Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_mutex
  80 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  81 *
  82 *  ->mmap_lock
  83 *    ->i_mmap_rwsem
  84 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  85 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  86 *
  87 *  ->mmap_lock
  88 *    ->lock_page		(access_process_vm)
  89 *
  90 *  ->i_mutex			(generic_perform_write)
  91 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  92 *
  93 *  bdi->wb.list_lock
  94 *    sb_lock			(fs/fs-writeback.c)
  95 *    ->i_pages lock		(__sync_single_inode)
  96 *
  97 *  ->i_mmap_rwsem
  98 *    ->anon_vma.lock		(vma_adjust)
  99 *
 100 *  ->anon_vma.lock
 101 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 102 *
 103 *  ->page_table_lock or pte_lock
 104 *    ->swap_lock		(try_to_unmap_one)
 105 *    ->private_lock		(try_to_unmap_one)
 106 *    ->i_pages lock		(try_to_unmap_one)
 107 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 108 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 109 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 111 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 113 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 114 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 115 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 116 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 117 *
 118 * ->i_mmap_rwsem
 119 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 120 */
 121
 122static void page_cache_delete(struct address_space *mapping,
 123				   struct page *page, void *shadow)
 124{
 125	XA_STATE(xas, &mapping->i_pages, page->index);
 126	unsigned int nr = 1;
 127
 128	mapping_set_update(&xas, mapping);
 129
 130	/* hugetlb pages are represented by a single entry in the xarray */
 131	if (!PageHuge(page)) {
 132		xas_set_order(&xas, page->index, compound_order(page));
 133		nr = compound_nr(page);
 134	}
 135
 136	VM_BUG_ON_PAGE(!PageLocked(page), page);
 137	VM_BUG_ON_PAGE(PageTail(page), page);
 138	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	page->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 
 
 
 
 
 
 
 
 
 
 
 145	mapping->nrpages -= nr;
 146}
 147
 148static void unaccount_page_cache_page(struct address_space *mapping,
 149				      struct page *page)
 150{
 151	int nr;
 152
 153	/*
 154	 * if we're uptodate, flush out into the cleancache, otherwise
 155	 * invalidate any existing cleancache entries.  We can't leave
 156	 * stale data around in the cleancache once our page is gone
 157	 */
 158	if (PageUptodate(page) && PageMappedToDisk(page))
 159		cleancache_put_page(page);
 160	else
 161		cleancache_invalidate_page(mapping, page);
 162
 163	VM_BUG_ON_PAGE(PageTail(page), page);
 164	VM_BUG_ON_PAGE(page_mapped(page), page);
 165	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 166		int mapcount;
 167
 168		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 169			 current->comm, page_to_pfn(page));
 170		dump_page(page, "still mapped when deleted");
 171		dump_stack();
 172		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 173
 174		mapcount = page_mapcount(page);
 175		if (mapping_exiting(mapping) &&
 176		    page_count(page) >= mapcount + 2) {
 177			/*
 178			 * All vmas have already been torn down, so it's
 179			 * a good bet that actually the page is unmapped,
 180			 * and we'd prefer not to leak it: if we're wrong,
 181			 * some other bad page check should catch it later.
 182			 */
 183			page_mapcount_reset(page);
 184			page_ref_sub(page, mapcount);
 185		}
 186	}
 187
 188	/* hugetlb pages do not participate in page cache accounting. */
 189	if (PageHuge(page))
 190		return;
 191
 192	nr = thp_nr_pages(page);
 193
 194	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 195	if (PageSwapBacked(page)) {
 196		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 197		if (PageTransHuge(page))
 198			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 199	} else if (PageTransHuge(page)) {
 200		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 201		filemap_nr_thps_dec(mapping);
 202	}
 203
 204	/*
 205	 * At this point page must be either written or cleaned by
 206	 * truncate.  Dirty page here signals a bug and loss of
 207	 * unwritten data.
 208	 *
 209	 * This fixes dirty accounting after removing the page entirely
 210	 * but leaves PageDirty set: it has no effect for truncated
 211	 * page and anyway will be cleared before returning page into
 212	 * buddy allocator.
 213	 */
 214	if (WARN_ON_ONCE(PageDirty(page)))
 215		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 216}
 217
 218/*
 219 * Delete a page from the page cache and free it. Caller has to make
 220 * sure the page is locked and that nobody else uses it - or that usage
 221 * is safe.  The caller must hold the i_pages lock.
 222 */
 223void __delete_from_page_cache(struct page *page, void *shadow)
 224{
 225	struct address_space *mapping = page->mapping;
 226
 227	trace_mm_filemap_delete_from_page_cache(page);
 228
 229	unaccount_page_cache_page(mapping, page);
 230	page_cache_delete(mapping, page, shadow);
 231}
 232
 233static void page_cache_free_page(struct address_space *mapping,
 234				struct page *page)
 235{
 236	void (*freepage)(struct page *);
 237
 238	freepage = mapping->a_ops->freepage;
 239	if (freepage)
 240		freepage(page);
 241
 242	if (PageTransHuge(page) && !PageHuge(page)) {
 243		page_ref_sub(page, thp_nr_pages(page));
 244		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 245	} else {
 246		put_page(page);
 247	}
 248}
 249
 250/**
 251 * delete_from_page_cache - delete page from page cache
 252 * @page: the page which the kernel is trying to remove from page cache
 253 *
 254 * This must be called only on pages that have been verified to be in the page
 255 * cache and locked.  It will never put the page into the free list, the caller
 256 * has a reference on the page.
 257 */
 258void delete_from_page_cache(struct page *page)
 259{
 260	struct address_space *mapping = page_mapping(page);
 261	unsigned long flags;
 262
 263	BUG_ON(!PageLocked(page));
 264	xa_lock_irqsave(&mapping->i_pages, flags);
 265	__delete_from_page_cache(page, NULL);
 266	xa_unlock_irqrestore(&mapping->i_pages, flags);
 267
 268	page_cache_free_page(mapping, page);
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272/*
 273 * page_cache_delete_batch - delete several pages from page cache
 274 * @mapping: the mapping to which pages belong
 275 * @pvec: pagevec with pages to delete
 276 *
 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
 278 * from the mapping. The function expects @pvec to be sorted by page index
 279 * and is optimised for it to be dense.
 280 * It tolerates holes in @pvec (mapping entries at those indices are not
 281 * modified). The function expects only THP head pages to be present in the
 282 * @pvec.
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287			     struct pagevec *pvec)
 288{
 289	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 290	int total_pages = 0;
 291	int i = 0;
 292	struct page *page;
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, page, ULONG_MAX) {
 296		if (i >= pagevec_count(pvec))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(page))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (page != pvec->pages[i]) {
 310			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 311					page);
 312			continue;
 313		}
 314
 315		WARN_ON_ONCE(!PageLocked(page));
 316
 317		if (page->index == xas.xa_index)
 318			page->mapping = NULL;
 319		/* Leave page->index set: truncation lookup relies on it */
 320
 321		/*
 322		 * Move to the next page in the vector if this is a regular
 323		 * page or the index is of the last sub-page of this compound
 324		 * page.
 325		 */
 326		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 327			i++;
 328		xas_store(&xas, NULL);
 329		total_pages++;
 330	}
 331	mapping->nrpages -= total_pages;
 332}
 333
 334void delete_from_page_cache_batch(struct address_space *mapping,
 335				  struct pagevec *pvec)
 336{
 337	int i;
 338	unsigned long flags;
 339
 340	if (!pagevec_count(pvec))
 341		return;
 342
 343	xa_lock_irqsave(&mapping->i_pages, flags);
 344	for (i = 0; i < pagevec_count(pvec); i++) {
 345		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 346
 347		unaccount_page_cache_page(mapping, pvec->pages[i]);
 348	}
 349	page_cache_delete_batch(mapping, pvec);
 350	xa_unlock_irqrestore(&mapping->i_pages, flags);
 351
 352	for (i = 0; i < pagevec_count(pvec); i++)
 353		page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358	int ret = 0;
 359	/* Check for outstanding write errors */
 360	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362		ret = -ENOSPC;
 363	if (test_bit(AS_EIO, &mapping->flags) &&
 364	    test_and_clear_bit(AS_EIO, &mapping->flags))
 365		ret = -EIO;
 366	return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372	/* Check for outstanding write errors */
 373	if (test_bit(AS_EIO, &mapping->flags))
 374		return -EIO;
 375	if (test_bit(AS_ENOSPC, &mapping->flags))
 376		return -ENOSPC;
 377	return 0;
 378}
 379
 380/**
 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 382 * @mapping:	address space structure to write
 383 * @start:	offset in bytes where the range starts
 384 * @end:	offset in bytes where the range ends (inclusive)
 385 * @sync_mode:	enable synchronous operation
 386 *
 387 * Start writeback against all of a mapping's dirty pages that lie
 388 * within the byte offsets <start, end> inclusive.
 389 *
 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 391 * opposed to a regular memory cleansing writeback.  The difference between
 392 * these two operations is that if a dirty page/buffer is encountered, it must
 393 * be waited upon, and not just skipped over.
 394 *
 395 * Return: %0 on success, negative error code otherwise.
 396 */
 397int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 398				loff_t end, int sync_mode)
 399{
 400	int ret;
 401	struct writeback_control wbc = {
 402		.sync_mode = sync_mode,
 403		.nr_to_write = LONG_MAX,
 404		.range_start = start,
 405		.range_end = end,
 406	};
 407
 408	if (!mapping_can_writeback(mapping) ||
 409	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 410		return 0;
 411
 412	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 413	ret = do_writepages(mapping, &wbc);
 414	wbc_detach_inode(&wbc);
 415	return ret;
 416}
 417
 418static inline int __filemap_fdatawrite(struct address_space *mapping,
 419	int sync_mode)
 420{
 421	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 422}
 423
 424int filemap_fdatawrite(struct address_space *mapping)
 425{
 426	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 427}
 428EXPORT_SYMBOL(filemap_fdatawrite);
 429
 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end)
 432{
 433	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 434}
 435EXPORT_SYMBOL(filemap_fdatawrite_range);
 436
 437/**
 438 * filemap_flush - mostly a non-blocking flush
 439 * @mapping:	target address_space
 440 *
 441 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 442 * purposes - I/O may not be started against all dirty pages.
 443 *
 444 * Return: %0 on success, negative error code otherwise.
 445 */
 446int filemap_flush(struct address_space *mapping)
 447{
 448	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 449}
 450EXPORT_SYMBOL(filemap_flush);
 451
 452/**
 453 * filemap_range_has_page - check if a page exists in range.
 454 * @mapping:           address space within which to check
 455 * @start_byte:        offset in bytes where the range starts
 456 * @end_byte:          offset in bytes where the range ends (inclusive)
 457 *
 458 * Find at least one page in the range supplied, usually used to check if
 459 * direct writing in this range will trigger a writeback.
 460 *
 461 * Return: %true if at least one page exists in the specified range,
 462 * %false otherwise.
 463 */
 464bool filemap_range_has_page(struct address_space *mapping,
 465			   loff_t start_byte, loff_t end_byte)
 466{
 467	struct page *page;
 468	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 469	pgoff_t max = end_byte >> PAGE_SHIFT;
 470
 471	if (end_byte < start_byte)
 472		return false;
 473
 474	rcu_read_lock();
 475	for (;;) {
 476		page = xas_find(&xas, max);
 477		if (xas_retry(&xas, page))
 478			continue;
 479		/* Shadow entries don't count */
 480		if (xa_is_value(page))
 481			continue;
 482		/*
 483		 * We don't need to try to pin this page; we're about to
 484		 * release the RCU lock anyway.  It is enough to know that
 485		 * there was a page here recently.
 486		 */
 487		break;
 488	}
 489	rcu_read_unlock();
 490
 491	return page != NULL;
 492}
 493EXPORT_SYMBOL(filemap_range_has_page);
 494
 495static void __filemap_fdatawait_range(struct address_space *mapping,
 496				     loff_t start_byte, loff_t end_byte)
 497{
 498	pgoff_t index = start_byte >> PAGE_SHIFT;
 499	pgoff_t end = end_byte >> PAGE_SHIFT;
 500	struct pagevec pvec;
 501	int nr_pages;
 502
 503	if (end_byte < start_byte)
 504		return;
 505
 506	pagevec_init(&pvec);
 507	while (index <= end) {
 508		unsigned i;
 509
 510		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 511				end, PAGECACHE_TAG_WRITEBACK);
 512		if (!nr_pages)
 513			break;
 514
 515		for (i = 0; i < nr_pages; i++) {
 516			struct page *page = pvec.pages[i];
 517
 518			wait_on_page_writeback(page);
 519			ClearPageError(page);
 520		}
 521		pagevec_release(&pvec);
 522		cond_resched();
 523	}
 524}
 525
 526/**
 527 * filemap_fdatawait_range - wait for writeback to complete
 528 * @mapping:		address space structure to wait for
 529 * @start_byte:		offset in bytes where the range starts
 530 * @end_byte:		offset in bytes where the range ends (inclusive)
 531 *
 532 * Walk the list of under-writeback pages of the given address space
 533 * in the given range and wait for all of them.  Check error status of
 534 * the address space and return it.
 535 *
 536 * Since the error status of the address space is cleared by this function,
 537 * callers are responsible for checking the return value and handling and/or
 538 * reporting the error.
 539 *
 540 * Return: error status of the address space.
 541 */
 542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 543			    loff_t end_byte)
 544{
 545	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 546	return filemap_check_errors(mapping);
 547}
 548EXPORT_SYMBOL(filemap_fdatawait_range);
 549
 550/**
 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 552 * @mapping:		address space structure to wait for
 553 * @start_byte:		offset in bytes where the range starts
 554 * @end_byte:		offset in bytes where the range ends (inclusive)
 555 *
 556 * Walk the list of under-writeback pages of the given address space in the
 557 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 558 * this function does not clear error status of the address space.
 559 *
 560 * Use this function if callers don't handle errors themselves.  Expected
 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 562 * fsfreeze(8)
 563 */
 564int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 565		loff_t start_byte, loff_t end_byte)
 566{
 567	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 568	return filemap_check_and_keep_errors(mapping);
 569}
 570EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 571
 572/**
 573 * file_fdatawait_range - wait for writeback to complete
 574 * @file:		file pointing to address space structure to wait for
 575 * @start_byte:		offset in bytes where the range starts
 576 * @end_byte:		offset in bytes where the range ends (inclusive)
 577 *
 578 * Walk the list of under-writeback pages of the address space that file
 579 * refers to, in the given range and wait for all of them.  Check error
 580 * status of the address space vs. the file->f_wb_err cursor and return it.
 581 *
 582 * Since the error status of the file is advanced by this function,
 583 * callers are responsible for checking the return value and handling and/or
 584 * reporting the error.
 585 *
 586 * Return: error status of the address space vs. the file->f_wb_err cursor.
 587 */
 588int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 589{
 590	struct address_space *mapping = file->f_mapping;
 591
 592	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 593	return file_check_and_advance_wb_err(file);
 594}
 595EXPORT_SYMBOL(file_fdatawait_range);
 596
 597/**
 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 599 * @mapping: address space structure to wait for
 600 *
 601 * Walk the list of under-writeback pages of the given address space
 602 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 603 * does not clear error status of the address space.
 604 *
 605 * Use this function if callers don't handle errors themselves.  Expected
 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 607 * fsfreeze(8)
 608 *
 609 * Return: error status of the address space.
 610 */
 611int filemap_fdatawait_keep_errors(struct address_space *mapping)
 612{
 613	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 614	return filemap_check_and_keep_errors(mapping);
 615}
 616EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 617
 618/* Returns true if writeback might be needed or already in progress. */
 619static bool mapping_needs_writeback(struct address_space *mapping)
 620{
 621	return mapping->nrpages;
 622}
 623
 624/**
 625 * filemap_range_needs_writeback - check if range potentially needs writeback
 626 * @mapping:           address space within which to check
 627 * @start_byte:        offset in bytes where the range starts
 628 * @end_byte:          offset in bytes where the range ends (inclusive)
 629 *
 630 * Find at least one page in the range supplied, usually used to check if
 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 633 * filemap_write_and_wait_range() before proceeding.
 634 *
 635 * Return: %true if the caller should do filemap_write_and_wait_range() before
 636 * doing O_DIRECT to a page in this range, %false otherwise.
 637 */
 638bool filemap_range_needs_writeback(struct address_space *mapping,
 639				   loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct page *page;
 644
 645	if (!mapping_needs_writeback(mapping))
 646		return false;
 647	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 648	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 649		return false;
 650	if (end_byte < start_byte)
 651		return false;
 652
 653	rcu_read_lock();
 654	xas_for_each(&xas, page, max) {
 655		if (xas_retry(&xas, page))
 656			continue;
 657		if (xa_is_value(page))
 658			continue;
 659		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 660			break;
 661	}
 662	rcu_read_unlock();
 663	return page != NULL;
 664}
 665EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 666
 667/**
 668 * filemap_write_and_wait_range - write out & wait on a file range
 669 * @mapping:	the address_space for the pages
 670 * @lstart:	offset in bytes where the range starts
 671 * @lend:	offset in bytes where the range ends (inclusive)
 672 *
 673 * Write out and wait upon file offsets lstart->lend, inclusive.
 674 *
 675 * Note that @lend is inclusive (describes the last byte to be written) so
 676 * that this function can be used to write to the very end-of-file (end = -1).
 677 *
 678 * Return: error status of the address space.
 679 */
 680int filemap_write_and_wait_range(struct address_space *mapping,
 681				 loff_t lstart, loff_t lend)
 682{
 683	int err = 0;
 684
 685	if (mapping_needs_writeback(mapping)) {
 686		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 687						 WB_SYNC_ALL);
 688		/*
 689		 * Even if the above returned error, the pages may be
 690		 * written partially (e.g. -ENOSPC), so we wait for it.
 691		 * But the -EIO is special case, it may indicate the worst
 692		 * thing (e.g. bug) happened, so we avoid waiting for it.
 693		 */
 694		if (err != -EIO) {
 695			int err2 = filemap_fdatawait_range(mapping,
 696						lstart, lend);
 697			if (!err)
 698				err = err2;
 699		} else {
 700			/* Clear any previously stored errors */
 701			filemap_check_errors(mapping);
 702		}
 703	} else {
 704		err = filemap_check_errors(mapping);
 705	}
 706	return err;
 707}
 708EXPORT_SYMBOL(filemap_write_and_wait_range);
 709
 710void __filemap_set_wb_err(struct address_space *mapping, int err)
 711{
 712	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 713
 714	trace_filemap_set_wb_err(mapping, eseq);
 715}
 716EXPORT_SYMBOL(__filemap_set_wb_err);
 717
 718/**
 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 720 * 				   and advance wb_err to current one
 721 * @file: struct file on which the error is being reported
 722 *
 723 * When userland calls fsync (or something like nfsd does the equivalent), we
 724 * want to report any writeback errors that occurred since the last fsync (or
 725 * since the file was opened if there haven't been any).
 726 *
 727 * Grab the wb_err from the mapping. If it matches what we have in the file,
 728 * then just quickly return 0. The file is all caught up.
 729 *
 730 * If it doesn't match, then take the mapping value, set the "seen" flag in
 731 * it and try to swap it into place. If it works, or another task beat us
 732 * to it with the new value, then update the f_wb_err and return the error
 733 * portion. The error at this point must be reported via proper channels
 734 * (a'la fsync, or NFS COMMIT operation, etc.).
 735 *
 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 737 * value is protected by the f_lock since we must ensure that it reflects
 738 * the latest value swapped in for this file descriptor.
 739 *
 740 * Return: %0 on success, negative error code otherwise.
 741 */
 742int file_check_and_advance_wb_err(struct file *file)
 743{
 744	int err = 0;
 745	errseq_t old = READ_ONCE(file->f_wb_err);
 746	struct address_space *mapping = file->f_mapping;
 747
 748	/* Locklessly handle the common case where nothing has changed */
 749	if (errseq_check(&mapping->wb_err, old)) {
 750		/* Something changed, must use slow path */
 751		spin_lock(&file->f_lock);
 752		old = file->f_wb_err;
 753		err = errseq_check_and_advance(&mapping->wb_err,
 754						&file->f_wb_err);
 755		trace_file_check_and_advance_wb_err(file, old);
 756		spin_unlock(&file->f_lock);
 757	}
 758
 759	/*
 760	 * We're mostly using this function as a drop in replacement for
 761	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 762	 * that the legacy code would have had on these flags.
 763	 */
 764	clear_bit(AS_EIO, &mapping->flags);
 765	clear_bit(AS_ENOSPC, &mapping->flags);
 766	return err;
 767}
 768EXPORT_SYMBOL(file_check_and_advance_wb_err);
 769
 770/**
 771 * file_write_and_wait_range - write out & wait on a file range
 772 * @file:	file pointing to address_space with pages
 773 * @lstart:	offset in bytes where the range starts
 774 * @lend:	offset in bytes where the range ends (inclusive)
 775 *
 776 * Write out and wait upon file offsets lstart->lend, inclusive.
 777 *
 778 * Note that @lend is inclusive (describes the last byte to be written) so
 779 * that this function can be used to write to the very end-of-file (end = -1).
 780 *
 781 * After writing out and waiting on the data, we check and advance the
 782 * f_wb_err cursor to the latest value, and return any errors detected there.
 783 *
 784 * Return: %0 on success, negative error code otherwise.
 785 */
 786int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 787{
 788	int err = 0, err2;
 789	struct address_space *mapping = file->f_mapping;
 790
 791	if (mapping_needs_writeback(mapping)) {
 792		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 793						 WB_SYNC_ALL);
 794		/* See comment of filemap_write_and_wait() */
 795		if (err != -EIO)
 796			__filemap_fdatawait_range(mapping, lstart, lend);
 797	}
 798	err2 = file_check_and_advance_wb_err(file);
 799	if (!err)
 800		err = err2;
 801	return err;
 802}
 803EXPORT_SYMBOL(file_write_and_wait_range);
 804
 805/**
 806 * replace_page_cache_page - replace a pagecache page with a new one
 807 * @old:	page to be replaced
 808 * @new:	page to replace with
 
 809 *
 810 * This function replaces a page in the pagecache with a new one.  On
 811 * success it acquires the pagecache reference for the new page and
 812 * drops it for the old page.  Both the old and new pages must be
 813 * locked.  This function does not add the new page to the LRU, the
 814 * caller must do that.
 815 *
 816 * The remove + add is atomic.  This function cannot fail.
 
 
 817 */
 818void replace_page_cache_page(struct page *old, struct page *new)
 819{
 820	struct address_space *mapping = old->mapping;
 821	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 822	pgoff_t offset = old->index;
 823	XA_STATE(xas, &mapping->i_pages, offset);
 824	unsigned long flags;
 825
 826	VM_BUG_ON_PAGE(!PageLocked(old), old);
 827	VM_BUG_ON_PAGE(!PageLocked(new), new);
 828	VM_BUG_ON_PAGE(new->mapping, new);
 829
 830	get_page(new);
 831	new->mapping = mapping;
 832	new->index = offset;
 833
 834	mem_cgroup_migrate(old, new);
 835
 836	xas_lock_irqsave(&xas, flags);
 837	xas_store(&xas, new);
 838
 839	old->mapping = NULL;
 840	/* hugetlb pages do not participate in page cache accounting. */
 841	if (!PageHuge(old))
 842		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 843	if (!PageHuge(new))
 844		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 845	if (PageSwapBacked(old))
 846		__dec_lruvec_page_state(old, NR_SHMEM);
 847	if (PageSwapBacked(new))
 848		__inc_lruvec_page_state(new, NR_SHMEM);
 849	xas_unlock_irqrestore(&xas, flags);
 850	if (freepage)
 851		freepage(old);
 852	put_page(old);
 
 
 853}
 854EXPORT_SYMBOL_GPL(replace_page_cache_page);
 855
 856noinline int __add_to_page_cache_locked(struct page *page,
 857					struct address_space *mapping,
 858					pgoff_t offset, gfp_t gfp,
 859					void **shadowp)
 860{
 861	XA_STATE(xas, &mapping->i_pages, offset);
 862	int huge = PageHuge(page);
 863	int error;
 864	bool charged = false;
 865
 866	VM_BUG_ON_PAGE(!PageLocked(page), page);
 867	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 868	mapping_set_update(&xas, mapping);
 869
 870	get_page(page);
 871	page->mapping = mapping;
 872	page->index = offset;
 873
 874	if (!huge) {
 875		error = mem_cgroup_charge(page, NULL, gfp);
 876		if (error)
 877			goto error;
 878		charged = true;
 879	}
 880
 881	gfp &= GFP_RECLAIM_MASK;
 882
 883	do {
 884		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 885		void *entry, *old = NULL;
 886
 887		if (order > thp_order(page))
 888			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 889					order, gfp);
 890		xas_lock_irq(&xas);
 891		xas_for_each_conflict(&xas, entry) {
 892			old = entry;
 893			if (!xa_is_value(entry)) {
 894				xas_set_err(&xas, -EEXIST);
 895				goto unlock;
 896			}
 897		}
 898
 899		if (old) {
 900			if (shadowp)
 901				*shadowp = old;
 902			/* entry may have been split before we acquired lock */
 903			order = xa_get_order(xas.xa, xas.xa_index);
 904			if (order > thp_order(page)) {
 905				xas_split(&xas, old, order);
 906				xas_reset(&xas);
 907			}
 908		}
 909
 910		xas_store(&xas, page);
 911		if (xas_error(&xas))
 912			goto unlock;
 913
 
 
 
 
 
