Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_lib.h"
6#include "ice_sched.h"
7#include "ice_adminq_cmd.h"
8#include "ice_flow.h"
9
10#define ICE_PF_RESET_WAIT_COUNT 300
11
12/**
13 * ice_set_mac_type - Sets MAC type
14 * @hw: pointer to the HW structure
15 *
16 * This function sets the MAC type of the adapter based on the
17 * vendor ID and device ID stored in the HW structure.
18 */
19static enum ice_status ice_set_mac_type(struct ice_hw *hw)
20{
21 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
22 return ICE_ERR_DEVICE_NOT_SUPPORTED;
23
24 switch (hw->device_id) {
25 case ICE_DEV_ID_E810C_BACKPLANE:
26 case ICE_DEV_ID_E810C_QSFP:
27 case ICE_DEV_ID_E810C_SFP:
28 case ICE_DEV_ID_E810_XXV_BACKPLANE:
29 case ICE_DEV_ID_E810_XXV_QSFP:
30 case ICE_DEV_ID_E810_XXV_SFP:
31 hw->mac_type = ICE_MAC_E810;
32 break;
33 case ICE_DEV_ID_E823C_10G_BASE_T:
34 case ICE_DEV_ID_E823C_BACKPLANE:
35 case ICE_DEV_ID_E823C_QSFP:
36 case ICE_DEV_ID_E823C_SFP:
37 case ICE_DEV_ID_E823C_SGMII:
38 case ICE_DEV_ID_E822C_10G_BASE_T:
39 case ICE_DEV_ID_E822C_BACKPLANE:
40 case ICE_DEV_ID_E822C_QSFP:
41 case ICE_DEV_ID_E822C_SFP:
42 case ICE_DEV_ID_E822C_SGMII:
43 case ICE_DEV_ID_E822L_10G_BASE_T:
44 case ICE_DEV_ID_E822L_BACKPLANE:
45 case ICE_DEV_ID_E822L_SFP:
46 case ICE_DEV_ID_E822L_SGMII:
47 case ICE_DEV_ID_E823L_10G_BASE_T:
48 case ICE_DEV_ID_E823L_1GBE:
49 case ICE_DEV_ID_E823L_BACKPLANE:
50 case ICE_DEV_ID_E823L_QSFP:
51 case ICE_DEV_ID_E823L_SFP:
52 hw->mac_type = ICE_MAC_GENERIC;
53 break;
54 default:
55 hw->mac_type = ICE_MAC_UNKNOWN;
56 break;
57 }
58
59 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
60 return 0;
61}
62
63/**
64 * ice_is_e810
65 * @hw: pointer to the hardware structure
66 *
67 * returns true if the device is E810 based, false if not.
68 */
69bool ice_is_e810(struct ice_hw *hw)
70{
71 return hw->mac_type == ICE_MAC_E810;
72}
73
74/**
75 * ice_clear_pf_cfg - Clear PF configuration
76 * @hw: pointer to the hardware structure
77 *
78 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
79 * configuration, flow director filters, etc.).
80 */
81enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
82{
83 struct ice_aq_desc desc;
84
85 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
86
87 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
88}
89
90/**
91 * ice_aq_manage_mac_read - manage MAC address read command
92 * @hw: pointer to the HW struct
93 * @buf: a virtual buffer to hold the manage MAC read response
94 * @buf_size: Size of the virtual buffer
95 * @cd: pointer to command details structure or NULL
96 *
97 * This function is used to return per PF station MAC address (0x0107).
98 * NOTE: Upon successful completion of this command, MAC address information
99 * is returned in user specified buffer. Please interpret user specified
100 * buffer as "manage_mac_read" response.
101 * Response such as various MAC addresses are stored in HW struct (port.mac)
102 * ice_discover_dev_caps is expected to be called before this function is
103 * called.
104 */
105static enum ice_status
106ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
107 struct ice_sq_cd *cd)
108{
109 struct ice_aqc_manage_mac_read_resp *resp;
110 struct ice_aqc_manage_mac_read *cmd;
111 struct ice_aq_desc desc;
112 enum ice_status status;
113 u16 flags;
114 u8 i;
115
116 cmd = &desc.params.mac_read;
117
118 if (buf_size < sizeof(*resp))
119 return ICE_ERR_BUF_TOO_SHORT;
120
121 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
122
123 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
124 if (status)
125 return status;
126
127 resp = buf;
128 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
129
130 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
131 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
132 return ICE_ERR_CFG;
133 }
134
135 /* A single port can report up to two (LAN and WoL) addresses */
136 for (i = 0; i < cmd->num_addr; i++)
137 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
138 ether_addr_copy(hw->port_info->mac.lan_addr,
139 resp[i].mac_addr);
140 ether_addr_copy(hw->port_info->mac.perm_addr,
141 resp[i].mac_addr);
142 break;
143 }
144
145 return 0;
146}
147
148/**
149 * ice_aq_get_phy_caps - returns PHY capabilities
150 * @pi: port information structure
151 * @qual_mods: report qualified modules
152 * @report_mode: report mode capabilities
153 * @pcaps: structure for PHY capabilities to be filled
154 * @cd: pointer to command details structure or NULL
155 *
156 * Returns the various PHY capabilities supported on the Port (0x0600)
157 */
158enum ice_status
159ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
160 struct ice_aqc_get_phy_caps_data *pcaps,
161 struct ice_sq_cd *cd)
162{
163 struct ice_aqc_get_phy_caps *cmd;
164 u16 pcaps_size = sizeof(*pcaps);
165 struct ice_aq_desc desc;
166 enum ice_status status;
167 struct ice_hw *hw;
168
169 cmd = &desc.params.get_phy;
170
171 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
172 return ICE_ERR_PARAM;
173 hw = pi->hw;
174
175 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
176 !ice_fw_supports_report_dflt_cfg(hw))
177 return ICE_ERR_PARAM;
178
179 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
180
181 if (qual_mods)
182 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
183
184 cmd->param0 |= cpu_to_le16(report_mode);
185 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
186
187 ice_debug(hw, ICE_DBG_LINK, "get phy caps - report_mode = 0x%x\n",
188 report_mode);
189 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
190 (unsigned long long)le64_to_cpu(pcaps->phy_type_low));
191 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
192 (unsigned long long)le64_to_cpu(pcaps->phy_type_high));
193 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", pcaps->caps);
194 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
195 pcaps->low_power_ctrl_an);
196 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", pcaps->eee_cap);
197 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n",
198 pcaps->eeer_value);
199 ice_debug(hw, ICE_DBG_LINK, " link_fec_options = 0x%x\n",
200 pcaps->link_fec_options);
201 ice_debug(hw, ICE_DBG_LINK, " module_compliance_enforcement = 0x%x\n",
202 pcaps->module_compliance_enforcement);
203 ice_debug(hw, ICE_DBG_LINK, " extended_compliance_code = 0x%x\n",
204 pcaps->extended_compliance_code);
205 ice_debug(hw, ICE_DBG_LINK, " module_type[0] = 0x%x\n",
206 pcaps->module_type[0]);
207 ice_debug(hw, ICE_DBG_LINK, " module_type[1] = 0x%x\n",
208 pcaps->module_type[1]);
209 ice_debug(hw, ICE_DBG_LINK, " module_type[2] = 0x%x\n",
210 pcaps->module_type[2]);
211
212 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
213 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
214 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
215 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
216 sizeof(pi->phy.link_info.module_type));
217 }
218
219 return status;
220}
221
222/**
223 * ice_aq_get_link_topo_handle - get link topology node return status
224 * @pi: port information structure
225 * @node_type: requested node type
226 * @cd: pointer to command details structure or NULL
227 *
228 * Get link topology node return status for specified node type (0x06E0)
229 *
230 * Node type cage can be used to determine if cage is present. If AQC
231 * returns error (ENOENT), then no cage present. If no cage present, then
232 * connection type is backplane or BASE-T.
233 */
234static enum ice_status
235ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
236 struct ice_sq_cd *cd)
237{
238 struct ice_aqc_get_link_topo *cmd;
239 struct ice_aq_desc desc;
240
241 cmd = &desc.params.get_link_topo;
242
243 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
244
245 cmd->addr.node_type_ctx = (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
246 ICE_AQC_LINK_TOPO_NODE_CTX_S);
247
248 /* set node type */
249 cmd->addr.node_type_ctx |= (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
250
251 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
252}
253
254/**
255 * ice_is_media_cage_present
256 * @pi: port information structure
257 *
258 * Returns true if media cage is present, else false. If no cage, then
259 * media type is backplane or BASE-T.
260 */
261static bool ice_is_media_cage_present(struct ice_port_info *pi)
262{
263 /* Node type cage can be used to determine if cage is present. If AQC
264 * returns error (ENOENT), then no cage present. If no cage present then
265 * connection type is backplane or BASE-T.
266 */
267 return !ice_aq_get_link_topo_handle(pi,
268 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
269 NULL);
270}
271
272/**
273 * ice_get_media_type - Gets media type
274 * @pi: port information structure
275 */
276static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
277{
278 struct ice_link_status *hw_link_info;
279
280 if (!pi)
281 return ICE_MEDIA_UNKNOWN;
282
283 hw_link_info = &pi->phy.link_info;
284 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
285 /* If more than one media type is selected, report unknown */
286 return ICE_MEDIA_UNKNOWN;
287
288 if (hw_link_info->phy_type_low) {
289 /* 1G SGMII is a special case where some DA cable PHYs
290 * may show this as an option when it really shouldn't
291 * be since SGMII is meant to be between a MAC and a PHY
292 * in a backplane. Try to detect this case and handle it
293 */
294 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
295 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
296 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
297 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
298 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
299 return ICE_MEDIA_DA;
300
301 switch (hw_link_info->phy_type_low) {
302 case ICE_PHY_TYPE_LOW_1000BASE_SX:
303 case ICE_PHY_TYPE_LOW_1000BASE_LX:
304 case ICE_PHY_TYPE_LOW_10GBASE_SR:
305 case ICE_PHY_TYPE_LOW_10GBASE_LR:
306 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
307 case ICE_PHY_TYPE_LOW_25GBASE_SR:
308 case ICE_PHY_TYPE_LOW_25GBASE_LR:
309 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
310 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
311 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
312 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
313 case ICE_PHY_TYPE_LOW_50GBASE_SR:
314 case ICE_PHY_TYPE_LOW_50GBASE_FR:
315 case ICE_PHY_TYPE_LOW_50GBASE_LR:
316 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
317 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
318 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
319 case ICE_PHY_TYPE_LOW_100GBASE_DR:
320 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
321 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
322 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
323 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
324 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
325 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
326 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
327 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
328 return ICE_MEDIA_FIBER;
329 case ICE_PHY_TYPE_LOW_100BASE_TX:
330 case ICE_PHY_TYPE_LOW_1000BASE_T:
331 case ICE_PHY_TYPE_LOW_2500BASE_T:
332 case ICE_PHY_TYPE_LOW_5GBASE_T:
333 case ICE_PHY_TYPE_LOW_10GBASE_T:
334 case ICE_PHY_TYPE_LOW_25GBASE_T:
335 return ICE_MEDIA_BASET;
336 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
337 case ICE_PHY_TYPE_LOW_25GBASE_CR:
338 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
339 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
340 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
341 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
342 case ICE_PHY_TYPE_LOW_50GBASE_CP:
343 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
344 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
345 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
346 return ICE_MEDIA_DA;
347 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
348 case ICE_PHY_TYPE_LOW_40G_XLAUI:
349 case ICE_PHY_TYPE_LOW_50G_LAUI2:
350 case ICE_PHY_TYPE_LOW_50G_AUI2:
351 case ICE_PHY_TYPE_LOW_50G_AUI1:
352 case ICE_PHY_TYPE_LOW_100G_AUI4:
353 case ICE_PHY_TYPE_LOW_100G_CAUI4:
354 if (ice_is_media_cage_present(pi))
355 return ICE_MEDIA_DA;
356 fallthrough;
357 case ICE_PHY_TYPE_LOW_1000BASE_KX:
358 case ICE_PHY_TYPE_LOW_2500BASE_KX:
359 case ICE_PHY_TYPE_LOW_2500BASE_X:
360 case ICE_PHY_TYPE_LOW_5GBASE_KR:
361 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
362 case ICE_PHY_TYPE_LOW_25GBASE_KR:
363 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
364 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
365 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
366 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
367 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
368 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
369 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
370 return ICE_MEDIA_BACKPLANE;
371 }
372 } else {
373 switch (hw_link_info->phy_type_high) {
374 case ICE_PHY_TYPE_HIGH_100G_AUI2:
375 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
376 if (ice_is_media_cage_present(pi))
377 return ICE_MEDIA_DA;
378 fallthrough;
379 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
380 return ICE_MEDIA_BACKPLANE;
381 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
382 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
383 return ICE_MEDIA_FIBER;
384 }
385 }
386 return ICE_MEDIA_UNKNOWN;
387}
388
389/**
390 * ice_aq_get_link_info
391 * @pi: port information structure
392 * @ena_lse: enable/disable LinkStatusEvent reporting
393 * @link: pointer to link status structure - optional
394 * @cd: pointer to command details structure or NULL
395 *
396 * Get Link Status (0x607). Returns the link status of the adapter.
397 */
398enum ice_status
399ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
400 struct ice_link_status *link, struct ice_sq_cd *cd)
401{
402 struct ice_aqc_get_link_status_data link_data = { 0 };
403 struct ice_aqc_get_link_status *resp;
404 struct ice_link_status *li_old, *li;
405 enum ice_media_type *hw_media_type;
406 struct ice_fc_info *hw_fc_info;
407 bool tx_pause, rx_pause;
408 struct ice_aq_desc desc;
409 enum ice_status status;
410 struct ice_hw *hw;
411 u16 cmd_flags;
412
413 if (!pi)
414 return ICE_ERR_PARAM;
415 hw = pi->hw;
416 li_old = &pi->phy.link_info_old;
417 hw_media_type = &pi->phy.media_type;
418 li = &pi->phy.link_info;
419 hw_fc_info = &pi->fc;
420
421 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
422 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
423 resp = &desc.params.get_link_status;
424 resp->cmd_flags = cpu_to_le16(cmd_flags);
425 resp->lport_num = pi->lport;
426
427 status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
428
429 if (status)
430 return status;
431
432 /* save off old link status information */
433 *li_old = *li;
434
435 /* update current link status information */
436 li->link_speed = le16_to_cpu(link_data.link_speed);
437 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
438 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
439 *hw_media_type = ice_get_media_type(pi);
440 li->link_info = link_data.link_info;
441 li->link_cfg_err = link_data.link_cfg_err;
442 li->an_info = link_data.an_info;
443 li->ext_info = link_data.ext_info;
444 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
445 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
446 li->topo_media_conflict = link_data.topo_media_conflict;
447 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
448 ICE_AQ_CFG_PACING_TYPE_M);
449
450 /* update fc info */
451 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
452 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
453 if (tx_pause && rx_pause)
454 hw_fc_info->current_mode = ICE_FC_FULL;
455 else if (tx_pause)
456 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
457 else if (rx_pause)
458 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
459 else
460 hw_fc_info->current_mode = ICE_FC_NONE;
461
462 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
463
464 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
465 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
466 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
467 (unsigned long long)li->phy_type_low);
468 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
469 (unsigned long long)li->phy_type_high);
470 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
471 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
472 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
473 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
474 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
475 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
476 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
477 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
478 li->max_frame_size);
479 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
480
481 /* save link status information */
482 if (link)
483 *link = *li;
484
485 /* flag cleared so calling functions don't call AQ again */
486 pi->phy.get_link_info = false;
487
488 return 0;
489}
490
491/**
492 * ice_fill_tx_timer_and_fc_thresh
493 * @hw: pointer to the HW struct
494 * @cmd: pointer to MAC cfg structure
495 *
496 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
497 * descriptor
498 */
499static void
500ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
501 struct ice_aqc_set_mac_cfg *cmd)
502{
503 u16 fc_thres_val, tx_timer_val;
504 u32 val;
505
506 /* We read back the transmit timer and FC threshold value of
507 * LFC. Thus, we will use index =
508 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
509 *
510 * Also, because we are operating on transmit timer and FC
511 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
512 */
513#define IDX_OF_LFC PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX
514
515 /* Retrieve the transmit timer */
516 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA(IDX_OF_LFC));
517 tx_timer_val = val &
518 PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_HSEC_CTL_TX_PAUSE_QUANTA_M;
519 cmd->tx_tmr_value = cpu_to_le16(tx_timer_val);
520
521 /* Retrieve the FC threshold */
522 val = rd32(hw, PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER(IDX_OF_LFC));
523 fc_thres_val = val & PRTMAC_HSEC_CTL_TX_PAUSE_REFRESH_TIMER_M;
524
525 cmd->fc_refresh_threshold = cpu_to_le16(fc_thres_val);
526}
527
528/**
529 * ice_aq_set_mac_cfg
530 * @hw: pointer to the HW struct
531 * @max_frame_size: Maximum Frame Size to be supported
532 * @cd: pointer to command details structure or NULL
533 *
534 * Set MAC configuration (0x0603)
535 */
536enum ice_status
537ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
538{
539 struct ice_aqc_set_mac_cfg *cmd;
540 struct ice_aq_desc desc;
541
542 cmd = &desc.params.set_mac_cfg;
543
544 if (max_frame_size == 0)
545 return ICE_ERR_PARAM;
546
547 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
548
549 cmd->max_frame_size = cpu_to_le16(max_frame_size);
550
551 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
552
553 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
554}
555
556/**
557 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
558 * @hw: pointer to the HW struct
559 */
560static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
561{
562 struct ice_switch_info *sw;
563 enum ice_status status;
564
565 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
566 sizeof(*hw->switch_info), GFP_KERNEL);
567 sw = hw->switch_info;
568
569 if (!sw)
570 return ICE_ERR_NO_MEMORY;
571
572 INIT_LIST_HEAD(&sw->vsi_list_map_head);
573
574 status = ice_init_def_sw_recp(hw);
575 if (status) {
576 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
577 return status;
578 }
579 return 0;
580}
581
582/**
583 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
584 * @hw: pointer to the HW struct
585 */
586static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
587{
588 struct ice_switch_info *sw = hw->switch_info;
589 struct ice_vsi_list_map_info *v_pos_map;
590 struct ice_vsi_list_map_info *v_tmp_map;
591 struct ice_sw_recipe *recps;
592 u8 i;
593
594 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
595 list_entry) {
596 list_del(&v_pos_map->list_entry);
597 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
598 }
599 recps = hw->switch_info->recp_list;
600 for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
601 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
602
603 recps[i].root_rid = i;
604 mutex_destroy(&recps[i].filt_rule_lock);
605 list_for_each_entry_safe(lst_itr, tmp_entry,
606 &recps[i].filt_rules, list_entry) {
607 list_del(&lst_itr->list_entry);
608 devm_kfree(ice_hw_to_dev(hw), lst_itr);
609 }
610 }
611 ice_rm_all_sw_replay_rule_info(hw);
612 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
613 devm_kfree(ice_hw_to_dev(hw), sw);
614}
615
616/**
617 * ice_get_fw_log_cfg - get FW logging configuration
618 * @hw: pointer to the HW struct
619 */
620static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
621{
622 struct ice_aq_desc desc;
623 enum ice_status status;
624 __le16 *config;
625 u16 size;
626
627 size = sizeof(*config) * ICE_AQC_FW_LOG_ID_MAX;
628 config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
629 if (!config)
630 return ICE_ERR_NO_MEMORY;
631
632 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
633
634 status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
635 if (!status) {
636 u16 i;
637
638 /* Save FW logging information into the HW structure */
639 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
640 u16 v, m, flgs;
641
642 v = le16_to_cpu(config[i]);
643 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
644 flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
645
646 if (m < ICE_AQC_FW_LOG_ID_MAX)
647 hw->fw_log.evnts[m].cur = flgs;
648 }
649 }
650
651 devm_kfree(ice_hw_to_dev(hw), config);
652
653 return status;
654}
655
656/**
657 * ice_cfg_fw_log - configure FW logging
658 * @hw: pointer to the HW struct
659 * @enable: enable certain FW logging events if true, disable all if false
660 *
661 * This function enables/disables the FW logging via Rx CQ events and a UART
662 * port based on predetermined configurations. FW logging via the Rx CQ can be
663 * enabled/disabled for individual PF's. However, FW logging via the UART can
664 * only be enabled/disabled for all PFs on the same device.
