Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drm_vma_manager.h>
29#include <linux/dma-fence-array.h>
30#include <linux/kthread.h>
31#include <linux/dma-resv.h>
32#include <linux/shmem_fs.h>
33#include <linux/slab.h>
34#include <linux/stop_machine.h>
35#include <linux/swap.h>
36#include <linux/pci.h>
37#include <linux/dma-buf.h>
38#include <linux/mman.h>
39
40#include "display/intel_display.h"
41#include "display/intel_frontbuffer.h"
42
43#include "gem/i915_gem_clflush.h"
44#include "gem/i915_gem_context.h"
45#include "gem/i915_gem_ioctls.h"
46#include "gem/i915_gem_mman.h"
47#include "gem/i915_gem_region.h"
48#include "gt/intel_engine_user.h"
49#include "gt/intel_gt.h"
50#include "gt/intel_gt_pm.h"
51#include "gt/intel_workarounds.h"
52
53#include "i915_drv.h"
54#include "i915_trace.h"
55#include "i915_vgpu.h"
56
57#include "intel_pm.h"
58
59static int
60insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61{
62 int err;
63
64 err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 if (err)
66 return err;
67
68 memset(node, 0, sizeof(*node));
69 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
72 DRM_MM_INSERT_LOW);
73
74 mutex_unlock(&ggtt->vm.mutex);
75
76 return err;
77}
78
79static void
80remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81{
82 mutex_lock(&ggtt->vm.mutex);
83 drm_mm_remove_node(node);
84 mutex_unlock(&ggtt->vm.mutex);
85}
86
87int
88i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 struct drm_file *file)
90{
91 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 struct drm_i915_gem_get_aperture *args = data;
93 struct i915_vma *vma;
94 u64 pinned;
95
96 if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 return -EINTR;
98
99 pinned = ggtt->vm.reserved;
100 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 if (i915_vma_is_pinned(vma))
102 pinned += vma->node.size;
103
104 mutex_unlock(&ggtt->vm.mutex);
105
106 args->aper_size = ggtt->vm.total;
107 args->aper_available_size = args->aper_size - pinned;
108
109 return 0;
110}
111
112int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 unsigned long flags)
114{
115 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 LIST_HEAD(still_in_list);
117 intel_wakeref_t wakeref;
118 struct i915_vma *vma;
119 int ret;
120
121 if (list_empty(&obj->vma.list))
122 return 0;
123
124 /*
125 * As some machines use ACPI to handle runtime-resume callbacks, and
126 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 * as they are required by the shrinker. Ergo, we wake the device up
128 * first just in case.
129 */
130 wakeref = intel_runtime_pm_get(rpm);
131
132try_again:
133 ret = 0;
134 spin_lock(&obj->vma.lock);
135 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 struct i915_vma,
137 obj_link))) {
138 struct i915_address_space *vm = vma->vm;
139
140 list_move_tail(&vma->obj_link, &still_in_list);
141 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 continue;
143
144 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 ret = -EBUSY;
146 break;
147 }
148
149 ret = -EAGAIN;
150 if (!i915_vm_tryopen(vm))
151 break;
152
153 /* Prevent vma being freed by i915_vma_parked as we unbind */
154 vma = __i915_vma_get(vma);
155 spin_unlock(&obj->vma.lock);
156
157 if (vma) {
158 ret = -EBUSY;
159 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 !i915_vma_is_active(vma)) {
161 if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
162 if (mutex_trylock(&vma->vm->mutex)) {
163 ret = __i915_vma_unbind(vma);
164 mutex_unlock(&vma->vm->mutex);
165 } else {
166 ret = -EBUSY;
167 }
168 } else {
169 ret = i915_vma_unbind(vma);
170 }
171 }
172
173 __i915_vma_put(vma);
174 }
175
176 i915_vm_close(vm);
177 spin_lock(&obj->vma.lock);
178 }
179 list_splice_init(&still_in_list, &obj->vma.list);
180 spin_unlock(&obj->vma.lock);
181
182 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
183 rcu_barrier(); /* flush the i915_vm_release() */
184 goto try_again;
185 }
186
187 intel_runtime_pm_put(rpm, wakeref);
188
189 return ret;
190}
191
192static int
193shmem_pread(struct page *page, int offset, int len, char __user *user_data,
194 bool needs_clflush)
195{
196 char *vaddr;
197 int ret;
198
199 vaddr = kmap(page);
200
201 if (needs_clflush)
202 drm_clflush_virt_range(vaddr + offset, len);
203
204 ret = __copy_to_user(user_data, vaddr + offset, len);
205
206 kunmap(page);
207
208 return ret ? -EFAULT : 0;
209}
210
211static int
212i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
213 struct drm_i915_gem_pread *args)
214{
215 unsigned int needs_clflush;
216 unsigned int idx, offset;
217 char __user *user_data;
218 u64 remain;
219 int ret;
220
221 ret = i915_gem_object_lock_interruptible(obj, NULL);
222 if (ret)
223 return ret;
224
225 ret = i915_gem_object_pin_pages(obj);
226 if (ret)
227 goto err_unlock;
228
229 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
230 if (ret)
231 goto err_unpin;
232
233 i915_gem_object_finish_access(obj);
234 i915_gem_object_unlock(obj);
235
236 remain = args->size;
237 user_data = u64_to_user_ptr(args->data_ptr);
238 offset = offset_in_page(args->offset);
239 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
240 struct page *page = i915_gem_object_get_page(obj, idx);
241 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
242
243 ret = shmem_pread(page, offset, length, user_data,
244 needs_clflush);
245 if (ret)
246 break;
247
248 remain -= length;
249 user_data += length;
250 offset = 0;
251 }
252
253 i915_gem_object_unpin_pages(obj);
254 return ret;
255
256err_unpin:
257 i915_gem_object_unpin_pages(obj);
258err_unlock:
259 i915_gem_object_unlock(obj);
260 return ret;
261}
262
263static inline bool
264gtt_user_read(struct io_mapping *mapping,
265 loff_t base, int offset,
266 char __user *user_data, int length)
267{
268 void __iomem *vaddr;
269 unsigned long unwritten;
270
271 /* We can use the cpu mem copy function because this is X86. */
272 vaddr = io_mapping_map_atomic_wc(mapping, base);
273 unwritten = __copy_to_user_inatomic(user_data,
274 (void __force *)vaddr + offset,
275 length);
276 io_mapping_unmap_atomic(vaddr);
277 if (unwritten) {
278 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
279 unwritten = copy_to_user(user_data,
280 (void __force *)vaddr + offset,
281 length);
282 io_mapping_unmap(vaddr);
283 }
284 return unwritten;
285}
286
287static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
288 struct drm_mm_node *node,
289 bool write)
290{
291 struct drm_i915_private *i915 = to_i915(obj->base.dev);
292 struct i915_ggtt *ggtt = &i915->ggtt;
293 struct i915_vma *vma;
294 struct i915_gem_ww_ctx ww;
295 int ret;
296
297 i915_gem_ww_ctx_init(&ww, true);
298retry:
299 vma = ERR_PTR(-ENODEV);
300 ret = i915_gem_object_lock(obj, &ww);
301 if (ret)
302 goto err_ww;
303
304 ret = i915_gem_object_set_to_gtt_domain(obj, write);
305 if (ret)
306 goto err_ww;
307
308 if (!i915_gem_object_is_tiled(obj))
309 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
310 PIN_MAPPABLE |
311 PIN_NONBLOCK /* NOWARN */ |
312 PIN_NOEVICT);
313 if (vma == ERR_PTR(-EDEADLK)) {
314 ret = -EDEADLK;
315 goto err_ww;
316 } else if (!IS_ERR(vma)) {
317 node->start = i915_ggtt_offset(vma);
318 node->flags = 0;
319 } else {
320 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
321 if (ret)
322 goto err_ww;
323 GEM_BUG_ON(!drm_mm_node_allocated(node));
324 vma = NULL;
325 }
326
327 ret = i915_gem_object_pin_pages(obj);
328 if (ret) {
329 if (drm_mm_node_allocated(node)) {
330 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
331 remove_mappable_node(ggtt, node);
332 } else {
333 i915_vma_unpin(vma);
334 }
335 }
336
337err_ww:
338 if (ret == -EDEADLK) {
339 ret = i915_gem_ww_ctx_backoff(&ww);
340 if (!ret)
341 goto retry;
342 }
343 i915_gem_ww_ctx_fini(&ww);
344
345 return ret ? ERR_PTR(ret) : vma;
346}
347
348static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
349 struct drm_mm_node *node,
350 struct i915_vma *vma)
351{
352 struct drm_i915_private *i915 = to_i915(obj->base.dev);
353 struct i915_ggtt *ggtt = &i915->ggtt;
354
355 i915_gem_object_unpin_pages(obj);
356 if (drm_mm_node_allocated(node)) {
357 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
358 remove_mappable_node(ggtt, node);
359 } else {
360 i915_vma_unpin(vma);
361 }
362}
363
364static int
365i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
366 const struct drm_i915_gem_pread *args)
367{
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_ggtt *ggtt = &i915->ggtt;
370 intel_wakeref_t wakeref;
371 struct drm_mm_node node;
372 void __user *user_data;
373 struct i915_vma *vma;
374 u64 remain, offset;
375 int ret = 0;
376
377 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
378
379 vma = i915_gem_gtt_prepare(obj, &node, false);
380 if (IS_ERR(vma)) {
381 ret = PTR_ERR(vma);
382 goto out_rpm;
383 }
384
385 user_data = u64_to_user_ptr(args->data_ptr);
386 remain = args->size;
387 offset = args->offset;
388
389 while (remain > 0) {
390 /* Operation in this page
391 *
392 * page_base = page offset within aperture
393 * page_offset = offset within page
394 * page_length = bytes to copy for this page
395 */
396 u32 page_base = node.start;
397 unsigned page_offset = offset_in_page(offset);
398 unsigned page_length = PAGE_SIZE - page_offset;
399 page_length = remain < page_length ? remain : page_length;
400 if (drm_mm_node_allocated(&node)) {
401 ggtt->vm.insert_page(&ggtt->vm,
402 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
403 node.start, I915_CACHE_NONE, 0);
404 } else {
405 page_base += offset & PAGE_MASK;
406 }
407
408 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
409 user_data, page_length)) {
410 ret = -EFAULT;
411 break;
412 }
413
414 remain -= page_length;
415 user_data += page_length;
416 offset += page_length;
417 }
418
419 i915_gem_gtt_cleanup(obj, &node, vma);
420out_rpm:
421 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
422 return ret;
423}
424
425/**
426 * Reads data from the object referenced by handle.
