Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7#include <linux/clk.h>
8
9#include <drm/drm_atomic_helper.h>
10#include <drm/drm_bridge_connector.h>
11#include <drm/drm_simple_kms_helper.h>
12
13#include "drm.h"
14#include "dc.h"
15
16struct tegra_rgb {
17 struct tegra_output output;
18 struct tegra_dc *dc;
19
20 struct clk *clk_parent;
21 struct clk *clk;
22};
23
24static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
25{
26 return container_of(output, struct tegra_rgb, output);
27}
28
29struct reg_entry {
30 unsigned long offset;
31 unsigned long value;
32};
33
34static const struct reg_entry rgb_enable[] = {
35 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x00000000 },
36 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x00000000 },
37 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x00000000 },
38 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x00000000 },
39 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
40 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
41 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
42 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
43 { DC_COM_PIN_OUTPUT_DATA(0), 0x00000000 },
44 { DC_COM_PIN_OUTPUT_DATA(1), 0x00000000 },
45 { DC_COM_PIN_OUTPUT_DATA(2), 0x00000000 },
46 { DC_COM_PIN_OUTPUT_DATA(3), 0x00000000 },
47 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
48 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
49 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
50 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
51 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00210222 },
52 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00002200 },
53 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00020000 },
54};
55
56static const struct reg_entry rgb_disable[] = {
57 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00000000 },
58 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00000000 },
59 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00000000 },
60 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
61 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
62 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
63 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
64 { DC_COM_PIN_OUTPUT_DATA(3), 0xaaaaaaaa },
65 { DC_COM_PIN_OUTPUT_DATA(2), 0xaaaaaaaa },
66 { DC_COM_PIN_OUTPUT_DATA(1), 0xaaaaaaaa },
67 { DC_COM_PIN_OUTPUT_DATA(0), 0xaaaaaaaa },
68 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
69 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
70 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
71 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
72 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x55555555 },
73 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x55555555 },
74 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x55150005 },
75 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x55555555 },
76};
77
78static void tegra_dc_write_regs(struct tegra_dc *dc,
79 const struct reg_entry *table,
80 unsigned int num)
81{
82 unsigned int i;
83
84 for (i = 0; i < num; i++)
85 tegra_dc_writel(dc, table[i].value, table[i].offset);
86}
87
88static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
89{
90 struct tegra_output *output = encoder_to_output(encoder);
91 struct tegra_rgb *rgb = to_rgb(output);
92
93 tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
94 tegra_dc_commit(rgb->dc);
95}
96
97static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
98{
99 struct tegra_output *output = encoder_to_output(encoder);
100 struct tegra_rgb *rgb = to_rgb(output);
101 u32 value;
102
103 tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
104
105 value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
106 tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
107
108 /* XXX: parameterize? */
109 value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
110 value &= ~LVS_OUTPUT_POLARITY_LOW;
111 value &= ~LHS_OUTPUT_POLARITY_LOW;
112 tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
113
114 /* XXX: parameterize? */
115 value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
116 DISP_ORDER_RED_BLUE;
117 tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
118
119 /* XXX: parameterize? */
120 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
121 tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
122
123 tegra_dc_commit(rgb->dc);
124}
125
126static int
127tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
128 struct drm_crtc_state *crtc_state,
129 struct drm_connector_state *conn_state)
130{
131 struct tegra_output *output = encoder_to_output(encoder);
132 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
133 unsigned long pclk = crtc_state->mode.clock * 1000;
134 struct tegra_rgb *rgb = to_rgb(output);
135 unsigned int div;
136 int err;
137
138 /*
139 * We may not want to change the frequency of the parent clock, since
140 * it may be a parent for other peripherals. This is due to the fact
141 * that on Tegra20 there's only a single clock dedicated to display
142 * (pll_d_out0), whereas later generations have a second one that can
143 * be used to independently drive a second output (pll_d2_out0).
144 *
145 * As a way to support multiple outputs on Tegra20 as well, pll_p is
146 * typically used as the parent clock for the display controllers.
147 * But this comes at a cost: pll_p is the parent of several other
148 * peripherals, so its frequency shouldn't change out of the blue.