 914		mapping->nrpages++;
 915
 916		/* hugetlb pages do not participate in page cache accounting */
 917		if (!huge)
 918			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 919unlock:
 920		xas_unlock_irq(&xas);
 921	} while (xas_nomem(&xas, gfp));
 922
 923	if (xas_error(&xas)) {
 924		error = xas_error(&xas);
 925		if (charged)
 926			mem_cgroup_uncharge(page);
 927		goto error;
 928	}
 929
 930	trace_mm_filemap_add_to_page_cache(page);
 931	return 0;
 932error:
 933	page->mapping = NULL;
 934	/* Leave page->index set: truncation relies upon it */
 935	put_page(page);
 936	return error;
 937}
 938ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 939
 940/**
 941 * add_to_page_cache_locked - add a locked page to the pagecache
 942 * @page:	page to add
 943 * @mapping:	the page's address_space
 944 * @offset:	page index
 945 * @gfp_mask:	page allocation mode
 946 *
 947 * This function is used to add a page to the pagecache. It must be locked.
 948 * This function does not add the page to the LRU.  The caller must do that.
 949 *
 950 * Return: %0 on success, negative error code otherwise.
 951 */
 952int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 953		pgoff_t offset, gfp_t gfp_mask)
 954{
 955	return __add_to_page_cache_locked(page, mapping, offset,
 956					  gfp_mask, NULL);
 957}
 958EXPORT_SYMBOL(add_to_page_cache_locked);
 959
 960int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 961				pgoff_t offset, gfp_t gfp_mask)
 962{
 963	void *shadow = NULL;
 964	int ret;
 965
 966	__SetPageLocked(page);
 967	ret = __add_to_page_cache_locked(page, mapping, offset,
 968					 gfp_mask, &shadow);
 969	if (unlikely(ret))
 970		__ClearPageLocked(page);
 971	else {
 972		/*
 973		 * The page might have been evicted from cache only
 974		 * recently, in which case it should be activated like
 975		 * any other repeatedly accessed page.
 976		 * The exception is pages getting rewritten; evicting other
 977		 * data from the working set, only to cache data that will
 978		 * get overwritten with something else, is a waste of memory.
 979		 */
 980		WARN_ON_ONCE(PageActive(page));
 981		if (!(gfp_mask & __GFP_WRITE) && shadow)
 982			workingset_refault(page, shadow);
 983		lru_cache_add(page);
 984	}
 985	return ret;
 986}
 987EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 988
 989#ifdef CONFIG_NUMA
 990struct page *__page_cache_alloc(gfp_t gfp)
 991{
 992	int n;
 993	struct page *page;
 994
 995	if (cpuset_do_page_mem_spread()) {
 996		unsigned int cpuset_mems_cookie;
 997		do {
 998			cpuset_mems_cookie = read_mems_allowed_begin();
 999			n = cpuset_mem_spread_node();
1000			page = __alloc_pages_node(n, gfp, 0);
1001		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002
1003		return page;
1004	}
1005	return alloc_pages(gfp, 0);
1006}
1007EXPORT_SYMBOL(__page_cache_alloc);
1008#endif
1009
1010/*
1011 * In order to wait for pages to become available there must be
1012 * waitqueues associated with pages. By using a hash table of
1013 * waitqueues where the bucket discipline is to maintain all
1014 * waiters on the same queue and wake all when any of the pages
1015 * become available, and for the woken contexts to check to be
1016 * sure the appropriate page became available, this saves space
1017 * at a cost of "thundering herd" phenomena during rare hash
1018 * collisions.
1019 */
1020#define PAGE_WAIT_TABLE_BITS 8
1021#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023
1024static wait_queue_head_t *page_waitqueue(struct page *page)
1025{
1026	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027}
1028
1029void __init pagecache_init(void)
1030{
1031	int i;
1032
1033	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034		init_waitqueue_head(&page_wait_table[i]);
1035
1036	page_writeback_init();
1037}
1038
1039/*
1040 * The page wait code treats the "wait->flags" somewhat unusually, because
1041 * we have multiple different kinds of waits, not just the usual "exclusive"
1042 * one.
1043 *
1044 * We have:
1045 *
1046 *  (a) no special bits set:
1047 *
1048 *	We're just waiting for the bit to be released, and when a waker
1049 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050 *	and remove it from the wait queue.
1051 *
1052 *	Simple and straightforward.
1053 *
1054 *  (b) WQ_FLAG_EXCLUSIVE:
1055 *
1056 *	The waiter is waiting to get the lock, and only one waiter should
1057 *	be woken up to avoid any thundering herd behavior. We'll set the
1058 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059 *
1060 *	This is the traditional exclusive wait.
1061 *
1062 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063 *
1064 *	The waiter is waiting to get the bit, and additionally wants the
1065 *	lock to be transferred to it for fair lock behavior. If the lock
1066 *	cannot be taken, we stop walking the wait queue without waking
1067 *	the waiter.
1068 *
1069 *	This is the "fair lock handoff" case, and in addition to setting
1070 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071 *	that it now has the lock.
1072 */
1073static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074{
1075	unsigned int flags;
1076	struct wait_page_key *key = arg;
1077	struct wait_page_queue *wait_page
1078		= container_of(wait, struct wait_page_queue, wait);
1079
1080	if (!wake_page_match(wait_page, key))
1081		return 0;
1082
1083	/*
1084	 * If it's a lock handoff wait, we get the bit for it, and
1085	 * stop walking (and do not wake it up) if we can't.
1086	 */
1087	flags = wait->flags;
1088	if (flags & WQ_FLAG_EXCLUSIVE) {
1089		if (test_bit(key->bit_nr, &key->page->flags))
1090			return -1;
1091		if (flags & WQ_FLAG_CUSTOM) {
1092			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093				return -1;
1094			flags |= WQ_FLAG_DONE;
1095		}
1096	}
1097
1098	/*
1099	 * We are holding the wait-queue lock, but the waiter that
1100	 * is waiting for this will be checking the flags without
1101	 * any locking.
1102	 *
1103	 * So update the flags atomically, and wake up the waiter
1104	 * afterwards to avoid any races. This store-release pairs
1105	 * with the load-acquire in wait_on_page_bit_common().
1106	 */
1107	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108	wake_up_state(wait->private, mode);
1109
1110	/*
1111	 * Ok, we have successfully done what we're waiting for,
1112	 * and we can unconditionally remove the wait entry.
1113	 *
1114	 * Note that this pairs with the "finish_wait()" in the
1115	 * waiter, and has to be the absolute last thing we do.
1116	 * After this list_del_init(&wait->entry) the wait entry
1117	 * might be de-allocated and the process might even have
1118	 * exited.
1119	 */
1120	list_del_init_careful(&wait->entry);
1121	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122}
1123
1124static void wake_up_page_bit(struct page *page, int bit_nr)
1125{
1126	wait_queue_head_t *q = page_waitqueue(page);
1127	struct wait_page_key key;
1128	unsigned long flags;
1129	wait_queue_entry_t bookmark;
1130
1131	key.page = page;
1132	key.bit_nr = bit_nr;
1133	key.page_match = 0;
1134
1135	bookmark.flags = 0;
1136	bookmark.private = NULL;
1137	bookmark.func = NULL;
1138	INIT_LIST_HEAD(&bookmark.entry);
1139
1140	spin_lock_irqsave(&q->lock, flags);
1141	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142
1143	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144		/*
1145		 * Take a breather from holding the lock,
1146		 * allow pages that finish wake up asynchronously
1147		 * to acquire the lock and remove themselves
1148		 * from wait queue
1149		 */
1150		spin_unlock_irqrestore(&q->lock, flags);
1151		cpu_relax();
1152		spin_lock_irqsave(&q->lock, flags);
1153		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154	}
1155
1156	/*
1157	 * It is possible for other pages to have collided on the waitqueue
1158	 * hash, so in that case check for a page match. That prevents a long-
1159	 * term waiter
1160	 *
1161	 * It is still possible to miss a case here, when we woke page waiters
1162	 * and removed them from the waitqueue, but there are still other
1163	 * page waiters.
1164	 */
1165	if (!waitqueue_active(q) || !key.page_match) {
1166		ClearPageWaiters(page);
1167		/*
1168		 * It's possible to miss clearing Waiters here, when we woke
1169		 * our page waiters, but the hashed waitqueue has waiters for
1170		 * other pages on it.
1171		 *
1172		 * That's okay, it's a rare case. The next waker will clear it.
1173		 */
1174	}
1175	spin_unlock_irqrestore(&q->lock, flags);
1176}
1177
1178static void wake_up_page(struct page *page, int bit)
1179{
1180	if (!PageWaiters(page))
1181		return;
1182	wake_up_page_bit(page, bit);
1183}
1184
1185/*
1186 * A choice of three behaviors for wait_on_page_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __lock_page() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * wait_on_page_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like put_and_wait_on_page_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the page bit, and mark us done
1202 * if successful.
1203 */
1204static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &page->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &page->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221	struct page *page, int bit_nr, int state, enum behavior behavior)
1222{
1223	int unfairness = sysctl_page_lock_unfairness;
1224	struct wait_page_queue wait_page;
1225	wait_queue_entry_t *wait = &wait_page.wait;
1226	bool thrashing = false;
1227	bool delayacct = false;
1228	unsigned long pflags;
1229
1230	if (bit_nr == PG_locked &&
1231	    !PageUptodate(page) && PageWorkingset(page)) {
1232		if (!PageSwapBacked(page)) {
1233			delayacct_thrashing_start();
1234			delayacct = true;
1235		}
1236		psi_memstall_enter(&pflags);
1237		thrashing = true;
1238	}
1239
1240	init_wait(wait);
1241	wait->func = wake_page_function;
1242	wait_page.page = page;
1243	wait_page.bit_nr = bit_nr;
1244
1245repeat:
1246	wait->flags = 0;
1247	if (behavior == EXCLUSIVE) {
1248		wait->flags = WQ_FLAG_EXCLUSIVE;
1249		if (--unfairness < 0)
1250			wait->flags |= WQ_FLAG_CUSTOM;
1251	}
1252
1253	/*
1254	 * Do one last check whether we can get the
1255	 * page bit synchronously.
1256	 *
1257	 * Do the SetPageWaiters() marking before that
1258	 * to let any waker we _just_ missed know they
1259	 * need to wake us up (otherwise they'll never
1260	 * even go to the slow case that looks at the
1261	 * page queue), and add ourselves to the wait
1262	 * queue if we need to sleep.
1263	 *
1264	 * This part needs to be done under the queue
1265	 * lock to avoid races.
1266	 */
1267	spin_lock_irq(&q->lock);
1268	SetPageWaiters(page);
1269	if (!trylock_page_bit_common(page, bit_nr, wait))
1270		__add_wait_queue_entry_tail(q, wait);
1271	spin_unlock_irq(&q->lock);
1272
1273	/*
1274	 * From now on, all the logic will be based on
1275	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276	 * see whether the page bit testing has already
1277	 * been done by the wake function.
1278	 *
1279	 * We can drop our reference to the page.
1280	 */
1281	if (behavior == DROP)
1282		put_page(page);
1283
1284	/*
1285	 * Note that until the "finish_wait()", or until
1286	 * we see the WQ_FLAG_WOKEN flag, we need to
1287	 * be very careful with the 'wait->flags', because
1288	 * we may race with a waker that sets them.
1289	 */
1290	for (;;) {
1291		unsigned int flags;
1292
1293		set_current_state(state);
1294
1295		/* Loop until we've been woken or interrupted */
1296		flags = smp_load_acquire(&wait->flags);
1297		if (!(flags & WQ_FLAG_WOKEN)) {
1298			if (signal_pending_state(state, current))
1299				break;
1300
1301			io_schedule();
1302			continue;
1303		}
1304
1305		/* If we were non-exclusive, we're done */
1306		if (behavior != EXCLUSIVE)
1307			break;
1308
1309		/* If the waker got the lock for us, we're done */
1310		if (flags & WQ_FLAG_DONE)
1311			break;
1312
1313		/*
1314		 * Otherwise, if we're getting the lock, we need to
1315		 * try to get it ourselves.
1316		 *
1317		 * And if that fails, we'll have to retry this all.
1318		 */
1319		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320			goto repeat;
1321
1322		wait->flags |= WQ_FLAG_DONE;
1323		break;
1324	}
1325
1326	/*
1327	 * If a signal happened, this 'finish_wait()' may remove the last
1328	 * waiter from the wait-queues, but the PageWaiters bit will remain
1329	 * set. That's ok. The next wakeup will take care of it, and trying
1330	 * to do it here would be difficult and prone to races.
1331	 */
1332	finish_wait(q, wait);
1333
1334	if (thrashing) {
1335		if (delayacct)
1336			delayacct_thrashing_end();
1337		psi_memstall_leave(&pflags);
1338	}
1339
1340	/*
1341	 * NOTE! The wait->flags weren't stable until we've done the
1342	 * 'finish_wait()', and we could have exited the loop above due
1343	 * to a signal, and had a wakeup event happen after the signal
1344	 * test but before the 'finish_wait()'.
1345	 *
1346	 * So only after the finish_wait() can we reliably determine
1347	 * if we got woken up or not, so we can now figure out the final
1348	 * return value based on that state without races.
1349	 *
1350	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352	 */
1353	if (behavior == EXCLUSIVE)
1354		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355
1356	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357}
1358
1359void wait_on_page_bit(struct page *page, int bit_nr)
1360{
1361	wait_queue_head_t *q = page_waitqueue(page);
1362	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1363}
1364EXPORT_SYMBOL(wait_on_page_bit);
1365
1366int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367{
1368	wait_queue_head_t *q = page_waitqueue(page);
1369	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370}
1371EXPORT_SYMBOL(wait_on_page_bit_killable);
1372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1373/**
1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375 * @page: The page to wait for.
1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377 *
1378 * The caller should hold a reference on @page.  They expect the page to
1379 * become unlocked relatively soon, but do not wish to hold up migration
1380 * (for example) by holding the reference while waiting for the page to
1381 * come unlocked.  After this function returns, the caller should not
1382 * dereference @page.
1383 *
1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385 */
1386int put_and_wait_on_page_locked(struct page *page, int state)
1387{
1388	wait_queue_head_t *q;
1389
1390	page = compound_head(page);
1391	q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393}
1394
1395/**
1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397 * @page: Page defining the wait queue of interest
1398 * @waiter: Waiter to add to the queue
1399 *
1400 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401 */
1402void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403{
1404	wait_queue_head_t *q = page_waitqueue(page);
1405	unsigned long flags;
1406
1407	spin_lock_irqsave(&q->lock, flags);
1408	__add_wait_queue_entry_tail(q, waiter);
1409	SetPageWaiters(page);
1410	spin_unlock_irqrestore(&q->lock, flags);
1411}
1412EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413
1414#ifndef clear_bit_unlock_is_negative_byte
1415
1416/*
1417 * PG_waiters is the high bit in the same byte as PG_lock.
1418 *
1419 * On x86 (and on many other architectures), we can clear PG_lock and
1420 * test the sign bit at the same time. But if the architecture does
1421 * not support that special operation, we just do this all by hand
1422 * instead.
1423 *
1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425 * being cleared, but a memory barrier should be unnecessary since it is
1426 * in the same byte as PG_locked.
1427 */
1428static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429{
1430	clear_bit_unlock(nr, mem);
1431	/* smp_mb__after_atomic(); */
1432	return test_bit(PG_waiters, mem);
1433}
1434
1435#endif
1436
1437/**
1438 * unlock_page - unlock a locked page
1439 * @page: the page
1440 *
1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443 * mechanism between PageLocked pages and PageWriteback pages is shared.
1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445 *
1446 * Note that this depends on PG_waiters being the sign bit in the byte
1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448 * clear the PG_locked bit and test PG_waiters at the same time fairly
1449 * portably (architectures that do LL/SC can test any bit, while x86 can
1450 * test the sign bit).
1451 */
1452void unlock_page(struct page *page)
1453{
1454	BUILD_BUG_ON(PG_waiters != 7);
1455	page = compound_head(page);
1456	VM_BUG_ON_PAGE(!PageLocked(page), page);
1457	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458		wake_up_page_bit(page, PG_locked);
1459}
1460EXPORT_SYMBOL(unlock_page);
1461
1462/**
1463 * end_page_private_2 - Clear PG_private_2 and release any waiters
1464 * @page: The page
1465 *
1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467 * this.  The page ref held for PG_private_2 being set is released.
1468 *
1469 * This is, for example, used when a netfs page is being written to a local
1470 * disk cache, thereby allowing writes to the cache for the same page to be
1471 * serialised.
1472 */
1473void end_page_private_2(struct page *page)
1474{
1475	page = compound_head(page);
1476	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477	clear_bit_unlock(PG_private_2, &page->flags);
1478	wake_up_page_bit(page, PG_private_2);
1479	put_page(page);
1480}
1481EXPORT_SYMBOL(end_page_private_2);
1482
1483/**
1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485 * @page: The page to wait on
1486 *
1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488 */
1489void wait_on_page_private_2(struct page *page)
1490{
1491	page = compound_head(page);
1492	while (PagePrivate2(page))
1493		wait_on_page_bit(page, PG_private_2);
1494}
1495EXPORT_SYMBOL(wait_on_page_private_2);
1496
1497/**
1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499 * @page: The page to wait on
1500 *
1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502 * fatal signal is received by the calling task.
1503 *
1504 * Return:
1505 * - 0 if successful.
1506 * - -EINTR if a fatal signal was encountered.
1507 */
1508int wait_on_page_private_2_killable(struct page *page)
1509{
1510	int ret = 0;
1511
1512	page = compound_head(page);
1513	while (PagePrivate2(page)) {
1514		ret = wait_on_page_bit_killable(page, PG_private_2);
1515		if (ret < 0)
1516			break;
1517	}
1518
1519	return ret;
1520}
1521EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522
1523/**
1524 * end_page_writeback - end writeback against a page
1525 * @page: the page
1526 */
1527void end_page_writeback(struct page *page)
1528{
1529	/*
1530	 * TestClearPageReclaim could be used here but it is an atomic
1531	 * operation and overkill in this particular case. Failing to
1532	 * shuffle a page marked for immediate reclaim is too mild to
1533	 * justify taking an atomic operation penalty at the end of
1534	 * ever page writeback.
1535	 */
1536	if (PageReclaim(page)) {
1537		ClearPageReclaim(page);
1538		rotate_reclaimable_page(page);
1539	}
1540
1541	/*
1542	 * Writeback does not hold a page reference of its own, relying
1543	 * on truncation to wait for the clearing of PG_writeback.
1544	 * But here we must make sure that the page is not freed and
1545	 * reused before the wake_up_page().
1546	 */
1547	get_page(page);
1548	if (!test_clear_page_writeback(page))
1549		BUG();
1550
1551	smp_mb__after_atomic();
1552	wake_up_page(page, PG_writeback);
1553	put_page(page);
1554}
1555EXPORT_SYMBOL(end_page_writeback);
1556
1557/*
1558 * After completing I/O on a page, call this routine to update the page
1559 * flags appropriately
1560 */
1561void page_endio(struct page *page, bool is_write, int err)
1562{
1563	if (!is_write) {
1564		if (!err) {
1565			SetPageUptodate(page);
1566		} else {
1567			ClearPageUptodate(page);
1568			SetPageError(page);
1569		}
1570		unlock_page(page);
1571	} else {
1572		if (err) {
1573			struct address_space *mapping;
1574
1575			SetPageError(page);
1576			mapping = page_mapping(page);
1577			if (mapping)
1578				mapping_set_error(mapping, err);
1579		}
1580		end_page_writeback(page);
1581	}
1582}
1583EXPORT_SYMBOL_GPL(page_endio);
1584
1585/**
1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587 * @__page: the page to lock
1588 */
1589void __lock_page(struct page *__page)
1590{
1591	struct page *page = compound_head(__page);
1592	wait_queue_head_t *q = page_waitqueue(page);
1593	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594				EXCLUSIVE);
1595}
1596EXPORT_SYMBOL(__lock_page);
1597
1598int __lock_page_killable(struct page *__page)
1599{
1600	struct page *page = compound_head(__page);
1601	wait_queue_head_t *q = page_waitqueue(page);
1602	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603					EXCLUSIVE);
1604}
1605EXPORT_SYMBOL_GPL(__lock_page_killable);
1606
1607int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608{
1609	struct wait_queue_head *q = page_waitqueue(page);
1610	int ret = 0;
1611
1612	wait->page = page;
1613	wait->bit_nr = PG_locked;
1614
1615	spin_lock_irq(&q->lock);
1616	__add_wait_queue_entry_tail(q, &wait->wait);
1617	SetPageWaiters(page);
1618	ret = !trylock_page(page);
1619	/*
1620	 * If we were successful now, we know we're still on the
1621	 * waitqueue as we're still under the lock. This means it's
1622	 * safe to remove and return success, we know the callback
1623	 * isn't going to trigger.
1624	 */
1625	if (!ret)
1626		__remove_wait_queue(q, &wait->wait);
1627	else
1628		ret = -EIOCBQUEUED;
1629	spin_unlock_irq(&q->lock);
1630	return ret;
1631}
1632
1633/*
1634 * Return values:
1635 * 1 - page is locked; mmap_lock is still held.
1636 * 0 - page is not locked.
1637 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639 *     which case mmap_lock is still held.
1640 *
1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642 * with the page locked and the mmap_lock unperturbed.
1643 */
1644int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645			 unsigned int flags)
1646{
1647	if (fault_flag_allow_retry_first(flags)) {
1648		/*
1649		 * CAUTION! In this case, mmap_lock is not released
1650		 * even though return 0.
1651		 */
1652		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653			return 0;
1654
1655		mmap_read_unlock(mm);
1656		if (flags & FAULT_FLAG_KILLABLE)
1657			wait_on_page_locked_killable(page);
1658		else
1659			wait_on_page_locked(page);
1660		return 0;
1661	}
1662	if (flags & FAULT_FLAG_KILLABLE) {
1663		int ret;
1664
1665		ret = __lock_page_killable(page);
1666		if (ret) {
1667			mmap_read_unlock(mm);
1668			return 0;
1669		}
1670	} else {
1671		__lock_page(page);
1672	}
1673	return 1;
1674
 
 
 
 
 
 
 
 
 
1675}
1676
1677/**
1678 * page_cache_next_miss() - Find the next gap in the page cache.
1679 * @mapping: Mapping.
1680 * @index: Index.
1681 * @max_scan: Maximum range to search.
1682 *
1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684 * gap with the lowest index.
1685 *
1686 * This function may be called under the rcu_read_lock.  However, this will
1687 * not atomically search a snapshot of the cache at a single point in time.
1688 * For example, if a gap is created at index 5, then subsequently a gap is
1689 * created at index 10, page_cache_next_miss covering both indices may
1690 * return 10 if called under the rcu_read_lock.
1691 *
1692 * Return: The index of the gap if found, otherwise an index outside the
1693 * range specified (in which case 'return - index >= max_scan' will be true).
1694 * In the rare case of index wrap-around, 0 will be returned.
1695 */
1696pgoff_t page_cache_next_miss(struct address_space *mapping,
1697			     pgoff_t index, unsigned long max_scan)
1698{
1699	XA_STATE(xas, &mapping->i_pages, index);
1700
1701	while (max_scan--) {
1702		void *entry = xas_next(&xas);
1703		if (!entry || xa_is_value(entry))
1704			break;
1705		if (xas.xa_index == 0)
1706			break;
1707	}
1708
1709	return xas.xa_index;
1710}
1711EXPORT_SYMBOL(page_cache_next_miss);
1712
1713/**
1714 * page_cache_prev_miss() - Find the previous gap in the page cache.
1715 * @mapping: Mapping.
1716 * @index: Index.
1717 * @max_scan: Maximum range to search.
1718 *
1719 * Search the range [max(index - max_scan + 1, 0), index] for the
1720 * gap with the highest index.
1721 *
1722 * This function may be called under the rcu_read_lock.  However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 10, then subsequently a gap is
1725 * created at index 5, page_cache_prev_miss() covering both indices may
1726 * return 5 if called under the rcu_read_lock.
1727 *
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'index - return >= max_scan' will be true).
1730 * In the rare case of wrap-around, ULONG_MAX will be returned.
1731 */
1732pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733			     pgoff_t index, unsigned long max_scan)
1734{
1735	XA_STATE(xas, &mapping->i_pages, index);
1736
1737	while (max_scan--) {
1738		void *entry = xas_prev(&xas);
1739		if (!entry || xa_is_value(entry))
1740			break;
1741		if (xas.xa_index == ULONG_MAX)
1742			break;
1743	}
1744
1745	return xas.xa_index;
1746}
1747EXPORT_SYMBOL(page_cache_prev_miss);
1748
1749/*
1750 * mapping_get_entry - Get a page cache entry.
1751 * @mapping: the address_space to search
1752 * @index: The page cache index.
1753 *
1754 * Looks up the page cache slot at @mapping & @index.  If there is a
1755 * page cache page, the head page is returned with an increased refcount.
1756 *
1757 * If the slot holds a shadow entry of a previously evicted page, or a
1758 * swap entry from shmem/tmpfs, it is returned.
1759 *
1760 * Return: The head page or shadow entry, %NULL if nothing is found.
1761 */
1762static struct page *mapping_get_entry(struct address_space *mapping,
1763		pgoff_t index)
1764{
1765	XA_STATE(xas, &mapping->i_pages, index);
1766	struct page *page;
1767
1768	rcu_read_lock();
1769repeat:
1770	xas_reset(&xas);
1771	page = xas_load(&xas);
1772	if (xas_retry(&xas, page))
1773		goto repeat;
1774	/*
1775	 * A shadow entry of a recently evicted page, or a swap entry from
1776	 * shmem/tmpfs.  Return it without attempting to raise page count.
1777	 */
1778	if (!page || xa_is_value(page))
1779		goto out;
1780
1781	if (!page_cache_get_speculative(page))
1782		goto repeat;
1783
1784	/*
1785	 * Has the page moved or been split?
1786	 * This is part of the lockless pagecache protocol. See
1787	 * include/linux/pagemap.h for details.
1788	 */
1789	if (unlikely(page != xas_reload(&xas))) {
1790		put_page(page);
1791		goto repeat;
1792	}
 
1793out:
1794	rcu_read_unlock();
1795
1796	return page;
1797}
1798
1799/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800 * pagecache_get_page - Find and get a reference to a page.
1801 * @mapping: The address_space to search.
1802 * @index: The page index.
1803 * @fgp_flags: %FGP flags modify how the page is returned.
1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805 *
1806 * Looks up the page cache entry at @mapping & @index.
1807 *
1808 * @fgp_flags can be zero or more of these flags:
1809 *
1810 * * %FGP_ACCESSED - The page will be marked accessed.
1811 * * %FGP_LOCK - The page is returned locked.
1812 * * %FGP_HEAD - If the page is present and a THP, return the head page
1813 *   rather than the exact page specified by the index.
1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815 *   instead of allocating a new page to replace it.
1816 * * %FGP_CREAT - If no page is present then a new page is allocated using
1817 *   @gfp_mask and added to the page cache and the VM's LRU list.
1818 *   The page is returned locked and with an increased refcount.
1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820 *   page is already in cache.  If the page was allocated, unlock it before
1821 *   returning so the caller can do the same dance.
1822 * * %FGP_WRITE - The page will be written
1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824 * * %FGP_NOWAIT - Don't get blocked by page lock
1825 *
1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827 * if the %GFP flags specified for %FGP_CREAT are atomic.
1828 *
1829 * If there is a page cache page, it is returned with an increased refcount.
1830 *
1831 * Return: The found page or %NULL otherwise.
1832 */
1833struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834		int fgp_flags, gfp_t gfp_mask)
1835{
1836	struct page *page;
1837
1838repeat:
1839	page = mapping_get_entry(mapping, index);
1840	if (xa_is_value(page)) {
1841		if (fgp_flags & FGP_ENTRY)
1842			return page;
1843		page = NULL;
1844	}
1845	if (!page)
1846		goto no_page;
1847
1848	if (fgp_flags & FGP_LOCK) {
1849		if (fgp_flags & FGP_NOWAIT) {
1850			if (!trylock_page(page)) {
1851				put_page(page);
1852				return NULL;
1853			}
1854		} else {
1855			lock_page(page);
1856		}
1857
1858		/* Has the page been truncated? */
1859		if (unlikely(page->mapping != mapping)) {
1860			unlock_page(page);
1861			put_page(page);
1862			goto repeat;
1863		}
1864		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865	}
1866
1867	if (fgp_flags & FGP_ACCESSED)
1868		mark_page_accessed(page);
1869	else if (fgp_flags & FGP_WRITE) {
1870		/* Clear idle flag for buffer write */
1871		if (page_is_idle(page))
1872			clear_page_idle(page);
1873	}
1874	if (!(fgp_flags & FGP_HEAD))
1875		page = find_subpage(page, index);
1876
1877no_page:
1878	if (!page && (fgp_flags & FGP_CREAT)) {
1879		int err;
1880		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881			gfp_mask |= __GFP_WRITE;
1882		if (fgp_flags & FGP_NOFS)
1883			gfp_mask &= ~__GFP_FS;
1884
1885		page = __page_cache_alloc(gfp_mask);
1886		if (!page)
1887			return NULL;
1888
1889		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890			fgp_flags |= FGP_LOCK;
1891
1892		/* Init accessed so avoid atomic mark_page_accessed later */
1893		if (fgp_flags & FGP_ACCESSED)
1894			__SetPageReferenced(page);
1895
1896		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897		if (unlikely(err)) {
1898			put_page(page);
1899			page = NULL;
1900			if (err == -EEXIST)
1901				goto repeat;
1902		}
1903
1904		/*
1905		 * add_to_page_cache_lru locks the page, and for mmap we expect
1906		 * an unlocked page.
1907		 */
1908		if (page && (fgp_flags & FGP_FOR_MMAP))
1909			unlock_page(page);
1910	}
1911
1912	return page;
1913}
1914EXPORT_SYMBOL(pagecache_get_page);
1915
1916static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917		xa_mark_t mark)
1918{
1919	struct page *page;
1920
1921retry:
1922	if (mark == XA_PRESENT)
1923		page = xas_find(xas, max);
1924	else
1925		page = xas_find_marked(xas, max, mark);
1926
1927	if (xas_retry(xas, page))
1928		goto retry;
1929	/*
1930	 * A shadow entry of a recently evicted page, a swap
1931	 * entry from shmem/tmpfs or a DAX entry.  Return it
1932	 * without attempting to raise page count.
1933	 */
1934	if (!page || xa_is_value(page))
1935		return page;
1936
1937	if (!page_cache_get_speculative(page))
1938		goto reset;
1939
1940	/* Has the page moved or been split? */
1941	if (unlikely(page != xas_reload(xas))) {
1942		put_page(page);
1943		goto reset;
1944	}
1945
1946	return page;
1947reset:
1948	xas_reset(xas);
1949	goto retry;
1950}
1951
1952/**
1953 * find_get_entries - gang pagecache lookup
1954 * @mapping:	The address_space to search
1955 * @start:	The starting page cache index
1956 * @end:	The final page index (inclusive).
1957 * @pvec:	Where the resulting entries are placed.
1958 * @indices:	The cache indices corresponding to the entries in @entries
1959 *
1960 * find_get_entries() will search for and return a batch of entries in
1961 * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962 * takes a reference on any actual pages it returns.
 