427 * @dev: drm device pointer
428 * @data: ioctl data blob
429 * @file: drm file pointer
430 *
431 * On error, the contents of *data are undefined.
432 */
433int
434i915_gem_pread_ioctl(struct drm_device *dev, void *data,
435 struct drm_file *file)
436{
437 struct drm_i915_private *i915 = to_i915(dev);
438 struct drm_i915_gem_pread *args = data;
439 struct drm_i915_gem_object *obj;
440 int ret;
441
442 /* PREAD is disallowed for all platforms after TGL-LP. This also
443 * covers all platforms with local memory.
444 */
445 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
446 return -EOPNOTSUPP;
447
448 if (args->size == 0)
449 return 0;
450
451 if (!access_ok(u64_to_user_ptr(args->data_ptr),
452 args->size))
453 return -EFAULT;
454
455 obj = i915_gem_object_lookup(file, args->handle);
456 if (!obj)
457 return -ENOENT;
458
459 /* Bounds check source. */
460 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
461 ret = -EINVAL;
462 goto out;
463 }
464
465 trace_i915_gem_object_pread(obj, args->offset, args->size);
466 ret = -ENODEV;
467 if (obj->ops->pread)
468 ret = obj->ops->pread(obj, args);
469 if (ret != -ENODEV)
470 goto out;
471
472 ret = -ENODEV;
473 if (obj->ops->pread)
474 ret = obj->ops->pread(obj, args);
475 if (ret != -ENODEV)
476 goto out;
477
478 ret = i915_gem_object_wait(obj,
479 I915_WAIT_INTERRUPTIBLE,
480 MAX_SCHEDULE_TIMEOUT);
481 if (ret)
482 goto out;
483
484 ret = i915_gem_shmem_pread(obj, args);
485 if (ret == -EFAULT || ret == -ENODEV)
486 ret = i915_gem_gtt_pread(obj, args);
487
488out:
489 i915_gem_object_put(obj);
490 return ret;
491}
492
493/* This is the fast write path which cannot handle
494 * page faults in the source data
495 */
496
497static inline bool
498ggtt_write(struct io_mapping *mapping,
499 loff_t base, int offset,
500 char __user *user_data, int length)
501{
502 void __iomem *vaddr;
503 unsigned long unwritten;
504
505 /* We can use the cpu mem copy function because this is X86. */
506 vaddr = io_mapping_map_atomic_wc(mapping, base);
507 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
508 user_data, length);
509 io_mapping_unmap_atomic(vaddr);
510 if (unwritten) {
511 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
512 unwritten = copy_from_user((void __force *)vaddr + offset,
513 user_data, length);
514 io_mapping_unmap(vaddr);
515 }
516
517 return unwritten;
518}
519
520/**
521 * This is the fast pwrite path, where we copy the data directly from the
522 * user into the GTT, uncached.
523 * @obj: i915 GEM object
524 * @args: pwrite arguments structure
525 */
526static int
527i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
528 const struct drm_i915_gem_pwrite *args)
529{
530 struct drm_i915_private *i915 = to_i915(obj->base.dev);
531 struct i915_ggtt *ggtt = &i915->ggtt;
532 struct intel_runtime_pm *rpm = &i915->runtime_pm;
533 intel_wakeref_t wakeref;
534 struct drm_mm_node node;
535 struct i915_vma *vma;
536 u64 remain, offset;
537 void __user *user_data;
538 int ret = 0;
539
540 if (i915_gem_object_has_struct_page(obj)) {
541 /*
542 * Avoid waking the device up if we can fallback, as
543 * waking/resuming is very slow (worst-case 10-100 ms
544 * depending on PCI sleeps and our own resume time).
545 * This easily dwarfs any performance advantage from
546 * using the cache bypass of indirect GGTT access.
547 */
548 wakeref = intel_runtime_pm_get_if_in_use(rpm);
549 if (!wakeref)
550 return -EFAULT;
551 } else {
552 /* No backing pages, no fallback, we must force GGTT access */
553 wakeref = intel_runtime_pm_get(rpm);
554 }
555
556 vma = i915_gem_gtt_prepare(obj, &node, true);
557 if (IS_ERR(vma)) {
558 ret = PTR_ERR(vma);
559 goto out_rpm;
560 }
561
562 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
563
564 user_data = u64_to_user_ptr(args->data_ptr);
565 offset = args->offset;
566 remain = args->size;
567 while (remain) {
568 /* Operation in this page
569 *
570 * page_base = page offset within aperture
571 * page_offset = offset within page
572 * page_length = bytes to copy for this page
573 */
574 u32 page_base = node.start;
575 unsigned int page_offset = offset_in_page(offset);
576 unsigned int page_length = PAGE_SIZE - page_offset;
577 page_length = remain < page_length ? remain : page_length;
578 if (drm_mm_node_allocated(&node)) {
579 /* flush the write before we modify the GGTT */
580 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
581 ggtt->vm.insert_page(&ggtt->vm,
582 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
583 node.start, I915_CACHE_NONE, 0);
584 wmb(); /* flush modifications to the GGTT (insert_page) */
585 } else {
586 page_base += offset & PAGE_MASK;
587 }
588 /* If we get a fault while copying data, then (presumably) our
589 * source page isn't available. Return the error and we'll
590 * retry in the slow path.
591 * If the object is non-shmem backed, we retry again with the
592 * path that handles page fault.
593 */
594 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
595 user_data, page_length)) {
596 ret = -EFAULT;
597 break;
598 }
599
600 remain -= page_length;
601 user_data += page_length;
602 offset += page_length;
603 }
604
605 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
606 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
607
608 i915_gem_gtt_cleanup(obj, &node, vma);
609out_rpm:
610 intel_runtime_pm_put(rpm, wakeref);
611 return ret;
612}
613
614/* Per-page copy function for the shmem pwrite fastpath.
615 * Flushes invalid cachelines before writing to the target if
616 * needs_clflush_before is set and flushes out any written cachelines after
617 * writing if needs_clflush is set.
618 */
619static int
620shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
621 bool needs_clflush_before,
622 bool needs_clflush_after)
623{
624 char *vaddr;
625 int ret;
626
627 vaddr = kmap(page);
628
629 if (needs_clflush_before)
630 drm_clflush_virt_range(vaddr + offset, len);
631
632 ret = __copy_from_user(vaddr + offset, user_data, len);
633 if (!ret && needs_clflush_after)
634 drm_clflush_virt_range(vaddr + offset, len);
635
636 kunmap(page);
637
638 return ret ? -EFAULT : 0;
639}
640
641static int
642i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
643 const struct drm_i915_gem_pwrite *args)
644{
645 unsigned int partial_cacheline_write;
646 unsigned int needs_clflush;
647 unsigned int offset, idx;
648 void __user *user_data;
649 u64 remain;
650 int ret;
651
652 ret = i915_gem_object_lock_interruptible(obj, NULL);
653 if (ret)
654 return ret;
655
656 ret = i915_gem_object_pin_pages(obj);
657 if (ret)
658 goto err_unlock;
659
660 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
661 if (ret)
662 goto err_unpin;
663
664 i915_gem_object_finish_access(obj);
665 i915_gem_object_unlock(obj);
666
667 /* If we don't overwrite a cacheline completely we need to be
668 * careful to have up-to-date data by first clflushing. Don't
669 * overcomplicate things and flush the entire patch.
