Linux Audio

Check our new training course

Loading...
v5.14.15
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_vma_manager.h>
  29#include <linux/dma-fence-array.h>
  30#include <linux/kthread.h>
  31#include <linux/dma-resv.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/slab.h>
  34#include <linux/stop_machine.h>
  35#include <linux/swap.h>
  36#include <linux/pci.h>
  37#include <linux/dma-buf.h>
  38#include <linux/mman.h>
  39
  40#include "display/intel_display.h"
  41#include "display/intel_frontbuffer.h"
  42
  43#include "gem/i915_gem_clflush.h"
  44#include "gem/i915_gem_context.h"
  45#include "gem/i915_gem_ioctls.h"
  46#include "gem/i915_gem_mman.h"
  47#include "gem/i915_gem_region.h"
  48#include "gt/intel_engine_user.h"
  49#include "gt/intel_gt.h"
  50#include "gt/intel_gt_pm.h"
  51#include "gt/intel_workarounds.h"
  52
  53#include "i915_drv.h"
  54#include "i915_trace.h"
  55#include "i915_vgpu.h"
  56
  57#include "intel_pm.h"
  58
  59static int
  60insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  61{
  62	int err;
  63
  64	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  65	if (err)
  66		return err;
  67
  68	memset(node, 0, sizeof(*node));
  69	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  70					  size, 0, I915_COLOR_UNEVICTABLE,
  71					  0, ggtt->mappable_end,
  72					  DRM_MM_INSERT_LOW);
  73
  74	mutex_unlock(&ggtt->vm.mutex);
  75
  76	return err;
  77}
  78
  79static void
  80remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  81{
  82	mutex_lock(&ggtt->vm.mutex);
  83	drm_mm_remove_node(node);
  84	mutex_unlock(&ggtt->vm.mutex);
  85}
  86
  87int
  88i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  89			    struct drm_file *file)
  90{
  91	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
  92	struct drm_i915_gem_get_aperture *args = data;
  93	struct i915_vma *vma;
  94	u64 pinned;
  95
  96	if (mutex_lock_interruptible(&ggtt->vm.mutex))
  97		return -EINTR;
  98
  99	pinned = ggtt->vm.reserved;
 100	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 101		if (i915_vma_is_pinned(vma))
 102			pinned += vma->node.size;
 103
 104	mutex_unlock(&ggtt->vm.mutex);
 105
 106	args->aper_size = ggtt->vm.total;
 107	args->aper_available_size = args->aper_size - pinned;
 108
 109	return 0;
 110}
 111
 112int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 113			   unsigned long flags)
 114{
 115	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 116	LIST_HEAD(still_in_list);
 117	intel_wakeref_t wakeref;
 118	struct i915_vma *vma;
 119	int ret;
 120
 121	if (list_empty(&obj->vma.list))
 122		return 0;
 123
 124	/*
 125	 * As some machines use ACPI to handle runtime-resume callbacks, and
 126	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 127	 * as they are required by the shrinker. Ergo, we wake the device up
 128	 * first just in case.
 129	 */
 130	wakeref = intel_runtime_pm_get(rpm);
 131
 132try_again:
 133	ret = 0;
 134	spin_lock(&obj->vma.lock);
 135	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 136						       struct i915_vma,
 137						       obj_link))) {
 138		struct i915_address_space *vm = vma->vm;
 139
 140		list_move_tail(&vma->obj_link, &still_in_list);
 141		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 142			continue;
 143
 144		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 145			ret = -EBUSY;
 146			break;
 147		}
 148
 149		ret = -EAGAIN;
 150		if (!i915_vm_tryopen(vm))
 151			break;
 152
 153		/* Prevent vma being freed by i915_vma_parked as we unbind */
 154		vma = __i915_vma_get(vma);
 155		spin_unlock(&obj->vma.lock);
 156
 157		if (vma) {
 158			ret = -EBUSY;
 159			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 160			    !i915_vma_is_active(vma)) {
 161				if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
 162					if (mutex_trylock(&vma->vm->mutex)) {
 163						ret = __i915_vma_unbind(vma);
 164						mutex_unlock(&vma->vm->mutex);
 165					} else {
 166						ret = -EBUSY;
 167					}
 168				} else {
 169					ret = i915_vma_unbind(vma);
 170				}
 171			}
 172
 173			__i915_vma_put(vma);
 174		}
 175
 176		i915_vm_close(vm);
 177		spin_lock(&obj->vma.lock);
 178	}
 179	list_splice_init(&still_in_list, &obj->vma.list);
 180	spin_unlock(&obj->vma.lock);
 181
 182	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 183		rcu_barrier(); /* flush the i915_vm_release() */
 184		goto try_again;
 185	}
 186
 187	intel_runtime_pm_put(rpm, wakeref);
 188
 189	return ret;
 190}
 191
 192static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 193shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 194	    bool needs_clflush)
 195{
 196	char *vaddr;
 197	int ret;
 198
 199	vaddr = kmap(page);
 200
 201	if (needs_clflush)
 202		drm_clflush_virt_range(vaddr + offset, len);
 203
 204	ret = __copy_to_user(user_data, vaddr + offset, len);
 205
 206	kunmap(page);
 207
 208	return ret ? -EFAULT : 0;
 209}
 210
 211static int
 212i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 213		     struct drm_i915_gem_pread *args)
 214{
 215	unsigned int needs_clflush;
 216	unsigned int idx, offset;
 
 217	char __user *user_data;
 218	u64 remain;
 219	int ret;
 220
 221	ret = i915_gem_object_lock_interruptible(obj, NULL);
 222	if (ret)
 223		return ret;
 224
 225	ret = i915_gem_object_pin_pages(obj);
 226	if (ret)
 227		goto err_unlock;
 228
 229	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 230	if (ret)
 231		goto err_unpin;
 232
 
 233	i915_gem_object_finish_access(obj);
 234	i915_gem_object_unlock(obj);
 
 235
 236	remain = args->size;
 237	user_data = u64_to_user_ptr(args->data_ptr);
 238	offset = offset_in_page(args->offset);
 239	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 240		struct page *page = i915_gem_object_get_page(obj, idx);
 241		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 242
 243		ret = shmem_pread(page, offset, length, user_data,
 244				  needs_clflush);
 245		if (ret)
 246			break;
 247
 248		remain -= length;
 249		user_data += length;
 250		offset = 0;
 251	}
 252
 253	i915_gem_object_unpin_pages(obj);
 254	return ret;
 255
 256err_unpin:
 257	i915_gem_object_unpin_pages(obj);
 258err_unlock:
 259	i915_gem_object_unlock(obj);
 260	return ret;
 261}
 262
 263static inline bool
 264gtt_user_read(struct io_mapping *mapping,
 265	      loff_t base, int offset,
 266	      char __user *user_data, int length)
 267{
 268	void __iomem *vaddr;
 269	unsigned long unwritten;
 270
 271	/* We can use the cpu mem copy function because this is X86. */
 272	vaddr = io_mapping_map_atomic_wc(mapping, base);
 273	unwritten = __copy_to_user_inatomic(user_data,
 274					    (void __force *)vaddr + offset,
 275					    length);
 276	io_mapping_unmap_atomic(vaddr);
 277	if (unwritten) {
 278		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 279		unwritten = copy_to_user(user_data,
 280					 (void __force *)vaddr + offset,
 281					 length);
 282		io_mapping_unmap(vaddr);
 283	}
 284	return unwritten;
 285}
 286
 287static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
 288					     struct drm_mm_node *node,
 289					     bool write)
 290{
 291	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 292	struct i915_ggtt *ggtt = &i915->ggtt;
 
 
 
 
 293	struct i915_vma *vma;
 294	struct i915_gem_ww_ctx ww;
 295	int ret;
 296
 297	i915_gem_ww_ctx_init(&ww, true);
 298retry:
 299	vma = ERR_PTR(-ENODEV);
 300	ret = i915_gem_object_lock(obj, &ww);
 301	if (ret)
 302		goto err_ww;
 303
 304	ret = i915_gem_object_set_to_gtt_domain(obj, write);
 305	if (ret)
 306		goto err_ww;
 307
 308	if (!i915_gem_object_is_tiled(obj))
 309		vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
 310						  PIN_MAPPABLE |
 311						  PIN_NONBLOCK /* NOWARN */ |
 312						  PIN_NOEVICT);
 313	if (vma == ERR_PTR(-EDEADLK)) {
 314		ret = -EDEADLK;
 315		goto err_ww;
 316	} else if (!IS_ERR(vma)) {
 317		node->start = i915_ggtt_offset(vma);
 318		node->flags = 0;
 319	} else {
 320		ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
 321		if (ret)
 322			goto err_ww;
 323		GEM_BUG_ON(!drm_mm_node_allocated(node));
 324		vma = NULL;
 325	}
 326
 327	ret = i915_gem_object_pin_pages(obj);
 328	if (ret) {
 329		if (drm_mm_node_allocated(node)) {
 330			ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 331			remove_mappable_node(ggtt, node);
 332		} else {
 333			i915_vma_unpin(vma);
 334		}
 335	}
 336
 337err_ww:
 338	if (ret == -EDEADLK) {
 339		ret = i915_gem_ww_ctx_backoff(&ww);
 340		if (!ret)
 341			goto retry;
 342	}
 343	i915_gem_ww_ctx_fini(&ww);
 344
 345	return ret ? ERR_PTR(ret) : vma;
 346}
 347
 348static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
 349				 struct drm_mm_node *node,
 350				 struct i915_vma *vma)
 351{
 352	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 353	struct i915_ggtt *ggtt = &i915->ggtt;
 354
 355	i915_gem_object_unpin_pages(obj);
 356	if (drm_mm_node_allocated(node)) {
 357		ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
 358		remove_mappable_node(ggtt, node);
 359	} else {
 360		i915_vma_unpin(vma);
 361	}
 362}
 363
 364static int
 365i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 366		   const struct drm_i915_gem_pread *args)
 367{
 368	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 369	struct i915_ggtt *ggtt = &i915->ggtt;
 370	intel_wakeref_t wakeref;
 371	struct drm_mm_node node;
 372	void __user *user_data;
 373	struct i915_vma *vma;
 374	u64 remain, offset;
 375	int ret = 0;
 376
 377	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 378
 379	vma = i915_gem_gtt_prepare(obj, &node, false);
 380	if (IS_ERR(vma)) {
 381		ret = PTR_ERR(vma);
 382		goto out_rpm;
 