665 *
666 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
667 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
668 * before initializing the device.
669 *
670 * When re/configuring FW logging, callers need to update the "cfg" elements of
671 * the hw->fw_log.evnts array with the desired logging event configurations for
672 * modules of interest. When disabling FW logging completely, the callers can
673 * just pass false in the "enable" parameter. On completion, the function will
674 * update the "cur" element of the hw->fw_log.evnts array with the resulting
675 * logging event configurations of the modules that are being re/configured. FW
676 * logging modules that are not part of a reconfiguration operation retain their
677 * previous states.
678 *
679 * Before resetting the device, it is recommended that the driver disables FW
680 * logging before shutting down the control queue. When disabling FW logging
681 * ("enable" = false), the latest configurations of FW logging events stored in
682 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
683 * a device reset.
684 *
685 * When enabling FW logging to emit log messages via the Rx CQ during the
686 * device's initialization phase, a mechanism alternative to interrupt handlers
687 * needs to be used to extract FW log messages from the Rx CQ periodically and
688 * to prevent the Rx CQ from being full and stalling other types of control
689 * messages from FW to SW. Interrupts are typically disabled during the device's
690 * initialization phase.
691 */
692static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
693{
694 struct ice_aqc_fw_logging *cmd;
695 enum ice_status status = 0;
696 u16 i, chgs = 0, len = 0;
697 struct ice_aq_desc desc;
698 __le16 *data = NULL;
699 u8 actv_evnts = 0;
700 void *buf = NULL;
701
702 if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
703 return 0;
704
705 /* Disable FW logging only when the control queue is still responsive */
706 if (!enable &&
707 (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
708 return 0;
709
710 /* Get current FW log settings */
711 status = ice_get_fw_log_cfg(hw);
712 if (status)
713 return status;
714
715 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
716 cmd = &desc.params.fw_logging;
717
718 /* Indicate which controls are valid */
719 if (hw->fw_log.cq_en)
720 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
721
722 if (hw->fw_log.uart_en)
723 cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
724
725 if (enable) {
726 /* Fill in an array of entries with FW logging modules and
727 * logging events being reconfigured.
728 */
729 for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
730 u16 val;
731
732 /* Keep track of enabled event types */
733 actv_evnts |= hw->fw_log.evnts[i].cfg;
734
735 if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
736 continue;
737
738 if (!data) {
739 data = devm_kcalloc(ice_hw_to_dev(hw),
740 ICE_AQC_FW_LOG_ID_MAX,
741 sizeof(*data),
742 GFP_KERNEL);
743 if (!data)
744 return ICE_ERR_NO_MEMORY;
745 }
746
747 val = i << ICE_AQC_FW_LOG_ID_S;
748 val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
749 data[chgs++] = cpu_to_le16(val);
750 }
751
752 /* Only enable FW logging if at least one module is specified.
753 * If FW logging is currently enabled but all modules are not
754 * enabled to emit log messages, disable FW logging altogether.
755 */
756 if (actv_evnts) {
757 /* Leave if there is effectively no change */
758 if (!chgs)
759 goto out;
760
761 if (hw->fw_log.cq_en)
762 cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
763
764 if (hw->fw_log.uart_en)
765 cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
766
767 buf = data;
768 len = sizeof(*data) * chgs;
769 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
770 }
771 }
772
773 status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
774 if (!status) {
775 /* Update the current configuration to reflect events enabled.
776 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
777 * logging mode is enabled for the device. They do not reflect
778 * actual modules being enabled to emit log messages. So, their
779 * values remain unchanged even when all modules are disabled.
780 */
781 u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
782
783 hw->fw_log.actv_evnts = actv_evnts;
784 for (i = 0; i < cnt; i++) {
785 u16 v, m;
786
787 if (!enable) {
788 /* When disabling all FW logging events as part
789 * of device's de-initialization, the original
790 * configurations are retained, and can be used
791 * to reconfigure FW logging later if the device
792 * is re-initialized.
793 */
794 hw->fw_log.evnts[i].cur = 0;
795 continue;
796 }
797
798 v = le16_to_cpu(data[i]);
799 m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
800 hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
801 }
802 }
803
804out:
805 if (data)
806 devm_kfree(ice_hw_to_dev(hw), data);
807
808 return status;
809}
810
811/**
812 * ice_output_fw_log
813 * @hw: pointer to the HW struct
814 * @desc: pointer to the AQ message descriptor
815 * @buf: pointer to the buffer accompanying the AQ message
816 *
817 * Formats a FW Log message and outputs it via the standard driver logs.
818 */
819void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
820{
821 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
822 ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
823 le16_to_cpu(desc->datalen));
824 ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
825}
826
827/**
828 * ice_get_itr_intrl_gran
829 * @hw: pointer to the HW struct
830 *
831 * Determines the ITR/INTRL granularities based on the maximum aggregate
832 * bandwidth according to the device's configuration during power-on.
833 */
834static void ice_get_itr_intrl_gran(struct ice_hw *hw)
835{
836 u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
837 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
838 GL_PWR_MODE_CTL_CAR_MAX_BW_S;
839
840 switch (max_agg_bw) {
841 case ICE_MAX_AGG_BW_200G:
842 case ICE_MAX_AGG_BW_100G:
843 case ICE_MAX_AGG_BW_50G:
844 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
845 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
846 break;
847 case ICE_MAX_AGG_BW_25G:
848 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
849 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
850 break;
851 }
852}
853
854/**
855 * ice_init_hw - main hardware initialization routine
856 * @hw: pointer to the hardware structure
857 */
858enum ice_status ice_init_hw(struct ice_hw *hw)
859{
860 struct ice_aqc_get_phy_caps_data *pcaps;
861 enum ice_status status;
862 u16 mac_buf_len;
863 void *mac_buf;
864
865 /* Set MAC type based on DeviceID */
866 status = ice_set_mac_type(hw);
867 if (status)
868 return status;
869
870 hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
871 PF_FUNC_RID_FUNC_NUM_M) >>
872 PF_FUNC_RID_FUNC_NUM_S;
873
874 status = ice_reset(hw, ICE_RESET_PFR);
875 if (status)
876 return status;
877
878 ice_get_itr_intrl_gran(hw);
879
880 status = ice_create_all_ctrlq(hw);
881 if (status)
882 goto err_unroll_cqinit;
883
884 /* Enable FW logging. Not fatal if this fails. */
885 status = ice_cfg_fw_log(hw, true);
886 if (status)
887 ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
888
889 status = ice_clear_pf_cfg(hw);
890 if (status)
891 goto err_unroll_cqinit;
892
893 /* Set bit to enable Flow Director filters */
894 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
895 INIT_LIST_HEAD(&hw->fdir_list_head);
896
897 ice_clear_pxe_mode(hw);
898
899 status = ice_init_nvm(hw);
900 if (status)
901 goto err_unroll_cqinit;
902
903 status = ice_get_caps(hw);
904 if (status)
905 goto err_unroll_cqinit;
906
907 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
908 sizeof(*hw->port_info), GFP_KERNEL);
909 if (!hw->port_info) {
910 status = ICE_ERR_NO_MEMORY;
911 goto err_unroll_cqinit;
912 }
913
914 /* set the back pointer to HW */
915 hw->port_info->hw = hw;
916
917 /* Initialize port_info struct with switch configuration data */
918 status = ice_get_initial_sw_cfg(hw);
919 if (status)
920 goto err_unroll_alloc;
921
922 hw->evb_veb = true;
923
924 /* Query the allocated resources for Tx scheduler */
925 status = ice_sched_query_res_alloc(hw);
926 if (status) {
927 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
928 goto err_unroll_alloc;
929 }
930 ice_sched_get_psm_clk_freq(hw);
931
932 /* Initialize port_info struct with scheduler data */
933 status = ice_sched_init_port(hw->port_info);
934 if (status)
935 goto err_unroll_sched;
936
937 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
938 if (!pcaps) {
939 status = ICE_ERR_NO_MEMORY;
940 goto err_unroll_sched;
941 }
942
943 /* Initialize port_info struct with PHY capabilities */
944 status = ice_aq_get_phy_caps(hw->port_info, false,
945 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
946 NULL);
947 devm_kfree(ice_hw_to_dev(hw), pcaps);
948 if (status)
949 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
950 status);
951
952 /* Initialize port_info struct with link information */
953 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
954 if (status)
955 goto err_unroll_sched;
956
957 /* need a valid SW entry point to build a Tx tree */
958 if (!hw->sw_entry_point_layer) {
959 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
960 status = ICE_ERR_CFG;
961 goto err_unroll_sched;
962 }
963 INIT_LIST_HEAD(&hw->agg_list);
964 /* Initialize max burst size */
965 if (!hw->max_burst_size)
966 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
967
968 status = ice_init_fltr_mgmt_struct(hw);
969 if (status)
970 goto err_unroll_sched;
971
972 /* Get MAC information */
973 /* A single port can report up to two (LAN and WoL) addresses */
974 mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
975 sizeof(struct ice_aqc_manage_mac_read_resp),
976 GFP_KERNEL);
977 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
978
979 if (!mac_buf) {
980 status = ICE_ERR_NO_MEMORY;
981 goto err_unroll_fltr_mgmt_struct;
982 }
983
984 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
985 devm_kfree(ice_hw_to_dev(hw), mac_buf);
986
987 if (status)
988 goto err_unroll_fltr_mgmt_struct;
989 /* enable jumbo frame support at MAC level */
990 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
991 if (status)
992 goto err_unroll_fltr_mgmt_struct;
993 /* Obtain counter base index which would be used by flow director */
994 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
995 if (status)
996 goto err_unroll_fltr_mgmt_struct;
997 status = ice_init_hw_tbls(hw);
998 if (status)
999 goto err_unroll_fltr_mgmt_struct;
1000 mutex_init(&hw->tnl_lock);
1001 return 0;
1002
1003err_unroll_fltr_mgmt_struct:
1004 ice_cleanup_fltr_mgmt_struct(hw);
1005err_unroll_sched:
1006 ice_sched_cleanup_all(hw);
1007err_unroll_alloc:
1008 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1009err_unroll_cqinit:
1010 ice_destroy_all_ctrlq(hw);
1011 return status;
1012}
1013
1014/**
1015 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1016 * @hw: pointer to the hardware structure
1017 *
1018 * This should be called only during nominal operation, not as a result of
1019 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1020 * applicable initializations if it fails for any reason.
1021 */
1022void ice_deinit_hw(struct ice_hw *hw)
1023{
1024 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1025 ice_cleanup_fltr_mgmt_struct(hw);
1026
1027 ice_sched_cleanup_all(hw);
1028 ice_sched_clear_agg(hw);
1029 ice_free_seg(hw);
1030 ice_free_hw_tbls(hw);
1031 mutex_destroy(&hw->tnl_lock);
1032
1033 if (hw->port_info) {
1034 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1035 hw->port_info = NULL;
1036 }
1037
1038 /* Attempt to disable FW logging before shutting down control queues */
1039 ice_cfg_fw_log(hw, false);
1040 ice_destroy_all_ctrlq(hw);
1041
1042 /* Clear VSI contexts if not already cleared */
1043 ice_clear_all_vsi_ctx(hw);
1044}
1045
1046/**
1047 * ice_check_reset - Check to see if a global reset is complete
1048 * @hw: pointer to the hardware structure
1049 */
1050enum ice_status ice_check_reset(struct ice_hw *hw)
1051{
1052 u32 cnt, reg = 0, grst_timeout, uld_mask;
1053
1054 /* Poll for Device Active state in case a recent CORER, GLOBR,
1055 * or EMPR has occurred. The grst delay value is in 100ms units.
1056 * Add 1sec for outstanding AQ commands that can take a long time.
1057 */
1058 grst_timeout = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
1059 GLGEN_RSTCTL_GRSTDEL_S) + 10;
1060
1061 for (cnt = 0; cnt < grst_timeout; cnt++) {
1062 mdelay(100);
1063 reg = rd32(hw, GLGEN_RSTAT);
1064 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1065 break;
1066 }
1067
1068 if (cnt == grst_timeout) {
1069 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1070 return ICE_ERR_RESET_FAILED;
1071 }
1072
1073#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1074 GLNVM_ULD_PCIER_DONE_1_M |\
1075 GLNVM_ULD_CORER_DONE_M |\
1076 GLNVM_ULD_GLOBR_DONE_M |\
1077 GLNVM_ULD_POR_DONE_M |\
1078 GLNVM_ULD_POR_DONE_1_M |\
1079 GLNVM_ULD_PCIER_DONE_2_M)
1080
1081 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1082 GLNVM_ULD_PE_DONE_M : 0);
1083
1084 /* Device is Active; check Global Reset processes are done */
1085 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1086 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1087 if (reg == uld_mask) {
1088 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1089 break;
1090 }
1091 mdelay(10);
1092 }
1093
1094 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1095 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1096 reg);
1097 return ICE_ERR_RESET_FAILED;
1098 }
1099
1100 return 0;
1101}
1102
1103/**
1104 * ice_pf_reset - Reset the PF
1105 * @hw: pointer to the hardware structure
1106 *
1107 * If a global reset has been triggered, this function checks
1108 * for its completion and then issues the PF reset
1109 */
1110static enum ice_status ice_pf_reset(struct ice_hw *hw)
1111{
1112 u32 cnt, reg;
1113
1114 /* If at function entry a global reset was already in progress, i.e.
1115 * state is not 'device active' or any of the reset done bits are not
1116 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1117 * global reset is done.
1118 */
1119 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1120 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1121 /* poll on global reset currently in progress until done */
1122 if (ice_check_reset(hw))
1123 return ICE_ERR_RESET_FAILED;
1124
1125 return 0;
1126 }
1127
1128 /* Reset the PF */
1129 reg = rd32(hw, PFGEN_CTRL);
1130
1131 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1132
1133 /* Wait for the PFR to complete. The wait time is the global config lock
1134 * timeout plus the PFR timeout which will account for a possible reset
1135 * that is occurring during a download package operation.
1136 */
1137 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1138 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1139 reg = rd32(hw, PFGEN_CTRL);
1140 if (!(reg & PFGEN_CTRL_PFSWR_M))
1141 break;
1142
1143 mdelay(1);
1144 }
1145
1146 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1147 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1148 return ICE_ERR_RESET_FAILED;
1149 }
1150
1151 return 0;
1152}
1153
1154/**
1155 * ice_reset - Perform different types of reset
1156 * @hw: pointer to the hardware structure
1157 * @req: reset request
1158 *
1159 * This function triggers a reset as specified by the req parameter.
1160 *
1161 * Note:
1162 * If anything other than a PF reset is triggered, PXE mode is restored.
1163 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1164 * interface has been restored in the rebuild flow.