670 */
671 partial_cacheline_write = 0;
672 if (needs_clflush & CLFLUSH_BEFORE)
673 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
674
675 user_data = u64_to_user_ptr(args->data_ptr);
676 remain = args->size;
677 offset = offset_in_page(args->offset);
678 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
679 struct page *page = i915_gem_object_get_page(obj, idx);
680 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
681
682 ret = shmem_pwrite(page, offset, length, user_data,
683 (offset | length) & partial_cacheline_write,
684 needs_clflush & CLFLUSH_AFTER);
685 if (ret)
686 break;
687
688 remain -= length;
689 user_data += length;
690 offset = 0;
691 }
692
693 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
694
695 i915_gem_object_unpin_pages(obj);
696 return ret;
697
698err_unpin:
699 i915_gem_object_unpin_pages(obj);
700err_unlock:
701 i915_gem_object_unlock(obj);
702 return ret;
703}
704
705/**
706 * Writes data to the object referenced by handle.
707 * @dev: drm device
708 * @data: ioctl data blob
709 * @file: drm file
710 *
711 * On error, the contents of the buffer that were to be modified are undefined.
712 */
713int
714i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
715 struct drm_file *file)
716{
717 struct drm_i915_private *i915 = to_i915(dev);
718 struct drm_i915_gem_pwrite *args = data;
719 struct drm_i915_gem_object *obj;
720 int ret;
721
722 /* PWRITE is disallowed for all platforms after TGL-LP. This also
723 * covers all platforms with local memory.
724 */
725 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
726 return -EOPNOTSUPP;
727
728 if (args->size == 0)
729 return 0;
730
731 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
732 return -EFAULT;
733
734 obj = i915_gem_object_lookup(file, args->handle);
735 if (!obj)
736 return -ENOENT;
737
738 /* Bounds check destination. */
739 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
740 ret = -EINVAL;
741 goto err;
742 }
743
744 /* Writes not allowed into this read-only object */
745 if (i915_gem_object_is_readonly(obj)) {
746 ret = -EINVAL;
747 goto err;
748 }
749
750 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
751
752 ret = -ENODEV;
753 if (obj->ops->pwrite)
754 ret = obj->ops->pwrite(obj, args);
755 if (ret != -ENODEV)
756 goto err;
757
758 ret = i915_gem_object_wait(obj,
759 I915_WAIT_INTERRUPTIBLE |
760 I915_WAIT_ALL,
761 MAX_SCHEDULE_TIMEOUT);
762 if (ret)
763 goto err;
764
765 ret = -EFAULT;
766 /* We can only do the GTT pwrite on untiled buffers, as otherwise
767 * it would end up going through the fenced access, and we'll get
768 * different detiling behavior between reading and writing.
769 * pread/pwrite currently are reading and writing from the CPU
770 * perspective, requiring manual detiling by the client.
771 */
772 if (!i915_gem_object_has_struct_page(obj) ||
773 cpu_write_needs_clflush(obj))
774 /* Note that the gtt paths might fail with non-page-backed user
775 * pointers (e.g. gtt mappings when moving data between
776 * textures). Fallback to the shmem path in that case.
777 */
778 ret = i915_gem_gtt_pwrite_fast(obj, args);
779
780 if (ret == -EFAULT || ret == -ENOSPC) {
781 if (i915_gem_object_has_struct_page(obj))
782 ret = i915_gem_shmem_pwrite(obj, args);
783 }
784
785err:
786 i915_gem_object_put(obj);
787 return ret;
788}
789
790/**
791 * Called when user space has done writes to this buffer
792 * @dev: drm device
793 * @data: ioctl data blob
794 * @file: drm file
795 */
796int
797i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
798 struct drm_file *file)
799{
800 struct drm_i915_gem_sw_finish *args = data;
801 struct drm_i915_gem_object *obj;
802
803 obj = i915_gem_object_lookup(file, args->handle);
804 if (!obj)
805 return -ENOENT;
806
807 /*
808 * Proxy objects are barred from CPU access, so there is no
809 * need to ban sw_finish as it is a nop.
810 */
811
812 /* Pinned buffers may be scanout, so flush the cache */
813 i915_gem_object_flush_if_display(obj);
814 i915_gem_object_put(obj);
815
816 return 0;
817}
818
819void i915_gem_runtime_suspend(struct drm_i915_private *i915)
820{
821 struct drm_i915_gem_object *obj, *on;
822 int i;
823
824 /*
825 * Only called during RPM suspend. All users of the userfault_list
826 * must be holding an RPM wakeref to ensure that this can not
827 * run concurrently with themselves (and use the struct_mutex for
828 * protection between themselves).
829 */
830
831 list_for_each_entry_safe(obj, on,
832 &i915->ggtt.userfault_list, userfault_link)
833 __i915_gem_object_release_mmap_gtt(obj);
834
835 /*
836 * The fence will be lost when the device powers down. If any were
837 * in use by hardware (i.e. they are pinned), we should not be powering
838 * down! All other fences will be reacquired by the user upon waking.
839 */
840 for (i = 0; i < i915->ggtt.num_fences; i++) {
841 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
842
843 /*
844 * Ideally we want to assert that the fence register is not
845 * live at this point (i.e. that no piece of code will be
846 * trying to write through fence + GTT, as that both violates
847 * our tracking of activity and associated locking/barriers,
848 * but also is illegal given that the hw is powered down).
849 *
850 * Previously we used reg->pin_count as a "liveness" indicator.
851 * That is not sufficient, and we need a more fine-grained
852 * tool if we want to have a sanity check here.
853 */
854
855 if (!reg->vma)
856 continue;
857
858 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
859 reg->dirty = true;
860 }
861}
862
863static void discard_ggtt_vma(struct i915_vma *vma)
864{
865 struct drm_i915_gem_object *obj = vma->obj;
866
867 spin_lock(&obj->vma.lock);
868 if (!RB_EMPTY_NODE(&vma->obj_node)) {
869 rb_erase(&vma->obj_node, &obj->vma.tree);
870 RB_CLEAR_NODE(&vma->obj_node);
871 }
872 spin_unlock(&obj->vma.lock);
873}
874
875struct i915_vma *
876i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
877 struct i915_gem_ww_ctx *ww,
878 const struct i915_ggtt_view *view,
879 u64 size, u64 alignment, u64 flags)
880{
881 struct drm_i915_private *i915 = to_i915(obj->base.dev);
882 struct i915_ggtt *ggtt = &i915->ggtt;
883 struct i915_vma *vma;
884 int ret;
885
886 if (flags & PIN_MAPPABLE &&
887 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
888 /*
889 * If the required space is larger than the available
890 * aperture, we will not able to find a slot for the
891 * object and unbinding the object now will be in
892 * vain. Worse, doing so may cause us to ping-pong
893 * the object in and out of the Global GTT and
894 * waste a lot of cycles under the mutex.
895 */
896 if (obj->base.size > ggtt->mappable_end)
897 return ERR_PTR(-E2BIG);
898
899 /*
900 * If NONBLOCK is set the caller is optimistically
901 * trying to cache the full object within the mappable
902 * aperture, and *must* have a fallback in place for
903 * situations where we cannot bind the object. We
904 * can be a little more lax here and use the fallback
905 * more often to avoid costly migrations of ourselves
906 * and other objects within the aperture.
907 *
908 * Half-the-aperture is used as a simple heuristic.
909 * More interesting would to do search for a free
910 * block prior to making the commitment to unbind.
911 * That caters for the self-harm case, and with a
912 * little more heuristics (e.g. NOFAULT, NOEVICT)
913 * we could try to minimise harm to others.