 383	}
 384
 385	user_data = u64_to_user_ptr(args->data_ptr);
 386	remain = args->size;
 387	offset = args->offset;
 388
 389	while (remain > 0) {
 390		/* Operation in this page
 391		 *
 392		 * page_base = page offset within aperture
 393		 * page_offset = offset within page
 394		 * page_length = bytes to copy for this page
 395		 */
 396		u32 page_base = node.start;
 397		unsigned page_offset = offset_in_page(offset);
 398		unsigned page_length = PAGE_SIZE - page_offset;
 399		page_length = remain < page_length ? remain : page_length;
 400		if (drm_mm_node_allocated(&node)) {
 401			ggtt->vm.insert_page(&ggtt->vm,
 402					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 403					     node.start, I915_CACHE_NONE, 0);
 404		} else {
 405			page_base += offset & PAGE_MASK;
 406		}
 407
 408		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 409				  user_data, page_length)) {
 410			ret = -EFAULT;
 411			break;
 412		}
 413
 414		remain -= page_length;
 415		user_data += page_length;
 416		offset += page_length;
 417	}
 418
 419	i915_gem_gtt_cleanup(obj, &node, vma);
 
 
 
 
 
 
 
 420out_rpm:
 421	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 422	return ret;
 423}
 424
 425/**
 426 * Reads data from the object referenced by handle.
 427 * @dev: drm device pointer
 428 * @data: ioctl data blob
 429 * @file: drm file pointer
 430 *
 431 * On error, the contents of *data are undefined.
 432 */
 433int
 434i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 435		     struct drm_file *file)
 436{
 437	struct drm_i915_private *i915 = to_i915(dev);
 438	struct drm_i915_gem_pread *args = data;
 439	struct drm_i915_gem_object *obj;
 440	int ret;
 441
 442	/* PREAD is disallowed for all platforms after TGL-LP.  This also
 443	 * covers all platforms with local memory.
 444	 */
 445	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 446		return -EOPNOTSUPP;
 447
 448	if (args->size == 0)
 449		return 0;
 450
 451	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 452		       args->size))
 453		return -EFAULT;
 454
 455	obj = i915_gem_object_lookup(file, args->handle);
 456	if (!obj)
 457		return -ENOENT;
 458
 459	/* Bounds check source.  */
 460	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 461		ret = -EINVAL;
 462		goto out;
 463	}
 464
 465	trace_i915_gem_object_pread(obj, args->offset, args->size);
 466	ret = -ENODEV;
 467	if (obj->ops->pread)
 468		ret = obj->ops->pread(obj, args);
 469	if (ret != -ENODEV)
 470		goto out;
 471
 472	ret = -ENODEV;
 473	if (obj->ops->pread)
 474		ret = obj->ops->pread(obj, args);
 475	if (ret != -ENODEV)
 476		goto out;
 477
 478	ret = i915_gem_object_wait(obj,
 479				   I915_WAIT_INTERRUPTIBLE,
 480				   MAX_SCHEDULE_TIMEOUT);
 481	if (ret)
 482		goto out;
 483
 
 
 
 
 484	ret = i915_gem_shmem_pread(obj, args);
 485	if (ret == -EFAULT || ret == -ENODEV)
 486		ret = i915_gem_gtt_pread(obj, args);
 487
 
 488out:
 489	i915_gem_object_put(obj);
 490	return ret;
 491}
 492
 493/* This is the fast write path which cannot handle
 494 * page faults in the source data
 495 */
 496
 497static inline bool
 498ggtt_write(struct io_mapping *mapping,
 499	   loff_t base, int offset,
 500	   char __user *user_data, int length)
 501{
 502	void __iomem *vaddr;
 503	unsigned long unwritten;
 504
 505	/* We can use the cpu mem copy function because this is X86. */
 506	vaddr = io_mapping_map_atomic_wc(mapping, base);
 507	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 508						      user_data, length);
 509	io_mapping_unmap_atomic(vaddr);
 510	if (unwritten) {
 511		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 512		unwritten = copy_from_user((void __force *)vaddr + offset,
 513					   user_data, length);
 514		io_mapping_unmap(vaddr);
 515	}
 516
 517	return unwritten;
 518}
 519
 520/**
 521 * This is the fast pwrite path, where we copy the data directly from the
 522 * user into the GTT, uncached.
 523 * @obj: i915 GEM object
 524 * @args: pwrite arguments structure
 525 */
 526static int
 527i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 528			 const struct drm_i915_gem_pwrite *args)
 529{
 530	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 531	struct i915_ggtt *ggtt = &i915->ggtt;
 532	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 533	intel_wakeref_t wakeref;
 534	struct drm_mm_node node;
 
 535	struct i915_vma *vma;
 536	u64 remain, offset;
 537	void __user *user_data;
 538	int ret = 0;
 539
 540	if (i915_gem_object_has_struct_page(obj)) {
 541		/*
 542		 * Avoid waking the device up if we can fallback, as
 543		 * waking/resuming is very slow (worst-case 10-100 ms
 544		 * depending on PCI sleeps and our own resume time).
 545		 * This easily dwarfs any performance advantage from
 546		 * using the cache bypass of indirect GGTT access.
 547		 */
 548		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 549		if (!wakeref)
 550			return -EFAULT;
 551	} else {
 552		/* No backing pages, no fallback, we must force GGTT access */
 553		wakeref = intel_runtime_pm_get(rpm);
 554	}
 555
 556	vma = i915_gem_gtt_prepare(obj, &node, true);
 557	if (IS_ERR(vma)) {
 558		ret = PTR_ERR(vma);
 559		goto out_rpm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560	}
 561
 562	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 563
 564	user_data = u64_to_user_ptr(args->data_ptr);
 565	offset = args->offset;
 566	remain = args->size;
 567	while (remain) {
 568		/* Operation in this page
 569		 *
 570		 * page_base = page offset within aperture
 571		 * page_offset = offset within page
 572		 * page_length = bytes to copy for this page
 573		 */
 574		u32 page_base = node.start;
 575		unsigned int page_offset = offset_in_page(offset);
 576		unsigned int page_length = PAGE_SIZE - page_offset;
 577		page_length = remain < page_length ? remain : page_length;
 578		if (drm_mm_node_allocated(&node)) {
 579			/* flush the write before we modify the GGTT */
 580			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 581			ggtt->vm.insert_page(&ggtt->vm,
 582					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 583					     node.start, I915_CACHE_NONE, 0);
 584			wmb(); /* flush modifications to the GGTT (insert_page) */
 585		} else {
 586			page_base += offset & PAGE_MASK;
 587		}
 588		/* If we get a fault while copying data, then (presumably) our
 589		 * source page isn't available.  Return the error and we'll
 590		 * retry in the slow path.
 591		 * If the object is non-shmem backed, we retry again with the
 592		 * path that handles page fault.
 593		 */
 594		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 595			       user_data, page_length)) {
 596			ret = -EFAULT;
 597			break;
 598		}
 599
 600		remain -= page_length;
 601		user_data += page_length;
 602		offset += page_length;
 603	}
 604
 605	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 606	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 607
 608	i915_gem_gtt_cleanup(obj, &node, vma);
 
 
 
 
 
 
 
 609out_rpm:
 610	intel_runtime_pm_put(rpm, wakeref);
 611	return ret;
 612}
 613
 614/* Per-page copy function for the shmem pwrite fastpath.
 615 * Flushes invalid cachelines before writing to the target if
 616 * needs_clflush_before is set and flushes out any written cachelines after
 617 * writing if needs_clflush is set.
 618 */
 619static int
 620shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 621	     bool needs_clflush_before,
 622	     bool needs_clflush_after)
 623{
 624	char *vaddr;
 625	int ret;
 626
 627	vaddr = kmap(page);
 628
 629	if (needs_clflush_before)
 630		drm_clflush_virt_range(vaddr + offset, len);
 631
 632	ret = __copy_from_user(vaddr + offset, user_data, len);
 633	if (!ret && needs_clflush_after)
 634		drm_clflush_virt_range(vaddr + offset, len);
 635
 636	kunmap(page);
 637
 638	return ret ? -EFAULT : 0;
 639}
 640
 641static int
 642i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 643		      const struct drm_i915_gem_pwrite *args)
 644{
 645	unsigned int partial_cacheline_write;
 646	unsigned int needs_clflush;
 647	unsigned int offset, idx;
 
 648	void __user *user_data;
 649	u64 remain;
 650	int ret;
 651
 652	ret = i915_gem_object_lock_interruptible(obj, NULL);
 653	if (ret)
 654		return ret;
 655
 656	ret = i915_gem_object_pin_pages(obj);
 657	if (ret)
 658		goto err_unlock;
 659
 660	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 661	if (ret)
 662		goto err_unpin;
 663
 
 664	i915_gem_object_finish_access(obj);
 665	i915_gem_object_unlock(obj);
 