1963 *
1964 * The search returns a group of mapping-contiguous page cache entries
1965 * with ascending indexes.  There may be holes in the indices due to
1966 * not-present pages.
1967 *
1968 * Any shadow entries of evicted pages, or swap entries from
1969 * shmem/tmpfs, are included in the returned array.
1970 *
1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972 * stops at that page: the caller is likely to have a better way to handle
1973 * the compound page as a whole, and then skip its extent, than repeatedly
1974 * calling find_get_entries() to return all its tails.
1975 *
1976 * Return: the number of pages and shadow entries which were found.
1977 */
1978unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
 
1980{
1981	XA_STATE(xas, &mapping->i_pages, start);
1982	struct page *page;
1983	unsigned int ret = 0;
1984	unsigned nr_entries = PAGEVEC_SIZE;
 
 
1985
1986	rcu_read_lock();
1987	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988		/*
1989		 * Terminate early on finding a THP, to allow the caller to
1990		 * handle it all at once; but continue if this is hugetlbfs.
1991		 */
1992		if (!xa_is_value(page) && PageTransHuge(page) &&
1993				!PageHuge(page)) {
1994			page = find_subpage(page, xas.xa_index);
1995			nr_entries = ret + 1;
1996		}
1997
1998		indices[ret] = xas.xa_index;
1999		pvec->pages[ret] = page;
2000		if (++ret == nr_entries)
2001			break;
2002	}
2003	rcu_read_unlock();
2004
2005	pvec->nr = ret;
2006	return ret;
2007}
2008
2009/**
2010 * find_lock_entries - Find a batch of pagecache entries.
2011 * @mapping:	The address_space to search.
2012 * @start:	The starting page cache index.
2013 * @end:	The final page index (inclusive).
2014 * @pvec:	Where the resulting entries are placed.
2015 * @indices:	The cache indices of the entries in @pvec.
2016 *
2017 * find_lock_entries() will return a batch of entries from @mapping.
2018 * Swap, shadow and DAX entries are included.  Pages are returned
2019 * locked and with an incremented refcount.  Pages which are locked by
2020 * somebody else or under writeback are skipped.  Only the head page of
2021 * a THP is returned.  Pages which are partially outside the range are
2022 * not returned.
2023 *
2024 * The entries have ascending indexes.  The indices may not be consecutive
2025 * due to not-present entries, THP pages, pages which could not be locked
2026 * or pages under writeback.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, start);
2034	struct page *page;
2035
2036	rcu_read_lock();
2037	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038		if (!xa_is_value(page)) {
2039			if (page->index < start)
2040				goto put;
2041			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042			if (page->index + thp_nr_pages(page) - 1 > end)
2043				goto put;
2044			if (!trylock_page(page))
2045				goto put;
2046			if (page->mapping != mapping || PageWriteback(page))
2047				goto unlock;
2048			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049					page);
2050		}
2051		indices[pvec->nr] = xas.xa_index;
2052		if (!pagevec_add(pvec, page))
2053			break;
2054		goto next;
2055unlock:
2056		unlock_page(page);
2057put:
2058		put_page(page);
2059next:
2060		if (!xa_is_value(page) && PageTransHuge(page)) {
2061			unsigned int nr_pages = thp_nr_pages(page);
2062
2063			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064			xas_set(&xas, page->index + nr_pages);
2065			if (xas.xa_index < nr_pages)
2066				break;
2067		}
2068	}
2069	rcu_read_unlock();
2070
2071	return pagevec_count(pvec);
2072}
2073
2074/**
2075 * find_get_pages_range - gang pagecache lookup
2076 * @mapping:	The address_space to search
2077 * @start:	The starting page index
2078 * @end:	The final page index (inclusive)
2079 * @nr_pages:	The maximum number of pages
2080 * @pages:	Where the resulting pages are placed
2081 *
2082 * find_get_pages_range() will search for and return a group of up to @nr_pages
2083 * pages in the mapping starting at index @start and up to index @end
2084 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085 * a reference against the returned pages.
2086 *
2087 * The search returns a group of mapping-contiguous pages with ascending
2088 * indexes.  There may be holes in the indices due to not-present pages.
2089 * We also update @start to index the next page for the traversal.
2090 *
2091 * Return: the number of pages which were found. If this number is
2092 * smaller than @nr_pages, the end of specified range has been
2093 * reached.
2094 */
2095unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096			      pgoff_t end, unsigned int nr_pages,
2097			      struct page **pages)
2098{
2099	XA_STATE(xas, &mapping->i_pages, *start);
2100	struct page *page;
2101	unsigned ret = 0;
2102
2103	if (unlikely(!nr_pages))
2104		return 0;
2105
2106	rcu_read_lock();
2107	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
 
 
2108		/* Skip over shadow, swap and DAX entries */
2109		if (xa_is_value(page))
2110			continue;
2111
 
 
 
 
 
 
 
2112		pages[ret] = find_subpage(page, xas.xa_index);
2113		if (++ret == nr_pages) {
2114			*start = xas.xa_index + 1;
2115			goto out;
2116		}
 
 
 
 
 
2117	}
2118
2119	/*
2120	 * We come here when there is no page beyond @end. We take care to not
2121	 * overflow the index @start as it confuses some of the callers. This
2122	 * breaks the iteration when there is a page at index -1 but that is
2123	 * already broken anyway.
2124	 */
2125	if (end == (pgoff_t)-1)
2126		*start = (pgoff_t)-1;
2127	else
2128		*start = end + 1;
2129out:
2130	rcu_read_unlock();
2131
2132	return ret;
2133}
2134
2135/**
2136 * find_get_pages_contig - gang contiguous pagecache lookup
2137 * @mapping:	The address_space to search
2138 * @index:	The starting page index
2139 * @nr_pages:	The maximum number of pages
2140 * @pages:	Where the resulting pages are placed
2141 *
2142 * find_get_pages_contig() works exactly like find_get_pages(), except
2143 * that the returned number of pages are guaranteed to be contiguous.
2144 *
2145 * Return: the number of pages which were found.
2146 */
2147unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148			       unsigned int nr_pages, struct page **pages)
2149{
2150	XA_STATE(xas, &mapping->i_pages, index);
2151	struct page *page;
2152	unsigned int ret = 0;
2153
2154	if (unlikely(!nr_pages))
2155		return 0;
2156
2157	rcu_read_lock();
2158	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159		if (xas_retry(&xas, page))
2160			continue;
2161		/*
2162		 * If the entry has been swapped out, we can stop looking.
2163		 * No current caller is looking for DAX entries.
2164		 */
2165		if (xa_is_value(page))
2166			break;
2167
2168		if (!page_cache_get_speculative(page))
2169			goto retry;
2170
2171		/* Has the page moved or been split? */
2172		if (unlikely(page != xas_reload(&xas)))
2173			goto put_page;
2174
2175		pages[ret] = find_subpage(page, xas.xa_index);
2176		if (++ret == nr_pages)
2177			break;
2178		continue;
2179put_page:
2180		put_page(page);
2181retry:
2182		xas_reset(&xas);
2183	}
2184	rcu_read_unlock();
2185	return ret;
2186}
2187EXPORT_SYMBOL(find_get_pages_contig);
2188
2189/**
2190 * find_get_pages_range_tag - Find and return head pages matching @tag.
2191 * @mapping:	the address_space to search
2192 * @index:	the starting page index
2193 * @end:	The final page index (inclusive)
2194 * @tag:	the tag index
2195 * @nr_pages:	the maximum number of pages
2196 * @pages:	where the resulting pages are placed
2197 *
2198 * Like find_get_pages(), except we only return head pages which are tagged
2199 * with @tag.  @index is updated to the index immediately after the last
2200 * page we return, ready for the next iteration.
2201 *
2202 * Return: the number of pages which were found.
2203 */
2204unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206			struct page **pages)
2207{
2208	XA_STATE(xas, &mapping->i_pages, *index);
2209	struct page *page;
2210	unsigned ret = 0;
2211
2212	if (unlikely(!nr_pages))
2213		return 0;
2214
2215	rcu_read_lock();
2216	while ((page = find_get_entry(&xas, end, tag))) {
 
 
2217		/*
2218		 * Shadow entries should never be tagged, but this iteration
2219		 * is lockless so there is a window for page reclaim to evict
2220		 * a page we saw tagged.  Skip over it.
2221		 */
2222		if (xa_is_value(page))
2223			continue;
2224
2225		pages[ret] = page;
 
 
 
 
 
 
 
2226		if (++ret == nr_pages) {
2227			*index = page->index + thp_nr_pages(page);
2228			goto out;
2229		}
 
 
 
 
 
2230	}
2231
2232	/*
2233	 * We come here when we got to @end. We take care to not overflow the
2234	 * index @index as it confuses some of the callers. This breaks the
2235	 * iteration when there is a page at index -1 but that is already
2236	 * broken anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*index = (pgoff_t)-1;
2240	else
2241		*index = end + 1;
2242out:
2243	rcu_read_unlock();
2244
2245	return ret;
2246}
2247EXPORT_SYMBOL(find_get_pages_range_tag);
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265{
2266	ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of pages for read
 
 
 
 
 
 
2271 *
2272 * Get a batch of pages which represent a contiguous range of bytes
2273 * in the file.  No tail pages will be returned.  If @index is in the
2274 * middle of a THP, the entire THP will be returned.  The last page in
2275 * the batch may have Readahead set or be not Uptodate so that the
2276 * caller can take the appropriate action.
 
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct page *head;
2283
2284	rcu_read_lock();
2285	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286		if (xas_retry(&xas, head))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(head))
2289			break;
2290		if (!page_cache_get_speculative(head))
2291			goto retry;
2292
2293		/* Has the page moved or been split? */
2294		if (unlikely(head != xas_reload(&xas)))
2295			goto put_page;
2296
2297		if (!pagevec_add(pvec, head))
2298			break;
2299		if (!PageUptodate(head))
2300			break;
2301		if (PageReadahead(head))
2302			break;
2303		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305		continue;
2306put_page:
2307		put_page(head);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
2312}
2313
2314static int filemap_read_page(struct file *file, struct address_space *mapping,
2315		struct page *page)
2316{
2317	int error;
2318
2319	/*
2320	 * A previous I/O error may have been due to temporary failures,
2321	 * eg. multipath errors.  PG_error will be set again if readpage
2322	 * fails.
2323	 */
2324	ClearPageError(page);
2325	/* Start the actual read. The read will unlock the page. */
2326	error = mapping->a_ops->readpage(file, page);
2327	if (error)
2328		return error;
2329
2330	error = wait_on_page_locked_killable(page);
2331	if (error)
2332		return error;
2333	if (PageUptodate(page))
2334		return 0;
2335	shrink_readahead_size_eio(&file->f_ra);
2336	return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340		loff_t pos, struct iov_iter *iter, struct page *page)
2341{
2342	int count;
2343
2344	if (PageUptodate(page))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (iov_iter_is_pipe(iter))
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352		return false;
2353
2354	count = iter->count;
2355	if (page_offset(page) > pos) {
2356		count -= page_offset(page) - pos;
2357		pos = 0;
2358	} else {
2359		pos -= page_offset(page);
2360	}
2361
2362	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363}
2364
2365static int filemap_update_page(struct kiocb *iocb,
2366		struct address_space *mapping, struct iov_iter *iter,
2367		struct page *page)
2368{
2369	int error;
2370
2371	if (!trylock_page(page)) {
2372		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373			return -EAGAIN;
2374		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2376			return AOP_TRUNCATED_PAGE;
2377		}
2378		error = __lock_page_async(page, iocb->ki_waitq);
2379		if (error)
2380			return error;
2381	}
2382
2383	if (!page->mapping)
2384		goto truncated;
2385
2386	error = 0;
2387	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388		goto unlock;
2389
2390	error = -EAGAIN;
2391	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392		goto unlock;
2393
2394	error = filemap_read_page(iocb->ki_filp, mapping, page);
2395	if (error == AOP_TRUNCATED_PAGE)
2396		put_page(page);
2397	return error;
2398truncated:
2399	unlock_page(page);
2400	put_page(page);
2401	return AOP_TRUNCATED_PAGE;
2402unlock:
2403	unlock_page(page);
2404	return error;
2405}
2406
2407static int filemap_create_page(struct file *file,
2408		struct address_space *mapping, pgoff_t index,
2409		struct pagevec *pvec)
2410{
2411	struct page *page;
2412	int error;
2413
2414	page = page_cache_alloc(mapping);
2415	if (!page)
2416		return -ENOMEM;
2417
2418	error = add_to_page_cache_lru(page, mapping, index,
2419			mapping_gfp_constraint(mapping, GFP_KERNEL));
2420	if (error == -EEXIST)
2421		error = AOP_TRUNCATED_PAGE;
2422	if (error)
2423		goto error;
2424
2425	error = filemap_read_page(file, mapping, page);
2426	if (error)
2427		goto error;
2428
2429	pagevec_add(pvec, page);
2430	return 0;
2431error:
2432	put_page(page);
2433	return error;
2434}
2435
2436static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437		struct address_space *mapping, struct page *page,
2438		pgoff_t last_index)
2439{
2440	if (iocb->ki_flags & IOCB_NOIO)
2441		return -EAGAIN;
2442	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443			page->index, last_index - page->index);
2444	return 0;
2445}
2446
2447static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448		struct pagevec *pvec)
2449{
2450	struct file *filp = iocb->ki_filp;
2451	struct address_space *mapping = filp->f_mapping;
 
2452	struct file_ra_state *ra = &filp->f_ra;
2453	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
 
2454	pgoff_t last_index;
2455	struct page *page;
2456	int err = 0;
2457
2458	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459retry:
2460	if (fatal_signal_pending(current))
2461		return -EINTR;
2462
2463	filemap_get_read_batch(mapping, index, last_index, pvec);
2464	if (!pagevec_count(pvec)) {
2465		if (iocb->ki_flags & IOCB_NOIO)
2466			return -EAGAIN;
2467		page_cache_sync_readahead(mapping, ra, filp, index,
2468				last_index - index);
2469		filemap_get_read_batch(mapping, index, last_index, pvec);
2470	}
2471	if (!pagevec_count(pvec)) {
2472		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473			return -EAGAIN;
2474		err = filemap_create_page(filp, mapping,
2475				iocb->ki_pos >> PAGE_SHIFT, pvec);
2476		if (err == AOP_TRUNCATED_PAGE)
2477			goto retry;
2478		return err;
2479	}
2480
2481	page = pvec->pages[pagevec_count(pvec) - 1];
2482	if (PageReadahead(page)) {
2483		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484		if (err)
2485			goto err;
2486	}
2487	if (!PageUptodate(page)) {
2488		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2489			iocb->ki_flags |= IOCB_NOWAIT;
2490		err = filemap_update_page(iocb, mapping, iter, page);
2491		if (err)
2492			goto err;
2493	}
2494
2495	return 0;
2496err:
2497	if (err < 0)
2498		put_page(page);
2499	if (likely(--pvec->nr))
2500		return 0;
2501	if (err == AOP_TRUNCATED_PAGE)
2502		goto retry;
2503	return err;
2504}
2505
2506/**
2507 * filemap_read - Read data from the page cache.
2508 * @iocb: The iocb to read.
2509 * @iter: Destination for the data.
2510 * @already_read: Number of bytes already read by the caller.
2511 *
2512 * Copies data from the page cache.  If the data is not currently present,
2513 * uses the readahead and readpage address_space operations to fetch it.
2514 *
2515 * Return: Total number of bytes copied, including those already read by
2516 * the caller.  If an error happens before any bytes are copied, returns
2517 * a negative error number.
2518 */
2519ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520		ssize_t already_read)
2521{
2522	struct file *filp = iocb->ki_filp;
2523	struct file_ra_state *ra = &filp->f_ra;
2524	struct address_space *mapping = filp->f_mapping;
2525	struct inode *inode = mapping->host;
2526	struct pagevec pvec;
2527	int i, error = 0;
2528	bool writably_mapped;
2529	loff_t isize, end_offset;
2530
2531	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532		return 0;
2533	if (unlikely(!iov_iter_count(iter)))
2534		return 0;
2535
2536	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537	pagevec_init(&pvec);
2538
2539	do {
2540		cond_resched();
 
 
 
2541
2542		/*
2543		 * If we've already successfully copied some data, then we
2544		 * can no longer safely return -EIOCBQUEUED. Hence mark
2545		 * an async read NOWAIT at that point.
2546		 */
2547		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548			iocb->ki_flags |= IOCB_NOWAIT;
2549
2550		error = filemap_get_pages(iocb, iter, &pvec);
2551		if (error < 0)
2552			break;
 
 
 
2553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554		/*
2555		 * i_size must be checked after we know the pages are Uptodate.
2556		 *
2557		 * Checking i_size after the check allows us to calculate
2558		 * the correct value for "nr", which means the zero-filled
2559		 * part of the page is not copied back to userspace (unless
2560		 * another truncate extends the file - this is desired though).
2561		 */
 
2562		isize = i_size_read(inode);
2563		if (unlikely(iocb->ki_pos >= isize))
2564			goto put_pages;
2565		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567		/*
2568		 * Once we start copying data, we don't want to be touching any
2569		 * cachelines that might be contended:
2570		 */
2571		writably_mapped = mapping_writably_mapped(mapping);
 
 
2572
2573		/*
2574		 * When a sequential read accesses a page several times, only
2575		 * mark it as accessed the first time.
2576		 */
2577		if (iocb->ki_pos >> PAGE_SHIFT !=
2578		    ra->prev_pos >> PAGE_SHIFT)
2579			mark_page_accessed(pvec.pages[0]);
2580
2581		for (i = 0; i < pagevec_count(&pvec); i++) {
2582			struct page *page = pvec.pages[i];
2583			size_t page_size = thp_size(page);
2584			size_t offset = iocb->ki_pos & (page_size - 1);
2585			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586					     page_size - offset);
2587			size_t copied;
2588
2589			if (end_offset < page_offset(page))
2590				break;
2591			if (i > 0)
2592				mark_page_accessed(page);
2593			/*
2594			 * If users can be writing to this page using arbitrary
2595			 * virtual addresses, take care about potential aliasing
2596			 * before reading the page on the kernel side.
2597			 */
2598			if (writably_mapped) {
2599				int j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600
2601				for (j = 0; j < thp_nr_pages(page); j++)
2602					flush_dcache_page(page + j);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603			}
 
 
2604
2605			copied = copy_page_to_iter(page, offset, bytes, iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606
2607			already_read += copied;
2608			iocb->ki_pos += copied;
2609			ra->prev_pos = iocb->ki_pos;
2610
2611			if (copied < bytes) {
2612				error = -EFAULT;
2613				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614			}
 
2615		}
2616put_pages:
2617		for (i = 0; i < pagevec_count(&pvec); i++)
2618			put_page(pvec.pages[i]);
2619		pagevec_reinit(&pvec);
2620	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621
2622	file_accessed(filp);
 
 
 
 
 
2623
2624	return already_read ? already_read : error;
 
 
2625}
2626EXPORT_SYMBOL_GPL(filemap_read);
2627
2628/**
2629 * generic_file_read_iter - generic filesystem read routine
2630 * @iocb:	kernel I/O control block
2631 * @iter:	destination for the data read
2632 *
2633 * This is the "read_iter()" routine for all filesystems
2634 * that can use the page cache directly.
2635 *
2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637 * be returned when no data can be read without waiting for I/O requests
2638 * to complete; it doesn't prevent readahead.
2639 *
2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641 * requests shall be made for the read or for readahead.  When no data
2642 * can be read, -EAGAIN shall be returned.  When readahead would be
2643 * triggered, a partial, possibly empty read shall be returned.
2644 *
2645 * Return:
2646 * * number of bytes copied, even for partial reads
2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648 */
2649ssize_t
2650generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2651{
2652	size_t count = iov_iter_count(iter);
2653	ssize_t retval = 0;
2654
2655	if (!count)
2656		return 0; /* skip atime */
2657
2658	if (iocb->ki_flags & IOCB_DIRECT) {
2659		struct file *file = iocb->ki_filp;
2660		struct address_space *mapping = file->f_mapping;
2661		struct inode *inode = mapping->host;
2662		loff_t size;
2663
2664		size = i_size_read(inode);
2665		if (iocb->ki_flags & IOCB_NOWAIT) {
2666			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667						iocb->ki_pos + count - 1))
2668				return -EAGAIN;
2669		} else {
2670			retval = filemap_write_and_wait_range(mapping,
2671						iocb->ki_pos,
2672					        iocb->ki_pos + count - 1);
2673			if (retval < 0)
2674				return retval;
2675		}
2676
2677		file_accessed(file);
2678
2679		retval = mapping->a_ops->direct_IO(iocb, iter);
2680		if (retval >= 0) {
2681			iocb->ki_pos += retval;
2682			count -= retval;
2683		}
2684		if (retval != -EIOCBQUEUED)
2685			iov_iter_revert(iter, count - iov_iter_count(iter));
2686
2687		/*
2688		 * Btrfs can have a short DIO read if we encounter
2689		 * compressed extents, so if there was an error, or if
2690		 * we've already read everything we wanted to, or if
2691		 * there was a short read because we hit EOF, go ahead
2692		 * and return.  Otherwise fallthrough to buffered io for
2693		 * the rest of the read.  Buffered reads will not work for
2694		 * DAX files, so don't bother trying.
2695		 */
2696		if (retval < 0 || !count || iocb->ki_pos >= size ||
2697		    IS_DAX(inode))
2698			return retval;
2699	}
2700
2701	return filemap_read(iocb, iter, retval);
 
 
2702}
2703EXPORT_SYMBOL(generic_file_read_iter);
2704
2705static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706		struct address_space *mapping, struct page *page,
2707		loff_t start, loff_t end, bool seek_data)
2708{
2709	const struct address_space_operations *ops = mapping->a_ops;
2710	size_t offset, bsz = i_blocksize(mapping->host);
2711
2712	if (xa_is_value(page) || PageUptodate(page))
2713		return seek_data ? start : end;
2714	if (!ops->is_partially_uptodate)
2715		return seek_data ? end : start;
2716
2717	xas_pause(xas);
2718	rcu_read_unlock();
2719	lock_page(page);
2720	if (unlikely(page->mapping != mapping))
2721		goto unlock;
2722
2723	offset = offset_in_thp(page, start) & ~(bsz - 1);
2724
2725	do {
2726		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2727			break;
2728		start = (start + bsz) & ~(bsz - 1);
2729		offset += bsz;
2730	} while (offset < thp_size(page));
2731unlock:
2732	unlock_page(page);
2733	rcu_read_lock();
2734	return start;
2735}
2736
2737static inline
2738unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739{
2740	if (xa_is_value(page))
2741		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742	return thp_size(page);
2743}
2744
2745/**
2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747 * @mapping: Address space to search.
2748 * @start: First byte to consider.
2749 * @end: Limit of search (exclusive).
2750 * @whence: Either SEEK_HOLE or SEEK_DATA.
2751 *
2752 * If the page cache knows which blocks contain holes and which blocks
2753 * contain data, your filesystem can use this function to implement
2754 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755 * entirely memory-based such as tmpfs, and filesystems which support
2756 * unwritten extents.
2757 *
2758 * Return: The requested offset on success, or -ENXIO if @whence specifies
2759 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761 * and @end contain data.
2762 */
2763loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764		loff_t end, int whence)
2765{
2766	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768	bool seek_data = (whence == SEEK_DATA);
2769	struct page *page;
2770
2771	if (end <= start)
2772		return -ENXIO;
2773
2774	rcu_read_lock();
2775	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777		unsigned int seek_size;
2778
2779		if (start < pos) {
2780			if (!seek_data)
2781				goto unlock;
2782			start = pos;
2783		}
2784
2785		seek_size = seek_page_size(&xas, page);
2786		pos = round_up(pos + 1, seek_size);
2787		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788				seek_data);
2789		if (start < pos)
2790			goto unlock;
2791		if (start >= end)
2792			break;
2793		if (seek_size > PAGE_SIZE)
2794			xas_set(&xas, pos >> PAGE_SHIFT);
2795		if (!xa_is_value(page))
2796			put_page(page);
2797	}
2798	if (seek_data)
2799		start = -ENXIO;
2800unlock:
2801	rcu_read_unlock();
2802	if (page && !xa_is_value(page))
2803		put_page(page);
2804	if (start > end)
2805		return end;
2806	return start;
2807}
2808
2809#ifdef CONFIG_MMU
2810#define MMAP_LOTSAMISS  (100)
2811/*
2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813 * @vmf - the vm_fault for this fault.
2814 * @page - the page to lock.
2815 * @fpin - the pointer to the file we may pin (or is already pinned).
2816 *
2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818 * It differs in that it actually returns the page locked if it returns 1 and 0
2819 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820 * will point to the pinned file and needs to be fput()'ed at a later point.
2821 */
2822static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823				     struct file **fpin)
2824{
2825	if (trylock_page(page))
2826		return 1;
2827
2828	/*
2829	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831	 * is supposed to work. We have way too many special cases..
2832	 */
2833	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834		return 0;
2835
2836	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838		if (__lock_page_killable(page)) {
2839			/*
2840			 * We didn't have the right flags to drop the mmap_lock,
2841			 * but all fault_handlers only check for fatal signals
2842			 * if we return VM_FAULT_RETRY, so we need to drop the
2843			 * mmap_lock here and return 0 if we don't have a fpin.
2844			 */
2845			if (*fpin == NULL)
2846				mmap_read_unlock(vmf->vma->vm_mm);
2847			return 0;
2848		}
2849	} else
2850		__lock_page(page);
2851	return 1;
2852}
2853
2854
2855/*
2856 * Synchronous readahead happens when we don't even find a page in the page
2857 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858 * to drop the mmap sem we return the file that was pinned in order for us to do
2859 * that.  If we didn't pin a file then we return NULL.  The file that is
2860 * returned needs to be fput()'ed when we're done with it.
2861 */
2862static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2863{
2864	struct file *file = vmf->vma->vm_file;
2865	struct file_ra_state *ra = &file->f_ra;
2866	struct address_space *mapping = file->f_mapping;
2867	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868	struct file *fpin = NULL;
 
2869	unsigned int mmap_miss;
2870
2871	/* If we don't want any read-ahead, don't bother */
2872	if (vmf->vma->vm_flags & VM_RAND_READ)
2873		return fpin;
2874	if (!ra->ra_pages)
2875		return fpin;
2876
2877	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879		page_cache_sync_ra(&ractl, ra->ra_pages);
 
2880		return fpin;
2881	}
2882
2883	/* Avoid banging the cache line if not needed */
2884	mmap_miss = READ_ONCE(ra->mmap_miss);
2885	if (mmap_miss < MMAP_LOTSAMISS * 10)
2886		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887
2888	/*
2889	 * Do we miss much more than hit in this file? If so,
2890	 * stop bothering with read-ahead. It will only hurt.
2891	 */
2892	if (mmap_miss > MMAP_LOTSAMISS)
2893		return fpin;
2894
2895	/*
2896	 * mmap read-around
2897	 */
2898	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900	ra->size = ra->ra_pages;
2901	ra->async_size = ra->ra_pages / 4;
2902	ractl._index = ra->start;
2903	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904	return fpin;
2905}
2906
2907/*
2908 * Asynchronous readahead happens when we find the page and PG_readahead,
2909 * so we want to possibly extend the readahead further.  We return the file that
2910 * was pinned if we have to drop the mmap_lock in order to do IO.
2911 */
2912static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913					    struct page *page)
2914{
2915	struct file *file = vmf->vma->vm_file;
2916	struct file_ra_state *ra = &file->f_ra;
2917	struct address_space *mapping = file->f_mapping;
2918	struct file *fpin = NULL;
2919	unsigned int mmap_miss;
2920	pgoff_t offset = vmf->pgoff;
2921
2922	/* If we don't want any read-ahead, don't bother */
2923	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924		return fpin;
2925	mmap_miss = READ_ONCE(ra->mmap_miss);
2926	if (mmap_miss)
2927		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928	if (PageReadahead(page)) {
2929		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930		page_cache_async_readahead(mapping, ra, file,
2931					   page, offset, ra->ra_pages);
2932	}
2933	return fpin;
2934}
2935
2936/**
2937 * filemap_fault - read in file data for page fault handling
2938 * @vmf:	struct vm_fault containing details of the fault
2939 *
2940 * filemap_fault() is invoked via the vma operations vector for a
2941 * mapped memory region to read in file data during a page fault.
2942 *
2943 * The goto's are kind of ugly, but this streamlines the normal case of having
2944 * it in the page cache, and handles the special cases reasonably without
2945 * having a lot of duplicated code.
2946 *
2947 * vma->vm_mm->mmap_lock must be held on entry.
2948 *
2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2951 *
2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953 * has not been released.
2954 *
2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956 *
2957 * Return: bitwise-OR of %VM_FAULT_ codes.
2958 */
2959vm_fault_t filemap_fault(struct vm_fault *vmf)
2960{
2961	int error;
2962	struct file *file = vmf->vma->vm_file;
2963	struct file *fpin = NULL;
2964	struct address_space *mapping = file->f_mapping;
 
