Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_lib.h"
   6#include "ice_sched.h"
   7#include "ice_adminq_cmd.h"
   8#include "ice_flow.h"
   9
  10#define ICE_PF_RESET_WAIT_COUNT	300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11
  12/**
  13 * ice_set_mac_type - Sets MAC type
  14 * @hw: pointer to the HW structure
  15 *
  16 * This function sets the MAC type of the adapter based on the
  17 * vendor ID and device ID stored in the HW structure.
  18 */
  19static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  20{
  21	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  22		return ICE_ERR_DEVICE_NOT_SUPPORTED;
  23
  24	switch (hw->device_id) {
  25	case ICE_DEV_ID_E810C_BACKPLANE:
  26	case ICE_DEV_ID_E810C_QSFP:
  27	case ICE_DEV_ID_E810C_SFP:
  28	case ICE_DEV_ID_E810_XXV_BACKPLANE:
  29	case ICE_DEV_ID_E810_XXV_QSFP:
  30	case ICE_DEV_ID_E810_XXV_SFP:
  31		hw->mac_type = ICE_MAC_E810;
  32		break;
  33	case ICE_DEV_ID_E823C_10G_BASE_T:
  34	case ICE_DEV_ID_E823C_BACKPLANE:
  35	case ICE_DEV_ID_E823C_QSFP:
  36	case ICE_DEV_ID_E823C_SFP:
  37	case ICE_DEV_ID_E823C_SGMII:
  38	case ICE_DEV_ID_E822C_10G_BASE_T:
  39	case ICE_DEV_ID_E822C_BACKPLANE:
  40	case ICE_DEV_ID_E822C_QSFP:
  41	case ICE_DEV_ID_E822C_SFP:
  42	case ICE_DEV_ID_E822C_SGMII:
  43	case ICE_DEV_ID_E822L_10G_BASE_T:
  44	case ICE_DEV_ID_E822L_BACKPLANE:
  45	case ICE_DEV_ID_E822L_SFP:
  46	case ICE_DEV_ID_E822L_SGMII:
  47	case ICE_DEV_ID_E823L_10G_BASE_T:
  48	case ICE_DEV_ID_E823L_1GBE:
  49	case ICE_DEV_ID_E823L_BACKPLANE:
  50	case ICE_DEV_ID_E823L_QSFP:
  51	case ICE_DEV_ID_E823L_SFP:
  52		hw->mac_type = ICE_MAC_GENERIC;
  53		break;
  54	default:
  55		hw->mac_type = ICE_MAC_UNKNOWN;
  56		break;
  57	}
  58
  59	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
  60	return 0;
  61}
  62
  63/**
  64 * ice_is_e810
  65 * @hw: pointer to the hardware structure
  66 *
  67 * returns true if the device is E810 based, false if not.
 
  68 */
  69bool ice_is_e810(struct ice_hw *hw)
  70{
  71	return hw->mac_type == ICE_MAC_E810;
 
 
  72}
  73
  74/**
  75 * ice_clear_pf_cfg - Clear PF configuration
  76 * @hw: pointer to the hardware structure
  77 *
  78 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  79 * configuration, flow director filters, etc.).
  80 */
  81enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  82{
  83	struct ice_aq_desc desc;
  84
  85	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  86
  87	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  88}
  89
  90/**
  91 * ice_aq_manage_mac_read - manage MAC address read command
  92 * @hw: pointer to the HW struct
  93 * @buf: a virtual buffer to hold the manage MAC read response
  94 * @buf_size: Size of the virtual buffer
  95 * @cd: pointer to command details structure or NULL
  96 *
  97 * This function is used to return per PF station MAC address (0x0107).
  98 * NOTE: Upon successful completion of this command, MAC address information
  99 * is returned in user specified buffer. Please interpret user specified
 100 * buffer as "manage_mac_read" response.
 101 * Response such as various MAC addresses are stored in HW struct (port.mac)
 102 * ice_discover_dev_caps is expected to be called before this function is
 103 * called.
 104 */
 105static enum ice_status
 106ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 107		       struct ice_sq_cd *cd)
 108{
 109	struct ice_aqc_manage_mac_read_resp *resp;
 110	struct ice_aqc_manage_mac_read *cmd;
 111	struct ice_aq_desc desc;
 112	enum ice_status status;
 113	u16 flags;
 114	u8 i;
 115
 116	cmd = &desc.params.mac_read;
 117
 118	if (buf_size < sizeof(*resp))
 119		return ICE_ERR_BUF_TOO_SHORT;
 120
 121	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 122
 123	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 124	if (status)
 125		return status;
 126
 127	resp = buf;
 128	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 129
 130	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 131		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 132		return ICE_ERR_CFG;
 133	}
 134
 135	/* A single port can report up to two (LAN and WoL) addresses */
 136	for (i = 0; i < cmd->num_addr; i++)
 137		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 138			ether_addr_copy(hw->port_info->mac.lan_addr,
 139					resp[i].mac_addr);
 140			ether_addr_copy(hw->port_info->mac.perm_addr,
 141					resp[i].mac_addr);
 142			break;
 143		}
 144
 145	return 0;
 146}
 147
 148/**
 149 * ice_aq_get_phy_caps - returns PHY capabilities
 150 * @pi: port information structure
 151 * @qual_mods: report qualified modules
 152 * @report_mode: report mode capabilities
 153 * @pcaps: structure for PHY capabilities to be filled
 154 * @cd: pointer to command details structure or NULL
 155 *
 156 * Returns the various PHY capabilities supported on the Port (0x0600)
 157 */
 158enum ice_status
 159ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 160		    struct ice_aqc_get_phy_caps_data *pcaps,
 161		    struct ice_sq_cd *cd)
 162{
 163	struct ice_aqc_get_phy_caps *cmd;
 164	u16 pcaps_size = sizeof(*pcaps);
 165	struct ice_aq_desc desc;
 166	enum ice_status status;
 167	struct ice_hw *hw;
 168
 169	cmd = &desc.params.get_phy;
 170
 171	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 172		return ICE_ERR_PARAM;
 173	hw = pi->hw;
 174
 175	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 176	    !ice_fw_supports_report_dflt_cfg(hw))
 177		return ICE_ERR_PARAM;
 178
 179	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 180
 181	if (qual_mods)
 182		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 183
 184	cmd->param0 |= cpu_to_le16(report_mode);
 185	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 186
 187	ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
 188		  report_mode);
 189	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 190		  (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
 191	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 192		  (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
 193	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", pcaps->caps);
 194	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
 195		  pcaps->low_power_ctrl_an);
 196	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", pcaps->eee_cap);
 197	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n",
 198		  pcaps->eeer_value);
 199	ice_debug(hw, ICE_DBG_LINK, "	link_fec_options = 0x%x\n",
 200		  pcaps->link_fec_options);
 201	ice_debug(hw, ICE_DBG_LINK, "	module_compliance_enforcement = 0x%x\n",
 202		  pcaps->module_compliance_enforcement);
 203	ice_debug(hw, ICE_DBG_LINK, "   extended_compliance_code = 0x%x\n",
 204		  pcaps->extended_compliance_code);
 205	ice_debug(hw, ICE_DBG_LINK, "   module_type[0] = 0x%x\n",
 206		  pcaps->module_type[0]);
 207	ice_debug(hw, ICE_DBG_LINK, "   module_type[1] = 0x%x\n",
 208		  pcaps->module_type[1]);
 209	ice_debug(hw, ICE_DBG_LINK, "   module_type[2] = 0x%x\n",
 210		  pcaps->module_type[2]);
 211
 212	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 213		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 214		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 215		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 216		       sizeof(pi->phy.link_info.module_type));
 217	}
 218
 219	return status;
 220}
 221
 222/**
 223 * ice_aq_get_link_topo_handle - get link topology node return status
 224 * @pi: port information structure
 225 * @node_type: requested node type
 226 * @cd: pointer to command details structure or NULL
 227 *
 228 * Get link topology node return status for specified node type (0x06E0)
 229 *
 230 * Node type cage can be used to determine if cage is present. If AQC
 231 * returns error (ENOENT), then no cage present. If no cage present, then
 232 * connection type is backplane or BASE-T.
 233 */
 234static enum ice_status
 235ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 236			    struct ice_sq_cd *cd)
 237{
 238	struct ice_aqc_get_link_topo *cmd;
 239	struct ice_aq_desc desc;
 240
 241	cmd = &desc.params.get_link_topo;
 242
 243	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 244
 245	cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 246				   ICE_AQC_LINK_TOPO_NODE_CTX_S);
 247
 248	/* set node type */
 249	cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 250
 251	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 252}
 253
 254/**
 255 * ice_is_media_cage_present
 256 * @pi: port information structure
 257 *
 258 * Returns true if media cage is present, else false. If no cage, then
 259 * media type is backplane or BASE-T.
 260 */
 261static bool ice_is_media_cage_present(struct ice_port_info *pi)
 262{
 263	/* Node type cage can be used to determine if cage is present. If AQC
 264	 * returns error (ENOENT), then no cage present. If no cage present then
 265	 * connection type is backplane or BASE-T.
 266	 */
 267	return !ice_aq_get_link_topo_handle(pi,
 268					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 269					    NULL);
 270}
 271
 272/**
 273 * ice_get_media_type - Gets media type
 274 * @pi: port information structure
 275 */
 276static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 277{
 278	struct ice_link_status *hw_link_info;
 279
 280	if (!pi)
 281		return ICE_MEDIA_UNKNOWN;
 282
 283	hw_link_info = &pi->phy.link_info;
 284	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 285		/* If more than one media type is selected, report unknown */
 286		return ICE_MEDIA_UNKNOWN;
 287
 288	if (hw_link_info->phy_type_low) {
 289		/* 1G SGMII is a special case where some DA cable PHYs
 290		 * may show this as an option when it really shouldn't
 291		 * be since SGMII is meant to be between a MAC and a PHY
 292		 * in a backplane. Try to detect this case and handle it
 293		 */
 294		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 295		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 296		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 297		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 298		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 299			return ICE_MEDIA_DA;
 300
 301		switch (hw_link_info->phy_type_low) {
 302		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 303		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 304		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 305		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 306		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 307		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 308		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 
 309		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 310		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 311		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 312		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 313		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 314		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 315		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 316		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 317		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 318		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 319		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 320		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 321		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 322		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 323		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 324		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 325		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 326		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 327		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 328			return ICE_MEDIA_FIBER;
 329		case ICE_PHY_TYPE_LOW_100BASE_TX:
 330		case ICE_PHY_TYPE_LOW_1000BASE_T:
 331		case ICE_PHY_TYPE_LOW_2500BASE_T:
 332		case ICE_PHY_TYPE_LOW_5GBASE_T:
 333		case ICE_PHY_TYPE_LOW_10GBASE_T:
 334		case ICE_PHY_TYPE_LOW_25GBASE_T:
 335			return ICE_MEDIA_BASET;
 336		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 337		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 338		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 339		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 340		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 341		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 342		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 343		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 344		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 345		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 346			return ICE_MEDIA_DA;
 347		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 348		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 349		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 350		case ICE_PHY_TYPE_LOW_50G_AUI2:
 351		case ICE_PHY_TYPE_LOW_50G_AUI1:
 352		case ICE_PHY_TYPE_LOW_100G_AUI4:
 353		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 354			if (ice_is_media_cage_present(pi))
 355				return ICE_MEDIA_DA;
 356			fallthrough;
 357		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 358		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 359		case ICE_PHY_TYPE_LOW_2500BASE_X:
 360		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 361		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 362		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 363		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 364		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 365		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 366		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 367		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 368		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 369		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 370			return ICE_MEDIA_BACKPLANE;
 371		}
 372	} else {
 373		switch (hw_link_info->phy_type_high) {
 374		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 375		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 376			if (ice_is_media_cage_present(pi))
 377				return ICE_MEDIA_DA;
 378			fallthrough;
 379		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 380			return ICE_MEDIA_BACKPLANE;
 381		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 382		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 383			return ICE_MEDIA_FIBER;
 384		}
 385	}
 386	return ICE_MEDIA_UNKNOWN;
 387}
 388
 389/**
 390 * ice_aq_get_link_info
 391 * @pi: port information structure
 392 * @ena_lse: enable/disable LinkStatusEvent reporting
 393 * @link: pointer to link status structure - optional
 394 * @cd: pointer to command details structure or NULL
 395 *
 396 * Get Link Status (0x607). Returns the link status of the adapter.
 397 */
 398enum ice_status
 399ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 400		     struct ice_link_status *link, struct ice_sq_cd *cd)
 401{
 402	struct ice_aqc_get_link_status_data link_data = { 0 };
 403	struct ice_aqc_get_link_status *resp;
 404	struct ice_link_status *li_old, *li;
 405	enum ice_media_type *hw_media_type;
 406	struct ice_fc_info *hw_fc_info;
 407	bool tx_pause, rx_pause;
 408	struct ice_aq_desc desc;
 409	enum ice_status status;
 410	struct ice_hw *hw;
 411	u16 cmd_flags;
 412
 413	if (!pi)
 414		return ICE_ERR_PARAM;
 415	hw = pi->hw;
 416	li_old = &pi->phy.link_info_old;
 417	hw_media_type = &pi->phy.media_type;
 418	li = &pi->phy.link_info;
 419	hw_fc_info = &pi->fc;
 420
 421	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 422	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 423	resp = &desc.params.get_link_status;
 424	resp->cmd_flags = cpu_to_le16(cmd_flags);
 425	resp->lport_num = pi->lport;
 426
 427	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 428
 429	if (status)
 430		return status;
 431
 432	/* save off old link status information */
 433	*li_old = *li;
 434
 435	/* update current link status information */
 436	li->link_speed = le16_to_cpu(link_data.link_speed);
 437	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 438	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 439	*hw_media_type = ice_get_media_type(pi);
 440	li->link_info = link_data.link_info;
 441	li->link_cfg_err = link_data.link_cfg_err;
 442	li->an_info = link_data.an_info;
 443	li->ext_info = link_data.ext_info;
 444	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 445	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 446	li->topo_media_conflict = link_data.topo_media_conflict;
 447	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 448				      ICE_AQ_CFG_PACING_TYPE_M);
 449
 450	/* update fc info */
 451	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 452	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 453	if (tx_pause && rx_pause)
 454		hw_fc_info->current_mode = ICE_FC_FULL;
 455	else if (tx_pause)
 456		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 457	else if (rx_pause)
 458		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 459	else
 460		hw_fc_info->current_mode = ICE_FC_NONE;
 461
 462	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 463
 464	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 465	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 466	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 467		  (unsigned long long)li->phy_type_low);
 468	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 469		  (unsigned long long)li->phy_type_high);
 470	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 471	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 472	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 473	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 474	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 475	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 476	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 477	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 478		  li->max_frame_size);
 479	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 480
 481	/* save link status information */
 482	if (link)
 483		*link = *li;
 484
 485	/* flag cleared so calling functions don't call AQ again */
 486	pi->phy.get_link_info = false;
 487
 488	return 0;
 489}
 490
 491/**
 492 * ice_fill_tx_timer_and_fc_thresh
 493 * @hw: pointer to the HW struct
 494 * @cmd: pointer to MAC cfg structure
 495 *
 496 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 497 * descriptor
 498 */
 499static void
 500ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 501				struct ice_aqc_set_mac_cfg *cmd)
 502{
 503	u16 fc_thres_val, tx_timer_val;
 504	u32 val;
 505
 506	/* We read back the transmit timer and FC threshold value of
 507	 * LFC. Thus, we will use index =
 508	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 509	 *
 510	 * Also, because we are operating on transmit timer and FC
 511	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 512	 */
 513#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
 514
 515	/* Retrieve the transmit timer */
 516	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
 517	tx_timer_val = val &
 518		PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
 519	cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
 520
 521	/* Retrieve the FC threshold */
 522	val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
 523	fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 525	cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
 
 
 
 
 526}
 527
 528/**
 529 * ice_aq_set_mac_cfg
 530 * @hw: pointer to the HW struct
 531 * @max_frame_size: Maximum Frame Size to be supported
 532 * @cd: pointer to command details structure or NULL
 533 *
 534 * Set MAC configuration (0x0603)
 535 */
 536enum ice_status
 537ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 538{
 539	struct ice_aqc_set_mac_cfg *cmd;
 540	struct ice_aq_desc desc;
 541
 542	cmd = &desc.params.set_mac_cfg;
 
 
 
 
 
 543
 544	if (max_frame_size == 0)
 545		return ICE_ERR_PARAM;
 546
 547	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 548
 549	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 550
 551	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 552
 553	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 
 
 
 
 554}
 555
 556/**
 557 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 558 * @hw: pointer to the HW struct
 559 */
 560static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 561{
 562	struct ice_switch_info *sw;
 563	enum ice_status status;
 564
 565	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 566				       sizeof(*hw->switch_info), GFP_KERNEL);
 567	sw = hw->switch_info;
 568
 569	if (!sw)
 570		return ICE_ERR_NO_MEMORY;
 571
 572	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 573
 574	status = ice_init_def_sw_recp(hw);
 575	if (status) {
 576		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 577		return status;
 578	}
 579	return 0;
 580}
 581
 582/**
 583 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 584 * @hw: pointer to the HW struct
 585 */
 586static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 587{
 588	struct ice_switch_info *sw = hw->switch_info;
 589	struct ice_vsi_list_map_info *v_pos_map;
 590	struct ice_vsi_list_map_info *v_tmp_map;
 591	struct ice_sw_recipe *recps;
 592	u8 i;
 593
 594	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 595				 list_entry) {
 596		list_del(&v_pos_map->list_entry);
 597		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 598	}
 599	recps = hw->switch_info->recp_list;
 600	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
 601		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 602
 603		recps[i].root_rid = i;
 604		mutex_destroy(&recps[i].filt_rule_lock);
 605		list_for_each_entry_safe(lst_itr, tmp_entry,
 606					 &recps[i].filt_rules, list_entry) {
 607			list_del(&lst_itr->list_entry);
 608			devm_kfree(ice_hw_to_dev(hw), lst_itr);
 609		}
 610	}
 611	ice_rm_all_sw_replay_rule_info(hw);
 612	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 613	devm_kfree(ice_hw_to_dev(hw), sw);
 614}
 615
 
 
 
 
 
 616/**
 617 * ice_get_fw_log_cfg - get FW logging configuration
 618 * @hw: pointer to the HW struct
 619 */
 620static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
 621{
 
 622	struct ice_aq_desc desc;
 623	enum ice_status status;
 624	__le16 *config;
 625	u16 size;
 626
 627	size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
 628	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 629	if (!config)
 630		return ICE_ERR_NO_MEMORY;
 631
 632	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 633
 
 
 
 634	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 635	if (!status) {
 636		u16 i;
 637
 638		/* Save FW logging information into the HW structure */
 639		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 640			u16 v, m, flgs;
 641
 642			v = le16_to_cpu(config[i]);
 643			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 644			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 645
 646			if (m < ICE_AQC_FW_LOG_ID_MAX)
 647				hw->fw_log.evnts[m].cur = flgs;
 648		}
 649	}
 650
 651	devm_kfree(ice_hw_to_dev(hw), config);
 652
 653	return status;
 654}
 655
 656/**
 657 * ice_cfg_fw_log - configure FW logging
 658 * @hw: pointer to the HW struct
 659 * @enable: enable certain FW logging events if true, disable all if false
 660 *
 661 * This function enables/disables the FW logging via Rx CQ events and a UART
 662 * port based on predetermined configurations. FW logging via the Rx CQ can be
 663 * enabled/disabled for individual PF's. However, FW logging via the UART can
 664 * only be enabled/disabled for all PFs on the same device.
 665 *
 666 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 667 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 668 * before initializing the device.
 669 *
 670 * When re/configuring FW logging, callers need to update the "cfg" elements of
 671 * the hw->fw_log.evnts array with the desired logging event configurations for
 672 * modules of interest. When disabling FW logging completely, the callers can
 673 * just pass false in the "enable" parameter. On completion, the function will
 674 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 675 * logging event configurations of the modules that are being re/configured. FW
 676 * logging modules that are not part of a reconfiguration operation retain their
 677 * previous states.
 678 *
 679 * Before resetting the device, it is recommended that the driver disables FW
 680 * logging before shutting down the control queue. When disabling FW logging
 681 * ("enable" = false), the latest configurations of FW logging events stored in
 682 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 683 * a device reset.
 684 *
 685 * When enabling FW logging to emit log messages via the Rx CQ during the
 686 * device's initialization phase, a mechanism alternative to interrupt handlers
 687 * needs to be used to extract FW log messages from the Rx CQ periodically and
 688 * to prevent the Rx CQ from being full and stalling other types of control
 689 * messages from FW to SW. Interrupts are typically disabled during the device's
 690 * initialization phase.
 691 */
 692static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 693{
 
 694	struct ice_aqc_fw_logging *cmd;
 695	enum ice_status status = 0;
 696	u16 i, chgs = 0, len = 0;
 697	struct ice_aq_desc desc;
 698	__le16 *data = NULL;
 699	u8 actv_evnts = 0;
 700	void *buf = NULL;
 701
 702	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 703		return 0;
 704
 705	/* Disable FW logging only when the control queue is still responsive */
 706	if (!enable &&
 707	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 708		return 0;
 709
 710	/* Get current FW log settings */
 711	status = ice_get_fw_log_cfg(hw);
 712	if (status)
 713		return status;
 714
 715	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 716	cmd = &desc.params.fw_logging;
 717
 718	/* Indicate which controls are valid */
 719	if (hw->fw_log.cq_en)
 720		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 721
 722	if (hw->fw_log.uart_en)
 723		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 724
 725	if (enable) {
 726		/* Fill in an array of entries with FW logging modules and
 727		 * logging events being reconfigured.
 728		 */
 729		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 730			u16 val;
 731
 732			/* Keep track of enabled event types */
 733			actv_evnts |= hw->fw_log.evnts[i].cfg;
 734
 735			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 736				continue;
 737
 738			if (!data) {
 739				data = devm_kcalloc(ice_hw_to_dev(hw),
 740						    ICE_AQC_FW_LOG_ID_MAX,
 741						    sizeof(*data),
 742						    GFP_KERNEL);
 743				if (!data)
 744					return ICE_ERR_NO_MEMORY;
 745			}
 746
 747			val = i << ICE_AQC_FW_LOG_ID_S;
 748			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 749			data[chgs++] = cpu_to_le16(val);
 750		}
 751
 752		/* Only enable FW logging if at least one module is specified.
 753		 * If FW logging is currently enabled but all modules are not
 754		 * enabled to emit log messages, disable FW logging altogether.
 755		 */
 756		if (actv_evnts) {
 757			/* Leave if there is effectively no change */
 758			if (!chgs)
 759				goto out;
 760
 761			if (hw->fw_log.cq_en)
 762				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 763
 764			if (hw->fw_log.uart_en)
 765				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 766
 767			buf = data;
 768			len = sizeof(*data) * chgs;
 769			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 770		}
 771	}
 772
 773	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 774	if (!status) {
 775		/* Update the current configuration to reflect events enabled.
 776		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 777		 * logging mode is enabled for the device. They do not reflect
 778		 * actual modules being enabled to emit log messages. So, their
 779		 * values remain unchanged even when all modules are disabled.
 780		 */
 781		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 782
 783		hw->fw_log.actv_evnts = actv_evnts;
 784		for (i = 0; i < cnt; i++) {
 785			u16 v, m;
 786
 787			if (!enable) {
 788				/* When disabling all FW logging events as part
 789				 * of device's de-initialization, the original
 790				 * configurations are retained, and can be used
 791				 * to reconfigure FW logging later if the device
 792				 * is re-initialized.
 793				 */
 794				hw->fw_log.evnts[i].cur = 0;
 795				continue;
 796			}
 797
 798			v = le16_to_cpu(data[i]);
 799			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 800			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 801		}
 802	}
 803
 804out:
 805	if (data)
 806		devm_kfree(ice_hw_to_dev(hw), data);
 807
 808	return status;
 809}
 810
 811/**
 812 * ice_output_fw_log
 813 * @hw: pointer to the HW struct
 814 * @desc: pointer to the AQ message descriptor
 815 * @buf: pointer to the buffer accompanying the AQ message
 816 *
 817 * Formats a FW Log message and outputs it via the standard driver logs.
 818 */
 819void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 820{
 821	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 822	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 823			le16_to_cpu(desc->datalen));
 824	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 825}
 826
 827/**
 828 * ice_get_itr_intrl_gran
 829 * @hw: pointer to the HW struct
 830 *
 831 * Determines the ITR/INTRL granularities based on the maximum aggregate
 832 * bandwidth according to the device's configuration during power-on.
 833 */
 834static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 835{
 836	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 837			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 838			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 839
 840	switch (max_agg_bw) {
 841	case ICE_MAX_AGG_BW_200G:
 842	case ICE_MAX_AGG_BW_100G:
 843	case ICE_MAX_AGG_BW_50G:
 844		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 845		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 846		break;
 847	case ICE_MAX_AGG_BW_25G:
 848		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 849		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 850		break;
 851	}
 852}
 853
 854/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855 * ice_init_hw - main hardware initialization routine
 856 * @hw: pointer to the hardware structure
 857 */
 858enum ice_status ice_init_hw(struct ice_hw *hw)
 859{
 860	struct ice_aqc_get_phy_caps_data *pcaps;
 861	enum ice_status status;
 862	u16 mac_buf_len;
 863	void *mac_buf;
 864
 865	/* Set MAC type based on DeviceID */
 866	status = ice_set_mac_type(hw);
 867	if (status)
 868		return status;
 869
 870	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 871			 PF_FUNC_RID_FUNC_NUM_M) >>
 872		PF_FUNC_RID_FUNC_NUM_S;
 873
 874	status = ice_reset(hw, ICE_RESET_PFR);
 875	if (status)
 876		return status;
 877
 878	ice_get_itr_intrl_gran(hw);
 879
 880	status = ice_create_all_ctrlq(hw);
 881	if (status)
 882		goto err_unroll_cqinit;
 883
 884	/* Enable FW logging. Not fatal if this fails. */
 885	status = ice_cfg_fw_log(hw, true);
 886	if (status)
 887		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 888
 889	status = ice_clear_pf_cfg(hw);
 890	if (status)
 891		goto err_unroll_cqinit;
 892
 893	/* Set bit to enable Flow Director filters */
 894	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
 895	INIT_LIST_HEAD(&hw->fdir_list_head);
 896
 897	ice_clear_pxe_mode(hw);
 898
 899	status = ice_init_nvm(hw);
 900	if (status)
 901		goto err_unroll_cqinit;
 902
 903	status = ice_get_caps(hw);
 904	if (status)
 905		goto err_unroll_cqinit;
 906
 907	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 908				     sizeof(*hw->port_info), GFP_KERNEL);
 909	if (!hw->port_info) {
 910		status = ICE_ERR_NO_MEMORY;
 911		goto err_unroll_cqinit;
 912	}
 913
 914	/* set the back pointer to HW */
 915	hw->port_info->hw = hw;
 916
 917	/* Initialize port_info struct with switch configuration data */
 918	status = ice_get_initial_sw_cfg(hw);
 919	if (status)
 920		goto err_unroll_alloc;
 921
 922	hw->evb_veb = true;
 923
 924	/* Query the allocated resources for Tx scheduler */
 925	status = ice_sched_query_res_alloc(hw);
 926	if (status) {
 927		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
 
 928		goto err_unroll_alloc;
 929	}
 930	ice_sched_get_psm_clk_freq(hw);
 931
 932	/* Initialize port_info struct with scheduler data */
 933	status = ice_sched_init_port(hw->port_info);
 934	if (status)
 935		goto err_unroll_sched;
 936
 937	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 938	if (!pcaps) {
 939		status = ICE_ERR_NO_MEMORY;
 940		goto err_unroll_sched;
 941	}
 942
 943	/* Initialize port_info struct with PHY capabilities */
 944	status = ice_aq_get_phy_caps(hw->port_info, false,
 945				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
 946				     NULL);
 947	devm_kfree(ice_hw_to_dev(hw), pcaps);
 948	if (status)
 949		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
 950			 status);
 951
 952	/* Initialize port_info struct with link information */
 953	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 954	if (status)
 955		goto err_unroll_sched;
 956
 957	/* need a valid SW entry point to build a Tx tree */
 958	if (!hw->sw_entry_point_layer) {
 959		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
 960		status = ICE_ERR_CFG;
 961		goto err_unroll_sched;
 962	}
 963	INIT_LIST_HEAD(&hw->agg_list);
 964	/* Initialize max burst size */
 965	if (!hw->max_burst_size)
 966		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
 967
 968	status = ice_init_fltr_mgmt_struct(hw);
 969	if (status)
 970		goto err_unroll_sched;
 971
 