914 */
915 if (flags & PIN_NONBLOCK &&
916 obj->base.size > ggtt->mappable_end / 2)
917 return ERR_PTR(-ENOSPC);
918 }
919
920new_vma:
921 vma = i915_vma_instance(obj, &ggtt->vm, view);
922 if (IS_ERR(vma))
923 return vma;
924
925 if (i915_vma_misplaced(vma, size, alignment, flags)) {
926 if (flags & PIN_NONBLOCK) {
927 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
928 return ERR_PTR(-ENOSPC);
929
930 if (flags & PIN_MAPPABLE &&
931 vma->fence_size > ggtt->mappable_end / 2)
932 return ERR_PTR(-ENOSPC);
933 }
934
935 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
936 discard_ggtt_vma(vma);
937 goto new_vma;
938 }
939
940 ret = i915_vma_unbind(vma);
941 if (ret)
942 return ERR_PTR(ret);
943 }
944
945 if (ww)
946 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
947 else
948 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
949
950 if (ret)
951 return ERR_PTR(ret);
952
953 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
954 mutex_lock(&ggtt->vm.mutex);
955 i915_vma_revoke_fence(vma);
956 mutex_unlock(&ggtt->vm.mutex);
957 }
958
959 ret = i915_vma_wait_for_bind(vma);
960 if (ret) {
961 i915_vma_unpin(vma);
962 return ERR_PTR(ret);
963 }
964
965 return vma;
966}
967
968int
969i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
970 struct drm_file *file_priv)
971{
972 struct drm_i915_private *i915 = to_i915(dev);
973 struct drm_i915_gem_madvise *args = data;
974 struct drm_i915_gem_object *obj;
975 int err;
976
977 switch (args->madv) {
978 case I915_MADV_DONTNEED:
979 case I915_MADV_WILLNEED:
980 break;
981 default:
982 return -EINVAL;
983 }
984
985 obj = i915_gem_object_lookup(file_priv, args->handle);
986 if (!obj)
987 return -ENOENT;
988
989 err = i915_gem_object_lock_interruptible(obj, NULL);
990 if (err)
991 goto out;
992
993 if (i915_gem_object_has_pages(obj) &&
994 i915_gem_object_is_tiled(obj) &&
995 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
996 if (obj->mm.madv == I915_MADV_WILLNEED) {
997 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
998 i915_gem_object_clear_tiling_quirk(obj);
999 i915_gem_object_make_shrinkable(obj);
1000 }
1001 if (args->madv == I915_MADV_WILLNEED) {
1002 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1003 i915_gem_object_make_unshrinkable(obj);
1004 i915_gem_object_set_tiling_quirk(obj);
1005 }
1006 }
1007
1008 if (obj->mm.madv != __I915_MADV_PURGED)
1009 obj->mm.madv = args->madv;
1010
1011 if (i915_gem_object_has_pages(obj)) {
1012 unsigned long flags;
1013
1014 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1015 if (!list_empty(&obj->mm.link)) {
1016 struct list_head *list;
1017
1018 if (obj->mm.madv != I915_MADV_WILLNEED)
1019 list = &i915->mm.purge_list;
1020 else
1021 list = &i915->mm.shrink_list;
1022 list_move_tail(&obj->mm.link, list);
1023
1024 }
1025 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1026 }
1027
1028 /* if the object is no longer attached, discard its backing storage */
1029 if (obj->mm.madv == I915_MADV_DONTNEED &&
1030 !i915_gem_object_has_pages(obj))
1031 i915_gem_object_truncate(obj);
1032
1033 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1034
1035 i915_gem_object_unlock(obj);
1036out:
1037 i915_gem_object_put(obj);
1038 return err;
1039}
1040
1041int i915_gem_init(struct drm_i915_private *dev_priv)
1042{
1043 int ret;
1044
1045 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1046 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1047 mkwrite_device_info(dev_priv)->page_sizes =
1048 I915_GTT_PAGE_SIZE_4K;
1049
1050 ret = i915_gem_init_userptr(dev_priv);
1051 if (ret)
1052 return ret;
1053
1054 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1055 intel_wopcm_init(&dev_priv->wopcm);
1056
1057 ret = i915_init_ggtt(dev_priv);
1058 if (ret) {
1059 GEM_BUG_ON(ret == -EIO);
1060 goto err_unlock;
1061 }
1062
1063 /*
1064 * Despite its name intel_init_clock_gating applies both display
1065 * clock gating workarounds; GT mmio workarounds and the occasional
1066 * GT power context workaround. Worse, sometimes it includes a context
1067 * register workaround which we need to apply before we record the
1068 * default HW state for all contexts.
1069 *
1070 * FIXME: break up the workarounds and apply them at the right time!
1071 */
1072 intel_init_clock_gating(dev_priv);
1073
1074 ret = intel_gt_init(&dev_priv->gt);
1075 if (ret)
1076 goto err_unlock;
1077
1078 return 0;
1079
1080 /*
1081 * Unwinding is complicated by that we want to handle -EIO to mean
1082 * disable GPU submission but keep KMS alive. We want to mark the
1083 * HW as irrevisibly wedged, but keep enough state around that the
1084 * driver doesn't explode during runtime.
1085 */
1086err_unlock:
1087 i915_gem_drain_workqueue(dev_priv);
1088
1089 if (ret != -EIO)
1090 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1091
1092 if (ret == -EIO) {
1093 /*
1094 * Allow engines or uC initialisation to fail by marking the GPU
1095 * as wedged. But we only want to do this when the GPU is angry,
1096 * for all other failure, such as an allocation failure, bail.
1097 */
1098 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1099 i915_probe_error(dev_priv,
1100 "Failed to initialize GPU, declaring it wedged!\n");
1101 intel_gt_set_wedged(&dev_priv->gt);
1102 }
1103
1104 /* Minimal basic recovery for KMS */
1105 ret = i915_ggtt_enable_hw(dev_priv);
1106 i915_ggtt_resume(&dev_priv->ggtt);
1107 intel_init_clock_gating(dev_priv);
1108 }
1109
1110 i915_gem_drain_freed_objects(dev_priv);
1111
1112 return ret;
1113}
1114
1115void i915_gem_driver_register(struct drm_i915_private *i915)
1116{
1117 i915_gem_driver_register__shrinker(i915);
1118
1119 intel_engines_driver_register(i915);
1120}
1121
1122void i915_gem_driver_unregister(struct drm_i915_private *i915)
1123{
1124 i915_gem_driver_unregister__shrinker(i915);
1125}
1126
1127void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1128{
1129 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1130
1131 i915_gem_suspend_late(dev_priv);
1132 intel_gt_driver_remove(&dev_priv->gt);
1133 dev_priv->uabi_engines = RB_ROOT;
1134
1135 /* Flush any outstanding unpin_work. */
1136 i915_gem_drain_workqueue(dev_priv);
1137
1138 i915_gem_drain_freed_objects(dev_priv);
1139}
1140
1141void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1142{
1143 intel_gt_driver_release(&dev_priv->gt);
1144
1145 intel_wa_list_free(&dev_priv->gt_wa_list);
1146
1147 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1148
1149 i915_gem_drain_freed_objects(dev_priv);
1150
1151 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1152}
1153
1154static void i915_gem_init__mm(struct drm_i915_private *i915)
1155{
1156 spin_lock_init(&i915->mm.obj_lock);
1157
1158 init_llist_head(&i915->mm.free_list);
1159
1160 INIT_LIST_HEAD(&i915->mm.purge_list);
1161 INIT_LIST_HEAD(&i915->mm.shrink_list);
1162
1163 i915_gem_init__objects(i915);
1164}
1165
1166void i915_gem_init_early(struct drm_i915_private *dev_priv)
1167{
1168 i915_gem_init__mm(dev_priv);
1169 i915_gem_init__contexts(dev_priv);
1170
1171 spin_lock_init(&dev_priv->fb_tracking.lock);
1172}
1173
1174void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1175{
1176 i915_gem_drain_freed_objects(dev_priv);
1177 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1178 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1179 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1180}
1181
1182int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1183{
1184 struct drm_i915_file_private *file_priv;
1185 int ret;
1186
1187 DRM_DEBUG("\n");
1188
1189 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1190 if (!file_priv)
1191 return -ENOMEM;
1192
1193 file->driver_priv = file_priv;
1194 file_priv->dev_priv = i915;
1195 file_priv->file = file;
1196
1197 file_priv->bsd_engine = -1;
1198 file_priv->hang_timestamp = jiffies;
1199
1200 ret = i915_gem_context_open(i915, file);
1201 if (ret)
1202 kfree(file_priv);
1203
1204 return ret;
1205}
1206
1207void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1208{
1209 ww_acquire_init(&ww->ctx, &reservation_ww_class);
1210 INIT_LIST_HEAD(&ww->obj_list);
1211 ww->intr = intr;
1212 ww->contended = NULL;
1213}
1214
1215static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1216{
1217 struct drm_i915_gem_object *obj;
1218
1219 while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1220 list_del(&obj->obj_link);
1221 i915_gem_object_unlock(obj);
1222 }
1223}
1224
1225void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1226{
1227 list_del(&obj->obj_link);
1228 i915_gem_object_unlock(obj);
1229}
1230
1231void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1232{
1233 i915_gem_ww_ctx_unlock_all(ww);
1234 WARN_ON(ww->contended);
1235 ww_acquire_fini(&ww->ctx);
1236}
1237
1238int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1239{
1240 int ret = 0;
1241
1242 if (WARN_ON(!ww->contended))
1243 return -EINVAL;
1244
1245 i915_gem_ww_ctx_unlock_all(ww);
1246 if (ww->intr)
1247 ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1248 else
1249 dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1250
1251 if (!ret)
1252 list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1253
1254 ww->contended = NULL;
1255
1256 return ret;
1257}
1258
1259#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1260#include "selftests/mock_gem_device.c"
1261#include "selftests/i915_gem.c"
1262#endif
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <linux/dma-fence-array.h>
29#include <linux/kthread.h>
30#include <linux/dma-resv.h>
31#include <linux/shmem_fs.h>
32#include <linux/slab.h>
33#include <linux/stop_machine.h>
34#include <linux/swap.h>
35#include <linux/pci.h>
36#include <linux/dma-buf.h>
37#include <linux/mman.h>
38
39#include <drm/drm_cache.h>
40#include <drm/drm_vma_manager.h>
41
42#include "display/intel_display.h"
43#include "display/intel_frontbuffer.h"
44
45#include "gem/i915_gem_clflush.h"
46#include "gem/i915_gem_context.h"
47#include "gem/i915_gem_ioctls.h"
48#include "gem/i915_gem_mman.h"
49#include "gem/i915_gem_pm.h"
50#include "gem/i915_gem_region.h"
51#include "gem/i915_gem_userptr.h"
52#include "gt/intel_engine_user.h"
53#include "gt/intel_gt.h"
54#include "gt/intel_gt_pm.h"
55#include "gt/intel_workarounds.h"
56
57#include "i915_drv.h"
58#include "i915_file_private.h"
59#include "i915_trace.h"
60#include "i915_vgpu.h"
61#include "intel_pm.h"
62
63static int
64insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65{
66 int err;
67
68 err = mutex_lock_interruptible(&ggtt->vm.mutex);
69 if (err)
70 return err;
71
72 memset(node, 0, sizeof(*node));
73 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
74 size, 0, I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_INSERT_LOW);
77
78 mutex_unlock(&ggtt->vm.mutex);
79
80 return err;
81}
82
83static void
84remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85{
86 mutex_lock(&ggtt->vm.mutex);
87 drm_mm_remove_node(node);
88 mutex_unlock(&ggtt->vm.mutex);
89}
90
91int
92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file)
94{
95 struct drm_i915_private *i915 = to_i915(dev);
96 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97 struct drm_i915_gem_get_aperture *args = data;
98 struct i915_vma *vma;
99 u64 pinned;
100
101 if (mutex_lock_interruptible(&ggtt->vm.mutex))
102 return -EINTR;
103
104 pinned = ggtt->vm.reserved;
105 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106 if (i915_vma_is_pinned(vma))
107 pinned += vma->node.size;
108
109 mutex_unlock(&ggtt->vm.mutex);
110
111 args->aper_size = ggtt->vm.total;
112 args->aper_available_size = args->aper_size - pinned;
113
114 return 0;
115}
116
117int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118 unsigned long flags)
119{
120 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
121 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122 LIST_HEAD(still_in_list);
123 intel_wakeref_t wakeref;
124 struct i915_vma *vma;
125 int ret;
126
127 assert_object_held(obj);
128
129 if (list_empty(&obj->vma.list))
130 return 0;
131
132 /*
133 * As some machines use ACPI to handle runtime-resume callbacks, and
134 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135 * as they are required by the shrinker. Ergo, we wake the device up
136 * first just in case.