2965	struct inode *inode = mapping->host;
2966	pgoff_t offset = vmf->pgoff;
2967	pgoff_t max_off;
2968	struct page *page;
2969	vm_fault_t ret = 0;
2970
2971	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972	if (unlikely(offset >= max_off))
2973		return VM_FAULT_SIGBUS;
2974
2975	/*
2976	 * Do we have something in the page cache already?
2977	 */
2978	page = find_get_page(mapping, offset);
2979	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980		/*
2981		 * We found the page, so try async readahead before
2982		 * waiting for the lock.
2983		 */
2984		fpin = do_async_mmap_readahead(vmf, page);
2985	} else if (!page) {
2986		/* No page in the page cache at all */
2987		count_vm_event(PGMAJFAULT);
2988		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989		ret = VM_FAULT_MAJOR;
2990		fpin = do_sync_mmap_readahead(vmf);
2991retry_find:
2992		page = pagecache_get_page(mapping, offset,
2993					  FGP_CREAT|FGP_FOR_MMAP,
2994					  vmf->gfp_mask);
2995		if (!page) {
2996			if (fpin)
2997				goto out_retry;
2998			return VM_FAULT_OOM;
2999		}
3000	}
3001
3002	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003		goto out_retry;
3004
3005	/* Did it get truncated? */
3006	if (unlikely(compound_head(page)->mapping != mapping)) {
3007		unlock_page(page);
3008		put_page(page);
3009		goto retry_find;
3010	}
3011	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012
3013	/*
3014	 * We have a locked page in the page cache, now we need to check
3015	 * that it's up-to-date. If not, it is going to be due to an error.
3016	 */
3017	if (unlikely(!PageUptodate(page)))
3018		goto page_not_uptodate;
3019
3020	/*
3021	 * We've made it this far and we had to drop our mmap_lock, now is the
3022	 * time to return to the upper layer and have it re-find the vma and
3023	 * redo the fault.
3024	 */
3025	if (fpin) {
3026		unlock_page(page);
3027		goto out_retry;
3028	}
3029
3030	/*
3031	 * Found the page and have a reference on it.
3032	 * We must recheck i_size under page lock.
3033	 */
3034	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035	if (unlikely(offset >= max_off)) {
3036		unlock_page(page);
3037		put_page(page);
3038		return VM_FAULT_SIGBUS;
3039	}
3040
3041	vmf->page = page;
3042	return ret | VM_FAULT_LOCKED;
3043
3044page_not_uptodate:
3045	/*
3046	 * Umm, take care of errors if the page isn't up-to-date.
3047	 * Try to re-read it _once_. We do this synchronously,
3048	 * because there really aren't any performance issues here
3049	 * and we need to check for errors.
3050	 */
 
3051	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052	error = filemap_read_page(file, mapping, page);
 
 
 
 
 
3053	if (fpin)
3054		goto out_retry;
3055	put_page(page);
3056
3057	if (!error || error == AOP_TRUNCATED_PAGE)
3058		goto retry_find;
3059
 
3060	return VM_FAULT_SIGBUS;
3061
3062out_retry:
3063	/*
3064	 * We dropped the mmap_lock, we need to return to the fault handler to
3065	 * re-find the vma and come back and find our hopefully still populated
3066	 * page.
3067	 */
3068	if (page)
3069		put_page(page);
3070	if (fpin)
3071		fput(fpin);
3072	return ret | VM_FAULT_RETRY;
3073}
3074EXPORT_SYMBOL(filemap_fault);
3075
3076static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3077{
3078	struct mm_struct *mm = vmf->vma->vm_mm;
3079
3080	/* Huge page is mapped? No need to proceed. */
3081	if (pmd_trans_huge(*vmf->pmd)) {
3082		unlock_page(page);
3083		put_page(page);
3084		return true;
3085	}
3086
3087	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088	    vm_fault_t ret = do_set_pmd(vmf, page);
3089	    if (!ret) {
3090		    /* The page is mapped successfully, reference consumed. */
3091		    unlock_page(page);
3092		    return true;
3093	    }
3094	}
3095
3096	if (pmd_none(*vmf->pmd)) {
3097		vmf->ptl = pmd_lock(mm, vmf->pmd);
3098		if (likely(pmd_none(*vmf->pmd))) {
3099			mm_inc_nr_ptes(mm);
3100			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101			vmf->prealloc_pte = NULL;
3102		}
3103		spin_unlock(vmf->ptl);
3104	}
3105
3106	/* See comment in handle_pte_fault() */
3107	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108		unlock_page(page);
3109		put_page(page);
3110		return true;
3111	}
3112
3113	return false;
3114}
3115
3116static struct page *next_uptodate_page(struct page *page,
3117				       struct address_space *mapping,
3118				       struct xa_state *xas, pgoff_t end_pgoff)
3119{
 
 
 
3120	unsigned long max_idx;
 
 
 
3121
3122	do {
3123		if (!page)
3124			return NULL;
3125		if (xas_retry(xas, page))
3126			continue;
3127		if (xa_is_value(page))
3128			continue;
 
 
 
 
 
3129		if (PageLocked(page))
3130			continue;
3131		if (!page_cache_get_speculative(page))
3132			continue;
 
3133		/* Has the page moved or been split? */
3134		if (unlikely(page != xas_reload(xas)))
3135			goto skip;
3136		if (!PageUptodate(page) || PageReadahead(page))
3137			goto skip;
3138		if (PageHWPoison(page))
 
 
 
 
3139			goto skip;
3140		if (!trylock_page(page))
3141			goto skip;
3142		if (page->mapping != mapping)
3143			goto unlock;
3144		if (!PageUptodate(page))
3145			goto unlock;
3146		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147		if (xas->xa_index >= max_idx)
3148			goto unlock;
3149		return page;
3150unlock:
3151		unlock_page(page);
3152skip:
3153		put_page(page);
3154	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155
3156	return NULL;
3157}
3158
3159static inline struct page *first_map_page(struct address_space *mapping,
3160					  struct xa_state *xas,
3161					  pgoff_t end_pgoff)
3162{
3163	return next_uptodate_page(xas_find(xas, end_pgoff),
3164				  mapping, xas, end_pgoff);
3165}
3166
3167static inline struct page *next_map_page(struct address_space *mapping,
3168					 struct xa_state *xas,
3169					 pgoff_t end_pgoff)
3170{
3171	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172				  mapping, xas, end_pgoff);
3173}
3174
3175vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3177{
3178	struct vm_area_struct *vma = vmf->vma;
3179	struct file *file = vma->vm_file;
3180	struct address_space *mapping = file->f_mapping;
3181	pgoff_t last_pgoff = start_pgoff;
3182	unsigned long addr;
3183	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184	struct page *head, *page;
3185	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186	vm_fault_t ret = 0;
3187
3188	rcu_read_lock();
3189	head = first_map_page(mapping, &xas, end_pgoff);
3190	if (!head)
3191		goto out;
3192
3193	if (filemap_map_pmd(vmf, head)) {
3194		ret = VM_FAULT_NOPAGE;
3195		goto out;
3196	}
3197
3198	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200	do {
3201		page = find_subpage(head, xas.xa_index);
3202		if (PageHWPoison(page))
3203			goto unlock;
3204
3205		if (mmap_miss > 0)
3206			mmap_miss--;
3207
3208		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209		vmf->pte += xas.xa_index - last_pgoff;
 
3210		last_pgoff = xas.xa_index;
3211
3212		if (!pte_none(*vmf->pte))
3213			goto unlock;
3214
3215		/* We're about to handle the fault */
3216		if (vmf->address == addr)
3217			ret = VM_FAULT_NOPAGE;
3218
3219		do_set_pte(vmf, page, addr);
3220		/* no need to invalidate: a not-present page won't be cached */
3221		update_mmu_cache(vma, addr, vmf->pte);
3222		unlock_page(head);
3223		continue;
3224unlock:
3225		unlock_page(head);
3226		put_page(head);
3227	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3228	pte_unmap_unlock(vmf->pte, vmf->ptl);
3229out:
 
 
 
3230	rcu_read_unlock();
3231	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232	return ret;
3233}
3234EXPORT_SYMBOL(filemap_map_pages);
3235
3236vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237{
3238	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239	struct page *page = vmf->page;
 
3240	vm_fault_t ret = VM_FAULT_LOCKED;
3241
3242	sb_start_pagefault(mapping->host->i_sb);
3243	file_update_time(vmf->vma->vm_file);
3244	lock_page(page);
3245	if (page->mapping != mapping) {
3246		unlock_page(page);
3247		ret = VM_FAULT_NOPAGE;
3248		goto out;
3249	}
3250	/*
3251	 * We mark the page dirty already here so that when freeze is in
3252	 * progress, we are guaranteed that writeback during freezing will
3253	 * see the dirty page and writeprotect it again.
3254	 */
3255	set_page_dirty(page);
3256	wait_for_stable_page(page);
3257out:
3258	sb_end_pagefault(mapping->host->i_sb);
3259	return ret;
3260}
3261
3262const struct vm_operations_struct generic_file_vm_ops = {
3263	.fault		= filemap_fault,
3264	.map_pages	= filemap_map_pages,
3265	.page_mkwrite	= filemap_page_mkwrite,
3266};
3267
3268/* This is used for a general mmap of a disk file */
3269
3270int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271{
3272	struct address_space *mapping = file->f_mapping;
3273
3274	if (!mapping->a_ops->readpage)
3275		return -ENOEXEC;
3276	file_accessed(file);
3277	vma->vm_ops = &generic_file_vm_ops;
3278	return 0;
3279}
3280
3281/*
3282 * This is for filesystems which do not implement ->writepage.
3283 */
3284int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285{
3286	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287		return -EINVAL;
3288	return generic_file_mmap(file, vma);
3289}
3290#else
3291vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292{
3293	return VM_FAULT_SIGBUS;
3294}
3295int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296{
3297	return -ENOSYS;
3298}
3299int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300{
3301	return -ENOSYS;
3302}
3303#endif /* CONFIG_MMU */
3304
3305EXPORT_SYMBOL(filemap_page_mkwrite);
3306EXPORT_SYMBOL(generic_file_mmap);
3307EXPORT_SYMBOL(generic_file_readonly_mmap);
3308
3309static struct page *wait_on_page_read(struct page *page)
3310{
3311	if (!IS_ERR(page)) {
3312		wait_on_page_locked(page);
3313		if (!PageUptodate(page)) {
3314			put_page(page);
3315			page = ERR_PTR(-EIO);
3316		}
3317	}
3318	return page;
3319}
3320
3321static struct page *do_read_cache_page(struct address_space *mapping,
3322				pgoff_t index,
3323				int (*filler)(void *, struct page *),
3324				void *data,
3325				gfp_t gfp)
3326{
3327	struct page *page;
3328	int err;
3329repeat:
3330	page = find_get_page(mapping, index);
3331	if (!page) {
3332		page = __page_cache_alloc(gfp);
3333		if (!page)
3334			return ERR_PTR(-ENOMEM);
3335		err = add_to_page_cache_lru(page, mapping, index, gfp);
3336		if (unlikely(err)) {
3337			put_page(page);
3338			if (err == -EEXIST)
3339				goto repeat;
3340			/* Presumably ENOMEM for xarray node */
3341			return ERR_PTR(err);
3342		}
3343
3344filler:
3345		if (filler)
3346			err = filler(data, page);
3347		else
3348			err = mapping->a_ops->readpage(data, page);
3349
3350		if (err < 0) {
3351			put_page(page);
3352			return ERR_PTR(err);
3353		}
3354
3355		page = wait_on_page_read(page);
3356		if (IS_ERR(page))
3357			return page;
3358		goto out;
3359	}
3360	if (PageUptodate(page))
3361		goto out;
3362
3363	/*
3364	 * Page is not up to date and may be locked due to one of the following
3365	 * case a: Page is being filled and the page lock is held
3366	 * case b: Read/write error clearing the page uptodate status
3367	 * case c: Truncation in progress (page locked)
3368	 * case d: Reclaim in progress
3369	 *
3370	 * Case a, the page will be up to date when the page is unlocked.
3371	 *    There is no need to serialise on the page lock here as the page
3372	 *    is pinned so the lock gives no additional protection. Even if the
3373	 *    page is truncated, the data is still valid if PageUptodate as
3374	 *    it's a race vs truncate race.
3375	 * Case b, the page will not be up to date
3376	 * Case c, the page may be truncated but in itself, the data may still
3377	 *    be valid after IO completes as it's a read vs truncate race. The
3378	 *    operation must restart if the page is not uptodate on unlock but
3379	 *    otherwise serialising on page lock to stabilise the mapping gives
3380	 *    no additional guarantees to the caller as the page lock is
3381	 *    released before return.
3382	 * Case d, similar to truncation. If reclaim holds the page lock, it
3383	 *    will be a race with remove_mapping that determines if the mapping
3384	 *    is valid on unlock but otherwise the data is valid and there is
3385	 *    no need to serialise with page lock.
3386	 *
3387	 * As the page lock gives no additional guarantee, we optimistically
3388	 * wait on the page to be unlocked and check if it's up to date and
3389	 * use the page if it is. Otherwise, the page lock is required to
3390	 * distinguish between the different cases. The motivation is that we
3391	 * avoid spurious serialisations and wakeups when multiple processes
3392	 * wait on the same page for IO to complete.
3393	 */
3394	wait_on_page_locked(page);
3395	if (PageUptodate(page))
3396		goto out;
3397
3398	/* Distinguish between all the cases under the safety of the lock */
3399	lock_page(page);
3400
3401	/* Case c or d, restart the operation */
3402	if (!page->mapping) {
3403		unlock_page(page);
3404		put_page(page);
3405		goto repeat;
3406	}
3407
3408	/* Someone else locked and filled the page in a very small window */
3409	if (PageUptodate(page)) {
3410		unlock_page(page);
3411		goto out;
3412	}
3413
3414	/*
3415	 * A previous I/O error may have been due to temporary
3416	 * failures.
3417	 * Clear page error before actual read, PG_error will be
3418	 * set again if read page fails.
3419	 */
3420	ClearPageError(page);
3421	goto filler;
3422
3423out:
3424	mark_page_accessed(page);
3425	return page;
3426}
3427
3428/**
3429 * read_cache_page - read into page cache, fill it if needed
3430 * @mapping:	the page's address_space
3431 * @index:	the page index
3432 * @filler:	function to perform the read
3433 * @data:	first arg to filler(data, page) function, often left as NULL
3434 *
3435 * Read into the page cache. If a page already exists, and PageUptodate() is
3436 * not set, try to fill the page and wait for it to become unlocked.
3437 *
3438 * If the page does not get brought uptodate, return -EIO.
3439 *
3440 * Return: up to date page on success, ERR_PTR() on failure.
3441 */
3442struct page *read_cache_page(struct address_space *mapping,
3443				pgoff_t index,
3444				int (*filler)(void *, struct page *),
3445				void *data)
3446{
3447	return do_read_cache_page(mapping, index, filler, data,
3448			mapping_gfp_mask(mapping));
3449}
3450EXPORT_SYMBOL(read_cache_page);
3451
3452/**
3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454 * @mapping:	the page's address_space
3455 * @index:	the page index
3456 * @gfp:	the page allocator flags to use if allocating
3457 *
3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459 * any new page allocations done using the specified allocation flags.
3460 *
3461 * If the page does not get brought uptodate, return -EIO.
3462 *
3463 * Return: up to date page on success, ERR_PTR() on failure.
3464 */
3465struct page *read_cache_page_gfp(struct address_space *mapping,
3466				pgoff_t index,
3467				gfp_t gfp)
3468{
3469	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3470}
3471EXPORT_SYMBOL(read_cache_page_gfp);
3472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474				loff_t pos, unsigned len, unsigned flags,
3475				struct page **pagep, void **fsdata)
3476{
3477	const struct address_space_operations *aops = mapping->a_ops;
3478
3479	return aops->write_begin(file, mapping, pos, len, flags,
3480							pagep, fsdata);
3481}
3482EXPORT_SYMBOL(pagecache_write_begin);
3483
3484int pagecache_write_end(struct file *file, struct address_space *mapping,
3485				loff_t pos, unsigned len, unsigned copied,
3486				struct page *page, void *fsdata)
3487{
3488	const struct address_space_operations *aops = mapping->a_ops;
3489
3490	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491}
3492EXPORT_SYMBOL(pagecache_write_end);
3493
3494/*
3495 * Warn about a page cache invalidation failure during a direct I/O write.
3496 */
3497void dio_warn_stale_pagecache(struct file *filp)
3498{
3499	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500	char pathname[128];
 
3501	char *path;
3502
3503	errseq_set(&filp->f_mapping->wb_err, -EIO);
3504	if (__ratelimit(&_rs)) {
3505		path = file_path(filp, pathname, sizeof(pathname));
3506		if (IS_ERR(path))
3507			path = "(unknown)";
3508		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510			current->comm);
3511	}
3512}
3513
3514ssize_t
3515generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3516{
3517	struct file	*file = iocb->ki_filp;
3518	struct address_space *mapping = file->f_mapping;
3519	struct inode	*inode = mapping->host;
3520	loff_t		pos = iocb->ki_pos;
3521	ssize_t		written;
3522	size_t		write_len;
3523	pgoff_t		end;
3524
3525	write_len = iov_iter_count(from);
3526	end = (pos + write_len - 1) >> PAGE_SHIFT;
3527
3528	if (iocb->ki_flags & IOCB_NOWAIT) {
3529		/* If there are pages to writeback, return */
3530		if (filemap_range_has_page(file->f_mapping, pos,
3531					   pos + write_len - 1))
3532			return -EAGAIN;
3533	} else {
3534		written = filemap_write_and_wait_range(mapping, pos,
3535							pos + write_len - 1);
3536		if (written)
3537			goto out;
3538	}
3539
3540	/*
3541	 * After a write we want buffered reads to be sure to go to disk to get
3542	 * the new data.  We invalidate clean cached page from the region we're
3543	 * about to write.  We do this *before* the write so that we can return
3544	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3545	 */
3546	written = invalidate_inode_pages2_range(mapping,
3547					pos >> PAGE_SHIFT, end);
3548	/*
3549	 * If a page can not be invalidated, return 0 to fall back
3550	 * to buffered write.
3551	 */
3552	if (written) {
3553		if (written == -EBUSY)
3554			return 0;
3555		goto out;
3556	}
3557
3558	written = mapping->a_ops->direct_IO(iocb, from);
3559
3560	/*
3561	 * Finally, try again to invalidate clean pages which might have been
3562	 * cached by non-direct readahead, or faulted in by get_user_pages()
3563	 * if the source of the write was an mmap'ed region of the file
3564	 * we're writing.  Either one is a pretty crazy thing to do,
3565	 * so we don't support it 100%.  If this invalidation
3566	 * fails, tough, the write still worked...
3567	 *
3568	 * Most of the time we do not need this since dio_complete() will do
3569	 * the invalidation for us. However there are some file systems that
3570	 * do not end up with dio_complete() being called, so let's not break
3571	 * them by removing it completely.
3572	 *
3573	 * Noticeable example is a blkdev_direct_IO().
3574	 *
3575	 * Skip invalidation for async writes or if mapping has no pages.
3576	 */
3577	if (written > 0 && mapping->nrpages &&
3578	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579		dio_warn_stale_pagecache(file);
3580
3581	if (written > 0) {
3582		pos += written;
3583		write_len -= written;
3584		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585			i_size_write(inode, pos);
3586			mark_inode_dirty(inode);
3587		}
3588		iocb->ki_pos = pos;
3589	}
3590	if (written != -EIOCBQUEUED)
3591		iov_iter_revert(from, write_len - iov_iter_count(from));
3592out:
3593	return written;
3594}
3595EXPORT_SYMBOL(generic_file_direct_write);
3596
3597/*
3598 * Find or create a page at the given pagecache position. Return the locked
3599 * page. This function is specifically for buffered writes.
3600 */
3601struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602					pgoff_t index, unsigned flags)
3603{
3604	struct page *page;
3605	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606
3607	if (flags & AOP_FLAG_NOFS)
3608		fgp_flags |= FGP_NOFS;
3609
3610	page = pagecache_get_page(mapping, index, fgp_flags,
3611			mapping_gfp_mask(mapping));
3612	if (page)
3613		wait_for_stable_page(page);
3614
3615	return page;
3616}
3617EXPORT_SYMBOL(grab_cache_page_write_begin);
3618
3619ssize_t generic_perform_write(struct file *file,
3620				struct iov_iter *i, loff_t pos)
3621{
3622	struct address_space *mapping = file->f_mapping;
3623	const struct address_space_operations *a_ops = mapping->a_ops;
3624	long status = 0;
3625	ssize_t written = 0;
3626	unsigned int flags = 0;
3627
3628	do {
3629		struct page *page;
3630		unsigned long offset;	/* Offset into pagecache page */
3631		unsigned long bytes;	/* Bytes to write to page */
3632		size_t copied;		/* Bytes copied from user */
3633		void *fsdata;
3634
3635		offset = (pos & (PAGE_SIZE - 1));
3636		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637						iov_iter_count(i));
3638
3639again:
3640		/*
3641		 * Bring in the user page that we will copy from _first_.
3642		 * Otherwise there's a nasty deadlock on copying from the
3643		 * same page as we're writing to, without it being marked
3644		 * up-to-date.
 
 
 
 
3645		 */
3646		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3647			status = -EFAULT;
3648			break;
3649		}
3650
3651		if (fatal_signal_pending(current)) {
3652			status = -EINTR;
3653			break;
3654		}
3655
3656		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3657						&page, &fsdata);
3658		if (unlikely(status < 0))
3659			break;
3660
3661		if (mapping_writably_mapped(mapping))
3662			flush_dcache_page(page);
3663
3664		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3665		flush_dcache_page(page);
3666
3667		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3668						page, fsdata);
3669		if (unlikely(status != copied)) {
3670			iov_iter_revert(i, copied - max(status, 0L));
3671			if (unlikely(status < 0))
3672				break;
3673		}
3674		cond_resched();
3675
3676		if (unlikely(status == 0)) {
 
3677			/*
3678			 * A short copy made ->write_end() reject the
3679			 * thing entirely.  Might be memory poisoning
3680			 * halfway through, might be a race with munmap,
3681			 * might be severe memory pressure.
 
 
3682			 */
3683			if (copied)
3684				bytes = copied;
3685			goto again;
3686		}
3687		pos += status;
3688		written += status;
3689
3690		balance_dirty_pages_ratelimited(mapping);
3691	} while (iov_iter_count(i));
3692
3693	return written ? written : status;
3694}
3695EXPORT_SYMBOL(generic_perform_write);
3696
3697/**
3698 * __generic_file_write_iter - write data to a file
3699 * @iocb:	IO state structure (file, offset, etc.)
3700 * @from:	iov_iter with data to write
3701 *
3702 * This function does all the work needed for actually writing data to a
3703 * file. It does all basic checks, removes SUID from the file, updates
3704 * modification times and calls proper subroutines depending on whether we
3705 * do direct IO or a standard buffered write.
3706 *
3707 * It expects i_mutex to be grabbed unless we work on a block device or similar
3708 * object which does not need locking at all.
3709 *
3710 * This function does *not* take care of syncing data in case of O_SYNC write.
3711 * A caller has to handle it. This is mainly due to the fact that we want to
3712 * avoid syncing under i_mutex.
3713 *
3714 * Return:
3715 * * number of bytes written, even for truncated writes
3716 * * negative error code if no data has been written at all
3717 */
3718ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3719{
3720	struct file *file = iocb->ki_filp;
3721	struct address_space *mapping = file->f_mapping;
3722	struct inode 	*inode = mapping->host;
3723	ssize_t		written = 0;
3724	ssize_t		err;
3725	ssize_t		status;
3726
3727	/* We can write back this queue in page reclaim */
3728	current->backing_dev_info = inode_to_bdi(inode);
3729	err = file_remove_privs(file);
3730	if (err)
3731		goto out;
3732
3733	err = file_update_time(file);
3734	if (err)
3735		goto out;
3736
3737	if (iocb->ki_flags & IOCB_DIRECT) {
3738		loff_t pos, endbyte;
3739
3740		written = generic_file_direct_write(iocb, from);
3741		/*
3742		 * If the write stopped short of completing, fall back to
3743		 * buffered writes.  Some filesystems do this for writes to
3744		 * holes, for example.  For DAX files, a buffered write will
3745		 * not succeed (even if it did, DAX does not handle dirty
3746		 * page-cache pages correctly).
3747		 */
3748		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3749			goto out;
3750
3751		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3752		/*
3753		 * If generic_perform_write() returned a synchronous error
3754		 * then we want to return the number of bytes which were
3755		 * direct-written, or the error code if that was zero.  Note
3756		 * that this differs from normal direct-io semantics, which
3757		 * will return -EFOO even if some bytes were written.
3758		 */
3759		if (unlikely(status < 0)) {
3760			err = status;
3761			goto out;
3762		}
3763		/*
3764		 * We need to ensure that the page cache pages are written to
3765		 * disk and invalidated to preserve the expected O_DIRECT
3766		 * semantics.
3767		 */
3768		endbyte = pos + status - 1;
3769		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3770		if (err == 0) {
3771			iocb->ki_pos = endbyte + 1;
3772			written += status;
3773			invalidate_mapping_pages(mapping,
3774						 pos >> PAGE_SHIFT,
3775						 endbyte >> PAGE_SHIFT);
3776		} else {
3777			/*
3778			 * We don't know how much we wrote, so just return
3779			 * the number of bytes which were direct-written
3780			 */
3781		}
3782	} else {
3783		written = generic_perform_write(file, from, iocb->ki_pos);
3784		if (likely(written > 0))
3785			iocb->ki_pos += written;
3786	}
3787out:
3788	current->backing_dev_info = NULL;
3789	return written ? written : err;
3790}
3791EXPORT_SYMBOL(__generic_file_write_iter);
3792
3793/**
3794 * generic_file_write_iter - write data to a file
3795 * @iocb:	IO state structure
3796 * @from:	iov_iter with data to write
3797 *
3798 * This is a wrapper around __generic_file_write_iter() to be used by most
3799 * filesystems. It takes care of syncing the file in case of O_SYNC file
3800 * and acquires i_mutex as needed.
3801 * Return:
3802 * * negative error code if no data has been written at all of
3803 *   vfs_fsync_range() failed for a synchronous write
3804 * * number of bytes written, even for truncated writes
3805 */
3806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3807{
3808	struct file *file = iocb->ki_filp;
3809	struct inode *inode = file->f_mapping->host;
3810	ssize_t ret;
3811
3812	inode_lock(inode);
3813	ret = generic_write_checks(iocb, from);
3814	if (ret > 0)
3815		ret = __generic_file_write_iter(iocb, from);
3816	inode_unlock(inode);
3817
3818	if (ret > 0)
3819		ret = generic_write_sync(iocb, ret);
3820	return ret;
3821}
3822EXPORT_SYMBOL(generic_file_write_iter);
3823
3824/**
3825 * try_to_release_page() - release old fs-specific metadata on a page
3826 *
3827 * @page: the page which the kernel is trying to free
3828 * @gfp_mask: memory allocation flags (and I/O mode)
3829 *
3830 * The address_space is to try to release any data against the page
3831 * (presumably at page->private).
3832 *
3833 * This may also be called if PG_fscache is set on a page, indicating that the
3834 * page is known to the local caching routines.
3835 *
3836 * The @gfp_mask argument specifies whether I/O may be performed to release
3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3838 *
3839 * Return: %1 if the release was successful, otherwise return zero.
3840 */
3841int try_to_release_page(struct page *page, gfp_t gfp_mask)
3842{
3843	struct address_space * const mapping = page->mapping;
3844
3845	BUG_ON(!PageLocked(page));
3846	if (PageWriteback(page))
3847		return 0;
3848
3849	if (mapping && mapping->a_ops->releasepage)
3850		return mapping->a_ops->releasepage(page, gfp_mask);
3851	return try_to_free_buffers(page);
3852}
3853
3854EXPORT_SYMBOL(try_to_release_page);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
 
