Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *	linux/mm/filemap.c
   4 *
   5 * Copyright (C) 1994-1999  Linus Torvalds
   6 */
   7
   8/*
   9 * This file handles the generic file mmap semantics used by
  10 * most "normal" filesystems (but you don't /have/ to use this:
  11 * the NFS filesystem used to do this differently, for example)
  12 */
  13#include <linux/export.h>
  14#include <linux/compiler.h>
  15#include <linux/dax.h>
  16#include <linux/fs.h>
  17#include <linux/sched/signal.h>
  18#include <linux/uaccess.h>
 
  19#include <linux/capability.h>
  20#include <linux/kernel_stat.h>
  21#include <linux/gfp.h>
  22#include <linux/mm.h>
  23#include <linux/swap.h>
  24#include <linux/mman.h>
  25#include <linux/pagemap.h>
  26#include <linux/file.h>
  27#include <linux/uio.h>
  28#include <linux/error-injection.h>
  29#include <linux/hash.h>
  30#include <linux/writeback.h>
  31#include <linux/backing-dev.h>
  32#include <linux/pagevec.h>
  33#include <linux/blkdev.h>
  34#include <linux/security.h>
  35#include <linux/cpuset.h>
  36#include <linux/hugetlb.h>
  37#include <linux/memcontrol.h>
  38#include <linux/cleancache.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/rmap.h>
  41#include <linux/delayacct.h>
  42#include <linux/psi.h>
  43#include <linux/ramfs.h>
  44#include <linux/page_idle.h>
  45#include <asm/pgalloc.h>
  46#include <asm/tlbflush.h>
  47#include "internal.h"
  48
  49#define CREATE_TRACE_POINTS
  50#include <trace/events/filemap.h>
  51
  52/*
  53 * FIXME: remove all knowledge of the buffer layer from the core VM
  54 */
  55#include <linux/buffer_head.h> /* for try_to_free_buffers */
  56
  57#include <asm/mman.h>
  58
  59/*
  60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  61 * though.
  62 *
  63 * Shared mappings now work. 15.8.1995  Bruno.
  64 *
  65 * finished 'unifying' the page and buffer cache and SMP-threaded the
  66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  67 *
  68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  69 */
  70
  71/*
  72 * Lock ordering:
  73 *
  74 *  ->i_mmap_rwsem		(truncate_pagecache)
  75 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  76 *      ->swap_lock		(exclusive_swap_page, others)
  77 *        ->i_pages lock
  78 *
  79 *  ->i_mutex
  80 *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
  81 *
  82 *  ->mmap_lock
  83 *    ->i_mmap_rwsem
  84 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  85 *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
  86 *
  87 *  ->mmap_lock
  88 *    ->lock_page		(access_process_vm)
  89 *
  90 *  ->i_mutex			(generic_perform_write)
  91 *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
  92 *
  93 *  bdi->wb.list_lock
  94 *    sb_lock			(fs/fs-writeback.c)
  95 *    ->i_pages lock		(__sync_single_inode)
  96 *
  97 *  ->i_mmap_rwsem
  98 *    ->anon_vma.lock		(vma_adjust)
  99 *
 100 *  ->anon_vma.lock
 101 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
 102 *
 103 *  ->page_table_lock or pte_lock
 104 *    ->swap_lock		(try_to_unmap_one)
 105 *    ->private_lock		(try_to_unmap_one)
 106 *    ->i_pages lock		(try_to_unmap_one)
 107 *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
 108 *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
 109 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 110 *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
 111 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 112 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 113 *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
 114 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 115 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 116 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 117 *
 118 * ->i_mmap_rwsem
 119 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 120 */
 121
 122static void page_cache_delete(struct address_space *mapping,
 123				   struct page *page, void *shadow)
 124{
 125	XA_STATE(xas, &mapping->i_pages, page->index);
 126	unsigned int nr = 1;
 
 
 
 127
 128	mapping_set_update(&xas, mapping);
 129
 130	/* hugetlb pages are represented by a single entry in the xarray */
 131	if (!PageHuge(page)) {
 132		xas_set_order(&xas, page->index, compound_order(page));
 133		nr = compound_nr(page);
 134	}
 135
 136	VM_BUG_ON_PAGE(!PageLocked(page), page);
 137	VM_BUG_ON_PAGE(PageTail(page), page);
 138	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 139
 140	xas_store(&xas, shadow);
 141	xas_init_marks(&xas);
 142
 143	page->mapping = NULL;
 144	/* Leave page->index set: truncation lookup relies upon it */
 145	mapping->nrpages -= nr;
 146}
 147
 148static void unaccount_page_cache_page(struct address_space *mapping,
 149				      struct page *page)
 150{
 151	int nr;
 152
 153	/*
 154	 * if we're uptodate, flush out into the cleancache, otherwise
 155	 * invalidate any existing cleancache entries.  We can't leave
 156	 * stale data around in the cleancache once our page is gone
 157	 */
 158	if (PageUptodate(page) && PageMappedToDisk(page))
 159		cleancache_put_page(page);
 160	else
 161		cleancache_invalidate_page(mapping, page);
 162
 163	VM_BUG_ON_PAGE(PageTail(page), page);
 164	VM_BUG_ON_PAGE(page_mapped(page), page);
 165	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 166		int mapcount;
 167
 168		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 169			 current->comm, page_to_pfn(page));
 170		dump_page(page, "still mapped when deleted");
 171		dump_stack();
 172		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 173
 174		mapcount = page_mapcount(page);
 175		if (mapping_exiting(mapping) &&
 176		    page_count(page) >= mapcount + 2) {
 177			/*
 178			 * All vmas have already been torn down, so it's
 179			 * a good bet that actually the page is unmapped,
 180			 * and we'd prefer not to leak it: if we're wrong,
 181			 * some other bad page check should catch it later.
 182			 */
 183			page_mapcount_reset(page);
 184			page_ref_sub(page, mapcount);
 185		}
 186	}
 
 187
 188	/* hugetlb pages do not participate in page cache accounting. */
 189	if (PageHuge(page))
 
 
 190		return;
 
 191
 192	nr = thp_nr_pages(page);
 193
 194	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
 195	if (PageSwapBacked(page)) {
 196		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
 197		if (PageTransHuge(page))
 198			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
 199	} else if (PageTransHuge(page)) {
 200		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
 201		filemap_nr_thps_dec(mapping);
 202	}
 203
 
 
 
 
 
 
 
 
 
 204	/*
 205	 * At this point page must be either written or cleaned by
 206	 * truncate.  Dirty page here signals a bug and loss of
 207	 * unwritten data.
 208	 *
 209	 * This fixes dirty accounting after removing the page entirely
 210	 * but leaves PageDirty set: it has no effect for truncated
 211	 * page and anyway will be cleared before returning page into
 212	 * buddy allocator.
 213	 */
 214	if (WARN_ON_ONCE(PageDirty(page)))
 215		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 
 
 216}
 217
 218/*
 219 * Delete a page from the page cache and free it. Caller has to make
 220 * sure the page is locked and that nobody else uses it - or that usage
 221 * is safe.  The caller must hold the i_pages lock.
 222 */
 223void __delete_from_page_cache(struct page *page, void *shadow)
 224{
 225	struct address_space *mapping = page->mapping;
 226
 227	trace_mm_filemap_delete_from_page_cache(page);
 
 
 
 
 
 
 
 
 
 228
 229	unaccount_page_cache_page(mapping, page);
 230	page_cache_delete(mapping, page, shadow);
 231}
 232
 233static void page_cache_free_page(struct address_space *mapping,
 234				struct page *page)
 235{
 236	void (*freepage)(struct page *);
 237
 238	freepage = mapping->a_ops->freepage;
 239	if (freepage)
 240		freepage(page);
 
 241
 242	if (PageTransHuge(page) && !PageHuge(page)) {
 243		page_ref_sub(page, thp_nr_pages(page));
 244		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 245	} else {
 246		put_page(page);
 
 
 
 
 
 247	}
 248}
 249
 250/**
 251 * delete_from_page_cache - delete page from page cache
 252 * @page: the page which the kernel is trying to remove from page cache
 253 *
 254 * This must be called only on pages that have been verified to be in the page
 255 * cache and locked.  It will never put the page into the free list, the caller
 256 * has a reference on the page.
 257 */
 258void delete_from_page_cache(struct page *page)
 259{
 260	struct address_space *mapping = page_mapping(page);
 261	unsigned long flags;
 262
 263	BUG_ON(!PageLocked(page));
 264	xa_lock_irqsave(&mapping->i_pages, flags);
 
 
 265	__delete_from_page_cache(page, NULL);
 266	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 267
 268	page_cache_free_page(mapping, page);
 
 
 269}
 270EXPORT_SYMBOL(delete_from_page_cache);
 271
 272/*
 273 * page_cache_delete_batch - delete several pages from page cache
 274 * @mapping: the mapping to which pages belong
 275 * @pvec: pagevec with pages to delete
 276 *
 277 * The function walks over mapping->i_pages and removes pages passed in @pvec
 278 * from the mapping. The function expects @pvec to be sorted by page index
 279 * and is optimised for it to be dense.
 280 * It tolerates holes in @pvec (mapping entries at those indices are not
 281 * modified). The function expects only THP head pages to be present in the
 282 * @pvec.
 283 *
 284 * The function expects the i_pages lock to be held.
 285 */
 286static void page_cache_delete_batch(struct address_space *mapping,
 287			     struct pagevec *pvec)
 288{
 289	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
 290	int total_pages = 0;
 291	int i = 0;
 292	struct page *page;
 293
 294	mapping_set_update(&xas, mapping);
 295	xas_for_each(&xas, page, ULONG_MAX) {
 296		if (i >= pagevec_count(pvec))
 297			break;
 298
 299		/* A swap/dax/shadow entry got inserted? Skip it. */
 300		if (xa_is_value(page))
 301			continue;
 302		/*
 303		 * A page got inserted in our range? Skip it. We have our
 304		 * pages locked so they are protected from being removed.
 305		 * If we see a page whose index is higher than ours, it
 306		 * means our page has been removed, which shouldn't be
 307		 * possible because we're holding the PageLock.
 308		 */
 309		if (page != pvec->pages[i]) {
 310			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
 311					page);
 312			continue;
 313		}
 314
 315		WARN_ON_ONCE(!PageLocked(page));
 316
 317		if (page->index == xas.xa_index)
 318			page->mapping = NULL;
 319		/* Leave page->index set: truncation lookup relies on it */
 320
 321		/*
 322		 * Move to the next page in the vector if this is a regular
 323		 * page or the index is of the last sub-page of this compound
 324		 * page.
 325		 */
 326		if (page->index + compound_nr(page) - 1 == xas.xa_index)
 327			i++;
 328		xas_store(&xas, NULL);
 329		total_pages++;
 330	}
 331	mapping->nrpages -= total_pages;
 332}
 333
 334void delete_from_page_cache_batch(struct address_space *mapping,
 335				  struct pagevec *pvec)
 336{
 337	int i;
 338	unsigned long flags;
 339
 340	if (!pagevec_count(pvec))
 341		return;
 342
 343	xa_lock_irqsave(&mapping->i_pages, flags);
 344	for (i = 0; i < pagevec_count(pvec); i++) {
 345		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 346
 347		unaccount_page_cache_page(mapping, pvec->pages[i]);
 348	}
 349	page_cache_delete_batch(mapping, pvec);
 350	xa_unlock_irqrestore(&mapping->i_pages, flags);
 351
 352	for (i = 0; i < pagevec_count(pvec); i++)
 353		page_cache_free_page(mapping, pvec->pages[i]);
 354}
 355
 356int filemap_check_errors(struct address_space *mapping)
 357{
 358	int ret = 0;
 359	/* Check for outstanding write errors */
 360	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 361	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 362		ret = -ENOSPC;
 363	if (test_bit(AS_EIO, &mapping->flags) &&
 364	    test_and_clear_bit(AS_EIO, &mapping->flags))
 365		ret = -EIO;
 366	return ret;
 367}
 368EXPORT_SYMBOL(filemap_check_errors);
 369
 370static int filemap_check_and_keep_errors(struct address_space *mapping)
 371{
 372	/* Check for outstanding write errors */
 373	if (test_bit(AS_EIO, &mapping->flags))
 374		return -EIO;
 375	if (test_bit(AS_ENOSPC, &mapping->flags))
 376		return -ENOSPC;
 377	return 0;
 378}
 379
 380/**
 381 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 382 * @mapping:	address space structure to write
 383 * @start:	offset in bytes where the range starts
 384 * @end:	offset in bytes where the range ends (inclusive)
 385 * @sync_mode:	enable synchronous operation
 386 *
 387 * Start writeback against all of a mapping's dirty pages that lie
 388 * within the byte offsets <start, end> inclusive.
 389 *
 390 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 391 * opposed to a regular memory cleansing writeback.  The difference between
 392 * these two operations is that if a dirty page/buffer is encountered, it must
 393 * be waited upon, and not just skipped over.
 394 *
 395 * Return: %0 on success, negative error code otherwise.
 396 */
 397int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 398				loff_t end, int sync_mode)
 399{
 400	int ret;
 401	struct writeback_control wbc = {
 402		.sync_mode = sync_mode,
 403		.nr_to_write = LONG_MAX,
 404		.range_start = start,
 405		.range_end = end,
 406	};
 407
 408	if (!mapping_can_writeback(mapping) ||
 409	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 410		return 0;
 411
 412	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 413	ret = do_writepages(mapping, &wbc);
 414	wbc_detach_inode(&wbc);
 415	return ret;
 416}
 417
 418static inline int __filemap_fdatawrite(struct address_space *mapping,
 419	int sync_mode)
 420{
 421	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 422}
 423
 424int filemap_fdatawrite(struct address_space *mapping)
 425{
 426	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 427}
 428EXPORT_SYMBOL(filemap_fdatawrite);
 429
 430int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431				loff_t end)
 432{
 433	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 434}
 435EXPORT_SYMBOL(filemap_fdatawrite_range);
 436
 437/**
 438 * filemap_flush - mostly a non-blocking flush
 439 * @mapping:	target address_space
 440 *
 441 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 442 * purposes - I/O may not be started against all dirty pages.
 443 *
 444 * Return: %0 on success, negative error code otherwise.
 445 */
 446int filemap_flush(struct address_space *mapping)
 447{
 448	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 449}
 450EXPORT_SYMBOL(filemap_flush);
 451
 452/**
 453 * filemap_range_has_page - check if a page exists in range.
 454 * @mapping:           address space within which to check
 455 * @start_byte:        offset in bytes where the range starts
 456 * @end_byte:          offset in bytes where the range ends (inclusive)
 457 *
 458 * Find at least one page in the range supplied, usually used to check if
 459 * direct writing in this range will trigger a writeback.
 460 *
 461 * Return: %true if at least one page exists in the specified range,
 462 * %false otherwise.
 463 */
 464bool filemap_range_has_page(struct address_space *mapping,
 465			   loff_t start_byte, loff_t end_byte)
 466{
 467	struct page *page;
 468	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 469	pgoff_t max = end_byte >> PAGE_SHIFT;
 470
 471	if (end_byte < start_byte)
 472		return false;
 473
 474	rcu_read_lock();
 475	for (;;) {
 476		page = xas_find(&xas, max);
 477		if (xas_retry(&xas, page))
 478			continue;
 479		/* Shadow entries don't count */
 480		if (xa_is_value(page))
 481			continue;
 482		/*
 483		 * We don't need to try to pin this page; we're about to
 484		 * release the RCU lock anyway.  It is enough to know that
 485		 * there was a page here recently.
 486		 */
 487		break;
 488	}
 489	rcu_read_unlock();
 490
 491	return page != NULL;
 492}
 493EXPORT_SYMBOL(filemap_range_has_page);
 494
 495static void __filemap_fdatawait_range(struct address_space *mapping,
 496				     loff_t start_byte, loff_t end_byte)
 497{
 498	pgoff_t index = start_byte >> PAGE_SHIFT;
 499	pgoff_t end = end_byte >> PAGE_SHIFT;
 500	struct pagevec pvec;
 501	int nr_pages;
 
 502
 503	if (end_byte < start_byte)
 504		return;
 505
 506	pagevec_init(&pvec);
 507	while (index <= end) {
 
 
 
 508		unsigned i;
 509
 510		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 511				end, PAGECACHE_TAG_WRITEBACK);
 512		if (!nr_pages)
 513			break;
 514
 515		for (i = 0; i < nr_pages; i++) {
 516			struct page *page = pvec.pages[i];
 517
 
 
 
 
 518			wait_on_page_writeback(page);
 519			ClearPageError(page);
 
 520		}
 521		pagevec_release(&pvec);
 522		cond_resched();
 523	}
 524}
 
 
 
 525
 526/**
 527 * filemap_fdatawait_range - wait for writeback to complete
 528 * @mapping:		address space structure to wait for
 529 * @start_byte:		offset in bytes where the range starts
 530 * @end_byte:		offset in bytes where the range ends (inclusive)
 531 *
 532 * Walk the list of under-writeback pages of the given address space
 533 * in the given range and wait for all of them.  Check error status of
 534 * the address space and return it.
 535 *
 536 * Since the error status of the address space is cleared by this function,
 537 * callers are responsible for checking the return value and handling and/or
 538 * reporting the error.
 539 *
 540 * Return: error status of the address space.
 541 */
 542int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 543			    loff_t end_byte)
 544{
 545	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 546	return filemap_check_errors(mapping);
 547}
 548EXPORT_SYMBOL(filemap_fdatawait_range);
 549
 550/**
 551 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
 552 * @mapping:		address space structure to wait for
 553 * @start_byte:		offset in bytes where the range starts
 554 * @end_byte:		offset in bytes where the range ends (inclusive)
 555 *
 556 * Walk the list of under-writeback pages of the given address space in the
 557 * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
 558 * this function does not clear error status of the address space.
 559 *
 560 * Use this function if callers don't handle errors themselves.  Expected
 561 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 562 * fsfreeze(8)
 563 */
 564int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
 565		loff_t start_byte, loff_t end_byte)
 566{
 567	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 568	return filemap_check_and_keep_errors(mapping);
 569}
 570EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
 571
 572/**
 573 * file_fdatawait_range - wait for writeback to complete
 574 * @file:		file pointing to address space structure to wait for
 575 * @start_byte:		offset in bytes where the range starts
 576 * @end_byte:		offset in bytes where the range ends (inclusive)
 577 *
 578 * Walk the list of under-writeback pages of the address space that file
 579 * refers to, in the given range and wait for all of them.  Check error
 580 * status of the address space vs. the file->f_wb_err cursor and return it.
 581 *
 582 * Since the error status of the file is advanced by this function,
 583 * callers are responsible for checking the return value and handling and/or
 584 * reporting the error.
 585 *
 586 * Return: error status of the address space vs. the file->f_wb_err cursor.
 587 */
 588int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 589{
 590	struct address_space *mapping = file->f_mapping;
 591
 592	__filemap_fdatawait_range(mapping, start_byte, end_byte);
 593	return file_check_and_advance_wb_err(file);
 594}
 595EXPORT_SYMBOL(file_fdatawait_range);
 596
 597/**
 598 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 599 * @mapping: address space structure to wait for
 600 *
 601 * Walk the list of under-writeback pages of the given address space
 602 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 603 * does not clear error status of the address space.
 604 *
 605 * Use this function if callers don't handle errors themselves.  Expected
 606 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 607 * fsfreeze(8)
 608 *
 609 * Return: error status of the address space.
 610 */
 611int filemap_fdatawait_keep_errors(struct address_space *mapping)
 612{
 613	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 614	return filemap_check_and_keep_errors(mapping);
 615}
 616EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 617
 618/* Returns true if writeback might be needed or already in progress. */
 619static bool mapping_needs_writeback(struct address_space *mapping)
 620{
 621	return mapping->nrpages;
 622}
 623
 624/**
 625 * filemap_range_needs_writeback - check if range potentially needs writeback
 626 * @mapping:           address space within which to check
 627 * @start_byte:        offset in bytes where the range starts
 628 * @end_byte:          offset in bytes where the range ends (inclusive)
 629 *
 630 * Find at least one page in the range supplied, usually used to check if
 631 * direct writing in this range will trigger a writeback. Used by O_DIRECT
 632 * read/write with IOCB_NOWAIT, to see if the caller needs to do
 633 * filemap_write_and_wait_range() before proceeding.
 634 *
 635 * Return: %true if the caller should do filemap_write_and_wait_range() before
 636 * doing O_DIRECT to a page in this range, %false otherwise.
 637 */
 638bool filemap_range_needs_writeback(struct address_space *mapping,
 639				   loff_t start_byte, loff_t end_byte)
 640{
 641	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
 642	pgoff_t max = end_byte >> PAGE_SHIFT;
 643	struct page *page;
 644
 645	if (!mapping_needs_writeback(mapping))
 646		return false;
 647	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
 648	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
 649		return false;
 650	if (end_byte < start_byte)
 651		return false;
 652
 653	rcu_read_lock();
 654	xas_for_each(&xas, page, max) {
 655		if (xas_retry(&xas, page))
 656			continue;
 657		if (xa_is_value(page))
 658			continue;
 659		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
 660			break;
 661	}
 662	rcu_read_unlock();
 663	return page != NULL;
 664}
 665EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
 666
 667/**
 668 * filemap_write_and_wait_range - write out & wait on a file range
 669 * @mapping:	the address_space for the pages
 670 * @lstart:	offset in bytes where the range starts
 671 * @lend:	offset in bytes where the range ends (inclusive)
 672 *
 673 * Write out and wait upon file offsets lstart->lend, inclusive.
 674 *
 675 * Note that @lend is inclusive (describes the last byte to be written) so
 676 * that this function can be used to write to the very end-of-file (end = -1).
 677 *
 678 * Return: error status of the address space.
 679 */
 680int filemap_write_and_wait_range(struct address_space *mapping,
 681				 loff_t lstart, loff_t lend)
 682{
 683	int err = 0;
 684
 685	if (mapping_needs_writeback(mapping)) {
 686		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 687						 WB_SYNC_ALL);
 688		/*
 689		 * Even if the above returned error, the pages may be
 690		 * written partially (e.g. -ENOSPC), so we wait for it.
 691		 * But the -EIO is special case, it may indicate the worst
 692		 * thing (e.g. bug) happened, so we avoid waiting for it.
 693		 */
 694		if (err != -EIO) {
 695			int err2 = filemap_fdatawait_range(mapping,
 696						lstart, lend);
 697			if (!err)
 698				err = err2;
 699		} else {
 700			/* Clear any previously stored errors */
 701			filemap_check_errors(mapping);
 702		}
 703	} else {
 704		err = filemap_check_errors(mapping);
 705	}
 706	return err;
 707}
 708EXPORT_SYMBOL(filemap_write_and_wait_range);
 709
 710void __filemap_set_wb_err(struct address_space *mapping, int err)
 711{
 712	errseq_t eseq = errseq_set(&mapping->wb_err, err);
 713
 714	trace_filemap_set_wb_err(mapping, eseq);
 715}
 716EXPORT_SYMBOL(__filemap_set_wb_err);
 717
 718/**
 719 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 720 * 				   and advance wb_err to current one
 721 * @file: struct file on which the error is being reported
 722 *
 723 * When userland calls fsync (or something like nfsd does the equivalent), we
 724 * want to report any writeback errors that occurred since the last fsync (or
 725 * since the file was opened if there haven't been any).
 726 *
 727 * Grab the wb_err from the mapping. If it matches what we have in the file,
 728 * then just quickly return 0. The file is all caught up.
 729 *
 730 * If it doesn't match, then take the mapping value, set the "seen" flag in
 731 * it and try to swap it into place. If it works, or another task beat us
 732 * to it with the new value, then update the f_wb_err and return the error
 733 * portion. The error at this point must be reported via proper channels
 734 * (a'la fsync, or NFS COMMIT operation, etc.).
 735 *
 736 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 737 * value is protected by the f_lock since we must ensure that it reflects
 738 * the latest value swapped in for this file descriptor.
 739 *
 740 * Return: %0 on success, negative error code otherwise.
 741 */
 742int file_check_and_advance_wb_err(struct file *file)
 743{
 744	int err = 0;
 745	errseq_t old = READ_ONCE(file->f_wb_err);
 746	struct address_space *mapping = file->f_mapping;
 747
 748	/* Locklessly handle the common case where nothing has changed */
 749	if (errseq_check(&mapping->wb_err, old)) {
 750		/* Something changed, must use slow path */
 751		spin_lock(&file->f_lock);
 752		old = file->f_wb_err;
 753		err = errseq_check_and_advance(&mapping->wb_err,
 754						&file->f_wb_err);
 755		trace_file_check_and_advance_wb_err(file, old);
 756		spin_unlock(&file->f_lock);
 757	}
 758
 759	/*
 760	 * We're mostly using this function as a drop in replacement for
 761	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 762	 * that the legacy code would have had on these flags.
 763	 */
 764	clear_bit(AS_EIO, &mapping->flags);
 765	clear_bit(AS_ENOSPC, &mapping->flags);
 766	return err;
 767}
 768EXPORT_SYMBOL(file_check_and_advance_wb_err);
 769
 770/**
 771 * file_write_and_wait_range - write out & wait on a file range
 772 * @file:	file pointing to address_space with pages
 773 * @lstart:	offset in bytes where the range starts
 774 * @lend:	offset in bytes where the range ends (inclusive)
 775 *
 776 * Write out and wait upon file offsets lstart->lend, inclusive.
 777 *
 778 * Note that @lend is inclusive (describes the last byte to be written) so
 779 * that this function can be used to write to the very end-of-file (end = -1).
 780 *
 781 * After writing out and waiting on the data, we check and advance the
 782 * f_wb_err cursor to the latest value, and return any errors detected there.
 783 *
 784 * Return: %0 on success, negative error code otherwise.
 785 */
 786int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 
 787{
 788	int err = 0, err2;
 789	struct address_space *mapping = file->f_mapping;
 790
 791	if (mapping_needs_writeback(mapping)) {
 792		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 793						 WB_SYNC_ALL);
 794		/* See comment of filemap_write_and_wait() */
 795		if (err != -EIO)
 796			__filemap_fdatawait_range(mapping, lstart, lend);
 
 
 
 
 
 
 797	}
 798	err2 = file_check_and_advance_wb_err(file);
 799	if (!err)
 800		err = err2;
 801	return err;
 802}
 803EXPORT_SYMBOL(file_write_and_wait_range);
 804
 805/**
 806 * replace_page_cache_page - replace a pagecache page with a new one
 807 * @old:	page to be replaced
 808 * @new:	page to replace with
 
 809 *
 810 * This function replaces a page in the pagecache with a new one.  On
 811 * success it acquires the pagecache reference for the new page and
 812 * drops it for the old page.  Both the old and new pages must be
 813 * locked.  This function does not add the new page to the LRU, the
 814 * caller must do that.
 815 *
 816 * The remove + add is atomic.  This function cannot fail.
 