149 *
150 * The best we can do at this point is to use the shift clock divider
151 * and hope that the desired frequency can be matched (or at least
152 * matched sufficiently close that the panel will still work).
153 */
154 div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
155 pclk = 0;
156
157 err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
158 pclk, div);
159 if (err < 0) {
160 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
161 return err;
162 }
163
164 return err;
165}
166
167static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
168 .disable = tegra_rgb_encoder_disable,
169 .enable = tegra_rgb_encoder_enable,
170 .atomic_check = tegra_rgb_encoder_atomic_check,
171};
172
173int tegra_dc_rgb_probe(struct tegra_dc *dc)
174{
175 struct device_node *np;
176 struct tegra_rgb *rgb;
177 int err;
178
179 np = of_get_child_by_name(dc->dev->of_node, "rgb");
180 if (!np || !of_device_is_available(np))
181 return -ENODEV;
182
183 rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
184 if (!rgb)
185 return -ENOMEM;
186
187 rgb->output.dev = dc->dev;
188 rgb->output.of_node = np;
189 rgb->dc = dc;
190
191 err = tegra_output_probe(&rgb->output);
192 if (err < 0)
193 return err;
194
195 rgb->clk = devm_clk_get(dc->dev, NULL);
196 if (IS_ERR(rgb->clk)) {
197 dev_err(dc->dev, "failed to get clock\n");
198 return PTR_ERR(rgb->clk);
199 }
200
201 rgb->clk_parent = devm_clk_get(dc->dev, "parent");
202 if (IS_ERR(rgb->clk_parent)) {
203 dev_err(dc->dev, "failed to get parent clock\n");
204 return PTR_ERR(rgb->clk_parent);
205 }
206
207 err = clk_set_parent(rgb->clk, rgb->clk_parent);
208 if (err < 0) {
209 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
210 return err;
211 }
212
213 dc->rgb = &rgb->output;
214
215 return 0;
216}
217
218int tegra_dc_rgb_remove(struct tegra_dc *dc)
219{
220 if (!dc->rgb)
221 return 0;
222
223 tegra_output_remove(dc->rgb);
224 dc->rgb = NULL;
225
226 return 0;
227}
228
229int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
230{
231 struct tegra_output *output = dc->rgb;
232 struct drm_connector *connector;
233 int err;
234
235 if (!dc->rgb)
236 return -ENODEV;
237
238 drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
239 drm_encoder_helper_add(&output->encoder,
240 &tegra_rgb_encoder_helper_funcs);
241
242 /*
243 * Wrap directly-connected panel into DRM bridge in order to let
244 * DRM core to handle panel for us.
245 */
246 if (output->panel) {
247 output->bridge = devm_drm_panel_bridge_add(output->dev,
248 output->panel);
249 if (IS_ERR(output->bridge)) {
250 dev_err(output->dev,
251 "failed to wrap panel into bridge: %pe\n",
252 output->bridge);
253 return PTR_ERR(output->bridge);
254 }
255
256 output->panel = NULL;
257 }
258
259 /*
260 * Tegra devices that have LVDS panel utilize LVDS encoder bridge
261 * for converting up to 28 LCD LVTTL lanes into 5/4 LVDS lanes that
262 * go to display panel's receiver.
263 *
264 * Encoder usually have a power-down control which needs to be enabled
265 * in order to transmit data to the panel. Historically devices that
266 * use an older device-tree version didn't model the bridge, assuming
267 * that encoder is turned ON by default, while today's DRM allows us
268 * to model LVDS encoder properly.
269 *
270 * Newer device-trees utilize LVDS encoder bridge, which provides
271 * us with a connector and handles the display panel.
272 *
273 * For older device-trees we wrapped panel into the panel-bridge.
