Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 44#include <net/snmp.h>
 45#include <net/tls.h>
 46#include <net/tls_toe.h>
 47
 48MODULE_AUTHOR("Mellanox Technologies");
 49MODULE_DESCRIPTION("Transport Layer Security Support");
 50MODULE_LICENSE("Dual BSD/GPL");
 51MODULE_ALIAS_TCP_ULP("tls");
 52
 53enum {
 54	TLSV4,
 55	TLSV6,
 56	TLS_NUM_PROTS,
 57};
 58
 59static const struct proto *saved_tcpv6_prot;
 60static DEFINE_MUTEX(tcpv6_prot_mutex);
 61static const struct proto *saved_tcpv4_prot;
 62static DEFINE_MUTEX(tcpv4_prot_mutex);
 
 
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 const struct proto *base);
 67
 68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	WRITE_ONCE(sk->sk_prot,
 73		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 74}
 75
 76int wait_on_pending_writer(struct sock *sk, long *timeo)
 77{
 78	int rc = 0;
 79	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 80
 81	add_wait_queue(sk_sleep(sk), &wait);
 82	while (1) {
 83		if (!*timeo) {
 84			rc = -EAGAIN;
 85			break;
 86		}
 87
 88		if (signal_pending(current)) {
 89			rc = sock_intr_errno(*timeo);
 90			break;
 91		}
 92
 93		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 94			break;
 95	}
 96	remove_wait_queue(sk_sleep(sk), &wait);
 97	return rc;
 98}
 99
100int tls_push_sg(struct sock *sk,
101		struct tls_context *ctx,
102		struct scatterlist *sg,
103		u16 first_offset,
104		int flags)
105{
106	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107	int ret = 0;
108	struct page *p;
109	size_t size;
110	int offset = first_offset;
111
112	size = sg->length - offset;
113	offset += sg->offset;
114
115	ctx->in_tcp_sendpages = true;
116	while (1) {
117		if (sg_is_last(sg))
118			sendpage_flags = flags;
119
120		/* is sending application-limited? */
121		tcp_rate_check_app_limited(sk);
122		p = sg_page(sg);
123retry:
124		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126		if (ret != size) {
127			if (ret > 0) {
128				offset += ret;
129				size -= ret;
130				goto retry;
131			}
132
133			offset -= sg->offset;
134			ctx->partially_sent_offset = offset;
135			ctx->partially_sent_record = (void *)sg;
136			ctx->in_tcp_sendpages = false;
137			return ret;
138		}
139
140		put_page(p);
141		sk_mem_uncharge(sk, sg->length);
142		sg = sg_next(sg);
143		if (!sg)
144			break;
145
146		offset = sg->offset;
147		size = sg->length;
148	}
149
150	ctx->in_tcp_sendpages = false;
151
152	return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157	struct tls_context *ctx = tls_get_ctx(sk);
158
159	if (tls_is_pending_open_record(ctx))
160		return ctx->push_pending_record(sk, flags);
161
162	return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166		      unsigned char *record_type)
167{
168	struct cmsghdr *cmsg;
169	int rc = -EINVAL;
170
171	for_each_cmsghdr(cmsg, msg) {
172		if (!CMSG_OK(msg, cmsg))
173			return -EINVAL;
174		if (cmsg->cmsg_level != SOL_TLS)
175			continue;
176
177		switch (cmsg->cmsg_type) {
178		case TLS_SET_RECORD_TYPE:
179			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180				return -EINVAL;
181
182			if (msg->msg_flags & MSG_MORE)
183				return -EINVAL;
184
185			rc = tls_handle_open_record(sk, msg->msg_flags);
186			if (rc)
187				return rc;
188
189			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
190			rc = 0;
191			break;
192		default:
193			return -EINVAL;
194		}
195	}
196
197	return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201			    int flags)
202{
203	struct scatterlist *sg;
204	u16 offset;
205
206	sg = ctx->partially_sent_record;
207	offset = ctx->partially_sent_offset;
208
209	ctx->partially_sent_record = NULL;
210	return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215	struct scatterlist *sg;
216
217	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 
 
 
 
218		put_page(sg_page(sg));
219		sk_mem_uncharge(sk, sg->length);
 
 
 
 
220	}
221	ctx->partially_sent_record = NULL;
 