 817 */
 818void replace_page_cache_page(struct page *old, struct page *new)
 819{
 820	struct address_space *mapping = old->mapping;
 821	void (*freepage)(struct page *) = mapping->a_ops->freepage;
 822	pgoff_t offset = old->index;
 823	XA_STATE(xas, &mapping->i_pages, offset);
 824	unsigned long flags;
 825
 826	VM_BUG_ON_PAGE(!PageLocked(old), old);
 827	VM_BUG_ON_PAGE(!PageLocked(new), new);
 828	VM_BUG_ON_PAGE(new->mapping, new);
 829
 830	get_page(new);
 831	new->mapping = mapping;
 832	new->index = offset;
 833
 834	mem_cgroup_migrate(old, new);
 835
 836	xas_lock_irqsave(&xas, flags);
 837	xas_store(&xas, new);
 838
 839	old->mapping = NULL;
 840	/* hugetlb pages do not participate in page cache accounting. */
 841	if (!PageHuge(old))
 842		__dec_lruvec_page_state(old, NR_FILE_PAGES);
 843	if (!PageHuge(new))
 844		__inc_lruvec_page_state(new, NR_FILE_PAGES);
 845	if (PageSwapBacked(old))
 846		__dec_lruvec_page_state(old, NR_SHMEM);
 847	if (PageSwapBacked(new))
 848		__inc_lruvec_page_state(new, NR_SHMEM);
 849	xas_unlock_irqrestore(&xas, flags);
 850	if (freepage)
 851		freepage(old);
 852	put_page(old);
 
 
 
 
 
 
 
 853}
 854EXPORT_SYMBOL_GPL(replace_page_cache_page);
 855
 856noinline int __add_to_page_cache_locked(struct page *page,
 857					struct address_space *mapping,
 858					pgoff_t offset, gfp_t gfp,
 859					void **shadowp)
 860{
 861	XA_STATE(xas, &mapping->i_pages, offset);
 862	int huge = PageHuge(page);
 863	int error;
 864	bool charged = false;
 865
 866	VM_BUG_ON_PAGE(!PageLocked(page), page);
 867	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 868	mapping_set_update(&xas, mapping);
 869
 870	get_page(page);
 871	page->mapping = mapping;
 872	page->index = offset;
 873
 874	if (!huge) {
 875		error = mem_cgroup_charge(page, NULL, gfp);
 876		if (error)
 877			goto error;
 878		charged = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	}
 
 
 880
 881	gfp &= GFP_RECLAIM_MASK;
 882
 883	do {
 884		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
 885		void *entry, *old = NULL;
 886
 887		if (order > thp_order(page))
 888			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
 889					order, gfp);
 890		xas_lock_irq(&xas);
 891		xas_for_each_conflict(&xas, entry) {
 892			old = entry;
 893			if (!xa_is_value(entry)) {
 894				xas_set_err(&xas, -EEXIST);
 895				goto unlock;
 896			}
 897		}
 898
 899		if (old) {
 900			if (shadowp)
 901				*shadowp = old;
 902			/* entry may have been split before we acquired lock */
 903			order = xa_get_order(xas.xa, xas.xa_index);
 904			if (order > thp_order(page)) {
 905				xas_split(&xas, old, order);
 906				xas_reset(&xas);
 907			}
 908		}
 909
 910		xas_store(&xas, page);
 911		if (xas_error(&xas))
 912			goto unlock;
 913
 914		mapping->nrpages++;
 
 915
 916		/* hugetlb pages do not participate in page cache accounting */
 917		if (!huge)
 918			__inc_lruvec_page_state(page, NR_FILE_PAGES);
 919unlock:
 920		xas_unlock_irq(&xas);
 921	} while (xas_nomem(&xas, gfp));
 922
 923	if (xas_error(&xas)) {
 924		error = xas_error(&xas);
 925		if (charged)
 926			mem_cgroup_uncharge(page);
 927		goto error;
 928	}
 929
 
 
 
 
 
 
 
 
 
 
 
 930	trace_mm_filemap_add_to_page_cache(page);
 931	return 0;
 932error:
 933	page->mapping = NULL;
 934	/* Leave page->index set: truncation relies upon it */
 935	put_page(page);
 
 
 936	return error;
 937}
 938ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
 939
 940/**
 941 * add_to_page_cache_locked - add a locked page to the pagecache
 942 * @page:	page to add
 943 * @mapping:	the page's address_space
 944 * @offset:	page index
 945 * @gfp_mask:	page allocation mode
 946 *
 947 * This function is used to add a page to the pagecache. It must be locked.
 948 * This function does not add the page to the LRU.  The caller must do that.
 949 *
 950 * Return: %0 on success, negative error code otherwise.
 951 */
 952int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 953		pgoff_t offset, gfp_t gfp_mask)
 954{
 955	return __add_to_page_cache_locked(page, mapping, offset,
 956					  gfp_mask, NULL);
 957}
 958EXPORT_SYMBOL(add_to_page_cache_locked);
 959
 960int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 961				pgoff_t offset, gfp_t gfp_mask)
 962{
 963	void *shadow = NULL;
 964	int ret;
 965
 966	__SetPageLocked(page);
 967	ret = __add_to_page_cache_locked(page, mapping, offset,
 968					 gfp_mask, &shadow);
 969	if (unlikely(ret))
 970		__ClearPageLocked(page);
 971	else {
 972		/*
 973		 * The page might have been evicted from cache only
 974		 * recently, in which case it should be activated like
 975		 * any other repeatedly accessed page.
 976		 * The exception is pages getting rewritten; evicting other
 977		 * data from the working set, only to cache data that will
 978		 * get overwritten with something else, is a waste of memory.
 979		 */
 980		WARN_ON_ONCE(PageActive(page));
 981		if (!(gfp_mask & __GFP_WRITE) && shadow)
 982			workingset_refault(page, shadow);
 983		lru_cache_add(page);
 984	}
 985	return ret;
 986}
 987EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 988
 989#ifdef CONFIG_NUMA
 990struct page *__page_cache_alloc(gfp_t gfp)
 991{
 992	int n;
 993	struct page *page;
 994
 995	if (cpuset_do_page_mem_spread()) {
 996		unsigned int cpuset_mems_cookie;
 997		do {
 998			cpuset_mems_cookie = read_mems_allowed_begin();
 999			n = cpuset_mem_spread_node();
1000			page = __alloc_pages_node(n, gfp, 0);
1001		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002
1003		return page;
1004	}
1005	return alloc_pages(gfp, 0);
1006}
1007EXPORT_SYMBOL(__page_cache_alloc);
1008#endif
1009
1010/*
1011 * In order to wait for pages to become available there must be
1012 * waitqueues associated with pages. By using a hash table of
1013 * waitqueues where the bucket discipline is to maintain all
1014 * waiters on the same queue and wake all when any of the pages
1015 * become available, and for the woken contexts to check to be
1016 * sure the appropriate page became available, this saves space
1017 * at a cost of "thundering herd" phenomena during rare hash
1018 * collisions.
1019 */
1020#define PAGE_WAIT_TABLE_BITS 8
1021#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023
1024static wait_queue_head_t *page_waitqueue(struct page *page)
1025{
1026	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027}
1028
1029void __init pagecache_init(void)
1030{
1031	int i;
1032
1033	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034		init_waitqueue_head(&page_wait_table[i]);
1035
1036	page_writeback_init();
1037}
1038
1039/*
1040 * The page wait code treats the "wait->flags" somewhat unusually, because
1041 * we have multiple different kinds of waits, not just the usual "exclusive"
1042 * one.
1043 *
1044 * We have:
1045 *
1046 *  (a) no special bits set:
1047 *
1048 *	We're just waiting for the bit to be released, and when a waker
1049 *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050 *	and remove it from the wait queue.
1051 *
1052 *	Simple and straightforward.
1053 *
1054 *  (b) WQ_FLAG_EXCLUSIVE:
1055 *
1056 *	The waiter is waiting to get the lock, and only one waiter should
1057 *	be woken up to avoid any thundering herd behavior. We'll set the
1058 *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059 *
1060 *	This is the traditional exclusive wait.
1061 *
1062 *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063 *
1064 *	The waiter is waiting to get the bit, and additionally wants the
1065 *	lock to be transferred to it for fair lock behavior. If the lock
1066 *	cannot be taken, we stop walking the wait queue without waking
1067 *	the waiter.
1068 *
1069 *	This is the "fair lock handoff" case, and in addition to setting
1070 *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071 *	that it now has the lock.
1072 */
1073static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074{
1075	unsigned int flags;
1076	struct wait_page_key *key = arg;
1077	struct wait_page_queue *wait_page
1078		= container_of(wait, struct wait_page_queue, wait);
1079
1080	if (!wake_page_match(wait_page, key))
1081		return 0;
1082
1083	/*
1084	 * If it's a lock handoff wait, we get the bit for it, and
1085	 * stop walking (and do not wake it up) if we can't.
1086	 */
1087	flags = wait->flags;
1088	if (flags & WQ_FLAG_EXCLUSIVE) {
1089		if (test_bit(key->bit_nr, &key->page->flags))
1090			return -1;
1091		if (flags & WQ_FLAG_CUSTOM) {
1092			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093				return -1;
1094			flags |= WQ_FLAG_DONE;
1095		}
1096	}
1097
1098	/*
1099	 * We are holding the wait-queue lock, but the waiter that
1100	 * is waiting for this will be checking the flags without
1101	 * any locking.
1102	 *
1103	 * So update the flags atomically, and wake up the waiter
1104	 * afterwards to avoid any races. This store-release pairs
1105	 * with the load-acquire in wait_on_page_bit_common().
1106	 */
1107	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108	wake_up_state(wait->private, mode);
1109
1110	/*
1111	 * Ok, we have successfully done what we're waiting for,
1112	 * and we can unconditionally remove the wait entry.
1113	 *
1114	 * Note that this pairs with the "finish_wait()" in the
1115	 * waiter, and has to be the absolute last thing we do.
1116	 * After this list_del_init(&wait->entry) the wait entry
1117	 * might be de-allocated and the process might even have
1118	 * exited.
1119	 */
1120	list_del_init_careful(&wait->entry);
1121	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122}
1123
1124static void wake_up_page_bit(struct page *page, int bit_nr)
1125{
1126	wait_queue_head_t *q = page_waitqueue(page);
1127	struct wait_page_key key;
1128	unsigned long flags;
1129	wait_queue_entry_t bookmark;
1130
1131	key.page = page;
1132	key.bit_nr = bit_nr;
1133	key.page_match = 0;
1134
1135	bookmark.flags = 0;
1136	bookmark.private = NULL;
1137	bookmark.func = NULL;
1138	INIT_LIST_HEAD(&bookmark.entry);
1139
1140	spin_lock_irqsave(&q->lock, flags);
1141	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142
1143	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144		/*
1145		 * Take a breather from holding the lock,
1146		 * allow pages that finish wake up asynchronously
1147		 * to acquire the lock and remove themselves
1148		 * from wait queue
1149		 */
1150		spin_unlock_irqrestore(&q->lock, flags);
1151		cpu_relax();
1152		spin_lock_irqsave(&q->lock, flags);
1153		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154	}
1155
1156	/*
1157	 * It is possible for other pages to have collided on the waitqueue
1158	 * hash, so in that case check for a page match. That prevents a long-
1159	 * term waiter
1160	 *
1161	 * It is still possible to miss a case here, when we woke page waiters
1162	 * and removed them from the waitqueue, but there are still other
1163	 * page waiters.
1164	 */
1165	if (!waitqueue_active(q) || !key.page_match) {
1166		ClearPageWaiters(page);
1167		/*
1168		 * It's possible to miss clearing Waiters here, when we woke
1169		 * our page waiters, but the hashed waitqueue has waiters for
1170		 * other pages on it.
1171		 *
1172		 * That's okay, it's a rare case. The next waker will clear it.
1173		 */
1174	}
1175	spin_unlock_irqrestore(&q->lock, flags);
1176}
1177
1178static void wake_up_page(struct page *page, int bit)
1179{
1180	if (!PageWaiters(page))
1181		return;
1182	wake_up_page_bit(page, bit);
1183}
1184
1185/*
1186 * A choice of three behaviors for wait_on_page_bit_common():
1187 */
1188enum behavior {
1189	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190			 * __lock_page() waiting on then setting PG_locked.
1191			 */
1192	SHARED,		/* Hold ref to page and check the bit when woken, like
1193			 * wait_on_page_writeback() waiting on PG_writeback.
1194			 */
1195	DROP,		/* Drop ref to page before wait, no check when woken,
1196			 * like put_and_wait_on_page_locked() on PG_locked.
1197			 */
1198};
1199
1200/*
1201 * Attempt to check (or get) the page bit, and mark us done
1202 * if successful.
1203 */
1204static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205					struct wait_queue_entry *wait)
1206{
1207	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208		if (test_and_set_bit(bit_nr, &page->flags))
1209			return false;
1210	} else if (test_bit(bit_nr, &page->flags))
1211		return false;
1212
1213	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214	return true;
1215}
1216
1217/* How many times do we accept lock stealing from under a waiter? */
1218int sysctl_page_lock_unfairness = 5;
1219
1220static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221	struct page *page, int bit_nr, int state, enum behavior behavior)
1222{
1223	int unfairness = sysctl_page_lock_unfairness;
1224	struct wait_page_queue wait_page;
1225	wait_queue_entry_t *wait = &wait_page.wait;
1226	bool thrashing = false;
1227	bool delayacct = false;
1228	unsigned long pflags;
1229
1230	if (bit_nr == PG_locked &&
1231	    !PageUptodate(page) && PageWorkingset(page)) {
1232		if (!PageSwapBacked(page)) {
1233			delayacct_thrashing_start();
1234			delayacct = true;
1235		}
1236		psi_memstall_enter(&pflags);
1237		thrashing = true;
1238	}
1239
1240	init_wait(wait);
1241	wait->func = wake_page_function;
1242	wait_page.page = page;
1243	wait_page.bit_nr = bit_nr;
1244
1245repeat:
1246	wait->flags = 0;
1247	if (behavior == EXCLUSIVE) {
1248		wait->flags = WQ_FLAG_EXCLUSIVE;
1249		if (--unfairness < 0)
1250			wait->flags |= WQ_FLAG_CUSTOM;
1251	}
1252
1253	/*
1254	 * Do one last check whether we can get the
1255	 * page bit synchronously.
1256	 *
1257	 * Do the SetPageWaiters() marking before that
1258	 * to let any waker we _just_ missed know they
1259	 * need to wake us up (otherwise they'll never
1260	 * even go to the slow case that looks at the
1261	 * page queue), and add ourselves to the wait
1262	 * queue if we need to sleep.
1263	 *
1264	 * This part needs to be done under the queue
1265	 * lock to avoid races.
1266	 */
1267	spin_lock_irq(&q->lock);
1268	SetPageWaiters(page);
1269	if (!trylock_page_bit_common(page, bit_nr, wait))
1270		__add_wait_queue_entry_tail(q, wait);
1271	spin_unlock_irq(&q->lock);
1272
1273	/*
1274	 * From now on, all the logic will be based on
1275	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276	 * see whether the page bit testing has already
1277	 * been done by the wake function.
1278	 *
1279	 * We can drop our reference to the page.
1280	 */
1281	if (behavior == DROP)
1282		put_page(page);
1283
1284	/*
1285	 * Note that until the "finish_wait()", or until
1286	 * we see the WQ_FLAG_WOKEN flag, we need to
1287	 * be very careful with the 'wait->flags', because
1288	 * we may race with a waker that sets them.
1289	 */
1290	for (;;) {
1291		unsigned int flags;
1292
1293		set_current_state(state);
1294
1295		/* Loop until we've been woken or interrupted */
1296		flags = smp_load_acquire(&wait->flags);
1297		if (!(flags & WQ_FLAG_WOKEN)) {
1298			if (signal_pending_state(state, current))
1299				break;
1300
1301			io_schedule();
1302			continue;
1303		}
1304
1305		/* If we were non-exclusive, we're done */
1306		if (behavior != EXCLUSIVE)
1307			break;
1308
1309		/* If the waker got the lock for us, we're done */
1310		if (flags & WQ_FLAG_DONE)
1311			break;
1312
1313		/*
1314		 * Otherwise, if we're getting the lock, we need to
1315		 * try to get it ourselves.
1316		 *
1317		 * And if that fails, we'll have to retry this all.
1318		 */
1319		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320			goto repeat;
1321
1322		wait->flags |= WQ_FLAG_DONE;
1323		break;
1324	}
1325
1326	/*
1327	 * If a signal happened, this 'finish_wait()' may remove the last
1328	 * waiter from the wait-queues, but the PageWaiters bit will remain
1329	 * set. That's ok. The next wakeup will take care of it, and trying
1330	 * to do it here would be difficult and prone to races.
1331	 */
1332	finish_wait(q, wait);
1333
1334	if (thrashing) {
1335		if (delayacct)
1336			delayacct_thrashing_end();
1337		psi_memstall_leave(&pflags);
1338	}
1339
1340	/*
1341	 * NOTE! The wait->flags weren't stable until we've done the
1342	 * 'finish_wait()', and we could have exited the loop above due
1343	 * to a signal, and had a wakeup event happen after the signal
1344	 * test but before the 'finish_wait()'.
1345	 *
1346	 * So only after the finish_wait() can we reliably determine
1347	 * if we got woken up or not, so we can now figure out the final
1348	 * return value based on that state without races.
1349	 *
1350	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352	 */
1353	if (behavior == EXCLUSIVE)
1354		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355
1356	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357}
1358
1359void wait_on_page_bit(struct page *page, int bit_nr)
1360{
1361	wait_queue_head_t *q = page_waitqueue(page);
1362	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
 
 
 
1363}
1364EXPORT_SYMBOL(wait_on_page_bit);
1365
1366int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367{
1368	wait_queue_head_t *q = page_waitqueue(page);
1369	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370}
1371EXPORT_SYMBOL(wait_on_page_bit_killable);
1372
1373/**
1374 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375 * @page: The page to wait for.
1376 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377 *
1378 * The caller should hold a reference on @page.  They expect the page to
1379 * become unlocked relatively soon, but do not wish to hold up migration
1380 * (for example) by holding the reference while waiting for the page to
1381 * come unlocked.  After this function returns, the caller should not
1382 * dereference @page.
1383 *
1384 * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385 */
1386int put_and_wait_on_page_locked(struct page *page, int state)
1387{
1388	wait_queue_head_t *q;
1389
1390	page = compound_head(page);
1391	q = page_waitqueue(page);
1392	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393}
1394
1395/**
1396 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397 * @page: Page defining the wait queue of interest
1398 * @waiter: Waiter to add to the queue
1399 *
1400 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401 */
1402void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403{
1404	wait_queue_head_t *q = page_waitqueue(page);
1405	unsigned long flags;
1406
1407	spin_lock_irqsave(&q->lock, flags);
1408	__add_wait_queue_entry_tail(q, waiter);
1409	SetPageWaiters(page);
1410	spin_unlock_irqrestore(&q->lock, flags);
1411}
1412EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413
1414#ifndef clear_bit_unlock_is_negative_byte
1415
1416/*
1417 * PG_waiters is the high bit in the same byte as PG_lock.
1418 *
1419 * On x86 (and on many other architectures), we can clear PG_lock and
1420 * test the sign bit at the same time. But if the architecture does
1421 * not support that special operation, we just do this all by hand
1422 * instead.
1423 *
1424 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425 * being cleared, but a memory barrier should be unnecessary since it is
1426 * in the same byte as PG_locked.
1427 */
1428static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429{
1430	clear_bit_unlock(nr, mem);
1431	/* smp_mb__after_atomic(); */
1432	return test_bit(PG_waiters, mem);
1433}
1434
1435#endif
1436
1437/**
1438 * unlock_page - unlock a locked page
1439 * @page: the page
1440 *
1441 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443 * mechanism between PageLocked pages and PageWriteback pages is shared.
1444 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445 *
1446 * Note that this depends on PG_waiters being the sign bit in the byte
1447 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448 * clear the PG_locked bit and test PG_waiters at the same time fairly
1449 * portably (architectures that do LL/SC can test any bit, while x86 can
1450 * test the sign bit).
1451 */
1452void unlock_page(struct page *page)
1453{
1454	BUILD_BUG_ON(PG_waiters != 7);
1455	page = compound_head(page);
1456	VM_BUG_ON_PAGE(!PageLocked(page), page);
1457	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458		wake_up_page_bit(page, PG_locked);
 
1459}
1460EXPORT_SYMBOL(unlock_page);
1461
1462/**
1463 * end_page_private_2 - Clear PG_private_2 and release any waiters
1464 * @page: The page
1465 *
1466 * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467 * this.  The page ref held for PG_private_2 being set is released.
1468 *
1469 * This is, for example, used when a netfs page is being written to a local
1470 * disk cache, thereby allowing writes to the cache for the same page to be
1471 * serialised.
1472 */
1473void end_page_private_2(struct page *page)
1474{
1475	page = compound_head(page);
1476	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477	clear_bit_unlock(PG_private_2, &page->flags);
1478	wake_up_page_bit(page, PG_private_2);
1479	put_page(page);
1480}
1481EXPORT_SYMBOL(end_page_private_2);
1482
1483/**
1484 * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485 * @page: The page to wait on
1486 *
1487 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488 */
1489void wait_on_page_private_2(struct page *page)
1490{
1491	page = compound_head(page);
1492	while (PagePrivate2(page))
1493		wait_on_page_bit(page, PG_private_2);
1494}
1495EXPORT_SYMBOL(wait_on_page_private_2);
1496
1497/**
1498 * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499 * @page: The page to wait on
1500 *
1501 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502 * fatal signal is received by the calling task.
1503 *
1504 * Return:
1505 * - 0 if successful.
1506 * - -EINTR if a fatal signal was encountered.
1507 */
1508int wait_on_page_private_2_killable(struct page *page)
1509{
1510	int ret = 0;
1511
1512	page = compound_head(page);
1513	while (PagePrivate2(page)) {
1514		ret = wait_on_page_bit_killable(page, PG_private_2);
1515		if (ret < 0)
1516			break;
1517	}
1518
1519	return ret;
1520}
1521EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522
1523/**
1524 * end_page_writeback - end writeback against a page
1525 * @page: the page
1526 */
1527void end_page_writeback(struct page *page)
1528{
1529	/*
1530	 * TestClearPageReclaim could be used here but it is an atomic
1531	 * operation and overkill in this particular case. Failing to
1532	 * shuffle a page marked for immediate reclaim is too mild to
1533	 * justify taking an atomic operation penalty at the end of
1534	 * ever page writeback.
1535	 */
1536	if (PageReclaim(page)) {
1537		ClearPageReclaim(page);
1538		rotate_reclaimable_page(page);
1539	}
1540
1541	/*
1542	 * Writeback does not hold a page reference of its own, relying
1543	 * on truncation to wait for the clearing of PG_writeback.
1544	 * But here we must make sure that the page is not freed and
1545	 * reused before the wake_up_page().
1546	 */
1547	get_page(page);
1548	if (!test_clear_page_writeback(page))
1549		BUG();
1550
1551	smp_mb__after_atomic();
1552	wake_up_page(page, PG_writeback);
1553	put_page(page);
1554}
1555EXPORT_SYMBOL(end_page_writeback);
1556
1557/*
1558 * After completing I/O on a page, call this routine to update the page
1559 * flags appropriately
1560 */
1561void page_endio(struct page *page, bool is_write, int err)
1562{
1563	if (!is_write) {
1564		if (!err) {
1565			SetPageUptodate(page);
1566		} else {
1567			ClearPageUptodate(page);
1568			SetPageError(page);
1569		}
1570		unlock_page(page);
1571	} else {
1572		if (err) {
1573			struct address_space *mapping;
1574
1575			SetPageError(page);
1576			mapping = page_mapping(page);
1577			if (mapping)
1578				mapping_set_error(mapping, err);
1579		}
1580		end_page_writeback(page);
1581	}
1582}
1583EXPORT_SYMBOL_GPL(page_endio);
1584
1585/**
1586 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587 * @__page: the page to lock
1588 */
1589void __lock_page(struct page *__page)
1590{
1591	struct page *page = compound_head(__page);
1592	wait_queue_head_t *q = page_waitqueue(page);
1593	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594				EXCLUSIVE);
1595}
1596EXPORT_SYMBOL(__lock_page);
1597
1598int __lock_page_killable(struct page *__page)
1599{
1600	struct page *page = compound_head(__page);
1601	wait_queue_head_t *q = page_waitqueue(page);
1602	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603					EXCLUSIVE);
1604}
1605EXPORT_SYMBOL_GPL(__lock_page_killable);
1606
1607int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608{
1609	struct wait_queue_head *q = page_waitqueue(page);
1610	int ret = 0;
1611
1612	wait->page = page;
1613	wait->bit_nr = PG_locked;
1614
1615	spin_lock_irq(&q->lock);
1616	__add_wait_queue_entry_tail(q, &wait->wait);
1617	SetPageWaiters(page);
1618	ret = !trylock_page(page);
1619	/*
1620	 * If we were successful now, we know we're still on the
1621	 * waitqueue as we're still under the lock. This means it's
1622	 * safe to remove and return success, we know the callback
1623	 * isn't going to trigger.
1624	 */
1625	if (!ret)
1626		__remove_wait_queue(q, &wait->wait);
1627	else
1628		ret = -EIOCBQUEUED;
1629	spin_unlock_irq(&q->lock);
1630	return ret;
1631}
 
1632
1633/*
1634 * Return values:
1635 * 1 - page is locked; mmap_lock is still held.
1636 * 0 - page is not locked.
1637 *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639 *     which case mmap_lock is still held.
1640 *
1641 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642 * with the page locked and the mmap_lock unperturbed.
1643 */
1644int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645			 unsigned int flags)
1646{
1647	if (fault_flag_allow_retry_first(flags)) {
1648		/*
1649		 * CAUTION! In this case, mmap_lock is not released
1650		 * even though return 0.
1651		 */
1652		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653			return 0;
1654
1655		mmap_read_unlock(mm);
1656		if (flags & FAULT_FLAG_KILLABLE)
1657			wait_on_page_locked_killable(page);
1658		else
1659			wait_on_page_locked(page);
1660		return 0;
1661	}
1662	if (flags & FAULT_FLAG_KILLABLE) {
1663		int ret;
1664
1665		ret = __lock_page_killable(page);
1666		if (ret) {
1667			mmap_read_unlock(mm);
1668			return 0;
1669		}
1670	} else {
1671		__lock_page(page);
1672	}
1673	return 1;
1674
 
 
 
 
 
 
 
 
 
1675}
1676
1677/**
1678 * page_cache_next_miss() - Find the next gap in the page cache.
1679 * @mapping: Mapping.
1680 * @index: Index.
1681 * @max_scan: Maximum range to search.
1682 *
1683 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684 * gap with the lowest index.
1685 *
1686 * This function may be called under the rcu_read_lock.  However, this will
1687 * not atomically search a snapshot of the cache at a single point in time.
1688 * For example, if a gap is created at index 5, then subsequently a gap is
1689 * created at index 10, page_cache_next_miss covering both indices may
1690 * return 10 if called under the rcu_read_lock.
1691 *
1692 * Return: The index of the gap if found, otherwise an index outside the
1693 * range specified (in which case 'return - index >= max_scan' will be true).
1694 * In the rare case of index wrap-around, 0 will be returned.
 