 
 972	/* Get MAC information */
 973	/* A single port can report up to two (LAN and WoL) addresses */
 974	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 975			       sizeof(struct ice_aqc_manage_mac_read_resp),
 976			       GFP_KERNEL);
 977	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 978
 979	if (!mac_buf) {
 980		status = ICE_ERR_NO_MEMORY;
 981		goto err_unroll_fltr_mgmt_struct;
 982	}
 983
 984	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 985	devm_kfree(ice_hw_to_dev(hw), mac_buf);
 986
 987	if (status)
 988		goto err_unroll_fltr_mgmt_struct;
 989	/* enable jumbo frame support at MAC level */
 990	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
 991	if (status)
 992		goto err_unroll_fltr_mgmt_struct;
 993	/* Obtain counter base index which would be used by flow director */
 994	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
 995	if (status)
 996		goto err_unroll_fltr_mgmt_struct;
 997	status = ice_init_hw_tbls(hw);
 998	if (status)
 999		goto err_unroll_fltr_mgmt_struct;
1000	mutex_init(&hw->tnl_lock);
1001	return 0;
1002
1003err_unroll_fltr_mgmt_struct:
1004	ice_cleanup_fltr_mgmt_struct(hw);
1005err_unroll_sched:
1006	ice_sched_cleanup_all(hw);
1007err_unroll_alloc:
1008	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1009err_unroll_cqinit:
1010	ice_destroy_all_ctrlq(hw);
1011	return status;
1012}
1013
1014/**
1015 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1016 * @hw: pointer to the hardware structure
1017 *
1018 * This should be called only during nominal operation, not as a result of
1019 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1020 * applicable initializations if it fails for any reason.
1021 */
1022void ice_deinit_hw(struct ice_hw *hw)
1023{
1024	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1025	ice_cleanup_fltr_mgmt_struct(hw);
1026
1027	ice_sched_cleanup_all(hw);
1028	ice_sched_clear_agg(hw);
1029	ice_free_seg(hw);
1030	ice_free_hw_tbls(hw);
1031	mutex_destroy(&hw->tnl_lock);
1032
1033	if (hw->port_info) {
1034		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1035		hw->port_info = NULL;
1036	}
1037
1038	/* Attempt to disable FW logging before shutting down control queues */
1039	ice_cfg_fw_log(hw, false);
1040	ice_destroy_all_ctrlq(hw);
1041
1042	/* Clear VSI contexts if not already cleared */
1043	ice_clear_all_vsi_ctx(hw);
1044}
1045
1046/**
1047 * ice_check_reset - Check to see if a global reset is complete
1048 * @hw: pointer to the hardware structure
1049 */
1050enum ice_status ice_check_reset(struct ice_hw *hw)
1051{
1052	u32 cnt, reg = 0, grst_timeout, uld_mask;
1053
1054	/* Poll for Device Active state in case a recent CORER, GLOBR,
1055	 * or EMPR has occurred. The grst delay value is in 100ms units.
1056	 * Add 1sec for outstanding AQ commands that can take a long time.
1057	 */
1058	grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1059			GLGEN_RSTCTL_GRSTDEL_S) + 10;
1060
1061	for (cnt = 0; cnt < grst_timeout; cnt++) {
1062		mdelay(100);
1063		reg = rd32(hw, GLGEN_RSTAT);
1064		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1065			break;
1066	}
1067
1068	if (cnt == grst_timeout) {
1069		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
 
1070		return ICE_ERR_RESET_FAILED;
1071	}
1072
1073#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1074				 GLNVM_ULD_PCIER_DONE_1_M |\
1075				 GLNVM_ULD_CORER_DONE_M |\
1076				 GLNVM_ULD_GLOBR_DONE_M |\
1077				 GLNVM_ULD_POR_DONE_M |\
1078				 GLNVM_ULD_POR_DONE_1_M |\
1079				 GLNVM_ULD_PCIER_DONE_2_M)
1080
1081	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1082					  GLNVM_ULD_PE_DONE_M : 0);
1083
1084	/* Device is Active; check Global Reset processes are done */
1085	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1086		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1087		if (reg == uld_mask) {
1088			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
 
1089			break;
1090		}
1091		mdelay(10);
1092	}
1093
1094	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1095		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 
1096			  reg);
1097		return ICE_ERR_RESET_FAILED;
1098	}
1099
1100	return 0;
1101}
1102
1103/**
1104 * ice_pf_reset - Reset the PF
1105 * @hw: pointer to the hardware structure
1106 *
1107 * If a global reset has been triggered, this function checks
1108 * for its completion and then issues the PF reset
1109 */
1110static enum ice_status ice_pf_reset(struct ice_hw *hw)
1111{
1112	u32 cnt, reg;
1113
1114	/* If at function entry a global reset was already in progress, i.e.
1115	 * state is not 'device active' or any of the reset done bits are not
1116	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1117	 * global reset is done.
1118	 */
1119	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1120	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1121		/* poll on global reset currently in progress until done */
1122		if (ice_check_reset(hw))
1123			return ICE_ERR_RESET_FAILED;
1124
1125		return 0;
1126	}
1127
1128	/* Reset the PF */
1129	reg = rd32(hw, PFGEN_CTRL);
1130
1131	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1132
1133	/* Wait for the PFR to complete. The wait time is the global config lock
1134	 * timeout plus the PFR timeout which will account for a possible reset
1135	 * that is occurring during a download package operation.
1136	 */
1137	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1138	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1139		reg = rd32(hw, PFGEN_CTRL);
1140		if (!(reg & PFGEN_CTRL_PFSWR_M))
1141			break;
1142
1143		mdelay(1);
1144	}
1145
1146	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1147		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
 
1148		return ICE_ERR_RESET_FAILED;
1149	}
1150
1151	return 0;
1152}
1153
1154/**
1155 * ice_reset - Perform different types of reset
1156 * @hw: pointer to the hardware structure
1157 * @req: reset request
1158 *
1159 * This function triggers a reset as specified by the req parameter.
1160 *
1161 * Note:
1162 * If anything other than a PF reset is triggered, PXE mode is restored.
1163 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1164 * interface has been restored in the rebuild flow.
1165 */
1166enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1167{
1168	u32 val = 0;
1169
1170	switch (req) {
1171	case ICE_RESET_PFR:
1172		return ice_pf_reset(hw);
1173	case ICE_RESET_CORER:
1174		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1175		val = GLGEN_RTRIG_CORER_M;
1176		break;
1177	case ICE_RESET_GLOBR:
1178		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1179		val = GLGEN_RTRIG_GLOBR_M;
1180		break;
1181	default:
1182		return ICE_ERR_PARAM;
1183	}
1184
1185	val |= rd32(hw, GLGEN_RTRIG);
1186	wr32(hw, GLGEN_RTRIG, val);
1187	ice_flush(hw);
1188
1189	/* wait for the FW to be ready */
1190	return ice_check_reset(hw);
1191}
1192
1193/**
1194 * ice_copy_rxq_ctx_to_hw
1195 * @hw: pointer to the hardware structure
1196 * @ice_rxq_ctx: pointer to the rxq context
1197 * @rxq_index: the index of the Rx queue
1198 *
1199 * Copies rxq context from dense structure to HW register space
1200 */
1201static enum ice_status
1202ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1203{
1204	u8 i;
1205
1206	if (!ice_rxq_ctx)
1207		return ICE_ERR_BAD_PTR;
1208
1209	if (rxq_index > QRX_CTRL_MAX_INDEX)
1210		return ICE_ERR_PARAM;
1211
1212	/* Copy each dword separately to HW */
1213	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1214		wr32(hw, QRX_CONTEXT(i, rxq_index),
1215		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1216
1217		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1218			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1219	}
1220
1221	return 0;
1222}
1223
1224/* LAN Rx Queue Context */
1225static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1226	/* Field		Width	LSB */
1227	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1228	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1229	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1230	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1231	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1232	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1233	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1234	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1235	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1236	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1237	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1238	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1239	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1240	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1241	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1242	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1243	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1244	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1245	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1246	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1247	{ 0 }
1248};
1249
1250/**
1251 * ice_write_rxq_ctx
1252 * @hw: pointer to the hardware structure
1253 * @rlan_ctx: pointer to the rxq context
1254 * @rxq_index: the index of the Rx queue
1255 *
1256 * Converts rxq context from sparse to dense structure and then writes
1257 * it to HW register space and enables the hardware to prefetch descriptors
1258 * instead of only fetching them on demand
1259 */
1260enum ice_status
1261ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1262		  u32 rxq_index)
1263{
1264	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1265
1266	if (!rlan_ctx)
1267		return ICE_ERR_BAD_PTR;
1268
1269	rlan_ctx->prefena = 1;
1270
1271	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1272	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1273}
1274
1275/* LAN Tx Queue Context */
1276const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1277				    /* Field			Width	LSB */
1278	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1279	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1280	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1281	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1282	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1283	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1284	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1285	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1286	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1287	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1288	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1289	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1290	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1291	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1292	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1293	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1294	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1295	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1296	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1297	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1298	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1299	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1300	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1301	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1302	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1303	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1304	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1305	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1306	{ 0 }
1307};
1308
1309/* Sideband Queue command wrappers */
1310
1311/**
1312 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1313 * @hw: pointer to the HW struct
1314 * @desc: descriptor describing the command
1315 * @buf: buffer to use for indirect commands (NULL for direct commands)
1316 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1317 * @cd: pointer to command details structure
 
 
1318 */
1319static int
1320ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1321		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1322{
1323	return ice_status_to_errno(ice_sq_send_cmd(hw, ice_get_sbq(hw),
1324						   (struct ice_aq_desc *)desc,
1325						   buf, buf_size, cd));
1326}
1327
1328/**
1329 * ice_sbq_rw_reg - Fill Sideband Queue command
1330 * @hw: pointer to the HW struct
1331 * @in: message info to be filled in descriptor
1332 */
1333int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1334{
1335	struct ice_sbq_cmd_desc desc = {0};
1336	struct ice_sbq_msg_req msg = {0};
1337	u16 msg_len;
1338	int status;
1339
1340	msg_len = sizeof(msg);
1341
1342	msg.dest_dev = in->dest_dev;
1343	msg.opcode = in->opcode;
1344	msg.flags = ICE_SBQ_MSG_FLAGS;
1345	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1346	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1347	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1348
1349	if (in->opcode)
1350		msg.data = cpu_to_le32(in->data);
1351	else
1352		/* data read comes back in completion, so shorten the struct by
1353		 * sizeof(msg.data)
1354		 */
1355		msg_len -= sizeof(msg.data);
1356
1357	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1358	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1359	desc.param0.cmd_len = cpu_to_le16(msg_len);
1360	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1361	if (!status && !in->opcode)
1362		in->data = le32_to_cpu
1363			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1364	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365}
1366
1367/* FW Admin Queue command wrappers */
1368
1369/* Software lock/mutex that is meant to be held while the Global Config Lock
1370 * in firmware is acquired by the software to prevent most (but not all) types
1371 * of AQ commands from being sent to FW
1372 */
1373DEFINE_MUTEX(ice_global_cfg_lock_sw);
1374
1375/**
1376 * ice_should_retry_sq_send_cmd
1377 * @opcode: AQ opcode
1378 *
1379 * Decide if we should retry the send command routine for the ATQ, depending
1380 * on the opcode.
1381 */
1382static bool ice_should_retry_sq_send_cmd(u16 opcode)
1383{
1384	switch (opcode) {
1385	case ice_aqc_opc_get_link_topo:
1386	case ice_aqc_opc_lldp_stop:
1387	case ice_aqc_opc_lldp_start:
1388	case ice_aqc_opc_lldp_filter_ctrl:
1389		return true;
1390	}
1391
1392	return false;
1393}
1394
1395/**
1396 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1397 * @hw: pointer to the HW struct
1398 * @cq: pointer to the specific Control queue
1399 * @desc: prefilled descriptor describing the command
1400 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1401 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1402 * @cd: pointer to command details structure
1403 *
1404 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1405 * Queue if the EBUSY AQ error is returned.
1406 */
1407static enum ice_status
1408ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1409		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1410		      struct ice_sq_cd *cd)
1411{
1412	struct ice_aq_desc desc_cpy;
1413	enum ice_status status;
1414	bool is_cmd_for_retry;
1415	u8 *buf_cpy = NULL;
1416	u8 idx = 0;
1417	u16 opcode;
1418
1419	opcode = le16_to_cpu(desc->opcode);
1420	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1421	memset(&desc_cpy, 0, sizeof(desc_cpy));
1422
1423	if (is_cmd_for_retry) {
1424		if (buf) {
1425			buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1426			if (!buf_cpy)
1427				return ICE_ERR_NO_MEMORY;
1428		}
1429
1430		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1431	}
1432
1433	do {
1434		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1435
1436		if (!is_cmd_for_retry || !status ||
1437		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1438			break;
1439
1440		if (buf_cpy)
1441			memcpy(buf, buf_cpy, buf_size);
1442
1443		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1444
1445		mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1446
1447	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1448
1449	kfree(buf_cpy);
1450
1451	return status;
1452}
1453
1454/**
1455 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1456 * @hw: pointer to the HW struct
1457 * @desc: descriptor describing the command
1458 * @buf: buffer to use for indirect commands (NULL for direct commands)
1459 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1460 * @cd: pointer to command details structure
1461 *
1462 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1463 */
1464enum ice_status
1465ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1466		u16 buf_size, struct ice_sq_cd *cd)
1467{
1468	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1469	bool lock_acquired = false;
1470	enum ice_status status;
1471
1472	/* When a package download is in process (i.e. when the firmware's
1473	 * Global Configuration Lock resource is held), only the Download
1474	 * Package, Get Version, Get Package Info List and Release Resource
1475	 * (with resource ID set to Global Config Lock) AdminQ commands are
1476	 * allowed; all others must block until the package download completes
1477	 * and the Global Config Lock is released.  See also
1478	 * ice_acquire_global_cfg_lock().
1479	 */
1480	switch (le16_to_cpu(desc->opcode)) {
1481	case ice_aqc_opc_download_pkg:
1482	case ice_aqc_opc_get_pkg_info_list:
1483	case ice_aqc_opc_get_ver:
1484		break;
1485	case ice_aqc_opc_release_res:
1486		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1487			break;
1488		fallthrough;
1489	default:
1490		mutex_lock(&ice_global_cfg_lock_sw);
1491		lock_acquired = true;
1492		break;
1493	}
1494
1495	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1496	if (lock_acquired)
1497		mutex_unlock(&ice_global_cfg_lock_sw);
1498
1499	return status;
1500}
1501
1502/**
1503 * ice_aq_get_fw_ver
1504 * @hw: pointer to the HW struct
1505 * @cd: pointer to command details structure or NULL
1506 *
1507 * Get the firmware version (0x0001) from the admin queue commands
1508 */
1509enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1510{
1511	struct ice_aqc_get_ver *resp;
1512	struct ice_aq_desc desc;
1513	enum ice_status status;
1514
1515	resp = &desc.params.get_ver;
1516
1517	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1518
1519	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1520
1521	if (!status) {
1522		hw->fw_branch = resp->fw_branch;
1523		hw->fw_maj_ver = resp->fw_major;
1524		hw->fw_min_ver = resp->fw_minor;
1525		hw->fw_patch = resp->fw_patch;
1526		hw->fw_build = le32_to_cpu(resp->fw_build);
1527		hw->api_branch = resp->api_branch;
1528		hw->api_maj_ver = resp->api_major;
1529		hw->api_min_ver = resp->api_minor;
1530		hw->api_patch = resp->api_patch;
1531	}
1532
1533	return status;
1534}
1535
1536/**
1537 * ice_aq_send_driver_ver
1538 * @hw: pointer to the HW struct
1539 * @dv: driver's major, minor version
1540 * @cd: pointer to command details structure or NULL
1541 *
1542 * Send the driver version (0x0002) to the firmware
1543 */
1544enum ice_status
1545ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1546		       struct ice_sq_cd *cd)
1547{
1548	struct ice_aqc_driver_ver *cmd;
1549	struct ice_aq_desc desc;
1550	u16 len;
1551
1552	cmd = &desc.params.driver_ver;
1553
1554	if (!dv)
1555		return ICE_ERR_PARAM;
1556
1557	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1558
1559	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560	cmd->major_ver = dv->major_ver;
1561	cmd->minor_ver = dv->minor_ver;
1562	cmd->build_ver = dv->build_ver;
1563	cmd->subbuild_ver = dv->subbuild_ver;
1564
1565	len = 0;
1566	while (len < sizeof(dv->driver_string) &&
1567	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1568		len++;
1569
1570	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1571}
1572
1573/**
1574 * ice_aq_q_shutdown
1575 * @hw: pointer to the HW struct
1576 * @unloading: is the driver unloading itself
1577 *
1578 * Tell the Firmware that we're shutting down the AdminQ and whether
1579 * or not the driver is unloading as well (0x0003).
1580 */
1581enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1582{
1583	struct ice_aqc_q_shutdown *cmd;
1584	struct ice_aq_desc desc;
1585
1586	cmd = &desc.params.q_shutdown;
1587
1588	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1589
1590	if (unloading)
1591		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1592
1593	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1594}
1595
1596/**
1597 * ice_aq_req_res
1598 * @hw: pointer to the HW struct
1599 * @res: resource ID
1600 * @access: access type
1601 * @sdp_number: resource number
1602 * @timeout: the maximum time in ms that the driver may hold the resource
1603 * @cd: pointer to command details structure or NULL
1604 *
1605 * Requests common resource using the admin queue commands (0x0008).
1606 * When attempting to acquire the Global Config Lock, the driver can
1607 * learn of three states:
1608 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1609 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1610 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1611 *                          successfully downloaded the package; the driver does
1612 *                          not have to download the package and can continue
1613 *                          loading
1614 *
1615 * Note that if the caller is in an acquire lock, perform action, release lock
1616 * phase of operation, it is possible that the FW may detect a timeout and issue
1617 * a CORER. In this case, the driver will receive a CORER interrupt and will
1618 * have to determine its cause. The calling thread that is handling this flow
1619 * will likely get an error propagated back to it indicating the Download
1620 * Package, Update Package or the Release Resource AQ commands timed out.
1621 */
1622static enum ice_status
1623ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1624	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1625	       struct ice_sq_cd *cd)
1626{
1627	struct ice_aqc_req_res *cmd_resp;
1628	struct ice_aq_desc desc;
1629	enum ice_status status;
1630
1631	cmd_resp = &desc.params.res_owner;
1632
1633	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1634
1635	cmd_resp->res_id = cpu_to_le16(res);
1636	cmd_resp->access_type = cpu_to_le16(access);
1637	cmd_resp->res_number = cpu_to_le32(sdp_number);
1638	cmd_resp->timeout = cpu_to_le32(*timeout);
1639	*timeout = 0;
1640
1641	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1642
1643	/* The completion specifies the maximum time in ms that the driver
1644	 * may hold the resource in the Timeout field.
1645	 */
1646
1647	/* Global config lock response utilizes an additional status field.
1648	 *
1649	 * If the Global config lock resource is held by some other driver, the
1650	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1651	 * and the timeout field indicates the maximum time the current owner
1652	 * of the resource has to free it.
1653	 */
1654	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1655		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1656			*timeout = le32_to_cpu(cmd_resp->timeout);
1657			return 0;
1658		} else if (le16_to_cpu(cmd_resp->status) ==
1659			   ICE_AQ_RES_GLBL_IN_PROG) {
1660			*timeout = le32_to_cpu(cmd_resp->timeout);
1661			return ICE_ERR_AQ_ERROR;
1662		} else if (le16_to_cpu(cmd_resp->status) ==
1663			   ICE_AQ_RES_GLBL_DONE) {
1664			return ICE_ERR_AQ_NO_WORK;
1665		}
1666
1667		/* invalid FW response, force a timeout immediately */
1668		*timeout = 0;
1669		return ICE_ERR_AQ_ERROR;
1670	}
1671
1672	/* If the resource is held by some other driver, the command completes
1673	 * with a busy return value and the timeout field indicates the maximum
1674	 * time the current owner of the resource has to free it.
1675	 */
1676	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1677		*timeout = le32_to_cpu(cmd_resp->timeout);
1678
1679	return status;
1680}
1681
1682/**
1683 * ice_aq_release_res
1684 * @hw: pointer to the HW struct
1685 * @res: resource ID
1686 * @sdp_number: resource number
1687 * @cd: pointer to command details structure or NULL
1688 *
1689 * release common resource using the admin queue commands (0x0009)
1690 */
1691static enum ice_status
1692ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1693		   struct ice_sq_cd *cd)
1694{
1695	struct ice_aqc_req_res *cmd;
1696	struct ice_aq_desc desc;
1697
1698	cmd = &desc.params.res_owner;
1699
1700	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1701
1702	cmd->res_id = cpu_to_le16(res);
1703	cmd->res_number = cpu_to_le32(sdp_number);
1704
1705	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1706}
1707
1708/**
1709 * ice_acquire_res
1710 * @hw: pointer to the HW structure
1711 * @res: resource ID
1712 * @access: access type (read or write)
1713 * @timeout: timeout in milliseconds
1714 *
1715 * This function will attempt to acquire the ownership of a resource.
1716 */
1717enum ice_status
1718ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1719		enum ice_aq_res_access_type access, u32 timeout)
1720{
1721#define ICE_RES_POLLING_DELAY_MS	10
1722	u32 delay = ICE_RES_POLLING_DELAY_MS;
1723	u32 time_left = timeout;
1724	enum ice_status status;
1725
1726	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1727
1728	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1729	 * previously acquired the resource and performed any necessary updates;
1730	 * in this case the caller does not obtain the resource and has no
1731	 * further work to do.
1732	 */
1733	if (status == ICE_ERR_AQ_NO_WORK)
1734		goto ice_acquire_res_exit;
1735
1736	if (status)
1737		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
 
1738
1739	/* If necessary, poll until the current lock owner timeouts */
1740	timeout = time_left;
1741	while (status && timeout && time_left) {
1742		mdelay(delay);
1743		timeout = (timeout > delay) ? timeout - delay : 0;
1744		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1745
1746		if (status == ICE_ERR_AQ_NO_WORK)
1747			/* lock free, but no work to do */
1748			break;
1749
1750		if (!status)
1751			/* lock acquired */
1752			break;
1753	}
1754	if (status && status != ICE_ERR_AQ_NO_WORK)
1755		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1756
1757ice_acquire_res_exit:
1758	if (status == ICE_ERR_AQ_NO_WORK) {
1759		if (access == ICE_RES_WRITE)
1760			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
 
1761		else
1762			ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
 
1763	}
1764	return status;
1765}
1766
1767/**
1768 * ice_release_res
1769 * @hw: pointer to the HW structure
1770 * @res: resource ID
1771 *
1772 * This function will release a resource using the proper Admin Command.
1773 */
1774void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1775{
1776	enum ice_status status;
1777	u32 total_delay = 0;
1778
1779	status = ice_aq_release_res(hw, res, 0, NULL);
1780
1781	/* there are some rare cases when trying to release the resource
1782	 * results in an admin queue timeout, so handle them correctly
1783	 */
1784	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1785	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1786		mdelay(1);
1787		status = ice_aq_release_res(hw, res, 0, NULL);
1788		total_delay++;
1789	}
1790}
1791
1792/**
1793 * ice_aq_alloc_free_res - command to allocate/free resources
1794 * @hw: pointer to the HW struct
1795 * @num_entries: number of resource entries in buffer
1796 * @buf: Indirect buffer to hold data parameters and response
1797 * @buf_size: size of buffer for indirect commands
1798 * @opc: pass in the command opcode
1799 * @cd: pointer to command details structure or NULL
1800 *
1801 * Helper function to allocate/free resources using the admin queue commands
1802 */
1803enum ice_status
1804ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1805		      struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1806		      enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807{
1808	struct ice_aqc_alloc_free_res_cmd *cmd;
1809	struct ice_aq_desc desc;
1810
1811	cmd = &desc.params.sw_res_ctrl;
1812
1813	if (!buf)
1814		return ICE_ERR_PARAM;
1815
1816	if (buf_size < flex_array_size(buf, elem, num_entries))
1817		return ICE_ERR_PARAM;
1818
1819	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1820
1821	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1822
1823	cmd->num_entries = cpu_to_le16(num_entries);
1824
1825	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1826}
1827
1828/**
1829 * ice_alloc_hw_res - allocate resource
1830 * @hw: pointer to the HW struct
1831 * @type: type of resource
1832 * @num: number of resources to allocate
1833 * @btm: allocate from bottom
1834 * @res: pointer to array that will receive the resources
1835 */
1836enum ice_status
1837ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1838{
1839	struct ice_aqc_alloc_free_res_elem *buf;
1840	enum ice_status status;
1841	u16 buf_len;
1842
1843	buf_len = struct_size(buf, elem, num);
1844	buf = kzalloc(buf_len, GFP_KERNEL);
1845	if (!buf)
1846		return ICE_ERR_NO_MEMORY;
1847
1848	/* Prepare buffer to allocate resource. */
1849	buf->num_elems = cpu_to_le16(num);
1850	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1851				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1852	if (btm)
1853		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1854
1855	status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1856				       ice_aqc_opc_alloc_res, NULL);
1857	if (status)
1858		goto ice_alloc_res_exit;
1859
1860	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1861
1862ice_alloc_res_exit:
1863	kfree(buf);
1864	return status;
1865}
1866
1867/**
1868 * ice_free_hw_res - free allocated HW resource
1869 * @hw: pointer to the HW struct
1870 * @type: type of resource to free
1871 * @num: number of resources
1872 * @res: pointer to array that contains the resources to free
1873 */
1874enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1875{
1876	struct ice_aqc_alloc_free_res_elem *buf;
1877	enum ice_status status;
1878	u16 buf_len;
1879
1880	buf_len = struct_size(buf, elem, num);
1881	buf = kzalloc(buf_len, GFP_KERNEL);
1882	if (!buf)
1883		return ICE_ERR_NO_MEMORY;
1884
1885	/* Prepare buffer to free resource. */
1886	buf->num_elems = cpu_to_le16(num);
1887	buf->res_type = cpu_to_le16(type);
1888	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1889
1890	status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1891				       ice_aqc_opc_free_res, NULL);
1892	if (status)
1893		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1894
1895	kfree(buf);
1896	return status;
1897}
1898
1899/**
1900 * ice_get_num_per_func - determine number of resources per PF
1901 * @hw: pointer to the HW structure
1902 * @max: value to be evenly split between each PF
1903 *
1904 * Determine the number of valid functions by going through the bitmap returned
1905 * from parsing capabilities and use this to calculate the number of resources
1906 * per PF based on the max value passed in.
1907 */
1908static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1909{
1910	u8 funcs;
1911
1912#define ICE_CAPS_VALID_FUNCS_M	0xFF
1913	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1914			 ICE_CAPS_VALID_FUNCS_M);
1915
1916	if (!funcs)
1917		return 0;
1918
1919	return max / funcs;
1920}
1921
1922/**
1923 * ice_parse_common_caps - parse common device/function capabilities
1924 * @hw: pointer to the HW struct
1925 * @caps: pointer to common capabilities structure
1926 * @elem: the capability element to parse
1927 * @prefix: message prefix for tracing capabilities
1928 *
1929 * Given a capability element, extract relevant details into the common
1930 * capability structure.
1931 *
1932 * Returns: true if the capability matches one of the common capability ids,
1933 * false otherwise.
1934 */
1935static bool
1936ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1937		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
1938{
1939	u32 logical_id = le32_to_cpu(elem->logical_id);
1940	u32 phys_id = le32_to_cpu(elem->phys_id);
1941	u32 number = le32_to_cpu(elem->number);
1942	u16 cap = le16_to_cpu(elem->cap);
1943	bool found = true;
1944
1945	switch (cap) {
1946	case ICE_AQC_CAPS_VALID_FUNCTIONS:
1947		caps->valid_functions = number;
1948		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1949			  caps->valid_functions);
1950		break;
1951	case ICE_AQC_CAPS_SRIOV:
1952		caps->sr_iov_1_1 = (number == 1);
1953		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1954			  caps->sr_iov_1_1);
1955		break;
1956	case ICE_AQC_CAPS_DCB:
1957		caps->dcb = (number == 1);
1958		caps->active_tc_bitmap = logical_id;
1959		caps->maxtc = phys_id;
1960		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1961		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1962			  caps->active_tc_bitmap);
1963		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1964		break;
1965	case ICE_AQC_CAPS_RSS:
1966		caps->rss_table_size = number;
1967		caps->rss_table_entry_width = logical_id;
1968		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1969			  caps->rss_table_size);
1970		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1971			  caps->rss_table_entry_width);
1972		break;
1973	case ICE_AQC_CAPS_RXQS:
1974		caps->num_rxq = number;
1975		caps->rxq_first_id = phys_id;
1976		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1977			  caps->num_rxq);
1978		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1979			  caps->rxq_first_id);
1980		break;
1981	case ICE_AQC_CAPS_TXQS:
1982		caps->num_txq = number;
1983		caps->txq_first_id = phys_id;
1984		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1985			  caps->num_txq);
1986		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1987			  caps->txq_first_id);
1988		break;
1989	case ICE_AQC_CAPS_MSIX:
1990		caps->num_msix_vectors = number;
1991		caps->msix_vector_first_id = phys_id;
1992		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1993			  caps->num_msix_vectors);
1994		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1995			  caps->msix_vector_first_id);
1996		break;
1997	case ICE_AQC_CAPS_PENDING_NVM_VER:
1998		caps->nvm_update_pending_nvm = true;
1999		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2000		break;
2001	case ICE_AQC_CAPS_PENDING_OROM_VER:
2002		caps->nvm_update_pending_orom = true;
2003		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2004		break;
2005	case ICE_AQC_CAPS_PENDING_NET_VER:
2006		caps->nvm_update_pending_netlist = true;
2007		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2008		break;
2009	case ICE_AQC_CAPS_NVM_MGMT:
2010		caps->nvm_unified_update =
2011			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2012			true : false;
2013		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2014			  caps->nvm_unified_update);
2015		break;
2016	case ICE_AQC_CAPS_RDMA:
2017		caps->rdma = (number == 1);
2018		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2019		break;
2020	case ICE_AQC_CAPS_MAX_MTU:
2021		caps->max_mtu = number;
2022		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2023			  prefix, caps->max_mtu);
2024		break;
2025	default:
2026		/* Not one of the recognized common capabilities */
2027		found = false;
2028	}
2029
2030	return found;
2031}
2032
2033/**
2034 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2035 * @hw: pointer to the HW structure
2036 * @caps: pointer to capabilities structure to fix
2037 *
2038 * Re-calculate the capabilities that are dependent on the number of physical
2039 * ports; i.e. some features are not supported or function differently on
2040 * devices with more than 4 ports.
2041 */
2042static void
2043ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2044{
2045	/* This assumes device capabilities are always scanned before function
2046	 * capabilities during the initialization flow.
2047	 */
2048	if (hw->dev_caps.num_funcs > 4) {
2049		/* Max 4 TCs per port */
2050		caps->maxtc = 4;
2051		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2052			  caps->maxtc);
2053		if (caps->rdma) {
2054			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2055			caps->rdma = 0;
2056		}
2057
2058		/* print message only when processing device capabilities
2059		 * during initialization.
2060		 */
2061		if (caps == &hw->dev_caps.common_cap)
2062			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2063	}
2064}
2065
2066/**
2067 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2068 * @hw: pointer to the HW struct
2069 * @func_p: pointer to function capabilities structure
2070 * @cap: pointer to the capability element to parse
 
