Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48MODULE_AUTHOR("Mellanox Technologies");
49MODULE_DESCRIPTION("Transport Layer Security Support");
50MODULE_LICENSE("Dual BSD/GPL");
51MODULE_ALIAS_TCP_ULP("tls");
52
53enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57};
58
59static const struct proto *saved_tcpv6_prot;
60static DEFINE_MUTEX(tcpv6_prot_mutex);
61static const struct proto *saved_tcpv4_prot;
62static DEFINE_MUTEX(tcpv4_prot_mutex);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74}
75
76int wait_on_pending_writer(struct sock *sk, long *timeo)
77{
78 int rc = 0;
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81 add_wait_queue(sk_sleep(sk), &wait);
82 while (1) {
83 if (!*timeo) {
84 rc = -EAGAIN;
85 break;
86 }
87
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
90 break;
91 }
92
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 break;
95 }
96 remove_wait_queue(sk_sleep(sk), &wait);
97 return rc;
98}
99
100int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
103 u16 first_offset,
104 int flags)
105{
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 int ret = 0;
108 struct page *p;
109 size_t size;
110 int offset = first_offset;
111
112 size = sg->length - offset;
113 offset += sg->offset;
114
115 ctx->in_tcp_sendpages = true;
116 while (1) {
117 if (sg_is_last(sg))
118 sendpage_flags = flags;
119
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
122 p = sg_page(sg);
123retry:
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126 if (ret != size) {
127 if (ret > 0) {
128 offset += ret;
129 size -= ret;
130 goto retry;
131 }
132
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 ctx->in_tcp_sendpages = false;
151
152 return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167{
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 int flags)
202{
203 struct scatterlist *sg;
204 u16 offset;
205
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
208
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215 struct scatterlist *sg;
216
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
220 }
221 ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226 struct tls_context *ctx = tls_get_ctx(sk);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237#ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
240 else
241#endif
242 tls_sw_write_space(sk, ctx);
243
244 ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257 if (!ctx)
258 return;
259
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
263
264 if (sk)
265 kfree_rcu(ctx, rcu);
266 else
267 kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
272{
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
276
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
280 kfree(ctx->tx.iv);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286 }
287
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294 }
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
302 bool free_ctx;
303
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
306
307 lock_sock(sk);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313 write_lock_bh(&sk->sk_callback_lock);
314 if (free_ctx)
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
320 release_sock(sk);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
328
329 if (free_ctx)
330 tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334 int __user *optlen, int tx)
335{
336 int rc = 0;
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 struct cipher_context *cctx;
340 int len;
341
342 if (get_user(len, optlen))
343 return -EFAULT;
344
345 if (!optval || (len < sizeof(*crypto_info))) {
346 rc = -EINVAL;
347 goto out;
348 }
349
350 if (!ctx) {
351 rc = -EBUSY;
352 goto out;
353 }
354
355 /* get user crypto info */
356 if (tx) {
357 crypto_info = &ctx->crypto_send.info;
358 cctx = &ctx->tx;
359 } else {
360 crypto_info = &ctx->crypto_recv.info;
361 cctx = &ctx->rx;
362 }
363
364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365 rc = -EBUSY;
366 goto out;
367 }
368
369 if (len == sizeof(*crypto_info)) {
370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371 rc = -EFAULT;
372 goto out;
373 }
374
375 switch (crypto_info->cipher_type) {
376 case TLS_CIPHER_AES_GCM_128: {
377 struct tls12_crypto_info_aes_gcm_128 *
378 crypto_info_aes_gcm_128 =
379 container_of(crypto_info,
380 struct tls12_crypto_info_aes_gcm_128,
381 info);
382
383 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384 rc = -EINVAL;
385 goto out;
386 }
387 lock_sock(sk);
388 memcpy(crypto_info_aes_gcm_128->iv,
389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390 TLS_CIPHER_AES_GCM_128_IV_SIZE);
391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393 release_sock(sk);
394 if (copy_to_user(optval,
395 crypto_info_aes_gcm_128,
396 sizeof(*crypto_info_aes_gcm_128)))
397 rc = -EFAULT;
398 break;
399 }
400 case TLS_CIPHER_AES_GCM_256: {
401 struct tls12_crypto_info_aes_gcm_256 *
402 crypto_info_aes_gcm_256 =
403 container_of(crypto_info,
404 struct tls12_crypto_info_aes_gcm_256,
405 info);
406
407 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408 rc = -EINVAL;
409 goto out;
410 }
411 lock_sock(sk);
412 memcpy(crypto_info_aes_gcm_256->iv,
413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414 TLS_CIPHER_AES_GCM_256_IV_SIZE);
415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417 release_sock(sk);
418 if (copy_to_user(optval,
419 crypto_info_aes_gcm_256,
420 sizeof(*crypto_info_aes_gcm_256)))
421 rc = -EFAULT;
422 break;
423 }
424 default:
425 rc = -EINVAL;
426 }
427
428out:
429 return rc;
430}
431
432static int do_tls_getsockopt(struct sock *sk, int optname,
433 char __user *optval, int __user *optlen)
434{
435 int rc = 0;
436
437 switch (optname) {
438 case TLS_TX:
439 case TLS_RX:
440 rc = do_tls_getsockopt_conf(sk, optval, optlen,
441 optname == TLS_TX);
442 break;
443 default:
444 rc = -ENOPROTOOPT;
445 break;
446 }
447 return rc;
448}
449
450static int tls_getsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, int __user *optlen)
452{
453 struct tls_context *ctx = tls_get_ctx(sk);
454
455 if (level != SOL_TLS)
456 return ctx->sk_proto->getsockopt(sk, level,
457 optname, optval, optlen);
458
459 return do_tls_getsockopt(sk, optname, optval, optlen);
460}
461
462static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
463 unsigned int optlen, int tx)
464{
465 struct tls_crypto_info *crypto_info;
466 struct tls_crypto_info *alt_crypto_info;
467 struct tls_context *ctx = tls_get_ctx(sk);
468 size_t optsize;
469 int rc = 0;
470 int conf;
471
472 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
473 rc = -EINVAL;
474 goto out;
475 }
476
477 if (tx) {
478 crypto_info = &ctx->crypto_send.info;
479 alt_crypto_info = &ctx->crypto_recv.info;
480 } else {
481 crypto_info = &ctx->crypto_recv.info;