 
1695 */
1696pgoff_t page_cache_next_miss(struct address_space *mapping,
1697			     pgoff_t index, unsigned long max_scan)
1698{
1699	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1700
1701	while (max_scan--) {
1702		void *entry = xas_next(&xas);
1703		if (!entry || xa_is_value(entry))
1704			break;
1705		if (xas.xa_index == 0)
 
1706			break;
1707	}
1708
1709	return xas.xa_index;
1710}
1711EXPORT_SYMBOL(page_cache_next_miss);
1712
1713/**
1714 * page_cache_prev_miss() - Find the previous gap in the page cache.
1715 * @mapping: Mapping.
1716 * @index: Index.
1717 * @max_scan: Maximum range to search.
1718 *
1719 * Search the range [max(index - max_scan + 1, 0), index] for the
1720 * gap with the highest index.
1721 *
1722 * This function may be called under the rcu_read_lock.  However, this will
1723 * not atomically search a snapshot of the cache at a single point in time.
1724 * For example, if a gap is created at index 10, then subsequently a gap is
1725 * created at index 5, page_cache_prev_miss() covering both indices may
1726 * return 5 if called under the rcu_read_lock.
1727 *
1728 * Return: The index of the gap if found, otherwise an index outside the
1729 * range specified (in which case 'index - return >= max_scan' will be true).
1730 * In the rare case of wrap-around, ULONG_MAX will be returned.
 
 
 
1731 */
1732pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733			     pgoff_t index, unsigned long max_scan)
1734{
1735	XA_STATE(xas, &mapping->i_pages, index);
 
 
 
1736
1737	while (max_scan--) {
1738		void *entry = xas_prev(&xas);
1739		if (!entry || xa_is_value(entry))
1740			break;
1741		if (xas.xa_index == ULONG_MAX)
 
1742			break;
1743	}
1744
1745	return xas.xa_index;
1746}
1747EXPORT_SYMBOL(page_cache_prev_miss);
1748
1749/*
1750 * mapping_get_entry - Get a page cache entry.
1751 * @mapping: the address_space to search
1752 * @index: The page cache index.
1753 *
1754 * Looks up the page cache slot at @mapping & @index.  If there is a
1755 * page cache page, the head page is returned with an increased refcount.
1756 *
1757 * If the slot holds a shadow entry of a previously evicted page, or a
1758 * swap entry from shmem/tmpfs, it is returned.
1759 *
1760 * Return: The head page or shadow entry, %NULL if nothing is found.
1761 */
1762static struct page *mapping_get_entry(struct address_space *mapping,
1763		pgoff_t index)
1764{
1765	XA_STATE(xas, &mapping->i_pages, index);
1766	struct page *page;
1767
1768	rcu_read_lock();
1769repeat:
1770	xas_reset(&xas);
1771	page = xas_load(&xas);
1772	if (xas_retry(&xas, page))
1773		goto repeat;
1774	/*
1775	 * A shadow entry of a recently evicted page, or a swap entry from
1776	 * shmem/tmpfs.  Return it without attempting to raise page count.
1777	 */
1778	if (!page || xa_is_value(page))
1779		goto out;
1780
1781	if (!page_cache_get_speculative(page))
1782		goto repeat;
 
 
 
 
 
1783
1784	/*
1785	 * Has the page moved or been split?
1786	 * This is part of the lockless pagecache protocol. See
1787	 * include/linux/pagemap.h for details.
1788	 */
1789	if (unlikely(page != xas_reload(&xas))) {
1790		put_page(page);
1791		goto repeat;
 
1792	}
1793out:
1794	rcu_read_unlock();
1795
1796	return page;
1797}
 
1798
1799/**
1800 * pagecache_get_page - Find and get a reference to a page.
1801 * @mapping: The address_space to search.
1802 * @index: The page index.
1803 * @fgp_flags: %FGP flags modify how the page is returned.
1804 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805 *
1806 * Looks up the page cache entry at @mapping & @index.
1807 *
1808 * @fgp_flags can be zero or more of these flags:
1809 *
1810 * * %FGP_ACCESSED - The page will be marked accessed.
1811 * * %FGP_LOCK - The page is returned locked.
1812 * * %FGP_HEAD - If the page is present and a THP, return the head page
1813 *   rather than the exact page specified by the index.
1814 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815 *   instead of allocating a new page to replace it.
1816 * * %FGP_CREAT - If no page is present then a new page is allocated using
1817 *   @gfp_mask and added to the page cache and the VM's LRU list.
1818 *   The page is returned locked and with an increased refcount.
1819 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820 *   page is already in cache.  If the page was allocated, unlock it before
1821 *   returning so the caller can do the same dance.
1822 * * %FGP_WRITE - The page will be written
1823 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824 * * %FGP_NOWAIT - Don't get blocked by page lock
1825 *
1826 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827 * if the %GFP flags specified for %FGP_CREAT are atomic.
1828 *
1829 * If there is a page cache page, it is returned with an increased refcount.
 
1830 *
1831 * Return: The found page or %NULL otherwise.
1832 */
1833struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834		int fgp_flags, gfp_t gfp_mask)
1835{
1836	struct page *page;
1837
1838repeat:
1839	page = mapping_get_entry(mapping, index);
1840	if (xa_is_value(page)) {
1841		if (fgp_flags & FGP_ENTRY)
1842			return page;
1843		page = NULL;
1844	}
1845	if (!page)
1846		goto no_page;
1847
1848	if (fgp_flags & FGP_LOCK) {
1849		if (fgp_flags & FGP_NOWAIT) {
1850			if (!trylock_page(page)) {
1851				put_page(page);
1852				return NULL;
1853			}
1854		} else {
1855			lock_page(page);
1856		}
 
 
 
 
 
 
 
 
 
 
1857
 
 
 
 
1858		/* Has the page been truncated? */
1859		if (unlikely(page->mapping != mapping)) {
1860			unlock_page(page);
1861			put_page(page);
1862			goto repeat;
1863		}
1864		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865	}
 
 
 
1866
1867	if (fgp_flags & FGP_ACCESSED)
1868		mark_page_accessed(page);
1869	else if (fgp_flags & FGP_WRITE) {
1870		/* Clear idle flag for buffer write */
1871		if (page_is_idle(page))
1872			clear_page_idle(page);
1873	}
1874	if (!(fgp_flags & FGP_HEAD))
1875		page = find_subpage(page, index);
1876
1877no_page:
1878	if (!page && (fgp_flags & FGP_CREAT)) {
1879		int err;
1880		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881			gfp_mask |= __GFP_WRITE;
1882		if (fgp_flags & FGP_NOFS)
1883			gfp_mask &= ~__GFP_FS;
1884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1885		page = __page_cache_alloc(gfp_mask);
1886		if (!page)
1887			return NULL;
1888
1889		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890			fgp_flags |= FGP_LOCK;
1891
1892		/* Init accessed so avoid atomic mark_page_accessed later */
1893		if (fgp_flags & FGP_ACCESSED)
1894			__SetPageReferenced(page);
1895
1896		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897		if (unlikely(err)) {
1898			put_page(page);
1899			page = NULL;
1900			if (err == -EEXIST)
1901				goto repeat;
1902		}
1903
1904		/*
1905		 * add_to_page_cache_lru locks the page, and for mmap we expect
1906		 * an unlocked page.
1907		 */
1908		if (page && (fgp_flags & FGP_FOR_MMAP))
1909			unlock_page(page);
1910	}
1911
1912	return page;
1913}
1914EXPORT_SYMBOL(pagecache_get_page);
1915
1916static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917		xa_mark_t mark)
1918{
1919	struct page *page;
1920
1921retry:
1922	if (mark == XA_PRESENT)
1923		page = xas_find(xas, max);
1924	else
1925		page = xas_find_marked(xas, max, mark);
1926
1927	if (xas_retry(xas, page))
1928		goto retry;
1929	/*
1930	 * A shadow entry of a recently evicted page, a swap
1931	 * entry from shmem/tmpfs or a DAX entry.  Return it
1932	 * without attempting to raise page count.
1933	 */
1934	if (!page || xa_is_value(page))
1935		return page;
1936
1937	if (!page_cache_get_speculative(page))
1938		goto reset;
1939
1940	/* Has the page moved or been split? */
1941	if (unlikely(page != xas_reload(xas))) {
1942		put_page(page);
1943		goto reset;
1944	}
1945
1946	return page;
1947reset:
1948	xas_reset(xas);
1949	goto retry;
1950}
 
1951
1952/**
1953 * find_get_entries - gang pagecache lookup
1954 * @mapping:	The address_space to search
1955 * @start:	The starting page cache index
1956 * @end:	The final page index (inclusive).
1957 * @pvec:	Where the resulting entries are placed.
1958 * @indices:	The cache indices corresponding to the entries in @entries
1959 *
1960 * find_get_entries() will search for and return a batch of entries in
1961 * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962 * takes a reference on any actual pages it returns.
 
1963 *
1964 * The search returns a group of mapping-contiguous page cache entries
1965 * with ascending indexes.  There may be holes in the indices due to
1966 * not-present pages.
1967 *
1968 * Any shadow entries of evicted pages, or swap entries from
1969 * shmem/tmpfs, are included in the returned array.
1970 *
1971 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972 * stops at that page: the caller is likely to have a better way to handle
1973 * the compound page as a whole, and then skip its extent, than repeatedly
1974 * calling find_get_entries() to return all its tails.
1975 *
1976 * Return: the number of pages and shadow entries which were found.
1977 */
1978unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
 
1980{
1981	XA_STATE(xas, &mapping->i_pages, start);
1982	struct page *page;
1983	unsigned int ret = 0;
1984	unsigned nr_entries = PAGEVEC_SIZE;
 
 
 
1985
1986	rcu_read_lock();
1987	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1988		/*
1989		 * Terminate early on finding a THP, to allow the caller to
1990		 * handle it all at once; but continue if this is hugetlbfs.
1991		 */
1992		if (!xa_is_value(page) && PageTransHuge(page) &&
1993				!PageHuge(page)) {
1994			page = find_subpage(page, xas.xa_index);
1995			nr_entries = ret + 1;
 
 
 
 
 
 
 
1996		}
 
 
1997
1998		indices[ret] = xas.xa_index;
1999		pvec->pages[ret] = page;
 
 
 
 
 
 
2000		if (++ret == nr_entries)
2001			break;
2002	}
2003	rcu_read_unlock();
2004
2005	pvec->nr = ret;
2006	return ret;
2007}
2008
2009/**
2010 * find_lock_entries - Find a batch of pagecache entries.
2011 * @mapping:	The address_space to search.
2012 * @start:	The starting page cache index.
2013 * @end:	The final page index (inclusive).
2014 * @pvec:	Where the resulting entries are placed.
2015 * @indices:	The cache indices of the entries in @pvec.
2016 *
2017 * find_lock_entries() will return a batch of entries from @mapping.
2018 * Swap, shadow and DAX entries are included.  Pages are returned
2019 * locked and with an incremented refcount.  Pages which are locked by
2020 * somebody else or under writeback are skipped.  Only the head page of
2021 * a THP is returned.  Pages which are partially outside the range are
2022 * not returned.
2023 *
2024 * The entries have ascending indexes.  The indices may not be consecutive
2025 * due to not-present entries, THP pages, pages which could not be locked
2026 * or pages under writeback.
2027 *
2028 * Return: The number of entries which were found.
2029 */
2030unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032{
2033	XA_STATE(xas, &mapping->i_pages, start);
2034	struct page *page;
2035
2036	rcu_read_lock();
2037	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038		if (!xa_is_value(page)) {
2039			if (page->index < start)
2040				goto put;
2041			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042			if (page->index + thp_nr_pages(page) - 1 > end)
2043				goto put;
2044			if (!trylock_page(page))
2045				goto put;
2046			if (page->mapping != mapping || PageWriteback(page))
2047				goto unlock;
2048			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049					page);
2050		}
2051		indices[pvec->nr] = xas.xa_index;
2052		if (!pagevec_add(pvec, page))
2053			break;
2054		goto next;
2055unlock:
2056		unlock_page(page);
2057put:
2058		put_page(page);
2059next:
2060		if (!xa_is_value(page) && PageTransHuge(page)) {
2061			unsigned int nr_pages = thp_nr_pages(page);
2062
2063			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064			xas_set(&xas, page->index + nr_pages);
2065			if (xas.xa_index < nr_pages)
2066				break;
2067		}
2068	}
2069	rcu_read_unlock();
2070
2071	return pagevec_count(pvec);
2072}
2073
2074/**
2075 * find_get_pages_range - gang pagecache lookup
2076 * @mapping:	The address_space to search
2077 * @start:	The starting page index
2078 * @end:	The final page index (inclusive)
2079 * @nr_pages:	The maximum number of pages
2080 * @pages:	Where the resulting pages are placed
2081 *
2082 * find_get_pages_range() will search for and return a group of up to @nr_pages
2083 * pages in the mapping starting at index @start and up to index @end
2084 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085 * a reference against the returned pages.
2086 *
2087 * The search returns a group of mapping-contiguous pages with ascending
2088 * indexes.  There may be holes in the indices due to not-present pages.
2089 * We also update @start to index the next page for the traversal.
2090 *
2091 * Return: the number of pages which were found. If this number is
2092 * smaller than @nr_pages, the end of specified range has been
2093 * reached.
2094 */
2095unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096			      pgoff_t end, unsigned int nr_pages,
2097			      struct page **pages)
2098{
2099	XA_STATE(xas, &mapping->i_pages, *start);
2100	struct page *page;
2101	unsigned ret = 0;
2102
2103	if (unlikely(!nr_pages))
2104		return 0;
2105
2106	rcu_read_lock();
2107	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2108		/* Skip over shadow, swap and DAX entries */
2109		if (xa_is_value(page))
 
 
 
2110			continue;
2111
2112		pages[ret] = find_subpage(page, xas.xa_index);
2113		if (++ret == nr_pages) {
2114			*start = xas.xa_index + 1;
2115			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
2116		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2117	}
2118
2119	/*
2120	 * We come here when there is no page beyond @end. We take care to not
2121	 * overflow the index @start as it confuses some of the callers. This
2122	 * breaks the iteration when there is a page at index -1 but that is
2123	 * already broken anyway.
2124	 */
2125	if (end == (pgoff_t)-1)
2126		*start = (pgoff_t)-1;
2127	else
2128		*start = end + 1;
2129out:
2130	rcu_read_unlock();
2131
2132	return ret;
2133}
2134
2135/**
2136 * find_get_pages_contig - gang contiguous pagecache lookup
2137 * @mapping:	The address_space to search
2138 * @index:	The starting page index
2139 * @nr_pages:	The maximum number of pages
2140 * @pages:	Where the resulting pages are placed
2141 *
2142 * find_get_pages_contig() works exactly like find_get_pages(), except
2143 * that the returned number of pages are guaranteed to be contiguous.
2144 *
2145 * Return: the number of pages which were found.
2146 */
2147unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148			       unsigned int nr_pages, struct page **pages)
2149{
2150	XA_STATE(xas, &mapping->i_pages, index);
2151	struct page *page;
2152	unsigned int ret = 0;
2153
2154	if (unlikely(!nr_pages))
2155		return 0;
2156
2157	rcu_read_lock();
2158	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159		if (xas_retry(&xas, page))
2160			continue;
2161		/*
2162		 * If the entry has been swapped out, we can stop looking.
2163		 * No current caller is looking for DAX entries.
2164		 */
2165		if (xa_is_value(page))
2166			break;
2167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168		if (!page_cache_get_speculative(page))
2169			goto retry;
2170
2171		/* Has the page moved or been split? */
2172		if (unlikely(page != xas_reload(&xas)))
2173			goto put_page;
 
 
 
 
 
 
 
 
 
 
 
 
2174
2175		pages[ret] = find_subpage(page, xas.xa_index);
2176		if (++ret == nr_pages)
2177			break;
2178		continue;
2179put_page:
2180		put_page(page);
2181retry:
2182		xas_reset(&xas);
2183	}
2184	rcu_read_unlock();
2185	return ret;
2186}
2187EXPORT_SYMBOL(find_get_pages_contig);
2188
2189/**
2190 * find_get_pages_range_tag - Find and return head pages matching @tag.
2191 * @mapping:	the address_space to search
2192 * @index:	the starting page index
2193 * @end:	The final page index (inclusive)
2194 * @tag:	the tag index
2195 * @nr_pages:	the maximum number of pages
2196 * @pages:	where the resulting pages are placed
2197 *
2198 * Like find_get_pages(), except we only return head pages which are tagged
2199 * with @tag.  @index is updated to the index immediately after the last
2200 * page we return, ready for the next iteration.
2201 *
2202 * Return: the number of pages which were found.
2203 */
2204unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206			struct page **pages)
2207{
2208	XA_STATE(xas, &mapping->i_pages, *index);
2209	struct page *page;
2210	unsigned ret = 0;
2211
2212	if (unlikely(!nr_pages))
2213		return 0;
2214
2215	rcu_read_lock();
2216	while ((page = find_get_entry(&xas, end, tag))) {
2217		/*
2218		 * Shadow entries should never be tagged, but this iteration
2219		 * is lockless so there is a window for page reclaim to evict
2220		 * a page we saw tagged.  Skip over it.
2221		 */
2222		if (xa_is_value(page))
2223			continue;
2224
2225		pages[ret] = page;
2226		if (++ret == nr_pages) {
2227			*index = page->index + thp_nr_pages(page);
2228			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2229		}
 
 
 
 
 
 
 
 
 
 
 
 
 
2230	}
2231
2232	/*
2233	 * We come here when we got to @end. We take care to not overflow the
2234	 * index @index as it confuses some of the callers. This breaks the
2235	 * iteration when there is a page at index -1 but that is already
2236	 * broken anyway.
2237	 */
2238	if (end == (pgoff_t)-1)
2239		*index = (pgoff_t)-1;
2240	else
2241		*index = end + 1;
2242out:
2243	rcu_read_unlock();
2244
 
 
 
2245	return ret;
2246}
2247EXPORT_SYMBOL(find_get_pages_range_tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2248
2249/*
2250 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251 * a _large_ part of the i/o request. Imagine the worst scenario:
2252 *
2253 *      ---R__________________________________________B__________
2254 *         ^ reading here                             ^ bad block(assume 4k)
2255 *
2256 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257 * => failing the whole request => read(R) => read(R+1) =>
2258 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261 *
2262 * It is going insane. Fix it by quickly scaling down the readahead size.
2263 */
2264static void shrink_readahead_size_eio(struct file_ra_state *ra)
 
2265{
2266	ra->ra_pages /= 4;
2267}
2268
2269/*
2270 * filemap_get_read_batch - Get a batch of pages for read
 
 
 
 
2271 *
2272 * Get a batch of pages which represent a contiguous range of bytes
2273 * in the file.  No tail pages will be returned.  If @index is in the
2274 * middle of a THP, the entire THP will be returned.  The last page in
2275 * the batch may have Readahead set or be not Uptodate so that the
2276 * caller can take the appropriate action.
2277 */
2278static void filemap_get_read_batch(struct address_space *mapping,
2279		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280{
2281	XA_STATE(xas, &mapping->i_pages, index);
2282	struct page *head;
2283
2284	rcu_read_lock();
2285	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286		if (xas_retry(&xas, head))
2287			continue;
2288		if (xas.xa_index > max || xa_is_value(head))
2289			break;
2290		if (!page_cache_get_speculative(head))
2291			goto retry;
2292
2293		/* Has the page moved or been split? */
2294		if (unlikely(head != xas_reload(&xas)))
2295			goto put_page;
2296
2297		if (!pagevec_add(pvec, head))
2298			break;
2299		if (!PageUptodate(head))
2300			break;
2301		if (PageReadahead(head))
2302			break;
2303		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305		continue;
2306put_page:
2307		put_page(head);
2308retry:
2309		xas_reset(&xas);
2310	}
2311	rcu_read_unlock();
2312}
2313
2314static int filemap_read_page(struct file *file, struct address_space *mapping,
2315		struct page *page)
2316{
2317	int error;
2318
2319	/*
2320	 * A previous I/O error may have been due to temporary failures,
2321	 * eg. multipath errors.  PG_error will be set again if readpage
2322	 * fails.
2323	 */
2324	ClearPageError(page);
2325	/* Start the actual read. The read will unlock the page. */
2326	error = mapping->a_ops->readpage(file, page);
2327	if (error)
2328		return error;
2329
2330	error = wait_on_page_locked_killable(page);
2331	if (error)
2332		return error;
2333	if (PageUptodate(page))
2334		return 0;
2335	shrink_readahead_size_eio(&file->f_ra);
2336	return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340		loff_t pos, struct iov_iter *iter, struct page *page)
2341{
2342	int count;
2343
2344	if (PageUptodate(page))
2345		return true;
2346	/* pipes can't handle partially uptodate pages */
2347	if (iov_iter_is_pipe(iter))
2348		return false;
2349	if (!mapping->a_ops->is_partially_uptodate)
2350		return false;
2351	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352		return false;
2353
2354	count = iter->count;
2355	if (page_offset(page) > pos) {
2356		count -= page_offset(page) - pos;
2357		pos = 0;
2358	} else {
2359		pos -= page_offset(page);
2360	}
2361
2362	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363}
2364
2365static int filemap_update_page(struct kiocb *iocb,
2366		struct address_space *mapping, struct iov_iter *iter,
2367		struct page *page)
2368{
2369	int error;
2370
2371	if (!trylock_page(page)) {
2372		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373			return -EAGAIN;
2374		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2376			return AOP_TRUNCATED_PAGE;
2377		}
2378		error = __lock_page_async(page, iocb->ki_waitq);
2379		if (error)
2380			return error;
2381	}
2382
2383	if (!page->mapping)
2384		goto truncated;
2385
2386	error = 0;
2387	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388		goto unlock;
2389
2390	error = -EAGAIN;
2391	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392		goto unlock;
2393
2394	error = filemap_read_page(iocb->ki_filp, mapping, page);
2395	if (error == AOP_TRUNCATED_PAGE)
2396		put_page(page);
2397	return error;
2398truncated:
2399	unlock_page(page);
2400	put_page(page);
2401	return AOP_TRUNCATED_PAGE;
2402unlock:
2403	unlock_page(page);
2404	return error;
2405}
2406
2407static int filemap_create_page(struct file *file,
2408		struct address_space *mapping, pgoff_t index,
2409		struct pagevec *pvec)
2410{
2411	struct page *page;
2412	int error;
2413
2414	page = page_cache_alloc(mapping);
2415	if (!page)
2416		return -ENOMEM;
2417
2418	error = add_to_page_cache_lru(page, mapping, index,
2419			mapping_gfp_constraint(mapping, GFP_KERNEL));
2420	if (error == -EEXIST)
2421		error = AOP_TRUNCATED_PAGE;
2422	if (error)
2423		goto error;
2424
2425	error = filemap_read_page(file, mapping, page);
2426	if (error)
2427		goto error;
2428
2429	pagevec_add(pvec, page);
2430	return 0;
2431error:
2432	put_page(page);
2433	return error;
2434}
2435
2436static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437		struct address_space *mapping, struct page *page,
2438		pgoff_t last_index)
2439{
2440	if (iocb->ki_flags & IOCB_NOIO)
2441		return -EAGAIN;
2442	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443			page->index, last_index - page->index);
2444	return 0;
2445}
2446
2447static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448		struct pagevec *pvec)
2449{
2450	struct file *filp = iocb->ki_filp;
2451	struct address_space *mapping = filp->f_mapping;
 