2071 *
2072 * Extract function capabilities for ICE_AQC_CAPS_VF.
2073 */
2074static void
2075ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2076		       struct ice_aqc_list_caps_elem *cap)
2077{
2078	u32 logical_id = le32_to_cpu(cap->logical_id);
2079	u32 number = le32_to_cpu(cap->number);
2080
2081	func_p->num_allocd_vfs = number;
2082	func_p->vf_base_id = logical_id;
2083	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2084		  func_p->num_allocd_vfs);
2085	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2086		  func_p->vf_base_id);
2087}
2088
2089/**
2090 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2091 * @hw: pointer to the HW struct
2092 * @func_p: pointer to function capabilities structure
2093 * @cap: pointer to the capability element to parse
2094 *
2095 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2096 */
2097static void
2098ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2099			struct ice_aqc_list_caps_elem *cap)
2100{
2101	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2102	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2103		  le32_to_cpu(cap->number));
2104	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2105		  func_p->guar_num_vsi);
2106}
2107
2108/**
2109 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2110 * @hw: pointer to the HW struct
2111 * @func_p: pointer to function capabilities structure
2112 * @cap: pointer to the capability element to parse
2113 *
2114 * Extract function capabilities for ICE_AQC_CAPS_1588.
2115 */
2116static void
2117ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2118			 struct ice_aqc_list_caps_elem *cap)
2119{
2120	struct ice_ts_func_info *info = &func_p->ts_func_info;
2121	u32 number = le32_to_cpu(cap->number);
2122
2123	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2124	func_p->common_cap.ieee_1588 = info->ena;
2125
2126	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2127	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2128	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2129	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2130
2131	info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2132	info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2133
2134	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2135		  func_p->common_cap.ieee_1588);
2136	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2137		  info->src_tmr_owned);
2138	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2139		  info->tmr_ena);
2140	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2141		  info->tmr_index_owned);
2142	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2143		  info->tmr_index_assoc);
2144	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2145		  info->clk_freq);
2146	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2147		  info->clk_src);
2148}
2149
2150/**
2151 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2152 * @hw: pointer to the HW struct
2153 * @func_p: pointer to function capabilities structure
2154 *
2155 * Extract function capabilities for ICE_AQC_CAPS_FD.
2156 */
2157static void
2158ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2159{
2160	u32 reg_val, val;
2161
2162	reg_val = rd32(hw, GLQF_FD_SIZE);
2163	val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2164		GLQF_FD_SIZE_FD_GSIZE_S;
2165	func_p->fd_fltr_guar =
2166		ice_get_num_per_func(hw, val);
2167	val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2168		GLQF_FD_SIZE_FD_BSIZE_S;
2169	func_p->fd_fltr_best_effort = val;
2170
2171	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2172		  func_p->fd_fltr_guar);
2173	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2174		  func_p->fd_fltr_best_effort);
2175}
2176
2177/**
2178 * ice_parse_func_caps - Parse function capabilities
2179 * @hw: pointer to the HW struct
2180 * @func_p: pointer to function capabilities structure
2181 * @buf: buffer containing the function capability records
2182 * @cap_count: the number of capabilities
2183 *
2184 * Helper function to parse function (0x000A) capabilities list. For
2185 * capabilities shared between device and function, this relies on
2186 * ice_parse_common_caps.
2187 *
2188 * Loop through the list of provided capabilities and extract the relevant
2189 * data into the function capabilities structured.
2190 */
2191static void
2192ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2193		    void *buf, u32 cap_count)
2194{
2195	struct ice_aqc_list_caps_elem *cap_resp;
 
 
 
 
2196	u32 i;
2197
2198	cap_resp = buf;
2199
2200	memset(func_p, 0, sizeof(*func_p));
2201
2202	for (i = 0; i < cap_count; i++) {
2203		u16 cap = le16_to_cpu(cap_resp[i].cap);
2204		bool found;
2205
2206		found = ice_parse_common_caps(hw, &func_p->common_cap,
2207					      &cap_resp[i], "func caps");
2208
2209		switch (cap) {
2210		case ICE_AQC_CAPS_VF:
2211			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2212			break;
2213		case ICE_AQC_CAPS_VSI:
2214			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2215			break;
2216		case ICE_AQC_CAPS_1588:
2217			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2218			break;
2219		case ICE_AQC_CAPS_FD:
2220			ice_parse_fdir_func_caps(hw, func_p);
2221			break;
2222		default:
2223			/* Don't list common capabilities as unknown */
2224			if (!found)
2225				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2226					  i, cap);
2227			break;
2228		}
2229	}
2230
2231	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2232}
2233
2234/**
2235 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2236 * @hw: pointer to the HW struct
2237 * @dev_p: pointer to device capabilities structure
2238 * @cap: capability element to parse
2239 *
2240 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2241 */
2242static void
2243ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2244			      struct ice_aqc_list_caps_elem *cap)
2245{
2246	u32 number = le32_to_cpu(cap->number);
2247
2248	dev_p->num_funcs = hweight32(number);
2249	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2250		  dev_p->num_funcs);
2251}
2252
2253/**
2254 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2255 * @hw: pointer to the HW struct
2256 * @dev_p: pointer to device capabilities structure
2257 * @cap: capability element to parse
2258 *
2259 * Parse ICE_AQC_CAPS_VF for device capabilities.
2260 */
2261static void
2262ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2263		      struct ice_aqc_list_caps_elem *cap)
2264{
2265	u32 number = le32_to_cpu(cap->number);
2266
2267	dev_p->num_vfs_exposed = number;
2268	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2269		  dev_p->num_vfs_exposed);
2270}
2271
2272/**
2273 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2274 * @hw: pointer to the HW struct
2275 * @dev_p: pointer to device capabilities structure
2276 * @cap: capability element to parse
2277 *
2278 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2279 */
2280static void
2281ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2282		       struct ice_aqc_list_caps_elem *cap)
2283{
2284	u32 number = le32_to_cpu(cap->number);
2285
2286	dev_p->num_vsi_allocd_to_host = number;
2287	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2288		  dev_p->num_vsi_allocd_to_host);
2289}
2290
2291/**
2292 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2293 * @hw: pointer to the HW struct
2294 * @dev_p: pointer to device capabilities structure
2295 * @cap: capability element to parse
2296 *
2297 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2298 */
2299static void
2300ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2301			struct ice_aqc_list_caps_elem *cap)
2302{
2303	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2304	u32 logical_id = le32_to_cpu(cap->logical_id);
2305	u32 phys_id = le32_to_cpu(cap->phys_id);
2306	u32 number = le32_to_cpu(cap->number);
2307
2308	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2309	dev_p->common_cap.ieee_1588 = info->ena;
2310
2311	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2312	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2313	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2314
2315	info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2316	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2317	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2318
2319	info->ena_ports = logical_id;
2320	info->tmr_own_map = phys_id;
2321
2322	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2323		  dev_p->common_cap.ieee_1588);
2324	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2325		  info->tmr0_owner);
2326	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2327		  info->tmr0_owned);
2328	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2329		  info->tmr0_ena);
2330	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2331		  info->tmr1_owner);
2332	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2333		  info->tmr1_owned);
2334	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2335		  info->tmr1_ena);
2336	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2337		  info->ena_ports);
2338	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2339		  info->tmr_own_map);
2340}
2341
2342/**
2343 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2344 * @hw: pointer to the HW struct
2345 * @dev_p: pointer to device capabilities structure
2346 * @cap: capability element to parse
2347 *
2348 * Parse ICE_AQC_CAPS_FD for device capabilities.
2349 */
2350static void
2351ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2352			struct ice_aqc_list_caps_elem *cap)
2353{
2354	u32 number = le32_to_cpu(cap->number);
2355
2356	dev_p->num_flow_director_fltr = number;
2357	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2358		  dev_p->num_flow_director_fltr);
2359}
2360
2361/**
2362 * ice_parse_dev_caps - Parse device capabilities
2363 * @hw: pointer to the HW struct
2364 * @dev_p: pointer to device capabilities structure
2365 * @buf: buffer containing the device capability records
2366 * @cap_count: the number of capabilities
2367 *
2368 * Helper device to parse device (0x000B) capabilities list. For
2369 * capabilities shared between device and function, this relies on
2370 * ice_parse_common_caps.
2371 *
2372 * Loop through the list of provided capabilities and extract the relevant
2373 * data into the device capabilities structured.
2374 */
2375static void
2376ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2377		   void *buf, u32 cap_count)
2378{
2379	struct ice_aqc_list_caps_elem *cap_resp;
2380	u32 i;
2381
2382	cap_resp = buf;
2383
2384	memset(dev_p, 0, sizeof(*dev_p));
2385
2386	for (i = 0; i < cap_count; i++) {
2387		u16 cap = le16_to_cpu(cap_resp[i].cap);
2388		bool found;
2389
2390		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2391					      &cap_resp[i], "dev caps");
2392
2393		switch (cap) {
2394		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2395			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
2396			break;
2397		case ICE_AQC_CAPS_VF:
2398			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2399			break;
2400		case ICE_AQC_CAPS_VSI:
2401			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2402			break;
2403		case ICE_AQC_CAPS_1588:
2404			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
2405			break;
2406		case  ICE_AQC_CAPS_FD:
2407			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2408			break;
2409		default:
2410			/* Don't list common capabilities as unknown */
2411			if (!found)
2412				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2413					  i, cap);
2414			break;
2415		}
2416	}
2417
2418	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2419}
2420
2421/**
2422 * ice_aq_list_caps - query function/device capabilities
2423 * @hw: pointer to the HW struct
2424 * @buf: a buffer to hold the capabilities
2425 * @buf_size: size of the buffer
2426 * @cap_count: if not NULL, set to the number of capabilities reported
2427 * @opc: capabilities type to discover, device or function
2428 * @cd: pointer to command details structure or NULL
2429 *
2430 * Get the function (0x000A) or device (0x000B) capabilities description from
2431 * firmware and store it in the buffer.
2432 *
2433 * If the cap_count pointer is not NULL, then it is set to the number of
2434 * capabilities firmware will report. Note that if the buffer size is too
2435 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2436 * cap_count will still be updated in this case. It is recommended that the
2437 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2438 * firmware could return) to avoid this.
2439 */
2440enum ice_status
2441ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2442		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2443{
2444	struct ice_aqc_list_caps *cmd;
2445	struct ice_aq_desc desc;
2446	enum ice_status status;
2447
2448	cmd = &desc.params.get_cap;
2449
2450	if (opc != ice_aqc_opc_list_func_caps &&
2451	    opc != ice_aqc_opc_list_dev_caps)
2452		return ICE_ERR_PARAM;
2453
2454	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2455	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2456
2457	if (cap_count)
 
 
 
2458		*cap_count = le32_to_cpu(cmd->count);
2459
2460	return status;
2461}
2462
2463/**
2464 * ice_discover_dev_caps - Read and extract device capabilities
2465 * @hw: pointer to the hardware structure
2466 * @dev_caps: pointer to device capabilities structure
2467 *
2468 * Read the device capabilities and extract them into the dev_caps structure
2469 * for later use.
2470 */
2471enum ice_status
2472ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2473{
2474	enum ice_status status;
2475	u32 cap_count = 0;
2476	void *cbuf;
 
2477
2478	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2479	if (!cbuf)
2480		return ICE_ERR_NO_MEMORY;
2481
2482	/* Although the driver doesn't know the number of capabilities the
2483	 * device will return, we can simply send a 4KB buffer, the maximum
2484	 * possible size that firmware can return.
2485	 */
2486	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
 
2487
2488	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2489				  ice_aqc_opc_list_dev_caps, NULL);
2490	if (!status)
2491		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2492	kfree(cbuf);
2493
2494	return status;
2495}
2496
2497/**
2498 * ice_discover_func_caps - Read and extract function capabilities
2499 * @hw: pointer to the hardware structure
2500 * @func_caps: pointer to function capabilities structure
2501 *
2502 * Read the function capabilities and extract them into the func_caps structure
2503 * for later use.
2504 */
2505static enum ice_status
2506ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2507{
2508	enum ice_status status;
2509	u32 cap_count = 0;
2510	void *cbuf;
2511
2512	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2513	if (!cbuf)
2514		return ICE_ERR_NO_MEMORY;
2515
2516	/* Although the driver doesn't know the number of capabilities the
2517	 * device will return, we can simply send a 4KB buffer, the maximum
2518	 * possible size that firmware can return.
2519	 */
2520	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2521
2522	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2523				  ice_aqc_opc_list_func_caps, NULL);
2524	if (!status)
2525		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2526	kfree(cbuf);
2527
2528	return status;
2529}
2530
2531/**
2532 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2533 * @hw: pointer to the hardware structure
2534 */
2535void ice_set_safe_mode_caps(struct ice_hw *hw)
2536{
2537	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2538	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2539	struct ice_hw_common_caps cached_caps;
2540	u32 num_funcs;
 
 
2541
2542	/* cache some func_caps values that should be restored after memset */
2543	cached_caps = func_caps->common_cap;
 
 
 
 
2544
2545	/* unset func capabilities */
2546	memset(func_caps, 0, sizeof(*func_caps));
2547
2548#define ICE_RESTORE_FUNC_CAP(name) \
2549	func_caps->common_cap.name = cached_caps.name
2550
2551	/* restore cached values */
2552	ICE_RESTORE_FUNC_CAP(valid_functions);
2553	ICE_RESTORE_FUNC_CAP(txq_first_id);
2554	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2555	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2556	ICE_RESTORE_FUNC_CAP(max_mtu);
2557	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2558	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2559	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2560	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2561
2562	/* one Tx and one Rx queue in safe mode */
2563	func_caps->common_cap.num_rxq = 1;
2564	func_caps->common_cap.num_txq = 1;
2565
2566	/* two MSIX vectors, one for traffic and one for misc causes */
2567	func_caps->common_cap.num_msix_vectors = 2;
2568	func_caps->guar_num_vsi = 1;
2569
2570	/* cache some dev_caps values that should be restored after memset */
2571	cached_caps = dev_caps->common_cap;
2572	num_funcs = dev_caps->num_funcs;
 
 
 
2573
2574	/* unset dev capabilities */
2575	memset(dev_caps, 0, sizeof(*dev_caps));
2576
2577#define ICE_RESTORE_DEV_CAP(name) \
2578	dev_caps->common_cap.name = cached_caps.name
2579
2580	/* restore cached values */
2581	ICE_RESTORE_DEV_CAP(valid_functions);
2582	ICE_RESTORE_DEV_CAP(txq_first_id);
2583	ICE_RESTORE_DEV_CAP(rxq_first_id);
2584	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2585	ICE_RESTORE_DEV_CAP(max_mtu);
2586	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2587	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2588	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2589	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2590	dev_caps->num_funcs = num_funcs;
 
2591
2592	/* one Tx and one Rx queue per function in safe mode */
2593	dev_caps->common_cap.num_rxq = num_funcs;
2594	dev_caps->common_cap.num_txq = num_funcs;
2595
2596	/* two MSIX vectors per function */
2597	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2598}
2599
2600/**
2601 * ice_get_caps - get info about the HW
2602 * @hw: pointer to the hardware structure
2603 */
2604enum ice_status ice_get_caps(struct ice_hw *hw)
2605{
2606	enum ice_status status;
2607
2608	status = ice_discover_dev_caps(hw, &hw->dev_caps);
2609	if (status)
2610		return status;
2611
2612	return ice_discover_func_caps(hw, &hw->func_caps);
2613}
2614
2615/**
2616 * ice_aq_manage_mac_write - manage MAC address write command
2617 * @hw: pointer to the HW struct
2618 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2619 * @flags: flags to control write behavior
2620 * @cd: pointer to command details structure or NULL
2621 *
2622 * This function is used to write MAC address to the NVM (0x0108).
2623 */
2624enum ice_status
2625ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2626			struct ice_sq_cd *cd)
2627{
2628	struct ice_aqc_manage_mac_write *cmd;
2629	struct ice_aq_desc desc;
2630
2631	cmd = &desc.params.mac_write;
2632	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2633
2634	cmd->flags = flags;
2635	ether_addr_copy(cmd->mac_addr, mac_addr);
 
 
 
2636
2637	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2638}
2639
2640/**
2641 * ice_aq_clear_pxe_mode
2642 * @hw: pointer to the HW struct
2643 *
2644 * Tell the firmware that the driver is taking over from PXE (0x0110).
2645 */
2646static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2647{
2648	struct ice_aq_desc desc;
2649
2650	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2651	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2652
2653	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2654}
2655
2656/**
2657 * ice_clear_pxe_mode - clear pxe operations mode
2658 * @hw: pointer to the HW struct
2659 *
2660 * Make sure all PXE mode settings are cleared, including things
2661 * like descriptor fetch/write-back mode.
2662 */
2663void ice_clear_pxe_mode(struct ice_hw *hw)
2664{
2665	if (ice_check_sq_alive(hw, &hw->adminq))
2666		ice_aq_clear_pxe_mode(hw);
2667}
2668
2669/**
2670 * ice_get_link_speed_based_on_phy_type - returns link speed
2671 * @phy_type_low: lower part of phy_type
2672 * @phy_type_high: higher part of phy_type
2673 *
2674 * This helper function will convert an entry in PHY type structure
2675 * [phy_type_low, phy_type_high] to its corresponding link speed.
2676 * Note: In the structure of [phy_type_low, phy_type_high], there should
2677 * be one bit set, as this function will convert one PHY type to its
2678 * speed.
2679 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2680 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2681 */
2682static u16
2683ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2684{
2685	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2686	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2687
2688	switch (phy_type_low) {
2689	case ICE_PHY_TYPE_LOW_100BASE_TX:
2690	case ICE_PHY_TYPE_LOW_100M_SGMII:
2691		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2692		break;
2693	case ICE_PHY_TYPE_LOW_1000BASE_T:
2694	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2695	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2696	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2697	case ICE_PHY_TYPE_LOW_1G_SGMII:
2698		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2699		break;
2700	case ICE_PHY_TYPE_LOW_2500BASE_T:
2701	case ICE_PHY_TYPE_LOW_2500BASE_X:
2702	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2703		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2704		break;
2705	case ICE_PHY_TYPE_LOW_5GBASE_T:
2706	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2707		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2708		break;
2709	case ICE_PHY_TYPE_LOW_10GBASE_T:
2710	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2711	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2712	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2713	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2714	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2715	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2716		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2717		break;
2718	case ICE_PHY_TYPE_LOW_25GBASE_T:
2719	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2720	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2721	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2722	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2723	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2724	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2725	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2726	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2727	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2728	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2729		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2730		break;
2731	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2732	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2733	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2734	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2735	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2736	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2737		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2738		break;
2739	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2740	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2741	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2742	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2743	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2744	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2745	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2746	case ICE_PHY_TYPE_LOW_50G_AUI2:
2747	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2748	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2749	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2750	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2751	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2752	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2753	case ICE_PHY_TYPE_LOW_50G_AUI1:
2754		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2755		break;
2756	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2757	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2758	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2759	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2760	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2761	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2762	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2763	case ICE_PHY_TYPE_LOW_100G_AUI4:
2764	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2765	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2766	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2767	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2768	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2769		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2770		break;
2771	default:
2772		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2773		break;
2774	}
2775
2776	switch (phy_type_high) {
2777	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2778	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2779	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2780	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2781	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2782		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2783		break;
2784	default:
2785		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2786		break;
2787	}
2788
2789	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2790	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2791		return ICE_AQ_LINK_SPEED_UNKNOWN;
2792	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2793		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2794		return ICE_AQ_LINK_SPEED_UNKNOWN;
2795	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2796		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2797		return speed_phy_type_low;
2798	else
2799		return speed_phy_type_high;
2800}
2801
2802/**
2803 * ice_update_phy_type
2804 * @phy_type_low: pointer to the lower part of phy_type
2805 * @phy_type_high: pointer to the higher part of phy_type
2806 * @link_speeds_bitmap: targeted link speeds bitmap
2807 *
2808 * Note: For the link_speeds_bitmap structure, you can check it at
2809 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2810 * link_speeds_bitmap include multiple speeds.
2811 *
2812 * Each entry in this [phy_type_low, phy_type_high] structure will
2813 * present a certain link speed. This helper function will turn on bits
2814 * in [phy_type_low, phy_type_high] structure based on the value of
2815 * link_speeds_bitmap input parameter.
2816 */
2817void
2818ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2819		    u16 link_speeds_bitmap)
2820{
2821	u64 pt_high;
2822	u64 pt_low;
2823	int index;
2824	u16 speed;
2825
2826	/* We first check with low part of phy_type */
2827	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2828		pt_low = BIT_ULL(index);
2829		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2830
2831		if (link_speeds_bitmap & speed)
2832			*phy_type_low |= BIT_ULL(index);
2833	}
2834
2835	/* We then check with high part of phy_type */
2836	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2837		pt_high = BIT_ULL(index);
2838		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2839
2840		if (link_speeds_bitmap & speed)
2841			*phy_type_high |= BIT_ULL(index);
2842	}
2843}
2844
2845/**
2846 * ice_aq_set_phy_cfg
2847 * @hw: pointer to the HW struct
2848 * @pi: port info structure of the interested logical port
2849 * @cfg: structure with PHY configuration data to be set
2850 * @cd: pointer to command details structure or NULL
2851 *
2852 * Set the various PHY configuration parameters supported on the Port.
2853 * One or more of the Set PHY config parameters may be ignored in an MFP
2854 * mode as the PF may not have the privilege to set some of the PHY Config
2855 * parameters. This status will be indicated by the command response (0x0601).
2856 */
2857enum ice_status
2858ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2859		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2860{
2861	struct ice_aq_desc desc;
2862	enum ice_status status;
2863
2864	if (!cfg)
2865		return ICE_ERR_PARAM;
2866
2867	/* Ensure that only valid bits of cfg->caps can be turned on. */
2868	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2869		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
 
2870			  cfg->caps);
2871
2872		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2873	}
2874
2875	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2876	desc.params.set_phy.lport_num = pi->lport;
2877	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2878
2879	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2880	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
2881		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2882	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
2883		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2884	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
2885	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
2886		  cfg->low_power_ctrl_an);
2887	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
2888	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
2889	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
2890		  cfg->link_fec_opt);
2891
2892	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2893	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2894		status = 0;
2895
2896	if (!status)
2897		pi->phy.curr_user_phy_cfg = *cfg;
2898
2899	return status;
2900}
2901
2902/**
2903 * ice_update_link_info - update status of the HW network link
2904 * @pi: port info structure of the interested logical port
2905 */
2906enum ice_status ice_update_link_info(struct ice_port_info *pi)
2907{
2908	struct ice_link_status *li;
2909	enum ice_status status;
2910
2911	if (!pi)
2912		return ICE_ERR_PARAM;
2913
2914	li = &pi->phy.link_info;
2915
2916	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2917	if (status)
2918		return status;
2919
2920	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2921		struct ice_aqc_get_phy_caps_data *pcaps;
2922		struct ice_hw *hw;
2923
2924		hw = pi->hw;
2925		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2926				     GFP_KERNEL);
2927		if (!pcaps)
2928			return ICE_ERR_NO_MEMORY;
2929
2930		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2931					     pcaps, NULL);
 
 
 
2932
2933		devm_kfree(ice_hw_to_dev(hw), pcaps);
2934	}
2935
2936	return status;
2937}
2938
2939/**
2940 * ice_cache_phy_user_req
2941 * @pi: port information structure
2942 * @cache_data: PHY logging data
2943 * @cache_mode: PHY logging mode
2944 *
2945 * Log the user request on (FC, FEC, SPEED) for later use.
2946 */
2947static void
2948ice_cache_phy_user_req(struct ice_port_info *pi,
2949		       struct ice_phy_cache_mode_data cache_data,
2950		       enum ice_phy_cache_mode cache_mode)
2951{
2952	if (!pi)
2953		return;
2954
2955	switch (cache_mode) {
2956	case ICE_FC_MODE:
2957		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2958		break;
2959	case ICE_SPEED_MODE:
2960		pi->phy.curr_user_speed_req =
2961			cache_data.data.curr_user_speed_req;
2962		break;
2963	case ICE_FEC_MODE:
2964		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2965		break;
2966	default:
2967		break;
2968	}
2969}
2970
2971/**
2972 * ice_caps_to_fc_mode
2973 * @caps: PHY capabilities
2974 *
2975 * Convert PHY FC capabilities to ice FC mode
2976 */
2977enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2978{
2979	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2980	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2981		return ICE_FC_FULL;
2982
2983	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2984		return ICE_FC_TX_PAUSE;
2985
2986	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2987		return ICE_FC_RX_PAUSE;
2988
2989	return ICE_FC_NONE;
2990}
2991
2992/**
2993 * ice_caps_to_fec_mode
2994 * @caps: PHY capabilities
2995 * @fec_options: Link FEC options
2996 *
2997 * Convert PHY FEC capabilities to ice FEC mode
2998 */
2999enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3000{
3001	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3002		return ICE_FEC_AUTO;
3003
3004	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3005			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3006			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3007			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3008		return ICE_FEC_BASER;
3009
3010	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3011			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3012			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3013		return ICE_FEC_RS;
3014
3015	return ICE_FEC_NONE;
3016}
3017
3018/**
3019 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3020 * @pi: port information structure
3021 * @cfg: PHY configuration data to set FC mode
3022 * @req_mode: FC mode to configure
3023 */
3024enum ice_status
3025ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3026	       enum ice_fc_mode req_mode)
3027{
3028	struct ice_phy_cache_mode_data cache_data;
 
 
3029	u8 pause_mask = 0x0;
 
3030
3031	if (!pi || !cfg)
3032		return ICE_ERR_BAD_PTR;
 
 
3033
3034	switch (req_mode) {
3035	case ICE_FC_FULL:
3036		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3037		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3038		break;
3039	case ICE_FC_RX_PAUSE:
3040		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3041		break;
3042	case ICE_FC_TX_PAUSE:
3043		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3044		break;
3045	default:
3046		break;
3047	}
3048
3049	/* clear the old pause settings */
3050	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3051		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3052
3053	/* set the new capabilities */
3054	cfg->caps |= pause_mask;
3055
3056	/* Cache user FC request */
3057	cache_data.data.curr_user_fc_req = req_mode;
3058	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3059
3060	return 0;
3061}
3062
3063/**
3064 * ice_set_fc
3065 * @pi: port information structure
3066 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3067 * @ena_auto_link_update: enable automatic link update
3068 *
3069 * Set the requested flow control mode.
3070 */
3071enum ice_status
3072ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3073{
3074	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3075	struct ice_aqc_get_phy_caps_data *pcaps;
3076	enum ice_status status;
3077	struct ice_hw *hw;
3078
3079	if (!pi || !aq_failures)
3080		return ICE_ERR_BAD_PTR;
3081
3082	*aq_failures = 0;
3083	hw = pi->hw;
3084
3085	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3086	if (!pcaps)
3087		return ICE_ERR_NO_MEMORY;
3088
3089	/* Get the current PHY config */
3090	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3091				     pcaps, NULL);
3092	if (status) {
3093		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3094		goto out;
3095	}
3096
3097	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
 
 
3098
3099	/* Configure the set PHY data */
3100	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3101	if (status)
3102		goto out;
3103
3104	/* If the capabilities have changed, then set the new config */
3105	if (cfg.caps != pcaps->caps) {
3106		int retry_count, retry_max = 10;
3107
3108		/* Auto restart link so settings take effect */
3109		if (ena_auto_link_update)
3110			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
 
 
 
 
 
 
 
3111
3112		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3113		if (status) {
3114			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3115			goto out;
3116		}
3117
3118		/* Update the link info
3119		 * It sometimes takes a really long time for link to
3120		 * come back from the atomic reset. Thus, we wait a
3121		 * little bit.
3122		 */
3123		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3124			status = ice_update_link_info(pi);
3125
3126			if (!status)
3127				break;
3128
3129			mdelay(100);
3130		}
3131
3132		if (status)
3133			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3134	}
3135
3136out:
3137	devm_kfree(ice_hw_to_dev(hw), pcaps);
3138	return status;
3139}
3140
3141/**
3142 * ice_phy_caps_equals_cfg
3143 * @phy_caps: PHY capabilities
3144 * @phy_cfg: PHY configuration
3145 *
3146 * Helper function to determine if PHY capabilities matches PHY
3147 * configuration
3148 */
3149bool
3150ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3151			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3152{
3153	u8 caps_mask, cfg_mask;
3154
3155	if (!phy_caps || !phy_cfg)
3156		return false;
3157
3158	/* These bits are not common between capabilities and configuration.
3159	 * Do not use them to determine equality.
3160	 */
3161	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3162					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3163	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3164
3165	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3166	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3167	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3168	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3169	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3170	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3171	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3172		return false;
3173
3174	return true;
3175}
3176
3177/**
3178 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3179 * @pi: port information structure
3180 * @caps: PHY ability structure to copy date from
3181 * @cfg: PHY configuration structure to copy data to
3182 *
3183 * Helper function to copy AQC PHY get ability data to PHY set configuration
3184 * data structure
3185 */
3186void
3187ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3188			 struct ice_aqc_get_phy_caps_data *caps,
3189			 struct ice_aqc_set_phy_cfg_data *cfg)
3190{
3191	if (!pi || !caps || !cfg)
3192		return;
3193
3194	memset(cfg, 0, sizeof(*cfg));
3195	cfg->phy_type_low = caps->phy_type_low;
3196	cfg->phy_type_high = caps->phy_type_high;
3197	cfg->caps = caps->caps;
3198	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3199	cfg->eee_cap = caps->eee_cap;
3200	cfg->eeer_value = caps->eeer_value;
3201	cfg->link_fec_opt = caps->link_fec_options;
3202	cfg->module_compliance_enforcement =
3203		caps->module_compliance_enforcement;
3204}
3205
3206/**
3207 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3208 * @pi: port information structure
3209 * @cfg: PHY configuration data to set FEC mode
3210 * @fec: FEC mode to configure
 
 
 