482 alt_crypto_info = &ctx->crypto_send.info;
483 }
484
485 /* Currently we don't support set crypto info more than one time */
486 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
487 rc = -EBUSY;
488 goto out;
489 }
490
491 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
492 if (rc) {
493 rc = -EFAULT;
494 goto err_crypto_info;
495 }
496
497 /* check version */
498 if (crypto_info->version != TLS_1_2_VERSION &&
499 crypto_info->version != TLS_1_3_VERSION) {
500 rc = -EINVAL;
501 goto err_crypto_info;
502 }
503
504 /* Ensure that TLS version and ciphers are same in both directions */
505 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
506 if (alt_crypto_info->version != crypto_info->version ||
507 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
508 rc = -EINVAL;
509 goto err_crypto_info;
510 }
511 }
512
513 switch (crypto_info->cipher_type) {
514 case TLS_CIPHER_AES_GCM_128:
515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
516 break;
517 case TLS_CIPHER_AES_GCM_256: {
518 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
519 break;
520 }
521 case TLS_CIPHER_AES_CCM_128:
522 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
523 break;
524 case TLS_CIPHER_CHACHA20_POLY1305:
525 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
526 break;
527 default:
528 rc = -EINVAL;
529 goto err_crypto_info;
530 }
531
532 if (optlen != optsize) {
533 rc = -EINVAL;
534 goto err_crypto_info;
535 }
536
537 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
538 sizeof(*crypto_info),
539 optlen - sizeof(*crypto_info));
540 if (rc) {
541 rc = -EFAULT;
542 goto err_crypto_info;
543 }
544
545 if (tx) {
546 rc = tls_set_device_offload(sk, ctx);
547 conf = TLS_HW;
548 if (!rc) {
549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
551 } else {
552 rc = tls_set_sw_offload(sk, ctx, 1);
553 if (rc)
554 goto err_crypto_info;
555 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
557 conf = TLS_SW;
558 }
559 } else {
560 rc = tls_set_device_offload_rx(sk, ctx);
561 conf = TLS_HW;
562 if (!rc) {
563 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
565 } else {
566 rc = tls_set_sw_offload(sk, ctx, 0);
567 if (rc)
568 goto err_crypto_info;
569 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
570 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
571 conf = TLS_SW;
572 }
573 tls_sw_strparser_arm(sk, ctx);
574 }
575
576 if (tx)
577 ctx->tx_conf = conf;
578 else
579 ctx->rx_conf = conf;
580 update_sk_prot(sk, ctx);
581 if (tx) {
582 ctx->sk_write_space = sk->sk_write_space;
583 sk->sk_write_space = tls_write_space;
584 } else {
585 sk->sk_socket->ops = &tls_sw_proto_ops;
586 }
587 goto out;
588
589err_crypto_info:
590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591out:
592 return rc;
593}
594
595static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596 unsigned int optlen)
597{
598 int rc = 0;
599
600 switch (optname) {
601 case TLS_TX:
602 case TLS_RX:
603 lock_sock(sk);
604 rc = do_tls_setsockopt_conf(sk, optval, optlen,
605 optname == TLS_TX);
606 release_sock(sk);
607 break;
608 default:
609 rc = -ENOPROTOOPT;
610 break;
611 }
612 return rc;
613}
614
615static int tls_setsockopt(struct sock *sk, int level, int optname,
616 sockptr_t optval, unsigned int optlen)
617{
618 struct tls_context *ctx = tls_get_ctx(sk);
619
620 if (level != SOL_TLS)
621 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622 optlen);
623
624 return do_tls_setsockopt(sk, optname, optval, optlen);
625}
626
627struct tls_context *tls_ctx_create(struct sock *sk)
628{
629 struct inet_connection_sock *icsk = inet_csk(sk);
630 struct tls_context *ctx;
631
632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633 if (!ctx)
634 return NULL;
635
636 mutex_init(&ctx->tx_lock);
637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638 ctx->sk_proto = READ_ONCE(sk->sk_prot);
639 ctx->sk = sk;
640 return ctx;
641}
642
643static void tls_build_proto(struct sock *sk)
644{
645 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
646 struct proto *prot = READ_ONCE(sk->sk_prot);
647
648 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
649 if (ip_ver == TLSV6 &&
650 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
651 mutex_lock(&tcpv6_prot_mutex);
652 if (likely(prot != saved_tcpv6_prot)) {
653 build_protos(tls_prots[TLSV6], prot);
654 smp_store_release(&saved_tcpv6_prot, prot);
655 }
656 mutex_unlock(&tcpv6_prot_mutex);
657 }
658
659 if (ip_ver == TLSV4 &&
660 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
661 mutex_lock(&tcpv4_prot_mutex);
662 if (likely(prot != saved_tcpv4_prot)) {
663 build_protos(tls_prots[TLSV4], prot);
664 smp_store_release(&saved_tcpv4_prot, prot);
665 }
666 mutex_unlock(&tcpv4_prot_mutex);
667 }
668}
669
670static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
671 const struct proto *base)
672{
673 prot[TLS_BASE][TLS_BASE] = *base;
674 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
675 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
676 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
677
678 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
679 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
680 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
681
682 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
683 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
684 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
685 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
686
687 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
688 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
689 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
690 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
691
692#ifdef CONFIG_TLS_DEVICE
693 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
694 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
695 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
696
697 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
698 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
699 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
700
701 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
702
703 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
704
705 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
706#endif
707#ifdef CONFIG_TLS_TOE
708 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
709 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
710 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
711#endif
712}
713
714static int tls_init(struct sock *sk)
715{
716 struct tls_context *ctx;
717 int rc = 0;
718
719 tls_build_proto(sk);
720
721#ifdef CONFIG_TLS_TOE
722 if (tls_toe_bypass(sk))
723 return 0;
724#endif
725
726 /* The TLS ulp is currently supported only for TCP sockets
727 * in ESTABLISHED state.