2452	struct file_ra_state *ra = &filp->f_ra;
2453	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2454	pgoff_t last_index;
2455	struct page *page;
2456	int err = 0;
2457
2458	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459retry:
2460	if (fatal_signal_pending(current))
2461		return -EINTR;
2462
2463	filemap_get_read_batch(mapping, index, last_index, pvec);
2464	if (!pagevec_count(pvec)) {
2465		if (iocb->ki_flags & IOCB_NOIO)
2466			return -EAGAIN;
2467		page_cache_sync_readahead(mapping, ra, filp, index,
2468				last_index - index);
2469		filemap_get_read_batch(mapping, index, last_index, pvec);
2470	}
2471	if (!pagevec_count(pvec)) {
2472		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473			return -EAGAIN;
2474		err = filemap_create_page(filp, mapping,
2475				iocb->ki_pos >> PAGE_SHIFT, pvec);
2476		if (err == AOP_TRUNCATED_PAGE)
2477			goto retry;
2478		return err;
2479	}
2480
2481	page = pvec->pages[pagevec_count(pvec) - 1];
2482	if (PageReadahead(page)) {
2483		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484		if (err)
2485			goto err;
2486	}
2487	if (!PageUptodate(page)) {
2488		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2489			iocb->ki_flags |= IOCB_NOWAIT;
2490		err = filemap_update_page(iocb, mapping, iter, page);
2491		if (err)
2492			goto err;
2493	}
2494
2495	return 0;
2496err:
2497	if (err < 0)
2498		put_page(page);
2499	if (likely(--pvec->nr))
2500		return 0;
2501	if (err == AOP_TRUNCATED_PAGE)
2502		goto retry;
2503	return err;
2504}
2505
2506/**
2507 * filemap_read - Read data from the page cache.
2508 * @iocb: The iocb to read.
2509 * @iter: Destination for the data.
2510 * @already_read: Number of bytes already read by the caller.
2511 *
2512 * Copies data from the page cache.  If the data is not currently present,
2513 * uses the readahead and readpage address_space operations to fetch it.
2514 *
2515 * Return: Total number of bytes copied, including those already read by
2516 * the caller.  If an error happens before any bytes are copied, returns
2517 * a negative error number.
2518 */
2519ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520		ssize_t already_read)
2521{
2522	struct file *filp = iocb->ki_filp;
2523	struct file_ra_state *ra = &filp->f_ra;
2524	struct address_space *mapping = filp->f_mapping;
2525	struct inode *inode = mapping->host;
2526	struct pagevec pvec;
2527	int i, error = 0;
2528	bool writably_mapped;
2529	loff_t isize, end_offset;
2530
2531	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532		return 0;
2533	if (unlikely(!iov_iter_count(iter)))
2534		return 0;
2535
2536	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537	pagevec_init(&pvec);
2538
2539	do {
2540		cond_resched();
2541
2542		/*
2543		 * If we've already successfully copied some data, then we
2544		 * can no longer safely return -EIOCBQUEUED. Hence mark
2545		 * an async read NOWAIT at that point.
2546		 */
2547		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548			iocb->ki_flags |= IOCB_NOWAIT;
2549
2550		error = filemap_get_pages(iocb, iter, &pvec);
2551		if (error < 0)
2552			break;
2553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2554		/*
2555		 * i_size must be checked after we know the pages are Uptodate.
2556		 *
2557		 * Checking i_size after the check allows us to calculate
2558		 * the correct value for "nr", which means the zero-filled
2559		 * part of the page is not copied back to userspace (unless
2560		 * another truncate extends the file - this is desired though).
2561		 */
 
2562		isize = i_size_read(inode);
2563		if (unlikely(iocb->ki_pos >= isize))
2564			goto put_pages;
2565		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566
2567		/*
2568		 * Once we start copying data, we don't want to be touching any
2569		 * cachelines that might be contended:
2570		 */
2571		writably_mapped = mapping_writably_mapped(mapping);
 
 
2572
2573		/*
2574		 * When a sequential read accesses a page several times, only
2575		 * mark it as accessed the first time.
2576		 */
2577		if (iocb->ki_pos >> PAGE_SHIFT !=
2578		    ra->prev_pos >> PAGE_SHIFT)
2579			mark_page_accessed(pvec.pages[0]);
2580
2581		for (i = 0; i < pagevec_count(&pvec); i++) {
2582			struct page *page = pvec.pages[i];
2583			size_t page_size = thp_size(page);
2584			size_t offset = iocb->ki_pos & (page_size - 1);
2585			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586					     page_size - offset);
2587			size_t copied;
2588
2589			if (end_offset < page_offset(page))
2590				break;
2591			if (i > 0)
2592				mark_page_accessed(page);
2593			/*
2594			 * If users can be writing to this page using arbitrary
2595			 * virtual addresses, take care about potential aliasing
2596			 * before reading the page on the kernel side.
2597			 */
2598			if (writably_mapped) {
2599				int j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2600
2601				for (j = 0; j < thp_nr_pages(page); j++)
2602					flush_dcache_page(page + j);
 
 
 
2603			}
 
 
2604
2605			copied = copy_page_to_iter(page, offset, bytes, iter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2606
2607			already_read += copied;
2608			iocb->ki_pos += copied;
2609			ra->prev_pos = iocb->ki_pos;
2610
2611			if (copied < bytes) {
2612				error = -EFAULT;
2613				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2614			}
 
2615		}
2616put_pages:
2617		for (i = 0; i < pagevec_count(&pvec); i++)
2618			put_page(pvec.pages[i]);
2619		pagevec_reinit(&pvec);
2620	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621
 
 
 
 
 
 
2622	file_accessed(filp);
 
 
2623
2624	return already_read ? already_read : error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625}
2626EXPORT_SYMBOL_GPL(filemap_read);
2627
2628/**
2629 * generic_file_read_iter - generic filesystem read routine
2630 * @iocb:	kernel I/O control block
2631 * @iter:	destination for the data read
 
 
2632 *
2633 * This is the "read_iter()" routine for all filesystems
2634 * that can use the page cache directly.
2635 *
2636 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637 * be returned when no data can be read without waiting for I/O requests
2638 * to complete; it doesn't prevent readahead.
2639 *
2640 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641 * requests shall be made for the read or for readahead.  When no data
2642 * can be read, -EAGAIN shall be returned.  When readahead would be
2643 * triggered, a partial, possibly empty read shall be returned.
2644 *
2645 * Return:
2646 * * number of bytes copied, even for partial reads
2647 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648 */
2649ssize_t
2650generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
2651{
2652	size_t count = iov_iter_count(iter);
2653	ssize_t retval = 0;
2654
2655	if (!count)
2656		return 0; /* skip atime */
 
 
 
 
 
 
2657
2658	if (iocb->ki_flags & IOCB_DIRECT) {
2659		struct file *file = iocb->ki_filp;
2660		struct address_space *mapping = file->f_mapping;
2661		struct inode *inode = mapping->host;
2662		loff_t size;
 
 
2663
 
 
 
 
2664		size = i_size_read(inode);
2665		if (iocb->ki_flags & IOCB_NOWAIT) {
2666			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667						iocb->ki_pos + count - 1))
2668				return -EAGAIN;
2669		} else {
2670			retval = filemap_write_and_wait_range(mapping,
2671						iocb->ki_pos,
2672					        iocb->ki_pos + count - 1);
2673			if (retval < 0)
2674				return retval;
2675		}
2676
2677		file_accessed(file);
2678
2679		retval = mapping->a_ops->direct_IO(iocb, iter);
2680		if (retval >= 0) {
2681			iocb->ki_pos += retval;
2682			count -= retval;
 
 
 
 
 
2683		}
2684		if (retval != -EIOCBQUEUED)
2685			iov_iter_revert(iter, count - iov_iter_count(iter));
2686
2687		/*
2688		 * Btrfs can have a short DIO read if we encounter
2689		 * compressed extents, so if there was an error, or if
2690		 * we've already read everything we wanted to, or if
2691		 * there was a short read because we hit EOF, go ahead
2692		 * and return.  Otherwise fallthrough to buffered io for
2693		 * the rest of the read.  Buffered reads will not work for
2694		 * DAX files, so don't bother trying.
2695		 */
2696		if (retval < 0 || !count || iocb->ki_pos >= size ||
2697		    IS_DAX(inode))
2698			return retval;
 
2699	}
2700
2701	return filemap_read(iocb, iter, retval);
2702}
2703EXPORT_SYMBOL(generic_file_read_iter);
2704
2705static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706		struct address_space *mapping, struct page *page,
2707		loff_t start, loff_t end, bool seek_data)
2708{
2709	const struct address_space_operations *ops = mapping->a_ops;
2710	size_t offset, bsz = i_blocksize(mapping->host);
2711
2712	if (xa_is_value(page) || PageUptodate(page))
2713		return seek_data ? start : end;
2714	if (!ops->is_partially_uptodate)
2715		return seek_data ? end : start;
2716
2717	xas_pause(xas);
2718	rcu_read_unlock();
2719	lock_page(page);
2720	if (unlikely(page->mapping != mapping))
2721		goto unlock;
2722
2723	offset = offset_in_thp(page, start) & ~(bsz - 1);
2724
2725	do {
2726		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2727			break;
2728		start = (start + bsz) & ~(bsz - 1);
2729		offset += bsz;
2730	} while (offset < thp_size(page));
2731unlock:
2732	unlock_page(page);
2733	rcu_read_lock();
2734	return start;
2735}
2736
2737static inline
2738unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739{
2740	if (xa_is_value(page))
2741		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742	return thp_size(page);
2743}
 
2744
 
2745/**
2746 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747 * @mapping: Address space to search.
2748 * @start: First byte to consider.
2749 * @end: Limit of search (exclusive).
2750 * @whence: Either SEEK_HOLE or SEEK_DATA.
2751 *
2752 * If the page cache knows which blocks contain holes and which blocks
2753 * contain data, your filesystem can use this function to implement
2754 * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755 * entirely memory-based such as tmpfs, and filesystems which support
2756 * unwritten extents.
2757 *
2758 * Return: The requested offset on success, or -ENXIO if @whence specifies
2759 * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761 * and @end contain data.
2762 */
2763loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764		loff_t end, int whence)
2765{
2766	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768	bool seek_data = (whence == SEEK_DATA);
2769	struct page *page;
2770
2771	if (end <= start)
2772		return -ENXIO;
2773
2774	rcu_read_lock();
2775	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777		unsigned int seek_size;
2778
2779		if (start < pos) {
2780			if (!seek_data)
2781				goto unlock;
2782			start = pos;
2783		}
2784
2785		seek_size = seek_page_size(&xas, page);
2786		pos = round_up(pos + 1, seek_size);
2787		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788				seek_data);
2789		if (start < pos)
2790			goto unlock;
2791		if (start >= end)
2792			break;
2793		if (seek_size > PAGE_SIZE)
2794			xas_set(&xas, pos >> PAGE_SHIFT);
2795		if (!xa_is_value(page))
2796			put_page(page);
2797	}
2798	if (seek_data)
2799		start = -ENXIO;
2800unlock:
2801	rcu_read_unlock();
2802	if (page && !xa_is_value(page))
2803		put_page(page);
2804	if (start > end)
2805		return end;
2806	return start;
2807}
2808
2809#ifdef CONFIG_MMU
2810#define MMAP_LOTSAMISS  (100)
2811/*
2812 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813 * @vmf - the vm_fault for this fault.
2814 * @page - the page to lock.
2815 * @fpin - the pointer to the file we may pin (or is already pinned).
2816 *
2817 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818 * It differs in that it actually returns the page locked if it returns 1 and 0
2819 * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820 * will point to the pinned file and needs to be fput()'ed at a later point.
2821 */
2822static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823				     struct file **fpin)
2824{
2825	if (trylock_page(page))
2826		return 1;
2827
2828	/*
2829	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831	 * is supposed to work. We have way too many special cases..
2832	 */
2833	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834		return 0;
2835
2836	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838		if (__lock_page_killable(page)) {
2839			/*
2840			 * We didn't have the right flags to drop the mmap_lock,
2841			 * but all fault_handlers only check for fatal signals
2842			 * if we return VM_FAULT_RETRY, so we need to drop the
2843			 * mmap_lock here and return 0 if we don't have a fpin.
2844			 */
2845			if (*fpin == NULL)
2846				mmap_read_unlock(vmf->vma->vm_mm);
2847			return 0;
2848		}
2849	} else
2850		__lock_page(page);
2851	return 1;
2852}
2853
 
2854
2855/*
2856 * Synchronous readahead happens when we don't even find a page in the page
2857 * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858 * to drop the mmap sem we return the file that was pinned in order for us to do
2859 * that.  If we didn't pin a file then we return NULL.  The file that is
2860 * returned needs to be fput()'ed when we're done with it.
2861 */
2862static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
 
 
 
2863{
2864	struct file *file = vmf->vma->vm_file;
2865	struct file_ra_state *ra = &file->f_ra;
2866	struct address_space *mapping = file->f_mapping;
2867	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868	struct file *fpin = NULL;
2869	unsigned int mmap_miss;
2870
2871	/* If we don't want any read-ahead, don't bother */
2872	if (vmf->vma->vm_flags & VM_RAND_READ)
2873		return fpin;
2874	if (!ra->ra_pages)
2875		return fpin;
2876
2877	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879		page_cache_sync_ra(&ractl, ra->ra_pages);
2880		return fpin;
2881	}
2882
2883	/* Avoid banging the cache line if not needed */
2884	mmap_miss = READ_ONCE(ra->mmap_miss);
2885	if (mmap_miss < MMAP_LOTSAMISS * 10)
2886		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887
2888	/*
2889	 * Do we miss much more than hit in this file? If so,
2890	 * stop bothering with read-ahead. It will only hurt.
2891	 */
2892	if (mmap_miss > MMAP_LOTSAMISS)
2893		return fpin;
2894
2895	/*
2896	 * mmap read-around
2897	 */
2898	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900	ra->size = ra->ra_pages;
2901	ra->async_size = ra->ra_pages / 4;
2902	ractl._index = ra->start;
2903	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904	return fpin;
2905}
2906
2907/*
2908 * Asynchronous readahead happens when we find the page and PG_readahead,
2909 * so we want to possibly extend the readahead further.  We return the file that
2910 * was pinned if we have to drop the mmap_lock in order to do IO.
2911 */
2912static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913					    struct page *page)
 
 
 
2914{
2915	struct file *file = vmf->vma->vm_file;
2916	struct file_ra_state *ra = &file->f_ra;
2917	struct address_space *mapping = file->f_mapping;
2918	struct file *fpin = NULL;
2919	unsigned int mmap_miss;
2920	pgoff_t offset = vmf->pgoff;
2921
2922	/* If we don't want any read-ahead, don't bother */
2923	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924		return fpin;
2925	mmap_miss = READ_ONCE(ra->mmap_miss);
2926	if (mmap_miss)
2927		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928	if (PageReadahead(page)) {
2929		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930		page_cache_async_readahead(mapping, ra, file,
2931					   page, offset, ra->ra_pages);
2932	}
2933	return fpin;
2934}
2935
2936/**
2937 * filemap_fault - read in file data for page fault handling
 
2938 * @vmf:	struct vm_fault containing details of the fault
2939 *
2940 * filemap_fault() is invoked via the vma operations vector for a
2941 * mapped memory region to read in file data during a page fault.
2942 *
2943 * The goto's are kind of ugly, but this streamlines the normal case of having
2944 * it in the page cache, and handles the special cases reasonably without
2945 * having a lot of duplicated code.
2946 *
2947 * vma->vm_mm->mmap_lock must be held on entry.
2948 *
2949 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2951 *
2952 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953 * has not been released.
2954 *
2955 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956 *
2957 * Return: bitwise-OR of %VM_FAULT_ codes.
2958 */
2959vm_fault_t filemap_fault(struct vm_fault *vmf)
2960{
2961	int error;
2962	struct file *file = vmf->vma->vm_file;
2963	struct file *fpin = NULL;
2964	struct address_space *mapping = file->f_mapping;
 
2965	struct inode *inode = mapping->host;
2966	pgoff_t offset = vmf->pgoff;
2967	pgoff_t max_off;
2968	struct page *page;
2969	vm_fault_t ret = 0;
 
2970
2971	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972	if (unlikely(offset >= max_off))
2973		return VM_FAULT_SIGBUS;
2974
2975	/*
2976	 * Do we have something in the page cache already?
2977	 */
2978	page = find_get_page(mapping, offset);
2979	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980		/*
2981		 * We found the page, so try async readahead before
2982		 * waiting for the lock.
2983		 */
2984		fpin = do_async_mmap_readahead(vmf, page);
2985	} else if (!page) {
2986		/* No page in the page cache at all */
 
2987		count_vm_event(PGMAJFAULT);
2988		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989		ret = VM_FAULT_MAJOR;
2990		fpin = do_sync_mmap_readahead(vmf);
2991retry_find:
2992		page = pagecache_get_page(mapping, offset,
2993					  FGP_CREAT|FGP_FOR_MMAP,
2994					  vmf->gfp_mask);
2995		if (!page) {
2996			if (fpin)
2997				goto out_retry;
2998			return VM_FAULT_OOM;
2999		}
3000	}
3001
3002	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003		goto out_retry;
 
 
3004
3005	/* Did it get truncated? */
3006	if (unlikely(compound_head(page)->mapping != mapping)) {
3007		unlock_page(page);
3008		put_page(page);
3009		goto retry_find;
3010	}
3011	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012
3013	/*
3014	 * We have a locked page in the page cache, now we need to check
3015	 * that it's up-to-date. If not, it is going to be due to an error.
3016	 */
3017	if (unlikely(!PageUptodate(page)))
3018		goto page_not_uptodate;
3019
3020	/*
3021	 * We've made it this far and we had to drop our mmap_lock, now is the
3022	 * time to return to the upper layer and have it re-find the vma and
3023	 * redo the fault.
3024	 */
3025	if (fpin) {
3026		unlock_page(page);
3027		goto out_retry;
3028	}
3029
3030	/*
3031	 * Found the page and have a reference on it.
3032	 * We must recheck i_size under page lock.
3033	 */
3034	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035	if (unlikely(offset >= max_off)) {
3036		unlock_page(page);
3037		put_page(page);
3038		return VM_FAULT_SIGBUS;
3039	}
3040
3041	vmf->page = page;
3042	return ret | VM_FAULT_LOCKED;
3043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044page_not_uptodate:
3045	/*
3046	 * Umm, take care of errors if the page isn't up-to-date.
3047	 * Try to re-read it _once_. We do this synchronously,
3048	 * because there really aren't any performance issues here
3049	 * and we need to check for errors.
3050	 */
3051	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052	error = filemap_read_page(file, mapping, page);
3053	if (fpin)
3054		goto out_retry;
3055	put_page(page);
 
 
 
3056
3057	if (!error || error == AOP_TRUNCATED_PAGE)
3058		goto retry_find;
3059
 
 
3060	return VM_FAULT_SIGBUS;
3061
3062out_retry:
3063	/*
3064	 * We dropped the mmap_lock, we need to return to the fault handler to
3065	 * re-find the vma and come back and find our hopefully still populated
3066	 * page.
3067	 */
3068	if (page)
3069		put_page(page);
3070	if (fpin)
3071		fput(fpin);
3072	return ret | VM_FAULT_RETRY;
3073}
3074EXPORT_SYMBOL(filemap_fault);
3075
3076static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3077{
3078	struct mm_struct *mm = vmf->vma->vm_mm;
3079
3080	/* Huge page is mapped? No need to proceed. */
3081	if (pmd_trans_huge(*vmf->pmd)) {
3082		unlock_page(page);
3083		put_page(page);
3084		return true;
3085	}
3086
3087	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088	    vm_fault_t ret = do_set_pmd(vmf, page);
3089	    if (!ret) {
3090		    /* The page is mapped successfully, reference consumed. */
3091		    unlock_page(page);
3092		    return true;
3093	    }
3094	}
3095
3096	if (pmd_none(*vmf->pmd)) {
3097		vmf->ptl = pmd_lock(mm, vmf->pmd);
3098		if (likely(pmd_none(*vmf->pmd))) {
3099			mm_inc_nr_ptes(mm);
3100			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101			vmf->prealloc_pte = NULL;
 
 
 
 
 
 
 
3102		}
3103		spin_unlock(vmf->ptl);
3104	}
3105
3106	/* See comment in handle_pte_fault() */
3107	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108		unlock_page(page);
3109		put_page(page);
3110		return true;
3111	}
3112
3113	return false;
3114}
3115
3116static struct page *next_uptodate_page(struct page *page,
3117				       struct address_space *mapping,
3118				       struct xa_state *xas, pgoff_t end_pgoff)
3119{
3120	unsigned long max_idx;
3121
3122	do {
3123		if (!page)
3124			return NULL;
3125		if (xas_retry(xas, page))
3126			continue;
3127		if (xa_is_value(page))
3128			continue;
3129		if (PageLocked(page))
3130			continue;
3131		if (!page_cache_get_speculative(page))
3132			continue;
3133		/* Has the page moved or been split? */
3134		if (unlikely(page != xas_reload(xas)))
3135			goto skip;
3136		if (!PageUptodate(page) || PageReadahead(page))
3137			goto skip;
3138		if (PageHWPoison(page))
3139			goto skip;
3140		if (!trylock_page(page))
3141			goto skip;
3142		if (page->mapping != mapping)
3143			goto unlock;
3144		if (!PageUptodate(page))
3145			goto unlock;
3146		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147		if (xas->xa_index >= max_idx)
3148			goto unlock;
3149		return page;
3150unlock:
3151		unlock_page(page);
3152skip:
3153		put_page(page);
3154	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155
3156	return NULL;
3157}
3158
3159static inline struct page *first_map_page(struct address_space *mapping,
3160					  struct xa_state *xas,
3161					  pgoff_t end_pgoff)
3162{
3163	return next_uptodate_page(xas_find(xas, end_pgoff),
3164				  mapping, xas, end_pgoff);
3165}
3166
3167static inline struct page *next_map_page(struct address_space *mapping,
3168					 struct xa_state *xas,
3169					 pgoff_t end_pgoff)
3170{
3171	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172				  mapping, xas, end_pgoff);
3173}
3174
3175vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3177{
3178	struct vm_area_struct *vma = vmf->vma;
3179	struct file *file = vma->vm_file;
3180	struct address_space *mapping = file->f_mapping;
3181	pgoff_t last_pgoff = start_pgoff;
3182	unsigned long addr;
3183	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184	struct page *head, *page;
3185	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186	vm_fault_t ret = 0;
3187
3188	rcu_read_lock();
3189	head = first_map_page(mapping, &xas, end_pgoff);
3190	if (!head)
3191		goto out;
3192
3193	if (filemap_map_pmd(vmf, head)) {
3194		ret = VM_FAULT_NOPAGE;
3195		goto out;
3196	}
3197
3198	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200	do {
3201		page = find_subpage(head, xas.xa_index);
3202		if (PageHWPoison(page))
3203			goto unlock;
3204
3205		if (mmap_miss > 0)
3206			mmap_miss--;
3207
3208		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209		vmf->pte += xas.xa_index - last_pgoff;
3210		last_pgoff = xas.xa_index;
3211
3212		if (!pte_none(*vmf->pte))
 
3213			goto unlock;
3214
3215		/* We're about to handle the fault */
3216		if (vmf->address == addr)
3217			ret = VM_FAULT_NOPAGE;
3218
3219		do_set_pte(vmf, page, addr);
3220		/* no need to invalidate: a not-present page won't be cached */
3221		update_mmu_cache(vma, addr, vmf->pte);
3222		unlock_page(head);
3223		continue;
3224unlock:
3225		unlock_page(head);
3226		put_page(head);
3227	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3228	pte_unmap_unlock(vmf->pte, vmf->ptl);
3229out:
 
 
3230	rcu_read_unlock();
3231	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232	return ret;
3233}
3234EXPORT_SYMBOL(filemap_map_pages);
3235
3236vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237{
3238	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239	struct page *page = vmf->page;
3240	vm_fault_t ret = VM_FAULT_LOCKED;
 
3241
3242	sb_start_pagefault(mapping->host->i_sb);
3243	file_update_time(vmf->vma->vm_file);
3244	lock_page(page);
3245	if (page->mapping != mapping) {
3246		unlock_page(page);
3247		ret = VM_FAULT_NOPAGE;
3248		goto out;
3249	}
3250	/*
3251	 * We mark the page dirty already here so that when freeze is in
3252	 * progress, we are guaranteed that writeback during freezing will
3253	 * see the dirty page and writeprotect it again.
3254	 */
3255	set_page_dirty(page);
3256	wait_for_stable_page(page);
3257out:
3258	sb_end_pagefault(mapping->host->i_sb);
3259	return ret;
3260}
 
3261
3262const struct vm_operations_struct generic_file_vm_ops = {
3263	.fault		= filemap_fault,
3264	.map_pages	= filemap_map_pages,
3265	.page_mkwrite	= filemap_page_mkwrite,
 
3266};
3267
3268/* This is used for a general mmap of a disk file */
3269
3270int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271{
3272	struct address_space *mapping = file->f_mapping;
3273
3274	if (!mapping->a_ops->readpage)
3275		return -ENOEXEC;
3276	file_accessed(file);
3277	vma->vm_ops = &generic_file_vm_ops;
3278	return 0;
3279}
3280
3281/*
3282 * This is for filesystems which do not implement ->writepage.
3283 */
3284int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285{
3286	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287		return -EINVAL;
3288	return generic_file_mmap(file, vma);
3289}
3290#else
3291vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292{
3293	return VM_FAULT_SIGBUS;
3294}
3295int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296{
3297	return -ENOSYS;
3298}
3299int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300{
3301	return -ENOSYS;
3302}
3303#endif /* CONFIG_MMU */
3304
3305EXPORT_SYMBOL(filemap_page_mkwrite);
3306EXPORT_SYMBOL(generic_file_mmap);
3307EXPORT_SYMBOL(generic_file_readonly_mmap);
3308
3309static struct page *wait_on_page_read(struct page *page)
3310{
3311	if (!IS_ERR(page)) {
3312		wait_on_page_locked(page);
3313		if (!PageUptodate(page)) {
3314			put_page(page);
3315			page = ERR_PTR(-EIO);
3316		}
3317	}
3318	return page;
3319}
3320
3321static struct page *do_read_cache_page(struct address_space *mapping,
3322				pgoff_t index,
3323				int (*filler)(void *, struct page *),
3324				void *data,
3325				gfp_t gfp)
3326{
3327	struct page *page;
3328	int err;
3329repeat:
3330	page = find_get_page(mapping, index);
3331	if (!page) {
3332		page = __page_cache_alloc(gfp);
3333		if (!page)
3334			return ERR_PTR(-ENOMEM);
3335		err = add_to_page_cache_lru(page, mapping, index, gfp);
3336		if (unlikely(err)) {
3337			put_page(page);
3338			if (err == -EEXIST)
3339				goto repeat;
3340			/* Presumably ENOMEM for xarray node */
3341			return ERR_PTR(err);
3342		}
3343
3344filler:
3345		if (filler)
3346			err = filler(data, page);
3347		else
3348			err = mapping->a_ops->readpage(data, page);
3349
3350		if (err < 0) {
3351			put_page(page);
3352			return ERR_PTR(err);
 