137 */
138 wakeref = intel_runtime_pm_get(rpm);
139
140try_again:
141 ret = 0;
142 spin_lock(&obj->vma.lock);
143 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144 struct i915_vma,
145 obj_link))) {
146 list_move_tail(&vma->obj_link, &still_in_list);
147 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148 continue;
149
150 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151 ret = -EBUSY;
152 break;
153 }
154
155 /*
156 * Requiring the vm destructor to take the object lock
157 * before destroying a vma would help us eliminate the
158 * i915_vm_tryget() here, AND thus also the barrier stuff
159 * at the end. That's an easy fix, but sleeping locks in
160 * a kthread should generally be avoided.
161 */
162 ret = -EAGAIN;
163 if (!i915_vm_tryget(vma->vm))
164 break;
165
166 spin_unlock(&obj->vma.lock);
167
168 /*
169 * Since i915_vma_parked() takes the object lock
170 * before vma destruction, it won't race us here,
171 * and destroy the vma from under us.
172 */
173
174 ret = -EBUSY;
175 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176 assert_object_held(vma->obj);
177 ret = i915_vma_unbind_async(vma, vm_trylock);
178 }
179
180 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181 !i915_vma_is_active(vma))) {
182 if (vm_trylock) {
183 if (mutex_trylock(&vma->vm->mutex)) {
184 ret = __i915_vma_unbind(vma);
185 mutex_unlock(&vma->vm->mutex);
186 }
187 } else {
188 ret = i915_vma_unbind(vma);
189 }
190 }
191
192 i915_vm_put(vma->vm);
193 spin_lock(&obj->vma.lock);
194 }
195 list_splice_init(&still_in_list, &obj->vma.list);
196 spin_unlock(&obj->vma.lock);
197
198 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199 rcu_barrier(); /* flush the i915_vm_release() */
200 goto try_again;
201 }
202
203 intel_runtime_pm_put(rpm, wakeref);
204
205 return ret;
206}
207
208static int
209shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210 bool needs_clflush)
211{
212 char *vaddr;
213 int ret;
214
215 vaddr = kmap(page);
216
217 if (needs_clflush)
218 drm_clflush_virt_range(vaddr + offset, len);
219
220 ret = __copy_to_user(user_data, vaddr + offset, len);
221
222 kunmap(page);
223
224 return ret ? -EFAULT : 0;
225}
226
227static int
228i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229 struct drm_i915_gem_pread *args)
230{
231 unsigned int needs_clflush;
232 unsigned int idx, offset;
233 char __user *user_data;
234 u64 remain;
235 int ret;
236
237 ret = i915_gem_object_lock_interruptible(obj, NULL);
238 if (ret)
239 return ret;
240
241 ret = i915_gem_object_pin_pages(obj);
242 if (ret)
243 goto err_unlock;
244
245 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 if (ret)
247 goto err_unpin;
248
249 i915_gem_object_finish_access(obj);
250 i915_gem_object_unlock(obj);
251
252 remain = args->size;
253 user_data = u64_to_user_ptr(args->data_ptr);
254 offset = offset_in_page(args->offset);
255 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 struct page *page = i915_gem_object_get_page(obj, idx);
257 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259 ret = shmem_pread(page, offset, length, user_data,
260 needs_clflush);
261 if (ret)
262 break;
263
264 remain -= length;
265 user_data += length;
266 offset = 0;
267 }
268
269 i915_gem_object_unpin_pages(obj);
270 return ret;
271
272err_unpin:
273 i915_gem_object_unpin_pages(obj);
274err_unlock:
275 i915_gem_object_unlock(obj);
276 return ret;
277}
278
279static inline bool
280gtt_user_read(struct io_mapping *mapping,
281 loff_t base, int offset,
282 char __user *user_data, int length)
283{
284 void __iomem *vaddr;
285 unsigned long unwritten;
286
287 /* We can use the cpu mem copy function because this is X86. */
288 vaddr = io_mapping_map_atomic_wc(mapping, base);
289 unwritten = __copy_to_user_inatomic(user_data,
290 (void __force *)vaddr + offset,
291 length);
292 io_mapping_unmap_atomic(vaddr);
293 if (unwritten) {
294 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 unwritten = copy_to_user(user_data,
296 (void __force *)vaddr + offset,
297 length);
298 io_mapping_unmap(vaddr);
299 }
300 return unwritten;
301}
302
303static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 struct drm_mm_node *node,
305 bool write)
306{
307 struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 struct i915_vma *vma;
310 struct i915_gem_ww_ctx ww;
311 int ret;
312
313 i915_gem_ww_ctx_init(&ww, true);
314retry:
315 vma = ERR_PTR(-ENODEV);
316 ret = i915_gem_object_lock(obj, &ww);
317 if (ret)
318 goto err_ww;
319
320 ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 if (ret)
322 goto err_ww;
323
324 if (!i915_gem_object_is_tiled(obj))
325 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 PIN_MAPPABLE |
327 PIN_NONBLOCK /* NOWARN */ |
328 PIN_NOEVICT);
329 if (vma == ERR_PTR(-EDEADLK)) {
330 ret = -EDEADLK;
331 goto err_ww;
332 } else if (!IS_ERR(vma)) {
333 node->start = i915_ggtt_offset(vma);
334 node->flags = 0;
335 } else {
336 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 if (ret)
338 goto err_ww;
339 GEM_BUG_ON(!drm_mm_node_allocated(node));
340 vma = NULL;
341 }
342
343 ret = i915_gem_object_pin_pages(obj);
344 if (ret) {
345 if (drm_mm_node_allocated(node)) {
346 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 remove_mappable_node(ggtt, node);
348 } else {
349 i915_vma_unpin(vma);
350 }
351 }
352
353err_ww:
354 if (ret == -EDEADLK) {
355 ret = i915_gem_ww_ctx_backoff(&ww);
356 if (!ret)
357 goto retry;
358 }
359 i915_gem_ww_ctx_fini(&ww);
360
361 return ret ? ERR_PTR(ret) : vma;
362}
363
364static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 struct drm_mm_node *node,
366 struct i915_vma *vma)
367{
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371 i915_gem_object_unpin_pages(obj);
372 if (drm_mm_node_allocated(node)) {
373 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 remove_mappable_node(ggtt, node);
375 } else {
376 i915_vma_unpin(vma);
377 }
378}
379
380static int
381i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 const struct drm_i915_gem_pread *args)
383{
384 struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 intel_wakeref_t wakeref;
387 struct drm_mm_node node;
388 void __user *user_data;
389 struct i915_vma *vma;
390 u64 remain, offset;
391 int ret = 0;
392
393 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
394
395 vma = i915_gem_gtt_prepare(obj, &node, false);
396 if (IS_ERR(vma)) {
397 ret = PTR_ERR(vma);
398 goto out_rpm;
399 }
400
401 user_data = u64_to_user_ptr(args->data_ptr);
402 remain = args->size;
403 offset = args->offset;
404
405 while (remain > 0) {
406 /* Operation in this page
407 *
408 * page_base = page offset within aperture
409 * page_offset = offset within page
410 * page_length = bytes to copy for this page
411 */
412 u32 page_base = node.start;
413 unsigned page_offset = offset_in_page(offset);
414 unsigned page_length = PAGE_SIZE - page_offset;
415 page_length = remain < page_length ? remain : page_length;
416 if (drm_mm_node_allocated(&node)) {
417 ggtt->vm.insert_page(&ggtt->vm,
418 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
419 node.start, I915_CACHE_NONE, 0);
420 } else {
421 page_base += offset & PAGE_MASK;
422 }
423
424 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
425 user_data, page_length)) {
426 ret = -EFAULT;
427 break;
428 }
429
430 remain -= page_length;
431 user_data += page_length;
432 offset += page_length;
433 }
434
435 i915_gem_gtt_cleanup(obj, &node, vma);
436out_rpm:
437 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
438 return ret;
439}
440
441/**
442 * Reads data from the object referenced by handle.