274 */
275 if (output->bridge) {
276 err = drm_bridge_attach(&output->encoder, output->bridge,
277 NULL, DRM_BRIDGE_ATTACH_NO_CONNECTOR);
278 if (err) {
279 dev_err(output->dev, "failed to attach bridge: %d\n",
280 err);
281 return err;
282 }
283
284 connector = drm_bridge_connector_init(drm, &output->encoder);
285 if (IS_ERR(connector)) {
286 dev_err(output->dev,
287 "failed to initialize bridge connector: %pe\n",
288 connector);
289 return PTR_ERR(connector);
290 }
291
292 drm_connector_attach_encoder(connector, &output->encoder);
293 }
294
295 err = tegra_output_init(drm, output);
296 if (err < 0) {
297 dev_err(output->dev, "failed to initialize output: %d\n", err);
298 return err;
299 }
300
301 /*
302 * Other outputs can be attached to either display controller. The RGB
303 * outputs are an exception and work only with their parent display
304 * controller.
305 */
306 output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
307
308 return 0;
309}
310
311int tegra_dc_rgb_exit(struct tegra_dc *dc)
312{
313 if (dc->rgb)
314 tegra_output_exit(dc->rgb);
315
316 return 0;
317}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7#include <linux/clk.h>
8
9#include <drm/drm_atomic_helper.h>
10#include <drm/drm_panel.h>
11#include <drm/drm_simple_kms_helper.h>
12
13#include "drm.h"
14#include "dc.h"
15
16struct tegra_rgb {
17 struct tegra_output output;
18 struct tegra_dc *dc;
19
20 struct clk *clk_parent;
21 struct clk *clk;
22};
23
24static inline struct tegra_rgb *to_rgb(struct tegra_output *output)
25{
26 return container_of(output, struct tegra_rgb, output);
27}
28
29struct reg_entry {
30 unsigned long offset;
31 unsigned long value;
32};
33
34static const struct reg_entry rgb_enable[] = {
35 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x00000000 },
36 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x00000000 },
37 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x00000000 },
38 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x00000000 },
39 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
40 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x01000000 },
41 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
42 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
43 { DC_COM_PIN_OUTPUT_DATA(0), 0x00000000 },
44 { DC_COM_PIN_OUTPUT_DATA(1), 0x00000000 },
45 { DC_COM_PIN_OUTPUT_DATA(2), 0x00000000 },
46 { DC_COM_PIN_OUTPUT_DATA(3), 0x00000000 },
47 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
48 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
49 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
50 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
51 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00210222 },
52 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00002200 },
53 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00020000 },
54};
55
56static const struct reg_entry rgb_disable[] = {
57 { DC_COM_PIN_OUTPUT_SELECT(6), 0x00000000 },
58 { DC_COM_PIN_OUTPUT_SELECT(5), 0x00000000 },
59 { DC_COM_PIN_OUTPUT_SELECT(4), 0x00000000 },
60 { DC_COM_PIN_OUTPUT_SELECT(3), 0x00000000 },
61 { DC_COM_PIN_OUTPUT_SELECT(2), 0x00000000 },
62 { DC_COM_PIN_OUTPUT_SELECT(1), 0x00000000 },
63 { DC_COM_PIN_OUTPUT_SELECT(0), 0x00000000 },
64 { DC_COM_PIN_OUTPUT_DATA(3), 0xaaaaaaaa },
65 { DC_COM_PIN_OUTPUT_DATA(2), 0xaaaaaaaa },
66 { DC_COM_PIN_OUTPUT_DATA(1), 0xaaaaaaaa },
67 { DC_COM_PIN_OUTPUT_DATA(0), 0xaaaaaaaa },
68 { DC_COM_PIN_OUTPUT_POLARITY(3), 0x00000000 },
69 { DC_COM_PIN_OUTPUT_POLARITY(2), 0x00000000 },
70 { DC_COM_PIN_OUTPUT_POLARITY(1), 0x00000000 },
71 { DC_COM_PIN_OUTPUT_POLARITY(0), 0x00000000 },
72 { DC_COM_PIN_OUTPUT_ENABLE(3), 0x55555555 },
73 { DC_COM_PIN_OUTPUT_ENABLE(2), 0x55555555 },
74 { DC_COM_PIN_OUTPUT_ENABLE(1), 0x55150005 },
75 { DC_COM_PIN_OUTPUT_ENABLE(0), 0x55555555 },
76};
77
78static void tegra_dc_write_regs(struct tegra_dc *dc,
79 const struct reg_entry *table,
80 unsigned int num)
81{
82 unsigned int i;
83
84 for (i = 0; i < num; i++)
85 tegra_dc_writel(dc, table[i].value, table[i].offset);
86}
87
88static const struct drm_connector_funcs tegra_rgb_connector_funcs = {
89 .reset = drm_atomic_helper_connector_reset,
90 .detect = tegra_output_connector_detect,
91 .fill_modes = drm_helper_probe_single_connector_modes,
92 .destroy = tegra_output_connector_destroy,
93 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
94 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
95};
96
97static enum drm_mode_status
98tegra_rgb_connector_mode_valid(struct drm_connector *connector,
99 struct drm_display_mode *mode)
100{
101 /*
102 * FIXME: For now, always assume that the mode is okay. There are
103 * unresolved issues with clk_round_rate(), which doesn't always
104 * reliably report whether a frequency can be set or not.