 
3353		}
3354
3355		page = wait_on_page_read(page);
3356		if (IS_ERR(page))
3357			return page;
3358		goto out;
3359	}
3360	if (PageUptodate(page))
3361		goto out;
3362
3363	/*
3364	 * Page is not up to date and may be locked due to one of the following
3365	 * case a: Page is being filled and the page lock is held
3366	 * case b: Read/write error clearing the page uptodate status
3367	 * case c: Truncation in progress (page locked)
3368	 * case d: Reclaim in progress
3369	 *
3370	 * Case a, the page will be up to date when the page is unlocked.
3371	 *    There is no need to serialise on the page lock here as the page
3372	 *    is pinned so the lock gives no additional protection. Even if the
3373	 *    page is truncated, the data is still valid if PageUptodate as
3374	 *    it's a race vs truncate race.
3375	 * Case b, the page will not be up to date
3376	 * Case c, the page may be truncated but in itself, the data may still
3377	 *    be valid after IO completes as it's a read vs truncate race. The
3378	 *    operation must restart if the page is not uptodate on unlock but
3379	 *    otherwise serialising on page lock to stabilise the mapping gives
3380	 *    no additional guarantees to the caller as the page lock is
3381	 *    released before return.
3382	 * Case d, similar to truncation. If reclaim holds the page lock, it
3383	 *    will be a race with remove_mapping that determines if the mapping
3384	 *    is valid on unlock but otherwise the data is valid and there is
3385	 *    no need to serialise with page lock.
3386	 *
3387	 * As the page lock gives no additional guarantee, we optimistically
3388	 * wait on the page to be unlocked and check if it's up to date and
3389	 * use the page if it is. Otherwise, the page lock is required to
3390	 * distinguish between the different cases. The motivation is that we
3391	 * avoid spurious serialisations and wakeups when multiple processes
3392	 * wait on the same page for IO to complete.
3393	 */
3394	wait_on_page_locked(page);
3395	if (PageUptodate(page))
3396		goto out;
3397
3398	/* Distinguish between all the cases under the safety of the lock */
3399	lock_page(page);
3400
3401	/* Case c or d, restart the operation */
3402	if (!page->mapping) {
3403		unlock_page(page);
3404		put_page(page);
3405		goto repeat;
3406	}
3407
3408	/* Someone else locked and filled the page in a very small window */
3409	if (PageUptodate(page)) {
3410		unlock_page(page);
3411		goto out;
3412	}
3413
3414	/*
3415	 * A previous I/O error may have been due to temporary
3416	 * failures.
3417	 * Clear page error before actual read, PG_error will be
3418	 * set again if read page fails.
3419	 */
3420	ClearPageError(page);
3421	goto filler;
3422
3423out:
3424	mark_page_accessed(page);
3425	return page;
3426}
3427
3428/**
3429 * read_cache_page - read into page cache, fill it if needed
3430 * @mapping:	the page's address_space
3431 * @index:	the page index
3432 * @filler:	function to perform the read
3433 * @data:	first arg to filler(data, page) function, often left as NULL
3434 *
3435 * Read into the page cache. If a page already exists, and PageUptodate() is
3436 * not set, try to fill the page and wait for it to become unlocked.
3437 *
3438 * If the page does not get brought uptodate, return -EIO.
3439 *
3440 * Return: up to date page on success, ERR_PTR() on failure.
3441 */
3442struct page *read_cache_page(struct address_space *mapping,
3443				pgoff_t index,
3444				int (*filler)(void *, struct page *),
3445				void *data)
3446{
3447	return do_read_cache_page(mapping, index, filler, data,
3448			mapping_gfp_mask(mapping));
3449}
3450EXPORT_SYMBOL(read_cache_page);
3451
3452/**
3453 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454 * @mapping:	the page's address_space
3455 * @index:	the page index
3456 * @gfp:	the page allocator flags to use if allocating
3457 *
3458 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459 * any new page allocations done using the specified allocation flags.
3460 *
3461 * If the page does not get brought uptodate, return -EIO.
3462 *
3463 * Return: up to date page on success, ERR_PTR() on failure.
3464 */
3465struct page *read_cache_page_gfp(struct address_space *mapping,
3466				pgoff_t index,
3467				gfp_t gfp)
3468{
3469	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
 
 
3470}
3471EXPORT_SYMBOL(read_cache_page_gfp);
3472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3473int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474				loff_t pos, unsigned len, unsigned flags,
3475				struct page **pagep, void **fsdata)
3476{
3477	const struct address_space_operations *aops = mapping->a_ops;
3478
3479	return aops->write_begin(file, mapping, pos, len, flags,
3480							pagep, fsdata);
3481}
3482EXPORT_SYMBOL(pagecache_write_begin);
3483
3484int pagecache_write_end(struct file *file, struct address_space *mapping,
3485				loff_t pos, unsigned len, unsigned copied,
3486				struct page *page, void *fsdata)
3487{
3488	const struct address_space_operations *aops = mapping->a_ops;
3489
 
3490	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491}
3492EXPORT_SYMBOL(pagecache_write_end);
3493
3494/*
3495 * Warn about a page cache invalidation failure during a direct I/O write.
3496 */
3497void dio_warn_stale_pagecache(struct file *filp)
3498{
3499	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500	char pathname[128];
3501	char *path;
3502
3503	errseq_set(&filp->f_mapping->wb_err, -EIO);
3504	if (__ratelimit(&_rs)) {
3505		path = file_path(filp, pathname, sizeof(pathname));
3506		if (IS_ERR(path))
3507			path = "(unknown)";
3508		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510			current->comm);
3511	}
3512}
3513
3514ssize_t
3515generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
 
 
3516{
3517	struct file	*file = iocb->ki_filp;
3518	struct address_space *mapping = file->f_mapping;
3519	struct inode	*inode = mapping->host;
3520	loff_t		pos = iocb->ki_pos;
3521	ssize_t		written;
3522	size_t		write_len;
3523	pgoff_t		end;
3524
3525	write_len = iov_iter_count(from);
3526	end = (pos + write_len - 1) >> PAGE_SHIFT;
3527
3528	if (iocb->ki_flags & IOCB_NOWAIT) {
3529		/* If there are pages to writeback, return */
3530		if (filemap_range_has_page(file->f_mapping, pos,
3531					   pos + write_len - 1))
3532			return -EAGAIN;
3533	} else {
3534		written = filemap_write_and_wait_range(mapping, pos,
3535							pos + write_len - 1);
3536		if (written)
3537			goto out;
3538	}
3539
3540	/*
3541	 * After a write we want buffered reads to be sure to go to disk to get
3542	 * the new data.  We invalidate clean cached page from the region we're
3543	 * about to write.  We do this *before* the write so that we can return
3544	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3545	 */
3546	written = invalidate_inode_pages2_range(mapping,
3547					pos >> PAGE_SHIFT, end);
3548	/*
3549	 * If a page can not be invalidated, return 0 to fall back
3550	 * to buffered write.
3551	 */
3552	if (written) {
3553		if (written == -EBUSY)
3554			return 0;
3555		goto out;
 
 
3556	}
3557
3558	written = mapping->a_ops->direct_IO(iocb, from);
3559
3560	/*
3561	 * Finally, try again to invalidate clean pages which might have been
3562	 * cached by non-direct readahead, or faulted in by get_user_pages()
3563	 * if the source of the write was an mmap'ed region of the file
3564	 * we're writing.  Either one is a pretty crazy thing to do,
3565	 * so we don't support it 100%.  If this invalidation
3566	 * fails, tough, the write still worked...
3567	 *
3568	 * Most of the time we do not need this since dio_complete() will do
3569	 * the invalidation for us. However there are some file systems that
3570	 * do not end up with dio_complete() being called, so let's not break
3571	 * them by removing it completely.
3572	 *
3573	 * Noticeable example is a blkdev_direct_IO().
3574	 *
3575	 * Skip invalidation for async writes or if mapping has no pages.
3576	 */
3577	if (written > 0 && mapping->nrpages &&
3578	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579		dio_warn_stale_pagecache(file);
 
3580
3581	if (written > 0) {
3582		pos += written;
3583		write_len -= written;
3584		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585			i_size_write(inode, pos);
3586			mark_inode_dirty(inode);
3587		}
3588		iocb->ki_pos = pos;
3589	}
3590	if (written != -EIOCBQUEUED)
3591		iov_iter_revert(from, write_len - iov_iter_count(from));
3592out:
3593	return written;
3594}
3595EXPORT_SYMBOL(generic_file_direct_write);
3596
3597/*
3598 * Find or create a page at the given pagecache position. Return the locked
3599 * page. This function is specifically for buffered writes.
3600 */
3601struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602					pgoff_t index, unsigned flags)
3603{
 
 
3604	struct page *page;
3605	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606
 
 
 
3607	if (flags & AOP_FLAG_NOFS)
3608		fgp_flags |= FGP_NOFS;
3609
3610	page = pagecache_get_page(mapping, index, fgp_flags,
3611			mapping_gfp_mask(mapping));
3612	if (page)
3613		wait_for_stable_page(page);
3614
 
 
 
 
 
 
 
 
 
 
 
 
 
3615	return page;
3616}
3617EXPORT_SYMBOL(grab_cache_page_write_begin);
3618
3619ssize_t generic_perform_write(struct file *file,
3620				struct iov_iter *i, loff_t pos)
3621{
3622	struct address_space *mapping = file->f_mapping;
3623	const struct address_space_operations *a_ops = mapping->a_ops;
3624	long status = 0;
3625	ssize_t written = 0;
3626	unsigned int flags = 0;
3627
 
 
 
 
 
 
3628	do {
3629		struct page *page;
3630		unsigned long offset;	/* Offset into pagecache page */
3631		unsigned long bytes;	/* Bytes to write to page */
3632		size_t copied;		/* Bytes copied from user */
3633		void *fsdata;
3634
3635		offset = (pos & (PAGE_SIZE - 1));
3636		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637						iov_iter_count(i));
3638
3639again:
3640		/*
3641		 * Bring in the user page that we will copy from _first_.
3642		 * Otherwise there's a nasty deadlock on copying from the
3643		 * same page as we're writing to, without it being marked
3644		 * up-to-date.
 
 
 
 
3645		 */
3646		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3647			status = -EFAULT;
3648			break;
3649		}
3650
3651		if (fatal_signal_pending(current)) {
3652			status = -EINTR;
3653			break;
3654		}
3655
3656		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3657						&page, &fsdata);
3658		if (unlikely(status < 0))
3659			break;
3660
3661		if (mapping_writably_mapped(mapping))
3662			flush_dcache_page(page);
3663
3664		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3665		flush_dcache_page(page);
3666
 
3667		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3668						page, fsdata);
3669		if (unlikely(status != copied)) {
3670			iov_iter_revert(i, copied - max(status, 0L));
3671			if (unlikely(status < 0))
3672				break;
3673		}
3674		cond_resched();
3675
3676		if (unlikely(status == 0)) {
 
3677			/*
3678			 * A short copy made ->write_end() reject the
3679			 * thing entirely.  Might be memory poisoning
3680			 * halfway through, might be a race with munmap,
3681			 * might be severe memory pressure.
 
 
3682			 */
3683			if (copied)
3684				bytes = copied;
3685			goto again;
3686		}
3687		pos += status;
3688		written += status;
3689
3690		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
3691	} while (iov_iter_count(i));
3692
3693	return written ? written : status;
3694}
3695EXPORT_SYMBOL(generic_perform_write);
3696
3697/**
3698 * __generic_file_write_iter - write data to a file
3699 * @iocb:	IO state structure (file, offset, etc.)
3700 * @from:	iov_iter with data to write
 
3701 *
3702 * This function does all the work needed for actually writing data to a
3703 * file. It does all basic checks, removes SUID from the file, updates
3704 * modification times and calls proper subroutines depending on whether we
3705 * do direct IO or a standard buffered write.
3706 *
3707 * It expects i_mutex to be grabbed unless we work on a block device or similar
3708 * object which does not need locking at all.
3709 *
3710 * This function does *not* take care of syncing data in case of O_SYNC write.
3711 * A caller has to handle it. This is mainly due to the fact that we want to
3712 * avoid syncing under i_mutex.
3713 *
3714 * Return:
3715 * * number of bytes written, even for truncated writes
3716 * * negative error code if no data has been written at all
3717 */
3718ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
3719{
3720	struct file *file = iocb->ki_filp;
3721	struct address_space *mapping = file->f_mapping;
 
 
3722	struct inode 	*inode = mapping->host;
 
3723	ssize_t		written = 0;
3724	ssize_t		err;
3725	ssize_t		status;
 
 
 
 
 
 
 
 
3726
3727	/* We can write back this queue in page reclaim */
3728	current->backing_dev_info = inode_to_bdi(inode);
3729	err = file_remove_privs(file);
 
 
 
 
 
 
 
3730	if (err)
3731		goto out;
3732
3733	err = file_update_time(file);
3734	if (err)
3735		goto out;
3736
3737	if (iocb->ki_flags & IOCB_DIRECT) {
3738		loff_t pos, endbyte;
 
 
 
 
 
 
 
 
 
3739
3740		written = generic_file_direct_write(iocb, from);
3741		/*
3742		 * If the write stopped short of completing, fall back to
3743		 * buffered writes.  Some filesystems do this for writes to
3744		 * holes, for example.  For DAX files, a buffered write will
3745		 * not succeed (even if it did, DAX does not handle dirty
3746		 * page-cache pages correctly).
3747		 */
3748		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3749			goto out;
3750
3751		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3752		/*
3753		 * If generic_perform_write() returned a synchronous error
3754		 * then we want to return the number of bytes which were
3755		 * direct-written, or the error code if that was zero.  Note
3756		 * that this differs from normal direct-io semantics, which
3757		 * will return -EFOO even if some bytes were written.
3758		 */
3759		if (unlikely(status < 0)) {
3760			err = status;
3761			goto out;
3762		}
 
3763		/*
3764		 * We need to ensure that the page cache pages are written to
3765		 * disk and invalidated to preserve the expected O_DIRECT
3766		 * semantics.
3767		 */
3768		endbyte = pos + status - 1;
3769		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3770		if (err == 0) {
3771			iocb->ki_pos = endbyte + 1;
3772			written += status;
3773			invalidate_mapping_pages(mapping,
3774						 pos >> PAGE_SHIFT,
3775						 endbyte >> PAGE_SHIFT);
3776		} else {
3777			/*
3778			 * We don't know how much we wrote, so just return
3779			 * the number of bytes which were direct-written
3780			 */
3781		}
3782	} else {
3783		written = generic_perform_write(file, from, iocb->ki_pos);
3784		if (likely(written > 0))
3785			iocb->ki_pos += written;
3786	}
3787out:
3788	current->backing_dev_info = NULL;
3789	return written ? written : err;
3790}
3791EXPORT_SYMBOL(__generic_file_write_iter);
3792
3793/**
3794 * generic_file_write_iter - write data to a file
3795 * @iocb:	IO state structure
3796 * @from:	iov_iter with data to write
 
 
3797 *
3798 * This is a wrapper around __generic_file_write_iter() to be used by most
3799 * filesystems. It takes care of syncing the file in case of O_SYNC file
3800 * and acquires i_mutex as needed.
3801 * Return:
3802 * * negative error code if no data has been written at all of
3803 *   vfs_fsync_range() failed for a synchronous write
3804 * * number of bytes written, even for truncated writes
3805 */
3806ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
3807{
3808	struct file *file = iocb->ki_filp;
3809	struct inode *inode = file->f_mapping->host;
3810	ssize_t ret;
3811
3812	inode_lock(inode);
3813	ret = generic_write_checks(iocb, from);
3814	if (ret > 0)
3815		ret = __generic_file_write_iter(iocb, from);
3816	inode_unlock(inode);
3817
3818	if (ret > 0)
3819		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
 
 
3820	return ret;
3821}
3822EXPORT_SYMBOL(generic_file_write_iter);
3823
3824/**
3825 * try_to_release_page() - release old fs-specific metadata on a page
3826 *
3827 * @page: the page which the kernel is trying to free
3828 * @gfp_mask: memory allocation flags (and I/O mode)
3829 *
3830 * The address_space is to try to release any data against the page
3831 * (presumably at page->private).
 
3832 *
3833 * This may also be called if PG_fscache is set on a page, indicating that the
3834 * page is known to the local caching routines.
3835 *
3836 * The @gfp_mask argument specifies whether I/O may be performed to release
3837 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3838 *
3839 * Return: %1 if the release was successful, otherwise return zero.
3840 */
3841int try_to_release_page(struct page *page, gfp_t gfp_mask)
3842{
3843	struct address_space * const mapping = page->mapping;
3844
3845	BUG_ON(!PageLocked(page));
3846	if (PageWriteback(page))
3847		return 0;
3848
3849	if (mapping && mapping->a_ops->releasepage)
3850		return mapping->a_ops->releasepage(page, gfp_mask);
3851	return try_to_free_buffers(page);
3852}
3853
3854EXPORT_SYMBOL(try_to_release_page);
v3.15
 
   1/*
   2 *	linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
 
  14#include <linux/fs.h>
 
  15#include <linux/uaccess.h>
  16#include <linux/aio.h>
  17#include <linux/capability.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/gfp.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
 
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/security.h>
  32#include <linux/cpuset.h>
  33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  34#include <linux/memcontrol.h>
  35#include <linux/cleancache.h>
 
  36#include <linux/rmap.h>
 
 
 
 
 
 
  37#include "internal.h"
  38
  39#define CREATE_TRACE_POINTS
  40#include <trace/events/filemap.h>
  41
  42/*
  43 * FIXME: remove all knowledge of the buffer layer from the core VM
  44 */
  45#include <linux/buffer_head.h> /* for try_to_free_buffers */
  46
  47#include <asm/mman.h>
  48
  49/*
  50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  51 * though.
  52 *
  53 * Shared mappings now work. 15.8.1995  Bruno.
  54 *
  55 * finished 'unifying' the page and buffer cache and SMP-threaded the
  56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  57 *
  58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  59 */
  60
  61/*
  62 * Lock ordering:
  63 *
  64 *  ->i_mmap_mutex		(truncate_pagecache)
  65 *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
  66 *      ->swap_lock		(exclusive_swap_page, others)
  67 *        ->mapping->tree_lock
  68 *
  69 *  ->i_mutex
  70 *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
  71 *
  72 *  ->mmap_sem
  73 *    ->i_mmap_mutex
  74 *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
  75 *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
  76 *
  77 *  ->mmap_sem
  78 *    ->lock_page		(access_process_vm)
  79 *
  80 *  ->i_mutex			(generic_perform_write)
  81 *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
  82 *
  83 *  bdi->wb.list_lock
  84 *    sb_lock			(fs/fs-writeback.c)
  85 *    ->mapping->tree_lock	(__sync_single_inode)
  86 *
  87 *  ->i_mmap_mutex
  88 *    ->anon_vma.lock		(vma_adjust)
  89 *
  90 *  ->anon_vma.lock
  91 *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
  92 *
  93 *  ->page_table_lock or pte_lock
  94 *    ->swap_lock		(try_to_unmap_one)
  95 *    ->private_lock		(try_to_unmap_one)
  96 *    ->tree_lock		(try_to_unmap_one)
  97 *    ->zone.lru_lock		(follow_page->mark_page_accessed)
  98 *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
  99 *    ->private_lock		(page_remove_rmap->set_page_dirty)
 100 *    ->tree_lock		(page_remove_rmap->set_page_dirty)
 101 *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
 102 *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
 
 103 *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
 104 *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
 105 *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
 106 *
 107 * ->i_mmap_mutex
 108 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 109 */
 110
 111static void page_cache_tree_delete(struct address_space *mapping,
 112				   struct page *page, void *shadow)
 113{
 114	struct radix_tree_node *node;
 115	unsigned long index;
 116	unsigned int offset;
 117	unsigned int tag;
 118	void **slot;
 119
 120	VM_BUG_ON(!PageLocked(page));
 121
 122	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123
 124	if (shadow) {
 125		mapping->nrshadows++;
 126		/*
 127		 * Make sure the nrshadows update is committed before
 128		 * the nrpages update so that final truncate racing
 129		 * with reclaim does not see both counters 0 at the
 130		 * same time and miss a shadow entry.
 131		 */
 132		smp_wmb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133	}
 134	mapping->nrpages--;
 135
 136	if (!node) {
 137		/* Clear direct pointer tags in root node */
 138		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
 139		radix_tree_replace_slot(slot, shadow);
 140		return;
 141	}
 142
 143	/* Clear tree tags for the removed page */
 144	index = page->index;
 145	offset = index & RADIX_TREE_MAP_MASK;
 146	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 147		if (test_bit(offset, node->tags[tag]))
 148			radix_tree_tag_clear(&mapping->page_tree, index, tag);
 
 
 
 
 149	}
 150
 151	/* Delete page, swap shadow entry */
 152	radix_tree_replace_slot(slot, shadow);
 153	workingset_node_pages_dec(node);
 154	if (shadow)
 155		workingset_node_shadows_inc(node);
 156	else
 157		if (__radix_tree_delete_node(&mapping->page_tree, node))
 158			return;
 159
 160	/*
 161	 * Track node that only contains shadow entries.
 
 
 162	 *
 163	 * Avoid acquiring the list_lru lock if already tracked.  The
 164	 * list_empty() test is safe as node->private_list is
 165	 * protected by mapping->tree_lock.
 166	 */
 167	if (!workingset_node_pages(node) &&
 168	    list_empty(&node->private_list)) {
 169		node->private_data = mapping;
 170		list_lru_add(&workingset_shadow_nodes, &node->private_list);
 171	}
 172}
 173
 174/*
 175 * Delete a page from the page cache and free it. Caller has to make
 176 * sure the page is locked and that nobody else uses it - or that usage
 177 * is safe.  The caller must hold the mapping's tree_lock.
 178 */
 179void __delete_from_page_cache(struct page *page, void *shadow)
 180{
 181	struct address_space *mapping = page->mapping;
 182
 183	trace_mm_filemap_delete_from_page_cache(page);
 184	/*
 185	 * if we're uptodate, flush out into the cleancache, otherwise
 186	 * invalidate any existing cleancache entries.  We can't leave
 187	 * stale data around in the cleancache once our page is gone
 188	 */
 189	if (PageUptodate(page) && PageMappedToDisk(page))
 190		cleancache_put_page(page);
 191	else
 192		cleancache_invalidate_page(mapping, page);
 193
 194	page_cache_tree_delete(mapping, page, shadow);
 
 
 195
 196	page->mapping = NULL;
 197	/* Leave page->index set: truncation lookup relies upon it */
 
 
 198
 199	__dec_zone_page_state(page, NR_FILE_PAGES);
 200	if (PageSwapBacked(page))
 201		__dec_zone_page_state(page, NR_SHMEM);
 202	BUG_ON(page_mapped(page));
 203
 204	/*
 205	 * Some filesystems seem to re-dirty the page even after
 206	 * the VM has canceled the dirty bit (eg ext3 journaling).
 207	 *
 208	 * Fix it up by doing a final dirty accounting check after
 209	 * having removed the page entirely.
 210	 */
 211	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 212		dec_zone_page_state(page, NR_FILE_DIRTY);
 213		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 214	}
 215}
 216
 217/**
 218 * delete_from_page_cache - delete page from page cache
 219 * @page: the page which the kernel is trying to remove from page cache
 220 *
 221 * This must be called only on pages that have been verified to be in the page
 222 * cache and locked.  It will never put the page into the free list, the caller
 223 * has a reference on the page.
 224 */
 225void delete_from_page_cache(struct page *page)
 226{
 227	struct address_space *mapping = page->mapping;
 228	void (*freepage)(struct page *);
 229
 230	BUG_ON(!PageLocked(page));
 231
 232	freepage = mapping->a_ops->freepage;
 233	spin_lock_irq(&mapping->tree_lock);
 234	__delete_from_page_cache(page, NULL);
 235	spin_unlock_irq(&mapping->tree_lock);
 236	mem_cgroup_uncharge_cache_page(page);
 237
 238	if (freepage)
 239		freepage(page);
 240	page_cache_release(page);
 241}
 242EXPORT_SYMBOL(delete_from_page_cache);
 243
 244static int sleep_on_page(void *word)
 245{
 246	io_schedule();
 247	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248}
 249
 250static int sleep_on_page_killable(void *word)
 
 251{
 252	sleep_on_page(word);
 253	return fatal_signal_pending(current) ? -EINTR : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254}
 255
 256static int filemap_check_errors(struct address_space *mapping)
 257{
 258	int ret = 0;
 259	/* Check for outstanding write errors */
 260	if (test_bit(AS_ENOSPC, &mapping->flags) &&
 261	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 262		ret = -ENOSPC;
 263	if (test_bit(AS_EIO, &mapping->flags) &&
 264	    test_and_clear_bit(AS_EIO, &mapping->flags))
 265		ret = -EIO;
 266	return ret;
 267}
 
 
 
 
 
 
 
 
 
 
 
 268
 269/**
 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 271 * @mapping:	address space structure to write
 272 * @start:	offset in bytes where the range starts
 273 * @end:	offset in bytes where the range ends (inclusive)
 274 * @sync_mode:	enable synchronous operation
 275 *
 276 * Start writeback against all of a mapping's dirty pages that lie
 277 * within the byte offsets <start, end> inclusive.
 278 *
 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 280 * opposed to a regular memory cleansing writeback.  The difference between
 281 * these two operations is that if a dirty page/buffer is encountered, it must
 282 * be waited upon, and not just skipped over.
 