222}
223
224static void tls_write_space(struct sock *sk)
225{
226	struct tls_context *ctx = tls_get_ctx(sk);
227
228	/* If in_tcp_sendpages call lower protocol write space handler
229	 * to ensure we wake up any waiting operations there. For example
230	 * if do_tcp_sendpages where to call sk_wait_event.
231	 */
232	if (ctx->in_tcp_sendpages) {
233		ctx->sk_write_space(sk);
234		return;
235	}
236
237#ifdef CONFIG_TLS_DEVICE
238	if (ctx->tx_conf == TLS_HW)
239		tls_device_write_space(sk, ctx);
240	else
241#endif
242		tls_sw_write_space(sk, ctx);
243
244	ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk:  socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257	if (!ctx)
258		return;
259
260	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262	mutex_destroy(&ctx->tx_lock);
263
264	if (sk)
265		kfree_rcu(ctx, rcu);
266	else
267		kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271				 struct tls_context *ctx, long timeo)
272{
273	if (unlikely(sk->sk_write_pending) &&
274	    !wait_on_pending_writer(sk, &timeo))
275		tls_handle_open_record(sk, 0);
276
277	/* We need these for tls_sw_fallback handling of other packets */
278	if (ctx->tx_conf == TLS_SW) {
279		kfree(ctx->tx.rec_seq);
280		kfree(ctx->tx.iv);
281		tls_sw_release_resources_tx(sk);
282		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283	} else if (ctx->tx_conf == TLS_HW) {
284		tls_device_free_resources_tx(sk);
285		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286	}
287
288	if (ctx->rx_conf == TLS_SW) {
289		tls_sw_release_resources_rx(sk);
290		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291	} else if (ctx->rx_conf == TLS_HW) {
292		tls_device_offload_cleanup_rx(sk);
293		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294	}
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299	struct inet_connection_sock *icsk = inet_csk(sk);
300	struct tls_context *ctx = tls_get_ctx(sk);
301	long timeo = sock_sndtimeo(sk, 0);
302	bool free_ctx;
303
304	if (ctx->tx_conf == TLS_SW)
305		tls_sw_cancel_work_tx(ctx);
306
307	lock_sock(sk);
308	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311		tls_sk_proto_cleanup(sk, ctx, timeo);
312
313	write_lock_bh(&sk->sk_callback_lock);
314	if (free_ctx)
315		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317	if (sk->sk_write_space == tls_write_space)
318		sk->sk_write_space = ctx->sk_write_space;
319	write_unlock_bh(&sk->sk_callback_lock);
320	release_sock(sk);
321	if (ctx->tx_conf == TLS_SW)
322		tls_sw_free_ctx_tx(ctx);
323	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324		tls_sw_strparser_done(ctx);
325	if (ctx->rx_conf == TLS_SW)
326		tls_sw_free_ctx_rx(ctx);
327	ctx->sk_proto->close(sk, timeout);
328
329	if (free_ctx)
330		tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334				  int __user *optlen, int tx)
335{
336	int rc = 0;
337	struct tls_context *ctx = tls_get_ctx(sk);
338	struct tls_crypto_info *crypto_info;
339	struct cipher_context *cctx;
340	int len;
341
342	if (get_user(len, optlen))
343		return -EFAULT;
344
345	if (!optval || (len < sizeof(*crypto_info))) {
346		rc = -EINVAL;
347		goto out;
348	}
349
350	if (!ctx) {
351		rc = -EBUSY;
352		goto out;
353	}
354
355	/* get user crypto info */
356	if (tx) {
357		crypto_info = &ctx->crypto_send.info;
358		cctx = &ctx->tx;
359	} else {
360		crypto_info = &ctx->crypto_recv.info;
361		cctx = &ctx->rx;
362	}
363
364	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365		rc = -EBUSY;
366		goto out;
367	}
368
369	if (len == sizeof(*crypto_info)) {
370		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371			rc = -EFAULT;
372		goto out;
373	}
374
375	switch (crypto_info->cipher_type) {
376	case TLS_CIPHER_AES_GCM_128: {
377		struct tls12_crypto_info_aes_gcm_128 *
378		  crypto_info_aes_gcm_128 =
379		  container_of(crypto_info,
380			       struct tls12_crypto_info_aes_gcm_128,
381			       info);
382
383		if (len != sizeof(*crypto_info_aes_gcm_128)) {
384			rc = -EINVAL;
385			goto out;
386		}
387		lock_sock(sk);
388		memcpy(crypto_info_aes_gcm_128->iv,
389		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
391		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393		release_sock(sk);
394		if (copy_to_user(optval,
395				 crypto_info_aes_gcm_128,
396				 sizeof(*crypto_info_aes_gcm_128)))
397			rc = -EFAULT;
398		break;
399	}
400	case TLS_CIPHER_AES_GCM_256: {
401		struct tls12_crypto_info_aes_gcm_256 *
402		  crypto_info_aes_gcm_256 =
403		  container_of(crypto_info,
404			       struct tls12_crypto_info_aes_gcm_256,
405			       info);
406
407		if (len != sizeof(*crypto_info_aes_gcm_256)) {
408			rc = -EINVAL;
409			goto out;
410		}
411		lock_sock(sk);
412		memcpy(crypto_info_aes_gcm_256->iv,
413		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
415		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417		release_sock(sk);
418		if (copy_to_user(optval,
419				 crypto_info_aes_gcm_256,
420				 sizeof(*crypto_info_aes_gcm_256)))
421			rc = -EFAULT;
422		break;
423	}
424	default:
425		rc = -EINVAL;
426	}
427
428out:
429	return rc;
430}
431
432static int do_tls_getsockopt(struct sock *sk, int optname,
433			     char __user *optval, int __user *optlen)
434{
435	int rc = 0;
436
437	switch (optname) {
438	case TLS_TX:
439	case TLS_RX:
440		rc = do_tls_getsockopt_conf(sk, optval, optlen,
441					    optname == TLS_TX);
442		break;
443	default:
444		rc = -ENOPROTOOPT;
445		break;
446	}
447	return rc;
448}
449
450static int tls_getsockopt(struct sock *sk, int level, int optname,
451			  char __user *optval, int __user *optlen)
452{
453	struct tls_context *ctx = tls_get_ctx(sk);
454
455	if (level != SOL_TLS)
456		return ctx->sk_proto->getsockopt(sk, level,
457						 optname, optval, optlen);
458
459	return do_tls_getsockopt(sk, optname, optval, optlen);
460}
461
462static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
463				  unsigned int optlen, int tx)
464{
465	struct tls_crypto_info *crypto_info;
466	struct tls_crypto_info *alt_crypto_info;
467	struct tls_context *ctx = tls_get_ctx(sk);
468	size_t optsize;
469	int rc = 0;
470	int conf;
471
472	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
473		rc = -EINVAL;
474		goto out;
475	}
476
477	if (tx) {
478		crypto_info = &ctx->crypto_send.info;
479		alt_crypto_info = &ctx->crypto_recv.info;
480	} else {
481		crypto_info = &ctx->crypto_recv.info;
482		alt_crypto_info = &ctx->crypto_send.info;
483	}
484
485	/* Currently we don't support set crypto info more than one time */
486	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
487		rc = -EBUSY;
488		goto out;
489	}
490
491	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
492	if (rc) {
493		rc = -EFAULT;
494		goto err_crypto_info;
495	}
496
497	/* check version */
498	if (crypto_info->version != TLS_1_2_VERSION &&
499	    crypto_info->version != TLS_1_3_VERSION) {
500		rc = -EINVAL;
501		goto err_crypto_info;
502	}
503
504	/* Ensure that TLS version and ciphers are same in both directions */
505	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
506		if (alt_crypto_info->version != crypto_info->version ||
507		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
508			rc = -EINVAL;
509			goto err_crypto_info;
510		}
511	}
512
513	switch (crypto_info->cipher_type) {
514	case TLS_CIPHER_AES_GCM_128:
515		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
516		break;
517	case TLS_CIPHER_AES_GCM_256: {
518		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
519		break;
520	}
521	case TLS_CIPHER_AES_CCM_128:
522		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
523		break;
524	case TLS_CIPHER_CHACHA20_POLY1305:
525		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
526		break;
527	default:
528		rc = -EINVAL;
529		goto err_crypto_info;
530	}
531
532	if (optlen != optsize) {
533		rc = -EINVAL;
534		goto err_crypto_info;
535	}
536
537	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
538				      sizeof(*crypto_info),
539				      optlen - sizeof(*crypto_info));
540	if (rc) {
541		rc = -EFAULT;
542		goto err_crypto_info;
543	}
544
545	if (tx) {
546		rc = tls_set_device_offload(sk, ctx);
547		conf = TLS_HW;
548		if (!rc) {
549			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
550			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
551		} else {
552			rc = tls_set_sw_offload(sk, ctx, 1);
553			if (rc)
554				goto err_crypto_info;
555			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
556			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
557			conf = TLS_SW;
558		}
559	} else {
560		rc = tls_set_device_offload_rx(sk, ctx);
561		conf = TLS_HW;
562		if (!rc) {
563			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
564			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
565		} else {
566			rc = tls_set_sw_offload(sk, ctx, 0);
567			if (rc)
568				goto err_crypto_info;
569			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
570			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
571			conf = TLS_SW;
572		}
573		tls_sw_strparser_arm(sk, ctx);
574	}
575
576	if (tx)
577		ctx->tx_conf = conf;
578	else
579		ctx->rx_conf = conf;
580	update_sk_prot(sk, ctx);
581	if (tx) {
582		ctx->sk_write_space = sk->sk_write_space;
583		sk->sk_write_space = tls_write_space;
584	} else {
585		sk->sk_socket->ops = &tls_sw_proto_ops;
586	}
587	goto out;
588
589err_crypto_info:
590	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591out:
592	return rc;
593}
594
595static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596			     unsigned int optlen)
597{
598	int rc = 0;
599
600	switch (optname) {
601	case TLS_TX:
602	case TLS_RX:
603		lock_sock(sk);
604		rc = do_tls_setsockopt_conf(sk, optval, optlen,
605					    optname == TLS_TX);
606		release_sock(sk);
607		break;
608	default:
609		rc = -ENOPROTOOPT;
610		break;
611	}
612	return rc;
613}
614
615static int tls_setsockopt(struct sock *sk, int level, int optname,
616			  sockptr_t optval, unsigned int optlen)
617{
618	struct tls_context *ctx = tls_get_ctx(sk);
619
620	if (level != SOL_TLS)
621		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622						 optlen);
623
624	return do_tls_setsockopt(sk, optname, optval, optlen);
625}
626
627struct tls_context *tls_ctx_create(struct sock *sk)
628{
629	struct inet_connection_sock *icsk = inet_csk(sk);
630	struct tls_context *ctx;
631
632	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633	if (!ctx)
634		return NULL;
635
636	mutex_init(&ctx->tx_lock);
637	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638	ctx->sk_proto = READ_ONCE(sk->sk_prot);
639	ctx->sk = sk;
640	return ctx;
641}
642
643static void tls_build_proto(struct sock *sk)
644{
645	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
646	struct proto *prot = READ_ONCE(sk->sk_prot);
647
648	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
649	if (ip_ver == TLSV6 &&
650	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
651		mutex_lock(&tcpv6_prot_mutex);
652		if (likely(prot != saved_tcpv6_prot)) {
653			build_protos(tls_prots[TLSV6], prot);
654			smp_store_release(&saved_tcpv6_prot, prot);
655		}
656		mutex_unlock(&tcpv6_prot_mutex);
657	}
658
659	if (ip_ver == TLSV4 &&
660	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
661		mutex_lock(&tcpv4_prot_mutex);
662		if (likely(prot != saved_tcpv4_prot)) {
663			build_protos(tls_prots[TLSV4], prot);
664			smp_store_release(&saved_tcpv4_prot, prot);
665		}
666		mutex_unlock(&tcpv4_prot_mutex);
667	}
668}
669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
671			 const struct proto *base)
672{
673	prot[TLS_BASE][TLS_BASE] = *base;
674	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
675	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
676	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
677
678	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
679	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
680	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
681
682	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
683	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
684	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
685	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
686
687	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
688	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
689	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
690	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
691
692#ifdef CONFIG_TLS_DEVICE
693	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
694	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
695	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
696
697	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
698	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
699	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
700
701	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
702
703	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
704
705	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
706#endif
707#ifdef CONFIG_TLS_TOE
708	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
709	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
710	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
711#endif
712}
713
714static int tls_init(struct sock *sk)
715{
716	struct tls_context *ctx;
717	int rc = 0;
718
719	tls_build_proto(sk);
720
721#ifdef CONFIG_TLS_TOE
722	if (tls_toe_bypass(sk))
723		return 0;
724#endif
725
726	/* The TLS ulp is currently supported only for TCP sockets
727	 * in ESTABLISHED state.
728	 * Supporting sockets in LISTEN state will require us
729	 * to modify the accept implementation to clone rather then
730	 * share the ulp context.
731	 */
732	if (sk->sk_state != TCP_ESTABLISHED)
733		return -ENOTCONN;
 