 666
 667	/* If we don't overwrite a cacheline completely we need to be
 668	 * careful to have up-to-date data by first clflushing. Don't
 669	 * overcomplicate things and flush the entire patch.
 670	 */
 671	partial_cacheline_write = 0;
 672	if (needs_clflush & CLFLUSH_BEFORE)
 673		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 674
 675	user_data = u64_to_user_ptr(args->data_ptr);
 676	remain = args->size;
 677	offset = offset_in_page(args->offset);
 678	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 679		struct page *page = i915_gem_object_get_page(obj, idx);
 680		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 681
 682		ret = shmem_pwrite(page, offset, length, user_data,
 683				   (offset | length) & partial_cacheline_write,
 684				   needs_clflush & CLFLUSH_AFTER);
 685		if (ret)
 686			break;
 687
 688		remain -= length;
 689		user_data += length;
 690		offset = 0;
 691	}
 692
 693	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 
 694
 695	i915_gem_object_unpin_pages(obj);
 696	return ret;
 697
 698err_unpin:
 699	i915_gem_object_unpin_pages(obj);
 700err_unlock:
 701	i915_gem_object_unlock(obj);
 702	return ret;
 703}
 704
 705/**
 706 * Writes data to the object referenced by handle.
 707 * @dev: drm device
 708 * @data: ioctl data blob
 709 * @file: drm file
 710 *
 711 * On error, the contents of the buffer that were to be modified are undefined.
 712 */
 713int
 714i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 715		      struct drm_file *file)
 716{
 717	struct drm_i915_private *i915 = to_i915(dev);
 718	struct drm_i915_gem_pwrite *args = data;
 719	struct drm_i915_gem_object *obj;
 720	int ret;
 721
 722	/* PWRITE is disallowed for all platforms after TGL-LP.  This also
 723	 * covers all platforms with local memory.
 724	 */
 725	if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
 726		return -EOPNOTSUPP;
 727
 728	if (args->size == 0)
 729		return 0;
 730
 731	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 732		return -EFAULT;
 733
 734	obj = i915_gem_object_lookup(file, args->handle);
 735	if (!obj)
 736		return -ENOENT;
 737
 738	/* Bounds check destination. */
 739	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 740		ret = -EINVAL;
 741		goto err;
 742	}
 743
 744	/* Writes not allowed into this read-only object */
 745	if (i915_gem_object_is_readonly(obj)) {
 746		ret = -EINVAL;
 747		goto err;
 748	}
 749
 750	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 751
 752	ret = -ENODEV;
 753	if (obj->ops->pwrite)
 754		ret = obj->ops->pwrite(obj, args);
 755	if (ret != -ENODEV)
 756		goto err;
 757
 758	ret = i915_gem_object_wait(obj,
 759				   I915_WAIT_INTERRUPTIBLE |
 760				   I915_WAIT_ALL,
 761				   MAX_SCHEDULE_TIMEOUT);
 762	if (ret)
 763		goto err;
 764
 
 
 
 
 765	ret = -EFAULT;
 766	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 767	 * it would end up going through the fenced access, and we'll get
 768	 * different detiling behavior between reading and writing.
 769	 * pread/pwrite currently are reading and writing from the CPU
 770	 * perspective, requiring manual detiling by the client.
 771	 */
 772	if (!i915_gem_object_has_struct_page(obj) ||
 773	    cpu_write_needs_clflush(obj))
 774		/* Note that the gtt paths might fail with non-page-backed user
 775		 * pointers (e.g. gtt mappings when moving data between
 776		 * textures). Fallback to the shmem path in that case.
 777		 */
 778		ret = i915_gem_gtt_pwrite_fast(obj, args);
 779
 780	if (ret == -EFAULT || ret == -ENOSPC) {
 781		if (i915_gem_object_has_struct_page(obj))
 782			ret = i915_gem_shmem_pwrite(obj, args);
 
 
 783	}
 784
 
 785err:
 786	i915_gem_object_put(obj);
 787	return ret;
 788}
 789
 790/**
 791 * Called when user space has done writes to this buffer
 792 * @dev: drm device
 793 * @data: ioctl data blob
 794 * @file: drm file
 795 */
 796int
 797i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 798			 struct drm_file *file)
 799{
 800	struct drm_i915_gem_sw_finish *args = data;
 801	struct drm_i915_gem_object *obj;
 802
 803	obj = i915_gem_object_lookup(file, args->handle);
 804	if (!obj)
 805		return -ENOENT;
 806
 807	/*
 808	 * Proxy objects are barred from CPU access, so there is no
 809	 * need to ban sw_finish as it is a nop.
 810	 */
 811
 812	/* Pinned buffers may be scanout, so flush the cache */
 813	i915_gem_object_flush_if_display(obj);
 814	i915_gem_object_put(obj);
 815
 816	return 0;
 817}
 818
 819void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 820{
 821	struct drm_i915_gem_object *obj, *on;
 822	int i;
 823
 824	/*
 825	 * Only called during RPM suspend. All users of the userfault_list
 826	 * must be holding an RPM wakeref to ensure that this can not
 827	 * run concurrently with themselves (and use the struct_mutex for
 828	 * protection between themselves).
 829	 */
 830
 831	list_for_each_entry_safe(obj, on,
 832				 &i915->ggtt.userfault_list, userfault_link)
 833		__i915_gem_object_release_mmap_gtt(obj);
 834
 835	/*
 836	 * The fence will be lost when the device powers down. If any were
 837	 * in use by hardware (i.e. they are pinned), we should not be powering
 838	 * down! All other fences will be reacquired by the user upon waking.
 839	 */
 840	for (i = 0; i < i915->ggtt.num_fences; i++) {
 841		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
 842
 843		/*
 844		 * Ideally we want to assert that the fence register is not
 845		 * live at this point (i.e. that no piece of code will be
 846		 * trying to write through fence + GTT, as that both violates
 847		 * our tracking of activity and associated locking/barriers,
 848		 * but also is illegal given that the hw is powered down).
 849		 *
 850		 * Previously we used reg->pin_count as a "liveness" indicator.
 851		 * That is not sufficient, and we need a more fine-grained
 852		 * tool if we want to have a sanity check here.
 853		 */
 854
 855		if (!reg->vma)
 856			continue;
 857
 858		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 859		reg->dirty = true;
 860	}
 861}
 862
 863static void discard_ggtt_vma(struct i915_vma *vma)
 864{
 865	struct drm_i915_gem_object *obj = vma->obj;
 866
 867	spin_lock(&obj->vma.lock);
 868	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 869		rb_erase(&vma->obj_node, &obj->vma.tree);
 870		RB_CLEAR_NODE(&vma->obj_node);
 871	}
 872	spin_unlock(&obj->vma.lock);
 873}
 874
 875struct i915_vma *
 876i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
 877			    struct i915_gem_ww_ctx *ww,
 878			    const struct i915_ggtt_view *view,
 879			    u64 size, u64 alignment, u64 flags)
 
 880{
 881	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 882	struct i915_ggtt *ggtt = &i915->ggtt;
 883	struct i915_vma *vma;
 884	int ret;
 885
 886	if (flags & PIN_MAPPABLE &&
 887	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
 888		/*
 889		 * If the required space is larger than the available
 890		 * aperture, we will not able to find a slot for the
 891		 * object and unbinding the object now will be in
 892		 * vain. Worse, doing so may cause us to ping-pong
 893		 * the object in and out of the Global GTT and
 894		 * waste a lot of cycles under the mutex.
 895		 */
 896		if (obj->base.size > ggtt->mappable_end)
 897			return ERR_PTR(-E2BIG);
 898
 899		/*
 900		 * If NONBLOCK is set the caller is optimistically
 901		 * trying to cache the full object within the mappable
 902		 * aperture, and *must* have a fallback in place for
 903		 * situations where we cannot bind the object. We
 904		 * can be a little more lax here and use the fallback
 905		 * more often to avoid costly migrations of ourselves
 906		 * and other objects within the aperture.
 907		 *
 908		 * Half-the-aperture is used as a simple heuristic.
 909		 * More interesting would to do search for a free
 910		 * block prior to making the commitment to unbind.
 911		 * That caters for the self-harm case, and with a
 912		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 913		 * we could try to minimise harm to others.
 914		 */
 915		if (flags & PIN_NONBLOCK &&
 916		    obj->base.size > ggtt->mappable_end / 2)
 917			return ERR_PTR(-ENOSPC);
 918	}
 919
 920new_vma:
 921	vma = i915_vma_instance(obj, &ggtt->vm, view);
 922	if (IS_ERR(vma))
 923		return vma;
 924
 925	if (i915_vma_misplaced(vma, size, alignment, flags)) {
 926		if (flags & PIN_NONBLOCK) {
 927			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
 928				return ERR_PTR(-ENOSPC);
 929
 930			if (flags & PIN_MAPPABLE &&
 931			    vma->fence_size > ggtt->mappable_end / 2)
 932				return ERR_PTR(-ENOSPC);
 933		}
 934
 935		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
 936			discard_ggtt_vma(vma);
 937			goto new_vma;
 938		}
 939
 940		ret = i915_vma_unbind(vma);
 941		if (ret)
 942			return ERR_PTR(ret);
 943	}
 944
 945	if (ww)
 946		ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
 947	else
 948		ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
 949
 950	if (ret)
 951		return ERR_PTR(ret);
 952
 953	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
 954		mutex_lock(&ggtt->vm.mutex);
 955		i915_vma_revoke_fence(vma);
 956		mutex_unlock(&ggtt->vm.mutex);
 957	}
 958
 959	ret = i915_vma_wait_for_bind(vma);
 960	if (ret) {
 961		i915_vma_unpin(vma);
 962		return ERR_PTR(ret);
 963	}
 964
 965	return vma;
 966}
 967
 968int
 969i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
 970		       struct drm_file *file_priv)
 971{
 972	struct drm_i915_private *i915 = to_i915(dev);
 973	struct drm_i915_gem_madvise *args = data;
 974	struct drm_i915_gem_object *obj;
 975	int err;
 976
 977	switch (args->madv) {
 978	case I915_MADV_DONTNEED:
 979	case I915_MADV_WILLNEED:
 980	    break;
 981	default:
 982	    return -EINVAL;
 983	}
 984
 985	obj = i915_gem_object_lookup(file_priv, args->handle);
 986	if (!obj)
 987		return -ENOENT;
 988
 989	err = i915_gem_object_lock_interruptible(obj, NULL);
 990	if (err)
 991		goto out;
 992
 993	if (i915_gem_object_has_pages(obj) &&
 994	    i915_gem_object_is_tiled(obj) &&
 995	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
 996		if (obj->mm.madv == I915_MADV_WILLNEED) {
 997			GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
 998			i915_gem_object_clear_tiling_quirk(obj);
 999			i915_gem_object_make_shrinkable(obj);
1000		}
1001		if (args->madv == I915_MADV_WILLNEED) {
1002			GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1003			i915_gem_object_make_unshrinkable(obj);
1004			i915_gem_object_set_tiling_quirk(obj);
1005		}
1006	}
1007
1008	if (obj->mm.madv != __I915_MADV_PURGED)
1009		obj->mm.madv = args->madv;
1010
1011	if (i915_gem_object_has_pages(obj)) {
1012		unsigned long flags;
 