105 */
106 return MODE_OK;
107}
108
109static const struct drm_connector_helper_funcs tegra_rgb_connector_helper_funcs = {
110 .get_modes = tegra_output_connector_get_modes,
111 .mode_valid = tegra_rgb_connector_mode_valid,
112};
113
114static void tegra_rgb_encoder_disable(struct drm_encoder *encoder)
115{
116 struct tegra_output *output = encoder_to_output(encoder);
117 struct tegra_rgb *rgb = to_rgb(output);
118
119 if (output->panel)
120 drm_panel_disable(output->panel);
121
122 tegra_dc_write_regs(rgb->dc, rgb_disable, ARRAY_SIZE(rgb_disable));
123 tegra_dc_commit(rgb->dc);
124
125 if (output->panel)
126 drm_panel_unprepare(output->panel);
127}
128
129static void tegra_rgb_encoder_enable(struct drm_encoder *encoder)
130{
131 struct tegra_output *output = encoder_to_output(encoder);
132 struct tegra_rgb *rgb = to_rgb(output);
133 u32 value;
134
135 if (output->panel)
136 drm_panel_prepare(output->panel);
137
138 tegra_dc_write_regs(rgb->dc, rgb_enable, ARRAY_SIZE(rgb_enable));
139
140 value = DE_SELECT_ACTIVE | DE_CONTROL_NORMAL;
141 tegra_dc_writel(rgb->dc, value, DC_DISP_DATA_ENABLE_OPTIONS);
142
143 /* XXX: parameterize? */
144 value = tegra_dc_readl(rgb->dc, DC_COM_PIN_OUTPUT_POLARITY(1));
145 value &= ~LVS_OUTPUT_POLARITY_LOW;
146 value &= ~LHS_OUTPUT_POLARITY_LOW;
147 tegra_dc_writel(rgb->dc, value, DC_COM_PIN_OUTPUT_POLARITY(1));
148
149 /* XXX: parameterize? */
150 value = DISP_DATA_FORMAT_DF1P1C | DISP_ALIGNMENT_MSB |
151 DISP_ORDER_RED_BLUE;
152 tegra_dc_writel(rgb->dc, value, DC_DISP_DISP_INTERFACE_CONTROL);
153
154 /* XXX: parameterize? */
155 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
156 tegra_dc_writel(rgb->dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
157
158 tegra_dc_commit(rgb->dc);
159
160 if (output->panel)
161 drm_panel_enable(output->panel);
162}
163
164static int
165tegra_rgb_encoder_atomic_check(struct drm_encoder *encoder,
166 struct drm_crtc_state *crtc_state,
167 struct drm_connector_state *conn_state)
168{
169 struct tegra_output *output = encoder_to_output(encoder);
170 struct tegra_dc *dc = to_tegra_dc(conn_state->crtc);
171 unsigned long pclk = crtc_state->mode.clock * 1000;
172 struct tegra_rgb *rgb = to_rgb(output);
173 unsigned int div;
174 int err;
175
176 /*
177 * We may not want to change the frequency of the parent clock, since
178 * it may be a parent for other peripherals. This is due to the fact
179 * that on Tegra20 there's only a single clock dedicated to display
180 * (pll_d_out0), whereas later generations have a second one that can
181 * be used to independently drive a second output (pll_d2_out0).
182 *
183 * As a way to support multiple outputs on Tegra20 as well, pll_p is
184 * typically used as the parent clock for the display controllers.