 
3211 */
3212enum ice_status
3213ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3214		enum ice_fec_mode fec)
3215{
3216	struct ice_aqc_get_phy_caps_data *pcaps;
3217	enum ice_status status;
3218	struct ice_hw *hw;
3219
3220	if (!pi || !cfg)
3221		return ICE_ERR_BAD_PTR;
3222
3223	hw = pi->hw;
3224
3225	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3226	if (!pcaps)
3227		return ICE_ERR_NO_MEMORY;
3228
3229	status = ice_aq_get_phy_caps(pi, false,
3230				     (ice_fw_supports_report_dflt_cfg(hw) ?
3231				      ICE_AQC_REPORT_DFLT_CFG :
3232				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3233	if (status)
3234		goto out;
3235
3236	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3237	cfg->link_fec_opt = pcaps->link_fec_options;
3238
3239	switch (fec) {
3240	case ICE_FEC_BASER:
3241		/* Clear RS bits, and AND BASE-R ability
3242		 * bits and OR request bits.
3243		 */
3244		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3245			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3246		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3247			ICE_AQC_PHY_FEC_25G_KR_REQ;
3248		break;
3249	case ICE_FEC_RS:
3250		/* Clear BASE-R bits, and AND RS ability
3251		 * bits and OR request bits.
3252		 */
3253		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3254		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3255			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3256		break;
3257	case ICE_FEC_NONE:
3258		/* Clear all FEC option bits. */
3259		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3260		break;
3261	case ICE_FEC_AUTO:
3262		/* AND auto FEC bit, and all caps bits. */
3263		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3264		cfg->link_fec_opt |= pcaps->link_fec_options;
3265		break;
3266	default:
3267		status = ICE_ERR_PARAM;
3268		break;
3269	}
3270
3271	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3272	    !ice_fw_supports_report_dflt_cfg(hw)) {
3273		struct ice_link_default_override_tlv tlv;
3274
3275		if (ice_get_link_default_override(&tlv, pi))
3276			goto out;
3277
3278		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3279		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3280			cfg->link_fec_opt = tlv.fec_options;
3281	}
3282
3283out:
3284	kfree(pcaps);
3285
3286	return status;
3287}
3288
3289/**
3290 * ice_get_link_status - get status of the HW network link
3291 * @pi: port information structure
3292 * @link_up: pointer to bool (true/false = linkup/linkdown)
3293 *
3294 * Variable link_up is true if link is up, false if link is down.
3295 * The variable link_up is invalid if status is non zero. As a
3296 * result of this call, link status reporting becomes enabled
3297 */
3298enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3299{
3300	struct ice_phy_info *phy_info;
3301	enum ice_status status = 0;
3302
3303	if (!pi || !link_up)
3304		return ICE_ERR_PARAM;
3305
3306	phy_info = &pi->phy;
3307
3308	if (phy_info->get_link_info) {
3309		status = ice_update_link_info(pi);
3310
3311		if (status)
3312			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
 
3313				  status);
3314	}
3315
3316	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3317
3318	return status;
3319}
3320
3321/**
3322 * ice_aq_set_link_restart_an
3323 * @pi: pointer to the port information structure
3324 * @ena_link: if true: enable link, if false: disable link
3325 * @cd: pointer to command details structure or NULL
3326 *
3327 * Sets up the link and restarts the Auto-Negotiation over the link.
3328 */
3329enum ice_status
3330ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3331			   struct ice_sq_cd *cd)
3332{
3333	struct ice_aqc_restart_an *cmd;
3334	struct ice_aq_desc desc;
3335
3336	cmd = &desc.params.restart_an;
3337
3338	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3339
3340	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3341	cmd->lport_num = pi->lport;
3342	if (ena_link)
3343		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3344	else
3345		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3346
3347	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3348}
3349
3350/**
3351 * ice_aq_set_event_mask
3352 * @hw: pointer to the HW struct
3353 * @port_num: port number of the physical function
3354 * @mask: event mask to be set
3355 * @cd: pointer to command details structure or NULL
3356 *
3357 * Set event mask (0x0613)
3358 */
3359enum ice_status
3360ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3361		      struct ice_sq_cd *cd)
3362{
3363	struct ice_aqc_set_event_mask *cmd;
3364	struct ice_aq_desc desc;
3365
3366	cmd = &desc.params.set_event_mask;
3367
3368	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3369
3370	cmd->lport_num = port_num;
3371
3372	cmd->event_mask = cpu_to_le16(mask);
3373	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3374}
3375
3376/**
3377 * ice_aq_set_mac_loopback
3378 * @hw: pointer to the HW struct
3379 * @ena_lpbk: Enable or Disable loopback
3380 * @cd: pointer to command details structure or NULL
3381 *
3382 * Enable/disable loopback on a given port
3383 */
3384enum ice_status
3385ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3386{
3387	struct ice_aqc_set_mac_lb *cmd;
3388	struct ice_aq_desc desc;
3389
3390	cmd = &desc.params.set_mac_lb;
3391
3392	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3393	if (ena_lpbk)
3394		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3395
3396	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3397}
3398
3399/**
3400 * ice_aq_set_port_id_led
3401 * @pi: pointer to the port information
3402 * @is_orig_mode: is this LED set to original mode (by the net-list)
3403 * @cd: pointer to command details structure or NULL
3404 *
3405 * Set LED value for the given port (0x06e9)
3406 */
3407enum ice_status
3408ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3409		       struct ice_sq_cd *cd)
3410{
3411	struct ice_aqc_set_port_id_led *cmd;
3412	struct ice_hw *hw = pi->hw;
3413	struct ice_aq_desc desc;
3414
3415	cmd = &desc.params.set_port_id_led;
3416
3417	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3418
3419	if (is_orig_mode)
3420		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3421	else
3422		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3423
3424	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3425}
3426
3427/**
3428 * ice_aq_sff_eeprom
3429 * @hw: pointer to the HW struct
3430 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3431 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3432 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3433 * @page: QSFP page
3434 * @set_page: set or ignore the page
3435 * @data: pointer to data buffer to be read/written to the I2C device.
3436 * @length: 1-16 for read, 1 for write.
3437 * @write: 0 read, 1 for write.
3438 * @cd: pointer to command details structure or NULL
3439 *
3440 * Read/Write SFF EEPROM (0x06EE)
3441 */
3442enum ice_status
3443ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3444		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3445		  bool write, struct ice_sq_cd *cd)
3446{
3447	struct ice_aqc_sff_eeprom *cmd;
3448	struct ice_aq_desc desc;
3449	enum ice_status status;
3450
3451	if (!data || (mem_addr & 0xff00))
3452		return ICE_ERR_PARAM;
3453
3454	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3455	cmd = &desc.params.read_write_sff_param;
3456	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3457	cmd->lport_num = (u8)(lport & 0xff);
3458	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3459	cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3460					 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3461					((set_page <<
3462					  ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3463					 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3464	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3465	cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3466	if (write)
3467		cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3468
3469	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3470	return status;
3471}
3472
3473/**
3474 * __ice_aq_get_set_rss_lut
3475 * @hw: pointer to the hardware structure
3476 * @params: RSS LUT parameters
 
 
 
 
3477 * @set: set true to set the table, false to get the table
3478 *
3479 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3480 */
3481static enum ice_status
3482__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
 
3483{
3484	u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3485	struct ice_aqc_get_set_rss_lut *cmd_resp;
3486	struct ice_aq_desc desc;
3487	enum ice_status status;
3488	u8 *lut;
3489
3490	if (!params)
3491		return ICE_ERR_PARAM;
3492
3493	vsi_handle = params->vsi_handle;
3494	lut = params->lut;
3495
3496	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3497		return ICE_ERR_PARAM;
3498
3499	lut_size = params->lut_size;
3500	lut_type = params->lut_type;
3501	glob_lut_idx = params->global_lut_id;
3502	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3503
3504	cmd_resp = &desc.params.get_set_rss_lut;
3505
3506	if (set) {
3507		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3508		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3509	} else {
3510		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3511	}
3512
3513	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3514					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3515					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3516				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3517
3518	switch (lut_type) {
3519	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3520	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3521	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3522		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3523			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3524		break;
3525	default:
3526		status = ICE_ERR_PARAM;
3527		goto ice_aq_get_set_rss_lut_exit;
3528	}
3529
3530	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3531		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3532			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3533
3534		if (!set)
3535			goto ice_aq_get_set_rss_lut_send;
3536	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3537		if (!set)
3538			goto ice_aq_get_set_rss_lut_send;
3539	} else {
3540		goto ice_aq_get_set_rss_lut_send;
3541	}
3542
3543	/* LUT size is only valid for Global and PF table types */
3544	switch (lut_size) {
3545	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3546		break;
3547	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3548		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3549			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3550			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3551		break;
3552	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3553		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3554			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3555				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3556				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3557			break;
3558		}
3559		fallthrough;
3560	default:
3561		status = ICE_ERR_PARAM;
3562		goto ice_aq_get_set_rss_lut_exit;
3563	}
3564
3565ice_aq_get_set_rss_lut_send:
3566	cmd_resp->flags = cpu_to_le16(flags);
3567	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3568
3569ice_aq_get_set_rss_lut_exit:
3570	return status;
3571}
3572
3573/**
3574 * ice_aq_get_rss_lut
3575 * @hw: pointer to the hardware structure
3576 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
 
 
 
3577 *
3578 * get the RSS lookup table, PF or VSI type
3579 */
3580enum ice_status
3581ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
 
3582{
3583	return __ice_aq_get_set_rss_lut(hw, get_params, false);
 
 
 
 
3584}
3585
3586/**
3587 * ice_aq_set_rss_lut
3588 * @hw: pointer to the hardware structure
3589 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
 
 
 
3590 *
3591 * set the RSS lookup table, PF or VSI type
3592 */
3593enum ice_status
3594ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
 
3595{
3596	return __ice_aq_get_set_rss_lut(hw, set_params, true);
 
 
 
 
3597}
3598
3599/**
3600 * __ice_aq_get_set_rss_key
3601 * @hw: pointer to the HW struct
3602 * @vsi_id: VSI FW index
3603 * @key: pointer to key info struct
3604 * @set: set true to set the key, false to get the key
3605 *
3606 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3607 */
3608static enum
3609ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3610				    struct ice_aqc_get_set_rss_keys *key,
3611				    bool set)
3612{
3613	struct ice_aqc_get_set_rss_key *cmd_resp;
3614	u16 key_size = sizeof(*key);
3615	struct ice_aq_desc desc;
3616
3617	cmd_resp = &desc.params.get_set_rss_key;
3618
3619	if (set) {
3620		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3621		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3622	} else {
3623		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3624	}
3625
3626	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3627					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3628					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3629				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3630
3631	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3632}
3633
3634/**
3635 * ice_aq_get_rss_key
3636 * @hw: pointer to the HW struct
3637 * @vsi_handle: software VSI handle
3638 * @key: pointer to key info struct
3639 *
3640 * get the RSS key per VSI
3641 */
3642enum ice_status
3643ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3644		   struct ice_aqc_get_set_rss_keys *key)
3645{
3646	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3647		return ICE_ERR_PARAM;
3648
3649	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3650					key, false);
3651}
3652
3653/**
3654 * ice_aq_set_rss_key
3655 * @hw: pointer to the HW struct
3656 * @vsi_handle: software VSI handle
3657 * @keys: pointer to key info struct
3658 *
3659 * set the RSS key per VSI
3660 */
3661enum ice_status
3662ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3663		   struct ice_aqc_get_set_rss_keys *keys)
3664{
3665	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3666		return ICE_ERR_PARAM;
3667
3668	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3669					keys, true);
3670}
3671
3672/**
3673 * ice_aq_add_lan_txq
3674 * @hw: pointer to the hardware structure
3675 * @num_qgrps: Number of added queue groups
3676 * @qg_list: list of queue groups to be added
3677 * @buf_size: size of buffer for indirect command
3678 * @cd: pointer to command details structure or NULL
3679 *
3680 * Add Tx LAN queue (0x0C30)
3681 *
3682 * NOTE:
3683 * Prior to calling add Tx LAN queue:
3684 * Initialize the following as part of the Tx queue context:
3685 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3686 * Cache profile and Packet shaper profile.
3687 *
3688 * After add Tx LAN queue AQ command is completed:
3689 * Interrupts should be associated with specific queues,
3690 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3691 * flow.
3692 */
3693static enum ice_status
3694ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3695		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3696		   struct ice_sq_cd *cd)
3697{
 
3698	struct ice_aqc_add_tx_qgrp *list;
3699	struct ice_aqc_add_txqs *cmd;
3700	struct ice_aq_desc desc;
3701	u16 i, sum_size = 0;
3702
3703	cmd = &desc.params.add_txqs;
3704
3705	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3706
3707	if (!qg_list)
3708		return ICE_ERR_PARAM;
3709
3710	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3711		return ICE_ERR_PARAM;
3712
3713	for (i = 0, list = qg_list; i < num_qgrps; i++) {
3714		sum_size += struct_size(list, txqs, list->num_txqs);
3715		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3716						      list->num_txqs);
 
 
 
 
 
3717	}
3718
3719	if (buf_size != sum_size)
3720		return ICE_ERR_PARAM;
3721
3722	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3723
3724	cmd->num_qgrps = num_qgrps;
3725
3726	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3727}
3728
3729/**
3730 * ice_aq_dis_lan_txq
3731 * @hw: pointer to the hardware structure
3732 * @num_qgrps: number of groups in the list
3733 * @qg_list: the list of groups to disable
3734 * @buf_size: the total size of the qg_list buffer in bytes
3735 * @rst_src: if called due to reset, specifies the reset source
3736 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3737 * @cd: pointer to command details structure or NULL
3738 *
3739 * Disable LAN Tx queue (0x0C31)
3740 */
3741static enum ice_status
3742ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3743		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3744		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
3745		   struct ice_sq_cd *cd)
3746{
3747	struct ice_aqc_dis_txq_item *item;
3748	struct ice_aqc_dis_txqs *cmd;
3749	struct ice_aq_desc desc;
3750	enum ice_status status;
3751	u16 i, sz = 0;
3752
3753	cmd = &desc.params.dis_txqs;
3754	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3755
3756	/* qg_list can be NULL only in VM/VF reset flow */
3757	if (!qg_list && !rst_src)
3758		return ICE_ERR_PARAM;
3759
3760	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3761		return ICE_ERR_PARAM;
3762
3763	cmd->num_entries = num_qgrps;
3764
3765	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3766					    ICE_AQC_Q_DIS_TIMEOUT_M);
3767
3768	switch (rst_src) {
3769	case ICE_VM_RESET:
3770		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3771		cmd->vmvf_and_timeout |=
3772			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3773		break;
3774	case ICE_VF_RESET:
3775		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3776		/* In this case, FW expects vmvf_num to be absolute VF ID */
3777		cmd->vmvf_and_timeout |=
3778			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3779				    ICE_AQC_Q_DIS_VMVF_NUM_M);
3780		break;
3781	case ICE_NO_RESET:
3782	default:
3783		break;
3784	}
3785
3786	/* flush pipe on time out */
3787	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3788	/* If no queue group info, we are in a reset flow. Issue the AQ */
3789	if (!qg_list)
3790		goto do_aq;
3791
3792	/* set RD bit to indicate that command buffer is provided by the driver
3793	 * and it needs to be read by the firmware
3794	 */
3795	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3796
3797	for (i = 0, item = qg_list; i < num_qgrps; i++) {
3798		u16 item_size = struct_size(item, q_id, item->num_qs);
3799
3800		/* If the num of queues is even, add 2 bytes of padding */
3801		if ((item->num_qs % 2) == 0)
3802			item_size += 2;
3803
3804		sz += item_size;
 
3805
3806		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
 
 
3807	}
3808
3809	if (buf_size != sz)
3810		return ICE_ERR_PARAM;
3811
3812do_aq:
3813	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3814	if (status) {
3815		if (!qg_list)
3816			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3817				  vmvf_num, hw->adminq.sq_last_status);
3818		else
3819			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3820				  le16_to_cpu(qg_list[0].q_id[0]),
3821				  hw->adminq.sq_last_status);
3822	}
3823	return status;
3824}
3825
3826/**
3827 * ice_aq_add_rdma_qsets
3828 * @hw: pointer to the hardware structure
3829 * @num_qset_grps: Number of RDMA Qset groups
3830 * @qset_list: list of Qset groups to be added
3831 * @buf_size: size of buffer for indirect command
3832 * @cd: pointer to command details structure or NULL
3833 *
3834 * Add Tx RDMA Qsets (0x0C33)
3835 */
3836static int
3837ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3838		      struct ice_aqc_add_rdma_qset_data *qset_list,
3839		      u16 buf_size, struct ice_sq_cd *cd)
3840{
3841	struct ice_aqc_add_rdma_qset_data *list;
3842	struct ice_aqc_add_rdma_qset *cmd;
3843	struct ice_aq_desc desc;
3844	u16 i, sum_size = 0;
3845
3846	cmd = &desc.params.add_rdma_qset;
3847
3848	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3849
3850	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3851		return -EINVAL;
3852
3853	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3854		u16 num_qsets = le16_to_cpu(list->num_qsets);
3855
3856		sum_size += struct_size(list, rdma_qsets, num_qsets);
3857		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3858							     num_qsets);
3859	}
3860
3861	if (buf_size != sum_size)
3862		return -EINVAL;
3863
3864	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3865
3866	cmd->num_qset_grps = num_qset_grps;
3867
3868	return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, qset_list,
3869						   buf_size, cd));
3870}
3871
3872/* End of FW Admin Queue command wrappers */
3873
3874/**
3875 * ice_write_byte - write a byte to a packed context structure
3876 * @src_ctx:  the context structure to read from
3877 * @dest_ctx: the context to be written to
3878 * @ce_info:  a description of the struct to be filled
3879 */
3880static void
3881ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3882{
3883	u8 src_byte, dest_byte, mask;
3884	u8 *from, *dest;
3885	u16 shift_width;
3886
3887	/* copy from the next struct field */
3888	from = src_ctx + ce_info->offset;
3889
3890	/* prepare the bits and mask */
3891	shift_width = ce_info->lsb % 8;
3892	mask = (u8)(BIT(ce_info->width) - 1);
3893
3894	src_byte = *from;
3895	src_byte &= mask;
3896
3897	/* shift to correct alignment */
3898	mask <<= shift_width;
3899	src_byte <<= shift_width;
3900
3901	/* get the current bits from the target bit string */
3902	dest = dest_ctx + (ce_info->lsb / 8);
3903
3904	memcpy(&dest_byte, dest, sizeof(dest_byte));
3905
3906	dest_byte &= ~mask;	/* get the bits not changing */
3907	dest_byte |= src_byte;	/* add in the new bits */
3908
3909	/* put it all back */
3910	memcpy(dest, &dest_byte, sizeof(dest_byte));
3911}
3912
3913/**
3914 * ice_write_word - write a word to a packed context structure
3915 * @src_ctx:  the context structure to read from
3916 * @dest_ctx: the context to be written to
3917 * @ce_info:  a description of the struct to be filled
3918 */
3919static void
3920ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3921{
3922	u16 src_word, mask;
3923	__le16 dest_word;
3924	u8 *from, *dest;
3925	u16 shift_width;
3926
3927	/* copy from the next struct field */
3928	from = src_ctx + ce_info->offset;
3929
3930	/* prepare the bits and mask */
3931	shift_width = ce_info->lsb % 8;
3932	mask = BIT(ce_info->width) - 1;
3933
3934	/* don't swizzle the bits until after the mask because the mask bits
3935	 * will be in a different bit position on big endian machines
3936	 */
3937	src_word = *(u16 *)from;
3938	src_word &= mask;
3939
3940	/* shift to correct alignment */
3941	mask <<= shift_width;
3942	src_word <<= shift_width;
3943
3944	/* get the current bits from the target bit string */
3945	dest = dest_ctx + (ce_info->lsb / 8);
3946
3947	memcpy(&dest_word, dest, sizeof(dest_word));
3948
3949	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
3950	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3951
3952	/* put it all back */
3953	memcpy(dest, &dest_word, sizeof(dest_word));
3954}
3955
3956/**
3957 * ice_write_dword - write a dword to a packed context structure
3958 * @src_ctx:  the context structure to read from
3959 * @dest_ctx: the context to be written to
3960 * @ce_info:  a description of the struct to be filled
3961 */
3962static void
3963ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3964{
3965	u32 src_dword, mask;
3966	__le32 dest_dword;
3967	u8 *from, *dest;
3968	u16 shift_width;
3969
3970	/* copy from the next struct field */
3971	from = src_ctx + ce_info->offset;
3972
3973	/* prepare the bits and mask */
3974	shift_width = ce_info->lsb % 8;
3975
3976	/* if the field width is exactly 32 on an x86 machine, then the shift
3977	 * operation will not work because the SHL instructions count is masked
3978	 * to 5 bits so the shift will do nothing
3979	 */
3980	if (ce_info->width < 32)
3981		mask = BIT(ce_info->width) - 1;
3982	else
3983		mask = (u32)~0;
3984
3985	/* don't swizzle the bits until after the mask because the mask bits
3986	 * will be in a different bit position on big endian machines
3987	 */
3988	src_dword = *(u32 *)from;
3989	src_dword &= mask;
3990
3991	/* shift to correct alignment */
3992	mask <<= shift_width;
3993	src_dword <<= shift_width;
3994
3995	/* get the current bits from the target bit string */
3996	dest = dest_ctx + (ce_info->lsb / 8);
3997
3998	memcpy(&dest_dword, dest, sizeof(dest_dword));
3999
4000	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4001	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4002
4003	/* put it all back */
4004	memcpy(dest, &dest_dword, sizeof(dest_dword));
4005}
4006
4007/**
4008 * ice_write_qword - write a qword to a packed context structure
4009 * @src_ctx:  the context structure to read from
4010 * @dest_ctx: the context to be written to
4011 * @ce_info:  a description of the struct to be filled
4012 */
4013static void
4014ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4015{
4016	u64 src_qword, mask;
4017	__le64 dest_qword;
4018	u8 *from, *dest;
4019	u16 shift_width;
4020
4021	/* copy from the next struct field */
4022	from = src_ctx + ce_info->offset;
4023
4024	/* prepare the bits and mask */
4025	shift_width = ce_info->lsb % 8;
4026
4027	/* if the field width is exactly 64 on an x86 machine, then the shift
4028	 * operation will not work because the SHL instructions count is masked
4029	 * to 6 bits so the shift will do nothing
4030	 */
4031	if (ce_info->width < 64)
4032		mask = BIT_ULL(ce_info->width) - 1;
4033	else
4034		mask = (u64)~0;
4035
4036	/* don't swizzle the bits until after the mask because the mask bits
4037	 * will be in a different bit position on big endian machines
4038	 */
4039	src_qword = *(u64 *)from;
4040	src_qword &= mask;
4041
4042	/* shift to correct alignment */
4043	mask <<= shift_width;
4044	src_qword <<= shift_width;
4045
4046	/* get the current bits from the target bit string */
4047	dest = dest_ctx + (ce_info->lsb / 8);
4048
4049	memcpy(&dest_qword, dest, sizeof(dest_qword));
4050
4051	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4052	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4053
4054	/* put it all back */
4055	memcpy(dest, &dest_qword, sizeof(dest_qword));
4056}
4057
4058/**
4059 * ice_set_ctx - set context bits in packed structure
4060 * @hw: pointer to the hardware structure
4061 * @src_ctx:  pointer to a generic non-packed context structure
4062 * @dest_ctx: pointer to memory for the packed structure
4063 * @ce_info:  a description of the structure to be transformed
4064 */
4065enum ice_status
4066ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4067	    const struct ice_ctx_ele *ce_info)
4068{
4069	int f;
4070
4071	for (f = 0; ce_info[f].width; f++) {
4072		/* We have to deal with each element of the FW response
4073		 * using the correct size so that we are correct regardless
4074		 * of the endianness of the machine.
4075		 */
4076		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4077			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4078				  f, ce_info[f].width, ce_info[f].size_of);
4079			continue;
4080		}
4081		switch (ce_info[f].size_of) {
4082		case sizeof(u8):
4083			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4084			break;
4085		case sizeof(u16):
4086			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4087			break;
4088		case sizeof(u32):
4089			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4090			break;
4091		case sizeof(u64):
4092			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4093			break;
4094		default:
4095			return ICE_ERR_INVAL_SIZE;
4096		}
4097	}
4098
4099	return 0;
4100}
4101
4102/**
4103 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4104 * @hw: pointer to the HW struct
4105 * @vsi_handle: software VSI handle
4106 * @tc: TC number
4107 * @q_handle: software queue handle
4108 */
4109struct ice_q_ctx *
4110ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4111{
4112	struct ice_vsi_ctx *vsi;
4113	struct ice_q_ctx *q_ctx;
4114
4115	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4116	if (!vsi)
4117		return NULL;
4118	if (q_handle >= vsi->num_lan_q_entries[tc])
4119		return NULL;
4120	if (!vsi->lan_q_ctx[tc])
4121		return NULL;
4122	q_ctx = vsi->lan_q_ctx[tc];
4123	return &q_ctx[q_handle];
4124}
4125
4126/**
4127 * ice_ena_vsi_txq
4128 * @pi: port information structure
4129 * @vsi_handle: software VSI handle
4130 * @tc: TC number
4131 * @q_handle: software queue handle
4132 * @num_qgrps: Number of added queue groups
4133 * @buf: list of queue groups to be added
4134 * @buf_size: size of buffer for indirect command
4135 * @cd: pointer to command details structure or NULL
4136 *
4137 * This function adds one LAN queue
4138 */
4139enum ice_status
4140ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4141		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4142		struct ice_sq_cd *cd)
4143{
4144	struct ice_aqc_txsched_elem_data node = { 0 };
4145	struct ice_sched_node *parent;
4146	struct ice_q_ctx *q_ctx;
4147	enum ice_status status;
4148	struct ice_hw *hw;
4149
4150	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4151		return ICE_ERR_CFG;
4152
4153	if (num_qgrps > 1 || buf->num_txqs > 1)
4154		return ICE_ERR_MAX_LIMIT;
4155
4156	hw = pi->hw;
4157
4158	if (!ice_is_vsi_valid(hw, vsi_handle))
4159		return ICE_ERR_PARAM;
4160
4161	mutex_lock(&pi->sched_lock);
4162
4163	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4164	if (!q_ctx) {
4165		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4166			  q_handle);
4167		status = ICE_ERR_PARAM;
4168		goto ena_txq_exit;
4169	}
4170
4171	/* find a parent node */
4172	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4173					    ICE_SCHED_NODE_OWNER_LAN);
4174	if (!parent) {
4175		status = ICE_ERR_PARAM;
4176		goto ena_txq_exit;
4177	}
4178
4179	buf->parent_teid = parent->info.node_teid;
4180	node.parent_teid = parent->info.node_teid;
4181	/* Mark that the values in the "generic" section as valid. The default
4182	 * value in the "generic" section is zero. This means that :
4183	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4184	 * - 0 priority among siblings, indicated by Bit 1-3.
4185	 * - WFQ, indicated by Bit 4.
4186	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4187	 * Bit 5-6.
4188	 * - Bit 7 is reserved.
4189	 * Without setting the generic section as valid in valid_sections, the
4190	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4191	 */
4192	buf->txqs[0].info.valid_sections =
4193		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4194		ICE_AQC_ELEM_VALID_EIR;
4195	buf->txqs[0].info.generic = 0;
4196	buf->txqs[0].info.cir_bw.bw_profile_idx =
4197		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4198	buf->txqs[0].info.cir_bw.bw_alloc =
4199		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4200	buf->txqs[0].info.eir_bw.bw_profile_idx =
4201		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4202	buf->txqs[0].info.eir_bw.bw_alloc =
4203		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4204
4205	/* add the LAN queue */
4206	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4207	if (status) {
4208		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4209			  le16_to_cpu(buf->txqs[0].txq_id),
4210			  hw->adminq.sq_last_status);
4211		goto ena_txq_exit;
4212	}
4213
4214	node.node_teid = buf->txqs[0].q_teid;
4215	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4216	q_ctx->q_handle = q_handle;
4217	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4218
4219	/* add a leaf node into scheduler tree queue layer */
4220	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4221	if (!status)
4222		status = ice_sched_replay_q_bw(pi, q_ctx);
4223
4224ena_txq_exit:
4225	mutex_unlock(&pi->sched_lock);
4226	return status;
4227}
4228
4229/**
4230 * ice_dis_vsi_txq
4231 * @pi: port information structure
4232 * @vsi_handle: software VSI handle
4233 * @tc: TC number
4234 * @num_queues: number of queues
4235 * @q_handles: pointer to software queue handle array
4236 * @q_ids: pointer to the q_id array
4237 * @q_teids: pointer to queue node teids
4238 * @rst_src: if called due to reset, specifies the reset source
4239 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4240 * @cd: pointer to command details structure or NULL
4241 *
4242 * This function removes queues and their corresponding nodes in SW DB
4243 */
4244enum ice_status
4245ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4246		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4247		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4248		struct ice_sq_cd *cd)
4249{
4250	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4251	struct ice_aqc_dis_txq_item *qg_list;
4252	struct ice_q_ctx *q_ctx;
4253	struct ice_hw *hw;
4254	u16 i, buf_size;
4255
4256	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4257		return ICE_ERR_CFG;
4258
4259	hw = pi->hw;
4260
4261	if (!num_queues) {
4262		/* if queue is disabled already yet the disable queue command
4263		 * has to be sent to complete the VF reset, then call
4264		 * ice_aq_dis_lan_txq without any queue information
4265		 */
4266		if (rst_src)
4267			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4268						  vmvf_num, NULL);
4269		return ICE_ERR_CFG;
4270	}
4271
4272	buf_size = struct_size(qg_list, q_id, 1);
4273	qg_list = kzalloc(buf_size, GFP_KERNEL);
4274	if (!qg_list)
4275		return ICE_ERR_NO_MEMORY;
4276
4277	mutex_lock(&pi->sched_lock);
4278
4279	for (i = 0; i < num_queues; i++) {
4280		struct ice_sched_node *node;
4281
4282		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4283		if (!node)
4284			continue;
4285		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4286		if (!q_ctx) {
4287			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4288				  q_handles[i]);
4289			continue;
4290		}
4291		if (q_ctx->q_handle != q_handles[i]) {
4292			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4293				  q_ctx->q_handle, q_handles[i]);
4294			continue;
4295		}
4296		qg_list->parent_teid = node->info.parent_teid;
4297		qg_list->num_qs = 1;
4298		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4299		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4300					    vmvf_num, cd);
 