1165 */
1166enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1167{
1168 u32 val = 0;
1169
1170 switch (req) {
1171 case ICE_RESET_PFR:
1172 return ice_pf_reset(hw);
1173 case ICE_RESET_CORER:
1174 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1175 val = GLGEN_RTRIG_CORER_M;
1176 break;
1177 case ICE_RESET_GLOBR:
1178 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1179 val = GLGEN_RTRIG_GLOBR_M;
1180 break;
1181 default:
1182 return ICE_ERR_PARAM;
1183 }
1184
1185 val |= rd32(hw, GLGEN_RTRIG);
1186 wr32(hw, GLGEN_RTRIG, val);
1187 ice_flush(hw);
1188
1189 /* wait for the FW to be ready */
1190 return ice_check_reset(hw);
1191}
1192
1193/**
1194 * ice_copy_rxq_ctx_to_hw
1195 * @hw: pointer to the hardware structure
1196 * @ice_rxq_ctx: pointer to the rxq context
1197 * @rxq_index: the index of the Rx queue
1198 *
1199 * Copies rxq context from dense structure to HW register space
1200 */
1201static enum ice_status
1202ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1203{
1204 u8 i;
1205
1206 if (!ice_rxq_ctx)
1207 return ICE_ERR_BAD_PTR;
1208
1209 if (rxq_index > QRX_CTRL_MAX_INDEX)
1210 return ICE_ERR_PARAM;
1211
1212 /* Copy each dword separately to HW */
1213 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1214 wr32(hw, QRX_CONTEXT(i, rxq_index),
1215 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1216
1217 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1218 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1219 }
1220
1221 return 0;
1222}
1223
1224/* LAN Rx Queue Context */
1225static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1226 /* Field Width LSB */
1227 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1228 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1229 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1230 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1231 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1232 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1233 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1234 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1235 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1236 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1237 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1238 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1239 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1240 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1241 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1242 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1243 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1244 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1245 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1246 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1247 { 0 }
1248};
1249
1250/**
1251 * ice_write_rxq_ctx
1252 * @hw: pointer to the hardware structure
1253 * @rlan_ctx: pointer to the rxq context
1254 * @rxq_index: the index of the Rx queue
1255 *
1256 * Converts rxq context from sparse to dense structure and then writes
1257 * it to HW register space and enables the hardware to prefetch descriptors
1258 * instead of only fetching them on demand
1259 */
1260enum ice_status
1261ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1262 u32 rxq_index)
1263{
1264 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1265
1266 if (!rlan_ctx)
1267 return ICE_ERR_BAD_PTR;
1268
1269 rlan_ctx->prefena = 1;
1270
1271 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1272 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1273}
1274
1275/* LAN Tx Queue Context */
1276const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1277 /* Field Width LSB */
1278 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1279 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1280 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1281 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1282 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1283 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1284 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1285 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1286 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1287 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1288 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1289 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1290 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1291 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1292 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1293 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1294 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1295 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1296 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1297 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1298 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1299 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1300 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1301 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1302 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1303 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1304 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1305 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1306 { 0 }
1307};
1308
1309/* Sideband Queue command wrappers */
1310
1311/**
1312 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1313 * @hw: pointer to the HW struct
1314 * @desc: descriptor describing the command
1315 * @buf: buffer to use for indirect commands (NULL for direct commands)
1316 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1317 * @cd: pointer to command details structure
1318 */
1319static int
1320ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1321 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1322{
1323 return ice_status_to_errno(ice_sq_send_cmd(hw, ice_get_sbq(hw),
1324 (struct ice_aq_desc *)desc,
1325 buf, buf_size, cd));
1326}
1327
1328/**
1329 * ice_sbq_rw_reg - Fill Sideband Queue command
1330 * @hw: pointer to the HW struct
1331 * @in: message info to be filled in descriptor
1332 */
1333int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1334{
1335 struct ice_sbq_cmd_desc desc = {0};
1336 struct ice_sbq_msg_req msg = {0};
1337 u16 msg_len;
1338 int status;
1339
1340 msg_len = sizeof(msg);
1341
1342 msg.dest_dev = in->dest_dev;
1343 msg.opcode = in->opcode;
1344 msg.flags = ICE_SBQ_MSG_FLAGS;
1345 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1346 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1347 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1348
1349 if (in->opcode)
1350 msg.data = cpu_to_le32(in->data);
1351 else
1352 /* data read comes back in completion, so shorten the struct by
1353 * sizeof(msg.data)
1354 */
1355 msg_len -= sizeof(msg.data);
1356
1357 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1358 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1359 desc.param0.cmd_len = cpu_to_le16(msg_len);
1360 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1361 if (!status && !in->opcode)
1362 in->data = le32_to_cpu
1363 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1364 return status;
1365}
1366
1367/* FW Admin Queue command wrappers */
1368
1369/* Software lock/mutex that is meant to be held while the Global Config Lock
1370 * in firmware is acquired by the software to prevent most (but not all) types
1371 * of AQ commands from being sent to FW
1372 */
1373DEFINE_MUTEX(ice_global_cfg_lock_sw);
1374
1375/**
1376 * ice_should_retry_sq_send_cmd
1377 * @opcode: AQ opcode
1378 *
1379 * Decide if we should retry the send command routine for the ATQ, depending
1380 * on the opcode.
1381 */
1382static bool ice_should_retry_sq_send_cmd(u16 opcode)
1383{
1384 switch (opcode) {
1385 case ice_aqc_opc_get_link_topo:
1386 case ice_aqc_opc_lldp_stop:
1387 case ice_aqc_opc_lldp_start:
1388 case ice_aqc_opc_lldp_filter_ctrl:
1389 return true;
1390 }
1391
1392 return false;
1393}
1394
1395/**
1396 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1397 * @hw: pointer to the HW struct
1398 * @cq: pointer to the specific Control queue
1399 * @desc: prefilled descriptor describing the command
1400 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1401 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1402 * @cd: pointer to command details structure
1403 *
1404 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1405 * Queue if the EBUSY AQ error is returned.
1406 */
1407static enum ice_status
1408ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1409 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1410 struct ice_sq_cd *cd)
1411{
1412 struct ice_aq_desc desc_cpy;
1413 enum ice_status status;
1414 bool is_cmd_for_retry;
1415 u8 *buf_cpy = NULL;
1416 u8 idx = 0;
1417 u16 opcode;
1418
1419 opcode = le16_to_cpu(desc->opcode);
1420 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1421 memset(&desc_cpy, 0, sizeof(desc_cpy));
1422
1423 if (is_cmd_for_retry) {
1424 if (buf) {
1425 buf_cpy = kzalloc(buf_size, GFP_KERNEL);
1426 if (!buf_cpy)
1427 return ICE_ERR_NO_MEMORY;
1428 }
1429
1430 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1431 }
1432
1433 do {
1434 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1435
1436 if (!is_cmd_for_retry || !status ||
1437 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1438 break;
1439
1440 if (buf_cpy)
1441 memcpy(buf, buf_cpy, buf_size);
1442
1443 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1444
1445 mdelay(ICE_SQ_SEND_DELAY_TIME_MS);
1446
1447 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1448
1449 kfree(buf_cpy);
1450
1451 return status;
1452}
1453
1454/**
1455 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1456 * @hw: pointer to the HW struct
1457 * @desc: descriptor describing the command
1458 * @buf: buffer to use for indirect commands (NULL for direct commands)
1459 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1460 * @cd: pointer to command details structure
1461 *
1462 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1463 */
1464enum ice_status
1465ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1466 u16 buf_size, struct ice_sq_cd *cd)
1467{
1468 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1469 bool lock_acquired = false;
1470 enum ice_status status;
1471
1472 /* When a package download is in process (i.e. when the firmware's
1473 * Global Configuration Lock resource is held), only the Download
1474 * Package, Get Version, Get Package Info List and Release Resource
1475 * (with resource ID set to Global Config Lock) AdminQ commands are
1476 * allowed; all others must block until the package download completes
1477 * and the Global Config Lock is released. See also
1478 * ice_acquire_global_cfg_lock().
1479 */
1480 switch (le16_to_cpu(desc->opcode)) {
1481 case ice_aqc_opc_download_pkg:
1482 case ice_aqc_opc_get_pkg_info_list:
1483 case ice_aqc_opc_get_ver:
1484 break;
1485 case ice_aqc_opc_release_res:
1486 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1487 break;
1488 fallthrough;
1489 default:
1490 mutex_lock(&ice_global_cfg_lock_sw);
1491 lock_acquired = true;
1492 break;
1493 }
1494
1495 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1496 if (lock_acquired)
1497 mutex_unlock(&ice_global_cfg_lock_sw);
1498
1499 return status;
1500}
1501
1502/**
1503 * ice_aq_get_fw_ver
1504 * @hw: pointer to the HW struct
1505 * @cd: pointer to command details structure or NULL
1506 *
1507 * Get the firmware version (0x0001) from the admin queue commands
1508 */
1509enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1510{
1511 struct ice_aqc_get_ver *resp;
1512 struct ice_aq_desc desc;
1513 enum ice_status status;
1514
1515 resp = &desc.params.get_ver;
1516
1517 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1518
1519 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1520
1521 if (!status) {
1522 hw->fw_branch = resp->fw_branch;
1523 hw->fw_maj_ver = resp->fw_major;
1524 hw->fw_min_ver = resp->fw_minor;
1525 hw->fw_patch = resp->fw_patch;
1526 hw->fw_build = le32_to_cpu(resp->fw_build);
1527 hw->api_branch = resp->api_branch;
1528 hw->api_maj_ver = resp->api_major;
1529 hw->api_min_ver = resp->api_minor;
1530 hw->api_patch = resp->api_patch;
1531 }
1532
1533 return status;
1534}
1535
1536/**
1537 * ice_aq_send_driver_ver
1538 * @hw: pointer to the HW struct
1539 * @dv: driver's major, minor version
1540 * @cd: pointer to command details structure or NULL
1541 *
1542 * Send the driver version (0x0002) to the firmware
1543 */
1544enum ice_status
1545ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1546 struct ice_sq_cd *cd)
1547{
1548 struct ice_aqc_driver_ver *cmd;
1549 struct ice_aq_desc desc;
1550 u16 len;
1551
1552 cmd = &desc.params.driver_ver;
1553
1554 if (!dv)
1555 return ICE_ERR_PARAM;
1556
1557 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1558
1559 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1560 cmd->major_ver = dv->major_ver;
1561 cmd->minor_ver = dv->minor_ver;
1562 cmd->build_ver = dv->build_ver;
1563 cmd->subbuild_ver = dv->subbuild_ver;
1564
1565 len = 0;
1566 while (len < sizeof(dv->driver_string) &&
1567 isascii(dv->driver_string[len]) && dv->driver_string[len])
1568 len++;
1569
1570 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1571}
1572
1573/**
1574 * ice_aq_q_shutdown
1575 * @hw: pointer to the HW struct
1576 * @unloading: is the driver unloading itself
1577 *
1578 * Tell the Firmware that we're shutting down the AdminQ and whether
1579 * or not the driver is unloading as well (0x0003).
1580 */
1581enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1582{
1583 struct ice_aqc_q_shutdown *cmd;
1584 struct ice_aq_desc desc;
1585
1586 cmd = &desc.params.q_shutdown;
1587
1588 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1589
1590 if (unloading)
1591 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1592
1593 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1594}
1595
1596/**
1597 * ice_aq_req_res
1598 * @hw: pointer to the HW struct
1599 * @res: resource ID
1600 * @access: access type
1601 * @sdp_number: resource number
1602 * @timeout: the maximum time in ms that the driver may hold the resource
1603 * @cd: pointer to command details structure or NULL
1604 *
1605 * Requests common resource using the admin queue commands (0x0008).
1606 * When attempting to acquire the Global Config Lock, the driver can
1607 * learn of three states:
1608 * 1) ICE_SUCCESS - acquired lock, and can perform download package
1609 * 2) ICE_ERR_AQ_ERROR - did not get lock, driver should fail to load
1610 * 3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1611 * successfully downloaded the package; the driver does
1612 * not have to download the package and can continue
1613 * loading
1614 *
1615 * Note that if the caller is in an acquire lock, perform action, release lock
1616 * phase of operation, it is possible that the FW may detect a timeout and issue
1617 * a CORER. In this case, the driver will receive a CORER interrupt and will
1618 * have to determine its cause. The calling thread that is handling this flow
1619 * will likely get an error propagated back to it indicating the Download
1620 * Package, Update Package or the Release Resource AQ commands timed out.
1621 */
1622static enum ice_status
1623ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1624 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1625 struct ice_sq_cd *cd)
1626{
1627 struct ice_aqc_req_res *cmd_resp;
1628 struct ice_aq_desc desc;
1629 enum ice_status status;
1630
1631 cmd_resp = &desc.params.res_owner;
1632
1633 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1634
1635 cmd_resp->res_id = cpu_to_le16(res);
1636 cmd_resp->access_type = cpu_to_le16(access);
1637 cmd_resp->res_number = cpu_to_le32(sdp_number);
1638 cmd_resp->timeout = cpu_to_le32(*timeout);
1639 *timeout = 0;
1640
1641 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1642
1643 /* The completion specifies the maximum time in ms that the driver
1644 * may hold the resource in the Timeout field.
1645 */
1646
1647 /* Global config lock response utilizes an additional status field.
1648 *
1649 * If the Global config lock resource is held by some other driver, the
1650 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1651 * and the timeout field indicates the maximum time the current owner
1652 * of the resource has to free it.
1653 */
1654 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1655 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1656 *timeout = le32_to_cpu(cmd_resp->timeout);
1657 return 0;
1658 } else if (le16_to_cpu(cmd_resp->status) ==
1659 ICE_AQ_RES_GLBL_IN_PROG) {
1660 *timeout = le32_to_cpu(cmd_resp->timeout);
1661 return ICE_ERR_AQ_ERROR;
1662 } else if (le16_to_cpu(cmd_resp->status) ==
1663 ICE_AQ_RES_GLBL_DONE) {
1664 return ICE_ERR_AQ_NO_WORK;
1665 }
1666
1667 /* invalid FW response, force a timeout immediately */
1668 *timeout = 0;
1669 return ICE_ERR_AQ_ERROR;
1670 }
1671
1672 /* If the resource is held by some other driver, the command completes
1673 * with a busy return value and the timeout field indicates the maximum
1674 * time the current owner of the resource has to free it.
1675 */
1676 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1677 *timeout = le32_to_cpu(cmd_resp->timeout);
1678
1679 return status;
1680}
1681
1682/**
1683 * ice_aq_release_res
1684 * @hw: pointer to the HW struct
1685 * @res: resource ID
1686 * @sdp_number: resource number
1687 * @cd: pointer to command details structure or NULL
1688 *
1689 * release common resource using the admin queue commands (0x0009)
1690 */
1691static enum ice_status
1692ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1693 struct ice_sq_cd *cd)
1694{
1695 struct ice_aqc_req_res *cmd;
1696 struct ice_aq_desc desc;
1697
1698 cmd = &desc.params.res_owner;
1699
1700 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1701
1702 cmd->res_id = cpu_to_le16(res);
1703 cmd->res_number = cpu_to_le32(sdp_number);
1704
1705 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1706}
1707
1708/**
1709 * ice_acquire_res
1710 * @hw: pointer to the HW structure
1711 * @res: resource ID
1712 * @access: access type (read or write)
1713 * @timeout: timeout in milliseconds
1714 *
1715 * This function will attempt to acquire the ownership of a resource.
1716 */
1717enum ice_status
1718ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1719 enum ice_aq_res_access_type access, u32 timeout)
1720{
1721#define ICE_RES_POLLING_DELAY_MS 10
1722 u32 delay = ICE_RES_POLLING_DELAY_MS;
1723 u32 time_left = timeout;
1724 enum ice_status status;
1725
1726 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1727
1728 /* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1729 * previously acquired the resource and performed any necessary updates;
1730 * in this case the caller does not obtain the resource and has no
1731 * further work to do.
1732 */
1733 if (status == ICE_ERR_AQ_NO_WORK)
1734 goto ice_acquire_res_exit;
1735
1736 if (status)
1737 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1738
1739 /* If necessary, poll until the current lock owner timeouts */
1740 timeout = time_left;
1741 while (status && timeout && time_left) {
1742 mdelay(delay);
1743 timeout = (timeout > delay) ? timeout - delay : 0;
1744 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1745
1746 if (status == ICE_ERR_AQ_NO_WORK)
1747 /* lock free, but no work to do */
1748 break;
1749
1750 if (!status)
1751 /* lock acquired */
1752 break;
1753 }
1754 if (status && status != ICE_ERR_AQ_NO_WORK)
1755 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1756
1757ice_acquire_res_exit:
1758 if (status == ICE_ERR_AQ_NO_WORK) {
1759 if (access == ICE_RES_WRITE)
1760 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1761 else
1762 ice_debug(hw, ICE_DBG_RES, "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1763 }
1764 return status;
1765}
1766
1767/**
1768 * ice_release_res
1769 * @hw: pointer to the HW structure
1770 * @res: resource ID
1771 *
1772 * This function will release a resource using the proper Admin Command.