443 * @dev: drm device pointer
444 * @data: ioctl data blob
445 * @file: drm file pointer
446 *
447 * On error, the contents of *data are undefined.
448 */
449int
450i915_gem_pread_ioctl(struct drm_device *dev, void *data,
451 struct drm_file *file)
452{
453 struct drm_i915_private *i915 = to_i915(dev);
454 struct drm_i915_gem_pread *args = data;
455 struct drm_i915_gem_object *obj;
456 int ret;
457
458 /* PREAD is disallowed for all platforms after TGL-LP. This also
459 * covers all platforms with local memory.
460 */
461 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
462 return -EOPNOTSUPP;
463
464 if (args->size == 0)
465 return 0;
466
467 if (!access_ok(u64_to_user_ptr(args->data_ptr),
468 args->size))
469 return -EFAULT;
470
471 obj = i915_gem_object_lookup(file, args->handle);
472 if (!obj)
473 return -ENOENT;
474
475 /* Bounds check source. */
476 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
477 ret = -EINVAL;
478 goto out;
479 }
480
481 trace_i915_gem_object_pread(obj, args->offset, args->size);
482 ret = -ENODEV;
483 if (obj->ops->pread)
484 ret = obj->ops->pread(obj, args);
485 if (ret != -ENODEV)
486 goto out;
487
488 ret = i915_gem_object_wait(obj,
489 I915_WAIT_INTERRUPTIBLE,
490 MAX_SCHEDULE_TIMEOUT);
491 if (ret)
492 goto out;
493
494 ret = i915_gem_shmem_pread(obj, args);
495 if (ret == -EFAULT || ret == -ENODEV)
496 ret = i915_gem_gtt_pread(obj, args);
497
498out:
499 i915_gem_object_put(obj);
500 return ret;
501}
502
503/* This is the fast write path which cannot handle
504 * page faults in the source data
505 */
506
507static inline bool
508ggtt_write(struct io_mapping *mapping,
509 loff_t base, int offset,
510 char __user *user_data, int length)
511{
512 void __iomem *vaddr;
513 unsigned long unwritten;
514
515 /* We can use the cpu mem copy function because this is X86. */
516 vaddr = io_mapping_map_atomic_wc(mapping, base);
517 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
518 user_data, length);
519 io_mapping_unmap_atomic(vaddr);
520 if (unwritten) {
521 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
522 unwritten = copy_from_user((void __force *)vaddr + offset,
523 user_data, length);
524 io_mapping_unmap(vaddr);
525 }
526
527 return unwritten;
528}
529
530/**
531 * This is the fast pwrite path, where we copy the data directly from the
532 * user into the GTT, uncached.
533 * @obj: i915 GEM object
534 * @args: pwrite arguments structure
535 */
536static int
537i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
538 const struct drm_i915_gem_pwrite *args)
539{
540 struct drm_i915_private *i915 = to_i915(obj->base.dev);
541 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
542 struct intel_runtime_pm *rpm = &i915->runtime_pm;
543 intel_wakeref_t wakeref;
544 struct drm_mm_node node;
545 struct i915_vma *vma;
546 u64 remain, offset;
547 void __user *user_data;
548 int ret = 0;
549
550 if (i915_gem_object_has_struct_page(obj)) {
551 /*
552 * Avoid waking the device up if we can fallback, as
553 * waking/resuming is very slow (worst-case 10-100 ms
554 * depending on PCI sleeps and our own resume time).
555 * This easily dwarfs any performance advantage from
556 * using the cache bypass of indirect GGTT access.
557 */
558 wakeref = intel_runtime_pm_get_if_in_use(rpm);
559 if (!wakeref)
560 return -EFAULT;
561 } else {
562 /* No backing pages, no fallback, we must force GGTT access */
563 wakeref = intel_runtime_pm_get(rpm);
564 }
565
566 vma = i915_gem_gtt_prepare(obj, &node, true);
567 if (IS_ERR(vma)) {
568 ret = PTR_ERR(vma);
569 goto out_rpm;
570 }
571
572 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
573
574 user_data = u64_to_user_ptr(args->data_ptr);
575 offset = args->offset;
576 remain = args->size;
577 while (remain) {
578 /* Operation in this page
579 *
580 * page_base = page offset within aperture
581 * page_offset = offset within page
582 * page_length = bytes to copy for this page
583 */
584 u32 page_base = node.start;
585 unsigned int page_offset = offset_in_page(offset);
586 unsigned int page_length = PAGE_SIZE - page_offset;
587 page_length = remain < page_length ? remain : page_length;
588 if (drm_mm_node_allocated(&node)) {
589 /* flush the write before we modify the GGTT */
590 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
591 ggtt->vm.insert_page(&ggtt->vm,
592 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
593 node.start, I915_CACHE_NONE, 0);
594 wmb(); /* flush modifications to the GGTT (insert_page) */
595 } else {
596 page_base += offset & PAGE_MASK;
597 }
598 /* If we get a fault while copying data, then (presumably) our
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
601 * If the object is non-shmem backed, we retry again with the
602 * path that handles page fault.
603 */
604 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
605 user_data, page_length)) {
606 ret = -EFAULT;
607 break;
608 }
609
610 remain -= page_length;
611 user_data += page_length;
612 offset += page_length;
613 }
614
615 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
616 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
617
618 i915_gem_gtt_cleanup(obj, &node, vma);
619out_rpm:
620 intel_runtime_pm_put(rpm, wakeref);
621 return ret;
622}
623
624/* Per-page copy function for the shmem pwrite fastpath.
625 * Flushes invalid cachelines before writing to the target if
626 * needs_clflush_before is set and flushes out any written cachelines after
627 * writing if needs_clflush is set.
628 */
629static int
630shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
631 bool needs_clflush_before,
632 bool needs_clflush_after)
633{
634 char *vaddr;
635 int ret;
636
637 vaddr = kmap(page);
638
639 if (needs_clflush_before)
640 drm_clflush_virt_range(vaddr + offset, len);
641
642 ret = __copy_from_user(vaddr + offset, user_data, len);
643 if (!ret && needs_clflush_after)
644 drm_clflush_virt_range(vaddr + offset, len);
645
646 kunmap(page);
647
648 return ret ? -EFAULT : 0;
649}
650
651static int
652i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
653 const struct drm_i915_gem_pwrite *args)
654{
655 unsigned int partial_cacheline_write;
656 unsigned int needs_clflush;
657 unsigned int offset, idx;
658 void __user *user_data;
659 u64 remain;
660 int ret;
661
662 ret = i915_gem_object_lock_interruptible(obj, NULL);
663 if (ret)
664 return ret;
665
666 ret = i915_gem_object_pin_pages(obj);
667 if (ret)
668 goto err_unlock;
669
670 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
671 if (ret)
672 goto err_unpin;
673
674 i915_gem_object_finish_access(obj);
675 i915_gem_object_unlock(obj);
676
677 /* If we don't overwrite a cacheline completely we need to be
678 * careful to have up-to-date data by first clflushing. Don't
679 * overcomplicate things and flush the entire patch.
680 */
681 partial_cacheline_write = 0;
682 if (needs_clflush & CLFLUSH_BEFORE)
683 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
684
685 user_data = u64_to_user_ptr(args->data_ptr);
686 remain = args->size;
687 offset = offset_in_page(args->offset);
688 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
689 struct page *page = i915_gem_object_get_page(obj, idx);
690 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
691
692 ret = shmem_pwrite(page, offset, length, user_data,
693 (offset | length) & partial_cacheline_write,
694 needs_clflush & CLFLUSH_AFTER);
695 if (ret)
696 break;
697
698 remain -= length;
699 user_data += length;
700 offset = 0;
701 }
702
703 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
704
705 i915_gem_object_unpin_pages(obj);
706 return ret;
707
708err_unpin:
709 i915_gem_object_unpin_pages(obj);
710err_unlock:
711 i915_gem_object_unlock(obj);
712 return ret;
713}
714
715/**
716 * Writes data to the object referenced by handle.
717 * @dev: drm device
718 * @data: ioctl data blob
719 * @file: drm file
720 *
721 * On error, the contents of the buffer that were to be modified are undefined.
722 */
723int
724i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
725 struct drm_file *file)
726{
727 struct drm_i915_private *i915 = to_i915(dev);
728 struct drm_i915_gem_pwrite *args = data;
729 struct drm_i915_gem_object *obj;
730 int ret;
731
732 /* PWRITE is disallowed for all platforms after TGL-LP. This also
733 * covers all platforms with local memory.