 
734
735	/* allocate tls context */
736	write_lock_bh(&sk->sk_callback_lock);
737	ctx = tls_ctx_create(sk);
738	if (!ctx) {
739		rc = -ENOMEM;
740		goto out;
741	}
742
743	ctx->tx_conf = TLS_BASE;
744	ctx->rx_conf = TLS_BASE;
745	update_sk_prot(sk, ctx);
746out:
747	write_unlock_bh(&sk->sk_callback_lock);
748	return rc;
749}
750
751static void tls_update(struct sock *sk, struct proto *p,
752		       void (*write_space)(struct sock *sk))
753{
754	struct tls_context *ctx;
755
756	ctx = tls_get_ctx(sk);
757	if (likely(ctx)) {
758		ctx->sk_write_space = write_space;
759		ctx->sk_proto = p;
760	} else {
761		/* Pairs with lockless read in sk_clone_lock(). */
762		WRITE_ONCE(sk->sk_prot, p);
763		sk->sk_write_space = write_space;
764	}
765}
766
767static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
768{
769	u16 version, cipher_type;
770	struct tls_context *ctx;
771	struct nlattr *start;
772	int err;
773
774	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
775	if (!start)
776		return -EMSGSIZE;
777
778	rcu_read_lock();
779	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
780	if (!ctx) {
781		err = 0;
782		goto nla_failure;
783	}
784	version = ctx->prot_info.version;
785	if (version) {
786		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
787		if (err)
788			goto nla_failure;
789	}
790	cipher_type = ctx->prot_info.cipher_type;
791	if (cipher_type) {
792		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
793		if (err)
794			goto nla_failure;
795	}
796	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
797	if (err)
798		goto nla_failure;
799
800	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
801	if (err)
802		goto nla_failure;
803
804	rcu_read_unlock();
805	nla_nest_end(skb, start);
806	return 0;
807
808nla_failure:
809	rcu_read_unlock();
810	nla_nest_cancel(skb, start);
811	return err;
812}
813
814static size_t tls_get_info_size(const struct sock *sk)
815{
816	size_t size = 0;
817
818	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
819		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
820		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
821		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
822		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
823		0;
824
825	return size;
826}
827
828static int __net_init tls_init_net(struct net *net)
829{
830	int err;
831
832	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
833	if (!net->mib.tls_statistics)
834		return -ENOMEM;
835
836	err = tls_proc_init(net);
837	if (err)
838		goto err_free_stats;
839
840	return 0;
841err_free_stats:
842	free_percpu(net->mib.tls_statistics);
843	return err;
844}
 