1773 */
1774void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1775{
1776 enum ice_status status;
1777 u32 total_delay = 0;
1778
1779 status = ice_aq_release_res(hw, res, 0, NULL);
1780
1781 /* there are some rare cases when trying to release the resource
1782 * results in an admin queue timeout, so handle them correctly
1783 */
1784 while ((status == ICE_ERR_AQ_TIMEOUT) &&
1785 (total_delay < hw->adminq.sq_cmd_timeout)) {
1786 mdelay(1);
1787 status = ice_aq_release_res(hw, res, 0, NULL);
1788 total_delay++;
1789 }
1790}
1791
1792/**
1793 * ice_aq_alloc_free_res - command to allocate/free resources
1794 * @hw: pointer to the HW struct
1795 * @num_entries: number of resource entries in buffer
1796 * @buf: Indirect buffer to hold data parameters and response
1797 * @buf_size: size of buffer for indirect commands
1798 * @opc: pass in the command opcode
1799 * @cd: pointer to command details structure or NULL
1800 *
1801 * Helper function to allocate/free resources using the admin queue commands
1802 */
1803enum ice_status
1804ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries,
1805 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1806 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1807{
1808 struct ice_aqc_alloc_free_res_cmd *cmd;
1809 struct ice_aq_desc desc;
1810
1811 cmd = &desc.params.sw_res_ctrl;
1812
1813 if (!buf)
1814 return ICE_ERR_PARAM;
1815
1816 if (buf_size < flex_array_size(buf, elem, num_entries))
1817 return ICE_ERR_PARAM;
1818
1819 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1820
1821 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1822
1823 cmd->num_entries = cpu_to_le16(num_entries);
1824
1825 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1826}
1827
1828/**
1829 * ice_alloc_hw_res - allocate resource
1830 * @hw: pointer to the HW struct
1831 * @type: type of resource
1832 * @num: number of resources to allocate
1833 * @btm: allocate from bottom
1834 * @res: pointer to array that will receive the resources
1835 */
1836enum ice_status
1837ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1838{
1839 struct ice_aqc_alloc_free_res_elem *buf;
1840 enum ice_status status;
1841 u16 buf_len;
1842
1843 buf_len = struct_size(buf, elem, num);
1844 buf = kzalloc(buf_len, GFP_KERNEL);
1845 if (!buf)
1846 return ICE_ERR_NO_MEMORY;
1847
1848 /* Prepare buffer to allocate resource. */
1849 buf->num_elems = cpu_to_le16(num);
1850 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1851 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1852 if (btm)
1853 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1854
1855 status = ice_aq_alloc_free_res(hw, 1, buf, buf_len,
1856 ice_aqc_opc_alloc_res, NULL);
1857 if (status)
1858 goto ice_alloc_res_exit;
1859
1860 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1861
1862ice_alloc_res_exit:
1863 kfree(buf);
1864 return status;
1865}
1866
1867/**
1868 * ice_free_hw_res - free allocated HW resource
1869 * @hw: pointer to the HW struct
1870 * @type: type of resource to free
1871 * @num: number of resources
1872 * @res: pointer to array that contains the resources to free
1873 */
1874enum ice_status ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
1875{
1876 struct ice_aqc_alloc_free_res_elem *buf;
1877 enum ice_status status;
1878 u16 buf_len;
1879
1880 buf_len = struct_size(buf, elem, num);
1881 buf = kzalloc(buf_len, GFP_KERNEL);
1882 if (!buf)
1883 return ICE_ERR_NO_MEMORY;
1884
1885 /* Prepare buffer to free resource. */
1886 buf->num_elems = cpu_to_le16(num);
1887 buf->res_type = cpu_to_le16(type);
1888 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
1889
1890 status = ice_aq_alloc_free_res(hw, num, buf, buf_len,
1891 ice_aqc_opc_free_res, NULL);
1892 if (status)
1893 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
1894
1895 kfree(buf);
1896 return status;
1897}
1898
1899/**
1900 * ice_get_num_per_func - determine number of resources per PF
1901 * @hw: pointer to the HW structure
1902 * @max: value to be evenly split between each PF
1903 *
1904 * Determine the number of valid functions by going through the bitmap returned
1905 * from parsing capabilities and use this to calculate the number of resources
1906 * per PF based on the max value passed in.
1907 */
1908static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1909{
1910 u8 funcs;
1911
1912#define ICE_CAPS_VALID_FUNCS_M 0xFF
1913 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1914 ICE_CAPS_VALID_FUNCS_M);
1915
1916 if (!funcs)
1917 return 0;
1918
1919 return max / funcs;
1920}
1921
1922/**
1923 * ice_parse_common_caps - parse common device/function capabilities
1924 * @hw: pointer to the HW struct
1925 * @caps: pointer to common capabilities structure
1926 * @elem: the capability element to parse
1927 * @prefix: message prefix for tracing capabilities
1928 *
1929 * Given a capability element, extract relevant details into the common
1930 * capability structure.
1931 *
1932 * Returns: true if the capability matches one of the common capability ids,
1933 * false otherwise.
1934 */
1935static bool
1936ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
1937 struct ice_aqc_list_caps_elem *elem, const char *prefix)
1938{
1939 u32 logical_id = le32_to_cpu(elem->logical_id);
1940 u32 phys_id = le32_to_cpu(elem->phys_id);
1941 u32 number = le32_to_cpu(elem->number);
1942 u16 cap = le16_to_cpu(elem->cap);
1943 bool found = true;
1944
1945 switch (cap) {
1946 case ICE_AQC_CAPS_VALID_FUNCTIONS:
1947 caps->valid_functions = number;
1948 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
1949 caps->valid_functions);
1950 break;
1951 case ICE_AQC_CAPS_SRIOV:
1952 caps->sr_iov_1_1 = (number == 1);
1953 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
1954 caps->sr_iov_1_1);
1955 break;
1956 case ICE_AQC_CAPS_DCB:
1957 caps->dcb = (number == 1);
1958 caps->active_tc_bitmap = logical_id;
1959 caps->maxtc = phys_id;
1960 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
1961 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
1962 caps->active_tc_bitmap);
1963 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
1964 break;
1965 case ICE_AQC_CAPS_RSS:
1966 caps->rss_table_size = number;
1967 caps->rss_table_entry_width = logical_id;
1968 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
1969 caps->rss_table_size);
1970 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
1971 caps->rss_table_entry_width);
1972 break;
1973 case ICE_AQC_CAPS_RXQS:
1974 caps->num_rxq = number;
1975 caps->rxq_first_id = phys_id;
1976 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
1977 caps->num_rxq);
1978 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
1979 caps->rxq_first_id);
1980 break;
1981 case ICE_AQC_CAPS_TXQS:
1982 caps->num_txq = number;
1983 caps->txq_first_id = phys_id;
1984 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
1985 caps->num_txq);
1986 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
1987 caps->txq_first_id);
1988 break;
1989 case ICE_AQC_CAPS_MSIX:
1990 caps->num_msix_vectors = number;
1991 caps->msix_vector_first_id = phys_id;
1992 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
1993 caps->num_msix_vectors);
1994 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
1995 caps->msix_vector_first_id);
1996 break;
1997 case ICE_AQC_CAPS_PENDING_NVM_VER:
1998 caps->nvm_update_pending_nvm = true;
1999 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2000 break;
2001 case ICE_AQC_CAPS_PENDING_OROM_VER:
2002 caps->nvm_update_pending_orom = true;
2003 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2004 break;
2005 case ICE_AQC_CAPS_PENDING_NET_VER:
2006 caps->nvm_update_pending_netlist = true;
2007 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2008 break;
2009 case ICE_AQC_CAPS_NVM_MGMT:
2010 caps->nvm_unified_update =
2011 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2012 true : false;
2013 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2014 caps->nvm_unified_update);
2015 break;
2016 case ICE_AQC_CAPS_RDMA:
2017 caps->rdma = (number == 1);
2018 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2019 break;
2020 case ICE_AQC_CAPS_MAX_MTU:
2021 caps->max_mtu = number;
2022 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2023 prefix, caps->max_mtu);
2024 break;
2025 default:
2026 /* Not one of the recognized common capabilities */
2027 found = false;
2028 }
2029
2030 return found;
2031}
2032
2033/**
2034 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2035 * @hw: pointer to the HW structure
2036 * @caps: pointer to capabilities structure to fix
2037 *
2038 * Re-calculate the capabilities that are dependent on the number of physical
2039 * ports; i.e. some features are not supported or function differently on
2040 * devices with more than 4 ports.
2041 */
2042static void
2043ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2044{
2045 /* This assumes device capabilities are always scanned before function
2046 * capabilities during the initialization flow.
2047 */
2048 if (hw->dev_caps.num_funcs > 4) {
2049 /* Max 4 TCs per port */
2050 caps->maxtc = 4;
2051 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2052 caps->maxtc);
2053 if (caps->rdma) {
2054 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2055 caps->rdma = 0;
2056 }
2057
2058 /* print message only when processing device capabilities
2059 * during initialization.
2060 */
2061 if (caps == &hw->dev_caps.common_cap)
2062 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2063 }
2064}
2065
2066/**
2067 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2068 * @hw: pointer to the HW struct
2069 * @func_p: pointer to function capabilities structure
2070 * @cap: pointer to the capability element to parse
2071 *
2072 * Extract function capabilities for ICE_AQC_CAPS_VF.
2073 */
2074static void
2075ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2076 struct ice_aqc_list_caps_elem *cap)
2077{
2078 u32 logical_id = le32_to_cpu(cap->logical_id);
2079 u32 number = le32_to_cpu(cap->number);
2080
2081 func_p->num_allocd_vfs = number;
2082 func_p->vf_base_id = logical_id;
2083 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2084 func_p->num_allocd_vfs);
2085 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2086 func_p->vf_base_id);
2087}
2088
2089/**
2090 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2091 * @hw: pointer to the HW struct
2092 * @func_p: pointer to function capabilities structure
2093 * @cap: pointer to the capability element to parse
2094 *
2095 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2096 */
2097static void
2098ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2099 struct ice_aqc_list_caps_elem *cap)
2100{
2101 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2102 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2103 le32_to_cpu(cap->number));
2104 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2105 func_p->guar_num_vsi);
2106}
2107
2108/**
2109 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2110 * @hw: pointer to the HW struct
2111 * @func_p: pointer to function capabilities structure
2112 * @cap: pointer to the capability element to parse
2113 *
2114 * Extract function capabilities for ICE_AQC_CAPS_1588.
2115 */
2116static void
2117ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2118 struct ice_aqc_list_caps_elem *cap)
2119{
2120 struct ice_ts_func_info *info = &func_p->ts_func_info;
2121 u32 number = le32_to_cpu(cap->number);
2122
2123 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2124 func_p->common_cap.ieee_1588 = info->ena;
2125
2126 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2127 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2128 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2129 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2130
2131 info->clk_freq = (number & ICE_TS_CLK_FREQ_M) >> ICE_TS_CLK_FREQ_S;
2132 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2133
2134 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2135 func_p->common_cap.ieee_1588);
2136 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2137 info->src_tmr_owned);
2138 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2139 info->tmr_ena);
2140 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2141 info->tmr_index_owned);
2142 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2143 info->tmr_index_assoc);
2144 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2145 info->clk_freq);
2146 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2147 info->clk_src);
2148}
2149
2150/**
2151 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2152 * @hw: pointer to the HW struct
2153 * @func_p: pointer to function capabilities structure
2154 *
2155 * Extract function capabilities for ICE_AQC_CAPS_FD.
2156 */
2157static void
2158ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2159{
2160 u32 reg_val, val;
2161
2162 reg_val = rd32(hw, GLQF_FD_SIZE);
2163 val = (reg_val & GLQF_FD_SIZE_FD_GSIZE_M) >>
2164 GLQF_FD_SIZE_FD_GSIZE_S;
2165 func_p->fd_fltr_guar =
2166 ice_get_num_per_func(hw, val);
2167 val = (reg_val & GLQF_FD_SIZE_FD_BSIZE_M) >>
2168 GLQF_FD_SIZE_FD_BSIZE_S;
2169 func_p->fd_fltr_best_effort = val;
2170
2171 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2172 func_p->fd_fltr_guar);
2173 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2174 func_p->fd_fltr_best_effort);
2175}
2176
2177/**
2178 * ice_parse_func_caps - Parse function capabilities
2179 * @hw: pointer to the HW struct
2180 * @func_p: pointer to function capabilities structure
2181 * @buf: buffer containing the function capability records
2182 * @cap_count: the number of capabilities
2183 *
2184 * Helper function to parse function (0x000A) capabilities list. For
2185 * capabilities shared between device and function, this relies on
2186 * ice_parse_common_caps.
2187 *
2188 * Loop through the list of provided capabilities and extract the relevant
2189 * data into the function capabilities structured.
2190 */
2191static void
2192ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2193 void *buf, u32 cap_count)
2194{
2195 struct ice_aqc_list_caps_elem *cap_resp;
2196 u32 i;
2197
2198 cap_resp = buf;
2199
2200 memset(func_p, 0, sizeof(*func_p));
2201
2202 for (i = 0; i < cap_count; i++) {
2203 u16 cap = le16_to_cpu(cap_resp[i].cap);
2204 bool found;
2205
2206 found = ice_parse_common_caps(hw, &func_p->common_cap,
2207 &cap_resp[i], "func caps");
2208
2209 switch (cap) {
2210 case ICE_AQC_CAPS_VF:
2211 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2212 break;
2213 case ICE_AQC_CAPS_VSI:
2214 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2215 break;
2216 case ICE_AQC_CAPS_1588:
2217 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2218 break;
2219 case ICE_AQC_CAPS_FD:
2220 ice_parse_fdir_func_caps(hw, func_p);
2221 break;
2222 default:
2223 /* Don't list common capabilities as unknown */
2224 if (!found)
2225 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2226 i, cap);
2227 break;
2228 }
2229 }
2230
2231 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2232}
2233
2234/**
2235 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2236 * @hw: pointer to the HW struct
2237 * @dev_p: pointer to device capabilities structure
2238 * @cap: capability element to parse
2239 *
2240 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2241 */
2242static void
2243ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2244 struct ice_aqc_list_caps_elem *cap)
2245{
2246 u32 number = le32_to_cpu(cap->number);
2247
2248 dev_p->num_funcs = hweight32(number);
2249 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2250 dev_p->num_funcs);
2251}
2252
2253/**
2254 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2255 * @hw: pointer to the HW struct
2256 * @dev_p: pointer to device capabilities structure
2257 * @cap: capability element to parse
2258 *
2259 * Parse ICE_AQC_CAPS_VF for device capabilities.
2260 */
2261static void
2262ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2263 struct ice_aqc_list_caps_elem *cap)
2264{
2265 u32 number = le32_to_cpu(cap->number);
2266
2267 dev_p->num_vfs_exposed = number;
2268 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2269 dev_p->num_vfs_exposed);
2270}
2271
2272/**
2273 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2274 * @hw: pointer to the HW struct
2275 * @dev_p: pointer to device capabilities structure
2276 * @cap: capability element to parse
2277 *
2278 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2279 */
2280static void
2281ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2282 struct ice_aqc_list_caps_elem *cap)
2283{
2284 u32 number = le32_to_cpu(cap->number);
2285
2286 dev_p->num_vsi_allocd_to_host = number;
2287 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2288 dev_p->num_vsi_allocd_to_host);
2289}
2290
2291/**
2292 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2293 * @hw: pointer to the HW struct
2294 * @dev_p: pointer to device capabilities structure
2295 * @cap: capability element to parse
2296 *
2297 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2298 */
2299static void
2300ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2301 struct ice_aqc_list_caps_elem *cap)
2302{
2303 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2304 u32 logical_id = le32_to_cpu(cap->logical_id);
2305 u32 phys_id = le32_to_cpu(cap->phys_id);
2306 u32 number = le32_to_cpu(cap->number);
2307
2308 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2309 dev_p->common_cap.ieee_1588 = info->ena;
2310
2311 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2312 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2313 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2314
2315 info->tmr1_owner = (number & ICE_TS_TMR1_OWNR_M) >> ICE_TS_TMR1_OWNR_S;
2316 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2317 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2318
2319 info->ena_ports = logical_id;
2320 info->tmr_own_map = phys_id;
2321
2322 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2323 dev_p->common_cap.ieee_1588);
2324 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2325 info->tmr0_owner);
2326 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2327 info->tmr0_owned);
2328 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2329 info->tmr0_ena);
2330 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2331 info->tmr1_owner);
2332 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2333 info->tmr1_owned);
2334 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2335 info->tmr1_ena);
2336 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2337 info->ena_ports);
2338 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2339 info->tmr_own_map);
2340}
2341
2342/**
2343 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2344 * @hw: pointer to the HW struct
2345 * @dev_p: pointer to device capabilities structure
2346 * @cap: capability element to parse
2347 *
2348 * Parse ICE_AQC_CAPS_FD for device capabilities.
2349 */
2350static void
2351ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2352 struct ice_aqc_list_caps_elem *cap)
2353{
2354 u32 number = le32_to_cpu(cap->number);
2355
2356 dev_p->num_flow_director_fltr = number;
2357 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2358 dev_p->num_flow_director_fltr);
2359}
2360
2361/**
2362 * ice_parse_dev_caps - Parse device capabilities
2363 * @hw: pointer to the HW struct
2364 * @dev_p: pointer to device capabilities structure
2365 * @buf: buffer containing the device capability records
2366 * @cap_count: the number of capabilities
2367 *
2368 * Helper device to parse device (0x000B) capabilities list. For
2369 * capabilities shared between device and function, this relies on
2370 * ice_parse_common_caps.
2371 *
2372 * Loop through the list of provided capabilities and extract the relevant
2373 * data into the device capabilities structured.