734 */
735 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
736 return -EOPNOTSUPP;
737
738 if (args->size == 0)
739 return 0;
740
741 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
742 return -EFAULT;
743
744 obj = i915_gem_object_lookup(file, args->handle);
745 if (!obj)
746 return -ENOENT;
747
748 /* Bounds check destination. */
749 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
750 ret = -EINVAL;
751 goto err;
752 }
753
754 /* Writes not allowed into this read-only object */
755 if (i915_gem_object_is_readonly(obj)) {
756 ret = -EINVAL;
757 goto err;
758 }
759
760 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
761
762 ret = -ENODEV;
763 if (obj->ops->pwrite)
764 ret = obj->ops->pwrite(obj, args);
765 if (ret != -ENODEV)
766 goto err;
767
768 ret = i915_gem_object_wait(obj,
769 I915_WAIT_INTERRUPTIBLE |
770 I915_WAIT_ALL,
771 MAX_SCHEDULE_TIMEOUT);
772 if (ret)
773 goto err;
774
775 ret = -EFAULT;
776 /* We can only do the GTT pwrite on untiled buffers, as otherwise
777 * it would end up going through the fenced access, and we'll get
778 * different detiling behavior between reading and writing.
779 * pread/pwrite currently are reading and writing from the CPU
780 * perspective, requiring manual detiling by the client.
781 */
782 if (!i915_gem_object_has_struct_page(obj) ||
783 i915_gem_cpu_write_needs_clflush(obj))
784 /* Note that the gtt paths might fail with non-page-backed user
785 * pointers (e.g. gtt mappings when moving data between
786 * textures). Fallback to the shmem path in that case.
787 */
788 ret = i915_gem_gtt_pwrite_fast(obj, args);
789
790 if (ret == -EFAULT || ret == -ENOSPC) {
791 if (i915_gem_object_has_struct_page(obj))
792 ret = i915_gem_shmem_pwrite(obj, args);
793 }
794
795err:
796 i915_gem_object_put(obj);
797 return ret;
798}
799
800/**
801 * Called when user space has done writes to this buffer
802 * @dev: drm device
803 * @data: ioctl data blob
804 * @file: drm file
805 */
806int
807i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
808 struct drm_file *file)
809{
810 struct drm_i915_gem_sw_finish *args = data;
811 struct drm_i915_gem_object *obj;
812
813 obj = i915_gem_object_lookup(file, args->handle);
814 if (!obj)
815 return -ENOENT;
816
817 /*
818 * Proxy objects are barred from CPU access, so there is no
819 * need to ban sw_finish as it is a nop.
820 */
821
822 /* Pinned buffers may be scanout, so flush the cache */
823 i915_gem_object_flush_if_display(obj);
824 i915_gem_object_put(obj);
825
826 return 0;
827}
828
829void i915_gem_runtime_suspend(struct drm_i915_private *i915)
830{
831 struct drm_i915_gem_object *obj, *on;
832 int i;
833
834 /*
835 * Only called during RPM suspend. All users of the userfault_list
836 * must be holding an RPM wakeref to ensure that this can not
837 * run concurrently with themselves (and use the struct_mutex for
838 * protection between themselves).
839 */
840
841 list_for_each_entry_safe(obj, on,
842 &to_gt(i915)->ggtt->userfault_list, userfault_link)
843 __i915_gem_object_release_mmap_gtt(obj);
844
845 list_for_each_entry_safe(obj, on,
846 &i915->runtime_pm.lmem_userfault_list, userfault_link)
847 i915_gem_object_runtime_pm_release_mmap_offset(obj);
848
849 /*
850 * The fence will be lost when the device powers down. If any were
851 * in use by hardware (i.e. they are pinned), we should not be powering
852 * down! All other fences will be reacquired by the user upon waking.
853 */
854 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
855 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
856
857 /*
858 * Ideally we want to assert that the fence register is not
859 * live at this point (i.e. that no piece of code will be
860 * trying to write through fence + GTT, as that both violates
861 * our tracking of activity and associated locking/barriers,
862 * but also is illegal given that the hw is powered down).
863 *
864 * Previously we used reg->pin_count as a "liveness" indicator.
865 * That is not sufficient, and we need a more fine-grained
866 * tool if we want to have a sanity check here.
867 */
868
869 if (!reg->vma)
870 continue;
871
872 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
873 reg->dirty = true;
874 }
875}
876
877static void discard_ggtt_vma(struct i915_vma *vma)
878{
879 struct drm_i915_gem_object *obj = vma->obj;
880
881 spin_lock(&obj->vma.lock);
882 if (!RB_EMPTY_NODE(&vma->obj_node)) {
883 rb_erase(&vma->obj_node, &obj->vma.tree);
884 RB_CLEAR_NODE(&vma->obj_node);
885 }
886 spin_unlock(&obj->vma.lock);
887}
888
889struct i915_vma *
890i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
891 struct i915_gem_ww_ctx *ww,
892 const struct i915_gtt_view *view,
893 u64 size, u64 alignment, u64 flags)
894{
895 struct drm_i915_private *i915 = to_i915(obj->base.dev);
896 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
897 struct i915_vma *vma;
898 int ret;
899
900 GEM_WARN_ON(!ww);
901
902 if (flags & PIN_MAPPABLE &&
903 (!view || view->type == I915_GTT_VIEW_NORMAL)) {
904 /*
905 * If the required space is larger than the available
906 * aperture, we will not able to find a slot for the
907 * object and unbinding the object now will be in
908 * vain. Worse, doing so may cause us to ping-pong
909 * the object in and out of the Global GTT and
910 * waste a lot of cycles under the mutex.
911 */
912 if (obj->base.size > ggtt->mappable_end)
913 return ERR_PTR(-E2BIG);
914
915 /*
916 * If NONBLOCK is set the caller is optimistically
917 * trying to cache the full object within the mappable
918 * aperture, and *must* have a fallback in place for
919 * situations where we cannot bind the object. We
920 * can be a little more lax here and use the fallback
921 * more often to avoid costly migrations of ourselves
922 * and other objects within the aperture.
923 *
924 * Half-the-aperture is used as a simple heuristic.
925 * More interesting would to do search for a free
926 * block prior to making the commitment to unbind.
927 * That caters for the self-harm case, and with a
928 * little more heuristics (e.g. NOFAULT, NOEVICT)
929 * we could try to minimise harm to others.
930 */
931 if (flags & PIN_NONBLOCK &&
932 obj->base.size > ggtt->mappable_end / 2)
933 return ERR_PTR(-ENOSPC);
934 }
935
936new_vma:
937 vma = i915_vma_instance(obj, &ggtt->vm, view);
938 if (IS_ERR(vma))
939 return vma;
940
941 if (i915_vma_misplaced(vma, size, alignment, flags)) {
942 if (flags & PIN_NONBLOCK) {
943 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
944 return ERR_PTR(-ENOSPC);
945
946 /*
947 * If this misplaced vma is too big (i.e, at-least
948 * half the size of aperture) or hasn't been pinned
949 * mappable before, we ignore the misplacement when
950 * PIN_NONBLOCK is set in order to avoid the ping-pong
951 * issue described above. In other words, we try to
952 * avoid the costly operation of unbinding this vma
953 * from the GGTT and rebinding it back because there
954 * may not be enough space for this vma in the aperture.