728 * Supporting sockets in LISTEN state will require us
729 * to modify the accept implementation to clone rather then
730 * share the ulp context.
731 */
732 if (sk->sk_state != TCP_ESTABLISHED)
733 return -ENOTCONN;
734
735 /* allocate tls context */
736 write_lock_bh(&sk->sk_callback_lock);
737 ctx = tls_ctx_create(sk);
738 if (!ctx) {
739 rc = -ENOMEM;
740 goto out;
741 }
742
743 ctx->tx_conf = TLS_BASE;
744 ctx->rx_conf = TLS_BASE;
745 update_sk_prot(sk, ctx);
746out:
747 write_unlock_bh(&sk->sk_callback_lock);
748 return rc;
749}
750
751static void tls_update(struct sock *sk, struct proto *p,
752 void (*write_space)(struct sock *sk))
753{
754 struct tls_context *ctx;
755
756 ctx = tls_get_ctx(sk);
757 if (likely(ctx)) {
758 ctx->sk_write_space = write_space;
759 ctx->sk_proto = p;
760 } else {
761 /* Pairs with lockless read in sk_clone_lock(). */
762 WRITE_ONCE(sk->sk_prot, p);
763 sk->sk_write_space = write_space;
764 }
765}
766
767static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
768{
769 u16 version, cipher_type;
770 struct tls_context *ctx;
771 struct nlattr *start;
772 int err;
773
774 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
775 if (!start)
776 return -EMSGSIZE;
777
778 rcu_read_lock();
779 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
780 if (!ctx) {
781 err = 0;
782 goto nla_failure;
783 }
784 version = ctx->prot_info.version;
785 if (version) {
786 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
787 if (err)
788 goto nla_failure;
789 }
790 cipher_type = ctx->prot_info.cipher_type;
791 if (cipher_type) {
792 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
793 if (err)
794 goto nla_failure;
795 }
796 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
797 if (err)
798 goto nla_failure;
799
800 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
801 if (err)
802 goto nla_failure;
803
804 rcu_read_unlock();
805 nla_nest_end(skb, start);
806 return 0;
807
808nla_failure:
809 rcu_read_unlock();
810 nla_nest_cancel(skb, start);
811 return err;
812}
813
814static size_t tls_get_info_size(const struct sock *sk)
815{
816 size_t size = 0;
817
818 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
819 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
820 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
821 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
822 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
823 0;
824
825 return size;
826}
827
828static int __net_init tls_init_net(struct net *net)
829{
830 int err;
831
832 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
833 if (!net->mib.tls_statistics)
834 return -ENOMEM;
835
836 err = tls_proc_init(net);
837 if (err)
838 goto err_free_stats;
839
840 return 0;
841err_free_stats:
842 free_percpu(net->mib.tls_statistics);
843 return err;
844}
845
846static void __net_exit tls_exit_net(struct net *net)
847{
848 tls_proc_fini(net);
849 free_percpu(net->mib.tls_statistics);
850}
851
852static struct pernet_operations tls_proc_ops = {
853 .init = tls_init_net,
854 .exit = tls_exit_net,
855};
856
857static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
858 .name = "tls",
859 .owner = THIS_MODULE,
860 .init = tls_init,
861 .update = tls_update,
862 .get_info = tls_get_info,
863 .get_info_size = tls_get_info_size,
864};
865
866static int __init tls_register(void)
867{
868 int err;
869
870 err = register_pernet_subsys(&tls_proc_ops);
871 if (err)
872 return err;
873
874 tls_sw_proto_ops = inet_stream_ops;
875 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
876 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked;
877
878 tls_device_init();
879 tcp_register_ulp(&tcp_tls_ulp_ops);
880
881 return 0;
882}
883
884static void __exit tls_unregister(void)
885{
886 tcp_unregister_ulp(&tcp_tls_ulp_ops);
887 tls_device_cleanup();
888 unregister_pernet_subsys(&tls_proc_ops);
889}
890
891module_init(tls_register);
892module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48#include "tls.h"
49
50MODULE_AUTHOR("Mellanox Technologies");
51MODULE_DESCRIPTION("Transport Layer Security Support");
52MODULE_LICENSE("Dual BSD/GPL");
53MODULE_ALIAS_TCP_ULP("tls");
54
55enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59};
60
61#define CHECK_CIPHER_DESC(cipher,ci) \
62 static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE); \
63 static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE); \
64 static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
65 static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE); \
66 static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE); \
67 static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE); \
68 static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE); \
69 static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
70
71#define __CIPHER_DESC(ci) \
72 .iv_offset = offsetof(struct ci, iv), \
73 .key_offset = offsetof(struct ci, key), \
74 .salt_offset = offsetof(struct ci, salt), \
75 .rec_seq_offset = offsetof(struct ci, rec_seq), \
76 .crypto_info = sizeof(struct ci)
77
78#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
79 .nonce = cipher ## _IV_SIZE, \
80 .iv = cipher ## _IV_SIZE, \
81 .key = cipher ## _KEY_SIZE, \
82 .salt = cipher ## _SALT_SIZE, \
83 .tag = cipher ## _TAG_SIZE, \
84 .rec_seq = cipher ## _REC_SEQ_SIZE, \
85 .cipher_name = algname, \
86 .offloadable = _offloadable, \
87 __CIPHER_DESC(ci), \
88}
89
90#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