 
  45#include "internal.h"
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/filemap.h>
  49
  50/*
  51 * FIXME: remove all knowledge of the buffer layer from the core VM
  52 */
  53#include <linux/buffer_head.h> /* for try_to_free_buffers */
  54
  55#include <asm/mman.h>
  56
  57/*
  58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  59 * though.
  60 *
  61 * Shared mappings now work. 15.8.1995  Bruno.
  62 *
  63 * finished 'unifying' the page and buffer cache and SMP-threaded the
  64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  65 *
  66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  67 */
  68
  69/*
  70 * Lock ordering:
  71 *
  72 *  ->i_mmap_rwsem		(truncate_pagecache)
  73 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  74 *      ->swap_lock		(exclusive_swap_page, others)
  75 *        ->i_pages lock
  76 *
  77 *  ->i_mutex
  78 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  79 *
  80 *  ->mmap_lock
  81 *    ->i_mmap_rwsem
  82 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  83 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  84 *
  85 *  ->mmap_lock
  86 *    ->lock_page		(access_process_vm)
  87 *
  88 *  ->i_mutex			(generic_perform_write)
  89 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  90 *
  91 *  bdi->wb.list_lock
  92 *    sb_lock			(fs/fs-writeback.c)
  93 *    ->i_pages lock		(__sync_single_inode)
  94 *
  95 *  ->i_mmap_rwsem
  96 *    ->anon_vma.lock		(vma_adjust)
  97 *
  98 *  ->anon_vma.lock
  99 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 100 *
 101 *  ->page_table_lock or pte_lock
 102 *    ->swap_lock		(try_to_unmap_one)
 103 *    ->private_lock		(try_to_unmap_one)
 104 *    ->i_pages lock		(try_to_unmap_one)
 105 *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
 106 *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
 107 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 108 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 109 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 111 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 112 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 113 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 114 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 115 *
 116 * ->i_mmap_rwsem
 117 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 118 */
 119
 120static void page_cache_delete(struct address_space *mapping,
 121				   struct page *page, void *shadow)
 122{
 123	XA_STATE(xas, &mapping->i_pages, page->index);
 124	unsigned int nr = 1;
 125
 126	mapping_set_update(&xas, mapping);
 127
 128	/* hugetlb pages are represented by a single entry in the xarray */
 129	if (!PageHuge(page)) {
 130		xas_set_order(&xas, page->index, compound_order(page));
 131		nr = compound_nr(page);
 132	}
 133
 134	VM_BUG_ON_PAGE(!PageLocked(page), page);
 135	VM_BUG_ON_PAGE(PageTail(page), page);
 136	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 137
 138	xas_store(&xas, shadow);
 139	xas_init_marks(&xas);
 140
 141	page->mapping = NULL;
 142	/* Leave page->index set: truncation lookup relies upon it */
 143
 144	if (shadow) {
 145		mapping->nrexceptional += nr;
 146		/*
 147		 * Make sure the nrexceptional update is committed before
 148		 * the nrpages update so that final truncate racing
 149		 * with reclaim does not see both counters 0 at the
 150		 * same time and miss a shadow entry.
 151		 */
 152		smp_wmb();
 153	}
 154	mapping->nrpages -= nr;
 155}
 156
 157static void unaccount_page_cache_page(struct address_space *mapping,
 158				      struct page *page)
 159{
 160	int nr;
 161
 162	/*
 163	 * if we're uptodate, flush out into the cleancache, otherwise
 164	 * invalidate any existing cleancache entries.  We can't leave
 165	 * stale data around in the cleancache once our page is gone
 166	 */
 167	if (PageUptodate(page) && PageMappedToDisk(page))
 168		cleancache_put_page(page);
 169	else
 170		cleancache_invalidate_page(mapping, page);
 171
 172	VM_BUG_ON_PAGE(PageTail(page), page);
 173	VM_BUG_ON_PAGE(page_mapped(page), page);
 174	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 175		int mapcount;
 176
 177		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 178			 current->comm, page_to_pfn(page));
 179		dump_page(page, "still mapped when deleted");
 180		dump_stack();
 181		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 182
 183		mapcount = page_mapcount(page);
 184		if (mapping_exiting(mapping) &&
 185		    page_count(page) >= mapcount + 2) {
 186			/*
 187			 * All vmas have already been torn down, so it's
 188			 * a good bet that actually the page is unmapped,
 189			 * and we'd prefer not to leak it: if we're wrong,
 190			 * some other bad page check should catch it later.
 191			 */
 192			page_mapcount_reset(page);
 193			page_ref_sub(page, mapcount);
 194		}
 195	}
 196
 197	/* hugetlb pages do not participate in page cache accounting. */
 198	if (PageHuge(page))
 199		return;
 200
 201	nr = thp_nr_pages(page);
 202
 203	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 204	if (PageSwapBacked(page)) {
 205		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 206		if (PageTransHuge(page))
 207			__dec_node_page_state(page, NR_SHMEM_THPS);
 208	} else if (PageTransHuge(page)) {
 209		__dec_node_page_state(page, NR_FILE_THPS);
 210		filemap_nr_thps_dec(mapping);
 211	}
 212
 213	/*
 214	 * At this point page must be either written or cleaned by
 215	 * truncate.  Dirty page here signals a bug and loss of
 216	 * unwritten data.
 217	 *
 218	 * This fixes dirty accounting after removing the page entirely
 219	 * but leaves PageDirty set: it has no effect for truncated
 220	 * page and anyway will be cleared before returning page into
 221	 * buddy allocator.
 222	 */
 223	if (WARN_ON_ONCE(PageDirty(page)))
 224		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 225}
 226
 227/*
 228 * Delete a page from the page cache and free it. Caller has to make
 229 * sure the page is locked and that nobody else uses it - or that usage
 230 * is safe.  The caller must hold the i_pages lock.
 231 */
 232void __delete_from_page_cache(struct page *page, void *shadow)
 233{
 234	struct address_space *mapping = page->mapping;
 235
 236	trace_mm_filemap_delete_from_page_cache(page);
 237
 238	unaccount_page_cache_page(mapping, page);
 239	page_cache_delete(mapping, page, shadow);
 240}
 241
 242static void page_cache_free_page(struct address_space *mapping,
 243				struct page *page)
 244{
 245	void (*freepage)(struct page *);
 246
 247	freepage = mapping->a_ops->freepage;
 248	if (freepage)
 249		freepage(page);
 250
 251	if (PageTransHuge(page) && !PageHuge(page)) {
 252		page_ref_sub(page, HPAGE_PMD_NR);
 253		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 254	} else {
 255		put_page(page);
 256	}
 257}
 258
 259/**
 260 * delete_from_page_cache - delete page from page cache
 261 * @page: the page which the kernel is trying to remove from page cache
 262 *
 263 * This must be called only on pages that have been verified to be in the page
 264 * cache and locked.  It will never put the page into the free list, the caller
 265 * has a reference on the page.
 266 */
 267void delete_from_page_cache(struct page *page)
 268{
 269	struct address_space *mapping = page_mapping(page);
 270	unsigned long flags;
 271
 272	BUG_ON(!PageLocked(page));
 273	xa_lock_irqsave(&mapping->i_pages, flags);
 274	__delete_from_page_cache(page, NULL);
 275	xa_unlock_irqrestore(&mapping->i_pages, flags);
 276
 277	page_cache_free_page(mapping, page);
 278}
 279EXPORT_SYMBOL(delete_from_page_cache);
 280
 281/*
 282 * page_cache_delete_batch - delete several pages from page cache
 283 * @mapping: the mapping to which pages belong
 284 * @pvec: pagevec with pages to delete
 285 *
 286 * The function walks over mapping->i_pages and removes pages passed in @pvec
 287 * from the mapping. The function expects @pvec to be sorted by page index
 288 * and is optimised for it to be dense.
 289 * It tolerates holes in @pvec (mapping entries at those indices are not
 290 * modified). The function expects only THP head pages to be present in the
 291 * @pvec.
 292 *
 293 * The function expects the i_pages lock to be held.
 294 */
 295static void page_cache_delete_batch(struct address_space *mapping,
 296			     struct pagevec *pvec)
 297{
 298	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 299	int total_pages = 0;
 300	int i = 0;
 301	struct page *page;
 302
 303	mapping_set_update(&xas, mapping);
 304	xas_for_each(&xas, page, ULONG_MAX) {
 305		if (i >= pagevec_count(pvec))
 306			break;
 307
 308		/* A swap/dax/shadow entry got inserted? Skip it. */
 309		if (xa_is_value(page))
 310			continue;
 311		/*
 312		 * A page got inserted in our range? Skip it. We have our
 313		 * pages locked so they are protected from being removed.
 314		 * If we see a page whose index is higher than ours, it
 315		 * means our page has been removed, which shouldn't be
 316		 * possible because we're holding the PageLock.
 317		 */
 318		if (page != pvec->pages[i]) {
 319			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 320					page);
 321			continue;
 322		}
 323
 324		WARN_ON_ONCE(!PageLocked(page));
 325
 326		if (page->index == xas.xa_index)
 327			page->mapping = NULL;
 328		/* Leave page->index set: truncation lookup relies on it */
 329
 330		/*
 331		 * Move to the next page in the vector if this is a regular
 332		 * page or the index is of the last sub-page of this compound
 333		 * page.
 334		 */
 335		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 336			i++;
 337		xas_store(&xas, NULL);
 338		total_pages++;
 339	}
 340	mapping->nrpages -= total_pages;
 341}
 342
 343void delete_from_page_cache_batch(struct address_space *mapping,
 344				  struct pagevec *pvec)
 345{
 346	int i;
 347	unsigned long flags;
 348
 349	if (!pagevec_count(pvec))
 350		return;
 351
 352	xa_lock_irqsave(&mapping->i_pages, flags);
 353	for (i = 0; i < pagevec_count(pvec); i++) {
 354		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 355
 356		unaccount_page_cache_page(mapping, pvec->pages[i]);
 357	}
 358	page_cache_delete_batch(mapping, pvec);
 359	xa_unlock_irqrestore(&mapping->i_pages, flags);
 360
 361	for (i = 0; i < pagevec_count(pvec); i++)
 362		page_cache_free_page(mapping, pvec->pages[i]);
 363}
 364
 365int filemap_check_errors(struct address_space *mapping)
 366{
 367	int ret = 0;
 368	/* Check for outstanding write errors */
 369	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 370	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 371		ret = -ENOSPC;
 372	if (test_bit(AS_EIO, &mapping->flags) &&
 373	    test_and_clear_bit(AS_EIO, &mapping->flags))
 374		ret = -EIO;
 375	return ret;
 376}
 377EXPORT_SYMBOL(filemap_check_errors);
 378
 379static int filemap_check_and_keep_errors(struct address_space *mapping)
 380{
 381	/* Check for outstanding write errors */
 382	if (test_bit(AS_EIO, &mapping->flags))
 383		return -EIO;
 384	if (test_bit(AS_ENOSPC, &mapping->flags))
 385		return -ENOSPC;
 386	return 0;
 387}
 388
 389/**
 390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 391 * @mapping:	address space structure to write
 392 * @start:	offset in bytes where the range starts
 393 * @end:	offset in bytes where the range ends (inclusive)
 394 * @sync_mode:	enable synchronous operation
 395 *
 396 * Start writeback against all of a mapping's dirty pages that lie
 397 * within the byte offsets <start, end> inclusive.
 398 *
 399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 400 * opposed to a regular memory cleansing writeback.  The difference between
 401 * these two operations is that if a dirty page/buffer is encountered, it must
 402 * be waited upon, and not just skipped over.
 403 *
 404 * Return: %0 on success, negative error code otherwise.
 405 */
 406int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 407				loff_t end, int sync_mode)
 408{
 409	int ret;
 410	struct writeback_control wbc = {
 411		.sync_mode = sync_mode,
 412		.nr_to_write = LONG_MAX,
 413		.range_start = start,
 414		.range_end = end,
 415	};
 416
 417	if (!mapping_cap_writeback_dirty(mapping) ||
 418	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 419		return 0;
 420
 421	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 422	ret = do_writepages(mapping, &wbc);
 423	wbc_detach_inode(&wbc);
 424	return ret;
 425}
 426
 427static inline int __filemap_fdatawrite(struct address_space *mapping,
 428	int sync_mode)
 429{
 430	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 431}
 432
 433int filemap_fdatawrite(struct address_space *mapping)
 434{
 435	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 436}
 437EXPORT_SYMBOL(filemap_fdatawrite);
 438
 439int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 440				loff_t end)
 441{
 442	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 443}
 444EXPORT_SYMBOL(filemap_fdatawrite_range);
 445
 446/**
 447 * filemap_flush - mostly a non-blocking flush
 448 * @mapping:	target address_space
 449 *
 450 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 451 * purposes - I/O may not be started against all dirty pages.
 452 *
 453 * Return: %0 on success, negative error code otherwise.
 454 */
 455int filemap_flush(struct address_space *mapping)
 456{
 457	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 458}
 459EXPORT_SYMBOL(filemap_flush);
 460
 461/**
 462 * filemap_range_has_page - check if a page exists in range.
 463 * @mapping:           address space within which to check
 464 * @start_byte:        offset in bytes where the range starts
 465 * @end_byte:          offset in bytes where the range ends (inclusive)
 466 *
 467 * Find at least one page in the range supplied, usually used to check if
 468 * direct writing in this range will trigger a writeback.
 469 *
 470 * Return: %true if at least one page exists in the specified range,
 471 * %false otherwise.
 472 */
 473bool filemap_range_has_page(struct address_space *mapping,
 474			   loff_t start_byte, loff_t end_byte)
 475{
 476	struct page *page;
 477	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 478	pgoff_t max = end_byte >> PAGE_SHIFT;
 479
 480	if (end_byte < start_byte)
 481		return false;
 482
 483	rcu_read_lock();
 484	for (;;) {
 485		page = xas_find(&xas, max);
 486		if (xas_retry(&xas, page))
 487			continue;
 488		/* Shadow entries don't count */
 489		if (xa_is_value(page))
 490			continue;
 491		/*
 492		 * We don't need to try to pin this page; we're about to
 493		 * release the RCU lock anyway.  It is enough to know that
 494		 * there was a page here recently.
 495		 */
 496		break;
 497	}
 498	rcu_read_unlock();
 499
 500	return page != NULL;
 501}
 502EXPORT_SYMBOL(filemap_range_has_page);
 503
 504static void __filemap_fdatawait_range(struct address_space *mapping,
 505				     loff_t start_byte, loff_t end_byte)
 506{
 507	pgoff_t index = start_byte >> PAGE_SHIFT;
 508	pgoff_t end = end_byte >> PAGE_SHIFT;
 509	struct pagevec pvec;
 510	int nr_pages;
 511
 512	if (end_byte < start_byte)
 513		return;
 514
 515	pagevec_init(&pvec);
 516	while (index <= end) {
 517		unsigned i;
 518
 519		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 520				end, PAGECACHE_TAG_WRITEBACK);
 521		if (!nr_pages)
 522			break;
 523
 524		for (i = 0; i < nr_pages; i++) {
 525			struct page *page = pvec.pages[i];
 526
 527			wait_on_page_writeback(page);
 528			ClearPageError(page);
 529		}
 530		pagevec_release(&pvec);
 531		cond_resched();
 532	}
 533}
 534
 535/**
 536 * filemap_fdatawait_range - wait for writeback to complete
 537 * @mapping:		address space structure to wait for
 538 * @start_byte:		offset in bytes where the range starts
 539 * @end_byte:		offset in bytes where the range ends (inclusive)
 540 *
 541 * Walk the list of under-writeback pages of the given address space
 542 * in the given range and wait for all of them.  Check error status of
 543 * the address space and return it.
 544 *
 545 * Since the error status of the address space is cleared by this function,
 546 * callers are responsible for checking the return value and handling and/or
 547 * reporting the error.
 548 *
 549 * Return: error status of the address space.
 550 */
 551int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 552			    loff_t end_byte)
 553{
 554	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 555	return filemap_check_errors(mapping);
 556}
 557EXPORT_SYMBOL(filemap_fdatawait_range);
 558
 559/**
 560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 561 * @mapping:		address space structure to wait for
 562 * @start_byte:		offset in bytes where the range starts
 563 * @end_byte:		offset in bytes where the range ends (inclusive)
 564 *
 565 * Walk the list of under-writeback pages of the given address space in the
 566 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 567 * this function does not clear error status of the address space.
 568 *
 569 * Use this function if callers don't handle errors themselves.  Expected
 570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 571 * fsfreeze(8)
 572 */
 573int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 574		loff_t start_byte, loff_t end_byte)
 575{
 576	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 577	return filemap_check_and_keep_errors(mapping);
 578}
 579EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 580
 581/**
 582 * file_fdatawait_range - wait for writeback to complete
 583 * @file:		file pointing to address space structure to wait for
 584 * @start_byte:		offset in bytes where the range starts
 585 * @end_byte:		offset in bytes where the range ends (inclusive)
 586 *
 587 * Walk the list of under-writeback pages of the address space that file
 588 * refers to, in the given range and wait for all of them.  Check error
 589 * status of the address space vs. the file->f_wb_err cursor and return it.
 590 *
 591 * Since the error status of the file is advanced by this function,
 592 * callers are responsible for checking the return value and handling and/or
 593 * reporting the error.
 594 *
 595 * Return: error status of the address space vs. the file->f_wb_err cursor.
 596 */
 597int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 598{
 599	struct address_space *mapping = file->f_mapping;
 600
 601	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 602	return file_check_and_advance_wb_err(file);
 603}
 604EXPORT_SYMBOL(file_fdatawait_range);
 605
 606/**
 607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 608 * @mapping: address space structure to wait for
 609 *
 610 * Walk the list of under-writeback pages of the given address space
 611 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 612 * does not clear error status of the address space.
 613 *
 614 * Use this function if callers don't handle errors themselves.  Expected
 615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 616 * fsfreeze(8)
 617 *
 618 * Return: error status of the address space.
 619 */
 620int filemap_fdatawait_keep_errors(struct address_space *mapping)
 621{
 622	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 623	return filemap_check_and_keep_errors(mapping);
 624}
 625EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 626
 627/* Returns true if writeback might be needed or already in progress. */
 628static bool mapping_needs_writeback(struct address_space *mapping)
 629{
 630	if (dax_mapping(mapping))
 631		return mapping->nrexceptional;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	return mapping->nrpages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634}
 
 635
 636/**
 637 * filemap_write_and_wait_range - write out & wait on a file range
 638 * @mapping:	the address_space for the pages
 639 * @lstart:	offset in bytes where the range starts
 640 * @lend:	offset in bytes where the range ends (inclusive)
 641 *
 642 * Write out and wait upon file offsets lstart->lend, inclusive.
 643 *
 644 * Note that @lend is inclusive (describes the last byte to be written) so
 645 * that this function can be used to write to the very end-of-file (end = -1).
 646 *
 647 * Return: error status of the address space.
 648 */
 649int filemap_write_and_wait_range(struct address_space *mapping,
 650				 loff_t lstart, loff_t lend)
 651{
 652	int err = 0;
 653
 654	if (mapping_needs_writeback(mapping)) {
 655		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 656						 WB_SYNC_ALL);
 657		/*
 658		 * Even if the above returned error, the pages may be
 659		 * written partially (e.g. -ENOSPC), so we wait for it.
 660		 * But the -EIO is special case, it may indicate the worst
 661		 * thing (e.g. bug) happened, so we avoid waiting for it.
 662		 */
 663		if (err != -EIO) {
 664			int err2 = filemap_fdatawait_range(mapping,
 665						lstart, lend);
 666			if (!err)
 667				err = err2;
 668		} else {
 669			/* Clear any previously stored errors */
 670			filemap_check_errors(mapping);
 671		}
 672	} else {
 673		err = filemap_check_errors(mapping);
 674	}
 675	return err;
 676}
 677EXPORT_SYMBOL(filemap_write_and_wait_range);
 678
 679void __filemap_set_wb_err(struct address_space *mapping, int err)
 680{
 681	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 682
 683	trace_filemap_set_wb_err(mapping, eseq);
 684}
 685EXPORT_SYMBOL(__filemap_set_wb_err);
 686
 687/**
 688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 689 * 				   and advance wb_err to current one
 690 * @file: struct file on which the error is being reported
 691 *
 692 * When userland calls fsync (or something like nfsd does the equivalent), we
 693 * want to report any writeback errors that occurred since the last fsync (or
 694 * since the file was opened if there haven't been any).
 695 *
 696 * Grab the wb_err from the mapping. If it matches what we have in the file,
 697 * then just quickly return 0. The file is all caught up.
 698 *
 699 * If it doesn't match, then take the mapping value, set the "seen" flag in
 700 * it and try to swap it into place. If it works, or another task beat us
 701 * to it with the new value, then update the f_wb_err and return the error
 702 * portion. The error at this point must be reported via proper channels
 703 * (a'la fsync, or NFS COMMIT operation, etc.).
 704 *
 705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 706 * value is protected by the f_lock since we must ensure that it reflects
 707 * the latest value swapped in for this file descriptor.
 708 *
 709 * Return: %0 on success, negative error code otherwise.
 710 */
 711int file_check_and_advance_wb_err(struct file *file)
 712{
 713	int err = 0;
 714	errseq_t old = READ_ONCE(file->f_wb_err);
 715	struct address_space *mapping = file->f_mapping;
 716
 717	/* Locklessly handle the common case where nothing has changed */
 718	if (errseq_check(&mapping->wb_err, old)) {
 719		/* Something changed, must use slow path */
 720		spin_lock(&file->f_lock);
 721		old = file->f_wb_err;
 722		err = errseq_check_and_advance(&mapping->wb_err,
 723						&file->f_wb_err);
 724		trace_file_check_and_advance_wb_err(file, old);
 725		spin_unlock(&file->f_lock);
 726	}
 727
 728	/*
 729	 * We're mostly using this function as a drop in replacement for
 730	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 731	 * that the legacy code would have had on these flags.
 732	 */
 733	clear_bit(AS_EIO, &mapping->flags);
 734	clear_bit(AS_ENOSPC, &mapping->flags);
 735	return err;
 736}
 737EXPORT_SYMBOL(file_check_and_advance_wb_err);
 738
 739/**
 740 * file_write_and_wait_range - write out & wait on a file range
 741 * @file:	file pointing to address_space with pages
 742 * @lstart:	offset in bytes where the range starts
 743 * @lend:	offset in bytes where the range ends (inclusive)
 744 *
 745 * Write out and wait upon file offsets lstart->lend, inclusive.
 746 *
 747 * Note that @lend is inclusive (describes the last byte to be written) so
 748 * that this function can be used to write to the very end-of-file (end = -1).
 749 *
 750 * After writing out and waiting on the data, we check and advance the
 751 * f_wb_err cursor to the latest value, and return any errors detected there.
 752 *
 753 * Return: %0 on success, negative error code otherwise.
 754 */
 755int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 756{
 757	int err = 0, err2;
 758	struct address_space *mapping = file->f_mapping;
 759
 760	if (mapping_needs_writeback(mapping)) {
 761		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 762						 WB_SYNC_ALL);
 763		/* See comment of filemap_write_and_wait() */
 764		if (err != -EIO)
 765			__filemap_fdatawait_range(mapping, lstart, lend);
 766	}
 767	err2 = file_check_and_advance_wb_err(file);
 768	if (!err)
 769		err = err2;
 770	return err;
 771}
 772EXPORT_SYMBOL(file_write_and_wait_range);
 773
 774/**
 775 * replace_page_cache_page - replace a pagecache page with a new one
 776 * @old:	page to be replaced
 777 * @new:	page to replace with
 778 * @gfp_mask:	allocation mode
 779 *
 780 * This function replaces a page in the pagecache with a new one.  On
 781 * success it acquires the pagecache reference for the new page and
 782 * drops it for the old page.  Both the old and new pages must be
 783 * locked.  This function does not add the new page to the LRU, the
 784 * caller must do that.
 785 *
 786 * The remove + add is atomic.  This function cannot fail.
 787 *
 788 * Return: %0
 789 */
 790int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 791{
 792	struct address_space *mapping = old->mapping;
 793	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 794	pgoff_t offset = old->index;
 795	XA_STATE(xas, &mapping->i_pages, offset);
 796	unsigned long flags;
 797
 798	VM_BUG_ON_PAGE(!PageLocked(old), old);
 799	VM_BUG_ON_PAGE(!PageLocked(new), new);
 800	VM_BUG_ON_PAGE(new->mapping, new);
 801
 802	get_page(new);
 803	new->mapping = mapping;
 804	new->index = offset;
 805
 806	mem_cgroup_migrate(old, new);
 807
 808	xas_lock_irqsave(&xas, flags);
 809	xas_store(&xas, new);
 810
 811	old->mapping = NULL;
 812	/* hugetlb pages do not participate in page cache accounting. */
 813	if (!PageHuge(old))
 814		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 815	if (!PageHuge(new))
 816		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 817	if (PageSwapBacked(old))
 818		__dec_lruvec_page_state(old, NR_SHMEM);
 819	if (PageSwapBacked(new))
 820		__inc_lruvec_page_state(new, NR_SHMEM);
 821	xas_unlock_irqrestore(&xas, flags);
 822	if (freepage)
 823		freepage(old);
 824	put_page(old);
 825
 826	return 0;
 827}
 828EXPORT_SYMBOL_GPL(replace_page_cache_page);
 829
 830static int __add_to_page_cache_locked(struct page *page,
 831				      struct address_space *mapping,
 832				      pgoff_t offset, gfp_t gfp_mask,
 833				      void **shadowp)
 834{
 835	XA_STATE(xas, &mapping->i_pages, offset);
 836	int huge = PageHuge(page);
 837	int error;
 838	void *old;
 839
 840	VM_BUG_ON_PAGE(!PageLocked(page), page);
 841	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 842	mapping_set_update(&xas, mapping);
 843
 844	get_page(page);
 845	page->mapping = mapping;
 846	page->index = offset;
 847
 848	if (!huge) {
 849		error = mem_cgroup_charge(page, current->mm, gfp_mask);
 850		if (error)
 851			goto error;
 
 852	}
 853
 
 
 854	do {
 
 
 
 
 
 
 855		xas_lock_irq(&xas);
 856		old = xas_load(&xas);
 857		if (old && !xa_is_value(old))
 858			xas_set_err(&xas, -EEXIST);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859		xas_store(&xas, page);
 860		if (xas_error(&xas))
 861			goto unlock;
 862
 863		if (xa_is_value(old)) {
 864			mapping->nrexceptional--;
 865			if (shadowp)
 866				*shadowp = old;
 867		}
 868		mapping->nrpages++;
 869
 870		/* hugetlb pages do not participate in page cache accounting */
 871		if (!huge)
 872			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 873unlock:
 874		xas_unlock_irq(&xas);
 875	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
 876
 877	if (xas_error(&xas)) {
 878		error = xas_error(&xas);
 