4301
4302		if (status)
4303			break;
4304		ice_free_sched_node(pi, node);
4305		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4306	}
4307	mutex_unlock(&pi->sched_lock);
4308	kfree(qg_list);
4309	return status;
4310}
4311
4312/**
4313 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4314 * @pi: port information structure
4315 * @vsi_handle: software VSI handle
4316 * @tc_bitmap: TC bitmap
4317 * @maxqs: max queues array per TC
4318 * @owner: LAN or RDMA
4319 *
4320 * This function adds/updates the VSI queues per TC.
4321 */
4322static enum ice_status
4323ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4324	       u16 *maxqs, u8 owner)
4325{
4326	enum ice_status status = 0;
4327	u8 i;
4328
4329	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4330		return ICE_ERR_CFG;
4331
4332	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4333		return ICE_ERR_PARAM;
4334
4335	mutex_lock(&pi->sched_lock);
4336
4337	ice_for_each_traffic_class(i) {
4338		/* configuration is possible only if TC node is present */
4339		if (!ice_sched_get_tc_node(pi, i))
4340			continue;
4341
4342		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4343					   ice_is_tc_ena(tc_bitmap, i));
4344		if (status)
4345			break;
4346	}
4347
4348	mutex_unlock(&pi->sched_lock);
4349	return status;
4350}
4351
4352/**
4353 * ice_cfg_vsi_lan - configure VSI LAN queues
4354 * @pi: port information structure
4355 * @vsi_handle: software VSI handle
4356 * @tc_bitmap: TC bitmap
4357 * @max_lanqs: max LAN queues array per TC
4358 *
4359 * This function adds/updates the VSI LAN queues per TC.
4360 */
4361enum ice_status
4362ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4363		u16 *max_lanqs)
4364{
4365	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4366			      ICE_SCHED_NODE_OWNER_LAN);
4367}
4368
4369/**
4370 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4371 * @pi: port information structure
4372 * @vsi_handle: software VSI handle
4373 * @tc_bitmap: TC bitmap
4374 * @max_rdmaqs: max RDMA queues array per TC
4375 *
4376 * This function adds/updates the VSI RDMA queues per TC.
4377 */
4378int
4379ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4380		 u16 *max_rdmaqs)
4381{
4382	return ice_status_to_errno(ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap,
4383						  max_rdmaqs,
4384						  ICE_SCHED_NODE_OWNER_RDMA));
4385}
4386
4387/**
4388 * ice_ena_vsi_rdma_qset
4389 * @pi: port information structure
4390 * @vsi_handle: software VSI handle
4391 * @tc: TC number
4392 * @rdma_qset: pointer to RDMA Qset
4393 * @num_qsets: number of RDMA Qsets
4394 * @qset_teid: pointer to Qset node TEIDs
4395 *
4396 * This function adds RDMA Qset
4397 */
4398int
4399ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4400		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4401{
4402	struct ice_aqc_txsched_elem_data node = { 0 };
4403	struct ice_aqc_add_rdma_qset_data *buf;
4404	struct ice_sched_node *parent;
4405	enum ice_status status;
4406	struct ice_hw *hw;
4407	u16 i, buf_size;
4408	int ret;
4409
4410	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4411		return -EIO;
4412	hw = pi->hw;
4413
4414	if (!ice_is_vsi_valid(hw, vsi_handle))
4415		return -EINVAL;
4416
4417	buf_size = struct_size(buf, rdma_qsets, num_qsets);
4418	buf = kzalloc(buf_size, GFP_KERNEL);
4419	if (!buf)
4420		return -ENOMEM;
4421	mutex_lock(&pi->sched_lock);
4422
4423	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4424					    ICE_SCHED_NODE_OWNER_RDMA);
4425	if (!parent) {
4426		ret = -EINVAL;
4427		goto rdma_error_exit;
4428	}
4429	buf->parent_teid = parent->info.node_teid;
4430	node.parent_teid = parent->info.node_teid;
4431
4432	buf->num_qsets = cpu_to_le16(num_qsets);
4433	for (i = 0; i < num_qsets; i++) {
4434		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4435		buf->rdma_qsets[i].info.valid_sections =
4436			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4437			ICE_AQC_ELEM_VALID_EIR;
4438		buf->rdma_qsets[i].info.generic = 0;
4439		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4440			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4441		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4442			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4443		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4444			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4445		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4446			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4447	}
4448	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4449	if (ret) {
4450		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4451		goto rdma_error_exit;
4452	}
4453	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4454	for (i = 0; i < num_qsets; i++) {
4455		node.node_teid = buf->rdma_qsets[i].qset_teid;
4456		status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4457					    &node);
4458		if (status) {
4459			ret = ice_status_to_errno(status);
4460			break;
4461		}
4462		qset_teid[i] = le32_to_cpu(node.node_teid);
4463	}
4464rdma_error_exit:
4465	mutex_unlock(&pi->sched_lock);
4466	kfree(buf);
4467	return ret;
4468}
4469
4470/**
4471 * ice_dis_vsi_rdma_qset - free RDMA resources
4472 * @pi: port_info struct
4473 * @count: number of RDMA Qsets to free
4474 * @qset_teid: TEID of Qset node
4475 * @q_id: list of queue IDs being disabled
4476 */
4477int
4478ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4479		      u16 *q_id)
4480{
4481	struct ice_aqc_dis_txq_item *qg_list;
4482	enum ice_status status = 0;
4483	struct ice_hw *hw;
4484	u16 qg_size;
4485	int i;
4486
4487	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4488		return -EIO;
4489
4490	hw = pi->hw;
4491
4492	qg_size = struct_size(qg_list, q_id, 1);
4493	qg_list = kzalloc(qg_size, GFP_KERNEL);
4494	if (!qg_list)
4495		return -ENOMEM;
4496
4497	mutex_lock(&pi->sched_lock);
4498
4499	for (i = 0; i < count; i++) {
4500		struct ice_sched_node *node;
4501
4502		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4503		if (!node)
4504			continue;
4505
4506		qg_list->parent_teid = node->info.parent_teid;
4507		qg_list->num_qs = 1;
4508		qg_list->q_id[0] =
4509			cpu_to_le16(q_id[i] |
4510				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4511
4512		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4513					    ICE_NO_RESET, 0, NULL);
4514		if (status)
4515			break;
4516
4517		ice_free_sched_node(pi, node);
4518	}
4519
4520	mutex_unlock(&pi->sched_lock);
4521	kfree(qg_list);
4522	return ice_status_to_errno(status);
4523}
4524
4525/**
4526 * ice_replay_pre_init - replay pre initialization
4527 * @hw: pointer to the HW struct
4528 *
4529 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4530 */
4531static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4532{
4533	struct ice_switch_info *sw = hw->switch_info;
4534	u8 i;
4535
4536	/* Delete old entries from replay filter list head if there is any */
4537	ice_rm_all_sw_replay_rule_info(hw);
4538	/* In start of replay, move entries into replay_rules list, it
4539	 * will allow adding rules entries back to filt_rules list,
4540	 * which is operational list.
4541	 */
4542	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4543		list_replace_init(&sw->recp_list[i].filt_rules,
4544				  &sw->recp_list[i].filt_replay_rules);
4545	ice_sched_replay_agg_vsi_preinit(hw);
4546
4547	return 0;
4548}
4549
4550/**
4551 * ice_replay_vsi - replay VSI configuration
4552 * @hw: pointer to the HW struct
4553 * @vsi_handle: driver VSI handle
4554 *
4555 * Restore all VSI configuration after reset. It is required to call this
4556 * function with main VSI first.
4557 */
4558enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4559{
4560	enum ice_status status;
4561
4562	if (!ice_is_vsi_valid(hw, vsi_handle))
4563		return ICE_ERR_PARAM;
4564
4565	/* Replay pre-initialization if there is any */
4566	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4567		status = ice_replay_pre_init(hw);
4568		if (status)
4569			return status;
4570	}
4571	/* Replay per VSI all RSS configurations */
4572	status = ice_replay_rss_cfg(hw, vsi_handle);
4573	if (status)
4574		return status;
4575	/* Replay per VSI all filters */
4576	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4577	if (!status)
4578		status = ice_replay_vsi_agg(hw, vsi_handle);
4579	return status;
4580}
4581
4582/**
4583 * ice_replay_post - post replay configuration cleanup
4584 * @hw: pointer to the HW struct
4585 *
4586 * Post replay cleanup.
4587 */
4588void ice_replay_post(struct ice_hw *hw)
4589{
4590	/* Delete old entries from replay filter list head */
4591	ice_rm_all_sw_replay_rule_info(hw);
4592	ice_sched_replay_agg(hw);
4593}
4594
4595/**
4596 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4597 * @hw: ptr to the hardware info
4598 * @reg: offset of 64 bit HW register to read from
4599 * @prev_stat_loaded: bool to specify if previous stats are loaded
4600 * @prev_stat: ptr to previous loaded stat value
4601 * @cur_stat: ptr to current stat value
4602 */
4603void
4604ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4605		  u64 *prev_stat, u64 *cur_stat)
4606{
4607	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4608
4609	/* device stats are not reset at PFR, they likely will not be zeroed
4610	 * when the driver starts. Thus, save the value from the first read
4611	 * without adding to the statistic value so that we report stats which
4612	 * count up from zero.
4613	 */
4614	if (!prev_stat_loaded) {
4615		*prev_stat = new_data;
4616		return;
4617	}
4618
4619	/* Calculate the difference between the new and old values, and then
4620	 * add it to the software stat value.
4621	 */
4622	if (new_data >= *prev_stat)
4623		*cur_stat += new_data - *prev_stat;
4624	else
4625		/* to manage the potential roll-over */
4626		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4627
4628	/* Update the previously stored value to prepare for next read */
4629	*prev_stat = new_data;
4630}
4631
4632/**
4633 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4634 * @hw: ptr to the hardware info
4635 * @reg: offset of HW register to read from
4636 * @prev_stat_loaded: bool to specify if previous stats are loaded
4637 * @prev_stat: ptr to previous loaded stat value
4638 * @cur_stat: ptr to current stat value
4639 */
4640void
4641ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4642		  u64 *prev_stat, u64 *cur_stat)
4643{
4644	u32 new_data;
4645
4646	new_data = rd32(hw, reg);
4647
4648	/* device stats are not reset at PFR, they likely will not be zeroed
4649	 * when the driver starts. Thus, save the value from the first read
4650	 * without adding to the statistic value so that we report stats which
4651	 * count up from zero.
4652	 */
4653	if (!prev_stat_loaded) {
4654		*prev_stat = new_data;
4655		return;
4656	}
4657
4658	/* Calculate the difference between the new and old values, and then
4659	 * add it to the software stat value.
4660	 */
4661	if (new_data >= *prev_stat)
4662		*cur_stat += new_data - *prev_stat;
4663	else
4664		/* to manage the potential roll-over */
4665		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4666
4667	/* Update the previously stored value to prepare for next read */
4668	*prev_stat = new_data;
4669}
4670
4671/**
4672 * ice_sched_query_elem - query element information from HW
4673 * @hw: pointer to the HW struct
4674 * @node_teid: node TEID to be queried
4675 * @buf: buffer to element information
4676 *
4677 * This function queries HW element information
4678 */
4679enum ice_status
4680ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4681		     struct ice_aqc_txsched_elem_data *buf)
4682{
4683	u16 buf_size, num_elem_ret = 0;
4684	enum ice_status status;
4685
4686	buf_size = sizeof(*buf);
4687	memset(buf, 0, buf_size);
4688	buf->node_teid = cpu_to_le32(node_teid);
4689	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4690					  NULL);
4691	if (status || num_elem_ret != 1)
4692		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4693	return status;
4694}
4695
4696/**
4697 * ice_aq_set_driver_param - Set driver parameter to share via firmware
4698 * @hw: pointer to the HW struct
4699 * @idx: parameter index to set
4700 * @value: the value to set the parameter to
4701 * @cd: pointer to command details structure or NULL
4702 *
4703 * Set the value of one of the software defined parameters. All PFs connected
4704 * to this device can read the value using ice_aq_get_driver_param.
4705 *
4706 * Note that firmware provides no synchronization or locking, and will not
4707 * save the parameter value during a device reset. It is expected that
4708 * a single PF will write the parameter value, while all other PFs will only
4709 * read it.
4710 */
4711int
4712ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4713			u32 value, struct ice_sq_cd *cd)
4714{
4715	struct ice_aqc_driver_shared_params *cmd;
4716	struct ice_aq_desc desc;
4717
4718	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4719		return -EIO;
4720
4721	cmd = &desc.params.drv_shared_params;
4722
4723	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4724
4725	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4726	cmd->param_indx = idx;
4727	cmd->param_val = cpu_to_le32(value);
4728
4729	return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, NULL, 0, cd));
4730}
4731
4732/**
4733 * ice_aq_get_driver_param - Get driver parameter shared via firmware
4734 * @hw: pointer to the HW struct
4735 * @idx: parameter index to set
4736 * @value: storage to return the shared parameter
4737 * @cd: pointer to command details structure or NULL
4738 *
4739 * Get the value of one of the software defined parameters.
4740 *
4741 * Note that firmware provides no synchronization or locking. It is expected
4742 * that only a single PF will write a given parameter.
4743 */
4744int
4745ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4746			u32 *value, struct ice_sq_cd *cd)
4747{
4748	struct ice_aqc_driver_shared_params *cmd;
4749	struct ice_aq_desc desc;
4750	enum ice_status status;
4751
4752	if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4753		return -EIO;
4754
4755	cmd = &desc.params.drv_shared_params;
4756
4757	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4758
4759	cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4760	cmd->param_indx = idx;
4761
4762	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4763	if (status)
4764		return ice_status_to_errno(status);
4765
4766	*value = le32_to_cpu(cmd->param_val);
4767
4768	return 0;
4769}
4770
4771/**
4772 * ice_fw_supports_link_override
4773 * @hw: pointer to the hardware structure
4774 *
4775 * Checks if the firmware supports link override
4776 */
4777bool ice_fw_supports_link_override(struct ice_hw *hw)
4778{
4779	if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4780		if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4781			return true;
4782		if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4783		    hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4784			return true;
4785	} else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4786		return true;
4787	}
4788
4789	return false;
4790}
4791
4792/**
4793 * ice_get_link_default_override
4794 * @ldo: pointer to the link default override struct
4795 * @pi: pointer to the port info struct
4796 *
4797 * Gets the link default override for a port
4798 */
4799enum ice_status
4800ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4801			      struct ice_port_info *pi)
4802{
4803	u16 i, tlv, tlv_len, tlv_start, buf, offset;
4804	struct ice_hw *hw = pi->hw;
4805	enum ice_status status;
4806
4807	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4808					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4809	if (status) {
4810		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4811		return status;
4812	}
4813
4814	/* Each port has its own config; calculate for our port */
4815	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4816		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4817
4818	/* link options first */
4819	status = ice_read_sr_word(hw, tlv_start, &buf);
4820	if (status) {
4821		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4822		return status;
4823	}
4824	ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4825	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4826		ICE_LINK_OVERRIDE_PHY_CFG_S;
4827
4828	/* link PHY config */
4829	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4830	status = ice_read_sr_word(hw, offset, &buf);
4831	if (status) {
4832		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4833		return status;
4834	}
4835	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4836
4837	/* PHY types low */
4838	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4839	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4840		status = ice_read_sr_word(hw, (offset + i), &buf);
4841		if (status) {
4842			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4843			return status;
4844		}
4845		/* shift 16 bits at a time to fill 64 bits */
4846		ldo->phy_type_low |= ((u64)buf << (i * 16));
4847	}
4848
4849	/* PHY types high */
4850	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4851		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4852	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4853		status = ice_read_sr_word(hw, (offset + i), &buf);
4854		if (status) {
4855			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4856			return status;
4857		}
4858		/* shift 16 bits at a time to fill 64 bits */
4859		ldo->phy_type_high |= ((u64)buf << (i * 16));
4860	}
4861
4862	return status;
4863}
4864
4865/**
4866 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4867 * @caps: get PHY capability data
4868 */
4869bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4870{
4871	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4872	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4873				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
4874				       ICE_AQC_PHY_AN_EN_CLAUSE37))
4875		return true;
4876
4877	return false;
4878}
4879
4880/**
4881 * ice_aq_set_lldp_mib - Set the LLDP MIB
4882 * @hw: pointer to the HW struct
4883 * @mib_type: Local, Remote or both Local and Remote MIBs
4884 * @buf: pointer to the caller-supplied buffer to store the MIB block
4885 * @buf_size: size of the buffer (in bytes)
4886 * @cd: pointer to command details structure or NULL
4887 *
4888 * Set the LLDP MIB. (0x0A08)
4889 */
4890enum ice_status
4891ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4892		    struct ice_sq_cd *cd)
4893{
4894	struct ice_aqc_lldp_set_local_mib *cmd;
4895	struct ice_aq_desc desc;
4896
4897	cmd = &desc.params.lldp_set_mib;
4898
4899	if (buf_size == 0 || !buf)
4900		return ICE_ERR_PARAM;
4901
4902	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4903
4904	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4905	desc.datalen = cpu_to_le16(buf_size);
4906
4907	cmd->type = mib_type;
4908	cmd->length = cpu_to_le16(buf_size);
4909
4910	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4911}
4912
4913/**
4914 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
4915 * @hw: pointer to HW struct
4916 */
4917bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
4918{
4919	if (hw->mac_type != ICE_MAC_E810)
4920		return false;
4921
4922	if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
4923		if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
4924			return true;
4925		if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
4926		    hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
4927			return true;
4928	} else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
4929		return true;
4930	}
4931	return false;
4932}
4933
4934/**
4935 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
4936 * @hw: pointer to HW struct
4937 * @vsi_num: absolute HW index for VSI
4938 * @add: boolean for if adding or removing a filter
4939 */
4940enum ice_status
4941ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
4942{
4943	struct ice_aqc_lldp_filter_ctrl *cmd;
4944	struct ice_aq_desc desc;
4945
4946	cmd = &desc.params.lldp_filter_ctrl;
4947
4948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
4949
4950	if (add)
4951		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
4952	else
4953		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
4954
4955	cmd->vsi_num = cpu_to_le16(vsi_num);
4956
4957	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4958}
4959
4960/**
4961 * ice_fw_supports_report_dflt_cfg
4962 * @hw: pointer to the hardware structure
4963 *
4964 * Checks if the firmware supports report default configuration
4965 */
4966bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
4967{
4968	if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4969		if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
4970			return true;
4971		if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
4972		    hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
4973			return true;
4974	} else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4975		return true;
4976	}
4977	return false;
4978}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
 
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
 
   7
   8#define ICE_PF_RESET_WAIT_COUNT	200
   9
  10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
  11	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
  12	     ((ICE_RX_OPC_MDID << \
  13	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
  14	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
  15	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
  16	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
  17
  18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
  19	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
  20	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
  21	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
  22	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
  23	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
  24	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
  25	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
  26	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
  27	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
  28
  29/**
  30 * ice_set_mac_type - Sets MAC type
  31 * @hw: pointer to the HW structure
  32 *
  33 * This function sets the MAC type of the adapter based on the
  34 * vendor ID and device ID stored in the HW structure.
  35 */
  36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  37{
  38	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  39		return ICE_ERR_DEVICE_NOT_SUPPORTED;
  40
  41	hw->mac_type = ICE_MAC_GENERIC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42	return 0;
  43}
  44
  45/**
  46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
  47 * @hw: pointer to the HW structure
  48 *
  49 * This function provides temporary workarounds for certain issues
  50 * that are expected to be fixed in the HW/FW.
  51 */
  52void ice_dev_onetime_setup(struct ice_hw *hw)
  53{
  54#define MBX_PF_VT_PFALLOC	0x00231E80
  55	/* set VFs per PF */
  56	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
  57}
  58
  59/**
  60 * ice_clear_pf_cfg - Clear PF configuration
  61 * @hw: pointer to the hardware structure
  62 *
  63 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  64 * configuration, flow director filters, etc.).
  65 */
  66enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  67{
  68	struct ice_aq_desc desc;
  69
  70	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  71
  72	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  73}
  74
  75/**
  76 * ice_aq_manage_mac_read - manage MAC address read command
  77 * @hw: pointer to the HW struct
  78 * @buf: a virtual buffer to hold the manage MAC read response
  79 * @buf_size: Size of the virtual buffer
  80 * @cd: pointer to command details structure or NULL
  81 *
  82 * This function is used to return per PF station MAC address (0x0107).
  83 * NOTE: Upon successful completion of this command, MAC address information
  84 * is returned in user specified buffer. Please interpret user specified
  85 * buffer as "manage_mac_read" response.
  86 * Response such as various MAC addresses are stored in HW struct (port.mac)
  87 * ice_aq_discover_caps is expected to be called before this function is called.
 
  88 */
  89static enum ice_status
  90ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
  91		       struct ice_sq_cd *cd)
  92{
  93	struct ice_aqc_manage_mac_read_resp *resp;
  94	struct ice_aqc_manage_mac_read *cmd;
  95	struct ice_aq_desc desc;
  96	enum ice_status status;
  97	u16 flags;
  98	u8 i;
  99
 100	cmd = &desc.params.mac_read;
 101
 102	if (buf_size < sizeof(*resp))
 103		return ICE_ERR_BUF_TOO_SHORT;
 104
 105	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 106
 107	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 108	if (status)
 109		return status;
 110
 111	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
 112	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 113
 114	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 115		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 116		return ICE_ERR_CFG;
 117	}
 118
 119	/* A single port can report up to two (LAN and WoL) addresses */
 120	for (i = 0; i < cmd->num_addr; i++)
 121		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 122			ether_addr_copy(hw->port_info->mac.lan_addr,
 123					resp[i].mac_addr);
 124			ether_addr_copy(hw->port_info->mac.perm_addr,
 125					resp[i].mac_addr);
 126			break;
 127		}
 128
 129	return 0;
 130}
 131
 132/**
 133 * ice_aq_get_phy_caps - returns PHY capabilities
 134 * @pi: port information structure
 135 * @qual_mods: report qualified modules
 136 * @report_mode: report mode capabilities
 137 * @pcaps: structure for PHY capabilities to be filled
 138 * @cd: pointer to command details structure or NULL
 139 *
 140 * Returns the various PHY capabilities supported on the Port (0x0600)
 141 */
 142enum ice_status
 143ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 144		    struct ice_aqc_get_phy_caps_data *pcaps,
 145		    struct ice_sq_cd *cd)
 146{
 147	struct ice_aqc_get_phy_caps *cmd;
 148	u16 pcaps_size = sizeof(*pcaps);
 149	struct ice_aq_desc desc;
 150	enum ice_status status;
 
 151
 152	cmd = &desc.params.get_phy;
 153
 154	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 155		return ICE_ERR_PARAM;
 
 
 
 
 
 156
 157	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 158
 159	if (qual_mods)
 160		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 161
 162	cmd->param0 |= cpu_to_le16(report_mode);
 163	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
 164
 165	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 167		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 
 
 168	}
 169
 170	return status;
 171}
 172
 173/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174 * ice_get_media_type - Gets media type
 175 * @pi: port information structure
 176 */
 177static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 178{
 179	struct ice_link_status *hw_link_info;
 180
 181	if (!pi)
 182		return ICE_MEDIA_UNKNOWN;
 183
 184	hw_link_info = &pi->phy.link_info;
 185	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 186		/* If more than one media type is selected, report unknown */
 187		return ICE_MEDIA_UNKNOWN;
 188
 189	if (hw_link_info->phy_type_low) {
 
 
 
 
 
 
 
 
 
 
 
 
 190		switch (hw_link_info->phy_type_low) {
 191		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 192		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 193		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 194		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 195		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 196		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 197		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 198		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 199		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 200		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 201		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 202		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 203		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 204		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 205		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 206		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 207		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 208		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 209		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 
 
 
 
 
 
 
 
 210			return ICE_MEDIA_FIBER;
 211		case ICE_PHY_TYPE_LOW_100BASE_TX:
 212		case ICE_PHY_TYPE_LOW_1000BASE_T:
 213		case ICE_PHY_TYPE_LOW_2500BASE_T:
 214		case ICE_PHY_TYPE_LOW_5GBASE_T:
 215		case ICE_PHY_TYPE_LOW_10GBASE_T:
 216		case ICE_PHY_TYPE_LOW_25GBASE_T:
 217			return ICE_MEDIA_BASET;
 218		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 219		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 220		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 221		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 222		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 223		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 224		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 225		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 226		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 227		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 228			return ICE_MEDIA_DA;
 
 
 
 
 
 
 
 
 
 
 229		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 230		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 231		case ICE_PHY_TYPE_LOW_2500BASE_X:
 232		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 233		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 234		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 235		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 236		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 237		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 238		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 239		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 240		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 241		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 242			return ICE_MEDIA_BACKPLANE;
 243		}
 244	} else {
 245		switch (hw_link_info->phy_type_high) {
 
 
 
 
 
 246		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 247			return ICE_MEDIA_BACKPLANE;
 
 
 
 248		}
 249	}
 250	return ICE_MEDIA_UNKNOWN;
 251}
 252
 253/**
 254 * ice_aq_get_link_info
 255 * @pi: port information structure
 256 * @ena_lse: enable/disable LinkStatusEvent reporting
 257 * @link: pointer to link status structure - optional
 258 * @cd: pointer to command details structure or NULL
 259 *
 260 * Get Link Status (0x607). Returns the link status of the adapter.
 261 */
 262enum ice_status
 263ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 264		     struct ice_link_status *link, struct ice_sq_cd *cd)
 265{
 266	struct ice_aqc_get_link_status_data link_data = { 0 };
 267	struct ice_aqc_get_link_status *resp;
 268	struct ice_link_status *li_old, *li;
 269	enum ice_media_type *hw_media_type;
 270	struct ice_fc_info *hw_fc_info;
 271	bool tx_pause, rx_pause;
 272	struct ice_aq_desc desc;
 273	enum ice_status status;
 274	struct ice_hw *hw;
 275	u16 cmd_flags;
 276
 277	if (!pi)
 278		return ICE_ERR_PARAM;
 279	hw = pi->hw;
 280	li_old = &pi->phy.link_info_old;
 281	hw_media_type = &pi->phy.media_type;
 282	li = &pi->phy.link_info;
 283	hw_fc_info = &pi->fc;
 284
 285	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 286	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 287	resp = &desc.params.get_link_status;
 288	resp->cmd_flags = cpu_to_le16(cmd_flags);
 289	resp->lport_num = pi->lport;
 290
 291	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 292
 293	if (status)
 294		return status;
 295
 296	/* save off old link status information */
 297	*li_old = *li;
 298
 299	/* update current link status information */
 300	li->link_speed = le16_to_cpu(link_data.link_speed);
 301	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 302	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 303	*hw_media_type = ice_get_media_type(pi);
 304	li->link_info = link_data.link_info;
 
 305	li->an_info = link_data.an_info;
 306	li->ext_info = link_data.ext_info;
 307	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 308	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 309	li->topo_media_conflict = link_data.topo_media_conflict;
 310	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 311				      ICE_AQ_CFG_PACING_TYPE_M);
 312
 313	/* update fc info */
 314	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 315	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 316	if (tx_pause && rx_pause)
 317		hw_fc_info->current_mode = ICE_FC_FULL;
 318	else if (tx_pause)
 319		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 320	else if (rx_pause)
 321		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 322	else
 323		hw_fc_info->current_mode = ICE_FC_NONE;
 324
 325	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 326
 327	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
 328	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
 
 329		  (unsigned long long)li->phy_type_low);
 330	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
 331		  (unsigned long long)li->phy_type_high);
 332	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
 333	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
 334	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
 335	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
 336	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
 337	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
 338	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
 
 
 
 339
 340	/* save link status information */
 341	if (link)
 342		*link = *li;
 343
 344	/* flag cleared so calling functions don't call AQ again */
 345	pi->phy.get_link_info = false;
 346
 347	return 0;
 348}
 349
 350/**
 351 * ice_init_flex_flags
 352 * @hw: pointer to the hardware structure
 353 * @prof_id: Rx Descriptor Builder profile ID
 354 *
 355 * Function to initialize Rx flex flags
 
 356 */
 357static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
 
 
 358{
 359	u8 idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
 362	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
 363	 * flexiflags1[3:0] - Not used for flag programming
 364	 * flexiflags2[7:0] - Tunnel and VLAN types
 365	 * 2 invalid fields in last index
 366	 */
 367	switch (prof_id) {
 368	/* Rx flex flags are currently programmed for the NIC profiles only.
 369	 * Different flag bit programming configurations can be added per
 370	 * profile as needed.
 371	 */
 372	case ICE_RXDID_FLEX_NIC:
 373	case ICE_RXDID_FLEX_NIC_2:
 374		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
 375				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
 376				   ICE_FLG_FIN, idx++);
 377		/* flex flag 1 is not used for flexi-flag programming, skipping
 378		 * these four FLG64 bits.
 379		 */
 380		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
 381				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
 382		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
 383				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
 384				   ICE_FLG_EVLAN_x9100, idx++);
 385		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
 386				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
 387				   ICE_FLG_TNL0, idx++);
 388		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
 389				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
 390		break;
 391
 392	default:
 393		ice_debug(hw, ICE_DBG_INIT,
 394			  "Flag programming for profile ID %d not supported\n",
 395			  prof_id);
 396	}
 397}
 398
 399/**
 400 * ice_init_flex_flds
 401 * @hw: pointer to the hardware structure
 402 * @prof_id: Rx Descriptor Builder profile ID
 
 403 *
 404 * Function to initialize flex descriptors
 405 */
 406static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
 
 407{
 408	enum ice_flex_rx_mdid mdid;
 
 409
 410	switch (prof_id) {
 411	case ICE_RXDID_FLEX_NIC:
 412	case ICE_RXDID_FLEX_NIC_2:
 413		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
 414		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
 415		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
 416
 417		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
 418			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
 419
 420		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
 421
 422		ice_init_flex_flags(hw, prof_id);
 423		break;
 
 424
 425	default:
 426		ice_debug(hw, ICE_DBG_INIT,
 427			  "Field init for profile ID %d not supported\n",
 428			  prof_id);
 429	}
 430}
 431
 432/**
 433 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 434 * @hw: pointer to the HW struct
 435 */
 436static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 437{
 438	struct ice_switch_info *sw;
 