845
846static void __net_exit tls_exit_net(struct net *net)
847{
848	tls_proc_fini(net);
849	free_percpu(net->mib.tls_statistics);
 
850}
851
852static struct pernet_operations tls_proc_ops = {
853	.init = tls_init_net,
854	.exit = tls_exit_net,
855};
856
857static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
858	.name			= "tls",
859	.owner			= THIS_MODULE,
860	.init			= tls_init,
861	.update			= tls_update,
862	.get_info		= tls_get_info,
863	.get_info_size		= tls_get_info_size,
864};
865
866static int __init tls_register(void)
867{
868	int err;
869
870	err = register_pernet_subsys(&tls_proc_ops);
871	if (err)
872		return err;
873
874	tls_sw_proto_ops = inet_stream_ops;
875	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
876	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked;
877
878	tls_device_init();
879	tcp_register_ulp(&tcp_tls_ulp_ops);
880
881	return 0;
882}
883
884static void __exit tls_unregister(void)
885{
886	tcp_unregister_ulp(&tcp_tls_ulp_ops);
887	tls_device_cleanup();
888	unregister_pernet_subsys(&tls_proc_ops);
889}
890
891module_init(tls_register);
892module_exit(tls_unregister);
v5.4
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 
 44#include <net/tls.h>
 