91 .nonce = 0, \
92 .iv = cipher ## _IV_SIZE, \
93 .key = cipher ## _KEY_SIZE, \
94 .salt = cipher ## _SALT_SIZE, \
95 .tag = cipher ## _TAG_SIZE, \
96 .rec_seq = cipher ## _REC_SEQ_SIZE, \
97 .cipher_name = algname, \
98 .offloadable = _offloadable, \
99 __CIPHER_DESC(ci), \
100}
101
102const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
103 CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
104 CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
105 CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
106 CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
107 CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
108 CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
109 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
110 CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
111};
112
113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
114CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
115CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
116CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
118CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
120CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
121
122static const struct proto *saved_tcpv6_prot;
123static DEFINE_MUTEX(tcpv6_prot_mutex);
124static const struct proto *saved_tcpv4_prot;
125static DEFINE_MUTEX(tcpv4_prot_mutex);
126static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
128static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
129 const struct proto *base);
130
131void update_sk_prot(struct sock *sk, struct tls_context *ctx)
132{
133 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
134
135 WRITE_ONCE(sk->sk_prot,
136 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
137 WRITE_ONCE(sk->sk_socket->ops,
138 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
139}
140
141int wait_on_pending_writer(struct sock *sk, long *timeo)
142{
143 DEFINE_WAIT_FUNC(wait, woken_wake_function);
144 int ret, rc = 0;
145
146 add_wait_queue(sk_sleep(sk), &wait);
147 while (1) {
148 if (!*timeo) {
149 rc = -EAGAIN;
150 break;
151 }
152
153 if (signal_pending(current)) {
154 rc = sock_intr_errno(*timeo);
155 break;
156 }
157
158 ret = sk_wait_event(sk, timeo,
159 !READ_ONCE(sk->sk_write_pending), &wait);
160 if (ret) {
161 if (ret < 0)
162 rc = ret;
163 break;
164 }
165 }
166 remove_wait_queue(sk_sleep(sk), &wait);
167 return rc;
168}
169
170int tls_push_sg(struct sock *sk,
171 struct tls_context *ctx,
172 struct scatterlist *sg,
173 u16 first_offset,
174 int flags)
175{
176 struct bio_vec bvec;
177 struct msghdr msg = {
178 .msg_flags = MSG_SPLICE_PAGES | flags,
179 };
180 int ret = 0;
181 struct page *p;
182 size_t size;
183 int offset = first_offset;
184
185 size = sg->length - offset;
186 offset += sg->offset;
187
188 ctx->splicing_pages = true;
189 while (1) {
190 /* is sending application-limited? */
191 tcp_rate_check_app_limited(sk);
192 p = sg_page(sg);
193retry:
194 bvec_set_page(&bvec, p, size, offset);
195 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
196
197 ret = tcp_sendmsg_locked(sk, &msg, size);
198
199 if (ret != size) {
200 if (ret > 0) {
201 offset += ret;
202 size -= ret;
203 goto retry;
204 }
205
206 offset -= sg->offset;
207 ctx->partially_sent_offset = offset;
208 ctx->partially_sent_record = (void *)sg;
209 ctx->splicing_pages = false;
210 return ret;
211 }
212
213 put_page(p);
214 sk_mem_uncharge(sk, sg->length);
215 sg = sg_next(sg);
216 if (!sg)
217 break;
218
219 offset = sg->offset;
220 size = sg->length;
221 }
222
223 ctx->splicing_pages = false;
224
225 return 0;
226}
227
228static int tls_handle_open_record(struct sock *sk, int flags)
229{
230 struct tls_context *ctx = tls_get_ctx(sk);
231
232 if (tls_is_pending_open_record(ctx))
233 return ctx->push_pending_record(sk, flags);
234
235 return 0;
236}
237
238int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
239 unsigned char *record_type)
240{
241 struct cmsghdr *cmsg;
242 int rc = -EINVAL;
243
244 for_each_cmsghdr(cmsg, msg) {
245 if (!CMSG_OK(msg, cmsg))
246 return -EINVAL;
247 if (cmsg->cmsg_level != SOL_TLS)
248 continue;
249
250 switch (cmsg->cmsg_type) {
251 case TLS_SET_RECORD_TYPE:
252 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
253 return -EINVAL;
254
255 if (msg->msg_flags & MSG_MORE)
256 return -EINVAL;
257
258 rc = tls_handle_open_record(sk, msg->msg_flags);
259 if (rc)
260 return rc;
261
262 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
263 rc = 0;
264 break;
265 default:
266 return -EINVAL;
267 }
268 }
269
270 return rc;
271}
272
273int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
274 int flags)
275{
276 struct scatterlist *sg;
277 u16 offset;
278
279 sg = ctx->partially_sent_record;
280 offset = ctx->partially_sent_offset;
281
282 ctx->partially_sent_record = NULL;
283 return tls_push_sg(sk, ctx, sg, offset, flags);
284}
285
286void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
287{
288 struct scatterlist *sg;
289
290 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
291 put_page(sg_page(sg));
292 sk_mem_uncharge(sk, sg->length);
293 }
294 ctx->partially_sent_record = NULL;
295}
296
297static void tls_write_space(struct sock *sk)
298{
299 struct tls_context *ctx = tls_get_ctx(sk);
300
301 /* If splicing_pages call lower protocol write space handler
302 * to ensure we wake up any waiting operations there. For example
303 * if splicing pages where to call sk_wait_event.