 439
 440	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 441				       sizeof(*hw->switch_info), GFP_KERNEL);
 442	sw = hw->switch_info;
 443
 444	if (!sw)
 445		return ICE_ERR_NO_MEMORY;
 446
 447	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 448
 449	return ice_init_def_sw_recp(hw);
 
 
 
 
 
 450}
 451
 452/**
 453 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 454 * @hw: pointer to the HW struct
 455 */
 456static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 457{
 458	struct ice_switch_info *sw = hw->switch_info;
 459	struct ice_vsi_list_map_info *v_pos_map;
 460	struct ice_vsi_list_map_info *v_tmp_map;
 461	struct ice_sw_recipe *recps;
 462	u8 i;
 463
 464	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 465				 list_entry) {
 466		list_del(&v_pos_map->list_entry);
 467		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 468	}
 469	recps = hw->switch_info->recp_list;
 470	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
 471		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 472
 473		recps[i].root_rid = i;
 474		mutex_destroy(&recps[i].filt_rule_lock);
 475		list_for_each_entry_safe(lst_itr, tmp_entry,
 476					 &recps[i].filt_rules, list_entry) {
 477			list_del(&lst_itr->list_entry);
 478			devm_kfree(ice_hw_to_dev(hw), lst_itr);
 479		}
 480	}
 481	ice_rm_all_sw_replay_rule_info(hw);
 482	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 483	devm_kfree(ice_hw_to_dev(hw), sw);
 484}
 485
 486#define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
 487	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
 488#define ICE_FW_LOG_DESC_SIZE_MAX	\
 489	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
 490
 491/**
 492 * ice_get_fw_log_cfg - get FW logging configuration
 493 * @hw: pointer to the HW struct
 494 */
 495static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
 496{
 497	struct ice_aqc_fw_logging_data *config;
 498	struct ice_aq_desc desc;
 499	enum ice_status status;
 
 500	u16 size;
 501
 502	size = ICE_FW_LOG_DESC_SIZE_MAX;
 503	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 504	if (!config)
 505		return ICE_ERR_NO_MEMORY;
 506
 507	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 508
 509	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
 510	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 511
 512	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 513	if (!status) {
 514		u16 i;
 515
 516		/* Save FW logging information into the HW structure */
 517		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 518			u16 v, m, flgs;
 519
 520			v = le16_to_cpu(config->entry[i]);
 521			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 522			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 523
 524			if (m < ICE_AQC_FW_LOG_ID_MAX)
 525				hw->fw_log.evnts[m].cur = flgs;
 526		}
 527	}
 528
 529	devm_kfree(ice_hw_to_dev(hw), config);
 530
 531	return status;
 532}
 533
 534/**
 535 * ice_cfg_fw_log - configure FW logging
 536 * @hw: pointer to the HW struct
 537 * @enable: enable certain FW logging events if true, disable all if false
 538 *
 539 * This function enables/disables the FW logging via Rx CQ events and a UART
 540 * port based on predetermined configurations. FW logging via the Rx CQ can be
 541 * enabled/disabled for individual PF's. However, FW logging via the UART can
 542 * only be enabled/disabled for all PFs on the same device.
 543 *
 544 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 545 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 546 * before initializing the device.
 547 *
 548 * When re/configuring FW logging, callers need to update the "cfg" elements of
 549 * the hw->fw_log.evnts array with the desired logging event configurations for
 550 * modules of interest. When disabling FW logging completely, the callers can
 551 * just pass false in the "enable" parameter. On completion, the function will
 552 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 553 * logging event configurations of the modules that are being re/configured. FW
 554 * logging modules that are not part of a reconfiguration operation retain their
 555 * previous states.
 556 *
 557 * Before resetting the device, it is recommended that the driver disables FW
 558 * logging before shutting down the control queue. When disabling FW logging
 559 * ("enable" = false), the latest configurations of FW logging events stored in
 560 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 561 * a device reset.
 562 *
 563 * When enabling FW logging to emit log messages via the Rx CQ during the
 564 * device's initialization phase, a mechanism alternative to interrupt handlers
 565 * needs to be used to extract FW log messages from the Rx CQ periodically and
 566 * to prevent the Rx CQ from being full and stalling other types of control
 567 * messages from FW to SW. Interrupts are typically disabled during the device's
 568 * initialization phase.
 569 */
 570static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 571{
 572	struct ice_aqc_fw_logging_data *data = NULL;
 573	struct ice_aqc_fw_logging *cmd;
 574	enum ice_status status = 0;
 575	u16 i, chgs = 0, len = 0;
 576	struct ice_aq_desc desc;
 
 577	u8 actv_evnts = 0;
 578	void *buf = NULL;
 579
 580	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 581		return 0;
 582
 583	/* Disable FW logging only when the control queue is still responsive */
 584	if (!enable &&
 585	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 586		return 0;
 587
 588	/* Get current FW log settings */
 589	status = ice_get_fw_log_cfg(hw);
 590	if (status)
 591		return status;
 592
 593	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 594	cmd = &desc.params.fw_logging;
 595
 596	/* Indicate which controls are valid */
 597	if (hw->fw_log.cq_en)
 598		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 599
 600	if (hw->fw_log.uart_en)
 601		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 602
 603	if (enable) {
 604		/* Fill in an array of entries with FW logging modules and
 605		 * logging events being reconfigured.
 606		 */
 607		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 608			u16 val;
 609
 610			/* Keep track of enabled event types */
 611			actv_evnts |= hw->fw_log.evnts[i].cfg;
 612
 613			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 614				continue;
 615
 616			if (!data) {
 617				data = devm_kzalloc(ice_hw_to_dev(hw),
 618						    ICE_FW_LOG_DESC_SIZE_MAX,
 
 619						    GFP_KERNEL);
 620				if (!data)
 621					return ICE_ERR_NO_MEMORY;
 622			}
 623
 624			val = i << ICE_AQC_FW_LOG_ID_S;
 625			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 626			data->entry[chgs++] = cpu_to_le16(val);
 627		}
 628
 629		/* Only enable FW logging if at least one module is specified.
 630		 * If FW logging is currently enabled but all modules are not
 631		 * enabled to emit log messages, disable FW logging altogether.
 632		 */
 633		if (actv_evnts) {
 634			/* Leave if there is effectively no change */
 635			if (!chgs)
 636				goto out;
 637
 638			if (hw->fw_log.cq_en)
 639				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 640
 641			if (hw->fw_log.uart_en)
 642				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 643
 644			buf = data;
 645			len = ICE_FW_LOG_DESC_SIZE(chgs);
 646			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 647		}
 648	}
 649
 650	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 651	if (!status) {
 652		/* Update the current configuration to reflect events enabled.
 653		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 654		 * logging mode is enabled for the device. They do not reflect
 655		 * actual modules being enabled to emit log messages. So, their
 656		 * values remain unchanged even when all modules are disabled.
 657		 */
 658		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 659
 660		hw->fw_log.actv_evnts = actv_evnts;
 661		for (i = 0; i < cnt; i++) {
 662			u16 v, m;
 663
 664			if (!enable) {
 665				/* When disabling all FW logging events as part
 666				 * of device's de-initialization, the original
 667				 * configurations are retained, and can be used
 668				 * to reconfigure FW logging later if the device
 669				 * is re-initialized.
 670				 */
 671				hw->fw_log.evnts[i].cur = 0;
 672				continue;
 673			}
 674
 675			v = le16_to_cpu(data->entry[i]);
 676			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 677			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 678		}
 679	}
 680
 681out:
 682	if (data)
 683		devm_kfree(ice_hw_to_dev(hw), data);
 684
 685	return status;
 686}
 687
 688/**
 689 * ice_output_fw_log
 690 * @hw: pointer to the HW struct
 691 * @desc: pointer to the AQ message descriptor
 692 * @buf: pointer to the buffer accompanying the AQ message
 693 *
 694 * Formats a FW Log message and outputs it via the standard driver logs.
 695 */
 696void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 697{
 698	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 699	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 700			le16_to_cpu(desc->datalen));
 701	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 702}
 703
 704/**
 705 * ice_get_itr_intrl_gran - determine int/intrl granularity
 706 * @hw: pointer to the HW struct
 707 *
 708 * Determines the ITR/intrl granularities based on the maximum aggregate
 709 * bandwidth according to the device's configuration during power-on.
 710 */
 711static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 712{
 713	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 714			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 715			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 716
 717	switch (max_agg_bw) {
 718	case ICE_MAX_AGG_BW_200G:
 719	case ICE_MAX_AGG_BW_100G:
 720	case ICE_MAX_AGG_BW_50G:
 721		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 722		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 723		break;
 724	case ICE_MAX_AGG_BW_25G:
 725		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 726		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 727		break;
 728	}
 729}
 730
 731/**
 732 * ice_get_nvm_version - get cached NVM version data
 733 * @hw: pointer to the hardware structure
 734 * @oem_ver: 8 bit NVM version
 735 * @oem_build: 16 bit NVM build number
 736 * @oem_patch: 8 NVM patch number
 737 * @ver_hi: high 16 bits of the NVM version
 738 * @ver_lo: low 16 bits of the NVM version
 739 */
 740void
 741ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
 742		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
 743{
 744	struct ice_nvm_info *nvm = &hw->nvm;
 745
 746	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
 747	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
 748	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
 749			   ICE_OEM_VER_BUILD_SHIFT);
 750	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
 751	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
 752}
 753
 754/**
 755 * ice_init_hw - main hardware initialization routine
 756 * @hw: pointer to the hardware structure
 757 */
 758enum ice_status ice_init_hw(struct ice_hw *hw)
 759{
 760	struct ice_aqc_get_phy_caps_data *pcaps;
 761	enum ice_status status;
 762	u16 mac_buf_len;
 763	void *mac_buf;
 764
 765	/* Set MAC type based on DeviceID */
 766	status = ice_set_mac_type(hw);
 767	if (status)
 768		return status;
 769
 770	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 771			 PF_FUNC_RID_FUNC_NUM_M) >>
 772		PF_FUNC_RID_FUNC_NUM_S;
 773
 774	status = ice_reset(hw, ICE_RESET_PFR);
 775	if (status)
 776		return status;
 777
 778	ice_get_itr_intrl_gran(hw);
 779
 780	status = ice_create_all_ctrlq(hw);
 781	if (status)
 782		goto err_unroll_cqinit;
 783
 784	/* Enable FW logging. Not fatal if this fails. */
 785	status = ice_cfg_fw_log(hw, true);
 786	if (status)
 787		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 788
 789	status = ice_clear_pf_cfg(hw);
 790	if (status)
 791		goto err_unroll_cqinit;
 792
 
 
 
 
 793	ice_clear_pxe_mode(hw);
 794
 795	status = ice_init_nvm(hw);
 796	if (status)
 797		goto err_unroll_cqinit;
 798
 799	status = ice_get_caps(hw);
 800	if (status)
 801		goto err_unroll_cqinit;
 802
 803	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 804				     sizeof(*hw->port_info), GFP_KERNEL);
 805	if (!hw->port_info) {
 806		status = ICE_ERR_NO_MEMORY;
 807		goto err_unroll_cqinit;
 808	}
 809
 810	/* set the back pointer to HW */
 811	hw->port_info->hw = hw;
 812
 813	/* Initialize port_info struct with switch configuration data */
 814	status = ice_get_initial_sw_cfg(hw);
 815	if (status)
 816		goto err_unroll_alloc;
 817
 818	hw->evb_veb = true;
 819
 820	/* Query the allocated resources for Tx scheduler */
 821	status = ice_sched_query_res_alloc(hw);
 822	if (status) {
 823		ice_debug(hw, ICE_DBG_SCHED,
 824			  "Failed to get scheduler allocated resources\n");
 825		goto err_unroll_alloc;
 826	}
 
 827
 828	/* Initialize port_info struct with scheduler data */
 829	status = ice_sched_init_port(hw->port_info);
 830	if (status)
 831		goto err_unroll_sched;
 832
 833	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 834	if (!pcaps) {
 835		status = ICE_ERR_NO_MEMORY;
 836		goto err_unroll_sched;
 837	}
 838
 839	/* Initialize port_info struct with PHY capabilities */
 840	status = ice_aq_get_phy_caps(hw->port_info, false,
 841				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
 
 842	devm_kfree(ice_hw_to_dev(hw), pcaps);
 843	if (status)
 844		goto err_unroll_sched;
 
 845
 846	/* Initialize port_info struct with link information */
 847	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 848	if (status)
 849		goto err_unroll_sched;
 850
 851	/* need a valid SW entry point to build a Tx tree */
 852	if (!hw->sw_entry_point_layer) {
 853		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
 854		status = ICE_ERR_CFG;
 855		goto err_unroll_sched;
 856	}
 857	INIT_LIST_HEAD(&hw->agg_list);
 
 
 
 858
 859	status = ice_init_fltr_mgmt_struct(hw);
 860	if (status)
 861		goto err_unroll_sched;
 862
 863	ice_dev_onetime_setup(hw);
 864
 865	/* Get MAC information */
 866	/* A single port can report up to two (LAN and WoL) addresses */
 867	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 868			       sizeof(struct ice_aqc_manage_mac_read_resp),
 869			       GFP_KERNEL);
 870	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 871
 872	if (!mac_buf) {
 873		status = ICE_ERR_NO_MEMORY;
 874		goto err_unroll_fltr_mgmt_struct;
 875	}
 876
 877	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 878	devm_kfree(ice_hw_to_dev(hw), mac_buf);
 879
 880	if (status)
 881		goto err_unroll_fltr_mgmt_struct;
 882
 883	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
 884	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
 
 
 
 
 
 885	status = ice_init_hw_tbls(hw);
 886	if (status)
 887		goto err_unroll_fltr_mgmt_struct;
 
 888	return 0;
 889
 890err_unroll_fltr_mgmt_struct:
 891	ice_cleanup_fltr_mgmt_struct(hw);
 892err_unroll_sched:
 893	ice_sched_cleanup_all(hw);
 894err_unroll_alloc:
 895	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 896err_unroll_cqinit:
 897	ice_destroy_all_ctrlq(hw);
 898	return status;
 899}
 900
 901/**
 902 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 903 * @hw: pointer to the hardware structure
 904 *
 905 * This should be called only during nominal operation, not as a result of
 906 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
 907 * applicable initializations if it fails for any reason.
 908 */
 909void ice_deinit_hw(struct ice_hw *hw)
 910{
 
 911	ice_cleanup_fltr_mgmt_struct(hw);
 912
 913	ice_sched_cleanup_all(hw);
 914	ice_sched_clear_agg(hw);
 915	ice_free_seg(hw);
 916	ice_free_hw_tbls(hw);
 
 917
 918	if (hw->port_info) {
 919		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 920		hw->port_info = NULL;
 921	}
 922
 923	/* Attempt to disable FW logging before shutting down control queues */
 924	ice_cfg_fw_log(hw, false);
 925	ice_destroy_all_ctrlq(hw);
 926
 927	/* Clear VSI contexts if not already cleared */
 928	ice_clear_all_vsi_ctx(hw);
 929}
 930
 931/**
 932 * ice_check_reset - Check to see if a global reset is complete
 933 * @hw: pointer to the hardware structure
 934 */
 935enum ice_status ice_check_reset(struct ice_hw *hw)
 936{
 937	u32 cnt, reg = 0, grst_delay;
 938
 939	/* Poll for Device Active state in case a recent CORER, GLOBR,
 940	 * or EMPR has occurred. The grst delay value is in 100ms units.
 941	 * Add 1sec for outstanding AQ commands that can take a long time.
 942	 */
 943	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
 944		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
 945
 946	for (cnt = 0; cnt < grst_delay; cnt++) {
 947		mdelay(100);
 948		reg = rd32(hw, GLGEN_RSTAT);
 949		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
 950			break;
 951	}
 952
 953	if (cnt == grst_delay) {
 954		ice_debug(hw, ICE_DBG_INIT,
 955			  "Global reset polling failed to complete.\n");
 956		return ICE_ERR_RESET_FAILED;
 957	}
 958
 959#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
 960				 GLNVM_ULD_GLOBR_DONE_M)
 
 
 
 
 
 
 
 
 961
 962	/* Device is Active; check Global Reset processes are done */
 963	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 964		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
 965		if (reg == ICE_RESET_DONE_MASK) {
 966			ice_debug(hw, ICE_DBG_INIT,
 967				  "Global reset processes done. %d\n", cnt);
 968			break;
 969		}
 970		mdelay(10);
 971	}
 972
 973	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 974		ice_debug(hw, ICE_DBG_INIT,
 975			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 976			  reg);
 977		return ICE_ERR_RESET_FAILED;
 978	}
 979
 980	return 0;
 981}
 982
 983/**
 984 * ice_pf_reset - Reset the PF
 985 * @hw: pointer to the hardware structure
 986 *
 987 * If a global reset has been triggered, this function checks
 988 * for its completion and then issues the PF reset
 989 */
 990static enum ice_status ice_pf_reset(struct ice_hw *hw)
 991{
 992	u32 cnt, reg;
 993
 994	/* If at function entry a global reset was already in progress, i.e.
 995	 * state is not 'device active' or any of the reset done bits are not
 996	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
 997	 * global reset is done.
 998	 */
 999	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1000	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1001		/* poll on global reset currently in progress until done */
1002		if (ice_check_reset(hw))
1003			return ICE_ERR_RESET_FAILED;
1004
1005		return 0;
1006	}
1007
1008	/* Reset the PF */
1009	reg = rd32(hw, PFGEN_CTRL);
1010
1011	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1012
1013	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 
 
 
 
 
1014		reg = rd32(hw, PFGEN_CTRL);
1015		if (!(reg & PFGEN_CTRL_PFSWR_M))
1016			break;
1017
1018		mdelay(1);
1019	}
1020
1021	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1022		ice_debug(hw, ICE_DBG_INIT,
1023			  "PF reset polling failed to complete.\n");
1024		return ICE_ERR_RESET_FAILED;
1025	}
1026
1027	return 0;
1028}
1029
1030/**
1031 * ice_reset - Perform different types of reset
1032 * @hw: pointer to the hardware structure
1033 * @req: reset request
1034 *
1035 * This function triggers a reset as specified by the req parameter.
1036 *
1037 * Note:
1038 * If anything other than a PF reset is triggered, PXE mode is restored.
1039 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1040 * interface has been restored in the rebuild flow.
1041 */
1042enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1043{
1044	u32 val = 0;
1045
1046	switch (req) {
1047	case ICE_RESET_PFR:
1048		return ice_pf_reset(hw);
1049	case ICE_RESET_CORER:
1050		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1051		val = GLGEN_RTRIG_CORER_M;
1052		break;
1053	case ICE_RESET_GLOBR:
1054		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1055		val = GLGEN_RTRIG_GLOBR_M;
1056		break;
1057	default:
1058		return ICE_ERR_PARAM;
1059	}
1060
1061	val |= rd32(hw, GLGEN_RTRIG);
1062	wr32(hw, GLGEN_RTRIG, val);
1063	ice_flush(hw);
1064
1065	/* wait for the FW to be ready */
1066	return ice_check_reset(hw);
1067}
1068
1069/**
1070 * ice_copy_rxq_ctx_to_hw
1071 * @hw: pointer to the hardware structure
1072 * @ice_rxq_ctx: pointer to the rxq context
1073 * @rxq_index: the index of the Rx queue
1074 *
1075 * Copies rxq context from dense structure to HW register space
1076 */
1077static enum ice_status
1078ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1079{
1080	u8 i;
1081
1082	if (!ice_rxq_ctx)
1083		return ICE_ERR_BAD_PTR;
1084
1085	if (rxq_index > QRX_CTRL_MAX_INDEX)
1086		return ICE_ERR_PARAM;
1087
1088	/* Copy each dword separately to HW */
1089	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1090		wr32(hw, QRX_CONTEXT(i, rxq_index),
1091		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1092
1093		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1094			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1095	}
1096
1097	return 0;
1098}
1099
1100/* LAN Rx Queue Context */
1101static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1102	/* Field		Width	LSB */
1103	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1104	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1105	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1106	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1107	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1108	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1109	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1110	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1111	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1112	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1113	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1114	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1115	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1116	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1117	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1118	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1119	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1120	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1121	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1122	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1123	{ 0 }
1124};
1125
1126/**
1127 * ice_write_rxq_ctx
1128 * @hw: pointer to the hardware structure
1129 * @rlan_ctx: pointer to the rxq context
1130 * @rxq_index: the index of the Rx queue
1131 *
1132 * Converts rxq context from sparse to dense structure and then writes
1133 * it to HW register space and enables the hardware to prefetch descriptors
1134 * instead of only fetching them on demand
1135 */
1136enum ice_status
1137ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1138		  u32 rxq_index)
1139{
1140	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1141
1142	if (!rlan_ctx)
1143		return ICE_ERR_BAD_PTR;
1144
1145	rlan_ctx->prefena = 1;
1146
1147	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1148	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1149}
1150
1151/* LAN Tx Queue Context */
1152const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1153				    /* Field			Width	LSB */
1154	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1155	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1156	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1157	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1158	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1159	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1160	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1161	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1162	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1163	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1164	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1165	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1166	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1167	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1168	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1169	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1170	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1171	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1172	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1173	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1174	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1175	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1176	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1177	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1178	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1179	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1180	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1181	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1182	{ 0 }
1183};
1184
 
 
1185/**
1186 * ice_debug_cq
1187 * @hw: pointer to the hardware structure
1188 * @mask: debug mask
1189 * @desc: pointer to control queue descriptor
1190 * @buf: pointer to command buffer
1191 * @buf_len: max length of buf
1192 *
1193 * Dumps debug log about control command with descriptor contents.
1194 */
1195void
1196ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1197	     u16 buf_len)
1198{
1199	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1200	u16 len;
 
 
1201
1202#ifndef CONFIG_DYNAMIC_DEBUG
1203	if (!(mask & hw->debug_mask))
1204		return;
1205#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206
1207	if (!desc)
1208		return;
 
 
 
 
 
1209
1210	len = le16_to_cpu(cq_desc->datalen);
1211
1212	ice_debug(hw, mask,
1213		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1214		  le16_to_cpu(cq_desc->opcode),
1215		  le16_to_cpu(cq_desc->flags),
1216		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1217	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1218		  le32_to_cpu(cq_desc->cookie_high),
1219		  le32_to_cpu(cq_desc->cookie_low));
1220	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1221		  le32_to_cpu(cq_desc->params.generic.param0),
1222		  le32_to_cpu(cq_desc->params.generic.param1));
1223	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1224		  le32_to_cpu(cq_desc->params.generic.addr_high),
1225		  le32_to_cpu(cq_desc->params.generic.addr_low));
1226	if (buf && cq_desc->datalen != 0) {
1227		ice_debug(hw, mask, "Buffer:\n");
1228		if (buf_len < len)
1229			len = buf_len;
1230
1231		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1232	}
1233}
1234
1235/* FW Admin Queue command wrappers */
1236
1237/* Software lock/mutex that is meant to be held while the Global Config Lock
1238 * in firmware is acquired by the software to prevent most (but not all) types
1239 * of AQ commands from being sent to FW
1240 */
1241DEFINE_MUTEX(ice_global_cfg_lock_sw);
1242
1243/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1245 * @hw: pointer to the HW struct
1246 * @desc: descriptor describing the command
1247 * @buf: buffer to use for indirect commands (NULL for direct commands)
1248 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1249 * @cd: pointer to command details structure
1250 *
1251 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1252 */
1253enum ice_status
1254ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1255		u16 buf_size, struct ice_sq_cd *cd)
1256{
1257	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1258	bool lock_acquired = false;
1259	enum ice_status status;
1260
1261	/* When a package download is in process (i.e. when the firmware's
1262	 * Global Configuration Lock resource is held), only the Download
1263	 * Package, Get Version, Get Package Info List and Release Resource
1264	 * (with resource ID set to Global Config Lock) AdminQ commands are
1265	 * allowed; all others must block until the package download completes
1266	 * and the Global Config Lock is released.  See also
1267	 * ice_acquire_global_cfg_lock().
1268	 */
1269	switch (le16_to_cpu(desc->opcode)) {
1270	case ice_aqc_opc_download_pkg:
1271	case ice_aqc_opc_get_pkg_info_list:
1272	case ice_aqc_opc_get_ver:
1273		break;
1274	case ice_aqc_opc_release_res:
1275		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1276			break;
1277		/* fall-through */
1278	default:
1279		mutex_lock(&ice_global_cfg_lock_sw);
1280		lock_acquired = true;
1281		break;
1282	}
1283
1284	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1285	if (lock_acquired)
1286		mutex_unlock(&ice_global_cfg_lock_sw);
1287
1288	return status;
1289}
1290
1291/**
1292 * ice_aq_get_fw_ver
1293 * @hw: pointer to the HW struct
1294 * @cd: pointer to command details structure or NULL
1295 *
1296 * Get the firmware version (0x0001) from the admin queue commands
1297 */
1298enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1299{
1300	struct ice_aqc_get_ver *resp;
1301	struct ice_aq_desc desc;
1302	enum ice_status status;
1303
1304	resp = &desc.params.get_ver;
1305
1306	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1307
1308	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1309
1310	if (!status) {
1311		hw->fw_branch = resp->fw_branch;
1312		hw->fw_maj_ver = resp->fw_major;
1313		hw->fw_min_ver = resp->fw_minor;
1314		hw->fw_patch = resp->fw_patch;
1315		hw->fw_build = le32_to_cpu(resp->fw_build);
1316		hw->api_branch = resp->api_branch;
1317		hw->api_maj_ver = resp->api_major;
1318		hw->api_min_ver = resp->api_minor;
1319		hw->api_patch = resp->api_patch;
1320	}
1321
1322	return status;
1323}
1324
1325/**
1326 * ice_aq_send_driver_ver
1327 * @hw: pointer to the HW struct
1328 * @dv: driver's major, minor version
1329 * @cd: pointer to command details structure or NULL
1330 *
1331 * Send the driver version (0x0002) to the firmware
1332 */
1333enum ice_status
1334ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1335		       struct ice_sq_cd *cd)
1336{
1337	struct ice_aqc_driver_ver *cmd;
1338	struct ice_aq_desc desc;
1339	u16 len;
1340
1341	cmd = &desc.params.driver_ver;
1342
1343	if (!dv)
1344		return ICE_ERR_PARAM;
1345
1346	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1347
1348	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1349	cmd->major_ver = dv->major_ver;
1350	cmd->minor_ver = dv->minor_ver;
1351	cmd->build_ver = dv->build_ver;
1352	cmd->subbuild_ver = dv->subbuild_ver;
1353
1354	len = 0;
1355	while (len < sizeof(dv->driver_string) &&
1356	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1357		len++;
1358
1359	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1360}
1361
1362/**
1363 * ice_aq_q_shutdown
1364 * @hw: pointer to the HW struct
1365 * @unloading: is the driver unloading itself
1366 *
1367 * Tell the Firmware that we're shutting down the AdminQ and whether
1368 * or not the driver is unloading as well (0x0003).
1369 */
1370enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1371{
1372	struct ice_aqc_q_shutdown *cmd;
1373	struct ice_aq_desc desc;
1374
1375	cmd = &desc.params.q_shutdown;
1376
1377	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1378
1379	if (unloading)
1380		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1381
1382	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1383}
1384
1385/**
1386 * ice_aq_req_res
1387 * @hw: pointer to the HW struct
1388 * @res: resource ID
1389 * @access: access type
1390 * @sdp_number: resource number
1391 * @timeout: the maximum time in ms that the driver may hold the resource
1392 * @cd: pointer to command details structure or NULL
1393 *
1394 * Requests common resource using the admin queue commands (0x0008).
1395 * When attempting to acquire the Global Config Lock, the driver can
1396 * learn of three states:
1397 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1398 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1399 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1400 *                          successfully downloaded the package; the driver does
1401 *                          not have to download the package and can continue
1402 *                          loading
1403 *
1404 * Note that if the caller is in an acquire lock, perform action, release lock
1405 * phase of operation, it is possible that the FW may detect a timeout and issue
1406 * a CORER. In this case, the driver will receive a CORER interrupt and will
1407 * have to determine its cause. The calling thread that is handling this flow
1408 * will likely get an error propagated back to it indicating the Download
1409 * Package, Update Package or the Release Resource AQ commands timed out.
1410 */
1411static enum ice_status
1412ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1413	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1414	       struct ice_sq_cd *cd)
1415{
1416	struct ice_aqc_req_res *cmd_resp;
1417	struct ice_aq_desc desc;
1418	enum ice_status status;
1419
1420	cmd_resp = &desc.params.res_owner;
1421
1422	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1423
1424	cmd_resp->res_id = cpu_to_le16(res);
1425	cmd_resp->access_type = cpu_to_le16(access);
1426	cmd_resp->res_number = cpu_to_le32(sdp_number);
1427	cmd_resp->timeout = cpu_to_le32(*timeout);
1428	*timeout = 0;
1429
1430	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1431
1432	/* The completion specifies the maximum time in ms that the driver
1433	 * may hold the resource in the Timeout field.
1434	 */
1435
1436	/* Global config lock response utilizes an additional status field.
1437	 *
1438	 * If the Global config lock resource is held by some other driver, the
1439	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1440	 * and the timeout field indicates the maximum time the current owner
1441	 * of the resource has to free it.
1442	 */
1443	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1444		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1445			*timeout = le32_to_cpu(cmd_resp->timeout);
1446			return 0;
1447		} else if (le16_to_cpu(cmd_resp->status) ==
1448			   ICE_AQ_RES_GLBL_IN_PROG) {
1449			*timeout = le32_to_cpu(cmd_resp->timeout);
1450			return ICE_ERR_AQ_ERROR;
1451		} else if (le16_to_cpu(cmd_resp->status) ==
1452			   ICE_AQ_RES_GLBL_DONE) {
1453			return ICE_ERR_AQ_NO_WORK;
1454		}
1455
1456		/* invalid FW response, force a timeout immediately */
1457		*timeout = 0;
1458		return ICE_ERR_AQ_ERROR;
1459	}
1460
1461	/* If the resource is held by some other driver, the command completes
1462	 * with a busy return value and the timeout field indicates the maximum
1463	 * time the current owner of the resource has to free it.
1464	 */
1465	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1466		*timeout = le32_to_cpu(cmd_resp->timeout);
1467
1468	return status;
1469}
1470
1471/**
1472 * ice_aq_release_res
1473 * @hw: pointer to the HW struct
1474 * @res: resource ID
1475 * @sdp_number: resource number
1476 * @cd: pointer to command details structure or NULL
1477 *
1478 * release common resource using the admin queue commands (0x0009)
1479 */
1480static enum ice_status
1481ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1482		   struct ice_sq_cd *cd)
1483{
1484	struct ice_aqc_req_res *cmd;
1485	struct ice_aq_desc desc;
1486
1487	cmd = &desc.params.res_owner;
1488
1489	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1490
1491	cmd->res_id = cpu_to_le16(res);
1492	cmd->res_number = cpu_to_le32(sdp_number);
1493
1494	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1495}
1496
1497/**
1498 * ice_acquire_res
1499 * @hw: pointer to the HW structure
1500 * @res: resource ID
1501 * @access: access type (read or write)
1502 * @timeout: timeout in milliseconds
1503 *
1504 * This function will attempt to acquire the ownership of a resource.
1505 */
1506enum ice_status
1507ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1508		enum ice_aq_res_access_type access, u32 timeout)
1509{
1510#define ICE_RES_POLLING_DELAY_MS	10
1511	u32 delay = ICE_RES_POLLING_DELAY_MS;
1512	u32 time_left = timeout;
1513	enum ice_status status;
1514
1515	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1516
1517	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1518	 * previously acquired the resource and performed any necessary updates;
1519	 * in this case the caller does not obtain the resource and has no
1520	 * further work to do.
1521	 */
1522	if (status == ICE_ERR_AQ_NO_WORK)
1523		goto ice_acquire_res_exit;
1524
1525	if (status)
1526		ice_debug(hw, ICE_DBG_RES,
1527			  "resource %d acquire type %d failed.\n", res, access);
1528
1529	/* If necessary, poll until the current lock owner timeouts */
1530	timeout = time_left;
1531	while (status && timeout && time_left) {
1532		mdelay(delay);
1533		timeout = (timeout > delay) ? timeout - delay : 0;
1534		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1535
1536		if (status == ICE_ERR_AQ_NO_WORK)
1537			/* lock free, but no work to do */
1538			break;
1539
1540		if (!status)
1541			/* lock acquired */
1542			break;
1543	}
1544	if (status && status != ICE_ERR_AQ_NO_WORK)
1545		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1546
1547ice_acquire_res_exit:
1548	if (status == ICE_ERR_AQ_NO_WORK) {
1549		if (access == ICE_RES_WRITE)
1550			ice_debug(hw, ICE_DBG_RES,
1551				  "resource indicates no work to do.\n");
1552		else
1553			ice_debug(hw, ICE_DBG_RES,
1554				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1555	}
1556	return status;
1557}
1558
1559/**
1560 * ice_release_res
1561 * @hw: pointer to the HW structure
1562 * @res: resource ID
1563 *
1564 * This function will release a resource using the proper Admin Command.
1565 */
1566void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1567{
1568	enum ice_status status;
1569	u32 total_delay = 0;
1570
1571	status = ice_aq_release_res(hw, res, 0, NULL);
1572
1573	/* there are some rare cases when trying to release the resource
1574	 * results in an admin queue timeout, so handle them correctly
1575	 */
1576	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1577	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1578		mdelay(1);
1579		status = ice_aq_release_res(hw, res, 0, NULL);
1580		total_delay++;
1581	}
1582}
1583
1584/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585 * ice_get_num_per_func - determine number of resources per PF
1586 * @hw: pointer to the HW structure
1587 * @max: value to be evenly split between each PF
1588 *
1589 * Determine the number of valid functions by going through the bitmap returned
1590 * from parsing capabilities and use this to calculate the number of resources
1591 * per PF based on the max value passed in.
1592 */
1593static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1594{
1595	u8 funcs;
1596
1597#define ICE_CAPS_VALID_FUNCS_M	0xFF
1598	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1599			 ICE_CAPS_VALID_FUNCS_M);
1600
1601	if (!funcs)
1602		return 0;
1603
1604	return max / funcs;
1605}
1606
1607/**
1608 * ice_parse_caps - parse function/device capabilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609 * @hw: pointer to the HW struct
1610 * @buf: pointer to a buffer containing function/device capability records
1611 * @cap_count: number of capability records in the list
1612 * @opc: type of capabilities list to parse
1613 *
1614 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1615 */
1616static void
1617ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1618	       enum ice_adminq_opc opc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1619{
1620	struct ice_aqc_list_caps_elem *cap_resp;
1621	struct ice_hw_func_caps *func_p = NULL;
1622	struct ice_hw_dev_caps *dev_p = NULL;
1623	struct ice_hw_common_caps *caps;
1624	char const *prefix;
1625	u32 i;
1626
1627	if (!buf)
1628		return;
 