 45
 46MODULE_AUTHOR("Mellanox Technologies");
 47MODULE_DESCRIPTION("Transport Layer Security Support");
 48MODULE_LICENSE("Dual BSD/GPL");
 49MODULE_ALIAS_TCP_ULP("tls");
 50
 51enum {
 52	TLSV4,
 53	TLSV6,
 54	TLS_NUM_PROTS,
 55};
 56
 57static struct proto *saved_tcpv6_prot;
 58static DEFINE_MUTEX(tcpv6_prot_mutex);
 59static struct proto *saved_tcpv4_prot;
 60static DEFINE_MUTEX(tcpv4_prot_mutex);
 61static LIST_HEAD(device_list);
 62static DEFINE_SPINLOCK(device_spinlock);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 struct proto *base);
 67
 68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
 
 73}
 74
 75int wait_on_pending_writer(struct sock *sk, long *timeo)
 76{
 77	int rc = 0;
 78	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 79
 80	add_wait_queue(sk_sleep(sk), &wait);
 81	while (1) {
 82		if (!*timeo) {
 83			rc = -EAGAIN;
 84			break;
 85		}
 86
 87		if (signal_pending(current)) {
 88			rc = sock_intr_errno(*timeo);
 89			break;
 90		}
 91
 92		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 93			break;
 94	}
 95	remove_wait_queue(sk_sleep(sk), &wait);
 96	return rc;
 97}
 98
 99int tls_push_sg(struct sock *sk,
100		struct tls_context *ctx,
101		struct scatterlist *sg,
102		u16 first_offset,
103		int flags)
104{
105	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106	int ret = 0;
107	struct page *p;
108	size_t size;
109	int offset = first_offset;
110
111	size = sg->length - offset;
112	offset += sg->offset;
113
114	ctx->in_tcp_sendpages = true;
115	while (1) {
116		if (sg_is_last(sg))
117			sendpage_flags = flags;
118
119		/* is sending application-limited? */
120		tcp_rate_check_app_limited(sk);
121		p = sg_page(sg);
122retry:
123		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125		if (ret != size) {
126			if (ret > 0) {
127				offset += ret;
128				size -= ret;
129				goto retry;
130			}
131
132			offset -= sg->offset;
133			ctx->partially_sent_offset = offset;
134			ctx->partially_sent_record = (void *)sg;
135			ctx->in_tcp_sendpages = false;
136			return ret;
137		}
138
139		put_page(p);
140		sk_mem_uncharge(sk, sg->length);
141		sg = sg_next(sg);
142		if (!sg)
143			break;
144
145		offset = sg->offset;
146		size = sg->length;
147	}
148
149	ctx->in_tcp_sendpages = false;
150
151	return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156	struct tls_context *ctx = tls_get_ctx(sk);
157
158	if (tls_is_pending_open_record(ctx))
159		return ctx->push_pending_record(sk, flags);
160
161	return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165		      unsigned char *record_type)
166{
167	struct cmsghdr *cmsg;
168	int rc = -EINVAL;
169
170	for_each_cmsghdr(cmsg, msg) {
171		if (!CMSG_OK(msg, cmsg))
172			return -EINVAL;
173		if (cmsg->cmsg_level != SOL_TLS)
174			continue;
175
176		switch (cmsg->cmsg_type) {
177		case TLS_SET_RECORD_TYPE:
178			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179				return -EINVAL;
180
181			if (msg->msg_flags & MSG_MORE)
182				return -EINVAL;
183
184			rc = tls_handle_open_record(sk, msg->msg_flags);
185			if (rc)
186				return rc;
187
188			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189			rc = 0;
190			break;
191		default:
192			return -EINVAL;
193		}
194	}
195
196	return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200			    int flags)
201{
202	struct scatterlist *sg;
203	u16 offset;
204
205	sg = ctx->partially_sent_record;
206	offset = ctx->partially_sent_offset;
207
208	ctx->partially_sent_record = NULL;
209	return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214	struct scatterlist *sg;
215
216	sg = ctx->partially_sent_record;
217	if (!sg)
218		return false;
219
220	while (1) {
221		put_page(sg_page(sg));
222		sk_mem_uncharge(sk, sg->length);
223
224		if (sg_is_last(sg))
225			break;
226		sg++;
227	}
228	ctx->partially_sent_record = NULL;
229	return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234	struct tls_context *ctx = tls_get_ctx(sk);
235
236	/* If in_tcp_sendpages call lower protocol write space handler
237	 * to ensure we wake up any waiting operations there. For example
238	 * if do_tcp_sendpages where to call sk_wait_event.
239	 */
240	if (ctx->in_tcp_sendpages) {
241		ctx->sk_write_space(sk);
242		return;
243	}
244
245#ifdef CONFIG_TLS_DEVICE
246	if (ctx->tx_conf == TLS_HW)
247		tls_device_write_space(sk, ctx);
248	else
249#endif
250		tls_sw_write_space(sk, ctx);
251
252	ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk:  socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265	if (!ctx)
266		return;
267
268	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270	mutex_destroy(&ctx->tx_lock);
271
272	if (sk)
273		kfree_rcu(ctx, rcu);
274	else
275		kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279				 struct tls_context *ctx, long timeo)
280{
281	if (unlikely(sk->sk_write_pending) &&
282	    !wait_on_pending_writer(sk, &timeo))
283		tls_handle_open_record(sk, 0);
284
285	/* We need these for tls_sw_fallback handling of other packets */
286	if (ctx->tx_conf == TLS_SW) {
287		kfree(ctx->tx.rec_seq);
288		kfree(ctx->tx.iv);
289		tls_sw_release_resources_tx(sk);
 