 
 
1013
1014		spin_lock_irqsave(&i915->mm.obj_lock, flags);
1015		if (!list_empty(&obj->mm.link)) {
1016			struct list_head *list;
1017
1018			if (obj->mm.madv != I915_MADV_WILLNEED)
1019				list = &i915->mm.purge_list;
1020			else
1021				list = &i915->mm.shrink_list;
1022			list_move_tail(&obj->mm.link, list);
1023
 
1024		}
1025		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1026	}
1027
1028	/* if the object is no longer attached, discard its backing storage */
1029	if (obj->mm.madv == I915_MADV_DONTNEED &&
1030	    !i915_gem_object_has_pages(obj))
1031		i915_gem_object_truncate(obj);
1032
1033	args->retained = obj->mm.madv != __I915_MADV_PURGED;
 
1034
1035	i915_gem_object_unlock(obj);
1036out:
1037	i915_gem_object_put(obj);
1038	return err;
1039}
1040
1041int i915_gem_init(struct drm_i915_private *dev_priv)
1042{
1043	int ret;
1044
1045	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1046	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1047		mkwrite_device_info(dev_priv)->page_sizes =
1048			I915_GTT_PAGE_SIZE_4K;
1049
1050	ret = i915_gem_init_userptr(dev_priv);
1051	if (ret)
1052		return ret;
1053
1054	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1055	intel_wopcm_init(&dev_priv->wopcm);
1056
1057	ret = i915_init_ggtt(dev_priv);
1058	if (ret) {
1059		GEM_BUG_ON(ret == -EIO);
1060		goto err_unlock;
1061	}
1062
1063	/*
1064	 * Despite its name intel_init_clock_gating applies both display
1065	 * clock gating workarounds; GT mmio workarounds and the occasional
1066	 * GT power context workaround. Worse, sometimes it includes a context
1067	 * register workaround which we need to apply before we record the
1068	 * default HW state for all contexts.
1069	 *
1070	 * FIXME: break up the workarounds and apply them at the right time!
1071	 */
1072	intel_init_clock_gating(dev_priv);
1073
1074	ret = intel_gt_init(&dev_priv->gt);
1075	if (ret)
1076		goto err_unlock;
1077
1078	return 0;
1079
1080	/*
1081	 * Unwinding is complicated by that we want to handle -EIO to mean
1082	 * disable GPU submission but keep KMS alive. We want to mark the
1083	 * HW as irrevisibly wedged, but keep enough state around that the
1084	 * driver doesn't explode during runtime.
1085	 */
1086err_unlock:
1087	i915_gem_drain_workqueue(dev_priv);
1088
1089	if (ret != -EIO)
1090		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
 
 
1091
1092	if (ret == -EIO) {
1093		/*
1094		 * Allow engines or uC initialisation to fail by marking the GPU
1095		 * as wedged. But we only want to do this when the GPU is angry,
1096		 * for all other failure, such as an allocation failure, bail.
1097		 */
1098		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1099			i915_probe_error(dev_priv,
1100					 "Failed to initialize GPU, declaring it wedged!\n");
1101			intel_gt_set_wedged(&dev_priv->gt);
1102		}
1103
1104		/* Minimal basic recovery for KMS */
1105		ret = i915_ggtt_enable_hw(dev_priv);
1106		i915_ggtt_resume(&dev_priv->ggtt);
1107		intel_init_clock_gating(dev_priv);
1108	}
1109
1110	i915_gem_drain_freed_objects(dev_priv);
1111
1112	return ret;
1113}
1114
1115void i915_gem_driver_register(struct drm_i915_private *i915)
1116{
1117	i915_gem_driver_register__shrinker(i915);
1118
1119	intel_engines_driver_register(i915);
1120}
1121
1122void i915_gem_driver_unregister(struct drm_i915_private *i915)
1123{
1124	i915_gem_driver_unregister__shrinker(i915);
1125}
1126
1127void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1128{
1129	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1130
1131	i915_gem_suspend_late(dev_priv);
1132	intel_gt_driver_remove(&dev_priv->gt);
1133	dev_priv->uabi_engines = RB_ROOT;
1134
1135	/* Flush any outstanding unpin_work. */
1136	i915_gem_drain_workqueue(dev_priv);
1137
1138	i915_gem_drain_freed_objects(dev_priv);
1139}
1140
1141void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1142{
 
 
1143	intel_gt_driver_release(&dev_priv->gt);
1144
1145	intel_wa_list_free(&dev_priv->gt_wa_list);
1146
1147	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
 
1148
1149	i915_gem_drain_freed_objects(dev_priv);
1150
1151	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1152}
1153
1154static void i915_gem_init__mm(struct drm_i915_private *i915)
1155{
1156	spin_lock_init(&i915->mm.obj_lock);
1157
1158	init_llist_head(&i915->mm.free_list);
1159
1160	INIT_LIST_HEAD(&i915->mm.purge_list);
1161	INIT_LIST_HEAD(&i915->mm.shrink_list);
1162
1163	i915_gem_init__objects(i915);
1164}
1165
1166void i915_gem_init_early(struct drm_i915_private *dev_priv)
1167{
1168	i915_gem_init__mm(dev_priv);
1169	i915_gem_init__contexts(dev_priv);
1170
1171	spin_lock_init(&dev_priv->fb_tracking.lock);
1172}
1173
1174void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1175{
1176	i915_gem_drain_freed_objects(dev_priv);
1177	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1178	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1179	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1180}
1181
1182int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1183{
1184	struct drm_i915_file_private *file_priv;
1185	int ret;
 
 
1186
1187	DRM_DEBUG("\n");
 
1188
1189	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1190	if (!file_priv)
1191		return -ENOMEM;
 
1192
1193	file->driver_priv = file_priv;
1194	file_priv->dev_priv = i915;
1195	file_priv->file = file;
 
 
 
 
 
 
 
 
 
 
 
1196
1197	file_priv->bsd_engine = -1;
1198	file_priv->hang_timestamp = jiffies;
1199
1200	ret = i915_gem_context_open(i915, file);
1201	if (ret)
1202		kfree(file_priv);
1203
1204	return ret;
1205}
 
 
 
 
1206
1207void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1208{
1209	ww_acquire_init(&ww->ctx, &reservation_ww_class);
1210	INIT_LIST_HEAD(&ww->obj_list);
1211	ww->intr = intr;
1212	ww->contended = NULL;
1213}
1214
1215static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1216{
1217	struct drm_i915_gem_object *obj;
 
1218
1219	while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1220		list_del(&obj->obj_link);
1221		i915_gem_object_unlock(obj);
1222	}
 
 
 
 
1223}
1224
1225void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1226{
1227	list_del(&obj->obj_link);
1228	i915_gem_object_unlock(obj);
1229}
1230
1231void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1232{
1233	i915_gem_ww_ctx_unlock_all(ww);
1234	WARN_ON(ww->contended);
1235	ww_acquire_fini(&ww->ctx);
1236}
1237
1238int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1239{
1240	int ret = 0;
1241
1242	if (WARN_ON(!ww->contended))
1243		return -EINVAL;
 
1244
1245	i915_gem_ww_ctx_unlock_all(ww);
1246	if (ww->intr)
1247		ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1248	else
1249		dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1250
1251	if (!ret)
1252		list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1253
1254	ww->contended = NULL;
 
 
1255
1256	return ret;
1257}
1258
1259#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1260#include "selftests/mock_gem_device.c"
1261#include "selftests/i915_gem.c"
1262#endif
v5.9
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drm_vma_manager.h>
  29#include <linux/dma-fence-array.h>
  30#include <linux/kthread.h>
  31#include <linux/dma-resv.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/slab.h>
  34#include <linux/stop_machine.h>
  35#include <linux/swap.h>
  36#include <linux/pci.h>
  37#include <linux/dma-buf.h>
  38#include <linux/mman.h>
  39
  40#include "display/intel_display.h"
  41#include "display/intel_frontbuffer.h"
  42
  43#include "gem/i915_gem_clflush.h"
  44#include "gem/i915_gem_context.h"
  45#include "gem/i915_gem_ioctls.h"
  46#include "gem/i915_gem_mman.h"
  47#include "gem/i915_gem_region.h"
  48#include "gt/intel_engine_user.h"
  49#include "gt/intel_gt.h"
  50#include "gt/intel_gt_pm.h"
  51#include "gt/intel_workarounds.h"
  52
  53#include "i915_drv.h"
  54#include "i915_trace.h"
  55#include "i915_vgpu.h"
  56
  57#include "intel_pm.h"
  58
  59static int
  60insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
  61{
  62	int err;
  63
  64	err = mutex_lock_interruptible(&ggtt->vm.mutex);
  65	if (err)
  66		return err;
  67
  68	memset(node, 0, sizeof(*node));
  69	err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
  70					  size, 0, I915_COLOR_UNEVICTABLE,
  71					  0, ggtt->mappable_end,
  72					  DRM_MM_INSERT_LOW);
  73
  74	mutex_unlock(&ggtt->vm.mutex);
  75
  76	return err;
  77}
  78
  79static void
  80remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
  81{
  82	mutex_lock(&ggtt->vm.mutex);
  83	drm_mm_remove_node(node);
  84	mutex_unlock(&ggtt->vm.mutex);
  85}
  86
  87int
  88i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  89			    struct drm_file *file)
  90{
  91	struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
  92	struct drm_i915_gem_get_aperture *args = data;
  93	struct i915_vma *vma;
  94	u64 pinned;
  95
  96	if (mutex_lock_interruptible(&ggtt->vm.mutex))
  97		return -EINTR;
  98
  99	pinned = ggtt->vm.reserved;
 100	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
 101		if (i915_vma_is_pinned(vma))
 102			pinned += vma->node.size;
 103
 104	mutex_unlock(&ggtt->vm.mutex);
 105
 106	args->aper_size = ggtt->vm.total;
 107	args->aper_available_size = args->aper_size - pinned;
 108
 109	return 0;
 110}
 111
 112int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
 113			   unsigned long flags)
 114{
 115	struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
 116	LIST_HEAD(still_in_list);
 117	intel_wakeref_t wakeref;
 118	struct i915_vma *vma;
 119	int ret;
 120
 121	if (list_empty(&obj->vma.list))
 122		return 0;
 123
 124	/*
 125	 * As some machines use ACPI to handle runtime-resume callbacks, and
 126	 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
 127	 * as they are required by the shrinker. Ergo, we wake the device up
 128	 * first just in case.
 129	 */
 130	wakeref = intel_runtime_pm_get(rpm);
 131
 132try_again:
 133	ret = 0;
 134	spin_lock(&obj->vma.lock);
 135	while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
 136						       struct i915_vma,
 137						       obj_link))) {
 138		struct i915_address_space *vm = vma->vm;
 139
 140		list_move_tail(&vma->obj_link, &still_in_list);
 141		if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
 142			continue;
 143
 144		if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
 145			ret = -EBUSY;
 146			break;
 147		}
 148
 149		ret = -EAGAIN;
 150		if (!i915_vm_tryopen(vm))
 151			break;
 152
 153		/* Prevent vma being freed by i915_vma_parked as we unbind */
 154		vma = __i915_vma_get(vma);
 155		spin_unlock(&obj->vma.lock);
 156
 157		if (vma) {
 158			ret = -EBUSY;
 159			if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
 160			    !i915_vma_is_active(vma))
 161				ret = i915_vma_unbind(vma);
 
