descs = NULL; err_context: if (s->direction == AMDTP_OUT_STREAM) { kfree(s->ctx_data.rx.seq.descs); } else { if (s->domain->replay.enable) kfree(s->ctx_data.tx.cache.descs); } fw_iso_context_destroy(s->context); s->context = ERR_PTR(-1); err_buffer: iso_packets_buffer_destroy(&s->buffer, s->unit); err_unlock: mutex_unlock(&s->mutex); return err; } /** * amdtp_domain_stream_pcm_pointer - get the PCM buffer position * @d: the AMDTP domain. * @s: the AMDTP stream that transports the PCM data * * Returns the current buffer position, in frames. */ unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, struct amdtp_stream *s) { struct amdtp_stream *irq_target = d->irq_target; // Process isochronous packets queued till recent isochronous cycle to handle PCM frames. if (irq_target && amdtp_stream_running(irq_target)) { // In software IRQ context, the call causes dead-lock to disable the tasklet // synchronously. if (!in_softirq()) fw_iso_context_flush_completions(irq_target->context); } return READ_ONCE(s->pcm_buffer_pointer); } EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); /** * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames * @d: the AMDTP domain. * @s: the AMDTP stream that transfers the PCM frames * * Returns zero always. */ int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) { struct amdtp_stream *irq_target = d->irq_target; // Process isochronous packets for recent isochronous cycle to handle // queued PCM frames. if (irq_target && amdtp_stream_running(irq_target)) fw_iso_context_flush_completions(irq_target->context); return 0; } EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); /** * amdtp_stream_update - update the stream after a bus reset * @s: the AMDTP stream */ void amdtp_stream_update(struct amdtp_stream *s) { /* Precomputing. */ WRITE_ONCE(s->source_node_id_field, (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); } EXPORT_SYMBOL(amdtp_stream_update); /** * amdtp_stream_stop - stop sending packets * @s: the AMDTP stream to stop * * All PCM and MIDI devices of the stream must be stopped before the stream * itself can be stopped. */ static void amdtp_stream_stop(struct amdtp_stream *s) { mutex_lock(&s->mutex); if (!amdtp_stream_running(s)) { mutex_unlock(&s->mutex); return; } fw_iso_context_stop(s->context); fw_iso_context_destroy(s->context); s->context = ERR_PTR(-1); iso_packets_buffer_destroy(&s->buffer, s->unit); kfree(s->packet_descs); s->packet_descs = NULL; if (s->direction == AMDTP_OUT_STREAM) { kfree(s->ctx_data.rx.seq.descs); } else { if (s->domain->replay.enable) kfree(s->ctx_data.tx.cache.descs); } mutex_unlock(&s->mutex); } /** * amdtp_stream_pcm_abort - abort the running PCM device * @s: the AMDTP stream about to be stopped * * If the isochronous stream needs to be stopped asynchronously, call this * function first to stop the PCM device. */ void amdtp_stream_pcm_abort(struct amdtp_stream *s) { struct snd_pcm_substream *pcm; pcm = READ_ONCE(s->pcm); if (pcm) snd_pcm_stop_xrun(pcm); } EXPORT_SYMBOL(amdtp_stream_pcm_abort); /** * amdtp_domain_init - initialize an AMDTP domain structure * @d: the AMDTP domain to initialize. */ int amdtp_domain_init(struct amdtp_domain *d) { INIT_LIST_HEAD(&d->streams); d->events_per_period = 0; return 0; } EXPORT_SYMBOL_GPL(amdtp_domain_init); /** * amdtp_domain_destroy - destroy an AMDTP domain structure * @d: the AMDTP domain to destroy. */ void amdtp_domain_destroy(struct amdtp_domain *d) { // At present nothing to do. return; } EXPORT_SYMBOL_GPL(amdtp_domain_destroy); /** * amdtp_domain_add_stream - register isoc context into the domain. * @d: the AMDTP domain. * @s: the AMDTP stream. * @channel: the isochronous channel on the bus. * @speed: firewire speed code. */ int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, int channel, int speed) { struct amdtp_stream *tmp; list_for_each_entry(tmp, &d->streams, list) { if (s == tmp) return -EBUSY; } list_add(&s->list, &d->streams); s->channel = channel; s->speed = speed; s->domain = d; return 0; } EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams // is less than the number of rx streams, the first tx stream is selected. static int make_association(struct amdtp_domain *d) { unsigned int dst_index = 0; struct amdtp_stream *rx; // Make association to replay target. list_for_each_entry(rx, &d->streams, list) { if (rx->direction == AMDTP_OUT_STREAM) { unsigned int src_index = 0; struct amdtp_stream *tx = NULL; struct amdtp_stream *s; list_for_each_entry(s, &d->streams, list) { if (s->direction == AMDTP_IN_STREAM) { if (dst_index == src_index) { tx = s; break; } ++src_index; } } if (!tx) { // Select the first entry. list_for_each_entry(s, &d->streams, list) { if (s->direction == AMDTP_IN_STREAM) { tx = s; break; } } // No target is available to replay sequence. if (!tx) return -EINVAL; } rx->ctx_data.rx.replay_target = tx; ++dst_index; } } return 0; } /** * amdtp_domain_start - start sending packets for isoc context in the domain. * @d: the AMDTP domain. * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR * contexts. * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in * IT context. * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay * according to arrival of events in tx packets. */ int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, bool replay_on_the_fly) { unsigned int events_per_buffer = d->events_per_buffer; unsigned int events_per_period = d->events_per_period; unsigned int queue_size; struct amdtp_stream *s; bool found = false; int err; if (replay_seq) { err = make_association(d); if (err < 0) return err; } d->replay.enable = replay_seq; d->replay.on_the_fly = replay_on_the_fly; // Select an IT context as IRQ target. list_for_each_entry(s, &d->streams, list) { if (s->direction == AMDTP_OUT_STREAM) { found = true; break; } } if (!found) return -ENXIO; d->irq_target = s; d->processing_cycle.tx_init_skip = tx_init_skip_cycles; // This is a case that AMDTP streams in domain run just for MIDI // substream. Use the number of events equivalent to 10 msec as // interval of hardware IRQ. if (events_per_period == 0) events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; if (events_per_buffer == 0) events_per_buffer = events_per_period * 3; queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, amdtp_rate_table[d->irq_target->sfc]); list_for_each_entry(s, &d->streams, list) { unsigned int idle_irq_interval = 0; if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, amdtp_rate_table[d->irq_target->sfc]); } // Starts immediately but actually DMA context starts several hundred cycles later. err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); if (err < 0) goto error; } return 0; error: list_for_each_entry(s, &d->streams, list) amdtp_stream_stop(s); return err; } EXPORT_SYMBOL_GPL(amdtp_domain_start); /** * amdtp_domain_stop - stop sending packets for isoc context in the same domain. * @d: the AMDTP domain to which the isoc contexts belong. */ void amdtp_domain_stop(struct amdtp_domain *d) { struct amdtp_stream *s, *next; if (d->irq_target) amdtp_stream_stop(d->irq_target); list_for_each_entry_safe(s, next, &d->streams, list) { list_del(&s->list); if (s != d->irq_target) amdtp_stream_stop(s); } d->events_per_period = 0; d->irq_target = NULL; } EXPORT_SYMBOL_GPL(amdtp_domain_stop); |