2374 */
2375static void
2376ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2377 void *buf, u32 cap_count)
2378{
2379 struct ice_aqc_list_caps_elem *cap_resp;
2380 u32 i;
2381
2382 cap_resp = buf;
2383
2384 memset(dev_p, 0, sizeof(*dev_p));
2385
2386 for (i = 0; i < cap_count; i++) {
2387 u16 cap = le16_to_cpu(cap_resp[i].cap);
2388 bool found;
2389
2390 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2391 &cap_resp[i], "dev caps");
2392
2393 switch (cap) {
2394 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2395 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2396 break;
2397 case ICE_AQC_CAPS_VF:
2398 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2399 break;
2400 case ICE_AQC_CAPS_VSI:
2401 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2402 break;
2403 case ICE_AQC_CAPS_1588:
2404 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2405 break;
2406 case ICE_AQC_CAPS_FD:
2407 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2408 break;
2409 default:
2410 /* Don't list common capabilities as unknown */
2411 if (!found)
2412 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2413 i, cap);
2414 break;
2415 }
2416 }
2417
2418 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2419}
2420
2421/**
2422 * ice_aq_list_caps - query function/device capabilities
2423 * @hw: pointer to the HW struct
2424 * @buf: a buffer to hold the capabilities
2425 * @buf_size: size of the buffer
2426 * @cap_count: if not NULL, set to the number of capabilities reported
2427 * @opc: capabilities type to discover, device or function
2428 * @cd: pointer to command details structure or NULL
2429 *
2430 * Get the function (0x000A) or device (0x000B) capabilities description from
2431 * firmware and store it in the buffer.
2432 *
2433 * If the cap_count pointer is not NULL, then it is set to the number of
2434 * capabilities firmware will report. Note that if the buffer size is too
2435 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2436 * cap_count will still be updated in this case. It is recommended that the
2437 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2438 * firmware could return) to avoid this.
2439 */
2440enum ice_status
2441ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2442 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2443{
2444 struct ice_aqc_list_caps *cmd;
2445 struct ice_aq_desc desc;
2446 enum ice_status status;
2447
2448 cmd = &desc.params.get_cap;
2449
2450 if (opc != ice_aqc_opc_list_func_caps &&
2451 opc != ice_aqc_opc_list_dev_caps)
2452 return ICE_ERR_PARAM;
2453
2454 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2455 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2456
2457 if (cap_count)
2458 *cap_count = le32_to_cpu(cmd->count);
2459
2460 return status;
2461}
2462
2463/**
2464 * ice_discover_dev_caps - Read and extract device capabilities
2465 * @hw: pointer to the hardware structure
2466 * @dev_caps: pointer to device capabilities structure
2467 *
2468 * Read the device capabilities and extract them into the dev_caps structure
2469 * for later use.
2470 */
2471enum ice_status
2472ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2473{
2474 enum ice_status status;
2475 u32 cap_count = 0;
2476 void *cbuf;
2477
2478 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2479 if (!cbuf)
2480 return ICE_ERR_NO_MEMORY;
2481
2482 /* Although the driver doesn't know the number of capabilities the
2483 * device will return, we can simply send a 4KB buffer, the maximum
2484 * possible size that firmware can return.
2485 */
2486 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2487
2488 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2489 ice_aqc_opc_list_dev_caps, NULL);
2490 if (!status)
2491 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2492 kfree(cbuf);
2493
2494 return status;
2495}
2496
2497/**
2498 * ice_discover_func_caps - Read and extract function capabilities
2499 * @hw: pointer to the hardware structure
2500 * @func_caps: pointer to function capabilities structure
2501 *
2502 * Read the function capabilities and extract them into the func_caps structure
2503 * for later use.
2504 */
2505static enum ice_status
2506ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2507{
2508 enum ice_status status;
2509 u32 cap_count = 0;
2510 void *cbuf;
2511
2512 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2513 if (!cbuf)
2514 return ICE_ERR_NO_MEMORY;
2515
2516 /* Although the driver doesn't know the number of capabilities the
2517 * device will return, we can simply send a 4KB buffer, the maximum
2518 * possible size that firmware can return.
2519 */
2520 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2521
2522 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2523 ice_aqc_opc_list_func_caps, NULL);
2524 if (!status)
2525 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2526 kfree(cbuf);
2527
2528 return status;
2529}
2530
2531/**
2532 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2533 * @hw: pointer to the hardware structure
2534 */
2535void ice_set_safe_mode_caps(struct ice_hw *hw)
2536{
2537 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2538 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2539 struct ice_hw_common_caps cached_caps;
2540 u32 num_funcs;
2541
2542 /* cache some func_caps values that should be restored after memset */
2543 cached_caps = func_caps->common_cap;
2544
2545 /* unset func capabilities */
2546 memset(func_caps, 0, sizeof(*func_caps));
2547
2548#define ICE_RESTORE_FUNC_CAP(name) \
2549 func_caps->common_cap.name = cached_caps.name
2550
2551 /* restore cached values */
2552 ICE_RESTORE_FUNC_CAP(valid_functions);
2553 ICE_RESTORE_FUNC_CAP(txq_first_id);
2554 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2555 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2556 ICE_RESTORE_FUNC_CAP(max_mtu);
2557 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2558 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2559 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2560 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2561
2562 /* one Tx and one Rx queue in safe mode */
2563 func_caps->common_cap.num_rxq = 1;
2564 func_caps->common_cap.num_txq = 1;
2565
2566 /* two MSIX vectors, one for traffic and one for misc causes */
2567 func_caps->common_cap.num_msix_vectors = 2;
2568 func_caps->guar_num_vsi = 1;
2569
2570 /* cache some dev_caps values that should be restored after memset */
2571 cached_caps = dev_caps->common_cap;
2572 num_funcs = dev_caps->num_funcs;
2573
2574 /* unset dev capabilities */
2575 memset(dev_caps, 0, sizeof(*dev_caps));
2576
2577#define ICE_RESTORE_DEV_CAP(name) \
2578 dev_caps->common_cap.name = cached_caps.name
2579
2580 /* restore cached values */
2581 ICE_RESTORE_DEV_CAP(valid_functions);
2582 ICE_RESTORE_DEV_CAP(txq_first_id);
2583 ICE_RESTORE_DEV_CAP(rxq_first_id);
2584 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2585 ICE_RESTORE_DEV_CAP(max_mtu);
2586 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2587 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2588 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2589 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2590 dev_caps->num_funcs = num_funcs;
2591
2592 /* one Tx and one Rx queue per function in safe mode */
2593 dev_caps->common_cap.num_rxq = num_funcs;
2594 dev_caps->common_cap.num_txq = num_funcs;
2595
2596 /* two MSIX vectors per function */
2597 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2598}
2599
2600/**
2601 * ice_get_caps - get info about the HW
2602 * @hw: pointer to the hardware structure
2603 */
2604enum ice_status ice_get_caps(struct ice_hw *hw)
2605{
2606 enum ice_status status;
2607
2608 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2609 if (status)
2610 return status;
2611
2612 return ice_discover_func_caps(hw, &hw->func_caps);
2613}
2614
2615/**
2616 * ice_aq_manage_mac_write - manage MAC address write command
2617 * @hw: pointer to the HW struct
2618 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2619 * @flags: flags to control write behavior
2620 * @cd: pointer to command details structure or NULL
2621 *
2622 * This function is used to write MAC address to the NVM (0x0108).
2623 */
2624enum ice_status
2625ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2626 struct ice_sq_cd *cd)
2627{
2628 struct ice_aqc_manage_mac_write *cmd;
2629 struct ice_aq_desc desc;
2630
2631 cmd = &desc.params.mac_write;
2632 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2633
2634 cmd->flags = flags;
2635 ether_addr_copy(cmd->mac_addr, mac_addr);
2636
2637 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2638}
2639
2640/**
2641 * ice_aq_clear_pxe_mode
2642 * @hw: pointer to the HW struct
2643 *
2644 * Tell the firmware that the driver is taking over from PXE (0x0110).
2645 */
2646static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
2647{
2648 struct ice_aq_desc desc;
2649
2650 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2651 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2652
2653 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2654}
2655
2656/**
2657 * ice_clear_pxe_mode - clear pxe operations mode
2658 * @hw: pointer to the HW struct
2659 *
2660 * Make sure all PXE mode settings are cleared, including things
2661 * like descriptor fetch/write-back mode.
2662 */
2663void ice_clear_pxe_mode(struct ice_hw *hw)
2664{
2665 if (ice_check_sq_alive(hw, &hw->adminq))
2666 ice_aq_clear_pxe_mode(hw);
2667}
2668
2669/**
2670 * ice_get_link_speed_based_on_phy_type - returns link speed
2671 * @phy_type_low: lower part of phy_type
2672 * @phy_type_high: higher part of phy_type
2673 *
2674 * This helper function will convert an entry in PHY type structure
2675 * [phy_type_low, phy_type_high] to its corresponding link speed.
2676 * Note: In the structure of [phy_type_low, phy_type_high], there should
2677 * be one bit set, as this function will convert one PHY type to its
2678 * speed.
2679 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2680 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2681 */
2682static u16
2683ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2684{
2685 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2686 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2687
2688 switch (phy_type_low) {
2689 case ICE_PHY_TYPE_LOW_100BASE_TX:
2690 case ICE_PHY_TYPE_LOW_100M_SGMII:
2691 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2692 break;
2693 case ICE_PHY_TYPE_LOW_1000BASE_T:
2694 case ICE_PHY_TYPE_LOW_1000BASE_SX:
2695 case ICE_PHY_TYPE_LOW_1000BASE_LX:
2696 case ICE_PHY_TYPE_LOW_1000BASE_KX:
2697 case ICE_PHY_TYPE_LOW_1G_SGMII:
2698 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2699 break;
2700 case ICE_PHY_TYPE_LOW_2500BASE_T:
2701 case ICE_PHY_TYPE_LOW_2500BASE_X:
2702 case ICE_PHY_TYPE_LOW_2500BASE_KX:
2703 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2704 break;
2705 case ICE_PHY_TYPE_LOW_5GBASE_T:
2706 case ICE_PHY_TYPE_LOW_5GBASE_KR:
2707 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2708 break;
2709 case ICE_PHY_TYPE_LOW_10GBASE_T:
2710 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2711 case ICE_PHY_TYPE_LOW_10GBASE_SR:
2712 case ICE_PHY_TYPE_LOW_10GBASE_LR:
2713 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2714 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2715 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2716 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2717 break;
2718 case ICE_PHY_TYPE_LOW_25GBASE_T:
2719 case ICE_PHY_TYPE_LOW_25GBASE_CR:
2720 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2721 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2722 case ICE_PHY_TYPE_LOW_25GBASE_SR:
2723 case ICE_PHY_TYPE_LOW_25GBASE_LR:
2724 case ICE_PHY_TYPE_LOW_25GBASE_KR:
2725 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2726 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2727 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2728 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2729 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2730 break;
2731 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2732 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2733 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2734 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2735 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2736 case ICE_PHY_TYPE_LOW_40G_XLAUI:
2737 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2738 break;
2739 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2740 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2741 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2742 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2743 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2744 case ICE_PHY_TYPE_LOW_50G_LAUI2:
2745 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2746 case ICE_PHY_TYPE_LOW_50G_AUI2:
2747 case ICE_PHY_TYPE_LOW_50GBASE_CP:
2748 case ICE_PHY_TYPE_LOW_50GBASE_SR:
2749 case ICE_PHY_TYPE_LOW_50GBASE_FR:
2750 case ICE_PHY_TYPE_LOW_50GBASE_LR:
2751 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2752 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2753 case ICE_PHY_TYPE_LOW_50G_AUI1:
2754 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2755 break;
2756 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2757 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2758 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2759 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2760 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2761 case ICE_PHY_TYPE_LOW_100G_CAUI4:
2762 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2763 case ICE_PHY_TYPE_LOW_100G_AUI4:
2764 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2765 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2766 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2767 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2768 case ICE_PHY_TYPE_LOW_100GBASE_DR:
2769 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2770 break;
2771 default:
2772 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2773 break;
2774 }
2775
2776 switch (phy_type_high) {
2777 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2778 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2779 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2780 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2781 case ICE_PHY_TYPE_HIGH_100G_AUI2:
2782 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2783 break;
2784 default:
2785 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2786 break;
2787 }
2788
2789 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2790 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2791 return ICE_AQ_LINK_SPEED_UNKNOWN;
2792 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2793 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2794 return ICE_AQ_LINK_SPEED_UNKNOWN;
2795 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2796 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2797 return speed_phy_type_low;
2798 else
2799 return speed_phy_type_high;
2800}
2801
2802/**
2803 * ice_update_phy_type
2804 * @phy_type_low: pointer to the lower part of phy_type
2805 * @phy_type_high: pointer to the higher part of phy_type
2806 * @link_speeds_bitmap: targeted link speeds bitmap
2807 *
2808 * Note: For the link_speeds_bitmap structure, you can check it at
2809 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2810 * link_speeds_bitmap include multiple speeds.
2811 *
2812 * Each entry in this [phy_type_low, phy_type_high] structure will
2813 * present a certain link speed. This helper function will turn on bits
2814 * in [phy_type_low, phy_type_high] structure based on the value of
2815 * link_speeds_bitmap input parameter.
2816 */
2817void
2818ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2819 u16 link_speeds_bitmap)
2820{
2821 u64 pt_high;
2822 u64 pt_low;
2823 int index;
2824 u16 speed;
2825
2826 /* We first check with low part of phy_type */
2827 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2828 pt_low = BIT_ULL(index);
2829 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2830
2831 if (link_speeds_bitmap & speed)
2832 *phy_type_low |= BIT_ULL(index);
2833 }
2834
2835 /* We then check with high part of phy_type */
2836 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2837 pt_high = BIT_ULL(index);
2838 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2839
2840 if (link_speeds_bitmap & speed)
2841 *phy_type_high |= BIT_ULL(index);
2842 }
2843}
2844
2845/**
2846 * ice_aq_set_phy_cfg
2847 * @hw: pointer to the HW struct
2848 * @pi: port info structure of the interested logical port
2849 * @cfg: structure with PHY configuration data to be set
2850 * @cd: pointer to command details structure or NULL
2851 *
2852 * Set the various PHY configuration parameters supported on the Port.
2853 * One or more of the Set PHY config parameters may be ignored in an MFP
2854 * mode as the PF may not have the privilege to set some of the PHY Config
2855 * parameters. This status will be indicated by the command response (0x0601).
2856 */
2857enum ice_status
2858ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
2859 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2860{
2861 struct ice_aq_desc desc;
2862 enum ice_status status;
2863
2864 if (!cfg)
2865 return ICE_ERR_PARAM;
2866
2867 /* Ensure that only valid bits of cfg->caps can be turned on. */
2868 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2869 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2870 cfg->caps);
2871
2872 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2873 }
2874
2875 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2876 desc.params.set_phy.lport_num = pi->lport;
2877 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2878
2879 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
2880 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
2881 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2882 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
2883 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2884 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
2885 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
2886 cfg->low_power_ctrl_an);
2887 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
2888 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
2889 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
2890 cfg->link_fec_opt);
2891
2892 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
2893 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
2894 status = 0;
2895
2896 if (!status)
2897 pi->phy.curr_user_phy_cfg = *cfg;
2898
2899 return status;
2900}
2901
2902/**
2903 * ice_update_link_info - update status of the HW network link
2904 * @pi: port info structure of the interested logical port
2905 */
2906enum ice_status ice_update_link_info(struct ice_port_info *pi)
2907{
2908 struct ice_link_status *li;
2909 enum ice_status status;
2910
2911 if (!pi)
2912 return ICE_ERR_PARAM;
2913
2914 li = &pi->phy.link_info;
2915
2916 status = ice_aq_get_link_info(pi, true, NULL, NULL);
2917 if (status)
2918 return status;
2919
2920 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2921 struct ice_aqc_get_phy_caps_data *pcaps;
2922 struct ice_hw *hw;
2923
2924 hw = pi->hw;
2925 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2926 GFP_KERNEL);
2927 if (!pcaps)
2928 return ICE_ERR_NO_MEMORY;
2929
2930 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2931 pcaps, NULL);
2932
2933 devm_kfree(ice_hw_to_dev(hw), pcaps);
2934 }
2935
2936 return status;
2937}
2938
2939/**
2940 * ice_cache_phy_user_req
2941 * @pi: port information structure
2942 * @cache_data: PHY logging data
2943 * @cache_mode: PHY logging mode
2944 *
2945 * Log the user request on (FC, FEC, SPEED) for later use.
2946 */
2947static void
2948ice_cache_phy_user_req(struct ice_port_info *pi,
2949 struct ice_phy_cache_mode_data cache_data,
2950 enum ice_phy_cache_mode cache_mode)
2951{
2952 if (!pi)
2953 return;
2954
2955 switch (cache_mode) {
2956 case ICE_FC_MODE:
2957 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
2958 break;
2959 case ICE_SPEED_MODE:
2960 pi->phy.curr_user_speed_req =
2961 cache_data.data.curr_user_speed_req;
2962 break;
2963 case ICE_FEC_MODE:
2964 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
2965 break;
2966 default:
2967 break;
2968 }
2969}
2970
2971/**
2972 * ice_caps_to_fc_mode
2973 * @caps: PHY capabilities
2974 *
2975 * Convert PHY FC capabilities to ice FC mode
2976 */
2977enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
2978{
2979 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
2980 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2981 return ICE_FC_FULL;
2982
2983 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
2984 return ICE_FC_TX_PAUSE;
2985
2986 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
2987 return ICE_FC_RX_PAUSE;
2988
2989 return ICE_FC_NONE;
2990}
2991
2992/**
2993 * ice_caps_to_fec_mode
2994 * @caps: PHY capabilities
2995 * @fec_options: Link FEC options
2996 *
2997 * Convert PHY FEC capabilities to ice FEC mode
2998 */
2999enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3000{
3001 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3002 return ICE_FEC_AUTO;
3003
3004 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3005 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3006 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3007 ICE_AQC_PHY_FEC_25G_KR_REQ))
3008 return ICE_FEC_BASER;
3009
3010 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3011 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3012 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3013 return ICE_FEC_RS;
3014
3015 return ICE_FEC_NONE;
3016}
3017
3018/**
3019 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3020 * @pi: port information structure
3021 * @cfg: PHY configuration data to set FC mode
3022 * @req_mode: FC mode to configure
3023 */
3024enum ice_status
3025ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3026 enum ice_fc_mode req_mode)
3027{
3028 struct ice_phy_cache_mode_data cache_data;
3029 u8 pause_mask = 0x0;
3030
3031 if (!pi || !cfg)
3032 return ICE_ERR_BAD_PTR;
3033
3034 switch (req_mode) {
3035 case ICE_FC_FULL:
3036 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3037 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3038 break;
3039 case ICE_FC_RX_PAUSE:
3040 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3041 break;
3042 case ICE_FC_TX_PAUSE:
3043 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3044 break;
3045 default:
3046 break;
3047 }
3048
3049 /* clear the old pause settings */
3050 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3051 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3052
3053 /* set the new capabilities */
3054 cfg->caps |= pause_mask;
3055
3056 /* Cache user FC request */
3057 cache_data.data.curr_user_fc_req = req_mode;
3058 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3059
3060 return 0;
3061}
3062
3063/**
3064 * ice_set_fc
3065 * @pi: port information structure
3066 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3067 * @ena_auto_link_update: enable automatic link update
3068 *
3069 * Set the requested flow control mode.