955 */
956 if (flags & PIN_MAPPABLE &&
957 (vma->fence_size > ggtt->mappable_end / 2 ||
958 !i915_vma_is_map_and_fenceable(vma)))
959 return ERR_PTR(-ENOSPC);
960 }
961
962 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
963 discard_ggtt_vma(vma);
964 goto new_vma;
965 }
966
967 ret = i915_vma_unbind(vma);
968 if (ret)
969 return ERR_PTR(ret);
970 }
971
972 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
973
974 if (ret)
975 return ERR_PTR(ret);
976
977 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
978 mutex_lock(&ggtt->vm.mutex);
979 i915_vma_revoke_fence(vma);
980 mutex_unlock(&ggtt->vm.mutex);
981 }
982
983 ret = i915_vma_wait_for_bind(vma);
984 if (ret) {
985 i915_vma_unpin(vma);
986 return ERR_PTR(ret);
987 }
988
989 return vma;
990}
991
992struct i915_vma * __must_check
993i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
994 const struct i915_gtt_view *view,
995 u64 size, u64 alignment, u64 flags)
996{
997 struct i915_gem_ww_ctx ww;
998 struct i915_vma *ret;
999 int err;
1000
1001 for_i915_gem_ww(&ww, err, true) {
1002 err = i915_gem_object_lock(obj, &ww);
1003 if (err)
1004 continue;
1005
1006 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1007 alignment, flags);
1008 if (IS_ERR(ret))
1009 err = PTR_ERR(ret);
1010 }
1011
1012 return err ? ERR_PTR(err) : ret;
1013}
1014
1015int
1016i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1017 struct drm_file *file_priv)
1018{
1019 struct drm_i915_private *i915 = to_i915(dev);
1020 struct drm_i915_gem_madvise *args = data;
1021 struct drm_i915_gem_object *obj;
1022 int err;
1023
1024 switch (args->madv) {
1025 case I915_MADV_DONTNEED:
1026 case I915_MADV_WILLNEED:
1027 break;
1028 default:
1029 return -EINVAL;
1030 }
1031
1032 obj = i915_gem_object_lookup(file_priv, args->handle);
1033 if (!obj)
1034 return -ENOENT;
1035
1036 err = i915_gem_object_lock_interruptible(obj, NULL);
1037 if (err)
1038 goto out;
1039
1040 if (i915_gem_object_has_pages(obj) &&
1041 i915_gem_object_is_tiled(obj) &&
1042 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1043 if (obj->mm.madv == I915_MADV_WILLNEED) {
1044 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1045 i915_gem_object_clear_tiling_quirk(obj);
1046 i915_gem_object_make_shrinkable(obj);
1047 }
1048 if (args->madv == I915_MADV_WILLNEED) {
1049 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1050 i915_gem_object_make_unshrinkable(obj);
1051 i915_gem_object_set_tiling_quirk(obj);
1052 }
1053 }
1054
1055 if (obj->mm.madv != __I915_MADV_PURGED) {
1056 obj->mm.madv = args->madv;
1057 if (obj->ops->adjust_lru)
1058 obj->ops->adjust_lru(obj);
1059 }
1060
1061 if (i915_gem_object_has_pages(obj) ||
1062 i915_gem_object_has_self_managed_shrink_list(obj)) {
1063 unsigned long flags;
1064
1065 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1066 if (!list_empty(&obj->mm.link)) {
1067 struct list_head *list;
1068
1069 if (obj->mm.madv != I915_MADV_WILLNEED)
1070 list = &i915->mm.purge_list;
1071 else
1072 list = &i915->mm.shrink_list;
1073 list_move_tail(&obj->mm.link, list);
1074
1075 }
1076 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1077 }
1078
1079 /* if the object is no longer attached, discard its backing storage */
1080 if (obj->mm.madv == I915_MADV_DONTNEED &&
1081 !i915_gem_object_has_pages(obj))
1082 i915_gem_object_truncate(obj);
1083
1084 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1085
1086 i915_gem_object_unlock(obj);
1087out:
1088 i915_gem_object_put(obj);
1089 return err;
1090}
1091
1092/*
1093 * A single pass should suffice to release all the freed objects (along most
1094 * call paths), but be a little more paranoid in that freeing the objects does
1095 * take a little amount of time, during which the rcu callbacks could have added
1096 * new objects into the freed list, and armed the work again.
1097 */
1098void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1099{
1100 while (atomic_read(&i915->mm.free_count)) {
1101 flush_work(&i915->mm.free_work);
1102 flush_delayed_work(&i915->bdev.wq);
1103 rcu_barrier();
1104 }
1105}
1106
1107/*
1108 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1109 * have workers that are armed by RCU and then rearm themselves in their
1110 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1111 * waiting for the RCU grace period so that we catch work queued via RCU from
1112 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1113 * result, we make an assumption that we only don't require more than 3 passes
1114 * to catch all _recursive_ RCU delayed work.
1115 */
1116void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1117{
1118 int i;
1119
1120 for (i = 0; i < 3; i++) {
1121 flush_workqueue(i915->wq);
1122 rcu_barrier();
1123 i915_gem_drain_freed_objects(i915);
1124 }
1125
1126 drain_workqueue(i915->wq);
1127}
1128
1129int i915_gem_init(struct drm_i915_private *dev_priv)
1130{
1131 struct intel_gt *gt;
1132 unsigned int i;
1133 int ret;
1134
1135 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1136 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1137 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1138
1139 ret = i915_gem_init_userptr(dev_priv);
1140 if (ret)
1141 return ret;
1142
1143 for_each_gt(gt, dev_priv, i) {
1144 intel_uc_fetch_firmwares(>->uc);
1145 intel_wopcm_init(>->wopcm);
1146 }
1147
1148 ret = i915_init_ggtt(dev_priv);
1149 if (ret) {
1150 GEM_BUG_ON(ret == -EIO);
1151 goto err_unlock;
1152 }
1153
1154 /*
1155 * Despite its name intel_init_clock_gating applies both display
1156 * clock gating workarounds; GT mmio workarounds and the occasional
1157 * GT power context workaround. Worse, sometimes it includes a context
1158 * register workaround which we need to apply before we record the
1159 * default HW state for all contexts.
1160 *
1161 * FIXME: break up the workarounds and apply them at the right time!
1162 */
1163 intel_init_clock_gating(dev_priv);
1164
1165 for_each_gt(gt, dev_priv, i) {
1166 ret = intel_gt_init(gt);
1167 if (ret)
1168 goto err_unlock;
1169 }
1170
1171 return 0;
1172
1173 /*
1174 * Unwinding is complicated by that we want to handle -EIO to mean
1175 * disable GPU submission but keep KMS alive. We want to mark the
1176 * HW as irrevisibly wedged, but keep enough state around that the
1177 * driver doesn't explode during runtime.
1178 */
1179err_unlock:
1180 i915_gem_drain_workqueue(dev_priv);
1181
1182 if (ret != -EIO) {
1183 for_each_gt(gt, dev_priv, i) {
1184 intel_gt_driver_remove(gt);
1185 intel_gt_driver_release(gt);
1186 intel_uc_cleanup_firmwares(>->uc);
1187 }
1188 }
1189
1190 if (ret == -EIO) {
1191 /*
1192 * Allow engines or uC initialisation to fail by marking the GPU
1193 * as wedged. But we only want to do this when the GPU is angry,
1194 * for all other failure, such as an allocation failure, bail.
1195 */
1196 for_each_gt(gt, dev_priv, i) {
1197 if (!intel_gt_is_wedged(gt)) {
1198 i915_probe_error(dev_priv,
1199 "Failed to initialize GPU, declaring it wedged!\n");
1200 intel_gt_set_wedged(gt);
1201 }
1202 }
1203
1204 /* Minimal basic recovery for KMS */
1205 ret = i915_ggtt_enable_hw(dev_priv);
1206 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1207 intel_init_clock_gating(dev_priv);
1208 }
1209
1210 i915_gem_drain_freed_objects(dev_priv);
1211
1212 return ret;
1213}
1214
1215void i915_gem_driver_register(struct drm_i915_private *i915)
1216{
1217 i915_gem_driver_register__shrinker(i915);
1218
1219 intel_engines_driver_register(i915);
1220}
1221
1222void i915_gem_driver_unregister(struct drm_i915_private *i915)
1223{
1224 i915_gem_driver_unregister__shrinker(i915);
1225}
1226
1227void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1228{
1229 struct intel_gt *gt;
1230 unsigned int i;
1231
1232 i915_gem_suspend_late(dev_priv);
1233 for_each_gt(gt, dev_priv, i)
1234 intel_gt_driver_remove(gt);
1235 dev_priv->uabi_engines = RB_ROOT;
1236
1237 /* Flush any outstanding unpin_work. */
1238 i915_gem_drain_workqueue(dev_priv);
1239}
1240
1241void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1242{
1243 struct intel_gt *gt;
1244 unsigned int i;
1245
1246 for_each_gt(gt, dev_priv, i) {
1247 intel_gt_driver_release(gt);
1248 intel_uc_cleanup_firmwares(>->uc);
1249 }
1250
1251 /* Flush any outstanding work, including i915_gem_context.release_work. */
1252 i915_gem_drain_workqueue(dev_priv);
1253
1254 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1255}
1256
1257static void i915_gem_init__mm(struct drm_i915_private *i915)
1258{
1259 spin_lock_init(&i915->mm.obj_lock);
1260
1261 init_llist_head(&i915->mm.free_list);
1262
1263 INIT_LIST_HEAD(&i915->mm.purge_list);
1264 INIT_LIST_HEAD(&i915->mm.shrink_list);
1265
1266 i915_gem_init__objects(i915);
1267}
1268
1269void i915_gem_init_early(struct drm_i915_private *dev_priv)
1270{
1271 i915_gem_init__mm(dev_priv);
1272 i915_gem_init__contexts(dev_priv);
1273
1274 spin_lock_init(&dev_priv->display.fb_tracking.lock);
1275}
1276
1277void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1278{
1279 i915_gem_drain_workqueue(dev_priv);
1280 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1281 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1282 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1283}
1284
1285int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1286{
1287 struct drm_i915_file_private *file_priv;
1288 struct i915_drm_client *client;
1289 int ret = -ENOMEM;
1290
1291 drm_dbg(&i915->drm, "\n");
1292
1293 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1294 if (!file_priv)
1295 goto err_alloc;
1296
1297 client = i915_drm_client_add(&i915->clients);
1298 if (IS_ERR(client)) {
1299 ret = PTR_ERR(client);
1300 goto err_client;
1301 }
1302
1303 file->driver_priv = file_priv;
1304 file_priv->dev_priv = i915;
1305 file_priv->file = file;
1306 file_priv->client = client;
1307
1308 file_priv->bsd_engine = -1;
1309 file_priv->hang_timestamp = jiffies;
1310
1311 ret = i915_gem_context_open(i915, file);
1312 if (ret)
1313 goto err_context;
1314
1315 return 0;
1316
1317err_context:
1318 i915_drm_client_put(client);
1319err_client:
1320 kfree(file_priv);
1321err_alloc:
1322 return ret;
1323}
1324
1325#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1326#include "selftests/mock_gem_device.c"
1327#include "selftests/i915_gem.c"
1328#endif