290	} else if (ctx->tx_conf == TLS_HW) {
291		tls_device_free_resources_tx(sk);
 
292	}
293
294	if (ctx->rx_conf == TLS_SW)
295		tls_sw_release_resources_rx(sk);
296	else if (ctx->rx_conf == TLS_HW)
 
297		tls_device_offload_cleanup_rx(sk);
 
 
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302	struct inet_connection_sock *icsk = inet_csk(sk);
303	struct tls_context *ctx = tls_get_ctx(sk);
304	long timeo = sock_sndtimeo(sk, 0);
305	bool free_ctx;
306
307	if (ctx->tx_conf == TLS_SW)
308		tls_sw_cancel_work_tx(ctx);
309
310	lock_sock(sk);
311	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314		tls_sk_proto_cleanup(sk, ctx, timeo);
315
316	write_lock_bh(&sk->sk_callback_lock);
317	if (free_ctx)
318		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319	sk->sk_prot = ctx->sk_proto;
320	if (sk->sk_write_space == tls_write_space)
321		sk->sk_write_space = ctx->sk_write_space;
322	write_unlock_bh(&sk->sk_callback_lock);
323	release_sock(sk);
324	if (ctx->tx_conf == TLS_SW)
325		tls_sw_free_ctx_tx(ctx);
326	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327		tls_sw_strparser_done(ctx);
328	if (ctx->rx_conf == TLS_SW)
329		tls_sw_free_ctx_rx(ctx);
330	ctx->sk_proto->close(sk, timeout);
331
332	if (free_ctx)
333		tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337				int __user *optlen)
338{
339	int rc = 0;
340	struct tls_context *ctx = tls_get_ctx(sk);
341	struct tls_crypto_info *crypto_info;
 
342	int len;
343
344	if (get_user(len, optlen))
345		return -EFAULT;
346
347	if (!optval || (len < sizeof(*crypto_info))) {
348		rc = -EINVAL;
349		goto out;
350	}
351
352	if (!ctx) {
353		rc = -EBUSY;
354		goto out;
355	}
356
357	/* get user crypto info */
358	crypto_info = &ctx->crypto_send.info;
 
 
 
 
 
 
359
360	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361		rc = -EBUSY;
362		goto out;
363	}
364
365	if (len == sizeof(*crypto_info)) {
366		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367			rc = -EFAULT;
368		goto out;
369	}
370
371	switch (crypto_info->cipher_type) {
372	case TLS_CIPHER_AES_GCM_128: {
373		struct tls12_crypto_info_aes_gcm_128 *
374		  crypto_info_aes_gcm_128 =
375		  container_of(crypto_info,
376			       struct tls12_crypto_info_aes_gcm_128,
377			       info);
378
379		if (len != sizeof(*crypto_info_aes_gcm_128)) {
380			rc = -EINVAL;
381			goto out;
382		}
383		lock_sock(sk);
384		memcpy(crypto_info_aes_gcm_128->iv,
385		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
387		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389		release_sock(sk);
390		if (copy_to_user(optval,
391				 crypto_info_aes_gcm_128,
392				 sizeof(*crypto_info_aes_gcm_128)))
393			rc = -EFAULT;
394		break;
395	}
396	case TLS_CIPHER_AES_GCM_256: {
397		struct tls12_crypto_info_aes_gcm_256 *
398		  crypto_info_aes_gcm_256 =
399		  container_of(crypto_info,
400			       struct tls12_crypto_info_aes_gcm_256,
401			       info);
402
403		if (len != sizeof(*crypto_info_aes_gcm_256)) {
404			rc = -EINVAL;
405			goto out;
406		}
407		lock_sock(sk);
408		memcpy(crypto_info_aes_gcm_256->iv,
409		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
411		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413		release_sock(sk);
414		if (copy_to_user(optval,
415				 crypto_info_aes_gcm_256,
416				 sizeof(*crypto_info_aes_gcm_256)))
417			rc = -EFAULT;
418		break;
419	}
420	default:
421		rc = -EINVAL;
422	}
423
424out:
425	return rc;
426}
427
428static int do_tls_getsockopt(struct sock *sk, int optname,
429			     char __user *optval, int __user *optlen)
430{
431	int rc = 0;
432
433	switch (optname) {
434	case TLS_TX:
435		rc = do_tls_getsockopt_tx(sk, optval, optlen);
 