 
 879		goto error;
 880	}
 881
 882	trace_mm_filemap_add_to_page_cache(page);
 883	return 0;
 884error:
 885	page->mapping = NULL;
 886	/* Leave page->index set: truncation relies upon it */
 887	put_page(page);
 888	return error;
 889}
 890ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 891
 892/**
 893 * add_to_page_cache_locked - add a locked page to the pagecache
 894 * @page:	page to add
 895 * @mapping:	the page's address_space
 896 * @offset:	page index
 897 * @gfp_mask:	page allocation mode
 898 *
 899 * This function is used to add a page to the pagecache. It must be locked.
 900 * This function does not add the page to the LRU.  The caller must do that.
 901 *
 902 * Return: %0 on success, negative error code otherwise.
 903 */
 904int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 905		pgoff_t offset, gfp_t gfp_mask)
 906{
 907	return __add_to_page_cache_locked(page, mapping, offset,
 908					  gfp_mask, NULL);
 909}
 910EXPORT_SYMBOL(add_to_page_cache_locked);
 911
 912int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 913				pgoff_t offset, gfp_t gfp_mask)
 914{
 915	void *shadow = NULL;
 916	int ret;
 917
 918	__SetPageLocked(page);
 919	ret = __add_to_page_cache_locked(page, mapping, offset,
 920					 gfp_mask, &shadow);
 921	if (unlikely(ret))
 922		__ClearPageLocked(page);
 923	else {
 924		/*
 925		 * The page might have been evicted from cache only
 926		 * recently, in which case it should be activated like
 927		 * any other repeatedly accessed page.
 928		 * The exception is pages getting rewritten; evicting other
 929		 * data from the working set, only to cache data that will
 930		 * get overwritten with something else, is a waste of memory.
 931		 */
 932		WARN_ON_ONCE(PageActive(page));
 933		if (!(gfp_mask & __GFP_WRITE) && shadow)
 934			workingset_refault(page, shadow);
 935		lru_cache_add(page);
 936	}
 937	return ret;
 938}
 939EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 940
 941#ifdef CONFIG_NUMA
 942struct page *__page_cache_alloc(gfp_t gfp)
 943{
 944	int n;
 945	struct page *page;
 946
 947	if (cpuset_do_page_mem_spread()) {
 948		unsigned int cpuset_mems_cookie;
 949		do {
 950			cpuset_mems_cookie = read_mems_allowed_begin();
 951			n = cpuset_mem_spread_node();
 952			page = __alloc_pages_node(n, gfp, 0);
 953		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 954
 955		return page;
 956	}
 957	return alloc_pages(gfp, 0);
 958}
 959EXPORT_SYMBOL(__page_cache_alloc);
 960#endif
 961
 962/*
 963 * In order to wait for pages to become available there must be
 964 * waitqueues associated with pages. By using a hash table of
 965 * waitqueues where the bucket discipline is to maintain all
 966 * waiters on the same queue and wake all when any of the pages
 967 * become available, and for the woken contexts to check to be
 968 * sure the appropriate page became available, this saves space
 969 * at a cost of "thundering herd" phenomena during rare hash
 970 * collisions.
 971 */
 972#define PAGE_WAIT_TABLE_BITS 8
 973#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 974static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 975
 976static wait_queue_head_t *page_waitqueue(struct page *page)
 977{
 978	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 979}
 980
 981void __init pagecache_init(void)
 982{
 983	int i;
 984
 985	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 986		init_waitqueue_head(&page_wait_table[i]);
 987
 988	page_writeback_init();
 989}
 990
 991/*
 992 * The page wait code treats the "wait->flags" somewhat unusually, because
 993 * we have multiple different kinds of waits, not just the usual "exclusive"
 994 * one.
 995 *
 996 * We have:
 997 *
 998 *  (a) no special bits set:
 999 *
1000 *	We're just waiting for the bit to be released, and when a waker
1001 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1002 *	and remove it from the wait queue.
1003 *
1004 *	Simple and straightforward.
1005 *
1006 *  (b) WQ_FLAG_EXCLUSIVE:
1007 *
1008 *	The waiter is waiting to get the lock, and only one waiter should
1009 *	be woken up to avoid any thundering herd behavior. We'll set the
1010 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1011 *
1012 *	This is the traditional exclusive wait.
1013 *
1014 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1015 *
1016 *	The waiter is waiting to get the bit, and additionally wants the
1017 *	lock to be transferred to it for fair lock behavior. If the lock
1018 *	cannot be taken, we stop walking the wait queue without waking
1019 *	the waiter.
1020 *
1021 *	This is the "fair lock handoff" case, and in addition to setting
1022 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1023 *	that it now has the lock.
1024 */
1025static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1026{
1027	unsigned int flags;
1028	struct wait_page_key *key = arg;
1029	struct wait_page_queue *wait_page
1030		= container_of(wait, struct wait_page_queue, wait);
1031
1032	if (!wake_page_match(wait_page, key))
1033		return 0;
1034
1035	/*
1036	 * If it's a lock handoff wait, we get the bit for it, and
1037	 * stop walking (and do not wake it up) if we can't.
1038	 */
1039	flags = wait->flags;
1040	if (flags & WQ_FLAG_EXCLUSIVE) {
1041		if (test_bit(key->bit_nr, &key->page->flags))
1042			return -1;
1043		if (flags & WQ_FLAG_CUSTOM) {
1044			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1045				return -1;
1046			flags |= WQ_FLAG_DONE;
1047		}
1048	}
1049
1050	/*
1051	 * We are holding the wait-queue lock, but the waiter that
1052	 * is waiting for this will be checking the flags without
1053	 * any locking.
1054	 *
1055	 * So update the flags atomically, and wake up the waiter
1056	 * afterwards to avoid any races. This store-release pairs
1057	 * with the load-acquire in wait_on_page_bit_common().
1058	 */
1059	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1060	wake_up_state(wait->private, mode);
1061
1062	/*
1063	 * Ok, we have successfully done what we're waiting for,
1064	 * and we can unconditionally remove the wait entry.
1065	 *
1066	 * Note that this pairs with the "finish_wait()" in the
1067	 * waiter, and has to be the absolute last thing we do.
1068	 * After this list_del_init(&wait->entry) the wait entry
1069	 * might be de-allocated and the process might even have
1070	 * exited.
1071	 */
1072	list_del_init_careful(&wait->entry);
1073	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1074}
1075
1076static void wake_up_page_bit(struct page *page, int bit_nr)
1077{
1078	wait_queue_head_t *q = page_waitqueue(page);
1079	struct wait_page_key key;
1080	unsigned long flags;
1081	wait_queue_entry_t bookmark;
1082
1083	key.page = page;
1084	key.bit_nr = bit_nr;
1085	key.page_match = 0;
1086
1087	bookmark.flags = 0;
1088	bookmark.private = NULL;
1089	bookmark.func = NULL;
1090	INIT_LIST_HEAD(&bookmark.entry);
1091
1092	spin_lock_irqsave(&q->lock, flags);
1093	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1094
1095	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1096		/*
1097		 * Take a breather from holding the lock,
1098		 * allow pages that finish wake up asynchronously
1099		 * to acquire the lock and remove themselves
1100		 * from wait queue
1101		 */
1102		spin_unlock_irqrestore(&q->lock, flags);
1103		cpu_relax();
1104		spin_lock_irqsave(&q->lock, flags);
1105		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1106	}
1107
1108	/*
1109	 * It is possible for other pages to have collided on the waitqueue
1110	 * hash, so in that case check for a page match. That prevents a long-
1111	 * term waiter
1112	 *
1113	 * It is still possible to miss a case here, when we woke page waiters
1114	 * and removed them from the waitqueue, but there are still other
1115	 * page waiters.
1116	 */
1117	if (!waitqueue_active(q) || !key.page_match) {
1118		ClearPageWaiters(page);
1119		/*
1120		 * It's possible to miss clearing Waiters here, when we woke
1121		 * our page waiters, but the hashed waitqueue has waiters for
1122		 * other pages on it.
1123		 *
1124		 * That's okay, it's a rare case. The next waker will clear it.
1125		 */
1126	}
1127	spin_unlock_irqrestore(&q->lock, flags);
1128}
1129
1130static void wake_up_page(struct page *page, int bit)
1131{
1132	if (!PageWaiters(page))
1133		return;
1134	wake_up_page_bit(page, bit);
1135}
1136
1137/*
1138 * A choice of three behaviors for wait_on_page_bit_common():
1139 */
1140enum behavior {
1141	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1142			 * __lock_page() waiting on then setting PG_locked.
1143			 */
1144	SHARED,		/* Hold ref to page and check the bit when woken, like
1145			 * wait_on_page_writeback() waiting on PG_writeback.
1146			 */
1147	DROP,		/* Drop ref to page before wait, no check when woken,
1148			 * like put_and_wait_on_page_locked() on PG_locked.
1149			 */
1150};
1151
1152/*
1153 * Attempt to check (or get) the page bit, and mark us done
1154 * if successful.
1155 */
1156static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1157					struct wait_queue_entry *wait)
1158{
1159	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1160		if (test_and_set_bit(bit_nr, &page->flags))
1161			return false;
1162	} else if (test_bit(bit_nr, &page->flags))
1163		return false;
1164
1165	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1166	return true;
1167}
1168
1169/* How many times do we accept lock stealing from under a waiter? */
1170int sysctl_page_lock_unfairness = 5;
1171
1172static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1173	struct page *page, int bit_nr, int state, enum behavior behavior)
1174{
1175	int unfairness = sysctl_page_lock_unfairness;
1176	struct wait_page_queue wait_page;
1177	wait_queue_entry_t *wait = &wait_page.wait;
1178	bool thrashing = false;
1179	bool delayacct = false;
1180	unsigned long pflags;
1181
1182	if (bit_nr == PG_locked &&
1183	    !PageUptodate(page) && PageWorkingset(page)) {
1184		if (!PageSwapBacked(page)) {
1185			delayacct_thrashing_start();
1186			delayacct = true;
1187		}
1188		psi_memstall_enter(&pflags);
1189		thrashing = true;
1190	}
1191
1192	init_wait(wait);
1193	wait->func = wake_page_function;
1194	wait_page.page = page;
1195	wait_page.bit_nr = bit_nr;
1196
1197repeat:
1198	wait->flags = 0;
1199	if (behavior == EXCLUSIVE) {
1200		wait->flags = WQ_FLAG_EXCLUSIVE;
1201		if (--unfairness < 0)
1202			wait->flags |= WQ_FLAG_CUSTOM;
1203	}
1204
1205	/*
1206	 * Do one last check whether we can get the
1207	 * page bit synchronously.
1208	 *
1209	 * Do the SetPageWaiters() marking before that
1210	 * to let any waker we _just_ missed know they
1211	 * need to wake us up (otherwise they'll never
1212	 * even go to the slow case that looks at the
1213	 * page queue), and add ourselves to the wait
1214	 * queue if we need to sleep.
1215	 *
1216	 * This part needs to be done under the queue
1217	 * lock to avoid races.
1218	 */
1219	spin_lock_irq(&q->lock);
1220	SetPageWaiters(page);
1221	if (!trylock_page_bit_common(page, bit_nr, wait))
1222		__add_wait_queue_entry_tail(q, wait);
1223	spin_unlock_irq(&q->lock);
1224
1225	/*
1226	 * From now on, all the logic will be based on
1227	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1228	 * see whether the page bit testing has already
1229	 * been done by the wake function.
1230	 *
1231	 * We can drop our reference to the page.
1232	 */
1233	if (behavior == DROP)
1234		put_page(page);
1235
1236	/*
1237	 * Note that until the "finish_wait()", or until
1238	 * we see the WQ_FLAG_WOKEN flag, we need to
1239	 * be very careful with the 'wait->flags', because
1240	 * we may race with a waker that sets them.
1241	 */
1242	for (;;) {
1243		unsigned int flags;
1244
1245		set_current_state(state);
1246
1247		/* Loop until we've been woken or interrupted */
1248		flags = smp_load_acquire(&wait->flags);
1249		if (!(flags & WQ_FLAG_WOKEN)) {
1250			if (signal_pending_state(state, current))
1251				break;
1252
1253			io_schedule();
1254			continue;
1255		}
1256
1257		/* If we were non-exclusive, we're done */
1258		if (behavior != EXCLUSIVE)
1259			break;
1260
1261		/* If the waker got the lock for us, we're done */
1262		if (flags & WQ_FLAG_DONE)
1263			break;
1264
1265		/*
1266		 * Otherwise, if we're getting the lock, we need to
1267		 * try to get it ourselves.
1268		 *
1269		 * And if that fails, we'll have to retry this all.
1270		 */
1271		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1272			goto repeat;
1273
1274		wait->flags |= WQ_FLAG_DONE;
1275		break;
1276	}
1277
1278	/*
1279	 * If a signal happened, this 'finish_wait()' may remove the last
1280	 * waiter from the wait-queues, but the PageWaiters bit will remain
1281	 * set. That's ok. The next wakeup will take care of it, and trying
1282	 * to do it here would be difficult and prone to races.
1283	 */
1284	finish_wait(q, wait);
1285
1286	if (thrashing) {
1287		if (delayacct)
1288			delayacct_thrashing_end();
1289		psi_memstall_leave(&pflags);
1290	}
1291
1292	/*
1293	 * NOTE! The wait->flags weren't stable until we've done the
1294	 * 'finish_wait()', and we could have exited the loop above due
1295	 * to a signal, and had a wakeup event happen after the signal
1296	 * test but before the 'finish_wait()'.
1297	 *
1298	 * So only after the finish_wait() can we reliably determine
1299	 * if we got woken up or not, so we can now figure out the final
1300	 * return value based on that state without races.
1301	 *
1302	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1303	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1304	 */
1305	if (behavior == EXCLUSIVE)
1306		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1307
1308	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1309}
1310
1311void wait_on_page_bit(struct page *page, int bit_nr)
1312{
1313	wait_queue_head_t *q = page_waitqueue(page);
1314	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1315}
1316EXPORT_SYMBOL(wait_on_page_bit);
1317
1318int wait_on_page_bit_killable(struct page *page, int bit_nr)
1319{
1320	wait_queue_head_t *q = page_waitqueue(page);
1321	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1322}
1323EXPORT_SYMBOL(wait_on_page_bit_killable);
1324
1325static int __wait_on_page_locked_async(struct page *page,
1326				       struct wait_page_queue *wait, bool set)
1327{
1328	struct wait_queue_head *q = page_waitqueue(page);
1329	int ret = 0;
1330
1331	wait->page = page;
1332	wait->bit_nr = PG_locked;
1333
1334	spin_lock_irq(&q->lock);
1335	__add_wait_queue_entry_tail(q, &wait->wait);
1336	SetPageWaiters(page);
1337	if (set)
1338		ret = !trylock_page(page);
1339	else
1340		ret = PageLocked(page);
1341	/*
1342	 * If we were succesful now, we know we're still on the
1343	 * waitqueue as we're still under the lock. This means it's
1344	 * safe to remove and return success, we know the callback
1345	 * isn't going to trigger.
1346	 */
1347	if (!ret)
1348		__remove_wait_queue(q, &wait->wait);
1349	else
1350		ret = -EIOCBQUEUED;
1351	spin_unlock_irq(&q->lock);
1352	return ret;
1353}
1354
1355static int wait_on_page_locked_async(struct page *page,
1356				     struct wait_page_queue *wait)
1357{
1358	if (!PageLocked(page))
1359		return 0;
1360	return __wait_on_page_locked_async(compound_head(page), wait, false);
1361}
1362
1363/**
1364 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1365 * @page: The page to wait for.
 
1366 *
1367 * The caller should hold a reference on @page.  They expect the page to
1368 * become unlocked relatively soon, but do not wish to hold up migration
1369 * (for example) by holding the reference while waiting for the page to
1370 * come unlocked.  After this function returns, the caller should not
1371 * dereference @page.
 
 
1372 */
1373void put_and_wait_on_page_locked(struct page *page)
1374{
1375	wait_queue_head_t *q;
1376
1377	page = compound_head(page);
1378	q = page_waitqueue(page);
1379	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1380}
1381
1382/**
1383 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1384 * @page: Page defining the wait queue of interest
1385 * @waiter: Waiter to add to the queue
1386 *
1387 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1388 */
1389void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1390{
1391	wait_queue_head_t *q = page_waitqueue(page);
1392	unsigned long flags;
1393
1394	spin_lock_irqsave(&q->lock, flags);
1395	__add_wait_queue_entry_tail(q, waiter);
1396	SetPageWaiters(page);
1397	spin_unlock_irqrestore(&q->lock, flags);
1398}
1399EXPORT_SYMBOL_GPL(add_page_wait_queue);
1400
1401#ifndef clear_bit_unlock_is_negative_byte
1402
1403/*
1404 * PG_waiters is the high bit in the same byte as PG_lock.
1405 *
1406 * On x86 (and on many other architectures), we can clear PG_lock and
1407 * test the sign bit at the same time. But if the architecture does
1408 * not support that special operation, we just do this all by hand
1409 * instead.
1410 *
1411 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1412 * being cleared, but a memory barrier should be unnecessary since it is
1413 * in the same byte as PG_locked.
1414 */
1415static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1416{
1417	clear_bit_unlock(nr, mem);
1418	/* smp_mb__after_atomic(); */
1419	return test_bit(PG_waiters, mem);
1420}
1421
1422#endif
1423
1424/**
1425 * unlock_page - unlock a locked page
1426 * @page: the page
1427 *
1428 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1429 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1430 * mechanism between PageLocked pages and PageWriteback pages is shared.
1431 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1432 *
1433 * Note that this depends on PG_waiters being the sign bit in the byte
1434 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1435 * clear the PG_locked bit and test PG_waiters at the same time fairly
1436 * portably (architectures that do LL/SC can test any bit, while x86 can
1437 * test the sign bit).
1438 */
1439void unlock_page(struct page *page)
1440{
1441	BUILD_BUG_ON(PG_waiters != 7);
1442	page = compound_head(page);
1443	VM_BUG_ON_PAGE(!PageLocked(page), page);
1444	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1445		wake_up_page_bit(page, PG_locked);
1446}
1447EXPORT_SYMBOL(unlock_page);
1448
1449/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450 * end_page_writeback - end writeback against a page
1451 * @page: the page
1452 */
1453void end_page_writeback(struct page *page)
1454{
1455	/*
1456	 * TestClearPageReclaim could be used here but it is an atomic
1457	 * operation and overkill in this particular case. Failing to
1458	 * shuffle a page marked for immediate reclaim is too mild to
1459	 * justify taking an atomic operation penalty at the end of
1460	 * ever page writeback.
1461	 */
1462	if (PageReclaim(page)) {
1463		ClearPageReclaim(page);
1464		rotate_reclaimable_page(page);
1465	}
1466
 
 
 
 
 
 
 
1467	if (!test_clear_page_writeback(page))
1468		BUG();
1469
1470	smp_mb__after_atomic();
1471	wake_up_page(page, PG_writeback);
 
1472}
1473EXPORT_SYMBOL(end_page_writeback);
1474
1475/*
1476 * After completing I/O on a page, call this routine to update the page
1477 * flags appropriately
1478 */
1479void page_endio(struct page *page, bool is_write, int err)
1480{
1481	if (!is_write) {
1482		if (!err) {
1483			SetPageUptodate(page);
1484		} else {
1485			ClearPageUptodate(page);
1486			SetPageError(page);
1487		}
1488		unlock_page(page);
1489	} else {
1490		if (err) {
1491			struct address_space *mapping;
1492
1493			SetPageError(page);
1494			mapping = page_mapping(page);
1495			if (mapping)
1496				mapping_set_error(mapping, err);
1497		}
1498		end_page_writeback(page);
1499	}
1500}
1501EXPORT_SYMBOL_GPL(page_endio);
1502
1503/**
1504 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1505 * @__page: the page to lock
1506 */
1507void __lock_page(struct page *__page)
1508{
1509	struct page *page = compound_head(__page);
1510	wait_queue_head_t *q = page_waitqueue(page);
1511	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1512				EXCLUSIVE);
1513}
1514EXPORT_SYMBOL(__lock_page);
1515
1516int __lock_page_killable(struct page *__page)
1517{
1518	struct page *page = compound_head(__page);
1519	wait_queue_head_t *q = page_waitqueue(page);
1520	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1521					EXCLUSIVE);
1522}
1523EXPORT_SYMBOL_GPL(__lock_page_killable);
1524
1525int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1526{
1527	return __wait_on_page_locked_async(page, wait, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
1530/*
1531 * Return values:
1532 * 1 - page is locked; mmap_lock is still held.
1533 * 0 - page is not locked.
1534 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1535 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1536 *     which case mmap_lock is still held.
1537 *
1538 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1539 * with the page locked and the mmap_lock unperturbed.
1540 */
1541int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1542			 unsigned int flags)
1543{
1544	if (fault_flag_allow_retry_first(flags)) {
1545		/*
1546		 * CAUTION! In this case, mmap_lock is not released
1547		 * even though return 0.
1548		 */
1549		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1550			return 0;
1551
1552		mmap_read_unlock(mm);
1553		if (flags & FAULT_FLAG_KILLABLE)
1554			wait_on_page_locked_killable(page);
1555		else
1556			wait_on_page_locked(page);
1557		return 0;
 
 
 
 
 
 
 
 
 
1558	} else {
1559		if (flags & FAULT_FLAG_KILLABLE) {
1560			int ret;
 
1561
1562			ret = __lock_page_killable(page);
1563			if (ret) {
1564				mmap_read_unlock(mm);
1565				return 0;
1566			}
1567		} else
1568			__lock_page(page);
1569		return 1;
1570	}
1571}
1572
1573/**
1574 * page_cache_next_miss() - Find the next gap in the page cache.
1575 * @mapping: Mapping.
1576 * @index: Index.
1577 * @max_scan: Maximum range to search.
1578 *
1579 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1580 * gap with the lowest index.
1581 *
1582 * This function may be called under the rcu_read_lock.  However, this will
1583 * not atomically search a snapshot of the cache at a single point in time.
1584 * For example, if a gap is created at index 5, then subsequently a gap is
1585 * created at index 10, page_cache_next_miss covering both indices may
1586 * return 10 if called under the rcu_read_lock.
1587 *
1588 * Return: The index of the gap if found, otherwise an index outside the
1589 * range specified (in which case 'return - index >= max_scan' will be true).
1590 * In the rare case of index wrap-around, 0 will be returned.
1591 */
1592pgoff_t page_cache_next_miss(struct address_space *mapping,
1593			     pgoff_t index, unsigned long max_scan)
1594{
1595	XA_STATE(xas, &mapping->i_pages, index);
1596
1597	while (max_scan--) {
1598		void *entry = xas_next(&xas);
1599		if (!entry || xa_is_value(entry))
1600			break;
1601		if (xas.xa_index == 0)
1602			break;
1603	}
1604
1605	return xas.xa_index;
1606}
1607EXPORT_SYMBOL(page_cache_next_miss);
1608
1609/**
1610 * page_cache_prev_miss() - Find the previous gap in the page cache.
1611 * @mapping: Mapping.
1612 * @index: Index.
1613 * @max_scan: Maximum range to search.
1614 *
1615 * Search the range [max(index - max_scan + 1, 0), index] for the
1616 * gap with the highest index.
1617 *
1618 * This function may be called under the rcu_read_lock.  However, this will
1619 * not atomically search a snapshot of the cache at a single point in time.
1620 * For example, if a gap is created at index 10, then subsequently a gap is
1621 * created at index 5, page_cache_prev_miss() covering both indices may
1622 * return 5 if called under the rcu_read_lock.
1623 *
1624 * Return: The index of the gap if found, otherwise an index outside the
1625 * range specified (in which case 'index - return >= max_scan' will be true).
1626 * In the rare case of wrap-around, ULONG_MAX will be returned.
1627 */
1628pgoff_t page_cache_prev_miss(struct address_space *mapping,
1629			     pgoff_t index, unsigned long max_scan)
1630{
1631	XA_STATE(xas, &mapping->i_pages, index);
1632
1633	while (max_scan--) {
1634		void *entry = xas_prev(&xas);
1635		if (!entry || xa_is_value(entry))
1636			break;
1637		if (xas.xa_index == ULONG_MAX)
1638			break;
1639	}
1640
1641	return xas.xa_index;
1642}
1643EXPORT_SYMBOL(page_cache_prev_miss);
1644
1645/**
1646 * find_get_entry - find and get a page cache entry
1647 * @mapping: the address_space to search
1648 * @offset: the page cache index
1649 *
1650 * Looks up the page cache slot at @mapping & @offset.  If there is a
1651 * page cache page, it is returned with an increased refcount.
1652 *
1653 * If the slot holds a shadow entry of a previously evicted page, or a
1654 * swap entry from shmem/tmpfs, it is returned.
1655 *
1656 * Return: the found page or shadow entry, %NULL if nothing is found.
1657 */
1658struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 
1659{
1660	XA_STATE(xas, &mapping->i_pages, offset);
1661	struct page *page;
1662
1663	rcu_read_lock();
1664repeat:
1665	xas_reset(&xas);
1666	page = xas_load(&xas);
1667	if (xas_retry(&xas, page))
1668		goto repeat;
1669	/*
1670	 * A shadow entry of a recently evicted page, or a swap entry from
1671	 * shmem/tmpfs.  Return it without attempting to raise page count.
1672	 */
1673	if (!page || xa_is_value(page))
1674		goto out;
1675
1676	if (!page_cache_get_speculative(page))
1677		goto repeat;
1678
1679	/*
1680	 * Has the page moved or been split?
1681	 * This is part of the lockless pagecache protocol. See
1682	 * include/linux/pagemap.h for details.
1683	 */
1684	if (unlikely(page != xas_reload(&xas))) {
1685		put_page(page);
1686		goto repeat;
1687	}
1688	page = find_subpage(page, offset);
1689out:
1690	rcu_read_unlock();
1691
1692	return page;
1693}
1694
1695/**
1696 * find_lock_entry - locate, pin and lock a page cache entry
1697 * @mapping: the address_space to search
1698 * @offset: the page cache index
1699 *
1700 * Looks up the page cache slot at @mapping & @offset.  If there is a
1701 * page cache page, it is returned locked and with an increased
1702 * refcount.
1703 *
1704 * If the slot holds a shadow entry of a previously evicted page, or a
1705 * swap entry from shmem/tmpfs, it is returned.
1706 *
1707 * find_lock_entry() may sleep.
1708 *
1709 * Return: the found page or shadow entry, %NULL if nothing is found.
1710 */
1711struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1712{
1713	struct page *page;
1714
1715repeat:
1716	page = find_get_entry(mapping, offset);
1717	if (page && !xa_is_value(page)) {
1718		lock_page(page);
1719		/* Has the page been truncated? */
1720		if (unlikely(page_mapping(page) != mapping)) {
1721			unlock_page(page);
1722			put_page(page);
1723			goto repeat;
1724		}
1725		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1726	}
1727	return page;
1728}
1729EXPORT_SYMBOL(find_lock_entry);
1730
1731/**
1732 * pagecache_get_page - Find and get a reference to a page.
1733 * @mapping: The address_space to search.
1734 * @index: The page index.
1735 * @fgp_flags: %FGP flags modify how the page is returned.
1736 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1737 *
1738 * Looks up the page cache entry at @mapping & @index.
1739 *
1740 * @fgp_flags can be zero or more of these flags:
1741 *
1742 * * %FGP_ACCESSED - The page will be marked accessed.
1743 * * %FGP_LOCK - The page is returned locked.
 
 
 
 
1744 * * %FGP_CREAT - If no page is present then a new page is allocated using
1745 *   @gfp_mask and added to the page cache and the VM's LRU list.
1746 *   The page is returned locked and with an increased refcount.
1747 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1748 *   page is already in cache.  If the page was allocated, unlock it before
1749 *   returning so the caller can do the same dance.
1750 * * %FGP_WRITE - The page will be written
1751 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1752 * * %FGP_NOWAIT - Don't get blocked by page lock
1753 *
1754 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1755 * if the %GFP flags specified for %FGP_CREAT are atomic.
1756 *
1757 * If there is a page cache page, it is returned with an increased refcount.
1758 *
1759 * Return: The found page or %NULL otherwise.
1760 */
1761struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1762		int fgp_flags, gfp_t gfp_mask)
1763{
1764	struct page *page;
1765
1766repeat:
1767	page = find_get_entry(mapping, index);
1768	if (xa_is_value(page))
 
 
1769		page = NULL;
 
1770	if (!page)
1771		goto no_page;
1772
1773	if (fgp_flags & FGP_LOCK) {
1774		if (fgp_flags & FGP_NOWAIT) {
1775			if (!trylock_page(page)) {
1776				put_page(page);
1777				return NULL;
1778			}
1779		} else {
1780			lock_page(page);
1781		}
1782
1783		/* Has the page been truncated? */
1784		if (unlikely(compound_head(page)->mapping != mapping)) {
1785			unlock_page(page);
1786			put_page(page);
1787			goto repeat;
1788		}
1789		VM_BUG_ON_PAGE(page->index != index, page);
1790	}
1791
1792	if (fgp_flags & FGP_ACCESSED)
1793		mark_page_accessed(page);
1794	else if (fgp_flags & FGP_WRITE) {
1795		/* Clear idle flag for buffer write */
1796		if (page_is_idle(page))
1797			clear_page_idle(page);
1798	}
 
 
1799
1800no_page:
1801	if (!page && (fgp_flags & FGP_CREAT)) {
1802		int err;
1803		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1804			gfp_mask |= __GFP_WRITE;
1805		if (fgp_flags & FGP_NOFS)
1806			gfp_mask &= ~__GFP_FS;
1807
1808		page = __page_cache_alloc(gfp_mask);
1809		if (!page)
1810			return NULL;
1811
1812		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1813			fgp_flags |= FGP_LOCK;
1814
1815		/* Init accessed so avoid atomic mark_page_accessed later */
1816		if (fgp_flags & FGP_ACCESSED)
1817			__SetPageReferenced(page);
1818
1819		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1820		if (unlikely(err)) {
1821			put_page(page);
1822			page = NULL;
1823			if (err == -EEXIST)
1824				goto repeat;
1825		}
1826
1827		/*
1828		 * add_to_page_cache_lru locks the page, and for mmap we expect
1829		 * an unlocked page.
1830		 */
1831		if (page && (fgp_flags & FGP_FOR_MMAP))
1832			unlock_page(page);
1833	}
1834
1835	return page;
1836}
1837EXPORT_SYMBOL(pagecache_get_page);
1838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839/**
1840 * find_get_entries - gang pagecache lookup
1841 * @mapping:	The address_space to search
1842 * @start:	The starting page cache index
1843 * @nr_entries:	The maximum number of entries
1844 * @entries:	Where the resulting entries are placed
1845 * @indices:	The cache indices corresponding to the entries in @entries
1846 *
1847 * find_get_entries() will search for and return a group of up to
1848 * @nr_entries entries in the mapping.  The entries are placed at
1849 * @entries.  find_get_entries() takes a reference against any actual
1850 * pages it returns.
1851 *
1852 * The search returns a group of mapping-contiguous page cache entries
1853 * with ascending indexes.  There may be holes in the indices due to
1854 * not-present pages.
1855 *
1856 * Any shadow entries of evicted pages, or swap entries from
1857 * shmem/tmpfs, are included in the returned array.
1858 *
1859 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1860 * stops at that page: the caller is likely to have a better way to handle
1861 * the compound page as a whole, and then skip its extent, than repeatedly
1862 * calling find_get_entries() to return all its tails.
1863 *
1864 * Return: the number of pages and shadow entries which were found.
1865 */
1866unsigned find_get_entries(struct address_space *mapping,
1867			  pgoff_t start, unsigned int nr_entries,
1868			  struct page **entries, pgoff_t *indices)
1869{
1870	XA_STATE(xas, &mapping->i_pages, start);
1871	struct page *page;
1872	unsigned int ret = 0;
1873
1874	if (!nr_entries)
1875		return 0;
1876
1877	rcu_read_lock();
1878	xas_for_each(&xas, page, ULONG_MAX) {
1879		if (xas_retry(&xas, page))
1880			continue;
1881		/*
1882		 * A shadow entry of a recently evicted page, a swap
1883		 * entry from shmem/tmpfs or a DAX entry.  Return it
1884		 * without attempting to raise page count.
1885		 */
1886		if (xa_is_value(page))
1887			goto export;
1888
1889		if (!page_cache_get_speculative(page))
1890			goto retry;
1891
1892		/* Has the page moved or been split? */
1893		if (unlikely(page != xas_reload(&xas)))
1894			goto put_page;
1895
1896		/*
1897		 * Terminate early on finding a THP, to allow the caller to
1898		 * handle it all at once; but continue if this is hugetlbfs.
1899		 */
1900		if (PageTransHuge(page) && !PageHuge(page)) {
 