 
 283 */
 284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 285				loff_t end, int sync_mode)
 286{
 287	int ret;
 288	struct writeback_control wbc = {
 289		.sync_mode = sync_mode,
 290		.nr_to_write = LONG_MAX,
 291		.range_start = start,
 292		.range_end = end,
 293	};
 294
 295	if (!mapping_cap_writeback_dirty(mapping))
 
 296		return 0;
 297
 
 298	ret = do_writepages(mapping, &wbc);
 
 299	return ret;
 300}
 301
 302static inline int __filemap_fdatawrite(struct address_space *mapping,
 303	int sync_mode)
 304{
 305	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 306}
 307
 308int filemap_fdatawrite(struct address_space *mapping)
 309{
 310	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 311}
 312EXPORT_SYMBOL(filemap_fdatawrite);
 313
 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 315				loff_t end)
 316{
 317	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 318}
 319EXPORT_SYMBOL(filemap_fdatawrite_range);
 320
 321/**
 322 * filemap_flush - mostly a non-blocking flush
 323 * @mapping:	target address_space
 324 *
 325 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 326 * purposes - I/O may not be started against all dirty pages.
 
 
 327 */
 328int filemap_flush(struct address_space *mapping)
 329{
 330	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 331}
 332EXPORT_SYMBOL(filemap_flush);
 333
 334/**
 335 * filemap_fdatawait_range - wait for writeback to complete
 336 * @mapping:		address space structure to wait for
 337 * @start_byte:		offset in bytes where the range starts
 338 * @end_byte:		offset in bytes where the range ends (inclusive)
 
 
 
 339 *
 340 * Walk the list of under-writeback pages of the given address space
 341 * in the given range and wait for all of them.
 342 */
 343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 344			    loff_t end_byte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345{
 346	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
 347	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
 348	struct pagevec pvec;
 349	int nr_pages;
 350	int ret2, ret = 0;
 351
 352	if (end_byte < start_byte)
 353		goto out;
 354
 355	pagevec_init(&pvec, 0);
 356	while ((index <= end) &&
 357			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 358			PAGECACHE_TAG_WRITEBACK,
 359			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 360		unsigned i;
 361
 
 
 
 
 
 362		for (i = 0; i < nr_pages; i++) {
 363			struct page *page = pvec.pages[i];
 364
 365			/* until radix tree lookup accepts end_index */
 366			if (page->index > end)
 367				continue;
 368
 369			wait_on_page_writeback(page);
 370			if (TestClearPageError(page))
 371				ret = -EIO;
 372		}
 373		pagevec_release(&pvec);
 374		cond_resched();
 375	}
 376out:
 377	ret2 = filemap_check_errors(mapping);
 378	if (!ret)
 379		ret = ret2;
 380
 381	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382}
 383EXPORT_SYMBOL(filemap_fdatawait_range);
 384
 385/**
 386 * filemap_fdatawait - wait for all under-writeback pages to complete
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 387 * @mapping: address space structure to wait for
 388 *
 389 * Walk the list of under-writeback pages of the given address space
 390 * and wait for all of them.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391 */
 392int filemap_fdatawait(struct address_space *mapping)
 
 393{
 394	loff_t i_size = i_size_read(mapping->host);
 
 
 395
 396	if (i_size == 0)
 397		return 0;
 
 
 
 
 
 398
 399	return filemap_fdatawait_range(mapping, 0, i_size - 1);
 
 
 
 
 
 
 
 
 
 
 400}
 401EXPORT_SYMBOL(filemap_fdatawait);
 402
 403int filemap_write_and_wait(struct address_space *mapping)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404{
 405	int err = 0;
 406
 407	if (mapping->nrpages) {
 408		err = filemap_fdatawrite(mapping);
 
 409		/*
 410		 * Even if the above returned error, the pages may be
 411		 * written partially (e.g. -ENOSPC), so we wait for it.
 412		 * But the -EIO is special case, it may indicate the worst
 413		 * thing (e.g. bug) happened, so we avoid waiting for it.
 414		 */
 415		if (err != -EIO) {
 416			int err2 = filemap_fdatawait(mapping);
 
 417			if (!err)
 418				err = err2;
 
 
 
 419		}
 420	} else {
 421		err = filemap_check_errors(mapping);
 422	}
 423	return err;
 424}
 425EXPORT_SYMBOL(filemap_write_and_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426
 427/**
 428 * filemap_write_and_wait_range - write out & wait on a file range
 429 * @mapping:	the address_space for the pages
 430 * @lstart:	offset in bytes where the range starts
 431 * @lend:	offset in bytes where the range ends (inclusive)
 432 *
 433 * Write out and wait upon file offsets lstart->lend, inclusive.
 434 *
 435 * Note that `lend' is inclusive (describes the last byte to be written) so
 436 * that this function can be used to write to the very end-of-file (end = -1).
 
 
 
 
 
 437 */
 438int filemap_write_and_wait_range(struct address_space *mapping,
 439				 loff_t lstart, loff_t lend)
 440{
 441	int err = 0;
 
 442
 443	if (mapping->nrpages) {
 444		err = __filemap_fdatawrite_range(mapping, lstart, lend,
 445						 WB_SYNC_ALL);
 446		/* See comment of filemap_write_and_wait() */
 447		if (err != -EIO) {
 448			int err2 = filemap_fdatawait_range(mapping,
 449						lstart, lend);
 450			if (!err)
 451				err = err2;
 452		}
 453	} else {
 454		err = filemap_check_errors(mapping);
 455	}
 
 
 
 456	return err;
 457}
 458EXPORT_SYMBOL(filemap_write_and_wait_range);
 459
 460/**
 461 * replace_page_cache_page - replace a pagecache page with a new one
 462 * @old:	page to be replaced
 463 * @new:	page to replace with
 464 * @gfp_mask:	allocation mode
 465 *
 466 * This function replaces a page in the pagecache with a new one.  On
 467 * success it acquires the pagecache reference for the new page and
 468 * drops it for the old page.  Both the old and new pages must be
 469 * locked.  This function does not add the new page to the LRU, the
 470 * caller must do that.
 471 *
 472 * The remove + add is atomic.  The only way this function can fail is
 473 * memory allocation failure.
 474 */
 475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 476{
 477	int error;
 
 
 
 
 478
 479	VM_BUG_ON_PAGE(!PageLocked(old), old);
 480	VM_BUG_ON_PAGE(!PageLocked(new), new);
 481	VM_BUG_ON_PAGE(new->mapping, new);
 482
 483	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 484	if (!error) {
 485		struct address_space *mapping = old->mapping;
 486		void (*freepage)(struct page *);
 487
 488		pgoff_t offset = old->index;
 489		freepage = mapping->a_ops->freepage;
 490
 491		page_cache_get(new);
 492		new->mapping = mapping;
 493		new->index = offset;
 494
 495		spin_lock_irq(&mapping->tree_lock);
 496		__delete_from_page_cache(old, NULL);
 497		error = radix_tree_insert(&mapping->page_tree, offset, new);
 498		BUG_ON(error);
 499		mapping->nrpages++;
 500		__inc_zone_page_state(new, NR_FILE_PAGES);
 501		if (PageSwapBacked(new))
 502			__inc_zone_page_state(new, NR_SHMEM);
 503		spin_unlock_irq(&mapping->tree_lock);
 504		/* mem_cgroup codes must not be called under tree_lock */
 505		mem_cgroup_replace_page_cache(old, new);
 506		radix_tree_preload_end();
 507		if (freepage)
 508			freepage(old);
 509		page_cache_release(old);
 510	}
 511
 512	return error;
 513}
 514EXPORT_SYMBOL_GPL(replace_page_cache_page);
 515
 516static int page_cache_tree_insert(struct address_space *mapping,
 517				  struct page *page, void **shadowp)
 
 
 518{
 519	struct radix_tree_node *node;
 520	void **slot;
 521	int error;
 
 522
 523	error = __radix_tree_create(&mapping->page_tree, page->index,
 524				    &node, &slot);
 525	if (error)
 526		return error;
 527	if (*slot) {
 528		void *p;
 
 529
 530		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
 531		if (!radix_tree_exceptional_entry(p))
 532			return -EEXIST;
 533		if (shadowp)
 534			*shadowp = p;
 535		mapping->nrshadows--;
 536		if (node)
 537			workingset_node_shadows_dec(node);
 538	}
 539	radix_tree_replace_slot(slot, page);
 540	mapping->nrpages++;
 541	if (node) {
 542		workingset_node_pages_inc(node);
 543		/*
 544		 * Don't track node that contains actual pages.
 545		 *
 546		 * Avoid acquiring the list_lru lock if already
 547		 * untracked.  The list_empty() test is safe as
 548		 * node->private_list is protected by
 549		 * mapping->tree_lock.
 550		 */
 551		if (!list_empty(&node->private_list))
 552			list_lru_del(&workingset_shadow_nodes,
 553				     &node->private_list);
 554	}
 555	return 0;
 556}
 557
 558static int __add_to_page_cache_locked(struct page *page,
 559				      struct address_space *mapping,
 560				      pgoff_t offset, gfp_t gfp_mask,
 561				      void **shadowp)
 562{
 563	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565	VM_BUG_ON_PAGE(!PageLocked(page), page);
 566	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 567
 568	error = mem_cgroup_charge_file(page, current->mm,
 569					gfp_mask & GFP_RECLAIM_MASK);
 570	if (error)
 571		return error;
 
 
 572
 573	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
 574	if (error) {
 575		mem_cgroup_uncharge_cache_page(page);
 576		return error;
 
 577	}
 578
 579	page_cache_get(page);
 580	page->mapping = mapping;
 581	page->index = offset;
 582
 583	spin_lock_irq(&mapping->tree_lock);
 584	error = page_cache_tree_insert(mapping, page, shadowp);
 585	radix_tree_preload_end();
 586	if (unlikely(error))
 587		goto err_insert;
 588	__inc_zone_page_state(page, NR_FILE_PAGES);
 589	spin_unlock_irq(&mapping->tree_lock);
 590	trace_mm_filemap_add_to_page_cache(page);
 591	return 0;
 592err_insert:
 593	page->mapping = NULL;
 594	/* Leave page->index set: truncation relies upon it */
 595	spin_unlock_irq(&mapping->tree_lock);
 596	mem_cgroup_uncharge_cache_page(page);
 597	page_cache_release(page);
 598	return error;
 599}
 
 600
 601/**
 602 * add_to_page_cache_locked - add a locked page to the pagecache
 603 * @page:	page to add
 604 * @mapping:	the page's address_space
 605 * @offset:	page index
 606 * @gfp_mask:	page allocation mode
 607 *
 608 * This function is used to add a page to the pagecache. It must be locked.
 609 * This function does not add the page to the LRU.  The caller must do that.
 
 
 610 */
 611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 612		pgoff_t offset, gfp_t gfp_mask)
 613{
 614	return __add_to_page_cache_locked(page, mapping, offset,
 615					  gfp_mask, NULL);
 616}
 617EXPORT_SYMBOL(add_to_page_cache_locked);
 618
 619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 620				pgoff_t offset, gfp_t gfp_mask)
 621{
 622	void *shadow = NULL;
 623	int ret;
 624
 625	__set_page_locked(page);
 626	ret = __add_to_page_cache_locked(page, mapping, offset,
 627					 gfp_mask, &shadow);
 628	if (unlikely(ret))
 629		__clear_page_locked(page);
 630	else {
 631		/*
 632		 * The page might have been evicted from cache only
 633		 * recently, in which case it should be activated like
 634		 * any other repeatedly accessed page.
 635		 */
 636		if (shadow && workingset_refault(shadow)) {
 637			SetPageActive(page);
 638			workingset_activation(page);
 639		} else
 640			ClearPageActive(page);
 
 641		lru_cache_add(page);
 642	}
 643	return ret;
 644}
 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 646
 647#ifdef CONFIG_NUMA
 648struct page *__page_cache_alloc(gfp_t gfp)
 649{
 650	int n;
 651	struct page *page;
 652
 653	if (cpuset_do_page_mem_spread()) {
 654		unsigned int cpuset_mems_cookie;
 655		do {
 656			cpuset_mems_cookie = read_mems_allowed_begin();
 657			n = cpuset_mem_spread_node();
 658			page = alloc_pages_exact_node(n, gfp, 0);
 659		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 660
 661		return page;
 662	}
 663	return alloc_pages(gfp, 0);
 664}
 665EXPORT_SYMBOL(__page_cache_alloc);
 666#endif
 667
 668/*
 669 * In order to wait for pages to become available there must be
 670 * waitqueues associated with pages. By using a hash table of
 671 * waitqueues where the bucket discipline is to maintain all
 672 * waiters on the same queue and wake all when any of the pages
 673 * become available, and for the woken contexts to check to be
 674 * sure the appropriate page became available, this saves space
 675 * at a cost of "thundering herd" phenomena during rare hash
 676 * collisions.
 677 */
 
 
 
 
 678static wait_queue_head_t *page_waitqueue(struct page *page)
 679{
 680	const struct zone *zone = page_zone(page);
 
 
 
 
 
 681
 682	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 
 
 
 683}
 684
 685static inline void wake_up_page(struct page *page, int bit)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686{
 687	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688}
 689
 690void wait_on_page_bit(struct page *page, int bit_nr)
 691{
 692	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 693
 694	if (test_bit(bit_nr, &page->flags))
 695		__wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
 696							TASK_UNINTERRUPTIBLE);
 697}
 698EXPORT_SYMBOL(wait_on_page_bit);
 699
 700int wait_on_page_bit_killable(struct page *page, int bit_nr)
 701{
 702	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 
 
 
 703
 704	if (!test_bit(bit_nr, &page->flags))
 705		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707	return __wait_on_bit(page_waitqueue(page), &wait,
 708			     sleep_on_page_killable, TASK_KILLABLE);
 
 709}
 710
 711/**
 712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
 713 * @page: Page defining the wait queue of interest
 714 * @waiter: Waiter to add to the queue
 715 *
 716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
 717 */
 718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
 719{
 720	wait_queue_head_t *q = page_waitqueue(page);
 721	unsigned long flags;
 722
 723	spin_lock_irqsave(&q->lock, flags);
 724	__add_wait_queue(q, waiter);
 
 725	spin_unlock_irqrestore(&q->lock, flags);
 726}
 727EXPORT_SYMBOL_GPL(add_page_wait_queue);
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729/**
 730 * unlock_page - unlock a locked page
 731 * @page: the page
 732 *
 733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 735 * mechananism between PageLocked pages and PageWriteback pages is shared.
 736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 737 *
 738 * The mb is necessary to enforce ordering between the clear_bit and the read
 739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
 
 
 
 740 */
 741void unlock_page(struct page *page)
 742{
 
 
 743	VM_BUG_ON_PAGE(!PageLocked(page), page);
 744	clear_bit_unlock(PG_locked, &page->flags);
 745	smp_mb__after_clear_bit();
 746	wake_up_page(page, PG_locked);
 747}
 748EXPORT_SYMBOL(unlock_page);
 749
 750/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751 * end_page_writeback - end writeback against a page
 752 * @page: the page
 753 */
 754void end_page_writeback(struct page *page)
 755{
 756	if (TestClearPageReclaim(page))
 
 
 
 
 
 
 
 
 757		rotate_reclaimable_page(page);
 
 758
 
 
 
 
 
 
 
 759	if (!test_clear_page_writeback(page))
 760		BUG();
 761
 762	smp_mb__after_clear_bit();
 763	wake_up_page(page, PG_writeback);
 
 764}
 765EXPORT_SYMBOL(end_page_writeback);
 766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767/**
 768 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 769 * @page: the page to lock
 770 */
 771void __lock_page(struct page *page)
 772{
 773	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 
 
 
 
 774
 775	__wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
 776							TASK_UNINTERRUPTIBLE);
 
 
 
 
 777}
 778EXPORT_SYMBOL(__lock_page);
 779
 780int __lock_page_killable(struct page *page)
 781{
 782	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 
 783
 784	return __wait_on_bit_lock(page_waitqueue(page), &wait,
 785					sleep_on_page_killable, TASK_KILLABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786}
 787EXPORT_SYMBOL_GPL(__lock_page_killable);
 788
 
 
 
 
 
 
 
 
 
 
 
 789int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
 790			 unsigned int flags)
 791{
 792	if (flags & FAULT_FLAG_ALLOW_RETRY) {
 793		/*
 794		 * CAUTION! In this case, mmap_sem is not released
 795		 * even though return 0.
 796		 */
 797		if (flags & FAULT_FLAG_RETRY_NOWAIT)
 798			return 0;
 799
 800		up_read(&mm->mmap_sem);
 801		if (flags & FAULT_FLAG_KILLABLE)
 802			wait_on_page_locked_killable(page);
 803		else
 804			wait_on_page_locked(page);
 805		return 0;
 
 
 
 
 
 
 
 
 
 806	} else {
 807		if (flags & FAULT_FLAG_KILLABLE) {
 808			int ret;
 
 809
 810			ret = __lock_page_killable(page);
 811			if (ret) {
 812				up_read(&mm->mmap_sem);
 813				return 0;
 814			}
 815		} else
 816			__lock_page(page);
 817		return 1;
 818	}
 819}
 820
 821/**
 822 * page_cache_next_hole - find the next hole (not-present entry)
 823 * @mapping: mapping
 824 * @index: index
 825 * @max_scan: maximum range to search
 826 *
 827 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
 828 * lowest indexed hole.
 829 *
 830 * Returns: the index of the hole if found, otherwise returns an index
 831 * outside of the set specified (in which case 'return - index >=
 832 * max_scan' will be true). In rare cases of index wrap-around, 0 will
 833 * be returned.
 834 *
 835 * page_cache_next_hole may be called under rcu_read_lock. However,
 836 * like radix_tree_gang_lookup, this will not atomically search a
 837 * snapshot of the tree at a single point in time. For example, if a
 838 * hole is created at index 5, then subsequently a hole is created at
 839 * index 10, page_cache_next_hole covering both indexes may return 10
 840 * if called under rcu_read_lock.
 841 */
 842pgoff_t page_cache_next_hole(struct address_space *mapping,
 843			     pgoff_t index, unsigned long max_scan)
 844{
 845	unsigned long i;
 846
 847	for (i = 0; i < max_scan; i++) {
 848		struct page *page;
 849
 850		page = radix_tree_lookup(&mapping->page_tree, index);
 851		if (!page || radix_tree_exceptional_entry(page))
 
 852			break;
 853		index++;
 854		if (index == 0)
 855			break;
 856	}
 857
 858	return index;
 859}
 860EXPORT_SYMBOL(page_cache_next_hole);
 861
 862/**
 863 * page_cache_prev_hole - find the prev hole (not-present entry)
 864 * @mapping: mapping
 865 * @index: index
 866 * @max_scan: maximum range to search
 867 *
 868 * Search backwards in the range [max(index-max_scan+1, 0), index] for
 869 * the first hole.
 870 *
 871 * Returns: the index of the hole if found, otherwise returns an index
 872 * outside of the set specified (in which case 'index - return >=
 873 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
 874 * will be returned.
 
 875 *
 876 * page_cache_prev_hole may be called under rcu_read_lock. However,
 877 * like radix_tree_gang_lookup, this will not atomically search a
 878 * snapshot of the tree at a single point in time. For example, if a
 879 * hole is created at index 10, then subsequently a hole is created at
 880 * index 5, page_cache_prev_hole covering both indexes may return 5 if
 881 * called under rcu_read_lock.
 882 */
 883pgoff_t page_cache_prev_hole(struct address_space *mapping,
 884			     pgoff_t index, unsigned long max_scan)
 885{
 886	unsigned long i;
 887
 888	for (i = 0; i < max_scan; i++) {
 889		struct page *page;
 890
 891		page = radix_tree_lookup(&mapping->page_tree, index);
 892		if (!page || radix_tree_exceptional_entry(page))
 
 893			break;
 894		index--;
 895		if (index == ULONG_MAX)
 896			break;
 897	}
 898
 899	return index;
 900}
 901EXPORT_SYMBOL(page_cache_prev_hole);
 902
 903/**
 904 * find_get_entry - find and get a page cache entry
 905 * @mapping: the address_space to search
 906 * @offset: the page cache index
 907 *
 908 * Looks up the page cache slot at @mapping & @offset.  If there is a
 909 * page cache page, it is returned with an increased refcount.
 910 *
 911 * If the slot holds a shadow entry of a previously evicted page, or a
 912 * swap entry from shmem/tmpfs, it is returned.
 913 *
 914 * Otherwise, %NULL is returned.
 915 */
 916struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
 
 917{
 918	void **pagep;
 919	struct page *page;
 920
 921	rcu_read_lock();
 922repeat:
 923	page = NULL;
 924	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
 925	if (pagep) {
 926		page = radix_tree_deref_slot(pagep);
 927		if (unlikely(!page))
 928			goto out;
 929		if (radix_tree_exception(page)) {
 930			if (radix_tree_deref_retry(page))
 931				goto repeat;
 932			/*
 933			 * A shadow entry of a recently evicted page,
 934			 * or a swap entry from shmem/tmpfs.  Return
 935			 * it without attempting to raise page count.
 936			 */
 937			goto out;
 938		}
 939		if (!page_cache_get_speculative(page))
 940			goto repeat;
 941
 942		/*
 943		 * Has the page moved?
 944		 * This is part of the lockless pagecache protocol. See
 945		 * include/linux/pagemap.h for details.
 946		 */
 947		if (unlikely(page != *pagep)) {
 948			page_cache_release(page);
 949			goto repeat;
 950		}
 951	}
 952out:
 953	rcu_read_unlock();
 954
 955	return page;
 956}
 957EXPORT_SYMBOL(find_get_entry);
 958
 959/**
 960 * find_get_page - find and get a page reference
 961 * @mapping: the address_space to search
 962 * @offset: the page index
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963 *
 964 * Looks up the page cache slot at @mapping & @offset.  If there is a
 965 * page cache page, it is returned with an increased refcount.
 966 *
 967 * Otherwise, %NULL is returned.
 968 */
 969struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
 
 970{
 971	struct page *page = find_get_entry(mapping, offset);
 972
 973	if (radix_tree_exceptional_entry(page))
 
 
 
 
 974		page = NULL;
 975	return page;
 976}
 977EXPORT_SYMBOL(find_get_page);
 978
 979/**
 980 * find_lock_entry - locate, pin and lock a page cache entry
 981 * @mapping: the address_space to search
 982 * @offset: the page cache index
 983 *
 984 * Looks up the page cache slot at @mapping & @offset.  If there is a
 985 * page cache page, it is returned locked and with an increased
 986 * refcount.
 987 *
 988 * If the slot holds a shadow entry of a previously evicted page, or a
 989 * swap entry from shmem/tmpfs, it is returned.
 990 *
 991 * Otherwise, %NULL is returned.
 992 *
 993 * find_lock_entry() may sleep.
 994 */
 995struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
 996{
 997	struct page *page;
 998
 999repeat:
1000	page = find_get_entry(mapping, offset);
1001	if (page && !radix_tree_exception(page)) {
1002		lock_page(page);
1003		/* Has the page been truncated? */
1004		if (unlikely(page->mapping != mapping)) {
1005			unlock_page(page);
1006			page_cache_release(page);
1007			goto repeat;
1008		}
1009		VM_BUG_ON_PAGE(page->index != offset, page);
1010	}
1011	return page;
1012}
1013EXPORT_SYMBOL(find_lock_entry);
1014
1015/**
1016 * find_lock_page - locate, pin and lock a pagecache page
1017 * @mapping: the address_space to search
1018 * @offset: the page index
1019 *
1020 * Looks up the page cache slot at @mapping & @offset.  If there is a
1021 * page cache page, it is returned locked and with an increased
1022 * refcount.
1023 *
1024 * Otherwise, %NULL is returned.
1025 *
1026 * find_lock_page() may sleep.
1027 */
1028struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1029{
1030	struct page *page = find_lock_entry(mapping, offset);
 
1031
1032	if (radix_tree_exceptional_entry(page))
1033		page = NULL;
1034	return page;
1035}
1036EXPORT_SYMBOL(find_lock_page);
1037
1038/**
1039 * find_or_create_page - locate or add a pagecache page
1040 * @mapping: the page's address_space
1041 * @index: the page's index into the mapping
1042 * @gfp_mask: page allocation mode
1043 *
1044 * Looks up the page cache slot at @mapping & @offset.  If there is a
1045 * page cache page, it is returned locked and with an increased
1046 * refcount.
1047 *
1048 * If the page is not present, a new page is allocated using @gfp_mask
1049 * and added to the page cache and the VM's LRU list.  The page is
1050 * returned locked and with an increased refcount.
1051 *
1052 * On memory exhaustion, %NULL is returned.
1053 *
1054 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1055 * atomic allocation!
1056 */
1057struct page *find_or_create_page(struct address_space *mapping,
1058		pgoff_t index, gfp_t gfp_mask)
1059{
1060	struct page *page;
1061	int err;
1062repeat:
1063	page = find_lock_page(mapping, index);
1064	if (!page) {
1065		page = __page_cache_alloc(gfp_mask);
1066		if (!page)
1067			return NULL;
1068		/*
1069		 * We want a regular kernel memory (not highmem or DMA etc)
1070		 * allocation for the radix tree nodes, but we need to honour
1071		 * the context-specific requirements the caller has asked for.
1072		 * GFP_RECLAIM_MASK collects those requirements.
1073		 */
1074		err = add_to_page_cache_lru(page, mapping, index,
1075			(gfp_mask & GFP_RECLAIM_MASK));
 
1076		if (unlikely(err)) {
1077			page_cache_release(page);
1078			page = NULL;
1079			if (err == -EEXIST)
1080				goto repeat;
1081		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082	}
 
1083	return page;
 
 
 
1084}
1085EXPORT_SYMBOL(find_or_create_page);
1086
1087/**
1088 * find_get_entries - gang pagecache lookup
1089 * @mapping:	The address_space to search
1090 * @start:	The starting page cache index
1091 * @nr_entries:	The maximum number of entries
1092 * @entries:	Where the resulting entries are placed
1093 * @indices:	The cache indices corresponding to the entries in @entries
1094 *
1095 * find_get_entries() will search for and return a group of up to
1096 * @nr_entries entries in the mapping.  The entries are placed at
1097 * @entries.  find_get_entries() takes a reference against any actual
1098 * pages it returns.
1099 *
1100 * The search returns a group of mapping-contiguous page cache entries
1101 * with ascending indexes.  There may be holes in the indices due to
1102 * not-present pages.
1103 *
1104 * Any shadow entries of evicted pages, or swap entries from
1105 * shmem/tmpfs, are included in the returned array.
1106 *
1107 * find_get_entries() returns the number of pages and shadow entries
1108 * which were found.
 