 
436		break;
437	default:
438		rc = -ENOPROTOOPT;
439		break;
440	}
441	return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445			  char __user *optval, int __user *optlen)
446{
447	struct tls_context *ctx = tls_get_ctx(sk);
448
449	if (level != SOL_TLS)
450		return ctx->sk_proto->getsockopt(sk, level,
451						 optname, optval, optlen);
452
453	return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457				  unsigned int optlen, int tx)
458{
459	struct tls_crypto_info *crypto_info;
460	struct tls_crypto_info *alt_crypto_info;
461	struct tls_context *ctx = tls_get_ctx(sk);
462	size_t optsize;
463	int rc = 0;
464	int conf;
465
466	if (!optval || (optlen < sizeof(*crypto_info))) {
467		rc = -EINVAL;
468		goto out;
469	}
470
471	if (tx) {
472		crypto_info = &ctx->crypto_send.info;
473		alt_crypto_info = &ctx->crypto_recv.info;
474	} else {
475		crypto_info = &ctx->crypto_recv.info;
476		alt_crypto_info = &ctx->crypto_send.info;
477	}
478
479	/* Currently we don't support set crypto info more than one time */
480	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481		rc = -EBUSY;
482		goto out;
483	}
484
485	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486	if (rc) {
487		rc = -EFAULT;
488		goto err_crypto_info;
489	}
490
491	/* check version */
492	if (crypto_info->version != TLS_1_2_VERSION &&
493	    crypto_info->version != TLS_1_3_VERSION) {
494		rc = -ENOTSUPP;
495		goto err_crypto_info;
496	}
497
498	/* Ensure that TLS version and ciphers are same in both directions */
499	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500		if (alt_crypto_info->version != crypto_info->version ||
501		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502			rc = -EINVAL;
503			goto err_crypto_info;
504		}
505	}
506
507	switch (crypto_info->cipher_type) {
508	case TLS_CIPHER_AES_GCM_128:
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510		break;
511	case TLS_CIPHER_AES_GCM_256: {
512		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513		break;
514	}
515	case TLS_CIPHER_AES_CCM_128:
516		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517		break;
 
 
 
518	default:
519		rc = -EINVAL;
520		goto err_crypto_info;
521	}
522
523	if (optlen != optsize) {
524		rc = -EINVAL;
525		goto err_crypto_info;
526	}
527
528	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529			    optlen - sizeof(*crypto_info));
 
530	if (rc) {
531		rc = -EFAULT;
532		goto err_crypto_info;
533	}
534
535	if (tx) {
536		rc = tls_set_device_offload(sk, ctx);
537		conf = TLS_HW;
538		if (rc) {
 
 
 
539			rc = tls_set_sw_offload(sk, ctx, 1);
540			if (rc)
541				goto err_crypto_info;
 
 
542			conf = TLS_SW;
543		}
544	} else {
545		rc = tls_set_device_offload_rx(sk, ctx);
546		conf = TLS_HW;
547		if (rc) {
 
 
 
548			rc = tls_set_sw_offload(sk, ctx, 0);
549			if (rc)
550				goto err_crypto_info;
 
 
551			conf = TLS_SW;
552		}
553		tls_sw_strparser_arm(sk, ctx);
554	}
555
556	if (tx)
557		ctx->tx_conf = conf;
558	else
559		ctx->rx_conf = conf;
560	update_sk_prot(sk, ctx);
561	if (tx) {
562		ctx->sk_write_space = sk->sk_write_space;
563		sk->sk_write_space = tls_write_space;
564	} else {
565		sk->sk_socket->ops = &tls_sw_proto_ops;
566	}
567	goto out;
568
569err_crypto_info:
570	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
572	return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576			     char __user *optval, unsigned int optlen)
577{
578	int rc = 0;
579
580	switch (optname) {
581	case TLS_TX:
582	case TLS_RX:
583		lock_sock(sk);
584		rc = do_tls_setsockopt_conf(sk, optval, optlen,
585					    optname == TLS_TX);
586		release_sock(sk);
587		break;
588	default:
589		rc = -ENOPROTOOPT;
590		break;
591	}
592	return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596			  char __user *optval, unsigned int optlen)
597{
598	struct tls_context *ctx = tls_get_ctx(sk);
599
600	if (level != SOL_TLS)
601		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602						 optlen);
603
604	return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609	struct inet_connection_sock *icsk = inet_csk(sk);
610	struct tls_context *ctx;
611
612	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613	if (!ctx)
614		return NULL;
615
616	mutex_init(&ctx->tx_lock);
617	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618	ctx->sk_proto = sk->sk_prot;
 