304 */
305 if (ctx->splicing_pages) {
306 ctx->sk_write_space(sk);
307 return;
308 }
309
310#ifdef CONFIG_TLS_DEVICE
311 if (ctx->tx_conf == TLS_HW)
312 tls_device_write_space(sk, ctx);
313 else
314#endif
315 tls_sw_write_space(sk, ctx);
316
317 ctx->sk_write_space(sk);
318}
319
320/**
321 * tls_ctx_free() - free TLS ULP context
322 * @sk: socket to with @ctx is attached
323 * @ctx: TLS context structure
324 *
325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
326 * to which @ctx was attached has no outstanding references.
327 */
328void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
329{
330 if (!ctx)
331 return;
332
333 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
334 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
335 mutex_destroy(&ctx->tx_lock);
336
337 if (sk)
338 kfree_rcu(ctx, rcu);
339 else
340 kfree(ctx);
341}
342
343static void tls_sk_proto_cleanup(struct sock *sk,
344 struct tls_context *ctx, long timeo)
345{
346 if (unlikely(sk->sk_write_pending) &&
347 !wait_on_pending_writer(sk, &timeo))
348 tls_handle_open_record(sk, 0);
349
350 /* We need these for tls_sw_fallback handling of other packets */
351 if (ctx->tx_conf == TLS_SW) {
352 tls_sw_release_resources_tx(sk);
353 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
354 } else if (ctx->tx_conf == TLS_HW) {
355 tls_device_free_resources_tx(sk);
356 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
357 }
358
359 if (ctx->rx_conf == TLS_SW) {
360 tls_sw_release_resources_rx(sk);
361 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
362 } else if (ctx->rx_conf == TLS_HW) {
363 tls_device_offload_cleanup_rx(sk);
364 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
365 }
366}
367
368static void tls_sk_proto_close(struct sock *sk, long timeout)
369{
370 struct inet_connection_sock *icsk = inet_csk(sk);
371 struct tls_context *ctx = tls_get_ctx(sk);
372 long timeo = sock_sndtimeo(sk, 0);
373 bool free_ctx;
374
375 if (ctx->tx_conf == TLS_SW)
376 tls_sw_cancel_work_tx(ctx);
377
378 lock_sock(sk);
379 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
380
381 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
382 tls_sk_proto_cleanup(sk, ctx, timeo);
383
384 write_lock_bh(&sk->sk_callback_lock);
385 if (free_ctx)
386 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
387 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
388 if (sk->sk_write_space == tls_write_space)
389 sk->sk_write_space = ctx->sk_write_space;
390 write_unlock_bh(&sk->sk_callback_lock);
391 release_sock(sk);
392 if (ctx->tx_conf == TLS_SW)
393 tls_sw_free_ctx_tx(ctx);
394 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
395 tls_sw_strparser_done(ctx);
396 if (ctx->rx_conf == TLS_SW)
397 tls_sw_free_ctx_rx(ctx);
398 ctx->sk_proto->close(sk, timeout);
399
400 if (free_ctx)
401 tls_ctx_free(sk, ctx);
402}
403
404static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
405 struct poll_table_struct *wait)
406{
407 struct tls_sw_context_rx *ctx;
408 struct tls_context *tls_ctx;
409 struct sock *sk = sock->sk;
410 struct sk_psock *psock;
411 __poll_t mask = 0;
412 u8 shutdown;
413 int state;
414
415 mask = tcp_poll(file, sock, wait);
416
417 state = inet_sk_state_load(sk);
418 shutdown = READ_ONCE(sk->sk_shutdown);
419 if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
420 return mask;
421
422 tls_ctx = tls_get_ctx(sk);
423 ctx = tls_sw_ctx_rx(tls_ctx);
424 psock = sk_psock_get(sk);
425
426 if (skb_queue_empty_lockless(&ctx->rx_list) &&
427 !tls_strp_msg_ready(ctx) &&
428 sk_psock_queue_empty(psock))
429 mask &= ~(EPOLLIN | EPOLLRDNORM);
430
431 if (psock)
432 sk_psock_put(sk, psock);
433
434 return mask;
435}
436
437static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
438 int __user *optlen, int tx)
439{
440 int rc = 0;
441 const struct tls_cipher_desc *cipher_desc;
442 struct tls_context *ctx = tls_get_ctx(sk);
443 struct tls_crypto_info *crypto_info;
444 struct cipher_context *cctx;
445 int len;
446
447 if (get_user(len, optlen))
448 return -EFAULT;
449
450 if (!optval || (len < sizeof(*crypto_info))) {
451 rc = -EINVAL;
452 goto out;
453 }
454
455 if (!ctx) {
456 rc = -EBUSY;
457 goto out;
458 }
459
460 /* get user crypto info */
461 if (tx) {
462 crypto_info = &ctx->crypto_send.info;
463 cctx = &ctx->tx;
464 } else {
465 crypto_info = &ctx->crypto_recv.info;
466 cctx = &ctx->rx;
467 }
468
469 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
470 rc = -EBUSY;
471 goto out;
472 }
473
474 if (len == sizeof(*crypto_info)) {
475 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
476 rc = -EFAULT;
477 goto out;
478 }
479
480 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
481 if (!cipher_desc || len != cipher_desc->crypto_info) {
482 rc = -EINVAL;
483 goto out;
484 }
485
486 memcpy(crypto_info_iv(crypto_info, cipher_desc),
487 cctx->iv + cipher_desc->salt, cipher_desc->iv);
488 memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
489 cctx->rec_seq, cipher_desc->rec_seq);
490
491 if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
492 rc = -EFAULT;
493
494out:
495 return rc;
496}
497
498static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
499 int __user *optlen)
500{
501 struct tls_context *ctx = tls_get_ctx(sk);
502 unsigned int value;
503 int len;
504
505 if (get_user(len, optlen))
506 return -EFAULT;
507
508 if (len != sizeof(value))
509 return -EINVAL;
510
511 value = ctx->zerocopy_sendfile;
512 if (copy_to_user(optval, &value, sizeof(value)))
513 return -EFAULT;
514
515 return 0;
516}
517
518static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
519 int __user *optlen)
520{
521 struct tls_context *ctx = tls_get_ctx(sk);
522 int value, len;
523
524 if (ctx->prot_info.version != TLS_1_3_VERSION)
525 return -EINVAL;
526
527 if (get_user(len, optlen))
528 return -EFAULT;
529 if (len < sizeof(value))
530 return -EINVAL;
531
532 value = -EINVAL;
533 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
534 value = ctx->rx_no_pad;