1901			page = find_subpage(page, xas.xa_index);
1902			nr_entries = ret + 1;
1903		}
1904export:
1905		indices[ret] = xas.xa_index;
1906		entries[ret] = page;
1907		if (++ret == nr_entries)
1908			break;
1909		continue;
1910put_page:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911		put_page(page);
1912retry:
1913		xas_reset(&xas);
 
 
 
 
 
 
 
1914	}
1915	rcu_read_unlock();
1916	return ret;
 
1917}
1918
1919/**
1920 * find_get_pages_range - gang pagecache lookup
1921 * @mapping:	The address_space to search
1922 * @start:	The starting page index
1923 * @end:	The final page index (inclusive)
1924 * @nr_pages:	The maximum number of pages
1925 * @pages:	Where the resulting pages are placed
1926 *
1927 * find_get_pages_range() will search for and return a group of up to @nr_pages
1928 * pages in the mapping starting at index @start and up to index @end
1929 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1930 * a reference against the returned pages.
1931 *
1932 * The search returns a group of mapping-contiguous pages with ascending
1933 * indexes.  There may be holes in the indices due to not-present pages.
1934 * We also update @start to index the next page for the traversal.
1935 *
1936 * Return: the number of pages which were found. If this number is
1937 * smaller than @nr_pages, the end of specified range has been
1938 * reached.
1939 */
1940unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1941			      pgoff_t end, unsigned int nr_pages,
1942			      struct page **pages)
1943{
1944	XA_STATE(xas, &mapping->i_pages, *start);
1945	struct page *page;
1946	unsigned ret = 0;
1947
1948	if (unlikely(!nr_pages))
1949		return 0;
1950
1951	rcu_read_lock();
1952	xas_for_each(&xas, page, end) {
1953		if (xas_retry(&xas, page))
1954			continue;
1955		/* Skip over shadow, swap and DAX entries */
1956		if (xa_is_value(page))
1957			continue;
1958
1959		if (!page_cache_get_speculative(page))
1960			goto retry;
1961
1962		/* Has the page moved or been split? */
1963		if (unlikely(page != xas_reload(&xas)))
1964			goto put_page;
1965
1966		pages[ret] = find_subpage(page, xas.xa_index);
1967		if (++ret == nr_pages) {
1968			*start = xas.xa_index + 1;
1969			goto out;
1970		}
1971		continue;
1972put_page:
1973		put_page(page);
1974retry:
1975		xas_reset(&xas);
1976	}
1977
1978	/*
1979	 * We come here when there is no page beyond @end. We take care to not
1980	 * overflow the index @start as it confuses some of the callers. This
1981	 * breaks the iteration when there is a page at index -1 but that is
1982	 * already broken anyway.
1983	 */
1984	if (end == (pgoff_t)-1)
1985		*start = (pgoff_t)-1;
1986	else
1987		*start = end + 1;
1988out:
1989	rcu_read_unlock();
1990
1991	return ret;
1992}
1993
1994/**
1995 * find_get_pages_contig - gang contiguous pagecache lookup
1996 * @mapping:	The address_space to search
1997 * @index:	The starting page index
1998 * @nr_pages:	The maximum number of pages
1999 * @pages:	Where the resulting pages are placed
2000 *
2001 * find_get_pages_contig() works exactly like find_get_pages(), except
2002 * that the returned number of pages are guaranteed to be contiguous.
2003 *
2004 * Return: the number of pages which were found.
2005 */
2006unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2007			       unsigned int nr_pages, struct page **pages)
2008{
2009	XA_STATE(xas, &mapping->i_pages, index);
2010	struct page *page;
2011	unsigned int ret = 0;
2012
2013	if (unlikely(!nr_pages))
2014		return 0;
2015
2016	rcu_read_lock();
2017	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2018		if (xas_retry(&xas, page))
2019			continue;
2020		/*
2021		 * If the entry has been swapped out, we can stop looking.
2022		 * No current caller is looking for DAX entries.
2023		 */
2024		if (xa_is_value(page))
2025			break;
2026
2027		if (!page_cache_get_speculative(page))
2028			goto retry;
2029
2030		/* Has the page moved or been split? */
2031		if (unlikely(page != xas_reload(&xas)))
2032			goto put_page;
2033
2034		pages[ret] = find_subpage(page, xas.xa_index);
2035		if (++ret == nr_pages)
2036			break;
2037		continue;
2038put_page:
2039		put_page(page);
2040retry:
2041		xas_reset(&xas);
2042	}
2043	rcu_read_unlock();
2044	return ret;
2045}
2046EXPORT_SYMBOL(find_get_pages_contig);
2047
2048/**
2049 * find_get_pages_range_tag - find and return pages in given range matching @tag
2050 * @mapping:	the address_space to search
2051 * @index:	the starting page index
2052 * @end:	The final page index (inclusive)
2053 * @tag:	the tag index
2054 * @nr_pages:	the maximum number of pages
2055 * @pages:	where the resulting pages are placed
2056 *
2057 * Like find_get_pages, except we only return pages which are tagged with
2058 * @tag.   We update @index to index the next page for the traversal.
 
2059 *
2060 * Return: the number of pages which were found.
2061 */
2062unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2063			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2064			struct page **pages)
2065{
2066	XA_STATE(xas, &mapping->i_pages, *index);
2067	struct page *page;
2068	unsigned ret = 0;
2069
2070	if (unlikely(!nr_pages))
2071		return 0;
2072
2073	rcu_read_lock();
2074	xas_for_each_marked(&xas, page, end, tag) {
2075		if (xas_retry(&xas, page))
2076			continue;
2077		/*
2078		 * Shadow entries should never be tagged, but this iteration
2079		 * is lockless so there is a window for page reclaim to evict
2080		 * a page we saw tagged.  Skip over it.
2081		 */
2082		if (xa_is_value(page))
2083			continue;
2084
2085		if (!page_cache_get_speculative(page))
2086			goto retry;
2087
2088		/* Has the page moved or been split? */
2089		if (unlikely(page != xas_reload(&xas)))
2090			goto put_page;
2091
2092		pages[ret] = find_subpage(page, xas.xa_index);
2093		if (++ret == nr_pages) {
2094			*index = xas.xa_index + 1;
2095			goto out;
2096		}
2097		continue;
2098put_page:
2099		put_page(page);
2100retry:
2101		xas_reset(&xas);
2102	}
2103
2104	/*
2105	 * We come here when we got to @end. We take care to not overflow the
2106	 * index @index as it confuses some of the callers. This breaks the
2107	 * iteration when there is a page at index -1 but that is already
2108	 * broken anyway.
2109	 */
2110	if (end == (pgoff_t)-1)
2111		*index = (pgoff_t)-1;
2112	else
2113		*index = end + 1;
2114out:
2115	rcu_read_unlock();
2116
2117	return ret;
2118}
2119EXPORT_SYMBOL(find_get_pages_range_tag);
2120
2121/*
2122 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2123 * a _large_ part of the i/o request. Imagine the worst scenario:
2124 *
2125 *      ---R__________________________________________B__________
2126 *         ^ reading here                             ^ bad block(assume 4k)
2127 *
2128 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2129 * => failing the whole request => read(R) => read(R+1) =>
2130 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2131 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2132 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2133 *
2134 * It is going insane. Fix it by quickly scaling down the readahead size.
2135 */
2136static void shrink_readahead_size_eio(struct file_ra_state *ra)
2137{
2138	ra->ra_pages /= 4;
2139}
2140
2141/**
2142 * generic_file_buffered_read - generic file read routine
2143 * @iocb:	the iocb to read
2144 * @iter:	data destination
2145 * @written:	already copied
2146 *
2147 * This is a generic file read routine, and uses the
2148 * mapping->a_ops->readpage() function for the actual low-level stuff.
2149 *
2150 * This is really ugly. But the goto's actually try to clarify some
2151 * of the logic when it comes to error handling etc.
2152 *
2153 * Return:
2154 * * total number of bytes copied, including those the were already @written
2155 * * negative error code if nothing was copied
2156 */
2157ssize_t generic_file_buffered_read(struct kiocb *iocb,
2158		struct iov_iter *iter, ssize_t written)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159{
2160	struct file *filp = iocb->ki_filp;
2161	struct address_space *mapping = filp->f_mapping;
2162	struct inode *inode = mapping->host;
2163	struct file_ra_state *ra = &filp->f_ra;
2164	loff_t *ppos = &iocb->ki_pos;
2165	pgoff_t index;
2166	pgoff_t last_index;
2167	pgoff_t prev_index;
2168	unsigned long offset;      /* offset into pagecache page */
2169	unsigned int prev_offset;
2170	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2171
2172	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
 
 
2173		return 0;
 
2174	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
 
2175
2176	index = *ppos >> PAGE_SHIFT;
2177	prev_index = ra->prev_pos >> PAGE_SHIFT;
2178	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2179	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2180	offset = *ppos & ~PAGE_MASK;
2181
2182	for (;;) {
2183		struct page *page;
2184		pgoff_t end_index;
2185		loff_t isize;
2186		unsigned long nr, ret;
 
 
2187
2188		cond_resched();
2189find_page:
2190		if (fatal_signal_pending(current)) {
2191			error = -EINTR;
2192			goto out;
2193		}
2194
2195		page = find_get_page(mapping, index);
2196		if (!page) {
2197			if (iocb->ki_flags & IOCB_NOIO)
2198				goto would_block;
2199			page_cache_sync_readahead(mapping,
2200					ra, filp,
2201					index, last_index - index);
2202			page = find_get_page(mapping, index);
2203			if (unlikely(page == NULL))
2204				goto no_cached_page;
2205		}
2206		if (PageReadahead(page)) {
2207			if (iocb->ki_flags & IOCB_NOIO) {
2208				put_page(page);
2209				goto out;
2210			}
2211			page_cache_async_readahead(mapping,
2212					ra, filp, page,
2213					index, last_index - index);
2214		}
2215		if (!PageUptodate(page)) {
2216			/*
2217			 * See comment in do_read_cache_page on why
2218			 * wait_on_page_locked is used to avoid unnecessarily
2219			 * serialisations and why it's safe.
2220			 */
2221			if (iocb->ki_flags & IOCB_WAITQ) {
2222				if (written) {
2223					put_page(page);
2224					goto out;
2225				}
2226				error = wait_on_page_locked_async(page,
2227								iocb->ki_waitq);
2228			} else {
2229				if (iocb->ki_flags & IOCB_NOWAIT) {
2230					put_page(page);
2231					goto would_block;
2232				}
2233				error = wait_on_page_locked_killable(page);
2234			}
2235			if (unlikely(error))
2236				goto readpage_error;
2237			if (PageUptodate(page))
2238				goto page_ok;
2239
2240			if (inode->i_blkbits == PAGE_SHIFT ||
2241					!mapping->a_ops->is_partially_uptodate)
2242				goto page_not_up_to_date;
2243			/* pipes can't handle partially uptodate pages */
2244			if (unlikely(iov_iter_is_pipe(iter)))
2245				goto page_not_up_to_date;
2246			if (!trylock_page(page))
2247				goto page_not_up_to_date;
2248			/* Did it get truncated before we got the lock? */
2249			if (!page->mapping)
2250				goto page_not_up_to_date_locked;
2251			if (!mapping->a_ops->is_partially_uptodate(page,
2252							offset, iter->count))
2253				goto page_not_up_to_date_locked;
2254			unlock_page(page);
2255		}
2256page_ok:
2257		/*
2258		 * i_size must be checked after we know the page is Uptodate.
2259		 *
2260		 * Checking i_size after the check allows us to calculate
2261		 * the correct value for "nr", which means the zero-filled
2262		 * part of the page is not copied back to userspace (unless
2263		 * another truncate extends the file - this is desired though).
2264		 */
2265
2266		isize = i_size_read(inode);
2267		end_index = (isize - 1) >> PAGE_SHIFT;
2268		if (unlikely(!isize || index > end_index)) {
2269			put_page(page);
2270			goto out;
2271		}
2272
2273		/* nr is the maximum number of bytes to copy from this page */
2274		nr = PAGE_SIZE;
2275		if (index == end_index) {
2276			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2277			if (nr <= offset) {
2278				put_page(page);
2279				goto out;
2280			}
2281		}
2282		nr = nr - offset;
2283
2284		/* If users can be writing to this page using arbitrary
2285		 * virtual addresses, take care about potential aliasing
2286		 * before reading the page on the kernel side.
2287		 */
2288		if (mapping_writably_mapped(mapping))
2289			flush_dcache_page(page);
2290
2291		/*
2292		 * When a sequential read accesses a page several times,
2293		 * only mark it as accessed the first time.
2294		 */
2295		if (prev_index != index || offset != prev_offset)
2296			mark_page_accessed(page);
2297		prev_index = index;
2298
2299		/*
2300		 * Ok, we have the page, and it's up-to-date, so
2301		 * now we can copy it to user space...
2302		 */
 
 
 
2303
2304		ret = copy_page_to_iter(page, offset, nr, iter);
2305		offset += ret;
2306		index += offset >> PAGE_SHIFT;
2307		offset &= ~PAGE_MASK;
2308		prev_offset = offset;
 
 
2309
2310		put_page(page);
2311		written += ret;
2312		if (!iov_iter_count(iter))
2313			goto out;
2314		if (ret < nr) {
2315			error = -EFAULT;
2316			goto out;
2317		}
2318		continue;
2319
2320page_not_up_to_date:
2321		/* Get exclusive access to the page ... */
2322		if (iocb->ki_flags & IOCB_WAITQ)
2323			error = lock_page_async(page, iocb->ki_waitq);
2324		else
2325			error = lock_page_killable(page);
2326		if (unlikely(error))
2327			goto readpage_error;
2328
2329page_not_up_to_date_locked:
2330		/* Did it get truncated before we got the lock? */
2331		if (!page->mapping) {
2332			unlock_page(page);
2333			put_page(page);
2334			continue;
2335		}
2336
2337		/* Did somebody else fill it already? */
2338		if (PageUptodate(page)) {
2339			unlock_page(page);
2340			goto page_ok;
2341		}
2342
2343readpage:
2344		if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2345			unlock_page(page);
2346			put_page(page);
2347			goto would_block;
2348		}
2349		/*
2350		 * A previous I/O error may have been due to temporary
2351		 * failures, eg. multipath errors.
2352		 * PG_error will be set again if readpage fails.
2353		 */
2354		ClearPageError(page);
2355		/* Start the actual read. The read will unlock the page. */
2356		error = mapping->a_ops->readpage(filp, page);
2357
2358		if (unlikely(error)) {
2359			if (error == AOP_TRUNCATED_PAGE) {
2360				put_page(page);
2361				error = 0;
2362				goto find_page;
2363			}
2364			goto readpage_error;
2365		}
2366
2367		if (!PageUptodate(page)) {
2368			if (iocb->ki_flags & IOCB_WAITQ)
2369				error = lock_page_async(page, iocb->ki_waitq);
2370			else
2371				error = lock_page_killable(page);
2372
2373			if (unlikely(error))
2374				goto readpage_error;
2375			if (!PageUptodate(page)) {
2376				if (page->mapping == NULL) {
2377					/*
2378					 * invalidate_mapping_pages got it
2379					 */
2380					unlock_page(page);
2381					put_page(page);
2382					goto find_page;
2383				}
2384				unlock_page(page);
2385				shrink_readahead_size_eio(ra);
2386				error = -EIO;
2387				goto readpage_error;
2388			}
2389			unlock_page(page);
2390		}
2391
2392		goto page_ok;
 
 
2393
2394readpage_error:
2395		/* UHHUH! A synchronous read error occurred. Report it */
2396		put_page(page);
2397		goto out;
2398
2399no_cached_page:
2400		/*
2401		 * Ok, it wasn't cached, so we need to create a new
2402		 * page..
2403		 */
2404		page = page_cache_alloc(mapping);
2405		if (!page) {
2406			error = -ENOMEM;
2407			goto out;
2408		}
2409		error = add_to_page_cache_lru(page, mapping, index,
2410				mapping_gfp_constraint(mapping, GFP_KERNEL));
2411		if (error) {
2412			put_page(page);
2413			if (error == -EEXIST) {
2414				error = 0;
2415				goto find_page;
2416			}
2417			goto out;
2418		}
2419		goto readpage;
2420	}
 
 
 
2421
2422would_block:
2423	error = -EAGAIN;
2424out:
2425	ra->prev_pos = prev_index;
2426	ra->prev_pos <<= PAGE_SHIFT;
2427	ra->prev_pos |= prev_offset;
2428
2429	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2430	file_accessed(filp);
2431	return written ? written : error;
2432}
2433EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2434
2435/**
2436 * generic_file_read_iter - generic filesystem read routine
2437 * @iocb:	kernel I/O control block
2438 * @iter:	destination for the data read
2439 *
2440 * This is the "read_iter()" routine for all filesystems
2441 * that can use the page cache directly.
2442 *
2443 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2444 * be returned when no data can be read without waiting for I/O requests
2445 * to complete; it doesn't prevent readahead.
2446 *
2447 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2448 * requests shall be made for the read or for readahead.  When no data
2449 * can be read, -EAGAIN shall be returned.  When readahead would be
2450 * triggered, a partial, possibly empty read shall be returned.
2451 *
2452 * Return:
2453 * * number of bytes copied, even for partial reads
2454 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2455 */
2456ssize_t
2457generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2458{
2459	size_t count = iov_iter_count(iter);
2460	ssize_t retval = 0;
2461
2462	if (!count)
2463		goto out; /* skip atime */
2464
2465	if (iocb->ki_flags & IOCB_DIRECT) {
2466		struct file *file = iocb->ki_filp;
2467		struct address_space *mapping = file->f_mapping;
2468		struct inode *inode = mapping->host;
2469		loff_t size;
2470
2471		size = i_size_read(inode);
2472		if (iocb->ki_flags & IOCB_NOWAIT) {
2473			if (filemap_range_has_page(mapping, iocb->ki_pos,
2474						   iocb->ki_pos + count - 1))
2475				return -EAGAIN;
2476		} else {
2477			retval = filemap_write_and_wait_range(mapping,
2478						iocb->ki_pos,
2479					        iocb->ki_pos + count - 1);
2480			if (retval < 0)
2481				goto out;
2482		}
2483
2484		file_accessed(file);
2485
2486		retval = mapping->a_ops->direct_IO(iocb, iter);
2487		if (retval >= 0) {
2488			iocb->ki_pos += retval;
2489			count -= retval;
2490		}
2491		iov_iter_revert(iter, count - iov_iter_count(iter));
 
2492
2493		/*
2494		 * Btrfs can have a short DIO read if we encounter
2495		 * compressed extents, so if there was an error, or if
2496		 * we've already read everything we wanted to, or if
2497		 * there was a short read because we hit EOF, go ahead
2498		 * and return.  Otherwise fallthrough to buffered io for
2499		 * the rest of the read.  Buffered reads will not work for
2500		 * DAX files, so don't bother trying.
2501		 */
2502		if (retval < 0 || !count || iocb->ki_pos >= size ||
2503		    IS_DAX(inode))
2504			goto out;
2505	}
2506
2507	retval = generic_file_buffered_read(iocb, iter, retval);
2508out:
2509	return retval;
2510}
2511EXPORT_SYMBOL(generic_file_read_iter);
2512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2513#ifdef CONFIG_MMU
2514#define MMAP_LOTSAMISS  (100)
2515/*
2516 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2517 * @vmf - the vm_fault for this fault.
2518 * @page - the page to lock.
2519 * @fpin - the pointer to the file we may pin (or is already pinned).
2520 *
2521 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2522 * It differs in that it actually returns the page locked if it returns 1 and 0
2523 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2524 * will point to the pinned file and needs to be fput()'ed at a later point.
2525 */
2526static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2527				     struct file **fpin)
2528{
2529	if (trylock_page(page))
2530		return 1;
2531
2532	/*
2533	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2534	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2535	 * is supposed to work. We have way too many special cases..
2536	 */
2537	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2538		return 0;
2539
2540	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2541	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2542		if (__lock_page_killable(page)) {
2543			/*
2544			 * We didn't have the right flags to drop the mmap_lock,
2545			 * but all fault_handlers only check for fatal signals
2546			 * if we return VM_FAULT_RETRY, so we need to drop the
2547			 * mmap_lock here and return 0 if we don't have a fpin.
2548			 */
2549			if (*fpin == NULL)
2550				mmap_read_unlock(vmf->vma->vm_mm);
2551			return 0;
2552		}
2553	} else
2554		__lock_page(page);
2555	return 1;
2556}
2557
2558
2559/*
2560 * Synchronous readahead happens when we don't even find a page in the page
2561 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2562 * to drop the mmap sem we return the file that was pinned in order for us to do
2563 * that.  If we didn't pin a file then we return NULL.  The file that is
2564 * returned needs to be fput()'ed when we're done with it.
2565 */
2566static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2567{
2568	struct file *file = vmf->vma->vm_file;
2569	struct file_ra_state *ra = &file->f_ra;
2570	struct address_space *mapping = file->f_mapping;
 
2571	struct file *fpin = NULL;
2572	pgoff_t offset = vmf->pgoff;
2573	unsigned int mmap_miss;
2574
2575	/* If we don't want any read-ahead, don't bother */
2576	if (vmf->vma->vm_flags & VM_RAND_READ)
2577		return fpin;
2578	if (!ra->ra_pages)
2579		return fpin;
2580
2581	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2582		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2583		page_cache_sync_readahead(mapping, ra, file, offset,
2584					  ra->ra_pages);
2585		return fpin;
2586	}
2587
2588	/* Avoid banging the cache line if not needed */
2589	mmap_miss = READ_ONCE(ra->mmap_miss);
2590	if (mmap_miss < MMAP_LOTSAMISS * 10)
2591		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2592
2593	/*
2594	 * Do we miss much more than hit in this file? If so,
2595	 * stop bothering with read-ahead. It will only hurt.
2596	 */
2597	if (mmap_miss > MMAP_LOTSAMISS)
2598		return fpin;
2599
2600	/*
2601	 * mmap read-around
2602	 */
2603	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2604	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2605	ra->size = ra->ra_pages;
2606	ra->async_size = ra->ra_pages / 4;
2607	ra_submit(ra, mapping, file);
 
2608	return fpin;
2609}
2610
2611/*
2612 * Asynchronous readahead happens when we find the page and PG_readahead,
2613 * so we want to possibly extend the readahead further.  We return the file that
2614 * was pinned if we have to drop the mmap_lock in order to do IO.
2615 */
2616static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2617					    struct page *page)
2618{
2619	struct file *file = vmf->vma->vm_file;
2620	struct file_ra_state *ra = &file->f_ra;
2621	struct address_space *mapping = file->f_mapping;
2622	struct file *fpin = NULL;
2623	unsigned int mmap_miss;
2624	pgoff_t offset = vmf->pgoff;
2625
2626	/* If we don't want any read-ahead, don't bother */
2627	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2628		return fpin;
2629	mmap_miss = READ_ONCE(ra->mmap_miss);
2630	if (mmap_miss)
2631		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2632	if (PageReadahead(page)) {
2633		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2634		page_cache_async_readahead(mapping, ra, file,
2635					   page, offset, ra->ra_pages);
2636	}
2637	return fpin;
2638}
2639
2640/**
2641 * filemap_fault - read in file data for page fault handling
2642 * @vmf:	struct vm_fault containing details of the fault
2643 *
2644 * filemap_fault() is invoked via the vma operations vector for a
2645 * mapped memory region to read in file data during a page fault.
2646 *
2647 * The goto's are kind of ugly, but this streamlines the normal case of having
2648 * it in the page cache, and handles the special cases reasonably without
2649 * having a lot of duplicated code.
2650 *
2651 * vma->vm_mm->mmap_lock must be held on entry.
2652 *
2653 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2654 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2655 *
2656 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2657 * has not been released.
2658 *
2659 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2660 *
2661 * Return: bitwise-OR of %VM_FAULT_ codes.
2662 */
2663vm_fault_t filemap_fault(struct vm_fault *vmf)
2664{
2665	int error;
2666	struct file *file = vmf->vma->vm_file;
2667	struct file *fpin = NULL;
2668	struct address_space *mapping = file->f_mapping;
2669	struct file_ra_state *ra = &file->f_ra;
2670	struct inode *inode = mapping->host;
2671	pgoff_t offset = vmf->pgoff;
2672	pgoff_t max_off;
2673	struct page *page;
2674	vm_fault_t ret = 0;
2675
2676	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2677	if (unlikely(offset >= max_off))
2678		return VM_FAULT_SIGBUS;
2679
2680	/*
2681	 * Do we have something in the page cache already?
2682	 */
2683	page = find_get_page(mapping, offset);
2684	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2685		/*
2686		 * We found the page, so try async readahead before
2687		 * waiting for the lock.
2688		 */
2689		fpin = do_async_mmap_readahead(vmf, page);
2690	} else if (!page) {
2691		/* No page in the page cache at all */
2692		count_vm_event(PGMAJFAULT);
2693		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2694		ret = VM_FAULT_MAJOR;
2695		fpin = do_sync_mmap_readahead(vmf);
2696retry_find:
2697		page = pagecache_get_page(mapping, offset,
2698					  FGP_CREAT|FGP_FOR_MMAP,
2699					  vmf->gfp_mask);
2700		if (!page) {
2701			if (fpin)
2702				goto out_retry;
2703			return VM_FAULT_OOM;
2704		}
2705	}
2706
2707	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2708		goto out_retry;
2709
2710	/* Did it get truncated? */
2711	if (unlikely(compound_head(page)->mapping != mapping)) {
2712		unlock_page(page);
2713		put_page(page);
2714		goto retry_find;
2715	}
2716	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2717
2718	/*
2719	 * We have a locked page in the page cache, now we need to check
2720	 * that it's up-to-date. If not, it is going to be due to an error.
2721	 */
2722	if (unlikely(!PageUptodate(page)))
2723		goto page_not_uptodate;
2724
2725	/*
2726	 * We've made it this far and we had to drop our mmap_lock, now is the
2727	 * time to return to the upper layer and have it re-find the vma and
2728	 * redo the fault.
2729	 */
2730	if (fpin) {
2731		unlock_page(page);
2732		goto out_retry;
2733	}
2734
2735	/*
2736	 * Found the page and have a reference on it.
2737	 * We must recheck i_size under page lock.
2738	 */
2739	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2740	if (unlikely(offset >= max_off)) {
2741		unlock_page(page);
2742		put_page(page);
2743		return VM_FAULT_SIGBUS;
2744	}
2745
2746	vmf->page = page;
2747	return ret | VM_FAULT_LOCKED;
2748
2749page_not_uptodate:
2750	/*
2751	 * Umm, take care of errors if the page isn't up-to-date.
2752	 * Try to re-read it _once_. We do this synchronously,
2753	 * because there really aren't any performance issues here
2754	 * and we need to check for errors.
2755	 */
2756	ClearPageError(page);
2757	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2758	error = mapping->a_ops->readpage(file, page);
2759	if (!error) {
2760		wait_on_page_locked(page);
2761		if (!PageUptodate(page))
2762			error = -EIO;
2763	}
2764	if (fpin)
2765		goto out_retry;
2766	put_page(page);
2767
2768	if (!error || error == AOP_TRUNCATED_PAGE)
2769		goto retry_find;
2770
2771	shrink_readahead_size_eio(ra);
2772	return VM_FAULT_SIGBUS;
2773
2774out_retry:
2775	/*
2776	 * We dropped the mmap_lock, we need to return to the fault handler to
2777	 * re-find the vma and come back and find our hopefully still populated
2778	 * page.
2779	 */
2780	if (page)
2781		put_page(page);
2782	if (fpin)
2783		fput(fpin);
2784	return ret | VM_FAULT_RETRY;
2785}
2786EXPORT_SYMBOL(filemap_fault);
2787
2788void filemap_map_pages(struct vm_fault *vmf,
2789		pgoff_t start_pgoff, pgoff_t end_pgoff)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2790{
2791	struct file *file = vmf->vma->vm_file;
2792	struct address_space *mapping = file->f_mapping;
2793	pgoff_t last_pgoff = start_pgoff;
2794	unsigned long max_idx;
2795	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2796	struct page *page;
2797	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2798
2799	rcu_read_lock();
2800	xas_for_each(&xas, page, end_pgoff) {
2801		if (xas_retry(&xas, page))
 
2802			continue;
2803		if (xa_is_value(page))
2804			goto next;
2805
2806		/*
2807		 * Check for a locked page first, as a speculative
2808		 * reference may adversely influence page migration.
2809		 */
2810		if (PageLocked(page))
2811			goto next;
2812		if (!page_cache_get_speculative(page))
2813			goto next;
2814
2815		/* Has the page moved or been split? */
2816		if (unlikely(page != xas_reload(&xas)))
 