 
 
 
1109 */
1110unsigned find_get_entries(struct address_space *mapping,
1111			  pgoff_t start, unsigned int nr_entries,
1112			  struct page **entries, pgoff_t *indices)
1113{
1114	void **slot;
 
1115	unsigned int ret = 0;
1116	struct radix_tree_iter iter;
1117
1118	if (!nr_entries)
1119		return 0;
1120
1121	rcu_read_lock();
1122restart:
1123	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1124		struct page *page;
1125repeat:
1126		page = radix_tree_deref_slot(slot);
1127		if (unlikely(!page))
1128			continue;
1129		if (radix_tree_exception(page)) {
1130			if (radix_tree_deref_retry(page))
1131				goto restart;
1132			/*
1133			 * A shadow entry of a recently evicted page,
1134			 * or a swap entry from shmem/tmpfs.  Return
1135			 * it without attempting to raise page count.
1136			 */
1137			goto export;
1138		}
1139		if (!page_cache_get_speculative(page))
1140			goto repeat;
1141
1142		/* Has the page moved? */
1143		if (unlikely(page != *slot)) {
1144			page_cache_release(page);
1145			goto repeat;
1146		}
1147export:
1148		indices[ret] = iter.index;
1149		entries[ret] = page;
1150		if (++ret == nr_entries)
1151			break;
1152	}
1153	rcu_read_unlock();
 
 
1154	return ret;
1155}
1156
1157/**
1158 * find_get_pages - gang pagecache lookup
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159 * @mapping:	The address_space to search
1160 * @start:	The starting page index
 
1161 * @nr_pages:	The maximum number of pages
1162 * @pages:	Where the resulting pages are placed
1163 *
1164 * find_get_pages() will search for and return a group of up to
1165 * @nr_pages pages in the mapping.  The pages are placed at @pages.
1166 * find_get_pages() takes a reference against the returned pages.
 
1167 *
1168 * The search returns a group of mapping-contiguous pages with ascending
1169 * indexes.  There may be holes in the indices due to not-present pages.
 
1170 *
1171 * find_get_pages() returns the number of pages which were found.
 
 
1172 */
1173unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1174			    unsigned int nr_pages, struct page **pages)
 
1175{
1176	struct radix_tree_iter iter;
1177	void **slot;
1178	unsigned ret = 0;
1179
1180	if (unlikely(!nr_pages))
1181		return 0;
1182
1183	rcu_read_lock();
1184restart:
1185	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1186		struct page *page;
1187repeat:
1188		page = radix_tree_deref_slot(slot);
1189		if (unlikely(!page))
1190			continue;
1191
1192		if (radix_tree_exception(page)) {
1193			if (radix_tree_deref_retry(page)) {
1194				/*
1195				 * Transient condition which can only trigger
1196				 * when entry at index 0 moves out of or back
1197				 * to root: none yet gotten, safe to restart.
1198				 */
1199				WARN_ON(iter.index);
1200				goto restart;
1201			}
1202			/*
1203			 * A shadow entry of a recently evicted page,
1204			 * or a swap entry from shmem/tmpfs.  Skip
1205			 * over it.
1206			 */
1207			continue;
1208		}
1209
1210		if (!page_cache_get_speculative(page))
1211			goto repeat;
1212
1213		/* Has the page moved? */
1214		if (unlikely(page != *slot)) {
1215			page_cache_release(page);
1216			goto repeat;
1217		}
1218
1219		pages[ret] = page;
1220		if (++ret == nr_pages)
1221			break;
1222	}
1223
 
 
 
 
 
 
 
 
 
 
 
1224	rcu_read_unlock();
 
1225	return ret;
1226}
1227
1228/**
1229 * find_get_pages_contig - gang contiguous pagecache lookup
1230 * @mapping:	The address_space to search
1231 * @index:	The starting page index
1232 * @nr_pages:	The maximum number of pages
1233 * @pages:	Where the resulting pages are placed
1234 *
1235 * find_get_pages_contig() works exactly like find_get_pages(), except
1236 * that the returned number of pages are guaranteed to be contiguous.
1237 *
1238 * find_get_pages_contig() returns the number of pages which were found.
1239 */
1240unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1241			       unsigned int nr_pages, struct page **pages)
1242{
1243	struct radix_tree_iter iter;
1244	void **slot;
1245	unsigned int ret = 0;
1246
1247	if (unlikely(!nr_pages))
1248		return 0;
1249
1250	rcu_read_lock();
1251restart:
1252	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1253		struct page *page;
1254repeat:
1255		page = radix_tree_deref_slot(slot);
1256		/* The hole, there no reason to continue */
1257		if (unlikely(!page))
 
1258			break;
1259
1260		if (radix_tree_exception(page)) {
1261			if (radix_tree_deref_retry(page)) {
1262				/*
1263				 * Transient condition which can only trigger
1264				 * when entry at index 0 moves out of or back
1265				 * to root: none yet gotten, safe to restart.
1266				 */
1267				goto restart;
1268			}
1269			/*
1270			 * A shadow entry of a recently evicted page,
1271			 * or a swap entry from shmem/tmpfs.  Stop
1272			 * looking for contiguous pages.
1273			 */
1274			break;
1275		}
1276
1277		if (!page_cache_get_speculative(page))
1278			goto repeat;
1279
1280		/* Has the page moved? */
1281		if (unlikely(page != *slot)) {
1282			page_cache_release(page);
1283			goto repeat;
1284		}
1285
1286		/*
1287		 * must check mapping and index after taking the ref.
1288		 * otherwise we can get both false positives and false
1289		 * negatives, which is just confusing to the caller.
1290		 */
1291		if (page->mapping == NULL || page->index != iter.index) {
1292			page_cache_release(page);
1293			break;
1294		}
1295
1296		pages[ret] = page;
1297		if (++ret == nr_pages)
1298			break;
 
 
 
 
 
1299	}
1300	rcu_read_unlock();
1301	return ret;
1302}
1303EXPORT_SYMBOL(find_get_pages_contig);
1304
1305/**
1306 * find_get_pages_tag - find and return pages that match @tag
1307 * @mapping:	the address_space to search
1308 * @index:	the starting page index
 
1309 * @tag:	the tag index
1310 * @nr_pages:	the maximum number of pages
1311 * @pages:	where the resulting pages are placed
1312 *
1313 * Like find_get_pages, except we only return pages which are tagged with
1314 * @tag.   We update @index to index the next page for the traversal.
 
 
 
1315 */
1316unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1317			int tag, unsigned int nr_pages, struct page **pages)
 
1318{
1319	struct radix_tree_iter iter;
1320	void **slot;
1321	unsigned ret = 0;
1322
1323	if (unlikely(!nr_pages))
1324		return 0;
1325
1326	rcu_read_lock();
1327restart:
1328	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1329				   &iter, *index, tag) {
1330		struct page *page;
1331repeat:
1332		page = radix_tree_deref_slot(slot);
1333		if (unlikely(!page))
1334			continue;
1335
1336		if (radix_tree_exception(page)) {
1337			if (radix_tree_deref_retry(page)) {
1338				/*
1339				 * Transient condition which can only trigger
1340				 * when entry at index 0 moves out of or back
1341				 * to root: none yet gotten, safe to restart.
1342				 */
1343				goto restart;
1344			}
1345			/*
1346			 * A shadow entry of a recently evicted page.
1347			 *
1348			 * Those entries should never be tagged, but
1349			 * this tree walk is lockless and the tags are
1350			 * looked up in bulk, one radix tree node at a
1351			 * time, so there is a sizable window for page
1352			 * reclaim to evict a page we saw tagged.
1353			 *
1354			 * Skip over it.
1355			 */
1356			continue;
1357		}
1358
1359		if (!page_cache_get_speculative(page))
1360			goto repeat;
1361
1362		/* Has the page moved? */
1363		if (unlikely(page != *slot)) {
1364			page_cache_release(page);
1365			goto repeat;
1366		}
1367
1368		pages[ret] = page;
1369		if (++ret == nr_pages)
1370			break;
1371	}
1372
 
 
 
 
 
 
 
 
 
 
 
1373	rcu_read_unlock();
1374
1375	if (ret)
1376		*index = pages[ret - 1]->index + 1;
1377
1378	return ret;
1379}
1380EXPORT_SYMBOL(find_get_pages_tag);
1381
1382/**
1383 * grab_cache_page_nowait - returns locked page at given index in given cache
1384 * @mapping: target address_space
1385 * @index: the page index
1386 *
1387 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1388 * This is intended for speculative data generators, where the data can
1389 * be regenerated if the page couldn't be grabbed.  This routine should
1390 * be safe to call while holding the lock for another page.
1391 *
1392 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1393 * and deadlock against the caller's locked page.
1394 */
1395struct page *
1396grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1397{
1398	struct page *page = find_get_page(mapping, index);
1399
1400	if (page) {
1401		if (trylock_page(page))
1402			return page;
1403		page_cache_release(page);
1404		return NULL;
1405	}
1406	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1407	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1408		page_cache_release(page);
1409		page = NULL;
1410	}
1411	return page;
1412}
1413EXPORT_SYMBOL(grab_cache_page_nowait);
1414
1415/*
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 *
1419 *      ---R__________________________________________B__________
1420 *         ^ reading here                             ^ bad block(assume 4k)
1421 *
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 *
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 */
1430static void shrink_readahead_size_eio(struct file *filp,
1431					struct file_ra_state *ra)
1432{
1433	ra->ra_pages /= 4;
1434}
1435
1436/**
1437 * do_generic_file_read - generic file read routine
1438 * @filp:	the file to read
1439 * @ppos:	current file position
1440 * @iter:	data destination
1441 * @written:	already copied
1442 *
1443 * This is a generic file read routine, and uses the
1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1445 *
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1448 */
1449static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450		struct iov_iter *iter, ssize_t written)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452	struct address_space *mapping = filp->f_mapping;
1453	struct inode *inode = mapping->host;
1454	struct file_ra_state *ra = &filp->f_ra;
1455	pgoff_t index;
1456	pgoff_t last_index;
1457	pgoff_t prev_index;
1458	unsigned long offset;      /* offset into pagecache page */
1459	unsigned int prev_offset;
1460	int error = 0;
1461
1462	index = *ppos >> PAGE_CACHE_SHIFT;
1463	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1465	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1466	offset = *ppos & ~PAGE_CACHE_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467
1468	for (;;) {
1469		struct page *page;
1470		pgoff_t end_index;
1471		loff_t isize;
1472		unsigned long nr, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473
 
1474		cond_resched();
1475find_page:
1476		page = find_get_page(mapping, index);
1477		if (!page) {
1478			page_cache_sync_readahead(mapping,
1479					ra, filp,
1480					index, last_index - index);
1481			page = find_get_page(mapping, index);
1482			if (unlikely(page == NULL))
1483				goto no_cached_page;
1484		}
1485		if (PageReadahead(page)) {
1486			page_cache_async_readahead(mapping,
1487					ra, filp, page,
1488					index, last_index - index);
1489		}
1490		if (!PageUptodate(page)) {
1491			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492					!mapping->a_ops->is_partially_uptodate)
1493				goto page_not_up_to_date;
1494			if (!trylock_page(page))
1495				goto page_not_up_to_date;
1496			/* Did it get truncated before we got the lock? */
1497			if (!page->mapping)
1498				goto page_not_up_to_date_locked;
1499			if (!mapping->a_ops->is_partially_uptodate(page,
1500							offset, iter->count))
1501				goto page_not_up_to_date_locked;
1502			unlock_page(page);
1503		}
1504page_ok:
1505		/*
1506		 * i_size must be checked after we know the page is Uptodate.
1507		 *
1508		 * Checking i_size after the check allows us to calculate
1509		 * the correct value for "nr", which means the zero-filled
1510		 * part of the page is not copied back to userspace (unless
1511		 * another truncate extends the file - this is desired though).
1512		 */
1513
1514		isize = i_size_read(inode);
1515		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516		if (unlikely(!isize || index > end_index)) {
1517			page_cache_release(page);
1518			goto out;
1519		}
1520
1521		/* nr is the maximum number of bytes to copy from this page */
1522		nr = PAGE_CACHE_SIZE;
1523		if (index == end_index) {
1524			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525			if (nr <= offset) {
1526				page_cache_release(page);
1527				goto out;
1528			}
1529		}
1530		nr = nr - offset;
1531
1532		/* If users can be writing to this page using arbitrary
1533		 * virtual addresses, take care about potential aliasing
1534		 * before reading the page on the kernel side.
1535		 */
1536		if (mapping_writably_mapped(mapping))
1537			flush_dcache_page(page);
1538
1539		/*
1540		 * When a sequential read accesses a page several times,
1541		 * only mark it as accessed the first time.
1542		 */
1543		if (prev_index != index || offset != prev_offset)
1544			mark_page_accessed(page);
1545		prev_index = index;
1546
1547		/*
1548		 * Ok, we have the page, and it's up-to-date, so
1549		 * now we can copy it to user space...
1550		 */
 
 
 
1551
1552		ret = copy_page_to_iter(page, offset, nr, iter);
1553		offset += ret;
1554		index += offset >> PAGE_CACHE_SHIFT;
1555		offset &= ~PAGE_CACHE_MASK;
1556		prev_offset = offset;
 
 
1557
1558		page_cache_release(page);
1559		written += ret;
1560		if (!iov_iter_count(iter))
1561			goto out;
1562		if (ret < nr) {
1563			error = -EFAULT;
1564			goto out;
1565		}
1566		continue;
1567
1568page_not_up_to_date:
1569		/* Get exclusive access to the page ... */
1570		error = lock_page_killable(page);
1571		if (unlikely(error))
1572			goto readpage_error;
1573
1574page_not_up_to_date_locked:
1575		/* Did it get truncated before we got the lock? */
1576		if (!page->mapping) {
1577			unlock_page(page);
1578			page_cache_release(page);
1579			continue;
1580		}
1581
1582		/* Did somebody else fill it already? */
1583		if (PageUptodate(page)) {
1584			unlock_page(page);
1585			goto page_ok;
1586		}
1587
1588readpage:
1589		/*
1590		 * A previous I/O error may have been due to temporary
1591		 * failures, eg. multipath errors.
1592		 * PG_error will be set again if readpage fails.
1593		 */
1594		ClearPageError(page);
1595		/* Start the actual read. The read will unlock the page. */
1596		error = mapping->a_ops->readpage(filp, page);
1597
1598		if (unlikely(error)) {
1599			if (error == AOP_TRUNCATED_PAGE) {
1600				page_cache_release(page);
1601				error = 0;
1602				goto find_page;
1603			}
1604			goto readpage_error;
1605		}
1606
1607		if (!PageUptodate(page)) {
1608			error = lock_page_killable(page);
1609			if (unlikely(error))
1610				goto readpage_error;
1611			if (!PageUptodate(page)) {
1612				if (page->mapping == NULL) {
1613					/*
1614					 * invalidate_mapping_pages got it
1615					 */
1616					unlock_page(page);
1617					page_cache_release(page);
1618					goto find_page;
1619				}
1620				unlock_page(page);
1621				shrink_readahead_size_eio(filp, ra);
1622				error = -EIO;
1623				goto readpage_error;
1624			}
1625			unlock_page(page);
1626		}
1627
1628		goto page_ok;
 
 
1629
1630readpage_error:
1631		/* UHHUH! A synchronous read error occurred. Report it */
1632		page_cache_release(page);
1633		goto out;
1634
1635no_cached_page:
1636		/*
1637		 * Ok, it wasn't cached, so we need to create a new
1638		 * page..
1639		 */
1640		page = page_cache_alloc_cold(mapping);
1641		if (!page) {
1642			error = -ENOMEM;
1643			goto out;
1644		}
1645		error = add_to_page_cache_lru(page, mapping,
1646						index, GFP_KERNEL);
1647		if (error) {
1648			page_cache_release(page);
1649			if (error == -EEXIST) {
1650				error = 0;
1651				goto find_page;
1652			}
1653			goto out;
1654		}
1655		goto readpage;
1656	}
 
 
 
1657
1658out:
1659	ra->prev_pos = prev_index;
1660	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661	ra->prev_pos |= prev_offset;
1662
1663	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1664	file_accessed(filp);
1665	return written ? written : error;
1666}
1667
1668/*
1669 * Performs necessary checks before doing a write
1670 * @iov:	io vector request
1671 * @nr_segs:	number of segments in the iovec
1672 * @count:	number of bytes to write
1673 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1674 *
1675 * Adjust number of segments and amount of bytes to write (nr_segs should be
1676 * properly initialized first). Returns appropriate error code that caller
1677 * should return or zero in case that write should be allowed.
1678 */
1679int generic_segment_checks(const struct iovec *iov,
1680			unsigned long *nr_segs, size_t *count, int access_flags)
1681{
1682	unsigned long   seg;
1683	size_t cnt = 0;
1684	for (seg = 0; seg < *nr_segs; seg++) {
1685		const struct iovec *iv = &iov[seg];
1686
1687		/*
1688		 * If any segment has a negative length, or the cumulative
1689		 * length ever wraps negative then return -EINVAL.
1690		 */
1691		cnt += iv->iov_len;
1692		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1693			return -EINVAL;
1694		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1695			continue;
1696		if (seg == 0)
1697			return -EFAULT;
1698		*nr_segs = seg;
1699		cnt -= iv->iov_len;	/* This segment is no good */
1700		break;
1701	}
1702	*count = cnt;
1703	return 0;
1704}
1705EXPORT_SYMBOL(generic_segment_checks);
1706
1707/**
1708 * generic_file_aio_read - generic filesystem read routine
1709 * @iocb:	kernel I/O control block
1710 * @iov:	io vector request
1711 * @nr_segs:	number of segments in the iovec
1712 * @pos:	current file position
1713 *
1714 * This is the "read()" routine for all filesystems
1715 * that can use the page cache directly.
 
 
 
 
 
 
 
 
 
 
 
 
 
1716 */
1717ssize_t
1718generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1719		unsigned long nr_segs, loff_t pos)
1720{
1721	struct file *filp = iocb->ki_filp;
1722	ssize_t retval;
1723	size_t count;
1724	loff_t *ppos = &iocb->ki_pos;
1725	struct iov_iter i;
1726
1727	count = 0;
1728	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1729	if (retval)
1730		return retval;
1731	iov_iter_init(&i, iov, nr_segs, count, 0);
1732
1733	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1734	if (filp->f_flags & O_DIRECT) {
 
 
1735		loff_t size;
1736		struct address_space *mapping;
1737		struct inode *inode;
1738
1739		mapping = filp->f_mapping;
1740		inode = mapping->host;
1741		if (!count)
1742			goto out; /* skip atime */
1743		size = i_size_read(inode);
1744		retval = filemap_write_and_wait_range(mapping, pos,
1745					pos + iov_length(iov, nr_segs) - 1);
1746		if (!retval) {
1747			retval = mapping->a_ops->direct_IO(READ, iocb,
1748							   iov, pos, nr_segs);
 
 
 
 
 
1749		}
1750		if (retval > 0) {
1751			*ppos = pos + retval;
 
 
 
 
1752			count -= retval;
1753			/*
1754			 * If we did a short DIO read we need to skip the
1755			 * section of the iov that we've already read data into.
1756			 */
1757			iov_iter_advance(&i, retval);
1758		}
 
 
1759
1760		/*
1761		 * Btrfs can have a short DIO read if we encounter
1762		 * compressed extents, so if there was an error, or if
1763		 * we've already read everything we wanted to, or if
1764		 * there was a short read because we hit EOF, go ahead
1765		 * and return.  Otherwise fallthrough to buffered io for
1766		 * the rest of the read.
 
1767		 */
1768		if (retval < 0 || !count || *ppos >= size) {
1769			file_accessed(filp);
1770			goto out;
1771		}
1772	}
1773
1774	retval = do_generic_file_read(filp, ppos, &i, retval);
1775out:
1776	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777}
1778EXPORT_SYMBOL(generic_file_aio_read);
1779
1780#ifdef CONFIG_MMU
1781/**
1782 * page_cache_read - adds requested page to the page cache if not already there
1783 * @file:	file to read
1784 * @offset:	page index
 
 
 
 
 
 
 
 
1785 *
1786 * This adds the requested page to the page cache if it isn't already there,
1787 * and schedules an I/O to read in its contents from disk.
 
 
1788 */
1789static int page_cache_read(struct file *file, pgoff_t offset)
 
1790{
1791	struct address_space *mapping = file->f_mapping;
1792	struct page *page; 
1793	int ret;
 
 
 
 
1794
1795	do {
1796		page = page_cache_alloc_cold(mapping);
1797		if (!page)
1798			return -ENOMEM;
 
 
 
 
 
 
1799
1800		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1801		if (ret == 0)
1802			ret = mapping->a_ops->readpage(file, page);
1803		else if (ret == -EEXIST)
1804			ret = 0; /* losing race to add is OK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805
1806		page_cache_release(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807
1808	} while (ret == AOP_TRUNCATED_PAGE);
1809		
1810	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813#define MMAP_LOTSAMISS  (100)
1814
1815/*
1816 * Synchronous readahead happens when we don't even find
1817 * a page in the page cache at all.
 
 
 
1818 */
1819static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1820				   struct file_ra_state *ra,
1821				   struct file *file,
1822				   pgoff_t offset)
1823{
1824	unsigned long ra_pages;
 
1825	struct address_space *mapping = file->f_mapping;
 
 
 
1826
1827	/* If we don't want any read-ahead, don't bother */
1828	if (vma->vm_flags & VM_RAND_READ)
1829		return;
1830	if (!ra->ra_pages)
1831		return;
1832
1833	if (vma->vm_flags & VM_SEQ_READ) {
1834		page_cache_sync_readahead(mapping, ra, file, offset,
1835					  ra->ra_pages);
1836		return;
1837	}
1838
1839	/* Avoid banging the cache line if not needed */
1840	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1841		ra->mmap_miss++;
 
1842
1843	/*
1844	 * Do we miss much more than hit in this file? If so,
1845	 * stop bothering with read-ahead. It will only hurt.
1846	 */
1847	if (ra->mmap_miss > MMAP_LOTSAMISS)
1848		return;
1849
1850	/*
1851	 * mmap read-around
1852	 */
1853	ra_pages = max_sane_readahead(ra->ra_pages);
1854	ra->start = max_t(long, 0, offset - ra_pages / 2);
1855	ra->size = ra_pages;
1856	ra->async_size = ra_pages / 4;
1857	ra_submit(ra, mapping, file);
 
 
1858}
1859
1860/*
1861 * Asynchronous readahead happens when we find the page and PG_readahead,
1862 * so we want to possibly extend the readahead further..
 
1863 */
1864static void do_async_mmap_readahead(struct vm_area_struct *vma,
1865				    struct file_ra_state *ra,
1866				    struct file *file,
1867				    struct page *page,
1868				    pgoff_t offset)
1869{
 
 
1870	struct address_space *mapping = file->f_mapping;
 
 
 
1871
1872	/* If we don't want any read-ahead, don't bother */
1873	if (vma->vm_flags & VM_RAND_READ)
1874		return;
1875	if (ra->mmap_miss > 0)
1876		ra->mmap_miss--;
1877	if (PageReadahead(page))
 
 
1878		page_cache_async_readahead(mapping, ra, file,
1879					   page, offset, ra->ra_pages);
 
 
1880}
1881
1882/**
1883 * filemap_fault - read in file data for page fault handling
1884 * @vma:	vma in which the fault was taken
1885 * @vmf:	struct vm_fault containing details of the fault
1886 *
1887 * filemap_fault() is invoked via the vma operations vector for a
1888 * mapped memory region to read in file data during a page fault.
1889 *
1890 * The goto's are kind of ugly, but this streamlines the normal case of having
1891 * it in the page cache, and handles the special cases reasonably without
1892 * having a lot of duplicated code.
 