535 if (value < 0)
536 return value;
537
538 if (put_user(sizeof(value), optlen))
539 return -EFAULT;
540 if (copy_to_user(optval, &value, sizeof(value)))
541 return -EFAULT;
542
543 return 0;
544}
545
546static int do_tls_getsockopt(struct sock *sk, int optname,
547 char __user *optval, int __user *optlen)
548{
549 int rc = 0;
550
551 lock_sock(sk);
552
553 switch (optname) {
554 case TLS_TX:
555 case TLS_RX:
556 rc = do_tls_getsockopt_conf(sk, optval, optlen,
557 optname == TLS_TX);
558 break;
559 case TLS_TX_ZEROCOPY_RO:
560 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
561 break;
562 case TLS_RX_EXPECT_NO_PAD:
563 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
564 break;
565 default:
566 rc = -ENOPROTOOPT;
567 break;
568 }
569
570 release_sock(sk);
571
572 return rc;
573}
574
575static int tls_getsockopt(struct sock *sk, int level, int optname,
576 char __user *optval, int __user *optlen)
577{
578 struct tls_context *ctx = tls_get_ctx(sk);
579
580 if (level != SOL_TLS)
581 return ctx->sk_proto->getsockopt(sk, level,
582 optname, optval, optlen);
583
584 return do_tls_getsockopt(sk, optname, optval, optlen);
585}
586
587static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
588 const struct tls_crypto_info *alt_crypto_info)
589{
590 if (crypto_info->version != TLS_1_2_VERSION &&
591 crypto_info->version != TLS_1_3_VERSION)
592 return -EINVAL;
593
594 switch (crypto_info->cipher_type) {
595 case TLS_CIPHER_ARIA_GCM_128:
596 case TLS_CIPHER_ARIA_GCM_256:
597 if (crypto_info->version != TLS_1_2_VERSION)
598 return -EINVAL;
599 break;
600 }
601
602 /* Ensure that TLS version and ciphers are same in both directions */
603 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
604 if (alt_crypto_info->version != crypto_info->version ||
605 alt_crypto_info->cipher_type != crypto_info->cipher_type)
606 return -EINVAL;
607 }
608
609 return 0;
610}
611
612static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
613 unsigned int optlen, int tx)
614{
615 struct tls_crypto_info *crypto_info;
616 struct tls_crypto_info *alt_crypto_info;
617 struct tls_context *ctx = tls_get_ctx(sk);
618 const struct tls_cipher_desc *cipher_desc;
619 union tls_crypto_context *crypto_ctx;
620 int rc = 0;
621 int conf;
622
623 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
624 return -EINVAL;
625
626 if (tx) {
627 crypto_ctx = &ctx->crypto_send;
628 alt_crypto_info = &ctx->crypto_recv.info;
629 } else {
630 crypto_ctx = &ctx->crypto_recv;
631 alt_crypto_info = &ctx->crypto_send.info;
632 }
633
634 crypto_info = &crypto_ctx->info;
635
636 /* Currently we don't support set crypto info more than one time */
637 if (TLS_CRYPTO_INFO_READY(crypto_info))
638 return -EBUSY;
639
640 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
641 if (rc) {
642 rc = -EFAULT;
643 goto err_crypto_info;
644 }
645
646 rc = validate_crypto_info(crypto_info, alt_crypto_info);
647 if (rc)
648 goto err_crypto_info;
649
650 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
651 if (!cipher_desc) {
652 rc = -EINVAL;
653 goto err_crypto_info;
654 }
655
656 if (optlen != cipher_desc->crypto_info) {
657 rc = -EINVAL;
658 goto err_crypto_info;
659 }
660
661 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
662 sizeof(*crypto_info),
663 optlen - sizeof(*crypto_info));
664 if (rc) {
665 rc = -EFAULT;
666 goto err_crypto_info;
667 }
668
669 if (tx) {
670 rc = tls_set_device_offload(sk);
671 conf = TLS_HW;
672 if (!rc) {
673 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
674 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
675 } else {
676 rc = tls_set_sw_offload(sk, 1);
677 if (rc)
678 goto err_crypto_info;
679 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
680 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
681 conf = TLS_SW;
682 }
683 } else {
684 rc = tls_set_device_offload_rx(sk, ctx);
685 conf = TLS_HW;
686 if (!rc) {
687 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
688 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
689 } else {
690 rc = tls_set_sw_offload(sk, 0);
691 if (rc)
692 goto err_crypto_info;
693 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
694 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
695 conf = TLS_SW;
696 }
697 tls_sw_strparser_arm(sk, ctx);
698 }
699
700 if (tx)
701 ctx->tx_conf = conf;
702 else
703 ctx->rx_conf = conf;
704 update_sk_prot(sk, ctx);
705 if (tx) {
706 ctx->sk_write_space = sk->sk_write_space;
707 sk->sk_write_space = tls_write_space;
708 } else {
709 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
710
711 tls_strp_check_rcv(&rx_ctx->strp);
712 }
713 return 0;
714
715err_crypto_info:
716 memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
717 return rc;
718}
719
720static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
721 unsigned int optlen)
722{
723 struct tls_context *ctx = tls_get_ctx(sk);
724 unsigned int value;
725
726 if (sockptr_is_null(optval) || optlen != sizeof(value))
727 return -EINVAL;
728
729 if (copy_from_sockptr(&value, optval, sizeof(value)))
730 return -EFAULT;
731
732 if (value > 1)
733 return -EINVAL;
734
735 ctx->zerocopy_sendfile = value;
736
737 return 0;
738}
739
740static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
741 unsigned int optlen)
742{
743 struct tls_context *ctx = tls_get_ctx(sk);
744 u32 val;
745 int rc;
746
747 if (ctx->prot_info.version != TLS_1_3_VERSION ||
748 sockptr_is_null(optval) || optlen < sizeof(val))
749 return -EINVAL;
750
751 rc = copy_from_sockptr(&val, optval, sizeof(val));
752 if (rc)
753 return -EFAULT;
754 if (val > 1)
755 return -EINVAL;
756 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
757 if (rc < 1)
758 return rc == 0 ? -EINVAL : rc;
759
760 lock_sock(sk);
761 rc = -EINVAL;
762 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
763 ctx->rx_no_pad = val;
764 tls_update_rx_zc_capable(ctx);
765 rc = 0;
766 }
767 release_sock(sk);
768
769 return rc;
770}
771