 
2817			goto skip;
2818		page = find_subpage(page, xas.xa_index);
2819
2820		if (!PageUptodate(page) ||
2821				PageReadahead(page) ||
2822				PageHWPoison(page))
2823			goto skip;
2824		if (!trylock_page(page))
2825			goto skip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2826
2827		if (page->mapping != mapping || !PageUptodate(page))
2828			goto unlock;
 
 
 
 
 
 
 
2829
2830		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2831		if (page->index >= max_idx)
 
 
 
2832			goto unlock;
2833
2834		if (mmap_miss > 0)
2835			mmap_miss--;
2836
2837		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2838		if (vmf->pte)
2839			vmf->pte += xas.xa_index - last_pgoff;
2840		last_pgoff = xas.xa_index;
2841		if (alloc_set_pte(vmf, page))
 
2842			goto unlock;
2843		unlock_page(page);
2844		goto next;
 
 
 
 
 
 
 
 
2845unlock:
2846		unlock_page(page);
2847skip:
2848		put_page(page);
2849next:
2850		/* Huge page is mapped? No need to proceed. */
2851		if (pmd_trans_huge(*vmf->pmd))
2852			break;
2853	}
2854	rcu_read_unlock();
2855	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
 
2856}
2857EXPORT_SYMBOL(filemap_map_pages);
2858
2859vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2860{
 
2861	struct page *page = vmf->page;
2862	struct inode *inode = file_inode(vmf->vma->vm_file);
2863	vm_fault_t ret = VM_FAULT_LOCKED;
2864
2865	sb_start_pagefault(inode->i_sb);
2866	file_update_time(vmf->vma->vm_file);
2867	lock_page(page);
2868	if (page->mapping != inode->i_mapping) {
2869		unlock_page(page);
2870		ret = VM_FAULT_NOPAGE;
2871		goto out;
2872	}
2873	/*
2874	 * We mark the page dirty already here so that when freeze is in
2875	 * progress, we are guaranteed that writeback during freezing will
2876	 * see the dirty page and writeprotect it again.
2877	 */
2878	set_page_dirty(page);
2879	wait_for_stable_page(page);
2880out:
2881	sb_end_pagefault(inode->i_sb);
2882	return ret;
2883}
2884
2885const struct vm_operations_struct generic_file_vm_ops = {
2886	.fault		= filemap_fault,
2887	.map_pages	= filemap_map_pages,
2888	.page_mkwrite	= filemap_page_mkwrite,
2889};
2890
2891/* This is used for a general mmap of a disk file */
2892
2893int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2894{
2895	struct address_space *mapping = file->f_mapping;
2896
2897	if (!mapping->a_ops->readpage)
2898		return -ENOEXEC;
2899	file_accessed(file);
2900	vma->vm_ops = &generic_file_vm_ops;
2901	return 0;
2902}
2903
2904/*
2905 * This is for filesystems which do not implement ->writepage.
2906 */
2907int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2908{
2909	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2910		return -EINVAL;
2911	return generic_file_mmap(file, vma);
2912}
2913#else
2914vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2915{
2916	return VM_FAULT_SIGBUS;
2917}
2918int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2919{
2920	return -ENOSYS;
2921}
2922int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2923{
2924	return -ENOSYS;
2925}
2926#endif /* CONFIG_MMU */
2927
2928EXPORT_SYMBOL(filemap_page_mkwrite);
2929EXPORT_SYMBOL(generic_file_mmap);
2930EXPORT_SYMBOL(generic_file_readonly_mmap);
2931
2932static struct page *wait_on_page_read(struct page *page)
2933{
2934	if (!IS_ERR(page)) {
2935		wait_on_page_locked(page);
2936		if (!PageUptodate(page)) {
2937			put_page(page);
2938			page = ERR_PTR(-EIO);
2939		}
2940	}
2941	return page;
2942}
2943
2944static struct page *do_read_cache_page(struct address_space *mapping,
2945				pgoff_t index,
2946				int (*filler)(void *, struct page *),
2947				void *data,
2948				gfp_t gfp)
2949{
2950	struct page *page;
2951	int err;
2952repeat:
2953	page = find_get_page(mapping, index);
2954	if (!page) {
2955		page = __page_cache_alloc(gfp);
2956		if (!page)
2957			return ERR_PTR(-ENOMEM);
2958		err = add_to_page_cache_lru(page, mapping, index, gfp);
2959		if (unlikely(err)) {
2960			put_page(page);
2961			if (err == -EEXIST)
2962				goto repeat;
2963			/* Presumably ENOMEM for xarray node */
2964			return ERR_PTR(err);
2965		}
2966
2967filler:
2968		if (filler)
2969			err = filler(data, page);
2970		else
2971			err = mapping->a_ops->readpage(data, page);
2972
2973		if (err < 0) {
2974			put_page(page);
2975			return ERR_PTR(err);
2976		}
2977
2978		page = wait_on_page_read(page);
2979		if (IS_ERR(page))
2980			return page;
2981		goto out;
2982	}
2983	if (PageUptodate(page))
2984		goto out;
2985
2986	/*
2987	 * Page is not up to date and may be locked due one of the following
2988	 * case a: Page is being filled and the page lock is held
2989	 * case b: Read/write error clearing the page uptodate status
2990	 * case c: Truncation in progress (page locked)
2991	 * case d: Reclaim in progress
2992	 *
2993	 * Case a, the page will be up to date when the page is unlocked.
2994	 *    There is no need to serialise on the page lock here as the page
2995	 *    is pinned so the lock gives no additional protection. Even if the
2996	 *    page is truncated, the data is still valid if PageUptodate as
2997	 *    it's a race vs truncate race.
2998	 * Case b, the page will not be up to date
2999	 * Case c, the page may be truncated but in itself, the data may still
3000	 *    be valid after IO completes as it's a read vs truncate race. The
3001	 *    operation must restart if the page is not uptodate on unlock but
3002	 *    otherwise serialising on page lock to stabilise the mapping gives
3003	 *    no additional guarantees to the caller as the page lock is
3004	 *    released before return.
3005	 * Case d, similar to truncation. If reclaim holds the page lock, it
3006	 *    will be a race with remove_mapping that determines if the mapping
3007	 *    is valid on unlock but otherwise the data is valid and there is
3008	 *    no need to serialise with page lock.
3009	 *
3010	 * As the page lock gives no additional guarantee, we optimistically
3011	 * wait on the page to be unlocked and check if it's up to date and
3012	 * use the page if it is. Otherwise, the page lock is required to
3013	 * distinguish between the different cases. The motivation is that we
3014	 * avoid spurious serialisations and wakeups when multiple processes
3015	 * wait on the same page for IO to complete.
3016	 */
3017	wait_on_page_locked(page);
3018	if (PageUptodate(page))
3019		goto out;
3020
3021	/* Distinguish between all the cases under the safety of the lock */
3022	lock_page(page);
3023
3024	/* Case c or d, restart the operation */
3025	if (!page->mapping) {
3026		unlock_page(page);
3027		put_page(page);
3028		goto repeat;
3029	}
3030
3031	/* Someone else locked and filled the page in a very small window */
3032	if (PageUptodate(page)) {
3033		unlock_page(page);
3034		goto out;
3035	}
3036
3037	/*
3038	 * A previous I/O error may have been due to temporary
3039	 * failures.
3040	 * Clear page error before actual read, PG_error will be
3041	 * set again if read page fails.
3042	 */
3043	ClearPageError(page);
3044	goto filler;
3045
3046out:
3047	mark_page_accessed(page);
3048	return page;
3049}
3050
3051/**
3052 * read_cache_page - read into page cache, fill it if needed
3053 * @mapping:	the page's address_space
3054 * @index:	the page index
3055 * @filler:	function to perform the read
3056 * @data:	first arg to filler(data, page) function, often left as NULL
3057 *
3058 * Read into the page cache. If a page already exists, and PageUptodate() is
3059 * not set, try to fill the page and wait for it to become unlocked.
3060 *
3061 * If the page does not get brought uptodate, return -EIO.
3062 *
3063 * Return: up to date page on success, ERR_PTR() on failure.
3064 */
3065struct page *read_cache_page(struct address_space *mapping,
3066				pgoff_t index,
3067				int (*filler)(void *, struct page *),
3068				void *data)
3069{
3070	return do_read_cache_page(mapping, index, filler, data,
3071			mapping_gfp_mask(mapping));
3072}
3073EXPORT_SYMBOL(read_cache_page);
3074
3075/**
3076 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3077 * @mapping:	the page's address_space
3078 * @index:	the page index
3079 * @gfp:	the page allocator flags to use if allocating
3080 *
3081 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3082 * any new page allocations done using the specified allocation flags.
3083 *
3084 * If the page does not get brought uptodate, return -EIO.
3085 *
3086 * Return: up to date page on success, ERR_PTR() on failure.
3087 */
3088struct page *read_cache_page_gfp(struct address_space *mapping,
3089				pgoff_t index,
3090				gfp_t gfp)
3091{
3092	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3093}
3094EXPORT_SYMBOL(read_cache_page_gfp);
3095
3096/*
3097 * Don't operate on ranges the page cache doesn't support, and don't exceed the
3098 * LFS limits.  If pos is under the limit it becomes a short access.  If it
3099 * exceeds the limit we return -EFBIG.
3100 */
3101static int generic_write_check_limits(struct file *file, loff_t pos,
3102				      loff_t *count)
3103{
3104	struct inode *inode = file->f_mapping->host;
3105	loff_t max_size = inode->i_sb->s_maxbytes;
3106	loff_t limit = rlimit(RLIMIT_FSIZE);
3107
3108	if (limit != RLIM_INFINITY) {
3109		if (pos >= limit) {
3110			send_sig(SIGXFSZ, current, 0);
3111			return -EFBIG;
3112		}
3113		*count = min(*count, limit - pos);
3114	}
3115
3116	if (!(file->f_flags & O_LARGEFILE))
3117		max_size = MAX_NON_LFS;
3118
3119	if (unlikely(pos >= max_size))
3120		return -EFBIG;
3121
3122	*count = min(*count, max_size - pos);
3123
3124	return 0;
3125}
3126
3127/*
3128 * Performs necessary checks before doing a write
3129 *
3130 * Can adjust writing position or amount of bytes to write.
3131 * Returns appropriate error code that caller should return or
3132 * zero in case that write should be allowed.
3133 */
3134inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3135{
3136	struct file *file = iocb->ki_filp;
3137	struct inode *inode = file->f_mapping->host;
3138	loff_t count;
3139	int ret;
3140
3141	if (IS_SWAPFILE(inode))
3142		return -ETXTBSY;
3143
3144	if (!iov_iter_count(from))
3145		return 0;
3146
3147	/* FIXME: this is for backwards compatibility with 2.4 */
3148	if (iocb->ki_flags & IOCB_APPEND)
3149		iocb->ki_pos = i_size_read(inode);
3150
3151	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3152		return -EINVAL;
3153
3154	count = iov_iter_count(from);
3155	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3156	if (ret)
3157		return ret;
3158
3159	iov_iter_truncate(from, count);
3160	return iov_iter_count(from);
3161}
3162EXPORT_SYMBOL(generic_write_checks);
3163
3164/*
3165 * Performs necessary checks before doing a clone.
3166 *
3167 * Can adjust amount of bytes to clone via @req_count argument.
3168 * Returns appropriate error code that caller should return or
3169 * zero in case the clone should be allowed.
3170 */
3171int generic_remap_checks(struct file *file_in, loff_t pos_in,
3172			 struct file *file_out, loff_t pos_out,
3173			 loff_t *req_count, unsigned int remap_flags)
3174{
3175	struct inode *inode_in = file_in->f_mapping->host;
3176	struct inode *inode_out = file_out->f_mapping->host;
3177	uint64_t count = *req_count;
3178	uint64_t bcount;
3179	loff_t size_in, size_out;
3180	loff_t bs = inode_out->i_sb->s_blocksize;
3181	int ret;
3182
3183	/* The start of both ranges must be aligned to an fs block. */
3184	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3185		return -EINVAL;
3186
3187	/* Ensure offsets don't wrap. */
3188	if (pos_in + count < pos_in || pos_out + count < pos_out)
3189		return -EINVAL;
3190
3191	size_in = i_size_read(inode_in);
3192	size_out = i_size_read(inode_out);
3193
3194	/* Dedupe requires both ranges to be within EOF. */
3195	if ((remap_flags & REMAP_FILE_DEDUP) &&
3196	    (pos_in >= size_in || pos_in + count > size_in ||
3197	     pos_out >= size_out || pos_out + count > size_out))
3198		return -EINVAL;
3199
3200	/* Ensure the infile range is within the infile. */
3201	if (pos_in >= size_in)
3202		return -EINVAL;
3203	count = min(count, size_in - (uint64_t)pos_in);
3204
3205	ret = generic_write_check_limits(file_out, pos_out, &count);
3206	if (ret)
3207		return ret;
3208
3209	/*
3210	 * If the user wanted us to link to the infile's EOF, round up to the
3211	 * next block boundary for this check.
3212	 *
3213	 * Otherwise, make sure the count is also block-aligned, having
3214	 * already confirmed the starting offsets' block alignment.
3215	 */
3216	if (pos_in + count == size_in) {
3217		bcount = ALIGN(size_in, bs) - pos_in;
3218	} else {
3219		if (!IS_ALIGNED(count, bs))
3220			count = ALIGN_DOWN(count, bs);
3221		bcount = count;
3222	}
3223
3224	/* Don't allow overlapped cloning within the same file. */
3225	if (inode_in == inode_out &&
3226	    pos_out + bcount > pos_in &&
3227	    pos_out < pos_in + bcount)
3228		return -EINVAL;
3229
3230	/*
3231	 * We shortened the request but the caller can't deal with that, so
3232	 * bounce the request back to userspace.
3233	 */
3234	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3235		return -EINVAL;
3236
3237	*req_count = count;
3238	return 0;
3239}
3240
3241
3242/*
3243 * Performs common checks before doing a file copy/clone
3244 * from @file_in to @file_out.
3245 */
3246int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3247{
3248	struct inode *inode_in = file_inode(file_in);
3249	struct inode *inode_out = file_inode(file_out);
3250
3251	/* Don't copy dirs, pipes, sockets... */
3252	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3253		return -EISDIR;
3254	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3255		return -EINVAL;
3256
3257	if (!(file_in->f_mode & FMODE_READ) ||
3258	    !(file_out->f_mode & FMODE_WRITE) ||
3259	    (file_out->f_flags & O_APPEND))
3260		return -EBADF;
3261
3262	return 0;
3263}
3264
3265/*
3266 * Performs necessary checks before doing a file copy
3267 *
3268 * Can adjust amount of bytes to copy via @req_count argument.
3269 * Returns appropriate error code that caller should return or
3270 * zero in case the copy should be allowed.
3271 */
3272int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3273			     struct file *file_out, loff_t pos_out,
3274			     size_t *req_count, unsigned int flags)
3275{
3276	struct inode *inode_in = file_inode(file_in);
3277	struct inode *inode_out = file_inode(file_out);
3278	uint64_t count = *req_count;
3279	loff_t size_in;
3280	int ret;
3281
3282	ret = generic_file_rw_checks(file_in, file_out);
3283	if (ret)
3284		return ret;
3285
3286	/* Don't touch certain kinds of inodes */
3287	if (IS_IMMUTABLE(inode_out))
3288		return -EPERM;
3289
3290	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3291		return -ETXTBSY;
3292
3293	/* Ensure offsets don't wrap. */
3294	if (pos_in + count < pos_in || pos_out + count < pos_out)
3295		return -EOVERFLOW;
3296
3297	/* Shorten the copy to EOF */
3298	size_in = i_size_read(inode_in);
3299	if (pos_in >= size_in)
3300		count = 0;
3301	else
3302		count = min(count, size_in - (uint64_t)pos_in);
3303
3304	ret = generic_write_check_limits(file_out, pos_out, &count);
3305	if (ret)
3306		return ret;
3307
3308	/* Don't allow overlapped copying within the same file. */
3309	if (inode_in == inode_out &&
3310	    pos_out + count > pos_in &&
3311	    pos_out < pos_in + count)
3312		return -EINVAL;
3313
3314	*req_count = count;
3315	return 0;
3316}
3317
3318int pagecache_write_begin(struct file *file, struct address_space *mapping,
3319				loff_t pos, unsigned len, unsigned flags,
3320				struct page **pagep, void **fsdata)
3321{
3322	const struct address_space_operations *aops = mapping->a_ops;
3323
3324	return aops->write_begin(file, mapping, pos, len, flags,
3325							pagep, fsdata);
3326}
3327EXPORT_SYMBOL(pagecache_write_begin);
3328
3329int pagecache_write_end(struct file *file, struct address_space *mapping,
3330				loff_t pos, unsigned len, unsigned copied,
3331				struct page *page, void *fsdata)
3332{
3333	const struct address_space_operations *aops = mapping->a_ops;
3334
3335	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3336}
3337EXPORT_SYMBOL(pagecache_write_end);
3338
3339/*
3340 * Warn about a page cache invalidation failure during a direct I/O write.
3341 */
3342void dio_warn_stale_pagecache(struct file *filp)
3343{
3344	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3345	char pathname[128];
3346	struct inode *inode = file_inode(filp);
3347	char *path;
3348
3349	errseq_set(&inode->i_mapping->wb_err, -EIO);
3350	if (__ratelimit(&_rs)) {
3351		path = file_path(filp, pathname, sizeof(pathname));
3352		if (IS_ERR(path))
3353			path = "(unknown)";
3354		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3355		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3356			current->comm);
3357	}
3358}
3359
3360ssize_t
3361generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3362{
3363	struct file	*file = iocb->ki_filp;
3364	struct address_space *mapping = file->f_mapping;
3365	struct inode	*inode = mapping->host;
3366	loff_t		pos = iocb->ki_pos;
3367	ssize_t		written;
3368	size_t		write_len;
3369	pgoff_t		end;
3370
3371	write_len = iov_iter_count(from);
3372	end = (pos + write_len - 1) >> PAGE_SHIFT;
3373
3374	if (iocb->ki_flags & IOCB_NOWAIT) {
3375		/* If there are pages to writeback, return */
3376		if (filemap_range_has_page(inode->i_mapping, pos,
3377					   pos + write_len - 1))
3378			return -EAGAIN;
3379	} else {
3380		written = filemap_write_and_wait_range(mapping, pos,
3381							pos + write_len - 1);
3382		if (written)
3383			goto out;
3384	}
3385
3386	/*
3387	 * After a write we want buffered reads to be sure to go to disk to get
3388	 * the new data.  We invalidate clean cached page from the region we're
3389	 * about to write.  We do this *before* the write so that we can return
3390	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3391	 */
3392	written = invalidate_inode_pages2_range(mapping,
3393					pos >> PAGE_SHIFT, end);
3394	/*
3395	 * If a page can not be invalidated, return 0 to fall back
3396	 * to buffered write.
3397	 */
3398	if (written) {
3399		if (written == -EBUSY)
3400			return 0;
3401		goto out;
3402	}
3403
3404	written = mapping->a_ops->direct_IO(iocb, from);
3405
3406	/*
3407	 * Finally, try again to invalidate clean pages which might have been
3408	 * cached by non-direct readahead, or faulted in by get_user_pages()
3409	 * if the source of the write was an mmap'ed region of the file
3410	 * we're writing.  Either one is a pretty crazy thing to do,
3411	 * so we don't support it 100%.  If this invalidation
3412	 * fails, tough, the write still worked...
3413	 *
3414	 * Most of the time we do not need this since dio_complete() will do
3415	 * the invalidation for us. However there are some file systems that
3416	 * do not end up with dio_complete() being called, so let's not break
3417	 * them by removing it completely.
3418	 *
3419	 * Noticeable example is a blkdev_direct_IO().
3420	 *
3421	 * Skip invalidation for async writes or if mapping has no pages.
3422	 */
3423	if (written > 0 && mapping->nrpages &&
3424	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3425		dio_warn_stale_pagecache(file);
3426
3427	if (written > 0) {
3428		pos += written;
3429		write_len -= written;
3430		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3431			i_size_write(inode, pos);
3432			mark_inode_dirty(inode);
3433		}
3434		iocb->ki_pos = pos;
3435	}
3436	iov_iter_revert(from, write_len - iov_iter_count(from));
 
3437out:
3438	return written;
3439}
3440EXPORT_SYMBOL(generic_file_direct_write);
3441
3442/*
3443 * Find or create a page at the given pagecache position. Return the locked
3444 * page. This function is specifically for buffered writes.
3445 */
3446struct page *grab_cache_page_write_begin(struct address_space *mapping,
3447					pgoff_t index, unsigned flags)
3448{
3449	struct page *page;
3450	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3451
3452	if (flags & AOP_FLAG_NOFS)
3453		fgp_flags |= FGP_NOFS;
3454
3455	page = pagecache_get_page(mapping, index, fgp_flags,
3456			mapping_gfp_mask(mapping));
3457	if (page)
3458		wait_for_stable_page(page);
3459
3460	return page;
3461}
3462EXPORT_SYMBOL(grab_cache_page_write_begin);
3463
3464ssize_t generic_perform_write(struct file *file,
3465				struct iov_iter *i, loff_t pos)
3466{
3467	struct address_space *mapping = file->f_mapping;
3468	const struct address_space_operations *a_ops = mapping->a_ops;
3469	long status = 0;
3470	ssize_t written = 0;
3471	unsigned int flags = 0;
3472
3473	do {
3474		struct page *page;
3475		unsigned long offset;	/* Offset into pagecache page */
3476		unsigned long bytes;	/* Bytes to write to page */
3477		size_t copied;		/* Bytes copied from user */
3478		void *fsdata;
3479
3480		offset = (pos & (PAGE_SIZE - 1));
3481		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3482						iov_iter_count(i));
3483
3484again:
3485		/*
3486		 * Bring in the user page that we will copy from _first_.
3487		 * Otherwise there's a nasty deadlock on copying from the
3488		 * same page as we're writing to, without it being marked
3489		 * up-to-date.
3490		 *
3491		 * Not only is this an optimisation, but it is also required
3492		 * to check that the address is actually valid, when atomic
3493		 * usercopies are used, below.
3494		 */
3495		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3496			status = -EFAULT;
3497			break;
3498		}
3499
3500		if (fatal_signal_pending(current)) {
3501			status = -EINTR;
3502			break;
3503		}
3504
3505		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3506						&page, &fsdata);
3507		if (unlikely(status < 0))
3508			break;
3509
3510		if (mapping_writably_mapped(mapping))
3511			flush_dcache_page(page);
3512
3513		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3514		flush_dcache_page(page);
3515
3516		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3517						page, fsdata);
3518		if (unlikely(status < 0))
3519			break;
3520		copied = status;
3521
 
3522		cond_resched();
3523
3524		iov_iter_advance(i, copied);
3525		if (unlikely(copied == 0)) {
3526			/*
3527			 * If we were unable to copy any data at all, we must
3528			 * fall back to a single segment length write.
3529			 *
3530			 * If we didn't fallback here, we could livelock
3531			 * because not all segments in the iov can be copied at
3532			 * once without a pagefault.
3533			 */
3534			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3535						iov_iter_single_seg_count(i));
3536			goto again;
3537		}
3538		pos += copied;
3539		written += copied;
3540
3541		balance_dirty_pages_ratelimited(mapping);
3542	} while (iov_iter_count(i));
3543
3544	return written ? written : status;
3545}
3546EXPORT_SYMBOL(generic_perform_write);
3547
3548/**
3549 * __generic_file_write_iter - write data to a file
3550 * @iocb:	IO state structure (file, offset, etc.)
3551 * @from:	iov_iter with data to write
3552 *
3553 * This function does all the work needed for actually writing data to a
3554 * file. It does all basic checks, removes SUID from the file, updates
3555 * modification times and calls proper subroutines depending on whether we
3556 * do direct IO or a standard buffered write.
3557 *
3558 * It expects i_mutex to be grabbed unless we work on a block device or similar
3559 * object which does not need locking at all.
3560 *
3561 * This function does *not* take care of syncing data in case of O_SYNC write.
3562 * A caller has to handle it. This is mainly due to the fact that we want to
3563 * avoid syncing under i_mutex.
3564 *
3565 * Return:
3566 * * number of bytes written, even for truncated writes
3567 * * negative error code if no data has been written at all
3568 */
3569ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3570{
3571	struct file *file = iocb->ki_filp;
3572	struct address_space * mapping = file->f_mapping;
3573	struct inode 	*inode = mapping->host;
3574	ssize_t		written = 0;
3575	ssize_t		err;
3576	ssize_t		status;
3577
3578	/* We can write back this queue in page reclaim */
3579	current->backing_dev_info = inode_to_bdi(inode);
3580	err = file_remove_privs(file);
3581	if (err)
3582		goto out;
3583
3584	err = file_update_time(file);
3585	if (err)
3586		goto out;
3587
3588	if (iocb->ki_flags & IOCB_DIRECT) {
3589		loff_t pos, endbyte;
3590
3591		written = generic_file_direct_write(iocb, from);
3592		/*
3593		 * If the write stopped short of completing, fall back to
3594		 * buffered writes.  Some filesystems do this for writes to
3595		 * holes, for example.  For DAX files, a buffered write will
3596		 * not succeed (even if it did, DAX does not handle dirty
3597		 * page-cache pages correctly).
3598		 */
3599		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3600			goto out;
3601
3602		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3603		/*
3604		 * If generic_perform_write() returned a synchronous error
3605		 * then we want to return the number of bytes which were
3606		 * direct-written, or the error code if that was zero.  Note
3607		 * that this differs from normal direct-io semantics, which
3608		 * will return -EFOO even if some bytes were written.
3609		 */
3610		if (unlikely(status < 0)) {
3611			err = status;
3612			goto out;
3613		}
3614		/*
3615		 * We need to ensure that the page cache pages are written to
3616		 * disk and invalidated to preserve the expected O_DIRECT
3617		 * semantics.
3618		 */
3619		endbyte = pos + status - 1;
3620		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3621		if (err == 0) {
3622			iocb->ki_pos = endbyte + 1;
3623			written += status;
3624			invalidate_mapping_pages(mapping,
3625						 pos >> PAGE_SHIFT,
3626						 endbyte >> PAGE_SHIFT);
3627		} else {
3628			/*
3629			 * We don't know how much we wrote, so just return
3630			 * the number of bytes which were direct-written
3631			 */
3632		}
3633	} else {
3634		written = generic_perform_write(file, from, iocb->ki_pos);
3635		if (likely(written > 0))
3636			iocb->ki_pos += written;
3637	}
3638out:
3639	current->backing_dev_info = NULL;
3640	return written ? written : err;
3641}
3642EXPORT_SYMBOL(__generic_file_write_iter);
3643
3644/**
3645 * generic_file_write_iter - write data to a file
3646 * @iocb:	IO state structure
3647 * @from:	iov_iter with data to write
3648 *
3649 * This is a wrapper around __generic_file_write_iter() to be used by most
3650 * filesystems. It takes care of syncing the file in case of O_SYNC file
3651 * and acquires i_mutex as needed.
3652 * Return:
3653 * * negative error code if no data has been written at all of
3654 *   vfs_fsync_range() failed for a synchronous write
3655 * * number of bytes written, even for truncated writes
3656 */
3657ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3658{
3659	struct file *file = iocb->ki_filp;
3660	struct inode *inode = file->f_mapping->host;
3661	ssize_t ret;
3662
3663	inode_lock(inode);
3664	ret = generic_write_checks(iocb, from);
3665	if (ret > 0)
3666		ret = __generic_file_write_iter(iocb, from);
3667	inode_unlock(inode);
3668
3669	if (ret > 0)
3670		ret = generic_write_sync(iocb, ret);
3671	return ret;
3672}
3673EXPORT_SYMBOL(generic_file_write_iter);
3674
3675/**
3676 * try_to_release_page() - release old fs-specific metadata on a page
3677 *
3678 * @page: the page which the kernel is trying to free
3679 * @gfp_mask: memory allocation flags (and I/O mode)
3680 *
3681 * The address_space is to try to release any data against the page
3682 * (presumably at page->private).
3683 *
3684 * This may also be called if PG_fscache is set on a page, indicating that the
3685 * page is known to the local caching routines.
3686 *
3687 * The @gfp_mask argument specifies whether I/O may be performed to release
3688 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3689 *
3690 * Return: %1 if the release was successful, otherwise return zero.
3691 */
3692int try_to_release_page(struct page *page, gfp_t gfp_mask)
3693{
3694	struct address_space * const mapping = page->mapping;
3695
3696	BUG_ON(!PageLocked(page));
3697	if (PageWriteback(page))
3698		return 0;
3699
3700	if (mapping && mapping->a_ops->releasepage)
3701		return mapping->a_ops->releasepage(page, gfp_mask);
3702	return try_to_free_buffers(page);
3703}
3704
3705EXPORT_SYMBOL(try_to_release_page);