 
 
 
 
 
 
 
 
 
 162
 163			__i915_vma_put(vma);
 164		}
 165
 166		i915_vm_close(vm);
 167		spin_lock(&obj->vma.lock);
 168	}
 169	list_splice_init(&still_in_list, &obj->vma.list);
 170	spin_unlock(&obj->vma.lock);
 171
 172	if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
 173		rcu_barrier(); /* flush the i915_vm_release() */
 174		goto try_again;
 175	}
 176
 177	intel_runtime_pm_put(rpm, wakeref);
 178
 179	return ret;
 180}
 181
 182static int
 183i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 184		     struct drm_i915_gem_pwrite *args,
 185		     struct drm_file *file)
 186{
 187	void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
 188	char __user *user_data = u64_to_user_ptr(args->data_ptr);
 189
 190	/*
 191	 * We manually control the domain here and pretend that it
 192	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 193	 */
 194	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 195
 196	if (copy_from_user(vaddr, user_data, args->size))
 197		return -EFAULT;
 198
 199	drm_clflush_virt_range(vaddr, args->size);
 200	intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
 201
 202	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 203	return 0;
 204}
 205
 206static int
 207i915_gem_create(struct drm_file *file,
 208		struct intel_memory_region *mr,
 209		u64 *size_p,
 210		u32 *handle_p)
 211{
 212	struct drm_i915_gem_object *obj;
 213	u32 handle;
 214	u64 size;
 215	int ret;
 216
 217	GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
 218	size = round_up(*size_p, mr->min_page_size);
 219	if (size == 0)
 220		return -EINVAL;
 221
 222	/* For most of the ABI (e.g. mmap) we think in system pages */
 223	GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
 224
 225	/* Allocate the new object */
 226	obj = i915_gem_object_create_region(mr, size, 0);
 227	if (IS_ERR(obj))
 228		return PTR_ERR(obj);
 229
 230	ret = drm_gem_handle_create(file, &obj->base, &handle);
 231	/* drop reference from allocate - handle holds it now */
 232	i915_gem_object_put(obj);
 233	if (ret)
 234		return ret;
 235
 236	*handle_p = handle;
 237	*size_p = size;
 238	return 0;
 239}
 240
 241int
 242i915_gem_dumb_create(struct drm_file *file,
 243		     struct drm_device *dev,
 244		     struct drm_mode_create_dumb *args)
 245{
 246	enum intel_memory_type mem_type;
 247	int cpp = DIV_ROUND_UP(args->bpp, 8);
 248	u32 format;
 249
 250	switch (cpp) {
 251	case 1:
 252		format = DRM_FORMAT_C8;
 253		break;
 254	case 2:
 255		format = DRM_FORMAT_RGB565;
 256		break;
 257	case 4:
 258		format = DRM_FORMAT_XRGB8888;
 259		break;
 260	default:
 261		return -EINVAL;
 262	}
 263
 264	/* have to work out size/pitch and return them */
 265	args->pitch = ALIGN(args->width * cpp, 64);
 266
 267	/* align stride to page size so that we can remap */
 268	if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
 269						    DRM_FORMAT_MOD_LINEAR))
 270		args->pitch = ALIGN(args->pitch, 4096);
 271
 272	if (args->pitch < args->width)
 273		return -EINVAL;
 274
 275	args->size = mul_u32_u32(args->pitch, args->height);
 276
 277	mem_type = INTEL_MEMORY_SYSTEM;
 278	if (HAS_LMEM(to_i915(dev)))
 279		mem_type = INTEL_MEMORY_LOCAL;
 280
 281	return i915_gem_create(file,
 282			       intel_memory_region_by_type(to_i915(dev),
 283							   mem_type),
 284			       &args->size, &args->handle);
 285}
 286
 287/**
 288 * Creates a new mm object and returns a handle to it.
 289 * @dev: drm device pointer
 290 * @data: ioctl data blob
 291 * @file: drm file pointer
 292 */
 293int
 294i915_gem_create_ioctl(struct drm_device *dev, void *data,
 295		      struct drm_file *file)
 296{
 297	struct drm_i915_private *i915 = to_i915(dev);
 298	struct drm_i915_gem_create *args = data;
 299
 300	i915_gem_flush_free_objects(i915);
 301
 302	return i915_gem_create(file,
 303			       intel_memory_region_by_type(i915,
 304							   INTEL_MEMORY_SYSTEM),
 305			       &args->size, &args->handle);
 306}
 307
 308static int
 309shmem_pread(struct page *page, int offset, int len, char __user *user_data,
 310	    bool needs_clflush)
 311{
 312	char *vaddr;
 313	int ret;
 314
 315	vaddr = kmap(page);
 316
 317	if (needs_clflush)
 318		drm_clflush_virt_range(vaddr + offset, len);
 319
 320	ret = __copy_to_user(user_data, vaddr + offset, len);
 321
 322	kunmap(page);
 323
 324	return ret ? -EFAULT : 0;
 325}
 326
 327static int
 328i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 329		     struct drm_i915_gem_pread *args)
 330{
 331	unsigned int needs_clflush;
 332	unsigned int idx, offset;
 333	struct dma_fence *fence;
 334	char __user *user_data;
 335	u64 remain;
 336	int ret;
 337
 
 
 
 
 
 
 
 
 338	ret = i915_gem_object_prepare_read(obj, &needs_clflush);
 339	if (ret)
 340		return ret;
 341
 342	fence = i915_gem_object_lock_fence(obj);
 343	i915_gem_object_finish_access(obj);
 344	if (!fence)
 345		return -ENOMEM;
 346
 347	remain = args->size;
 348	user_data = u64_to_user_ptr(args->data_ptr);
 349	offset = offset_in_page(args->offset);
 350	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 351		struct page *page = i915_gem_object_get_page(obj, idx);
 352		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 353
 354		ret = shmem_pread(page, offset, length, user_data,
 355				  needs_clflush);
 356		if (ret)
 357			break;
 358
 359		remain -= length;
 360		user_data += length;
 361		offset = 0;
 362	}
 363
 364	i915_gem_object_unlock_fence(obj, fence);
 
 
 
 
 
 
 365	return ret;
 366}
 367
 368static inline bool
 369gtt_user_read(struct io_mapping *mapping,
 370	      loff_t base, int offset,
 371	      char __user *user_data, int length)
 372{
 373	void __iomem *vaddr;
 374	unsigned long unwritten;
 375
 376	/* We can use the cpu mem copy function because this is X86. */
 377	vaddr = io_mapping_map_atomic_wc(mapping, base);
 378	unwritten = __copy_to_user_inatomic(user_data,
 379					    (void __force *)vaddr + offset,
 380					    length);
 381	io_mapping_unmap_atomic(vaddr);
 382	if (unwritten) {
 383		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 384		unwritten = copy_to_user(user_data,
 385					 (void __force *)vaddr + offset,
 386					 length);
 387		io_mapping_unmap(vaddr);
 388	}
 389	return unwritten;
 390}
 391
 392static int
 393i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 394		   const struct drm_i915_gem_pread *args)
 395{
 396	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 397	struct i915_ggtt *ggtt = &i915->ggtt;
 398	intel_wakeref_t wakeref;
 399	struct drm_mm_node node;
 400	struct dma_fence *fence;
 401	void __user *user_data;
 402	struct i915_vma *vma;
 403	u64 remain, offset;
 404	int ret;
 405
 406	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 
 407	vma = ERR_PTR(-ENODEV);
 
 
 
 
 
 
 
 
 408	if (!i915_gem_object_is_tiled(obj))
 409		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 410					       PIN_MAPPABLE |
 411					       PIN_NONBLOCK /* NOWARN */ |
 412					       PIN_NOEVICT);
 413	if (!IS_ERR(vma)) {
 414		node.start = i915_ggtt_offset(vma);
 415		node.flags = 0;
 
 
 
 416	} else {
 417		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 418		if (ret)
 419			goto out_rpm;
 420		GEM_BUG_ON(!drm_mm_node_allocated(&node));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421	}
 
 422
 423	ret = i915_gem_object_lock_interruptible(obj);
 424	if (ret)
 425		goto out_unpin;
 
 
 
 
 
 
 426
 427	ret = i915_gem_object_set_to_gtt_domain(obj, false);
 428	if (ret) {
 429		i915_gem_object_unlock(obj);
 430		goto out_unpin;
 