3070 */
3071enum ice_status
3072ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3073{
3074 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3075 struct ice_aqc_get_phy_caps_data *pcaps;
3076 enum ice_status status;
3077 struct ice_hw *hw;
3078
3079 if (!pi || !aq_failures)
3080 return ICE_ERR_BAD_PTR;
3081
3082 *aq_failures = 0;
3083 hw = pi->hw;
3084
3085 pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
3086 if (!pcaps)
3087 return ICE_ERR_NO_MEMORY;
3088
3089 /* Get the current PHY config */
3090 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3091 pcaps, NULL);
3092 if (status) {
3093 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3094 goto out;
3095 }
3096
3097 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3098
3099 /* Configure the set PHY data */
3100 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3101 if (status)
3102 goto out;
3103
3104 /* If the capabilities have changed, then set the new config */
3105 if (cfg.caps != pcaps->caps) {
3106 int retry_count, retry_max = 10;
3107
3108 /* Auto restart link so settings take effect */
3109 if (ena_auto_link_update)
3110 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3111
3112 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3113 if (status) {
3114 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3115 goto out;
3116 }
3117
3118 /* Update the link info
3119 * It sometimes takes a really long time for link to
3120 * come back from the atomic reset. Thus, we wait a
3121 * little bit.
3122 */
3123 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3124 status = ice_update_link_info(pi);
3125
3126 if (!status)
3127 break;
3128
3129 mdelay(100);
3130 }
3131
3132 if (status)
3133 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3134 }
3135
3136out:
3137 devm_kfree(ice_hw_to_dev(hw), pcaps);
3138 return status;
3139}
3140
3141/**
3142 * ice_phy_caps_equals_cfg
3143 * @phy_caps: PHY capabilities
3144 * @phy_cfg: PHY configuration
3145 *
3146 * Helper function to determine if PHY capabilities matches PHY
3147 * configuration
3148 */
3149bool
3150ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3151 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3152{
3153 u8 caps_mask, cfg_mask;
3154
3155 if (!phy_caps || !phy_cfg)
3156 return false;
3157
3158 /* These bits are not common between capabilities and configuration.
3159 * Do not use them to determine equality.
3160 */
3161 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3162 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3163 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3164
3165 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3166 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3167 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3168 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3169 phy_caps->eee_cap != phy_cfg->eee_cap ||
3170 phy_caps->eeer_value != phy_cfg->eeer_value ||
3171 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3172 return false;
3173
3174 return true;
3175}
3176
3177/**
3178 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3179 * @pi: port information structure
3180 * @caps: PHY ability structure to copy date from
3181 * @cfg: PHY configuration structure to copy data to
3182 *
3183 * Helper function to copy AQC PHY get ability data to PHY set configuration
3184 * data structure
3185 */
3186void
3187ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3188 struct ice_aqc_get_phy_caps_data *caps,
3189 struct ice_aqc_set_phy_cfg_data *cfg)
3190{
3191 if (!pi || !caps || !cfg)
3192 return;
3193
3194 memset(cfg, 0, sizeof(*cfg));
3195 cfg->phy_type_low = caps->phy_type_low;
3196 cfg->phy_type_high = caps->phy_type_high;
3197 cfg->caps = caps->caps;
3198 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3199 cfg->eee_cap = caps->eee_cap;
3200 cfg->eeer_value = caps->eeer_value;
3201 cfg->link_fec_opt = caps->link_fec_options;
3202 cfg->module_compliance_enforcement =
3203 caps->module_compliance_enforcement;
3204}
3205
3206/**
3207 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3208 * @pi: port information structure
3209 * @cfg: PHY configuration data to set FEC mode
3210 * @fec: FEC mode to configure
3211 */
3212enum ice_status
3213ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3214 enum ice_fec_mode fec)
3215{
3216 struct ice_aqc_get_phy_caps_data *pcaps;
3217 enum ice_status status;
3218 struct ice_hw *hw;
3219
3220 if (!pi || !cfg)
3221 return ICE_ERR_BAD_PTR;
3222
3223 hw = pi->hw;
3224
3225 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3226 if (!pcaps)
3227 return ICE_ERR_NO_MEMORY;
3228
3229 status = ice_aq_get_phy_caps(pi, false,
3230 (ice_fw_supports_report_dflt_cfg(hw) ?
3231 ICE_AQC_REPORT_DFLT_CFG :
3232 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3233 if (status)
3234 goto out;
3235
3236 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3237 cfg->link_fec_opt = pcaps->link_fec_options;
3238
3239 switch (fec) {
3240 case ICE_FEC_BASER:
3241 /* Clear RS bits, and AND BASE-R ability
3242 * bits and OR request bits.
3243 */
3244 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3245 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3246 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3247 ICE_AQC_PHY_FEC_25G_KR_REQ;
3248 break;
3249 case ICE_FEC_RS:
3250 /* Clear BASE-R bits, and AND RS ability
3251 * bits and OR request bits.
3252 */
3253 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3254 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3255 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3256 break;
3257 case ICE_FEC_NONE:
3258 /* Clear all FEC option bits. */
3259 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3260 break;
3261 case ICE_FEC_AUTO:
3262 /* AND auto FEC bit, and all caps bits. */
3263 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3264 cfg->link_fec_opt |= pcaps->link_fec_options;
3265 break;
3266 default:
3267 status = ICE_ERR_PARAM;
3268 break;
3269 }
3270
3271 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3272 !ice_fw_supports_report_dflt_cfg(hw)) {
3273 struct ice_link_default_override_tlv tlv;
3274
3275 if (ice_get_link_default_override(&tlv, pi))
3276 goto out;
3277
3278 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3279 (tlv.options & ICE_LINK_OVERRIDE_EN))
3280 cfg->link_fec_opt = tlv.fec_options;
3281 }
3282
3283out:
3284 kfree(pcaps);
3285
3286 return status;
3287}
3288
3289/**
3290 * ice_get_link_status - get status of the HW network link
3291 * @pi: port information structure
3292 * @link_up: pointer to bool (true/false = linkup/linkdown)
3293 *
3294 * Variable link_up is true if link is up, false if link is down.
3295 * The variable link_up is invalid if status is non zero. As a
3296 * result of this call, link status reporting becomes enabled
3297 */
3298enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3299{
3300 struct ice_phy_info *phy_info;
3301 enum ice_status status = 0;
3302
3303 if (!pi || !link_up)
3304 return ICE_ERR_PARAM;
3305
3306 phy_info = &pi->phy;
3307
3308 if (phy_info->get_link_info) {
3309 status = ice_update_link_info(pi);
3310
3311 if (status)
3312 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3313 status);
3314 }
3315
3316 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3317
3318 return status;
3319}
3320
3321/**
3322 * ice_aq_set_link_restart_an
3323 * @pi: pointer to the port information structure
3324 * @ena_link: if true: enable link, if false: disable link
3325 * @cd: pointer to command details structure or NULL
3326 *
3327 * Sets up the link and restarts the Auto-Negotiation over the link.
3328 */
3329enum ice_status
3330ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3331 struct ice_sq_cd *cd)
3332{
3333 struct ice_aqc_restart_an *cmd;
3334 struct ice_aq_desc desc;
3335
3336 cmd = &desc.params.restart_an;
3337
3338 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3339
3340 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3341 cmd->lport_num = pi->lport;
3342 if (ena_link)
3343 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3344 else
3345 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3346
3347 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3348}
3349
3350/**
3351 * ice_aq_set_event_mask
3352 * @hw: pointer to the HW struct
3353 * @port_num: port number of the physical function
3354 * @mask: event mask to be set
3355 * @cd: pointer to command details structure or NULL
3356 *
3357 * Set event mask (0x0613)
3358 */
3359enum ice_status
3360ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3361 struct ice_sq_cd *cd)
3362{
3363 struct ice_aqc_set_event_mask *cmd;
3364 struct ice_aq_desc desc;
3365
3366 cmd = &desc.params.set_event_mask;
3367
3368 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3369
3370 cmd->lport_num = port_num;
3371
3372 cmd->event_mask = cpu_to_le16(mask);
3373 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3374}
3375
3376/**
3377 * ice_aq_set_mac_loopback
3378 * @hw: pointer to the HW struct
3379 * @ena_lpbk: Enable or Disable loopback
3380 * @cd: pointer to command details structure or NULL
3381 *
3382 * Enable/disable loopback on a given port
3383 */
3384enum ice_status
3385ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3386{
3387 struct ice_aqc_set_mac_lb *cmd;
3388 struct ice_aq_desc desc;
3389
3390 cmd = &desc.params.set_mac_lb;
3391
3392 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3393 if (ena_lpbk)
3394 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3395
3396 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3397}
3398
3399/**
3400 * ice_aq_set_port_id_led
3401 * @pi: pointer to the port information
3402 * @is_orig_mode: is this LED set to original mode (by the net-list)
3403 * @cd: pointer to command details structure or NULL
3404 *
3405 * Set LED value for the given port (0x06e9)
3406 */
3407enum ice_status
3408ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3409 struct ice_sq_cd *cd)
3410{
3411 struct ice_aqc_set_port_id_led *cmd;
3412 struct ice_hw *hw = pi->hw;
3413 struct ice_aq_desc desc;
3414
3415 cmd = &desc.params.set_port_id_led;
3416
3417 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3418
3419 if (is_orig_mode)
3420 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3421 else
3422 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3423
3424 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3425}
3426
3427/**
3428 * ice_aq_sff_eeprom
3429 * @hw: pointer to the HW struct
3430 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3431 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3432 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3433 * @page: QSFP page
3434 * @set_page: set or ignore the page
3435 * @data: pointer to data buffer to be read/written to the I2C device.
3436 * @length: 1-16 for read, 1 for write.
3437 * @write: 0 read, 1 for write.
3438 * @cd: pointer to command details structure or NULL
3439 *
3440 * Read/Write SFF EEPROM (0x06EE)
3441 */
3442enum ice_status
3443ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3444 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3445 bool write, struct ice_sq_cd *cd)
3446{
3447 struct ice_aqc_sff_eeprom *cmd;
3448 struct ice_aq_desc desc;
3449 enum ice_status status;
3450
3451 if (!data || (mem_addr & 0xff00))
3452 return ICE_ERR_PARAM;
3453
3454 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3455 cmd = &desc.params.read_write_sff_param;
3456 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3457 cmd->lport_num = (u8)(lport & 0xff);
3458 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3459 cmd->i2c_bus_addr = cpu_to_le16(((bus_addr >> 1) &
3460 ICE_AQC_SFF_I2CBUS_7BIT_M) |
3461 ((set_page <<
3462 ICE_AQC_SFF_SET_EEPROM_PAGE_S) &
3463 ICE_AQC_SFF_SET_EEPROM_PAGE_M));
3464 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3465 cmd->eeprom_page = cpu_to_le16((u16)page << ICE_AQC_SFF_EEPROM_PAGE_S);
3466 if (write)
3467 cmd->i2c_bus_addr |= cpu_to_le16(ICE_AQC_SFF_IS_WRITE);
3468
3469 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3470 return status;
3471}
3472
3473/**
3474 * __ice_aq_get_set_rss_lut
3475 * @hw: pointer to the hardware structure
3476 * @params: RSS LUT parameters
3477 * @set: set true to set the table, false to get the table
3478 *
3479 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3480 */
3481static enum ice_status
3482__ice_aq_get_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *params, bool set)
3483{
3484 u16 flags = 0, vsi_id, lut_type, lut_size, glob_lut_idx, vsi_handle;
3485 struct ice_aqc_get_set_rss_lut *cmd_resp;
3486 struct ice_aq_desc desc;
3487 enum ice_status status;
3488 u8 *lut;
3489
3490 if (!params)
3491 return ICE_ERR_PARAM;
3492
3493 vsi_handle = params->vsi_handle;
3494 lut = params->lut;
3495
3496 if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
3497 return ICE_ERR_PARAM;
3498
3499 lut_size = params->lut_size;
3500 lut_type = params->lut_type;
3501 glob_lut_idx = params->global_lut_id;
3502 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
3503
3504 cmd_resp = &desc.params.get_set_rss_lut;
3505
3506 if (set) {
3507 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
3508 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3509 } else {
3510 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
3511 }
3512
3513 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3514 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
3515 ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
3516 ICE_AQC_GSET_RSS_LUT_VSI_VALID);
3517
3518 switch (lut_type) {
3519 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
3520 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
3521 case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
3522 flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
3523 ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
3524 break;
3525 default:
3526 status = ICE_ERR_PARAM;
3527 goto ice_aq_get_set_rss_lut_exit;
3528 }
3529
3530 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
3531 flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
3532 ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
3533
3534 if (!set)
3535 goto ice_aq_get_set_rss_lut_send;
3536 } else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3537 if (!set)
3538 goto ice_aq_get_set_rss_lut_send;
3539 } else {
3540 goto ice_aq_get_set_rss_lut_send;
3541 }
3542
3543 /* LUT size is only valid for Global and PF table types */
3544 switch (lut_size) {
3545 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
3546 break;
3547 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
3548 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
3549 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3550 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3551 break;
3552 case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
3553 if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
3554 flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
3555 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
3556 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
3557 break;
3558 }
3559 fallthrough;
3560 default:
3561 status = ICE_ERR_PARAM;
3562 goto ice_aq_get_set_rss_lut_exit;
3563 }
3564
3565ice_aq_get_set_rss_lut_send:
3566 cmd_resp->flags = cpu_to_le16(flags);
3567 status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
3568
3569ice_aq_get_set_rss_lut_exit:
3570 return status;
3571}
3572
3573/**
3574 * ice_aq_get_rss_lut
3575 * @hw: pointer to the hardware structure
3576 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
3577 *
3578 * get the RSS lookup table, PF or VSI type
3579 */
3580enum ice_status
3581ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
3582{
3583 return __ice_aq_get_set_rss_lut(hw, get_params, false);
3584}
3585
3586/**
3587 * ice_aq_set_rss_lut
3588 * @hw: pointer to the hardware structure
3589 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
3590 *
3591 * set the RSS lookup table, PF or VSI type
3592 */
3593enum ice_status
3594ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
3595{
3596 return __ice_aq_get_set_rss_lut(hw, set_params, true);
3597}
3598
3599/**
3600 * __ice_aq_get_set_rss_key
3601 * @hw: pointer to the HW struct
3602 * @vsi_id: VSI FW index
3603 * @key: pointer to key info struct
3604 * @set: set true to set the key, false to get the key
3605 *
3606 * get (0x0B04) or set (0x0B02) the RSS key per VSI
3607 */
3608static enum
3609ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
3610 struct ice_aqc_get_set_rss_keys *key,
3611 bool set)
3612{
3613 struct ice_aqc_get_set_rss_key *cmd_resp;
3614 u16 key_size = sizeof(*key);
3615 struct ice_aq_desc desc;
3616
3617 cmd_resp = &desc.params.get_set_rss_key;
3618
3619 if (set) {
3620 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
3621 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3622 } else {
3623 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
3624 }
3625
3626 cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
3627 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
3628 ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
3629 ICE_AQC_GSET_RSS_KEY_VSI_VALID);
3630
3631 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
3632}
3633
3634/**
3635 * ice_aq_get_rss_key
3636 * @hw: pointer to the HW struct
3637 * @vsi_handle: software VSI handle
3638 * @key: pointer to key info struct
3639 *
3640 * get the RSS key per VSI
3641 */
3642enum ice_status
3643ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
3644 struct ice_aqc_get_set_rss_keys *key)
3645{
3646 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
3647 return ICE_ERR_PARAM;
3648
3649 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3650 key, false);
3651}
3652
3653/**
3654 * ice_aq_set_rss_key
3655 * @hw: pointer to the HW struct
3656 * @vsi_handle: software VSI handle
3657 * @keys: pointer to key info struct
3658 *
3659 * set the RSS key per VSI
3660 */
3661enum ice_status
3662ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
3663 struct ice_aqc_get_set_rss_keys *keys)
3664{
3665 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
3666 return ICE_ERR_PARAM;
3667
3668 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
3669 keys, true);
3670}
3671
3672/**
3673 * ice_aq_add_lan_txq
3674 * @hw: pointer to the hardware structure
3675 * @num_qgrps: Number of added queue groups
3676 * @qg_list: list of queue groups to be added
3677 * @buf_size: size of buffer for indirect command
3678 * @cd: pointer to command details structure or NULL
3679 *
3680 * Add Tx LAN queue (0x0C30)
3681 *
3682 * NOTE:
3683 * Prior to calling add Tx LAN queue:
3684 * Initialize the following as part of the Tx queue context:
3685 * Completion queue ID if the queue uses Completion queue, Quanta profile,
3686 * Cache profile and Packet shaper profile.