 
 
 
 
1629
1630	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
 
1631
1632	if (opc == ice_aqc_opc_list_dev_caps) {
1633		dev_p = &hw->dev_caps;
1634		caps = &dev_p->common_cap;
1635		prefix = "dev cap";
1636	} else if (opc == ice_aqc_opc_list_func_caps) {
1637		func_p = &hw->func_caps;
1638		caps = &func_p->common_cap;
1639		prefix = "func cap";
1640	} else {
1641		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1642		return;
 
 
 
 
 
 
 
 
 
1643	}
1644
1645	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1646		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1647		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1648		u32 number = le32_to_cpu(cap_resp->number);
1649		u16 cap = le16_to_cpu(cap_resp->cap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650
1651		switch (cap) {
1652		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1653			caps->valid_functions = number;
1654			ice_debug(hw, ICE_DBG_INIT,
1655				  "%s: valid_functions (bitmap) = %d\n", prefix,
1656				  caps->valid_functions);
1657			break;
1658		case ICE_AQC_CAPS_SRIOV:
1659			caps->sr_iov_1_1 = (number == 1);
1660			ice_debug(hw, ICE_DBG_INIT,
1661				  "%s: sr_iov_1_1 = %d\n", prefix,
1662				  caps->sr_iov_1_1);
1663			break;
1664		case ICE_AQC_CAPS_VF:
1665			if (dev_p) {
1666				dev_p->num_vfs_exposed = number;
1667				ice_debug(hw, ICE_DBG_INIT,
1668					  "%s: num_vfs_exposed = %d\n", prefix,
1669					  dev_p->num_vfs_exposed);
1670			} else if (func_p) {
1671				func_p->num_allocd_vfs = number;
1672				func_p->vf_base_id = logical_id;
1673				ice_debug(hw, ICE_DBG_INIT,
1674					  "%s: num_allocd_vfs = %d\n", prefix,
1675					  func_p->num_allocd_vfs);
1676				ice_debug(hw, ICE_DBG_INIT,
1677					  "%s: vf_base_id = %d\n", prefix,
1678					  func_p->vf_base_id);
1679			}
1680			break;
1681		case ICE_AQC_CAPS_VSI:
1682			if (dev_p) {
1683				dev_p->num_vsi_allocd_to_host = number;
1684				ice_debug(hw, ICE_DBG_INIT,
1685					  "%s: num_vsi_allocd_to_host = %d\n",
1686					  prefix,
1687					  dev_p->num_vsi_allocd_to_host);
1688			} else if (func_p) {
1689				func_p->guar_num_vsi =
1690					ice_get_num_per_func(hw, ICE_MAX_VSI);
1691				ice_debug(hw, ICE_DBG_INIT,
1692					  "%s: guar_num_vsi (fw) = %d\n",
1693					  prefix, number);
1694				ice_debug(hw, ICE_DBG_INIT,
1695					  "%s: guar_num_vsi = %d\n",
1696					  prefix, func_p->guar_num_vsi);
1697			}
1698			break;
1699		case ICE_AQC_CAPS_DCB:
1700			caps->dcb = (number == 1);
1701			caps->active_tc_bitmap = logical_id;
1702			caps->maxtc = phys_id;
1703			ice_debug(hw, ICE_DBG_INIT,
1704				  "%s: dcb = %d\n", prefix, caps->dcb);
1705			ice_debug(hw, ICE_DBG_INIT,
1706				  "%s: active_tc_bitmap = %d\n", prefix,
1707				  caps->active_tc_bitmap);
1708			ice_debug(hw, ICE_DBG_INIT,
1709				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1710			break;
1711		case ICE_AQC_CAPS_RSS:
1712			caps->rss_table_size = number;
1713			caps->rss_table_entry_width = logical_id;
1714			ice_debug(hw, ICE_DBG_INIT,
1715				  "%s: rss_table_size = %d\n", prefix,
1716				  caps->rss_table_size);
1717			ice_debug(hw, ICE_DBG_INIT,
1718				  "%s: rss_table_entry_width = %d\n", prefix,
1719				  caps->rss_table_entry_width);
1720			break;
1721		case ICE_AQC_CAPS_RXQS:
1722			caps->num_rxq = number;
1723			caps->rxq_first_id = phys_id;
1724			ice_debug(hw, ICE_DBG_INIT,
1725				  "%s: num_rxq = %d\n", prefix,
1726				  caps->num_rxq);
1727			ice_debug(hw, ICE_DBG_INIT,
1728				  "%s: rxq_first_id = %d\n", prefix,
1729				  caps->rxq_first_id);
1730			break;
1731		case ICE_AQC_CAPS_TXQS:
1732			caps->num_txq = number;
1733			caps->txq_first_id = phys_id;
1734			ice_debug(hw, ICE_DBG_INIT,
1735				  "%s: num_txq = %d\n", prefix,
1736				  caps->num_txq);
1737			ice_debug(hw, ICE_DBG_INIT,
1738				  "%s: txq_first_id = %d\n", prefix,
1739				  caps->txq_first_id);
1740			break;
1741		case ICE_AQC_CAPS_MSIX:
1742			caps->num_msix_vectors = number;
1743			caps->msix_vector_first_id = phys_id;
1744			ice_debug(hw, ICE_DBG_INIT,
1745				  "%s: num_msix_vectors = %d\n", prefix,
1746				  caps->num_msix_vectors);
1747			ice_debug(hw, ICE_DBG_INIT,
1748				  "%s: msix_vector_first_id = %d\n", prefix,
1749				  caps->msix_vector_first_id);
1750			break;
1751		case ICE_AQC_CAPS_MAX_MTU:
1752			caps->max_mtu = number;
1753			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1754				  prefix, caps->max_mtu);
1755			break;
1756		default:
1757			ice_debug(hw, ICE_DBG_INIT,
1758				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1759				  i, cap);
 
1760			break;
1761		}
1762	}
 
 
1763}
1764
1765/**
1766 * ice_aq_discover_caps - query function/device capabilities
1767 * @hw: pointer to the HW struct
1768 * @buf: a virtual buffer to hold the capabilities
1769 * @buf_size: Size of the virtual buffer
1770 * @cap_count: cap count needed if AQ err==ENOMEM
1771 * @opc: capabilities type to discover - pass in the command opcode
1772 * @cd: pointer to command details structure or NULL
1773 *
1774 * Get the function(0x000a)/device(0x000b) capabilities description from
1775 * the firmware.
 
 
 
 
 
 
 
1776 */
1777static enum ice_status
1778ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1779		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1780{
1781	struct ice_aqc_list_caps *cmd;
1782	struct ice_aq_desc desc;
1783	enum ice_status status;
1784
1785	cmd = &desc.params.get_cap;
1786
1787	if (opc != ice_aqc_opc_list_func_caps &&
1788	    opc != ice_aqc_opc_list_dev_caps)
1789		return ICE_ERR_PARAM;
1790
1791	ice_fill_dflt_direct_cmd_desc(&desc, opc);
 
1792
1793	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1794	if (!status)
1795		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1796	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1797		*cap_count = le32_to_cpu(cmd->count);
 
1798	return status;
1799}
1800
1801/**
1802 * ice_discover_caps - get info about the HW
1803 * @hw: pointer to the hardware structure
1804 * @opc: capabilities type to discover - pass in the command opcode
 
 
 
1805 */
1806static enum ice_status
1807ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1808{
1809	enum ice_status status;
1810	u32 cap_count;
1811	u16 cbuf_len;
1812	u8 retries;
1813
1814	/* The driver doesn't know how many capabilities the device will return
1815	 * so the buffer size required isn't known ahead of time. The driver
1816	 * starts with cbuf_len and if this turns out to be insufficient, the
1817	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1818	 * The driver then allocates the buffer based on the count and retries
1819	 * the operation. So it follows that the retry count is 2.
 
1820	 */
1821#define ICE_GET_CAP_BUF_COUNT	40
1822#define ICE_GET_CAP_RETRY_COUNT	2
1823
1824	cap_count = ICE_GET_CAP_BUF_COUNT;
1825	retries = ICE_GET_CAP_RETRY_COUNT;
 
 
 
1826
1827	do {
1828		void *cbuf;
1829
1830		cbuf_len = (u16)(cap_count *
1831				 sizeof(struct ice_aqc_list_caps_elem));
1832		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1833		if (!cbuf)
1834			return ICE_ERR_NO_MEMORY;
 
 
 
 
 
 
 
 
 
1835
1836		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1837					      opc, NULL);
1838		devm_kfree(ice_hw_to_dev(hw), cbuf);
1839
1840		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1841			break;
 
 
 
1842
1843		/* If ENOMEM is returned, try again with bigger buffer */
1844	} while (--retries);
 
 
 
1845
1846	return status;
1847}
1848
1849/**
1850 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1851 * @hw: pointer to the hardware structure
1852 */
1853void ice_set_safe_mode_caps(struct ice_hw *hw)
1854{
1855	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1856	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1857	u32 valid_func, rxq_first_id, txq_first_id;
1858	u32 msix_vector_first_id, max_mtu;
1859	u32 num_func = 0;
1860	u8 i;
1861
1862	/* cache some func_caps values that should be restored after memset */
1863	valid_func = func_caps->common_cap.valid_functions;
1864	txq_first_id = func_caps->common_cap.txq_first_id;
1865	rxq_first_id = func_caps->common_cap.rxq_first_id;
1866	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1867	max_mtu = func_caps->common_cap.max_mtu;
1868
1869	/* unset func capabilities */
1870	memset(func_caps, 0, sizeof(*func_caps));
1871
 
 
 
1872	/* restore cached values */
1873	func_caps->common_cap.valid_functions = valid_func;
1874	func_caps->common_cap.txq_first_id = txq_first_id;
1875	func_caps->common_cap.rxq_first_id = rxq_first_id;
1876	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1877	func_caps->common_cap.max_mtu = max_mtu;
 
 
 
 
1878
1879	/* one Tx and one Rx queue in safe mode */
1880	func_caps->common_cap.num_rxq = 1;
1881	func_caps->common_cap.num_txq = 1;
1882
1883	/* two MSIX vectors, one for traffic and one for misc causes */
1884	func_caps->common_cap.num_msix_vectors = 2;
1885	func_caps->guar_num_vsi = 1;
1886
1887	/* cache some dev_caps values that should be restored after memset */
1888	valid_func = dev_caps->common_cap.valid_functions;
1889	txq_first_id = dev_caps->common_cap.txq_first_id;
1890	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1891	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1892	max_mtu = dev_caps->common_cap.max_mtu;
1893
1894	/* unset dev capabilities */
1895	memset(dev_caps, 0, sizeof(*dev_caps));
1896
 
 
 
1897	/* restore cached values */
1898	dev_caps->common_cap.valid_functions = valid_func;
1899	dev_caps->common_cap.txq_first_id = txq_first_id;
1900	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1901	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1902	dev_caps->common_cap.max_mtu = max_mtu;
1903
1904	/* valid_func is a bitmap. get number of functions */
1905#define ICE_MAX_FUNCS 8
1906	for (i = 0; i < ICE_MAX_FUNCS; i++)
1907		if (valid_func & BIT(i))
1908			num_func++;
1909
1910	/* one Tx and one Rx queue per function in safe mode */
1911	dev_caps->common_cap.num_rxq = num_func;
1912	dev_caps->common_cap.num_txq = num_func;
1913
1914	/* two MSIX vectors per function */
1915	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
1916}
1917
1918/**
1919 * ice_get_caps - get info about the HW
1920 * @hw: pointer to the hardware structure
1921 */
1922enum ice_status ice_get_caps(struct ice_hw *hw)
1923{
1924	enum ice_status status;
1925
1926	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1927	if (!status)
1928		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1929
1930	return status;
1931}
1932
1933/**
1934 * ice_aq_manage_mac_write - manage MAC address write command
1935 * @hw: pointer to the HW struct
1936 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1937 * @flags: flags to control write behavior
1938 * @cd: pointer to command details structure or NULL
1939 *
1940 * This function is used to write MAC address to the NVM (0x0108).
1941 */
1942enum ice_status
1943ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1944			struct ice_sq_cd *cd)
1945{
1946	struct ice_aqc_manage_mac_write *cmd;
1947	struct ice_aq_desc desc;
1948
1949	cmd = &desc.params.mac_write;
1950	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1951
1952	cmd->flags = flags;
1953
1954	/* Prep values for flags, sah, sal */
1955	cmd->sah = htons(*((const u16 *)mac_addr));
1956	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1957
1958	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1959}
1960
1961/**
1962 * ice_aq_clear_pxe_mode
1963 * @hw: pointer to the HW struct
1964 *
1965 * Tell the firmware that the driver is taking over from PXE (0x0110).
1966 */
1967static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1968{
1969	struct ice_aq_desc desc;
1970
1971	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1972	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1973
1974	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1975}
1976
1977/**
1978 * ice_clear_pxe_mode - clear pxe operations mode
1979 * @hw: pointer to the HW struct
1980 *
1981 * Make sure all PXE mode settings are cleared, including things
1982 * like descriptor fetch/write-back mode.
1983 */
1984void ice_clear_pxe_mode(struct ice_hw *hw)
1985{
1986	if (ice_check_sq_alive(hw, &hw->adminq))
1987		ice_aq_clear_pxe_mode(hw);
1988}
1989
1990/**
1991 * ice_get_link_speed_based_on_phy_type - returns link speed
1992 * @phy_type_low: lower part of phy_type
1993 * @phy_type_high: higher part of phy_type
1994 *
1995 * This helper function will convert an entry in PHY type structure
1996 * [phy_type_low, phy_type_high] to its corresponding link speed.
1997 * Note: In the structure of [phy_type_low, phy_type_high], there should
1998 * be one bit set, as this function will convert one PHY type to its
1999 * speed.
2000 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2001 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2002 */
2003static u16
2004ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2005{
2006	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2007	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2008
2009	switch (phy_type_low) {
2010	case ICE_PHY_TYPE_LOW_100BASE_TX:
2011	case ICE_PHY_TYPE_LOW_100M_SGMII:
2012		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2013		break;
2014	case ICE_PHY_TYPE_LOW_1000BASE_T:
2015	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2016	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2017	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2018	case ICE_PHY_TYPE_LOW_1G_SGMII:
2019		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2020		break;
2021	case ICE_PHY_TYPE_LOW_2500BASE_T:
2022	case ICE_PHY_TYPE_LOW_2500BASE_X:
2023	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2024		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2025		break;
2026	case ICE_PHY_TYPE_LOW_5GBASE_T:
2027	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2028		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2029		break;
2030	case ICE_PHY_TYPE_LOW_10GBASE_T:
2031	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2032	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2033	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2034	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2035	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2036	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2037		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2038		break;
2039	case ICE_PHY_TYPE_LOW_25GBASE_T:
2040	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2041	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2042	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2043	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2044	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2045	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2046	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2047	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2048	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2049	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2050		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2051		break;
2052	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2053	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2054	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2055	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2056	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2057	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2058		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2059		break;
2060	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2061	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2062	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2063	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2064	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2065	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2066	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2067	case ICE_PHY_TYPE_LOW_50G_AUI2:
2068	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2069	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2070	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2071	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2072	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2073	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2074	case ICE_PHY_TYPE_LOW_50G_AUI1:
2075		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2076		break;
2077	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2078	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2079	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2080	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2081	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2082	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2083	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2084	case ICE_PHY_TYPE_LOW_100G_AUI4:
2085	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2086	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2087	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2088	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2089	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2090		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2091		break;
2092	default:
2093		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2094		break;
2095	}
2096
2097	switch (phy_type_high) {
2098	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2099	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2100	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2101	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2102	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2103		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2104		break;
2105	default:
2106		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2107		break;
2108	}
2109
2110	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2111	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2112		return ICE_AQ_LINK_SPEED_UNKNOWN;
2113	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2114		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2115		return ICE_AQ_LINK_SPEED_UNKNOWN;
2116	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2117		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2118		return speed_phy_type_low;
2119	else
2120		return speed_phy_type_high;
2121}
2122
2123/**
2124 * ice_update_phy_type
2125 * @phy_type_low: pointer to the lower part of phy_type
2126 * @phy_type_high: pointer to the higher part of phy_type
2127 * @link_speeds_bitmap: targeted link speeds bitmap
2128 *
2129 * Note: For the link_speeds_bitmap structure, you can check it at
2130 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2131 * link_speeds_bitmap include multiple speeds.
2132 *
2133 * Each entry in this [phy_type_low, phy_type_high] structure will
2134 * present a certain link speed. This helper function will turn on bits
2135 * in [phy_type_low, phy_type_high] structure based on the value of
2136 * link_speeds_bitmap input parameter.
2137 */
2138void
2139ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2140		    u16 link_speeds_bitmap)
2141{
2142	u64 pt_high;
2143	u64 pt_low;
2144	int index;
2145	u16 speed;
2146
2147	/* We first check with low part of phy_type */
2148	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2149		pt_low = BIT_ULL(index);
2150		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2151
2152		if (link_speeds_bitmap & speed)
2153			*phy_type_low |= BIT_ULL(index);
2154	}
2155
2156	/* We then check with high part of phy_type */
2157	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2158		pt_high = BIT_ULL(index);
2159		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2160
2161		if (link_speeds_bitmap & speed)
2162			*phy_type_high |= BIT_ULL(index);
2163	}
2164}
2165
2166/**
2167 * ice_aq_set_phy_cfg
2168 * @hw: pointer to the HW struct
2169 * @lport: logical port number
2170 * @cfg: structure with PHY configuration data to be set
2171 * @cd: pointer to command details structure or NULL
2172 *
2173 * Set the various PHY configuration parameters supported on the Port.
2174 * One or more of the Set PHY config parameters may be ignored in an MFP
2175 * mode as the PF may not have the privilege to set some of the PHY Config
2176 * parameters. This status will be indicated by the command response (0x0601).
2177 */
2178enum ice_status
2179ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2180		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2181{
2182	struct ice_aq_desc desc;
 
2183
2184	if (!cfg)
2185		return ICE_ERR_PARAM;
2186
2187	/* Ensure that only valid bits of cfg->caps can be turned on. */
2188	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2189		ice_debug(hw, ICE_DBG_PHY,
2190			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2191			  cfg->caps);
2192
2193		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2194	}
2195
2196	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2197	desc.params.set_phy.lport_num = lport;
2198	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2199
2200	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
 
2201		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2202	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2203		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2204	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2205	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2206		  cfg->low_power_ctrl);
2207	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2208	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2209	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
 
 
 
 
 
 
 
 
2210
2211	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2212}
2213
2214/**
2215 * ice_update_link_info - update status of the HW network link
2216 * @pi: port info structure of the interested logical port
2217 */
2218enum ice_status ice_update_link_info(struct ice_port_info *pi)
2219{
2220	struct ice_link_status *li;
2221	enum ice_status status;
2222
2223	if (!pi)
2224		return ICE_ERR_PARAM;
2225
2226	li = &pi->phy.link_info;
2227
2228	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2229	if (status)
2230		return status;
2231
2232	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2233		struct ice_aqc_get_phy_caps_data *pcaps;
2234		struct ice_hw *hw;
2235
2236		hw = pi->hw;
2237		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2238				     GFP_KERNEL);
2239		if (!pcaps)
2240			return ICE_ERR_NO_MEMORY;
2241
2242		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2243					     pcaps, NULL);
2244		if (!status)
2245			memcpy(li->module_type, &pcaps->module_type,
2246			       sizeof(li->module_type));
2247
2248		devm_kfree(ice_hw_to_dev(hw), pcaps);
2249	}
2250
2251	return status;
2252}
2253
2254/**
2255 * ice_set_fc
2256 * @pi: port information structure
2257 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2258 * @ena_auto_link_update: enable automatic link update
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259 *
2260 * Set the requested flow control mode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261 */
2262enum ice_status
2263ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
 
2264{
2265	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2266	struct ice_aqc_get_phy_caps_data *pcaps;
2267	enum ice_status status;
2268	u8 pause_mask = 0x0;
2269	struct ice_hw *hw;
2270
2271	if (!pi)
2272		return ICE_ERR_PARAM;
2273	hw = pi->hw;
2274	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2275
2276	switch (pi->fc.req_mode) {
2277	case ICE_FC_FULL:
2278		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2279		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2280		break;
2281	case ICE_FC_RX_PAUSE:
2282		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2283		break;
2284	case ICE_FC_TX_PAUSE:
2285		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2286		break;
2287	default:
2288		break;
2289	}
2290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
2292	if (!pcaps)
2293		return ICE_ERR_NO_MEMORY;
2294
2295	/* Get the current PHY config */
2296	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2297				     NULL);
2298	if (status) {
2299		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2300		goto out;
2301	}
2302
2303	/* clear the old pause settings */
2304	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2305				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2306
2307	/* set the new capabilities */
2308	cfg.caps |= pause_mask;
 
 
2309
2310	/* If the capabilities have changed, then set the new config */
2311	if (cfg.caps != pcaps->caps) {
2312		int retry_count, retry_max = 10;
2313
2314		/* Auto restart link so settings take effect */
2315		if (ena_auto_link_update)
2316			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2317		/* Copy over all the old settings */
2318		cfg.phy_type_high = pcaps->phy_type_high;
2319		cfg.phy_type_low = pcaps->phy_type_low;
2320		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2321		cfg.eee_cap = pcaps->eee_cap;
2322		cfg.eeer_value = pcaps->eeer_value;
2323		cfg.link_fec_opt = pcaps->link_fec_options;
2324
2325		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2326		if (status) {
2327			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2328			goto out;
2329		}
2330
2331		/* Update the link info
2332		 * It sometimes takes a really long time for link to
2333		 * come back from the atomic reset. Thus, we wait a
2334		 * little bit.
2335		 */
2336		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2337			status = ice_update_link_info(pi);
2338
2339			if (!status)
2340				break;
2341
2342			mdelay(100);
2343		}
2344
2345		if (status)
2346			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2347	}
2348
2349out:
2350	devm_kfree(ice_hw_to_dev(hw), pcaps);
2351	return status;
2352}
2353
2354/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
 
2356 * @caps: PHY ability structure to copy date from
2357 * @cfg: PHY configuration structure to copy data to
2358 *
2359 * Helper function to copy AQC PHY get ability data to PHY set configuration
2360 * data structure
2361 */
2362void
2363ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
 
2364			 struct ice_aqc_set_phy_cfg_data *cfg)
2365{
2366	if (!caps || !cfg)
2367		return;
2368
 
2369	cfg->phy_type_low = caps->phy_type_low;
2370	cfg->phy_type_high = caps->phy_type_high;
2371	cfg->caps = caps->caps;
2372	cfg->low_power_ctrl = caps->low_power_ctrl;
2373	cfg->eee_cap = caps->eee_cap;
2374	cfg->eeer_value = caps->eeer_value;
2375	cfg->link_fec_opt = caps->link_fec_options;
 
 
2376}
2377
2378/**
2379 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
 
2380 * @cfg: PHY configuration data to set FEC mode
2381 * @fec: FEC mode to configure
2382 *
2383 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2384 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2385 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2386 */
2387void
2388ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
 
2389{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390	switch (fec) {
2391	case ICE_FEC_BASER:
2392		/* Clear RS bits, and AND BASE-R ability
2393		 * bits and OR request bits.
2394		 */
2395		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2396				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2397		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2398				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2399		break;
2400	case ICE_FEC_RS:
2401		/* Clear BASE-R bits, and AND RS ability
2402		 * bits and OR request bits.
2403		 */
2404		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2405		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2406				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2407		break;
2408	case ICE_FEC_NONE:
2409		/* Clear all FEC option bits. */
2410		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2411		break;
2412	case ICE_FEC_AUTO:
2413		/* AND auto FEC bit, and all caps bits. */
2414		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
 
2415		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2416	}
 
 
 
 
 