 
 431	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	fence = i915_gem_object_lock_fence(obj);
 434	i915_gem_object_unlock(obj);
 435	if (!fence) {
 436		ret = -ENOMEM;
 437		goto out_unpin;
 438	}
 439
 440	user_data = u64_to_user_ptr(args->data_ptr);
 441	remain = args->size;
 442	offset = args->offset;
 443
 444	while (remain > 0) {
 445		/* Operation in this page
 446		 *
 447		 * page_base = page offset within aperture
 448		 * page_offset = offset within page
 449		 * page_length = bytes to copy for this page
 450		 */
 451		u32 page_base = node.start;
 452		unsigned page_offset = offset_in_page(offset);
 453		unsigned page_length = PAGE_SIZE - page_offset;
 454		page_length = remain < page_length ? remain : page_length;
 455		if (drm_mm_node_allocated(&node)) {
 456			ggtt->vm.insert_page(&ggtt->vm,
 457					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 458					     node.start, I915_CACHE_NONE, 0);
 459		} else {
 460			page_base += offset & PAGE_MASK;
 461		}
 462
 463		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
 464				  user_data, page_length)) {
 465			ret = -EFAULT;
 466			break;
 467		}
 468
 469		remain -= page_length;
 470		user_data += page_length;
 471		offset += page_length;
 472	}
 473
 474	i915_gem_object_unlock_fence(obj, fence);
 475out_unpin:
 476	if (drm_mm_node_allocated(&node)) {
 477		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 478		remove_mappable_node(ggtt, &node);
 479	} else {
 480		i915_vma_unpin(vma);
 481	}
 482out_rpm:
 483	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
 484	return ret;
 485}
 486
 487/**
 488 * Reads data from the object referenced by handle.
 489 * @dev: drm device pointer
 490 * @data: ioctl data blob
 491 * @file: drm file pointer
 492 *
 493 * On error, the contents of *data are undefined.
 494 */
 495int
 496i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 497		     struct drm_file *file)
 498{
 
 499	struct drm_i915_gem_pread *args = data;
 500	struct drm_i915_gem_object *obj;
 501	int ret;
 502
 
 
 
 
 
 
 503	if (args->size == 0)
 504		return 0;
 505
 506	if (!access_ok(u64_to_user_ptr(args->data_ptr),
 507		       args->size))
 508		return -EFAULT;
 509
 510	obj = i915_gem_object_lookup(file, args->handle);
 511	if (!obj)
 512		return -ENOENT;
 513
 514	/* Bounds check source.  */
 515	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 516		ret = -EINVAL;
 517		goto out;
 518	}
 519
 520	trace_i915_gem_object_pread(obj, args->offset, args->size);
 
 
 
 
 
 
 
 
 
 
 
 521
 522	ret = i915_gem_object_wait(obj,
 523				   I915_WAIT_INTERRUPTIBLE,
 524				   MAX_SCHEDULE_TIMEOUT);
 525	if (ret)
 526		goto out;
 527
 528	ret = i915_gem_object_pin_pages(obj);
 529	if (ret)
 530		goto out;
 531
 532	ret = i915_gem_shmem_pread(obj, args);
 533	if (ret == -EFAULT || ret == -ENODEV)
 534		ret = i915_gem_gtt_pread(obj, args);
 535
 536	i915_gem_object_unpin_pages(obj);
 537out:
 538	i915_gem_object_put(obj);
 539	return ret;
 540}
 541
 542/* This is the fast write path which cannot handle
 543 * page faults in the source data
 544 */
 545
 546static inline bool
 547ggtt_write(struct io_mapping *mapping,
 548	   loff_t base, int offset,
 549	   char __user *user_data, int length)
 550{
 551	void __iomem *vaddr;
 552	unsigned long unwritten;
 553
 554	/* We can use the cpu mem copy function because this is X86. */
 555	vaddr = io_mapping_map_atomic_wc(mapping, base);
 556	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
 557						      user_data, length);
 558	io_mapping_unmap_atomic(vaddr);
 559	if (unwritten) {
 560		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
 561		unwritten = copy_from_user((void __force *)vaddr + offset,
 562					   user_data, length);
 563		io_mapping_unmap(vaddr);
 564	}
 565
 566	return unwritten;
 567}
 568
 569/**
 570 * This is the fast pwrite path, where we copy the data directly from the
 571 * user into the GTT, uncached.
 572 * @obj: i915 GEM object
 573 * @args: pwrite arguments structure
 574 */
 575static int
 576i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
 577			 const struct drm_i915_gem_pwrite *args)
 578{
 579	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 580	struct i915_ggtt *ggtt = &i915->ggtt;
 581	struct intel_runtime_pm *rpm = &i915->runtime_pm;
 582	intel_wakeref_t wakeref;
 583	struct drm_mm_node node;
 584	struct dma_fence *fence;
 585	struct i915_vma *vma;
 586	u64 remain, offset;
 587	void __user *user_data;
 588	int ret;
 589
 590	if (i915_gem_object_has_struct_page(obj)) {
 591		/*
 592		 * Avoid waking the device up if we can fallback, as
 593		 * waking/resuming is very slow (worst-case 10-100 ms
 594		 * depending on PCI sleeps and our own resume time).
 595		 * This easily dwarfs any performance advantage from
 596		 * using the cache bypass of indirect GGTT access.
 597		 */
 598		wakeref = intel_runtime_pm_get_if_in_use(rpm);
 599		if (!wakeref)
 600			return -EFAULT;
 601	} else {
 602		/* No backing pages, no fallback, we must force GGTT access */
 603		wakeref = intel_runtime_pm_get(rpm);
 604	}
 605
 606	vma = ERR_PTR(-ENODEV);
 607	if (!i915_gem_object_is_tiled(obj))
 608		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
 609					       PIN_MAPPABLE |
 610					       PIN_NONBLOCK /* NOWARN */ |
 611					       PIN_NOEVICT);
 612	if (!IS_ERR(vma)) {
 613		node.start = i915_ggtt_offset(vma);
 614		node.flags = 0;
 615	} else {
 616		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
 617		if (ret)
 618			goto out_rpm;
 619		GEM_BUG_ON(!drm_mm_node_allocated(&node));
 620	}
 621
 622	ret = i915_gem_object_lock_interruptible(obj);
 623	if (ret)
 624		goto out_unpin;
 625
 626	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 627	if (ret) {
 628		i915_gem_object_unlock(obj);
 629		goto out_unpin;
 630	}
 631
 632	fence = i915_gem_object_lock_fence(obj);
 633	i915_gem_object_unlock(obj);
 634	if (!fence) {
 635		ret = -ENOMEM;
 636		goto out_unpin;
 637	}
 638
 639	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
 640
 641	user_data = u64_to_user_ptr(args->data_ptr);
 642	offset = args->offset;
 643	remain = args->size;
 644	while (remain) {
 645		/* Operation in this page
 646		 *
 647		 * page_base = page offset within aperture
 648		 * page_offset = offset within page
 649		 * page_length = bytes to copy for this page
 650		 */
 651		u32 page_base = node.start;
 652		unsigned int page_offset = offset_in_page(offset);
 653		unsigned int page_length = PAGE_SIZE - page_offset;
 654		page_length = remain < page_length ? remain : page_length;
 655		if (drm_mm_node_allocated(&node)) {
 656			/* flush the write before we modify the GGTT */
 657			intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 658			ggtt->vm.insert_page(&ggtt->vm,
 659					     i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
 660					     node.start, I915_CACHE_NONE, 0);
 661			wmb(); /* flush modifications to the GGTT (insert_page) */
 662		} else {
 663			page_base += offset & PAGE_MASK;
 664		}
 665		/* If we get a fault while copying data, then (presumably) our
 666		 * source page isn't available.  Return the error and we'll
 667		 * retry in the slow path.
 668		 * If the object is non-shmem backed, we retry again with the
 669		 * path that handles page fault.
 670		 */
 671		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
 672			       user_data, page_length)) {
 673			ret = -EFAULT;
 674			break;
 675		}
 676
 677		remain -= page_length;
 678		user_data += page_length;
 679		offset += page_length;
 680	}
 681
 682	intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 683	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 684
 685	i915_gem_object_unlock_fence(obj, fence);
 686out_unpin:
 687	if (drm_mm_node_allocated(&node)) {
 688		ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
 689		remove_mappable_node(ggtt, &node);
 690	} else {
 691		i915_vma_unpin(vma);
 692	}
 693out_rpm:
 694	intel_runtime_pm_put(rpm, wakeref);
 695	return ret;
 696}
 697
 698/* Per-page copy function for the shmem pwrite fastpath.
 699 * Flushes invalid cachelines before writing to the target if
 700 * needs_clflush_before is set and flushes out any written cachelines after
 701 * writing if needs_clflush is set.
 702 */
 703static int
 704shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
 705	     bool needs_clflush_before,
 706	     bool needs_clflush_after)
 707{
 708	char *vaddr;
 709	int ret;
 710
 711	vaddr = kmap(page);
 712
 713	if (needs_clflush_before)
 714		drm_clflush_virt_range(vaddr + offset, len);
 715
 716	ret = __copy_from_user(vaddr + offset, user_data, len);
 717	if (!ret && needs_clflush_after)
 718		drm_clflush_virt_range(vaddr + offset, len);
 719
 720	kunmap(page);
 721
 722	return ret ? -EFAULT : 0;
 723}
 724
 725static int
 726i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
 727		      const struct drm_i915_gem_pwrite *args)
 728{
 729	unsigned int partial_cacheline_write;
 730	unsigned int needs_clflush;
 731	unsigned int offset, idx;
 732	struct dma_fence *fence;
 733	void __user *user_data;
 734	u64 remain;
 735	int ret;
 736
 
 
 
 
 
 
 