772static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
773 unsigned int optlen)
774{
775 int rc = 0;
776
777 switch (optname) {
778 case TLS_TX:
779 case TLS_RX:
780 lock_sock(sk);
781 rc = do_tls_setsockopt_conf(sk, optval, optlen,
782 optname == TLS_TX);
783 release_sock(sk);
784 break;
785 case TLS_TX_ZEROCOPY_RO:
786 lock_sock(sk);
787 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
788 release_sock(sk);
789 break;
790 case TLS_RX_EXPECT_NO_PAD:
791 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
792 break;
793 default:
794 rc = -ENOPROTOOPT;
795 break;
796 }
797 return rc;
798}
799
800static int tls_setsockopt(struct sock *sk, int level, int optname,
801 sockptr_t optval, unsigned int optlen)
802{
803 struct tls_context *ctx = tls_get_ctx(sk);
804
805 if (level != SOL_TLS)
806 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
807 optlen);
808
809 return do_tls_setsockopt(sk, optname, optval, optlen);
810}
811
812struct tls_context *tls_ctx_create(struct sock *sk)
813{
814 struct inet_connection_sock *icsk = inet_csk(sk);
815 struct tls_context *ctx;
816
817 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
818 if (!ctx)
819 return NULL;
820
821 mutex_init(&ctx->tx_lock);
822 ctx->sk_proto = READ_ONCE(sk->sk_prot);
823 ctx->sk = sk;
824 /* Release semantic of rcu_assign_pointer() ensures that
825 * ctx->sk_proto is visible before changing sk->sk_prot in
826 * update_sk_prot(), and prevents reading uninitialized value in
827 * tls_{getsockopt, setsockopt}. Note that we do not need a
828 * read barrier in tls_{getsockopt,setsockopt} as there is an
829 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
830 * and ctx->sk_proto.
831 */
832 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
833 return ctx;
834}
835
836static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
837 const struct proto_ops *base)
838{
839 ops[TLS_BASE][TLS_BASE] = *base;
840
841 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
842 ops[TLS_SW ][TLS_BASE].splice_eof = tls_sw_splice_eof;
843
844 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
845 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
846 ops[TLS_BASE][TLS_SW ].poll = tls_sk_poll;
847 ops[TLS_BASE][TLS_SW ].read_sock = tls_sw_read_sock;
848
849 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
850 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
851 ops[TLS_SW ][TLS_SW ].poll = tls_sk_poll;
852 ops[TLS_SW ][TLS_SW ].read_sock = tls_sw_read_sock;
853
854#ifdef CONFIG_TLS_DEVICE
855 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
856
857 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
858
859 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
860
861 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
862
863 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
864#endif
865#ifdef CONFIG_TLS_TOE
866 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
867#endif
868}
869
870static void tls_build_proto(struct sock *sk)
871{
872 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
873 struct proto *prot = READ_ONCE(sk->sk_prot);
874
875 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
876 if (ip_ver == TLSV6 &&
877 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
878 mutex_lock(&tcpv6_prot_mutex);
879 if (likely(prot != saved_tcpv6_prot)) {
880 build_protos(tls_prots[TLSV6], prot);
881 build_proto_ops(tls_proto_ops[TLSV6],
882 sk->sk_socket->ops);
883 smp_store_release(&saved_tcpv6_prot, prot);
884 }
885 mutex_unlock(&tcpv6_prot_mutex);
886 }
887
888 if (ip_ver == TLSV4 &&
889 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
890 mutex_lock(&tcpv4_prot_mutex);
891 if (likely(prot != saved_tcpv4_prot)) {
892 build_protos(tls_prots[TLSV4], prot);
893 build_proto_ops(tls_proto_ops[TLSV4],
894 sk->sk_socket->ops);
895 smp_store_release(&saved_tcpv4_prot, prot);
896 }
897 mutex_unlock(&tcpv4_prot_mutex);
898 }
899}
900
901static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
902 const struct proto *base)
903{
904 prot[TLS_BASE][TLS_BASE] = *base;
905 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
906 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
907 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
908
909 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
910 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
911 prot[TLS_SW][TLS_BASE].splice_eof = tls_sw_splice_eof;
912
913 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
914 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
915 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
916 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
917
918 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
919 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
920 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
921 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
922
923#ifdef CONFIG_TLS_DEVICE
924 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
925 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
926 prot[TLS_HW][TLS_BASE].splice_eof = tls_device_splice_eof;
927
928 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
929 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
930 prot[TLS_HW][TLS_SW].splice_eof = tls_device_splice_eof;
931
932 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
933
934 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
935
936 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
937#endif
938#ifdef CONFIG_TLS_TOE
939 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
940 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
941 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
942#endif
943}
944
945static int tls_init(struct sock *sk)
946{
947 struct tls_context *ctx;
948 int rc = 0;
949
950 tls_build_proto(sk);
951
952#ifdef CONFIG_TLS_TOE
953 if (tls_toe_bypass(sk))
954 return 0;
955#endif
956
957 /* The TLS ulp is currently supported only for TCP sockets
958 * in ESTABLISHED state.