 
 
 
 
 
 
 
 
 
 
 
1893 */
1894int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895{
1896	int error;
1897	struct file *file = vma->vm_file;
 
1898	struct address_space *mapping = file->f_mapping;
1899	struct file_ra_state *ra = &file->f_ra;
1900	struct inode *inode = mapping->host;
1901	pgoff_t offset = vmf->pgoff;
 
1902	struct page *page;
1903	loff_t size;
1904	int ret = 0;
1905
1906	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1907	if (offset >= size >> PAGE_CACHE_SHIFT)
1908		return VM_FAULT_SIGBUS;
1909
1910	/*
1911	 * Do we have something in the page cache already?
1912	 */
1913	page = find_get_page(mapping, offset);
1914	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1915		/*
1916		 * We found the page, so try async readahead before
1917		 * waiting for the lock.
1918		 */
1919		do_async_mmap_readahead(vma, ra, file, page, offset);
1920	} else if (!page) {
1921		/* No page in the page cache at all */
1922		do_sync_mmap_readahead(vma, ra, file, offset);
1923		count_vm_event(PGMAJFAULT);
1924		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1925		ret = VM_FAULT_MAJOR;
 
1926retry_find:
1927		page = find_get_page(mapping, offset);
1928		if (!page)
1929			goto no_cached_page;
 
 
 
 
 
1930	}
1931
1932	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1933		page_cache_release(page);
1934		return ret | VM_FAULT_RETRY;
1935	}
1936
1937	/* Did it get truncated? */
1938	if (unlikely(page->mapping != mapping)) {
1939		unlock_page(page);
1940		put_page(page);
1941		goto retry_find;
1942	}
1943	VM_BUG_ON_PAGE(page->index != offset, page);
1944
1945	/*
1946	 * We have a locked page in the page cache, now we need to check
1947	 * that it's up-to-date. If not, it is going to be due to an error.
1948	 */
1949	if (unlikely(!PageUptodate(page)))
1950		goto page_not_uptodate;
1951
1952	/*
 
 
 
 
 
 
 
 
 
 
1953	 * Found the page and have a reference on it.
1954	 * We must recheck i_size under page lock.
1955	 */
1956	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1957	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1958		unlock_page(page);
1959		page_cache_release(page);
1960		return VM_FAULT_SIGBUS;
1961	}
1962
1963	vmf->page = page;
1964	return ret | VM_FAULT_LOCKED;
1965
1966no_cached_page:
1967	/*
1968	 * We're only likely to ever get here if MADV_RANDOM is in
1969	 * effect.
1970	 */
1971	error = page_cache_read(file, offset);
1972
1973	/*
1974	 * The page we want has now been added to the page cache.
1975	 * In the unlikely event that someone removed it in the
1976	 * meantime, we'll just come back here and read it again.
1977	 */
1978	if (error >= 0)
1979		goto retry_find;
1980
1981	/*
1982	 * An error return from page_cache_read can result if the
1983	 * system is low on memory, or a problem occurs while trying
1984	 * to schedule I/O.
1985	 */
1986	if (error == -ENOMEM)
1987		return VM_FAULT_OOM;
1988	return VM_FAULT_SIGBUS;
1989
1990page_not_uptodate:
1991	/*
1992	 * Umm, take care of errors if the page isn't up-to-date.
1993	 * Try to re-read it _once_. We do this synchronously,
1994	 * because there really aren't any performance issues here
1995	 * and we need to check for errors.
1996	 */
1997	ClearPageError(page);
1998	error = mapping->a_ops->readpage(file, page);
1999	if (!error) {
2000		wait_on_page_locked(page);
2001		if (!PageUptodate(page))
2002			error = -EIO;
2003	}
2004	page_cache_release(page);
2005
2006	if (!error || error == AOP_TRUNCATED_PAGE)
2007		goto retry_find;
2008
2009	/* Things didn't work out. Return zero to tell the mm layer so. */
2010	shrink_readahead_size_eio(file, ra);
2011	return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
 
 
 
2012}
2013EXPORT_SYMBOL(filemap_fault);
2014
2015void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2016{
2017	struct radix_tree_iter iter;
2018	void **slot;
2019	struct file *file = vma->vm_file;
2020	struct address_space *mapping = file->f_mapping;
2021	loff_t size;
2022	struct page *page;
2023	unsigned long address = (unsigned long) vmf->virtual_address;
2024	unsigned long addr;
2025	pte_t *pte;
 
 
 
 
 
 
 
 
2026
2027	rcu_read_lock();
2028	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2029		if (iter.index > vmf->max_pgoff)
2030			break;
2031repeat:
2032		page = radix_tree_deref_slot(slot);
2033		if (unlikely(!page))
2034			goto next;
2035		if (radix_tree_exception(page)) {
2036			if (radix_tree_deref_retry(page))
2037				break;
2038			else
2039				goto next;
2040		}
 
 
2041
2042		if (!page_cache_get_speculative(page))
2043			goto repeat;
 
 
 
 
 
 
 
2044
2045		/* Has the page moved? */
2046		if (unlikely(page != *slot)) {
2047			page_cache_release(page);
2048			goto repeat;
2049		}
2050
2051		if (!PageUptodate(page) ||
2052				PageReadahead(page) ||
2053				PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054			goto skip;
2055		if (!trylock_page(page))
2056			goto skip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
2058		if (page->mapping != mapping || !PageUptodate(page))
 
 
 
 
2059			goto unlock;
2060
2061		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2062		if (page->index >= size >> PAGE_CACHE_SHIFT)
2063			goto unlock;
 
 
 
2064
2065		pte = vmf->pte + page->index - vmf->pgoff;
2066		if (!pte_none(*pte))
2067			goto unlock;
2068
2069		if (file->f_ra.mmap_miss > 0)
2070			file->f_ra.mmap_miss--;
2071		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2072		do_set_pte(vma, addr, page, pte, false, false);
2073		unlock_page(page);
2074		goto next;
 
 
 
2075unlock:
2076		unlock_page(page);
2077skip:
2078		page_cache_release(page);
2079next:
2080		if (iter.index == vmf->max_pgoff)
2081			break;
2082	}
2083	rcu_read_unlock();
 
 
2084}
2085EXPORT_SYMBOL(filemap_map_pages);
2086
2087int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2088{
 
2089	struct page *page = vmf->page;
2090	struct inode *inode = file_inode(vma->vm_file);
2091	int ret = VM_FAULT_LOCKED;
2092
2093	sb_start_pagefault(inode->i_sb);
2094	file_update_time(vma->vm_file);
2095	lock_page(page);
2096	if (page->mapping != inode->i_mapping) {
2097		unlock_page(page);
2098		ret = VM_FAULT_NOPAGE;
2099		goto out;
2100	}
2101	/*
2102	 * We mark the page dirty already here so that when freeze is in
2103	 * progress, we are guaranteed that writeback during freezing will
2104	 * see the dirty page and writeprotect it again.
2105	 */
2106	set_page_dirty(page);
2107	wait_for_stable_page(page);
2108out:
2109	sb_end_pagefault(inode->i_sb);
2110	return ret;
2111}
2112EXPORT_SYMBOL(filemap_page_mkwrite);
2113
2114const struct vm_operations_struct generic_file_vm_ops = {
2115	.fault		= filemap_fault,
2116	.map_pages	= filemap_map_pages,
2117	.page_mkwrite	= filemap_page_mkwrite,
2118	.remap_pages	= generic_file_remap_pages,
2119};
2120
2121/* This is used for a general mmap of a disk file */
2122
2123int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2124{
2125	struct address_space *mapping = file->f_mapping;
2126
2127	if (!mapping->a_ops->readpage)
2128		return -ENOEXEC;
2129	file_accessed(file);
2130	vma->vm_ops = &generic_file_vm_ops;
2131	return 0;
2132}
2133
2134/*
2135 * This is for filesystems which do not implement ->writepage.
2136 */
2137int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2138{
2139	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2140		return -EINVAL;
2141	return generic_file_mmap(file, vma);
2142}
2143#else
2144int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
 
 
 
 
2145{
2146	return -ENOSYS;
2147}
2148int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2149{
2150	return -ENOSYS;
2151}
2152#endif /* CONFIG_MMU */
2153
 
2154EXPORT_SYMBOL(generic_file_mmap);
2155EXPORT_SYMBOL(generic_file_readonly_mmap);
2156
2157static struct page *wait_on_page_read(struct page *page)
2158{
2159	if (!IS_ERR(page)) {
2160		wait_on_page_locked(page);
2161		if (!PageUptodate(page)) {
2162			page_cache_release(page);
2163			page = ERR_PTR(-EIO);
2164		}
2165	}
2166	return page;
2167}
2168
2169static struct page *__read_cache_page(struct address_space *mapping,
2170				pgoff_t index,
2171				int (*filler)(void *, struct page *),
2172				void *data,
2173				gfp_t gfp)
2174{
2175	struct page *page;
2176	int err;
2177repeat:
2178	page = find_get_page(mapping, index);
2179	if (!page) {
2180		page = __page_cache_alloc(gfp | __GFP_COLD);
2181		if (!page)
2182			return ERR_PTR(-ENOMEM);
2183		err = add_to_page_cache_lru(page, mapping, index, gfp);
2184		if (unlikely(err)) {
2185			page_cache_release(page);
2186			if (err == -EEXIST)
2187				goto repeat;
2188			/* Presumably ENOMEM for radix tree node */
2189			return ERR_PTR(err);
2190		}
2191		err = filler(data, page);
 
 
 
 
 
 
2192		if (err < 0) {
2193			page_cache_release(page);
2194			page = ERR_PTR(err);
2195		} else {
2196			page = wait_on_page_read(page);
2197		}
 
 
 
 
 
2198	}
2199	return page;
2200}
2201
2202static struct page *do_read_cache_page(struct address_space *mapping,
2203				pgoff_t index,
2204				int (*filler)(void *, struct page *),
2205				void *data,
2206				gfp_t gfp)
2207
2208{
2209	struct page *page;
2210	int err;
2211
2212retry:
2213	page = __read_cache_page(mapping, index, filler, data, gfp);
2214	if (IS_ERR(page))
2215		return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2216	if (PageUptodate(page))
2217		goto out;
2218
 
2219	lock_page(page);
 
 
2220	if (!page->mapping) {
2221		unlock_page(page);
2222		page_cache_release(page);
2223		goto retry;
2224	}
 
 
2225	if (PageUptodate(page)) {
2226		unlock_page(page);
2227		goto out;
2228	}
2229	err = filler(data, page);
2230	if (err < 0) {
2231		page_cache_release(page);
2232		return ERR_PTR(err);
2233	} else {
2234		page = wait_on_page_read(page);
2235		if (IS_ERR(page))
2236			return page;
2237	}
 
2238out:
2239	mark_page_accessed(page);
2240	return page;
2241}
2242
2243/**
2244 * read_cache_page - read into page cache, fill it if needed
2245 * @mapping:	the page's address_space
2246 * @index:	the page index
2247 * @filler:	function to perform the read
2248 * @data:	first arg to filler(data, page) function, often left as NULL
2249 *
2250 * Read into the page cache. If a page already exists, and PageUptodate() is
2251 * not set, try to fill the page and wait for it to become unlocked.
2252 *
2253 * If the page does not get brought uptodate, return -EIO.
 
 
2254 */
2255struct page *read_cache_page(struct address_space *mapping,
2256				pgoff_t index,
2257				int (*filler)(void *, struct page *),
2258				void *data)
2259{
2260	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
 
2261}
2262EXPORT_SYMBOL(read_cache_page);
2263
2264/**
2265 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2266 * @mapping:	the page's address_space
2267 * @index:	the page index
2268 * @gfp:	the page allocator flags to use if allocating
2269 *
2270 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2271 * any new page allocations done using the specified allocation flags.
2272 *
2273 * If the page does not get brought uptodate, return -EIO.
 
 
2274 */
2275struct page *read_cache_page_gfp(struct address_space *mapping,
2276				pgoff_t index,
2277				gfp_t gfp)
2278{
2279	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2280
2281	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2282}
2283EXPORT_SYMBOL(read_cache_page_gfp);
2284
2285/*
2286 * Performs necessary checks before doing a write
2287 *
2288 * Can adjust writing position or amount of bytes to write.
2289 * Returns appropriate error code that caller should return or
2290 * zero in case that write should be allowed.
2291 */
2292inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2293{
2294	struct inode *inode = file->f_mapping->host;
2295	unsigned long limit = rlimit(RLIMIT_FSIZE);
2296
2297        if (unlikely(*pos < 0))
2298                return -EINVAL;
2299
2300	if (!isblk) {
2301		/* FIXME: this is for backwards compatibility with 2.4 */
2302		if (file->f_flags & O_APPEND)
2303                        *pos = i_size_read(inode);
2304
2305		if (limit != RLIM_INFINITY) {
2306			if (*pos >= limit) {
2307				send_sig(SIGXFSZ, current, 0);
2308				return -EFBIG;
2309			}
2310			if (*count > limit - (typeof(limit))*pos) {
2311				*count = limit - (typeof(limit))*pos;
2312			}
2313		}
2314	}
2315
2316	/*
2317	 * LFS rule
2318	 */
2319	if (unlikely(*pos + *count > MAX_NON_LFS &&
2320				!(file->f_flags & O_LARGEFILE))) {
2321		if (*pos >= MAX_NON_LFS) {
2322			return -EFBIG;
2323		}
2324		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2325			*count = MAX_NON_LFS - (unsigned long)*pos;
2326		}
2327	}
2328
2329	/*
2330	 * Are we about to exceed the fs block limit ?
2331	 *
2332	 * If we have written data it becomes a short write.  If we have
2333	 * exceeded without writing data we send a signal and return EFBIG.
2334	 * Linus frestrict idea will clean these up nicely..
2335	 */
2336	if (likely(!isblk)) {
2337		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2338			if (*count || *pos > inode->i_sb->s_maxbytes) {
2339				return -EFBIG;
2340			}
2341			/* zero-length writes at ->s_maxbytes are OK */
2342		}
2343
2344		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2345			*count = inode->i_sb->s_maxbytes - *pos;
2346	} else {
2347#ifdef CONFIG_BLOCK
2348		loff_t isize;
2349		if (bdev_read_only(I_BDEV(inode)))
2350			return -EPERM;
2351		isize = i_size_read(inode);
2352		if (*pos >= isize) {
2353			if (*count || *pos > isize)
2354				return -ENOSPC;
2355		}
2356
2357		if (*pos + *count > isize)
2358			*count = isize - *pos;
2359#else
2360		return -EPERM;
2361#endif
2362	}
2363	return 0;
2364}
2365EXPORT_SYMBOL(generic_write_checks);
2366
2367int pagecache_write_begin(struct file *file, struct address_space *mapping,
2368				loff_t pos, unsigned len, unsigned flags,
2369				struct page **pagep, void **fsdata)
2370{
2371	const struct address_space_operations *aops = mapping->a_ops;
2372
2373	return aops->write_begin(file, mapping, pos, len, flags,
2374							pagep, fsdata);
2375}
2376EXPORT_SYMBOL(pagecache_write_begin);
2377
2378int pagecache_write_end(struct file *file, struct address_space *mapping,
2379				loff_t pos, unsigned len, unsigned copied,
2380				struct page *page, void *fsdata)
2381{
2382	const struct address_space_operations *aops = mapping->a_ops;
2383
2384	mark_page_accessed(page);
2385	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2386}
2387EXPORT_SYMBOL(pagecache_write_end);
2388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389ssize_t
2390generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2391		unsigned long *nr_segs, loff_t pos,
2392		size_t count, size_t ocount)
2393{
2394	struct file	*file = iocb->ki_filp;
2395	struct address_space *mapping = file->f_mapping;
2396	struct inode	*inode = mapping->host;
 
2397	ssize_t		written;
2398	size_t		write_len;
2399	pgoff_t		end;
2400
2401	if (count != ocount)
2402		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2403
2404	write_len = iov_length(iov, *nr_segs);
2405	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2406
2407	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2408	if (written)
2409		goto out;
 
 
 
 
 
2410
2411	/*
2412	 * After a write we want buffered reads to be sure to go to disk to get
2413	 * the new data.  We invalidate clean cached page from the region we're
2414	 * about to write.  We do this *before* the write so that we can return
2415	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2416	 */
2417	if (mapping->nrpages) {
2418		written = invalidate_inode_pages2_range(mapping,
2419					pos >> PAGE_CACHE_SHIFT, end);
2420		/*
2421		 * If a page can not be invalidated, return 0 to fall back
2422		 * to buffered write.
2423		 */
2424		if (written) {
2425			if (written == -EBUSY)
2426				return 0;
2427			goto out;
2428		}
2429	}
2430
2431	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2432
2433	/*
2434	 * Finally, try again to invalidate clean pages which might have been
2435	 * cached by non-direct readahead, or faulted in by get_user_pages()
2436	 * if the source of the write was an mmap'ed region of the file
2437	 * we're writing.  Either one is a pretty crazy thing to do,
2438	 * so we don't support it 100%.  If this invalidation
2439	 * fails, tough, the write still worked...
 
 
 
 
 
 
 
 
 
2440	 */
2441	if (mapping->nrpages) {
2442		invalidate_inode_pages2_range(mapping,
2443					      pos >> PAGE_CACHE_SHIFT, end);
2444	}
2445
2446	if (written > 0) {
2447		pos += written;
 
2448		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2449			i_size_write(inode, pos);
2450			mark_inode_dirty(inode);
2451		}
2452		iocb->ki_pos = pos;
2453	}
 
 
2454out:
2455	return written;
2456}
2457EXPORT_SYMBOL(generic_file_direct_write);
2458
2459/*
2460 * Find or create a page at the given pagecache position. Return the locked
2461 * page. This function is specifically for buffered writes.
2462 */
2463struct page *grab_cache_page_write_begin(struct address_space *mapping,
2464					pgoff_t index, unsigned flags)
2465{
2466	int status;
2467	gfp_t gfp_mask;
2468	struct page *page;
2469	gfp_t gfp_notmask = 0;
2470
2471	gfp_mask = mapping_gfp_mask(mapping);
2472	if (mapping_cap_account_dirty(mapping))
2473		gfp_mask |= __GFP_WRITE;
2474	if (flags & AOP_FLAG_NOFS)
2475		gfp_notmask = __GFP_FS;
2476repeat:
2477	page = find_lock_page(mapping, index);
 
2478	if (page)
2479		goto found;
2480
2481	page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2482	if (!page)
2483		return NULL;
2484	status = add_to_page_cache_lru(page, mapping, index,
2485						GFP_KERNEL & ~gfp_notmask);
2486	if (unlikely(status)) {
2487		page_cache_release(page);
2488		if (status == -EEXIST)
2489			goto repeat;
2490		return NULL;
2491	}
2492found:
2493	wait_for_stable_page(page);
2494	return page;
2495}
2496EXPORT_SYMBOL(grab_cache_page_write_begin);
2497
2498ssize_t generic_perform_write(struct file *file,
2499				struct iov_iter *i, loff_t pos)
2500{
2501	struct address_space *mapping = file->f_mapping;
2502	const struct address_space_operations *a_ops = mapping->a_ops;
2503	long status = 0;
2504	ssize_t written = 0;
2505	unsigned int flags = 0;
2506
2507	/*
2508	 * Copies from kernel address space cannot fail (NFSD is a big user).
2509	 */
2510	if (segment_eq(get_fs(), KERNEL_DS))
2511		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2512
2513	do {
2514		struct page *page;
2515		unsigned long offset;	/* Offset into pagecache page */
2516		unsigned long bytes;	/* Bytes to write to page */
2517		size_t copied;		/* Bytes copied from user */
2518		void *fsdata;
2519
2520		offset = (pos & (PAGE_CACHE_SIZE - 1));
2521		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2522						iov_iter_count(i));
2523
2524again:
2525		/*
2526		 * Bring in the user page that we will copy from _first_.
2527		 * Otherwise there's a nasty deadlock on copying from the
2528		 * same page as we're writing to, without it being marked
2529		 * up-to-date.
2530		 *
2531		 * Not only is this an optimisation, but it is also required
2532		 * to check that the address is actually valid, when atomic
2533		 * usercopies are used, below.
2534		 */
2535		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2536			status = -EFAULT;
2537			break;
2538		}
2539
 
 
 
 
 
2540		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2541						&page, &fsdata);
2542		if (unlikely(status))
2543			break;
2544
2545		if (mapping_writably_mapped(mapping))
2546			flush_dcache_page(page);
2547
2548		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2549		flush_dcache_page(page);
2550
2551		mark_page_accessed(page);
2552		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2553						page, fsdata);
2554		if (unlikely(status < 0))
2555			break;
2556		copied = status;
2557
 
2558		cond_resched();
2559
2560		iov_iter_advance(i, copied);
2561		if (unlikely(copied == 0)) {
2562			/*
2563			 * If we were unable to copy any data at all, we must
2564			 * fall back to a single segment length write.
2565			 *
2566			 * If we didn't fallback here, we could livelock
2567			 * because not all segments in the iov can be copied at
2568			 * once without a pagefault.
2569			 */
2570			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2571						iov_iter_single_seg_count(i));
2572			goto again;
2573		}
2574		pos += copied;
2575		written += copied;
2576
2577		balance_dirty_pages_ratelimited(mapping);
2578		if (fatal_signal_pending(current)) {
2579			status = -EINTR;
2580			break;
2581		}
2582	} while (iov_iter_count(i));
2583
2584	return written ? written : status;
2585}
2586EXPORT_SYMBOL(generic_perform_write);
2587
2588/**
2589 * __generic_file_aio_write - write data to a file
2590 * @iocb:	IO state structure (file, offset, etc.)
2591 * @iov:	vector with data to write
2592 * @nr_segs:	number of segments in the vector
2593 *
2594 * This function does all the work needed for actually writing data to a
2595 * file. It does all basic checks, removes SUID from the file, updates
2596 * modification times and calls proper subroutines depending on whether we
2597 * do direct IO or a standard buffered write.
2598 *
2599 * It expects i_mutex to be grabbed unless we work on a block device or similar
2600 * object which does not need locking at all.
2601 *
2602 * This function does *not* take care of syncing data in case of O_SYNC write.
2603 * A caller has to handle it. This is mainly due to the fact that we want to
2604 * avoid syncing under i_mutex.
 
 
 
 
2605 */
2606ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2607				 unsigned long nr_segs)
2608{
2609	struct file *file = iocb->ki_filp;
2610	struct address_space * mapping = file->f_mapping;
2611	size_t ocount;		/* original count */
2612	size_t count;		/* after file limit checks */
2613	struct inode 	*inode = mapping->host;
2614	loff_t		pos = iocb->ki_pos;
2615	ssize_t		written = 0;
2616	ssize_t		err;
2617	ssize_t		status;
2618	struct iov_iter from;
2619
2620	ocount = 0;
2621	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2622	if (err)
2623		return err;
2624
2625	count = ocount;
2626
2627	/* We can write back this queue in page reclaim */
2628	current->backing_dev_info = mapping->backing_dev_info;
2629	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2630	if (err)
2631		goto out;
2632
2633	if (count == 0)
2634		goto out;
2635
2636	err = file_remove_suid(file);
2637	if (err)
2638		goto out;
2639
2640	err = file_update_time(file);
2641	if (err)
2642		goto out;
2643
2644	iov_iter_init(&from, iov, nr_segs, count, 0);
2645
2646	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2647	if (unlikely(file->f_flags & O_DIRECT)) {
2648		loff_t endbyte;
2649
2650		written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2651							count, ocount);
2652		if (written < 0 || written == count)
2653			goto out;
2654		iov_iter_advance(&from, written);
2655
 
2656		/*
2657		 * direct-io write to a hole: fall through to buffered I/O
2658		 * for completing the rest of the request.
 
 
 
2659		 */
2660		pos += written;
2661		count -= written;
2662
2663		status = generic_perform_write(file, &from, pos);
2664		/*
2665		 * If generic_perform_write() returned a synchronous error
2666		 * then we want to return the number of bytes which were
2667		 * direct-written, or the error code if that was zero.  Note
2668		 * that this differs from normal direct-io semantics, which
2669		 * will return -EFOO even if some bytes were written.
2670		 */
2671		if (unlikely(status < 0) && !written) {
2672			err = status;
2673			goto out;
2674		}
2675		iocb->ki_pos = pos + status;
2676		/*
2677		 * We need to ensure that the page cache pages are written to
2678		 * disk and invalidated to preserve the expected O_DIRECT
2679		 * semantics.
2680		 */
2681		endbyte = pos + status - 1;
2682		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2683		if (err == 0) {
 
2684			written += status;
2685			invalidate_mapping_pages(mapping,
2686						 pos >> PAGE_CACHE_SHIFT,
2687						 endbyte >> PAGE_CACHE_SHIFT);
2688		} else {
2689			/*
2690			 * We don't know how much we wrote, so just return
2691			 * the number of bytes which were direct-written
2692			 */
2693		}
2694	} else {
2695		written = generic_perform_write(file, &from, pos);
2696		if (likely(written >= 0))
2697			iocb->ki_pos = pos + written;
2698	}
2699out:
2700	current->backing_dev_info = NULL;
2701	return written ? written : err;
2702}
2703EXPORT_SYMBOL(__generic_file_aio_write);
2704
2705/**
2706 * generic_file_aio_write - write data to a file
2707 * @iocb:	IO state structure
2708 * @iov:	vector with data to write
2709 * @nr_segs:	number of segments in the vector
2710 * @pos:	position in file where to write
2711 *
2712 * This is a wrapper around __generic_file_aio_write() to be used by most
2713 * filesystems. It takes care of syncing the file in case of O_SYNC file
2714 * and acquires i_mutex as needed.
 
 
 
 
2715 */
2716ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2717		unsigned long nr_segs, loff_t pos)
2718{
2719	struct file *file = iocb->ki_filp;
2720	struct inode *inode = file->f_mapping->host;
2721	ssize_t ret;
2722
2723	BUG_ON(iocb->ki_pos != pos);
 
 
 
 
2724
2725	mutex_lock(&inode->i_mutex);
2726	ret = __generic_file_aio_write(iocb, iov, nr_segs);
2727	mutex_unlock(&inode->i_mutex);
2728
2729	if (ret > 0) {
2730		ssize_t err;
2731
2732		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2733		if (err < 0)
2734			ret = err;
2735	}
2736	return ret;
2737}
2738EXPORT_SYMBOL(generic_file_aio_write);
2739
2740/**
2741 * try_to_release_page() - release old fs-specific metadata on a page
2742 *
2743 * @page: the page which the kernel is trying to free
2744 * @gfp_mask: memory allocation flags (and I/O mode)
2745 *
2746 * The address_space is to try to release any data against the page
2747 * (presumably at page->private).  If the release was successful, return `1'.
2748 * Otherwise return zero.
2749 *
2750 * This may also be called if PG_fscache is set on a page, indicating that the
2751 * page is known to the local caching routines.
2752 *
2753 * The @gfp_mask argument specifies whether I/O may be performed to release
2754 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2755 *
 
2756 */
2757int try_to_release_page(struct page *page, gfp_t gfp_mask)
2758{
2759	struct address_space * const mapping = page->mapping;
2760
2761	BUG_ON(!PageLocked(page));
2762	if (PageWriteback(page))
2763		return 0;
2764
2765	if (mapping && mapping->a_ops->releasepage)
2766		return mapping->a_ops->releasepage(page, gfp_mask);
2767	return try_to_free_buffers(page);
2768}
2769
2770EXPORT_SYMBOL(try_to_release_page);