185 * But this comes at a cost: pll_p is the parent of several other
186 * peripherals, so its frequency shouldn't change out of the blue.
187 *
188 * The best we can do at this point is to use the shift clock divider
189 * and hope that the desired frequency can be matched (or at least
190 * matched sufficiently close that the panel will still work).
191 */
192 div = ((clk_get_rate(rgb->clk) * 2) / pclk) - 2;
193 pclk = 0;
194
195 err = tegra_dc_state_setup_clock(dc, crtc_state, rgb->clk_parent,
196 pclk, div);
197 if (err < 0) {
198 dev_err(output->dev, "failed to setup CRTC state: %d\n", err);
199 return err;
200 }
201
202 return err;
203}
204
205static const struct drm_encoder_helper_funcs tegra_rgb_encoder_helper_funcs = {
206 .disable = tegra_rgb_encoder_disable,
207 .enable = tegra_rgb_encoder_enable,
208 .atomic_check = tegra_rgb_encoder_atomic_check,
209};
210
211int tegra_dc_rgb_probe(struct tegra_dc *dc)
212{
213 struct device_node *np;
214 struct tegra_rgb *rgb;
215 int err;
216
217 np = of_get_child_by_name(dc->dev->of_node, "rgb");
218 if (!np || !of_device_is_available(np))
219 return -ENODEV;
220
221 rgb = devm_kzalloc(dc->dev, sizeof(*rgb), GFP_KERNEL);
222 if (!rgb)
223 return -ENOMEM;
224
225 rgb->output.dev = dc->dev;
226 rgb->output.of_node = np;
227 rgb->dc = dc;
228
229 err = tegra_output_probe(&rgb->output);
230 if (err < 0)
231 return err;
232
233 rgb->clk = devm_clk_get(dc->dev, NULL);
234 if (IS_ERR(rgb->clk)) {
235 dev_err(dc->dev, "failed to get clock\n");
236 return PTR_ERR(rgb->clk);
237 }
238
239 rgb->clk_parent = devm_clk_get(dc->dev, "parent");
240 if (IS_ERR(rgb->clk_parent)) {
241 dev_err(dc->dev, "failed to get parent clock\n");
242 return PTR_ERR(rgb->clk_parent);
243 }
244
245 err = clk_set_parent(rgb->clk, rgb->clk_parent);
246 if (err < 0) {
247 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
248 return err;
249 }
250
251 dc->rgb = &rgb->output;
252
253 return 0;
254}
255
256int tegra_dc_rgb_remove(struct tegra_dc *dc)
257{
258 if (!dc->rgb)
259 return 0;
260
261 tegra_output_remove(dc->rgb);
262 dc->rgb = NULL;
263
264 return 0;
265}
266
267int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc)
268{
269 struct tegra_output *output = dc->rgb;
270 int err;
271
272 if (!dc->rgb)
273 return -ENODEV;
274
275 drm_connector_init(drm, &output->connector, &tegra_rgb_connector_funcs,
276 DRM_MODE_CONNECTOR_LVDS);
277 drm_connector_helper_add(&output->connector,
278 &tegra_rgb_connector_helper_funcs);
279 output->connector.dpms = DRM_MODE_DPMS_OFF;
280
281 drm_simple_encoder_init(drm, &output->encoder, DRM_MODE_ENCODER_LVDS);
282 drm_encoder_helper_add(&output->encoder,
283 &tegra_rgb_encoder_helper_funcs);
284
285 drm_connector_attach_encoder(&output->connector,
286 &output->encoder);
287 drm_connector_register(&output->connector);
288
289 err = tegra_output_init(drm, output);
290 if (err < 0) {
291 dev_err(output->dev, "failed to initialize output: %d\n", err);
292 return err;
293 }
294
295 /*
296 * Other outputs can be attached to either display controller. The RGB
297 * outputs are an exception and work only with their parent display
298 * controller.
299 */
300 output->encoder.possible_crtcs = drm_crtc_mask(&dc->base);
301
302 return 0;
303}
304
305int tegra_dc_rgb_exit(struct tegra_dc *dc)
306{
307 if (dc->rgb)
308 tegra_output_exit(dc->rgb);
309
310 return 0;
311}