959 * Supporting sockets in LISTEN state will require us
960 * to modify the accept implementation to clone rather then
961 * share the ulp context.
962 */
963 if (sk->sk_state != TCP_ESTABLISHED)
964 return -ENOTCONN;
965
966 /* allocate tls context */
967 write_lock_bh(&sk->sk_callback_lock);
968 ctx = tls_ctx_create(sk);
969 if (!ctx) {
970 rc = -ENOMEM;
971 goto out;
972 }
973
974 ctx->tx_conf = TLS_BASE;
975 ctx->rx_conf = TLS_BASE;
976 update_sk_prot(sk, ctx);
977out:
978 write_unlock_bh(&sk->sk_callback_lock);
979 return rc;
980}
981
982static void tls_update(struct sock *sk, struct proto *p,
983 void (*write_space)(struct sock *sk))
984{
985 struct tls_context *ctx;
986
987 WARN_ON_ONCE(sk->sk_prot == p);
988
989 ctx = tls_get_ctx(sk);
990 if (likely(ctx)) {
991 ctx->sk_write_space = write_space;
992 ctx->sk_proto = p;
993 } else {
994 /* Pairs with lockless read in sk_clone_lock(). */
995 WRITE_ONCE(sk->sk_prot, p);
996 sk->sk_write_space = write_space;
997 }
998}
999
1000static u16 tls_user_config(struct tls_context *ctx, bool tx)
1001{
1002 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003
1004 switch (config) {
1005 case TLS_BASE:
1006 return TLS_CONF_BASE;
1007 case TLS_SW:
1008 return TLS_CONF_SW;
1009 case TLS_HW:
1010 return TLS_CONF_HW;
1011 case TLS_HW_RECORD:
1012 return TLS_CONF_HW_RECORD;
1013 }
1014 return 0;
1015}
1016
1017static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1018{
1019 u16 version, cipher_type;
1020 struct tls_context *ctx;
1021 struct nlattr *start;
1022 int err;
1023
1024 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1025 if (!start)
1026 return -EMSGSIZE;
1027
1028 rcu_read_lock();
1029 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1030 if (!ctx) {
1031 err = 0;
1032 goto nla_failure;
1033 }
1034 version = ctx->prot_info.version;
1035 if (version) {
1036 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037 if (err)
1038 goto nla_failure;
1039 }
1040 cipher_type = ctx->prot_info.cipher_type;
1041 if (cipher_type) {
1042 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043 if (err)
1044 goto nla_failure;
1045 }
1046 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047 if (err)
1048 goto nla_failure;
1049
1050 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051 if (err)
1052 goto nla_failure;
1053
1054 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1055 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056 if (err)
1057 goto nla_failure;
1058 }
1059 if (ctx->rx_no_pad) {
1060 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1061 if (err)
1062 goto nla_failure;
1063 }
1064
1065 rcu_read_unlock();
1066 nla_nest_end(skb, start);
1067 return 0;
1068
1069nla_failure:
1070 rcu_read_unlock();
1071 nla_nest_cancel(skb, start);
1072 return err;
1073}
1074
1075static size_t tls_get_info_size(const struct sock *sk)
1076{
1077 size_t size = 0;
1078
1079 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1080 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1081 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1082 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1083 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1084 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1085 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1086 0;
1087
1088 return size;
1089}
1090
1091static int __net_init tls_init_net(struct net *net)
1092{
1093 int err;
1094
1095 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1096 if (!net->mib.tls_statistics)
1097 return -ENOMEM;
1098
1099 err = tls_proc_init(net);
1100 if (err)
1101 goto err_free_stats;
1102
1103 return 0;
1104err_free_stats:
1105 free_percpu(net->mib.tls_statistics);
1106 return err;
1107}
1108
1109static void __net_exit tls_exit_net(struct net *net)
1110{
1111 tls_proc_fini(net);
1112 free_percpu(net->mib.tls_statistics);
1113}
1114
1115static struct pernet_operations tls_proc_ops = {
1116 .init = tls_init_net,
1117 .exit = tls_exit_net,
1118};
1119
1120static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1121 .name = "tls",
1122 .owner = THIS_MODULE,
1123 .init = tls_init,
1124 .update = tls_update,
1125 .get_info = tls_get_info,
1126 .get_info_size = tls_get_info_size,
1127};
1128
1129static int __init tls_register(void)
1130{
1131 int err;
1132
1133 err = register_pernet_subsys(&tls_proc_ops);
1134 if (err)
1135 return err;
1136
1137 err = tls_strp_dev_init();
1138 if (err)
1139 goto err_pernet;
1140
1141 err = tls_device_init();
1142 if (err)
1143 goto err_strp;
1144
1145 tcp_register_ulp(&tcp_tls_ulp_ops);
1146
1147 return 0;
1148err_strp:
1149 tls_strp_dev_exit();
1150err_pernet:
1151 unregister_pernet_subsys(&tls_proc_ops);
1152 return err;
1153}
1154
1155static void __exit tls_unregister(void)
1156{
1157 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1158 tls_strp_dev_exit();
1159 tls_device_cleanup();
1160 unregister_pernet_subsys(&tls_proc_ops);
1161}
1162
1163module_init(tls_register);
1164module_exit(tls_unregister);