3687 *
3688 * After add Tx LAN queue AQ command is completed:
3689 * Interrupts should be associated with specific queues,
3690 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
3691 * flow.
3692 */
3693static enum ice_status
3694ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3695 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
3696 struct ice_sq_cd *cd)
3697{
3698 struct ice_aqc_add_tx_qgrp *list;
3699 struct ice_aqc_add_txqs *cmd;
3700 struct ice_aq_desc desc;
3701 u16 i, sum_size = 0;
3702
3703 cmd = &desc.params.add_txqs;
3704
3705 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
3706
3707 if (!qg_list)
3708 return ICE_ERR_PARAM;
3709
3710 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3711 return ICE_ERR_PARAM;
3712
3713 for (i = 0, list = qg_list; i < num_qgrps; i++) {
3714 sum_size += struct_size(list, txqs, list->num_txqs);
3715 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
3716 list->num_txqs);
3717 }
3718
3719 if (buf_size != sum_size)
3720 return ICE_ERR_PARAM;
3721
3722 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3723
3724 cmd->num_qgrps = num_qgrps;
3725
3726 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3727}
3728
3729/**
3730 * ice_aq_dis_lan_txq
3731 * @hw: pointer to the hardware structure
3732 * @num_qgrps: number of groups in the list
3733 * @qg_list: the list of groups to disable
3734 * @buf_size: the total size of the qg_list buffer in bytes
3735 * @rst_src: if called due to reset, specifies the reset source
3736 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3737 * @cd: pointer to command details structure or NULL
3738 *
3739 * Disable LAN Tx queue (0x0C31)
3740 */
3741static enum ice_status
3742ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
3743 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
3744 enum ice_disq_rst_src rst_src, u16 vmvf_num,
3745 struct ice_sq_cd *cd)
3746{
3747 struct ice_aqc_dis_txq_item *item;
3748 struct ice_aqc_dis_txqs *cmd;
3749 struct ice_aq_desc desc;
3750 enum ice_status status;
3751 u16 i, sz = 0;
3752
3753 cmd = &desc.params.dis_txqs;
3754 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
3755
3756 /* qg_list can be NULL only in VM/VF reset flow */
3757 if (!qg_list && !rst_src)
3758 return ICE_ERR_PARAM;
3759
3760 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
3761 return ICE_ERR_PARAM;
3762
3763 cmd->num_entries = num_qgrps;
3764
3765 cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
3766 ICE_AQC_Q_DIS_TIMEOUT_M);
3767
3768 switch (rst_src) {
3769 case ICE_VM_RESET:
3770 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
3771 cmd->vmvf_and_timeout |=
3772 cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
3773 break;
3774 case ICE_VF_RESET:
3775 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
3776 /* In this case, FW expects vmvf_num to be absolute VF ID */
3777 cmd->vmvf_and_timeout |=
3778 cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
3779 ICE_AQC_Q_DIS_VMVF_NUM_M);
3780 break;
3781 case ICE_NO_RESET:
3782 default:
3783 break;
3784 }
3785
3786 /* flush pipe on time out */
3787 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
3788 /* If no queue group info, we are in a reset flow. Issue the AQ */
3789 if (!qg_list)
3790 goto do_aq;
3791
3792 /* set RD bit to indicate that command buffer is provided by the driver
3793 * and it needs to be read by the firmware
3794 */
3795 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3796
3797 for (i = 0, item = qg_list; i < num_qgrps; i++) {
3798 u16 item_size = struct_size(item, q_id, item->num_qs);
3799
3800 /* If the num of queues is even, add 2 bytes of padding */
3801 if ((item->num_qs % 2) == 0)
3802 item_size += 2;
3803
3804 sz += item_size;
3805
3806 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
3807 }
3808
3809 if (buf_size != sz)
3810 return ICE_ERR_PARAM;
3811
3812do_aq:
3813 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
3814 if (status) {
3815 if (!qg_list)
3816 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
3817 vmvf_num, hw->adminq.sq_last_status);
3818 else
3819 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
3820 le16_to_cpu(qg_list[0].q_id[0]),
3821 hw->adminq.sq_last_status);
3822 }
3823 return status;
3824}
3825
3826/**
3827 * ice_aq_add_rdma_qsets
3828 * @hw: pointer to the hardware structure
3829 * @num_qset_grps: Number of RDMA Qset groups
3830 * @qset_list: list of Qset groups to be added
3831 * @buf_size: size of buffer for indirect command
3832 * @cd: pointer to command details structure or NULL
3833 *
3834 * Add Tx RDMA Qsets (0x0C33)
3835 */
3836static int
3837ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
3838 struct ice_aqc_add_rdma_qset_data *qset_list,
3839 u16 buf_size, struct ice_sq_cd *cd)
3840{
3841 struct ice_aqc_add_rdma_qset_data *list;
3842 struct ice_aqc_add_rdma_qset *cmd;
3843 struct ice_aq_desc desc;
3844 u16 i, sum_size = 0;
3845
3846 cmd = &desc.params.add_rdma_qset;
3847
3848 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
3849
3850 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
3851 return -EINVAL;
3852
3853 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
3854 u16 num_qsets = le16_to_cpu(list->num_qsets);
3855
3856 sum_size += struct_size(list, rdma_qsets, num_qsets);
3857 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
3858 num_qsets);
3859 }
3860
3861 if (buf_size != sum_size)
3862 return -EINVAL;
3863
3864 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3865
3866 cmd->num_qset_grps = num_qset_grps;
3867
3868 return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, qset_list,
3869 buf_size, cd));
3870}
3871
3872/* End of FW Admin Queue command wrappers */
3873
3874/**
3875 * ice_write_byte - write a byte to a packed context structure
3876 * @src_ctx: the context structure to read from
3877 * @dest_ctx: the context to be written to
3878 * @ce_info: a description of the struct to be filled
3879 */
3880static void
3881ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3882{
3883 u8 src_byte, dest_byte, mask;
3884 u8 *from, *dest;
3885 u16 shift_width;
3886
3887 /* copy from the next struct field */
3888 from = src_ctx + ce_info->offset;
3889
3890 /* prepare the bits and mask */
3891 shift_width = ce_info->lsb % 8;
3892 mask = (u8)(BIT(ce_info->width) - 1);
3893
3894 src_byte = *from;
3895 src_byte &= mask;
3896
3897 /* shift to correct alignment */
3898 mask <<= shift_width;
3899 src_byte <<= shift_width;
3900
3901 /* get the current bits from the target bit string */
3902 dest = dest_ctx + (ce_info->lsb / 8);
3903
3904 memcpy(&dest_byte, dest, sizeof(dest_byte));
3905
3906 dest_byte &= ~mask; /* get the bits not changing */
3907 dest_byte |= src_byte; /* add in the new bits */
3908
3909 /* put it all back */
3910 memcpy(dest, &dest_byte, sizeof(dest_byte));
3911}
3912
3913/**
3914 * ice_write_word - write a word to a packed context structure
3915 * @src_ctx: the context structure to read from
3916 * @dest_ctx: the context to be written to
3917 * @ce_info: a description of the struct to be filled
3918 */
3919static void
3920ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3921{
3922 u16 src_word, mask;
3923 __le16 dest_word;
3924 u8 *from, *dest;
3925 u16 shift_width;
3926
3927 /* copy from the next struct field */
3928 from = src_ctx + ce_info->offset;
3929
3930 /* prepare the bits and mask */
3931 shift_width = ce_info->lsb % 8;
3932 mask = BIT(ce_info->width) - 1;
3933
3934 /* don't swizzle the bits until after the mask because the mask bits
3935 * will be in a different bit position on big endian machines
3936 */
3937 src_word = *(u16 *)from;
3938 src_word &= mask;
3939
3940 /* shift to correct alignment */
3941 mask <<= shift_width;
3942 src_word <<= shift_width;
3943
3944 /* get the current bits from the target bit string */
3945 dest = dest_ctx + (ce_info->lsb / 8);
3946
3947 memcpy(&dest_word, dest, sizeof(dest_word));
3948
3949 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
3950 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
3951
3952 /* put it all back */
3953 memcpy(dest, &dest_word, sizeof(dest_word));
3954}
3955
3956/**
3957 * ice_write_dword - write a dword to a packed context structure
3958 * @src_ctx: the context structure to read from
3959 * @dest_ctx: the context to be written to
3960 * @ce_info: a description of the struct to be filled
3961 */
3962static void
3963ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3964{
3965 u32 src_dword, mask;
3966 __le32 dest_dword;
3967 u8 *from, *dest;
3968 u16 shift_width;
3969
3970 /* copy from the next struct field */
3971 from = src_ctx + ce_info->offset;
3972
3973 /* prepare the bits and mask */
3974 shift_width = ce_info->lsb % 8;
3975
3976 /* if the field width is exactly 32 on an x86 machine, then the shift
3977 * operation will not work because the SHL instructions count is masked
3978 * to 5 bits so the shift will do nothing
3979 */
3980 if (ce_info->width < 32)
3981 mask = BIT(ce_info->width) - 1;
3982 else
3983 mask = (u32)~0;
3984
3985 /* don't swizzle the bits until after the mask because the mask bits
3986 * will be in a different bit position on big endian machines
3987 */
3988 src_dword = *(u32 *)from;
3989 src_dword &= mask;
3990
3991 /* shift to correct alignment */
3992 mask <<= shift_width;
3993 src_dword <<= shift_width;
3994
3995 /* get the current bits from the target bit string */
3996 dest = dest_ctx + (ce_info->lsb / 8);
3997
3998 memcpy(&dest_dword, dest, sizeof(dest_dword));
3999
4000 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4001 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4002
4003 /* put it all back */
4004 memcpy(dest, &dest_dword, sizeof(dest_dword));
4005}
4006
4007/**
4008 * ice_write_qword - write a qword to a packed context structure
4009 * @src_ctx: the context structure to read from
4010 * @dest_ctx: the context to be written to
4011 * @ce_info: a description of the struct to be filled
4012 */
4013static void
4014ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
4015{
4016 u64 src_qword, mask;
4017 __le64 dest_qword;
4018 u8 *from, *dest;
4019 u16 shift_width;
4020
4021 /* copy from the next struct field */
4022 from = src_ctx + ce_info->offset;
4023
4024 /* prepare the bits and mask */
4025 shift_width = ce_info->lsb % 8;
4026
4027 /* if the field width is exactly 64 on an x86 machine, then the shift
4028 * operation will not work because the SHL instructions count is masked
4029 * to 6 bits so the shift will do nothing
4030 */
4031 if (ce_info->width < 64)
4032 mask = BIT_ULL(ce_info->width) - 1;
4033 else
4034 mask = (u64)~0;
4035
4036 /* don't swizzle the bits until after the mask because the mask bits
4037 * will be in a different bit position on big endian machines
4038 */
4039 src_qword = *(u64 *)from;
4040 src_qword &= mask;
4041
4042 /* shift to correct alignment */
4043 mask <<= shift_width;
4044 src_qword <<= shift_width;
4045
4046 /* get the current bits from the target bit string */
4047 dest = dest_ctx + (ce_info->lsb / 8);
4048
4049 memcpy(&dest_qword, dest, sizeof(dest_qword));
4050
4051 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4052 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4053
4054 /* put it all back */
4055 memcpy(dest, &dest_qword, sizeof(dest_qword));
4056}
4057
4058/**
4059 * ice_set_ctx - set context bits in packed structure
4060 * @hw: pointer to the hardware structure
4061 * @src_ctx: pointer to a generic non-packed context structure
4062 * @dest_ctx: pointer to memory for the packed structure
4063 * @ce_info: a description of the structure to be transformed
4064 */
4065enum ice_status
4066ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4067 const struct ice_ctx_ele *ce_info)
4068{
4069 int f;
4070
4071 for (f = 0; ce_info[f].width; f++) {
4072 /* We have to deal with each element of the FW response
4073 * using the correct size so that we are correct regardless
4074 * of the endianness of the machine.
4075 */
4076 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4077 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4078 f, ce_info[f].width, ce_info[f].size_of);
4079 continue;
4080 }
4081 switch (ce_info[f].size_of) {
4082 case sizeof(u8):
4083 ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
4084 break;
4085 case sizeof(u16):
4086 ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
4087 break;
4088 case sizeof(u32):
4089 ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
4090 break;
4091 case sizeof(u64):
4092 ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
4093 break;
4094 default:
4095 return ICE_ERR_INVAL_SIZE;
4096 }
4097 }
4098
4099 return 0;
4100}
4101
4102/**
4103 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4104 * @hw: pointer to the HW struct
4105 * @vsi_handle: software VSI handle
4106 * @tc: TC number
4107 * @q_handle: software queue handle
4108 */
4109struct ice_q_ctx *
4110ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4111{
4112 struct ice_vsi_ctx *vsi;
4113 struct ice_q_ctx *q_ctx;
4114
4115 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4116 if (!vsi)
4117 return NULL;
4118 if (q_handle >= vsi->num_lan_q_entries[tc])
4119 return NULL;
4120 if (!vsi->lan_q_ctx[tc])
4121 return NULL;
4122 q_ctx = vsi->lan_q_ctx[tc];
4123 return &q_ctx[q_handle];
4124}
4125
4126/**
4127 * ice_ena_vsi_txq
4128 * @pi: port information structure
4129 * @vsi_handle: software VSI handle
4130 * @tc: TC number
4131 * @q_handle: software queue handle
4132 * @num_qgrps: Number of added queue groups
4133 * @buf: list of queue groups to be added
4134 * @buf_size: size of buffer for indirect command
4135 * @cd: pointer to command details structure or NULL
4136 *
4137 * This function adds one LAN queue
4138 */
4139enum ice_status
4140ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4141 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4142 struct ice_sq_cd *cd)
4143{
4144 struct ice_aqc_txsched_elem_data node = { 0 };
4145 struct ice_sched_node *parent;
4146 struct ice_q_ctx *q_ctx;
4147 enum ice_status status;
4148 struct ice_hw *hw;
4149
4150 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4151 return ICE_ERR_CFG;
4152
4153 if (num_qgrps > 1 || buf->num_txqs > 1)
4154 return ICE_ERR_MAX_LIMIT;
4155
4156 hw = pi->hw;
4157
4158 if (!ice_is_vsi_valid(hw, vsi_handle))
4159 return ICE_ERR_PARAM;
4160
4161 mutex_lock(&pi->sched_lock);
4162
4163 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4164 if (!q_ctx) {
4165 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4166 q_handle);
4167 status = ICE_ERR_PARAM;
4168 goto ena_txq_exit;
4169 }
4170
4171 /* find a parent node */
4172 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4173 ICE_SCHED_NODE_OWNER_LAN);
4174 if (!parent) {
4175 status = ICE_ERR_PARAM;
4176 goto ena_txq_exit;
4177 }
4178
4179 buf->parent_teid = parent->info.node_teid;
4180 node.parent_teid = parent->info.node_teid;
4181 /* Mark that the values in the "generic" section as valid. The default
4182 * value in the "generic" section is zero. This means that :
4183 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4184 * - 0 priority among siblings, indicated by Bit 1-3.
4185 * - WFQ, indicated by Bit 4.
4186 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4187 * Bit 5-6.
4188 * - Bit 7 is reserved.
4189 * Without setting the generic section as valid in valid_sections, the
4190 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4191 */
4192 buf->txqs[0].info.valid_sections =
4193 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4194 ICE_AQC_ELEM_VALID_EIR;
4195 buf->txqs[0].info.generic = 0;
4196 buf->txqs[0].info.cir_bw.bw_profile_idx =
4197 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4198 buf->txqs[0].info.cir_bw.bw_alloc =
4199 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4200 buf->txqs[0].info.eir_bw.bw_profile_idx =
4201 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4202 buf->txqs[0].info.eir_bw.bw_alloc =
4203 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4204
4205 /* add the LAN queue */
4206 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4207 if (status) {
4208 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4209 le16_to_cpu(buf->txqs[0].txq_id),
4210 hw->adminq.sq_last_status);
4211 goto ena_txq_exit;
4212 }
4213
4214 node.node_teid = buf->txqs[0].q_teid;
4215 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4216 q_ctx->q_handle = q_handle;
4217 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4218
4219 /* add a leaf node into scheduler tree queue layer */
4220 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
4221 if (!status)
4222 status = ice_sched_replay_q_bw(pi, q_ctx);
4223
4224ena_txq_exit:
4225 mutex_unlock(&pi->sched_lock);
4226 return status;
4227}
4228
4229/**
4230 * ice_dis_vsi_txq
4231 * @pi: port information structure
4232 * @vsi_handle: software VSI handle
4233 * @tc: TC number
4234 * @num_queues: number of queues
4235 * @q_handles: pointer to software queue handle array
4236 * @q_ids: pointer to the q_id array
4237 * @q_teids: pointer to queue node teids
4238 * @rst_src: if called due to reset, specifies the reset source
4239 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4240 * @cd: pointer to command details structure or NULL
4241 *
4242 * This function removes queues and their corresponding nodes in SW DB
4243 */
4244enum ice_status
4245ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4246 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4247 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4248 struct ice_sq_cd *cd)
4249{
4250 enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
4251 struct ice_aqc_dis_txq_item *qg_list;
4252 struct ice_q_ctx *q_ctx;
4253 struct ice_hw *hw;
4254 u16 i, buf_size;
4255
4256 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4257 return ICE_ERR_CFG;
4258
4259 hw = pi->hw;
4260
4261 if (!num_queues) {
4262 /* if queue is disabled already yet the disable queue command
4263 * has to be sent to complete the VF reset, then call
4264 * ice_aq_dis_lan_txq without any queue information
4265 */
4266 if (rst_src)
4267 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4268 vmvf_num, NULL);
4269 return ICE_ERR_CFG;
4270 }
4271
4272 buf_size = struct_size(qg_list, q_id, 1);
4273 qg_list = kzalloc(buf_size, GFP_KERNEL);
4274 if (!qg_list)
4275 return ICE_ERR_NO_MEMORY;
4276
4277 mutex_lock(&pi->sched_lock);
4278
4279 for (i = 0; i < num_queues; i++) {
4280 struct ice_sched_node *node;
4281
4282 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4283 if (!node)
4284 continue;
4285 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4286 if (!q_ctx) {
4287 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4288 q_handles[i]);
4289 continue;
4290 }
4291 if (q_ctx->q_handle != q_handles[i]) {
4292 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4293 q_ctx->q_handle, q_handles[i]);
4294 continue;
4295 }
4296 qg_list->parent_teid = node->info.parent_teid;
4297 qg_list->num_qs = 1;
4298 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4299 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4300 vmvf_num, cd);
4301
4302 if (status)
4303 break;
4304 ice_free_sched_node(pi, node);
4305 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4306 }
4307 mutex_unlock(&pi->sched_lock);
4308 kfree(qg_list);
4309 return status;
4310}
4311
4312/**
4313 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4314 * @pi: port information structure
4315 * @vsi_handle: software VSI handle
4316 * @tc_bitmap: TC bitmap
4317 * @maxqs: max queues array per TC
4318 * @owner: LAN or RDMA
4319 *
4320 * This function adds/updates the VSI queues per TC.