619	return ctx;
620}
621
622static void tls_build_proto(struct sock *sk)
623{
624	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 
625
626	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627	if (ip_ver == TLSV6 &&
628	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629		mutex_lock(&tcpv6_prot_mutex);
630		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631			build_protos(tls_prots[TLSV6], sk->sk_prot);
632			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
633		}
634		mutex_unlock(&tcpv6_prot_mutex);
635	}
636
637	if (ip_ver == TLSV4 &&
638	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639		mutex_lock(&tcpv4_prot_mutex);
640		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641			build_protos(tls_prots[TLSV4], sk->sk_prot);
642			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
643		}
644		mutex_unlock(&tcpv4_prot_mutex);
645	}
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650	struct tls_context *ctx = tls_get_ctx(sk);
651	struct inet_connection_sock *icsk = inet_csk(sk);
652
653	ctx->sk_destruct(sk);
654	/* Free ctx */
655	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656	tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661	struct tls_context *ctx;
662	struct tls_device *dev;
663	int rc = 0;
664
665	spin_lock_bh(&device_spinlock);
666	list_for_each_entry(dev, &device_list, dev_list) {
667		if (dev->feature && dev->feature(dev)) {
668			ctx = create_ctx(sk);
669			if (!ctx)
670				goto out;
671
672			spin_unlock_bh(&device_spinlock);
673			tls_build_proto(sk);
674			ctx->sk_destruct = sk->sk_destruct;
675			sk->sk_destruct = tls_hw_sk_destruct;
676			ctx->rx_conf = TLS_HW_RECORD;
677			ctx->tx_conf = TLS_HW_RECORD;
678			update_sk_prot(sk, ctx);
679			spin_lock_bh(&device_spinlock);
680			rc = 1;
681			break;
682		}
683	}
684out:
685	spin_unlock_bh(&device_spinlock);
686	return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691	struct tls_context *ctx = tls_get_ctx(sk);
692	struct tls_device *dev;
693
694	spin_lock_bh(&device_spinlock);
695	list_for_each_entry(dev, &device_list, dev_list) {
696		if (dev->unhash) {
697			kref_get(&dev->kref);
698			spin_unlock_bh(&device_spinlock);
699			dev->unhash(dev, sk);
700			kref_put(&dev->kref, dev->release);
701			spin_lock_bh(&device_spinlock);
702		}
703	}
704	spin_unlock_bh(&device_spinlock);
705	ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710	struct tls_context *ctx = tls_get_ctx(sk);
711	struct tls_device *dev;
712	int err;
713
714	err = ctx->sk_proto->hash(sk);
715	spin_lock_bh(&device_spinlock);
716	list_for_each_entry(dev, &device_list, dev_list) {
717		if (dev->hash) {
718			kref_get(&dev->kref);
719			spin_unlock_bh(&device_spinlock);
720			err |= dev->hash(dev, sk);
721			kref_put(&dev->kref, dev->release);
722			spin_lock_bh(&device_spinlock);
723		}
724	}
725	spin_unlock_bh(&device_spinlock);
726
727	if (err)
728		tls_hw_unhash(sk);
729	return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733			 struct proto *base)
734{
735	prot[TLS_BASE][TLS_BASE] = *base;
736	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
737	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
738	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
739
740	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
742	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
743
744	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
746	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
748
749	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
751	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
752	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
757	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
758
759	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
761	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
762
763	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
772	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
 
773}
774
775static int tls_init(struct sock *sk)
776{
777	struct tls_context *ctx;
778	int rc = 0;
779
780	if (tls_hw_prot(sk))
 
 
 
781		return 0;
 
782
783	/* The TLS ulp is currently supported only for TCP sockets
784	 * in ESTABLISHED state.
785	 * Supporting sockets in LISTEN state will require us
786	 * to modify the accept implementation to clone rather then
787	 * share the ulp context.
788	 */
789	if (sk->sk_state != TCP_ESTABLISHED)
790		return -ENOTSUPP;
791
792	tls_build_proto(sk);
793
794	/* allocate tls context */
795	write_lock_bh(&sk->sk_callback_lock);
796	ctx = create_ctx(sk);
797	if (!ctx) {
798		rc = -ENOMEM;
799		goto out;
800	}
801
802	ctx->tx_conf = TLS_BASE;
803	ctx->rx_conf = TLS_BASE;
804	update_sk_prot(sk, ctx);
805out:
806	write_unlock_bh(&sk->sk_callback_lock);
807	return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
 
811{
812	struct tls_context *ctx;
813
814	ctx = tls_get_ctx(sk);
815	if (likely(ctx))
 
816		ctx->sk_proto = p;
817	else
818		sk->sk_prot = p;
 
 
 
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823	u16 version, cipher_type;
824	struct tls_context *ctx;
825	struct nlattr *start;
826	int err;
827
828	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829	if (!start)
830		return -EMSGSIZE;
831
832	rcu_read_lock();
833	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834	if (!ctx) {
835		err = 0;
836		goto nla_failure;
837	}
838	version = ctx->prot_info.version;
839	if (version) {
840		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841		if (err)
842			goto nla_failure;
843	}
844	cipher_type = ctx->prot_info.cipher_type;
845	if (cipher_type) {
846		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847		if (err)
848			goto nla_failure;
849	}
850	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851	if (err)
852		goto nla_failure;
853
854	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855	if (err)
856		goto nla_failure;
857
858	rcu_read_unlock();
859	nla_nest_end(skb, start);
860	return 0;
861
862nla_failure:
863	rcu_read_unlock();
864	nla_nest_cancel(skb, start);
865	return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870	size_t size = 0;
871
872	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
873		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
874		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
875		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
876		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
877		0;
878
879	return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884	spin_lock_bh(&device_spinlock);
885	list_add_tail(&device->dev_list, &device_list);
886	spin_unlock_bh(&device_spinlock);
 
 
 
 
 
 
 
 
 
 
 
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892	spin_lock_bh(&device_spinlock);
893	list_del(&device->dev_list);
894	spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
 
 
 
 
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899	.name			= "tls",
900	.owner			= THIS_MODULE,
901	.init			= tls_init,
902	.update			= tls_update,
903	.get_info		= tls_get_info,
904	.get_info_size		= tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
 
 
 
 
 
 
909	tls_sw_proto_ops = inet_stream_ops;
910	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
912
913	tls_device_init();
914	tcp_register_ulp(&tcp_tls_ulp_ops);
915
916	return 0;
917}
918
919static void __exit tls_unregister(void)
920{
921	tcp_unregister_ulp(&tcp_tls_ulp_ops);
922	tls_device_cleanup();
 
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);