2417}
2418
2419/**
2420 * ice_get_link_status - get status of the HW network link
2421 * @pi: port information structure
2422 * @link_up: pointer to bool (true/false = linkup/linkdown)
2423 *
2424 * Variable link_up is true if link is up, false if link is down.
2425 * The variable link_up is invalid if status is non zero. As a
2426 * result of this call, link status reporting becomes enabled
2427 */
2428enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2429{
2430	struct ice_phy_info *phy_info;
2431	enum ice_status status = 0;
2432
2433	if (!pi || !link_up)
2434		return ICE_ERR_PARAM;
2435
2436	phy_info = &pi->phy;
2437
2438	if (phy_info->get_link_info) {
2439		status = ice_update_link_info(pi);
2440
2441		if (status)
2442			ice_debug(pi->hw, ICE_DBG_LINK,
2443				  "get link status error, status = %d\n",
2444				  status);
2445	}
2446
2447	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2448
2449	return status;
2450}
2451
2452/**
2453 * ice_aq_set_link_restart_an
2454 * @pi: pointer to the port information structure
2455 * @ena_link: if true: enable link, if false: disable link
2456 * @cd: pointer to command details structure or NULL
2457 *
2458 * Sets up the link and restarts the Auto-Negotiation over the link.
2459 */
2460enum ice_status
2461ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2462			   struct ice_sq_cd *cd)
2463{
2464	struct ice_aqc_restart_an *cmd;
2465	struct ice_aq_desc desc;
2466
2467	cmd = &desc.params.restart_an;
2468
2469	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2470
2471	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2472	cmd->lport_num = pi->lport;
2473	if (ena_link)
2474		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2475	else
2476		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2477
2478	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2479}
2480
2481/**
2482 * ice_aq_set_event_mask
2483 * @hw: pointer to the HW struct
2484 * @port_num: port number of the physical function
2485 * @mask: event mask to be set
2486 * @cd: pointer to command details structure or NULL
2487 *
2488 * Set event mask (0x0613)
2489 */
2490enum ice_status
2491ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2492		      struct ice_sq_cd *cd)
2493{
2494	struct ice_aqc_set_event_mask *cmd;
2495	struct ice_aq_desc desc;
2496
2497	cmd = &desc.params.set_event_mask;
2498
2499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2500
2501	cmd->lport_num = port_num;
2502
2503	cmd->event_mask = cpu_to_le16(mask);
2504	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2505}
2506
2507/**
2508 * ice_aq_set_mac_loopback
2509 * @hw: pointer to the HW struct
2510 * @ena_lpbk: Enable or Disable loopback
2511 * @cd: pointer to command details structure or NULL
2512 *
2513 * Enable/disable loopback on a given port
2514 */
2515enum ice_status
2516ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2517{
2518	struct ice_aqc_set_mac_lb *cmd;
2519	struct ice_aq_desc desc;
2520
2521	cmd = &desc.params.set_mac_lb;
2522
2523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2524	if (ena_lpbk)
2525		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2526
2527	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2528}
2529
2530/**
2531 * ice_aq_set_port_id_led
2532 * @pi: pointer to the port information
2533 * @is_orig_mode: is this LED set to original mode (by the net-list)
2534 * @cd: pointer to command details structure or NULL
2535 *
2536 * Set LED value for the given port (0x06e9)
2537 */
2538enum ice_status
2539ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2540		       struct ice_sq_cd *cd)
2541{
2542	struct ice_aqc_set_port_id_led *cmd;
2543	struct ice_hw *hw = pi->hw;
2544	struct ice_aq_desc desc;
2545
2546	cmd = &desc.params.set_port_id_led;
2547
2548	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2549
2550	if (is_orig_mode)
2551		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2552	else
2553		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2554
2555	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2556}
2557
2558/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559 * __ice_aq_get_set_rss_lut
2560 * @hw: pointer to the hardware structure
2561 * @vsi_id: VSI FW index
2562 * @lut_type: LUT table type
2563 * @lut: pointer to the LUT buffer provided by the caller
2564 * @lut_size: size of the LUT buffer
2565 * @glob_lut_idx: global LUT index
2566 * @set: set true to set the table, false to get the table
2567 *
2568 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2569 */
2570static enum ice_status
2571__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2572			 u16 lut_size, u8 glob_lut_idx, bool set)
2573{
 
2574	struct ice_aqc_get_set_rss_lut *cmd_resp;
2575	struct ice_aq_desc desc;
2576	enum ice_status status;
2577	u16 flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578
2579	cmd_resp = &desc.params.get_set_rss_lut;
2580
2581	if (set) {
2582		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2583		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2584	} else {
2585		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2586	}
2587
2588	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2589					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2590					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2591				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2592
2593	switch (lut_type) {
2594	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2595	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2596	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2597		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2598			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2599		break;
2600	default:
2601		status = ICE_ERR_PARAM;
2602		goto ice_aq_get_set_rss_lut_exit;
2603	}
2604
2605	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2606		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2607			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2608
2609		if (!set)
2610			goto ice_aq_get_set_rss_lut_send;
2611	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2612		if (!set)
2613			goto ice_aq_get_set_rss_lut_send;
2614	} else {
2615		goto ice_aq_get_set_rss_lut_send;
2616	}
2617
2618	/* LUT size is only valid for Global and PF table types */
2619	switch (lut_size) {
2620	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2621		break;
2622	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2623		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2624			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2625			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2626		break;
2627	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2628		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2629			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2630				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2631				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2632			break;
2633		}
2634		/* fall-through */
2635	default:
2636		status = ICE_ERR_PARAM;
2637		goto ice_aq_get_set_rss_lut_exit;
2638	}
2639
2640ice_aq_get_set_rss_lut_send:
2641	cmd_resp->flags = cpu_to_le16(flags);
2642	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2643
2644ice_aq_get_set_rss_lut_exit:
2645	return status;
2646}
2647
2648/**
2649 * ice_aq_get_rss_lut
2650 * @hw: pointer to the hardware structure
2651 * @vsi_handle: software VSI handle
2652 * @lut_type: LUT table type
2653 * @lut: pointer to the LUT buffer provided by the caller
2654 * @lut_size: size of the LUT buffer
2655 *
2656 * get the RSS lookup table, PF or VSI type
2657 */
2658enum ice_status
2659ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2660		   u8 *lut, u16 lut_size)
2661{
2662	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2663		return ICE_ERR_PARAM;
2664
2665	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2666					lut_type, lut, lut_size, 0, false);
2667}
2668
2669/**
2670 * ice_aq_set_rss_lut
2671 * @hw: pointer to the hardware structure
2672 * @vsi_handle: software VSI handle
2673 * @lut_type: LUT table type
2674 * @lut: pointer to the LUT buffer provided by the caller
2675 * @lut_size: size of the LUT buffer
2676 *
2677 * set the RSS lookup table, PF or VSI type
2678 */
2679enum ice_status
2680ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2681		   u8 *lut, u16 lut_size)
2682{
2683	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2684		return ICE_ERR_PARAM;
2685
2686	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2687					lut_type, lut, lut_size, 0, true);
2688}
2689
2690/**
2691 * __ice_aq_get_set_rss_key
2692 * @hw: pointer to the HW struct
2693 * @vsi_id: VSI FW index
2694 * @key: pointer to key info struct
2695 * @set: set true to set the key, false to get the key
2696 *
2697 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2698 */
2699static enum
2700ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2701				    struct ice_aqc_get_set_rss_keys *key,
2702				    bool set)
2703{
2704	struct ice_aqc_get_set_rss_key *cmd_resp;
2705	u16 key_size = sizeof(*key);
2706	struct ice_aq_desc desc;
2707
2708	cmd_resp = &desc.params.get_set_rss_key;
2709
2710	if (set) {
2711		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2712		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2713	} else {
2714		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2715	}
2716
2717	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2718					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2719					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2720				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2721
2722	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2723}
2724
2725/**
2726 * ice_aq_get_rss_key
2727 * @hw: pointer to the HW struct
2728 * @vsi_handle: software VSI handle
2729 * @key: pointer to key info struct
2730 *
2731 * get the RSS key per VSI
2732 */
2733enum ice_status
2734ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2735		   struct ice_aqc_get_set_rss_keys *key)
2736{
2737	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2738		return ICE_ERR_PARAM;
2739
2740	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2741					key, false);
2742}
2743
2744/**
2745 * ice_aq_set_rss_key
2746 * @hw: pointer to the HW struct
2747 * @vsi_handle: software VSI handle
2748 * @keys: pointer to key info struct
2749 *
2750 * set the RSS key per VSI
2751 */
2752enum ice_status
2753ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2754		   struct ice_aqc_get_set_rss_keys *keys)
2755{
2756	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2757		return ICE_ERR_PARAM;
2758
2759	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2760					keys, true);
2761}
2762
2763/**
2764 * ice_aq_add_lan_txq
2765 * @hw: pointer to the hardware structure
2766 * @num_qgrps: Number of added queue groups
2767 * @qg_list: list of queue groups to be added
2768 * @buf_size: size of buffer for indirect command
2769 * @cd: pointer to command details structure or NULL
2770 *
2771 * Add Tx LAN queue (0x0C30)
2772 *
2773 * NOTE:
2774 * Prior to calling add Tx LAN queue:
2775 * Initialize the following as part of the Tx queue context:
2776 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2777 * Cache profile and Packet shaper profile.
2778 *
2779 * After add Tx LAN queue AQ command is completed:
2780 * Interrupts should be associated with specific queues,
2781 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2782 * flow.
2783 */
2784static enum ice_status
2785ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2786		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2787		   struct ice_sq_cd *cd)
2788{
2789	u16 i, sum_header_size, sum_q_size = 0;
2790	struct ice_aqc_add_tx_qgrp *list;
2791	struct ice_aqc_add_txqs *cmd;
2792	struct ice_aq_desc desc;
 
2793
2794	cmd = &desc.params.add_txqs;
2795
2796	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2797
2798	if (!qg_list)
2799		return ICE_ERR_PARAM;
2800
2801	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2802		return ICE_ERR_PARAM;
2803
2804	sum_header_size = num_qgrps *
2805		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2806
2807	list = qg_list;
2808	for (i = 0; i < num_qgrps; i++) {
2809		struct ice_aqc_add_txqs_perq *q = list->txqs;
2810
2811		sum_q_size += list->num_txqs * sizeof(*q);
2812		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
2813	}
2814
2815	if (buf_size != (sum_header_size + sum_q_size))
2816		return ICE_ERR_PARAM;
2817
2818	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2819
2820	cmd->num_qgrps = num_qgrps;
2821
2822	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2823}
2824
2825/**
2826 * ice_aq_dis_lan_txq
2827 * @hw: pointer to the hardware structure
2828 * @num_qgrps: number of groups in the list
2829 * @qg_list: the list of groups to disable
2830 * @buf_size: the total size of the qg_list buffer in bytes
2831 * @rst_src: if called due to reset, specifies the reset source
2832 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2833 * @cd: pointer to command details structure or NULL
2834 *
2835 * Disable LAN Tx queue (0x0C31)
2836 */
2837static enum ice_status
2838ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2839		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2840		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2841		   struct ice_sq_cd *cd)
2842{
 
2843	struct ice_aqc_dis_txqs *cmd;
2844	struct ice_aq_desc desc;
2845	enum ice_status status;
2846	u16 i, sz = 0;
2847
2848	cmd = &desc.params.dis_txqs;
2849	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2850
2851	/* qg_list can be NULL only in VM/VF reset flow */
2852	if (!qg_list && !rst_src)
2853		return ICE_ERR_PARAM;
2854
2855	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2856		return ICE_ERR_PARAM;
2857
2858	cmd->num_entries = num_qgrps;
2859
2860	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2861					    ICE_AQC_Q_DIS_TIMEOUT_M);
2862
2863	switch (rst_src) {
2864	case ICE_VM_RESET:
2865		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2866		cmd->vmvf_and_timeout |=
2867			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2868		break;
2869	case ICE_VF_RESET:
2870		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2871		/* In this case, FW expects vmvf_num to be absolute VF ID */
2872		cmd->vmvf_and_timeout |=
2873			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2874				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2875		break;
2876	case ICE_NO_RESET:
2877	default:
2878		break;
2879	}
2880
2881	/* flush pipe on time out */
2882	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2883	/* If no queue group info, we are in a reset flow. Issue the AQ */
2884	if (!qg_list)
2885		goto do_aq;
2886
2887	/* set RD bit to indicate that command buffer is provided by the driver
2888	 * and it needs to be read by the firmware
2889	 */
2890	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2891
2892	for (i = 0; i < num_qgrps; ++i) {
2893		/* Calculate the size taken up by the queue IDs in this group */
2894		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
 
 
 
2895
2896		/* Add the size of the group header */
2897		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2898
2899		/* If the num of queues is even, add 2 bytes of padding */
2900		if ((qg_list[i].num_qs % 2) == 0)
2901			sz += 2;
2902	}
2903
2904	if (buf_size != sz)
2905		return ICE_ERR_PARAM;
2906
2907do_aq:
2908	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2909	if (status) {
2910		if (!qg_list)
2911			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2912				  vmvf_num, hw->adminq.sq_last_status);
2913		else
2914			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2915				  le16_to_cpu(qg_list[0].q_id[0]),
2916				  hw->adminq.sq_last_status);
2917	}
2918	return status;
2919}
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921/* End of FW Admin Queue command wrappers */
2922
2923/**
2924 * ice_write_byte - write a byte to a packed context structure
2925 * @src_ctx:  the context structure to read from
2926 * @dest_ctx: the context to be written to
2927 * @ce_info:  a description of the struct to be filled
2928 */
2929static void
2930ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2931{
2932	u8 src_byte, dest_byte, mask;
2933	u8 *from, *dest;
2934	u16 shift_width;
2935
2936	/* copy from the next struct field */
2937	from = src_ctx + ce_info->offset;
2938
2939	/* prepare the bits and mask */
2940	shift_width = ce_info->lsb % 8;
2941	mask = (u8)(BIT(ce_info->width) - 1);
2942
2943	src_byte = *from;
2944	src_byte &= mask;
2945
2946	/* shift to correct alignment */
2947	mask <<= shift_width;
2948	src_byte <<= shift_width;
2949
2950	/* get the current bits from the target bit string */
2951	dest = dest_ctx + (ce_info->lsb / 8);
2952
2953	memcpy(&dest_byte, dest, sizeof(dest_byte));
2954
2955	dest_byte &= ~mask;	/* get the bits not changing */
2956	dest_byte |= src_byte;	/* add in the new bits */
2957
2958	/* put it all back */
2959	memcpy(dest, &dest_byte, sizeof(dest_byte));
2960}
2961
2962/**
2963 * ice_write_word - write a word to a packed context structure
2964 * @src_ctx:  the context structure to read from
2965 * @dest_ctx: the context to be written to
2966 * @ce_info:  a description of the struct to be filled
2967 */
2968static void
2969ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2970{
2971	u16 src_word, mask;
2972	__le16 dest_word;
2973	u8 *from, *dest;
2974	u16 shift_width;
2975
2976	/* copy from the next struct field */
2977	from = src_ctx + ce_info->offset;
2978
2979	/* prepare the bits and mask */
2980	shift_width = ce_info->lsb % 8;
2981	mask = BIT(ce_info->width) - 1;
2982
2983	/* don't swizzle the bits until after the mask because the mask bits
2984	 * will be in a different bit position on big endian machines
2985	 */
2986	src_word = *(u16 *)from;
2987	src_word &= mask;
2988
2989	/* shift to correct alignment */
2990	mask <<= shift_width;
2991	src_word <<= shift_width;
2992
2993	/* get the current bits from the target bit string */
2994	dest = dest_ctx + (ce_info->lsb / 8);
2995
2996	memcpy(&dest_word, dest, sizeof(dest_word));
2997
2998	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2999	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3000
3001	/* put it all back */
3002	memcpy(dest, &dest_word, sizeof(dest_word));
3003}
3004
3005/**
3006 * ice_write_dword - write a dword to a packed context structure
3007 * @src_ctx:  the context structure to read from
3008 * @dest_ctx: the context to be written to
3009 * @ce_info:  a description of the struct to be filled
3010 */
3011static void
3012ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3013{
3014	u32 src_dword, mask;
3015	__le32 dest_dword;
3016	u8 *from, *dest;
3017	u16 shift_width;
3018
3019	/* copy from the next struct field */
3020	from = src_ctx + ce_info->offset;
3021
3022	/* prepare the bits and mask */
3023	shift_width = ce_info->lsb % 8;
3024
3025	/* if the field width is exactly 32 on an x86 machine, then the shift
3026	 * operation will not work because the SHL instructions count is masked
3027	 * to 5 bits so the shift will do nothing
3028	 */
3029	if (ce_info->width < 32)
3030		mask = BIT(ce_info->width) - 1;
3031	else
3032		mask = (u32)~0;
3033
3034	/* don't swizzle the bits until after the mask because the mask bits
3035	 * will be in a different bit position on big endian machines
3036	 */
3037	src_dword = *(u32 *)from;
3038	src_dword &= mask;
3039
3040	/* shift to correct alignment */
3041	mask <<= shift_width;
3042	src_dword <<= shift_width;
3043
3044	/* get the current bits from the target bit string */
3045	dest = dest_ctx + (ce_info->lsb / 8);
3046
3047	memcpy(&dest_dword, dest, sizeof(dest_dword));
3048
3049	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3050	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3051
3052	/* put it all back */
3053	memcpy(dest, &dest_dword, sizeof(dest_dword));
3054}
3055
3056/**
3057 * ice_write_qword - write a qword to a packed context structure
3058 * @src_ctx:  the context structure to read from
3059 * @dest_ctx: the context to be written to
3060 * @ce_info:  a description of the struct to be filled
3061 */
3062static void
3063ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3064{
3065	u64 src_qword, mask;
3066	__le64 dest_qword;
3067	u8 *from, *dest;
3068	u16 shift_width;
3069
3070	/* copy from the next struct field */
3071	from = src_ctx + ce_info->offset;
3072
3073	/* prepare the bits and mask */
3074	shift_width = ce_info->lsb % 8;
3075
3076	/* if the field width is exactly 64 on an x86 machine, then the shift
3077	 * operation will not work because the SHL instructions count is masked
3078	 * to 6 bits so the shift will do nothing
3079	 */
3080	if (ce_info->width < 64)
3081		mask = BIT_ULL(ce_info->width) - 1;
3082	else
3083		mask = (u64)~0;
3084
3085	/* don't swizzle the bits until after the mask because the mask bits
3086	 * will be in a different bit position on big endian machines
3087	 */
3088	src_qword = *(u64 *)from;
3089	src_qword &= mask;
3090
3091	/* shift to correct alignment */
3092	mask <<= shift_width;
3093	src_qword <<= shift_width;
3094
3095	/* get the current bits from the target bit string */
3096	dest = dest_ctx + (ce_info->lsb / 8);
3097
3098	memcpy(&dest_qword, dest, sizeof(dest_qword));
3099
3100	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3101	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3102
3103	/* put it all back */
3104	memcpy(dest, &dest_qword, sizeof(dest_qword));
3105}
3106
3107/**
3108 * ice_set_ctx - set context bits in packed structure
 
3109 * @src_ctx:  pointer to a generic non-packed context structure
3110 * @dest_ctx: pointer to memory for the packed structure
3111 * @ce_info:  a description of the structure to be transformed
3112 */
3113enum ice_status
3114ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
 
3115{
3116	int f;
3117
3118	for (f = 0; ce_info[f].width; f++) {
3119		/* We have to deal with each element of the FW response
3120		 * using the correct size so that we are correct regardless
3121		 * of the endianness of the machine.
3122		 */
 
 
 
 
 
3123		switch (ce_info[f].size_of) {
3124		case sizeof(u8):
3125			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3126			break;
3127		case sizeof(u16):
3128			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3129			break;
3130		case sizeof(u32):
3131			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3132			break;
3133		case sizeof(u64):
3134			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3135			break;
3136		default:
3137			return ICE_ERR_INVAL_SIZE;
3138		}
3139	}
3140
3141	return 0;
3142}
3143
3144/**
3145 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3146 * @hw: pointer to the HW struct
3147 * @vsi_handle: software VSI handle
3148 * @tc: TC number
3149 * @q_handle: software queue handle
3150 */
3151static struct ice_q_ctx *
3152ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3153{
3154	struct ice_vsi_ctx *vsi;
3155	struct ice_q_ctx *q_ctx;
3156
3157	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3158	if (!vsi)
3159		return NULL;
3160	if (q_handle >= vsi->num_lan_q_entries[tc])
3161		return NULL;
3162	if (!vsi->lan_q_ctx[tc])
3163		return NULL;
3164	q_ctx = vsi->lan_q_ctx[tc];
3165	return &q_ctx[q_handle];
3166}
3167
3168/**
3169 * ice_ena_vsi_txq
3170 * @pi: port information structure
3171 * @vsi_handle: software VSI handle
3172 * @tc: TC number
3173 * @q_handle: software queue handle
3174 * @num_qgrps: Number of added queue groups
3175 * @buf: list of queue groups to be added
3176 * @buf_size: size of buffer for indirect command
3177 * @cd: pointer to command details structure or NULL
3178 *
3179 * This function adds one LAN queue
3180 */
3181enum ice_status
3182ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3183		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3184		struct ice_sq_cd *cd)
3185{
3186	struct ice_aqc_txsched_elem_data node = { 0 };
3187	struct ice_sched_node *parent;
3188	struct ice_q_ctx *q_ctx;
3189	enum ice_status status;
3190	struct ice_hw *hw;
3191
3192	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3193		return ICE_ERR_CFG;
3194
3195	if (num_qgrps > 1 || buf->num_txqs > 1)
3196		return ICE_ERR_MAX_LIMIT;
3197
3198	hw = pi->hw;
3199
3200	if (!ice_is_vsi_valid(hw, vsi_handle))
3201		return ICE_ERR_PARAM;
3202
3203	mutex_lock(&pi->sched_lock);
3204
3205	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3206	if (!q_ctx) {
3207		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3208			  q_handle);
3209		status = ICE_ERR_PARAM;
3210		goto ena_txq_exit;
3211	}
3212
3213	/* find a parent node */
3214	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3215					    ICE_SCHED_NODE_OWNER_LAN);
3216	if (!parent) {
3217		status = ICE_ERR_PARAM;
3218		goto ena_txq_exit;
3219	}
3220
3221	buf->parent_teid = parent->info.node_teid;
3222	node.parent_teid = parent->info.node_teid;
3223	/* Mark that the values in the "generic" section as valid. The default
3224	 * value in the "generic" section is zero. This means that :
3225	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3226	 * - 0 priority among siblings, indicated by Bit 1-3.
3227	 * - WFQ, indicated by Bit 4.
3228	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3229	 * Bit 5-6.
3230	 * - Bit 7 is reserved.
3231	 * Without setting the generic section as valid in valid_sections, the
3232	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3233	 */
3234	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
 
 
 
 
 
 
 
 
 
 
 
3235
3236	/* add the LAN queue */
3237	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3238	if (status) {
3239		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3240			  le16_to_cpu(buf->txqs[0].txq_id),
3241			  hw->adminq.sq_last_status);
3242		goto ena_txq_exit;
3243	}
3244
3245	node.node_teid = buf->txqs[0].q_teid;
3246	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3247	q_ctx->q_handle = q_handle;
 
3248
3249	/* add a leaf node into schduler tree queue layer */
3250	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
 
 
3251
3252ena_txq_exit:
3253	mutex_unlock(&pi->sched_lock);
3254	return status;
3255}
3256
3257/**
3258 * ice_dis_vsi_txq
3259 * @pi: port information structure
3260 * @vsi_handle: software VSI handle
3261 * @tc: TC number
3262 * @num_queues: number of queues
3263 * @q_handles: pointer to software queue handle array
3264 * @q_ids: pointer to the q_id array
3265 * @q_teids: pointer to queue node teids
3266 * @rst_src: if called due to reset, specifies the reset source
3267 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3268 * @cd: pointer to command details structure or NULL
3269 *
3270 * This function removes queues and their corresponding nodes in SW DB
3271 */
3272enum ice_status
3273ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3274		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3275		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3276		struct ice_sq_cd *cd)
3277{
3278	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3279	struct ice_aqc_dis_txq_item qg_list;
3280	struct ice_q_ctx *q_ctx;
3281	u16 i;
 
3282
3283	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3284		return ICE_ERR_CFG;
3285
 
 
3286	if (!num_queues) {
3287		/* if queue is disabled already yet the disable queue command
3288		 * has to be sent to complete the VF reset, then call
3289		 * ice_aq_dis_lan_txq without any queue information
3290		 */
3291		if (rst_src)
3292			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3293						  vmvf_num, NULL);
3294		return ICE_ERR_CFG;
3295	}
3296
 
 
 
 
 
3297	mutex_lock(&pi->sched_lock);
3298
3299	for (i = 0; i < num_queues; i++) {
3300		struct ice_sched_node *node;
3301
3302		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3303		if (!node)
3304			continue;
3305		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3306		if (!q_ctx) {
3307			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3308				  q_handles[i]);
3309			continue;
3310		}
3311		if (q_ctx->q_handle != q_handles[i]) {
3312			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3313				  q_ctx->q_handle, q_handles[i]);
3314			continue;
3315		}
3316		qg_list.parent_teid = node->info.parent_teid;
3317		qg_list.num_qs = 1;
3318		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3319		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3320					    sizeof(qg_list), rst_src, vmvf_num,
3321					    cd);
3322
3323		if (status)
3324			break;
3325		ice_free_sched_node(pi, node);
3326		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
3327	}
3328	mutex_unlock(&pi->sched_lock);
 
3329	return status;
3330}
3331
3332/**
3333 * ice_cfg_vsi_qs - configure the new/existing VSI queues
3334 * @pi: port information structure
3335 * @vsi_handle: software VSI handle
3336 * @tc_bitmap: TC bitmap
3337 * @maxqs: max queues array per TC
3338 * @owner: LAN or RDMA
3339 *
3340 * This function adds/updates the VSI queues per TC.
3341 */
3342static enum ice_status
3343ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3344	       u16 *maxqs, u8 owner)
3345{
3346	enum ice_status status = 0;
3347	u8 i;
3348
3349	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3350		return ICE_ERR_CFG;
3351
3352	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3353		return ICE_ERR_PARAM;
3354
3355	mutex_lock(&pi->sched_lock);
3356
3357	ice_for_each_traffic_class(i) {
3358		/* configuration is possible only if TC node is present */
3359		if (!ice_sched_get_tc_node(pi, i))
3360			continue;
3361
3362		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3363					   ice_is_tc_ena(tc_bitmap, i));
3364		if (status)
3365			break;
3366	}
3367
3368	mutex_unlock(&pi->sched_lock);
3369	return status;
3370}
3371
3372/**
3373 * ice_cfg_vsi_lan - configure VSI LAN queues
3374 * @pi: port information structure
3375 * @vsi_handle: software VSI handle
3376 * @tc_bitmap: TC bitmap
3377 * @max_lanqs: max LAN queues array per TC
3378 *
3379 * This function adds/updates the VSI LAN queues per TC.
3380 */
3381enum ice_status
3382ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3383		u16 *max_lanqs)
3384{
3385	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3386			      ICE_SCHED_NODE_OWNER_LAN);
3387}
3388
3389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3390 * ice_replay_pre_init - replay pre initialization
3391 * @hw: pointer to the HW struct
3392 *
3393 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3394 */
3395static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3396{
3397	struct ice_switch_info *sw = hw->switch_info;
3398	u8 i;
3399
3400	/* Delete old entries from replay filter list head if there is any */
3401	ice_rm_all_sw_replay_rule_info(hw);
3402	/* In start of replay, move entries into replay_rules list, it
3403	 * will allow adding rules entries back to filt_rules list,
3404	 * which is operational list.
3405	 */
3406	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3407		list_replace_init(&sw->recp_list[i].filt_rules,
3408				  &sw->recp_list[i].filt_replay_rules);
 
3409
3410	return 0;
3411}
3412
3413/**
3414 * ice_replay_vsi - replay VSI configuration
3415 * @hw: pointer to the HW struct
3416 * @vsi_handle: driver VSI handle
3417 *
3418 * Restore all VSI configuration after reset. It is required to call this
3419 * function with main VSI first.
3420 */
3421enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3422{
3423	enum ice_status status;
3424
3425	if (!ice_is_vsi_valid(hw, vsi_handle))
3426		return ICE_ERR_PARAM;
3427
3428	/* Replay pre-initialization if there is any */
3429	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3430		status = ice_replay_pre_init(hw);
3431		if (status)
3432			return status;
3433	}
3434
 
 
 
3435	/* Replay per VSI all filters */
3436	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
 
 
3437	return status;
3438}
3439
3440/**
3441 * ice_replay_post - post replay configuration cleanup
3442 * @hw: pointer to the HW struct
3443 *
3444 * Post replay cleanup.
3445 */
3446void ice_replay_post(struct ice_hw *hw)
3447{
3448	/* Delete old entries from replay filter list head */
3449	ice_rm_all_sw_replay_rule_info(hw);
 
3450}
3451
3452/**
3453 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3454 * @hw: ptr to the hardware info
3455 * @reg: offset of 64 bit HW register to read from
3456 * @prev_stat_loaded: bool to specify if previous stats are loaded
3457 * @prev_stat: ptr to previous loaded stat value
3458 * @cur_stat: ptr to current stat value
3459 */
3460void
3461ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3462		  u64 *prev_stat, u64 *cur_stat)
3463{
3464	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3465
3466	/* device stats are not reset at PFR, they likely will not be zeroed
3467	 * when the driver starts. Thus, save the value from the first read
3468	 * without adding to the statistic value so that we report stats which
3469	 * count up from zero.
3470	 */
3471	if (!prev_stat_loaded) {
3472		*prev_stat = new_data;
3473		return;
3474	}
3475
3476	/* Calculate the difference between the new and old values, and then
3477	 * add it to the software stat value.
3478	 */
3479	if (new_data >= *prev_stat)
3480		*cur_stat += new_data - *prev_stat;
3481	else
3482		/* to manage the potential roll-over */
3483		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3484
3485	/* Update the previously stored value to prepare for next read */
3486	*prev_stat = new_data;
3487}
3488
3489/**
3490 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3491 * @hw: ptr to the hardware info
3492 * @reg: offset of HW register to read from
3493 * @prev_stat_loaded: bool to specify if previous stats are loaded
3494 * @prev_stat: ptr to previous loaded stat value
3495 * @cur_stat: ptr to current stat value
3496 */
3497void
3498ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3499		  u64 *prev_stat, u64 *cur_stat)
3500{
3501	u32 new_data;
3502
3503	new_data = rd32(hw, reg);
3504
3505	/* device stats are not reset at PFR, they likely will not be zeroed
3506	 * when the driver starts. Thus, save the value from the first read
3507	 * without adding to the statistic value so that we report stats which
3508	 * count up from zero.
3509	 */
3510	if (!prev_stat_loaded) {
3511		*prev_stat = new_data;
3512		return;
3513	}
3514
3515	/* Calculate the difference between the new and old values, and then
3516	 * add it to the software stat value.
3517	 */
3518	if (new_data >= *prev_stat)
3519		*cur_stat += new_data - *prev_stat;
3520	else
3521		/* to manage the potential roll-over */
3522		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3523
3524	/* Update the previously stored value to prepare for next read */
3525	*prev_stat = new_data;
3526}
3527
3528/**
3529 * ice_sched_query_elem - query element information from HW
3530 * @hw: pointer to the HW struct
3531 * @node_teid: node TEID to be queried
3532 * @buf: buffer to element information
3533 *
3534 * This function queries HW element information
3535 */
3536enum ice_status
3537ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3538		     struct ice_aqc_get_elem *buf)
3539{
3540	u16 buf_size, num_elem_ret = 0;
3541	enum ice_status status;
3542
3543	buf_size = sizeof(*buf);
3544	memset(buf, 0, buf_size);
3545	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3546	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3547					  NULL);
3548	if (status || num_elem_ret != 1)
3549		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3550	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}