 
 737	ret = i915_gem_object_prepare_write(obj, &needs_clflush);
 738	if (ret)
 739		return ret;
 740
 741	fence = i915_gem_object_lock_fence(obj);
 742	i915_gem_object_finish_access(obj);
 743	if (!fence)
 744		return -ENOMEM;
 745
 746	/* If we don't overwrite a cacheline completely we need to be
 747	 * careful to have up-to-date data by first clflushing. Don't
 748	 * overcomplicate things and flush the entire patch.
 749	 */
 750	partial_cacheline_write = 0;
 751	if (needs_clflush & CLFLUSH_BEFORE)
 752		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
 753
 754	user_data = u64_to_user_ptr(args->data_ptr);
 755	remain = args->size;
 756	offset = offset_in_page(args->offset);
 757	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 758		struct page *page = i915_gem_object_get_page(obj, idx);
 759		unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
 760
 761		ret = shmem_pwrite(page, offset, length, user_data,
 762				   (offset | length) & partial_cacheline_write,
 763				   needs_clflush & CLFLUSH_AFTER);
 764		if (ret)
 765			break;
 766
 767		remain -= length;
 768		user_data += length;
 769		offset = 0;
 770	}
 771
 772	i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
 773	i915_gem_object_unlock_fence(obj, fence);
 774
 
 
 
 
 
 
 
 775	return ret;
 776}
 777
 778/**
 779 * Writes data to the object referenced by handle.
 780 * @dev: drm device
 781 * @data: ioctl data blob
 782 * @file: drm file
 783 *
 784 * On error, the contents of the buffer that were to be modified are undefined.
 785 */
 786int
 787i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 788		      struct drm_file *file)
 789{
 
 790	struct drm_i915_gem_pwrite *args = data;
 791	struct drm_i915_gem_object *obj;
 792	int ret;
 793
 
 
 
 
 
 
 794	if (args->size == 0)
 795		return 0;
 796
 797	if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
 798		return -EFAULT;
 799
 800	obj = i915_gem_object_lookup(file, args->handle);
 801	if (!obj)
 802		return -ENOENT;
 803
 804	/* Bounds check destination. */
 805	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 806		ret = -EINVAL;
 807		goto err;
 808	}
 809
 810	/* Writes not allowed into this read-only object */
 811	if (i915_gem_object_is_readonly(obj)) {
 812		ret = -EINVAL;
 813		goto err;
 814	}
 815
 816	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
 817
 818	ret = -ENODEV;
 819	if (obj->ops->pwrite)
 820		ret = obj->ops->pwrite(obj, args);
 821	if (ret != -ENODEV)
 822		goto err;
 823
 824	ret = i915_gem_object_wait(obj,
 825				   I915_WAIT_INTERRUPTIBLE |
 826				   I915_WAIT_ALL,
 827				   MAX_SCHEDULE_TIMEOUT);
 828	if (ret)
 829		goto err;
 830
 831	ret = i915_gem_object_pin_pages(obj);
 832	if (ret)
 833		goto err;
 834
 835	ret = -EFAULT;
 836	/* We can only do the GTT pwrite on untiled buffers, as otherwise
 837	 * it would end up going through the fenced access, and we'll get
 838	 * different detiling behavior between reading and writing.
 839	 * pread/pwrite currently are reading and writing from the CPU
 840	 * perspective, requiring manual detiling by the client.
 841	 */
 842	if (!i915_gem_object_has_struct_page(obj) ||
 843	    cpu_write_needs_clflush(obj))
 844		/* Note that the gtt paths might fail with non-page-backed user
 845		 * pointers (e.g. gtt mappings when moving data between
 846		 * textures). Fallback to the shmem path in that case.
 847		 */
 848		ret = i915_gem_gtt_pwrite_fast(obj, args);
 849
 850	if (ret == -EFAULT || ret == -ENOSPC) {
 851		if (i915_gem_object_has_struct_page(obj))
 852			ret = i915_gem_shmem_pwrite(obj, args);
 853		else
 854			ret = i915_gem_phys_pwrite(obj, args, file);
 855	}
 856
 857	i915_gem_object_unpin_pages(obj);
 858err:
 859	i915_gem_object_put(obj);
 860	return ret;
 861}
 862
 863/**
 864 * Called when user space has done writes to this buffer
 865 * @dev: drm device
 866 * @data: ioctl data blob
 867 * @file: drm file
 868 */
 869int
 870i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
 871			 struct drm_file *file)
 872{
 873	struct drm_i915_gem_sw_finish *args = data;
 874	struct drm_i915_gem_object *obj;
 875
 876	obj = i915_gem_object_lookup(file, args->handle);
 877	if (!obj)
 878		return -ENOENT;
 879
 880	/*
 881	 * Proxy objects are barred from CPU access, so there is no
 882	 * need to ban sw_finish as it is a nop.
 883	 */
 884
 885	/* Pinned buffers may be scanout, so flush the cache */
 886	i915_gem_object_flush_if_display(obj);
 887	i915_gem_object_put(obj);
 888
 889	return 0;
 890}
 891
 892void i915_gem_runtime_suspend(struct drm_i915_private *i915)
 893{
 894	struct drm_i915_gem_object *obj, *on;
 895	int i;
 896
 897	/*
 898	 * Only called during RPM suspend. All users of the userfault_list
 899	 * must be holding an RPM wakeref to ensure that this can not
 900	 * run concurrently with themselves (and use the struct_mutex for
 901	 * protection between themselves).
 902	 */
 903
 904	list_for_each_entry_safe(obj, on,
 905				 &i915->ggtt.userfault_list, userfault_link)
 906		__i915_gem_object_release_mmap_gtt(obj);
 907
 908	/*
 909	 * The fence will be lost when the device powers down. If any were
 910	 * in use by hardware (i.e. they are pinned), we should not be powering
 911	 * down! All other fences will be reacquired by the user upon waking.
 912	 */
 913	for (i = 0; i < i915->ggtt.num_fences; i++) {
 914		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
 915
 916		/*
 917		 * Ideally we want to assert that the fence register is not
 918		 * live at this point (i.e. that no piece of code will be
 919		 * trying to write through fence + GTT, as that both violates
 920		 * our tracking of activity and associated locking/barriers,
 921		 * but also is illegal given that the hw is powered down).
 922		 *
 923		 * Previously we used reg->pin_count as a "liveness" indicator.
 924		 * That is not sufficient, and we need a more fine-grained
 925		 * tool if we want to have a sanity check here.
 926		 */
 927
 928		if (!reg->vma)
 929			continue;
 930
 931		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
 932		reg->dirty = true;
 933	}
 934}
 935
 936static void discard_ggtt_vma(struct i915_vma *vma)
 937{
 938	struct drm_i915_gem_object *obj = vma->obj;
 939
 940	spin_lock(&obj->vma.lock);
 941	if (!RB_EMPTY_NODE(&vma->obj_node)) {
 942		rb_erase(&vma->obj_node, &obj->vma.tree);
 943		RB_CLEAR_NODE(&vma->obj_node);
 944	}
 945	spin_unlock(&obj->vma.lock);
 946}
 947
 948struct i915_vma *
 949i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
 950			 const struct i915_ggtt_view *view,
 951			 u64 size,
 952			 u64 alignment,
 953			 u64 flags)
 954{
 955	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 956	struct i915_ggtt *ggtt = &i915->ggtt;
 957	struct i915_vma *vma;
 958	int ret;
 959
 960	if (flags & PIN_MAPPABLE &&
 961	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
 962		/*
 963		 * If the required space is larger than the available
 964		 * aperture, we will not able to find a slot for the
 965		 * object and unbinding the object now will be in
 966		 * vain. Worse, doing so may cause us to ping-pong
 967		 * the object in and out of the Global GTT and
 968		 * waste a lot of cycles under the mutex.
 969		 */
 970		if (obj->base.size > ggtt->mappable_end)
 971			return ERR_PTR(-E2BIG);
 972
 973		/*
 974		 * If NONBLOCK is set the caller is optimistically
 975		 * trying to cache the full object within the mappable
 976		 * aperture, and *must* have a fallback in place for
 977		 * situations where we cannot bind the object. We
 978		 * can be a little more lax here and use the fallback
 979		 * more often to avoid costly migrations of ourselves
 980		 * and other objects within the aperture.
 981		 *
 982		 * Half-the-aperture is used as a simple heuristic.
 983		 * More interesting would to do search for a free
 984		 * block prior to making the commitment to unbind.
 985		 * That caters for the self-harm case, and with a
 986		 * little more heuristics (e.g. NOFAULT, NOEVICT)
 987		 * we could try to minimise harm to others.
 988		 */
 989		if (flags & PIN_NONBLOCK &&
 990		    obj->base.size > ggtt->mappable_end / 2)
 991			return ERR_PTR(-ENOSPC);
 992	}
 993
 994new_vma:
 995	vma = i915_vma_instance(obj, &ggtt->vm, view);
 996	if (IS_ERR(vma))
 997		return vma;
 998
 999	if (i915_vma_misplaced(vma, size, alignment, flags)) {
1000		if (flags & PIN_NONBLOCK) {
1001			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1002				return ERR_PTR(-ENOSPC);
1003
1004			if (flags & PIN_MAPPABLE &&
1005			    vma->fence_size > ggtt->mappable_end / 2)
1006				return ERR_PTR(-ENOSPC);
1007		}
1008
1009		if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1010			discard_ggtt_vma(vma);
1011			goto new_vma;
1012		}
1013
1014		ret = i915_vma_unbind(vma);
1015		if (ret)
1016			return ERR_PTR(ret);
1017	}
1018
1019	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
 
 
 
 
1020	if (ret)
1021		return ERR_PTR(ret);
1022
1023	if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1024		mutex_lock(&ggtt->vm.mutex);
1025		i915_vma_revoke_fence(vma);
1026		mutex_unlock(&ggtt->vm.mutex);
1027	}
1028
1029	ret = i915_vma_wait_for_bind(vma);
1030	if (ret) {
1031		i915_vma_unpin(vma);
1032		return ERR_PTR(ret);
1033	}
1034
1035	return vma;
1036}
1037
1038int
1039i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1040		       struct drm_file *file_priv)
1041{
1042	struct drm_i915_private *i915 = to_i915(dev);
1043	struct drm_i915_gem_madvise *args = data;
1044	struct drm_i915_gem_object *obj;
1045	int err;
1046
1047	switch (args->madv) {
1048	case I915_MADV_DONTNEED:
1049	case I915_MADV_WILLNEED:
1050	    break;
1051	default:
1052	    return -EINVAL;
1053	}
1054
1055	obj = i915_gem_object_lookup(file_priv, args->handle);
1056	if (!obj)
1057		return -ENOENT;
1058
1059	err = mutex_lock_interruptible(&obj->mm.lock);
1060	if (err)
1061		goto out;
1062
1063	if (i915_gem_object_has_pages(obj) &&
1064	    i915_gem_object_is_tiled(obj) &&
1065	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1066		if (obj->mm.madv == I915_MADV_WILLNEED) {
1067			GEM_BUG_ON(!obj->mm.quirked);
1068			__i915_gem_object_unpin_pages(obj);
1069			obj->mm.quirked = false;
1070		}
1071		if (args->madv == I915_MADV_WILLNEED) {
1072			GEM_BUG_ON(obj->mm.quirked);
1073			__i915_gem_object_pin_pages(obj);
1074			obj->mm.quirked = true;
1075		}
1076	}
1077
1078	if (obj->mm.madv != __I915_MADV_PURGED)
1079		obj->mm.madv = args->madv;
1080
1081	if (i915_gem_object_has_pages(obj)) {
1082		struct list_head *list;
1083
1084		if (i915_gem_object_is_shrinkable(obj)) {
1085			unsigned long flags;
1086
1087			spin_lock_irqsave(&i915->mm.obj_lock, flags);
 
 
1088
1089			if (obj->mm.madv != I915_MADV_WILLNEED)
1090				list = &i915->mm.purge_list;
1091			else
1092				list = &i915->mm.shrink_list;
1093			list_move_tail(&obj->mm.link, list);
1094
1095			spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1096		}
 
1097	}
1098
1099	/* if the object is no longer attached, discard its backing storage */
1100	if (obj->mm.madv == I915_MADV_DONTNEED &&
1101	    !i915_gem_object_has_pages(obj))
1102		i915_gem_object_truncate(obj);
1103
1104	args->retained = obj->mm.madv != __I915_MADV_PURGED;
1105	mutex_unlock(&obj->mm.lock);
1106
 
1107out:
1108	i915_gem_object_put(obj);
1109	return err;
1110}
1111
1112int i915_gem_init(struct drm_i915_private *dev_priv)
1113{
1114	int ret;
1115
1116	/* We need to fallback to 4K pages if host doesn't support huge gtt. */
1117	if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1118		mkwrite_device_info(dev_priv)->page_sizes =
1119			I915_GTT_PAGE_SIZE_4K;
1120
1121	ret = i915_gem_init_userptr(dev_priv);
1122	if (ret)
1123		return ret;
1124
1125	intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1126	intel_wopcm_init(&dev_priv->wopcm);
1127
1128	ret = i915_init_ggtt(dev_priv);
1129	if (ret) {
1130		GEM_BUG_ON(ret == -EIO);
1131		goto err_unlock;
1132	}
1133
1134	/*
1135	 * Despite its name intel_init_clock_gating applies both display
1136	 * clock gating workarounds; GT mmio workarounds and the occasional
1137	 * GT power context workaround. Worse, sometimes it includes a context
1138	 * register workaround which we need to apply before we record the
1139	 * default HW state for all contexts.
1140	 *
1141	 * FIXME: break up the workarounds and apply them at the right time!
1142	 */
1143	intel_init_clock_gating(dev_priv);
1144
1145	ret = intel_gt_init(&dev_priv->gt);
1146	if (ret)
1147		goto err_unlock;
1148
1149	return 0;
1150
1151	/*
1152	 * Unwinding is complicated by that we want to handle -EIO to mean
1153	 * disable GPU submission but keep KMS alive. We want to mark the
1154	 * HW as irrevisibly wedged, but keep enough state around that the
1155	 * driver doesn't explode during runtime.
1156	 */
1157err_unlock:
1158	i915_gem_drain_workqueue(dev_priv);
1159
1160	if (ret != -EIO) {
1161		intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1162		i915_gem_cleanup_userptr(dev_priv);
1163	}
1164
1165	if (ret == -EIO) {
1166		/*
1167		 * Allow engines or uC initialisation to fail by marking the GPU
1168		 * as wedged. But we only want to do this when the GPU is angry,
1169		 * for all other failure, such as an allocation failure, bail.
1170		 */
1171		if (!intel_gt_is_wedged(&dev_priv->gt)) {
1172			i915_probe_error(dev_priv,
1173					 "Failed to initialize GPU, declaring it wedged!\n");
1174			intel_gt_set_wedged(&dev_priv->gt);
1175		}
1176
1177		/* Minimal basic recovery for KMS */
1178		ret = i915_ggtt_enable_hw(dev_priv);
1179		i915_ggtt_resume(&dev_priv->ggtt);
1180		intel_init_clock_gating(dev_priv);
1181	}
1182
1183	i915_gem_drain_freed_objects(dev_priv);
 
1184	return ret;
1185}
1186
1187void i915_gem_driver_register(struct drm_i915_private *i915)
1188{
1189	i915_gem_driver_register__shrinker(i915);
1190
1191	intel_engines_driver_register(i915);
1192}
1193
1194void i915_gem_driver_unregister(struct drm_i915_private *i915)
1195{
1196	i915_gem_driver_unregister__shrinker(i915);
1197}
1198
1199void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1200{
1201	intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1202
1203	i915_gem_suspend_late(dev_priv);
1204	intel_gt_driver_remove(&dev_priv->gt);
1205	dev_priv->uabi_engines = RB_ROOT;
1206
1207	/* Flush any outstanding unpin_work. */
1208	i915_gem_drain_workqueue(dev_priv);
1209
1210	i915_gem_drain_freed_objects(dev_priv);
1211}
1212
1213void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1214{
1215	i915_gem_driver_release__contexts(dev_priv);
1216
1217	intel_gt_driver_release(&dev_priv->gt);
1218
1219	intel_wa_list_free(&dev_priv->gt_wa_list);
1220
1221	intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1222	i915_gem_cleanup_userptr(dev_priv);
1223
1224	i915_gem_drain_freed_objects(dev_priv);
1225
1226	drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1227}
1228
1229static void i915_gem_init__mm(struct drm_i915_private *i915)
1230{
1231	spin_lock_init(&i915->mm.obj_lock);
1232
1233	init_llist_head(&i915->mm.free_list);
1234
1235	INIT_LIST_HEAD(&i915->mm.purge_list);
1236	INIT_LIST_HEAD(&i915->mm.shrink_list);
1237
1238	i915_gem_init__objects(i915);
1239}
1240
1241void i915_gem_init_early(struct drm_i915_private *dev_priv)
1242{
1243	i915_gem_init__mm(dev_priv);
1244	i915_gem_init__contexts(dev_priv);
1245
1246	spin_lock_init(&dev_priv->fb_tracking.lock);
1247}
1248
1249void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1250{
1251	i915_gem_drain_freed_objects(dev_priv);
1252	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1253	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1254	drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1255}
1256
1257int i915_gem_freeze(struct drm_i915_private *dev_priv)
1258{
1259	/* Discard all purgeable objects, let userspace recover those as
1260	 * required after resuming.
1261	 */
1262	i915_gem_shrink_all(dev_priv);
1263
1264	return 0;
1265}
1266
1267int i915_gem_freeze_late(struct drm_i915_private *i915)
1268{
1269	struct drm_i915_gem_object *obj;
1270	intel_wakeref_t wakeref;
1271
1272	/*
1273	 * Called just before we write the hibernation image.
1274	 *
1275	 * We need to update the domain tracking to reflect that the CPU
1276	 * will be accessing all the pages to create and restore from the
1277	 * hibernation, and so upon restoration those pages will be in the
1278	 * CPU domain.
1279	 *
1280	 * To make sure the hibernation image contains the latest state,
1281	 * we update that state just before writing out the image.
1282	 *
1283	 * To try and reduce the hibernation image, we manually shrink
1284	 * the objects as well, see i915_gem_freeze()
1285	 */
1286
1287	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
 
1288
1289	i915_gem_shrink(i915, -1UL, NULL, ~0);
1290	i915_gem_drain_freed_objects(i915);
 
1291
1292	list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1293		i915_gem_object_lock(obj);
1294		drm_WARN_ON(&i915->drm,
1295			    i915_gem_object_set_to_cpu_domain(obj, true));
1296		i915_gem_object_unlock(obj);
1297	}
1298
1299	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1300
1301	return 0;
 
 
 
1302}
1303
1304void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1305{
1306	struct drm_i915_file_private *file_priv = file->driver_priv;
1307	struct i915_request *request;
1308
1309	/* Clean up our request list when the client is going away, so that
1310	 * later retire_requests won't dereference our soon-to-be-gone
1311	 * file_priv.
1312	 */
1313	spin_lock(&file_priv->mm.lock);
1314	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1315		request->file_priv = NULL;
1316	spin_unlock(&file_priv->mm.lock);
1317}
1318
1319int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1320{
1321	struct drm_i915_file_private *file_priv;
1322	int ret;
 
1323
1324	DRM_DEBUG("\n");
 
 
 
 
 
1325
1326	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1327	if (!file_priv)
1328		return -ENOMEM;
1329
1330	file->driver_priv = file_priv;
1331	file_priv->dev_priv = i915;
1332	file_priv->file = file;
1333
1334	spin_lock_init(&file_priv->mm.lock);
1335	INIT_LIST_HEAD(&file_priv->mm.request_list);
 
 
 
1336
1337	file_priv->bsd_engine = -1;
1338	file_priv->hang_timestamp = jiffies;
1339
1340	ret = i915_gem_context_open(i915, file);
1341	if (ret)
1342		kfree(file_priv);
1343
1344	return ret;
1345}
1346
1347#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1348#include "selftests/mock_gem_device.c"
1349#include "selftests/i915_gem.c"
1350#endif