4321 */
4322static enum ice_status
4323ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4324 u16 *maxqs, u8 owner)
4325{
4326 enum ice_status status = 0;
4327 u8 i;
4328
4329 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4330 return ICE_ERR_CFG;
4331
4332 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4333 return ICE_ERR_PARAM;
4334
4335 mutex_lock(&pi->sched_lock);
4336
4337 ice_for_each_traffic_class(i) {
4338 /* configuration is possible only if TC node is present */
4339 if (!ice_sched_get_tc_node(pi, i))
4340 continue;
4341
4342 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4343 ice_is_tc_ena(tc_bitmap, i));
4344 if (status)
4345 break;
4346 }
4347
4348 mutex_unlock(&pi->sched_lock);
4349 return status;
4350}
4351
4352/**
4353 * ice_cfg_vsi_lan - configure VSI LAN queues
4354 * @pi: port information structure
4355 * @vsi_handle: software VSI handle
4356 * @tc_bitmap: TC bitmap
4357 * @max_lanqs: max LAN queues array per TC
4358 *
4359 * This function adds/updates the VSI LAN queues per TC.
4360 */
4361enum ice_status
4362ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4363 u16 *max_lanqs)
4364{
4365 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4366 ICE_SCHED_NODE_OWNER_LAN);
4367}
4368
4369/**
4370 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4371 * @pi: port information structure
4372 * @vsi_handle: software VSI handle
4373 * @tc_bitmap: TC bitmap
4374 * @max_rdmaqs: max RDMA queues array per TC
4375 *
4376 * This function adds/updates the VSI RDMA queues per TC.
4377 */
4378int
4379ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4380 u16 *max_rdmaqs)
4381{
4382 return ice_status_to_errno(ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap,
4383 max_rdmaqs,
4384 ICE_SCHED_NODE_OWNER_RDMA));
4385}
4386
4387/**
4388 * ice_ena_vsi_rdma_qset
4389 * @pi: port information structure
4390 * @vsi_handle: software VSI handle
4391 * @tc: TC number
4392 * @rdma_qset: pointer to RDMA Qset
4393 * @num_qsets: number of RDMA Qsets
4394 * @qset_teid: pointer to Qset node TEIDs
4395 *
4396 * This function adds RDMA Qset
4397 */
4398int
4399ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4400 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4401{
4402 struct ice_aqc_txsched_elem_data node = { 0 };
4403 struct ice_aqc_add_rdma_qset_data *buf;
4404 struct ice_sched_node *parent;
4405 enum ice_status status;
4406 struct ice_hw *hw;
4407 u16 i, buf_size;
4408 int ret;
4409
4410 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4411 return -EIO;
4412 hw = pi->hw;
4413
4414 if (!ice_is_vsi_valid(hw, vsi_handle))
4415 return -EINVAL;
4416
4417 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4418 buf = kzalloc(buf_size, GFP_KERNEL);
4419 if (!buf)
4420 return -ENOMEM;
4421 mutex_lock(&pi->sched_lock);
4422
4423 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4424 ICE_SCHED_NODE_OWNER_RDMA);
4425 if (!parent) {
4426 ret = -EINVAL;
4427 goto rdma_error_exit;
4428 }
4429 buf->parent_teid = parent->info.node_teid;
4430 node.parent_teid = parent->info.node_teid;
4431
4432 buf->num_qsets = cpu_to_le16(num_qsets);
4433 for (i = 0; i < num_qsets; i++) {
4434 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4435 buf->rdma_qsets[i].info.valid_sections =
4436 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4437 ICE_AQC_ELEM_VALID_EIR;
4438 buf->rdma_qsets[i].info.generic = 0;
4439 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4440 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4441 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4442 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4443 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4444 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4445 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4446 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4447 }
4448 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4449 if (ret) {
4450 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4451 goto rdma_error_exit;
4452 }
4453 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4454 for (i = 0; i < num_qsets; i++) {
4455 node.node_teid = buf->rdma_qsets[i].qset_teid;
4456 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4457 &node);
4458 if (status) {
4459 ret = ice_status_to_errno(status);
4460 break;
4461 }
4462 qset_teid[i] = le32_to_cpu(node.node_teid);
4463 }
4464rdma_error_exit:
4465 mutex_unlock(&pi->sched_lock);
4466 kfree(buf);
4467 return ret;
4468}
4469
4470/**
4471 * ice_dis_vsi_rdma_qset - free RDMA resources
4472 * @pi: port_info struct
4473 * @count: number of RDMA Qsets to free
4474 * @qset_teid: TEID of Qset node
4475 * @q_id: list of queue IDs being disabled
4476 */
4477int
4478ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4479 u16 *q_id)
4480{
4481 struct ice_aqc_dis_txq_item *qg_list;
4482 enum ice_status status = 0;
4483 struct ice_hw *hw;
4484 u16 qg_size;
4485 int i;
4486
4487 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4488 return -EIO;
4489
4490 hw = pi->hw;
4491
4492 qg_size = struct_size(qg_list, q_id, 1);
4493 qg_list = kzalloc(qg_size, GFP_KERNEL);
4494 if (!qg_list)
4495 return -ENOMEM;
4496
4497 mutex_lock(&pi->sched_lock);
4498
4499 for (i = 0; i < count; i++) {
4500 struct ice_sched_node *node;
4501
4502 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4503 if (!node)
4504 continue;
4505
4506 qg_list->parent_teid = node->info.parent_teid;
4507 qg_list->num_qs = 1;
4508 qg_list->q_id[0] =
4509 cpu_to_le16(q_id[i] |
4510 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4511
4512 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4513 ICE_NO_RESET, 0, NULL);
4514 if (status)
4515 break;
4516
4517 ice_free_sched_node(pi, node);
4518 }
4519
4520 mutex_unlock(&pi->sched_lock);
4521 kfree(qg_list);
4522 return ice_status_to_errno(status);
4523}
4524
4525/**
4526 * ice_replay_pre_init - replay pre initialization
4527 * @hw: pointer to the HW struct
4528 *
4529 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
4530 */
4531static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
4532{
4533 struct ice_switch_info *sw = hw->switch_info;
4534 u8 i;
4535
4536 /* Delete old entries from replay filter list head if there is any */
4537 ice_rm_all_sw_replay_rule_info(hw);
4538 /* In start of replay, move entries into replay_rules list, it
4539 * will allow adding rules entries back to filt_rules list,
4540 * which is operational list.
4541 */
4542 for (i = 0; i < ICE_SW_LKUP_LAST; i++)
4543 list_replace_init(&sw->recp_list[i].filt_rules,
4544 &sw->recp_list[i].filt_replay_rules);
4545 ice_sched_replay_agg_vsi_preinit(hw);
4546
4547 return 0;
4548}
4549
4550/**
4551 * ice_replay_vsi - replay VSI configuration
4552 * @hw: pointer to the HW struct
4553 * @vsi_handle: driver VSI handle
4554 *
4555 * Restore all VSI configuration after reset. It is required to call this
4556 * function with main VSI first.
4557 */
4558enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
4559{
4560 enum ice_status status;
4561
4562 if (!ice_is_vsi_valid(hw, vsi_handle))
4563 return ICE_ERR_PARAM;
4564
4565 /* Replay pre-initialization if there is any */
4566 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
4567 status = ice_replay_pre_init(hw);
4568 if (status)
4569 return status;
4570 }
4571 /* Replay per VSI all RSS configurations */
4572 status = ice_replay_rss_cfg(hw, vsi_handle);
4573 if (status)
4574 return status;
4575 /* Replay per VSI all filters */
4576 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
4577 if (!status)
4578 status = ice_replay_vsi_agg(hw, vsi_handle);
4579 return status;
4580}
4581
4582/**
4583 * ice_replay_post - post replay configuration cleanup
4584 * @hw: pointer to the HW struct
4585 *
4586 * Post replay cleanup.
4587 */
4588void ice_replay_post(struct ice_hw *hw)
4589{
4590 /* Delete old entries from replay filter list head */
4591 ice_rm_all_sw_replay_rule_info(hw);
4592 ice_sched_replay_agg(hw);
4593}
4594
4595/**
4596 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4597 * @hw: ptr to the hardware info
4598 * @reg: offset of 64 bit HW register to read from
4599 * @prev_stat_loaded: bool to specify if previous stats are loaded
4600 * @prev_stat: ptr to previous loaded stat value
4601 * @cur_stat: ptr to current stat value
4602 */
4603void
4604ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4605 u64 *prev_stat, u64 *cur_stat)
4606{
4607 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
4608
4609 /* device stats are not reset at PFR, they likely will not be zeroed
4610 * when the driver starts. Thus, save the value from the first read
4611 * without adding to the statistic value so that we report stats which
4612 * count up from zero.
4613 */
4614 if (!prev_stat_loaded) {
4615 *prev_stat = new_data;
4616 return;
4617 }
4618
4619 /* Calculate the difference between the new and old values, and then
4620 * add it to the software stat value.
4621 */
4622 if (new_data >= *prev_stat)
4623 *cur_stat += new_data - *prev_stat;
4624 else
4625 /* to manage the potential roll-over */
4626 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
4627
4628 /* Update the previously stored value to prepare for next read */
4629 *prev_stat = new_data;
4630}
4631
4632/**
4633 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4634 * @hw: ptr to the hardware info
4635 * @reg: offset of HW register to read from
4636 * @prev_stat_loaded: bool to specify if previous stats are loaded
4637 * @prev_stat: ptr to previous loaded stat value
4638 * @cur_stat: ptr to current stat value
4639 */
4640void
4641ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4642 u64 *prev_stat, u64 *cur_stat)
4643{
4644 u32 new_data;
4645
4646 new_data = rd32(hw, reg);
4647
4648 /* device stats are not reset at PFR, they likely will not be zeroed
4649 * when the driver starts. Thus, save the value from the first read
4650 * without adding to the statistic value so that we report stats which
4651 * count up from zero.
4652 */
4653 if (!prev_stat_loaded) {
4654 *prev_stat = new_data;
4655 return;
4656 }
4657
4658 /* Calculate the difference between the new and old values, and then
4659 * add it to the software stat value.
4660 */
4661 if (new_data >= *prev_stat)
4662 *cur_stat += new_data - *prev_stat;
4663 else
4664 /* to manage the potential roll-over */
4665 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
4666
4667 /* Update the previously stored value to prepare for next read */
4668 *prev_stat = new_data;
4669}
4670
4671/**
4672 * ice_sched_query_elem - query element information from HW
4673 * @hw: pointer to the HW struct
4674 * @node_teid: node TEID to be queried
4675 * @buf: buffer to element information
4676 *
4677 * This function queries HW element information
4678 */
4679enum ice_status
4680ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
4681 struct ice_aqc_txsched_elem_data *buf)
4682{
4683 u16 buf_size, num_elem_ret = 0;
4684 enum ice_status status;
4685
4686 buf_size = sizeof(*buf);
4687 memset(buf, 0, buf_size);
4688 buf->node_teid = cpu_to_le32(node_teid);
4689 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
4690 NULL);
4691 if (status || num_elem_ret != 1)
4692 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
4693 return status;
4694}
4695
4696/**
4697 * ice_aq_set_driver_param - Set driver parameter to share via firmware
4698 * @hw: pointer to the HW struct
4699 * @idx: parameter index to set
4700 * @value: the value to set the parameter to
4701 * @cd: pointer to command details structure or NULL
4702 *
4703 * Set the value of one of the software defined parameters. All PFs connected
4704 * to this device can read the value using ice_aq_get_driver_param.
4705 *
4706 * Note that firmware provides no synchronization or locking, and will not
4707 * save the parameter value during a device reset. It is expected that
4708 * a single PF will write the parameter value, while all other PFs will only
4709 * read it.
4710 */
4711int
4712ice_aq_set_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4713 u32 value, struct ice_sq_cd *cd)
4714{
4715 struct ice_aqc_driver_shared_params *cmd;
4716 struct ice_aq_desc desc;
4717
4718 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4719 return -EIO;
4720
4721 cmd = &desc.params.drv_shared_params;
4722
4723 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4724
4725 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_SET;
4726 cmd->param_indx = idx;
4727 cmd->param_val = cpu_to_le32(value);
4728
4729 return ice_status_to_errno(ice_aq_send_cmd(hw, &desc, NULL, 0, cd));
4730}
4731
4732/**
4733 * ice_aq_get_driver_param - Get driver parameter shared via firmware
4734 * @hw: pointer to the HW struct
4735 * @idx: parameter index to set
4736 * @value: storage to return the shared parameter
4737 * @cd: pointer to command details structure or NULL
4738 *
4739 * Get the value of one of the software defined parameters.
4740 *
4741 * Note that firmware provides no synchronization or locking. It is expected
4742 * that only a single PF will write a given parameter.
4743 */
4744int
4745ice_aq_get_driver_param(struct ice_hw *hw, enum ice_aqc_driver_params idx,
4746 u32 *value, struct ice_sq_cd *cd)
4747{
4748 struct ice_aqc_driver_shared_params *cmd;
4749 struct ice_aq_desc desc;
4750 enum ice_status status;
4751
4752 if (idx >= ICE_AQC_DRIVER_PARAM_MAX)
4753 return -EIO;
4754
4755 cmd = &desc.params.drv_shared_params;
4756
4757 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_shared_params);
4758
4759 cmd->set_or_get_op = ICE_AQC_DRIVER_PARAM_GET;
4760 cmd->param_indx = idx;
4761
4762 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
4763 if (status)
4764 return ice_status_to_errno(status);
4765
4766 *value = le32_to_cpu(cmd->param_val);
4767
4768 return 0;
4769}
4770
4771/**
4772 * ice_fw_supports_link_override
4773 * @hw: pointer to the hardware structure
4774 *
4775 * Checks if the firmware supports link override
4776 */
4777bool ice_fw_supports_link_override(struct ice_hw *hw)
4778{
4779 if (hw->api_maj_ver == ICE_FW_API_LINK_OVERRIDE_MAJ) {
4780 if (hw->api_min_ver > ICE_FW_API_LINK_OVERRIDE_MIN)
4781 return true;
4782 if (hw->api_min_ver == ICE_FW_API_LINK_OVERRIDE_MIN &&
4783 hw->api_patch >= ICE_FW_API_LINK_OVERRIDE_PATCH)
4784 return true;
4785 } else if (hw->api_maj_ver > ICE_FW_API_LINK_OVERRIDE_MAJ) {
4786 return true;
4787 }
4788
4789 return false;
4790}
4791
4792/**
4793 * ice_get_link_default_override
4794 * @ldo: pointer to the link default override struct
4795 * @pi: pointer to the port info struct
4796 *
4797 * Gets the link default override for a port
4798 */
4799enum ice_status
4800ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
4801 struct ice_port_info *pi)
4802{
4803 u16 i, tlv, tlv_len, tlv_start, buf, offset;
4804 struct ice_hw *hw = pi->hw;
4805 enum ice_status status;
4806
4807 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
4808 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
4809 if (status) {
4810 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
4811 return status;
4812 }
4813
4814 /* Each port has its own config; calculate for our port */
4815 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
4816 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
4817
4818 /* link options first */
4819 status = ice_read_sr_word(hw, tlv_start, &buf);
4820 if (status) {
4821 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4822 return status;
4823 }
4824 ldo->options = buf & ICE_LINK_OVERRIDE_OPT_M;
4825 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
4826 ICE_LINK_OVERRIDE_PHY_CFG_S;
4827
4828 /* link PHY config */
4829 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
4830 status = ice_read_sr_word(hw, offset, &buf);
4831 if (status) {
4832 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
4833 return status;
4834 }
4835 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
4836
4837 /* PHY types low */
4838 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
4839 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4840 status = ice_read_sr_word(hw, (offset + i), &buf);
4841 if (status) {
4842 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4843 return status;
4844 }
4845 /* shift 16 bits at a time to fill 64 bits */
4846 ldo->phy_type_low |= ((u64)buf << (i * 16));
4847 }
4848
4849 /* PHY types high */
4850 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
4851 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
4852 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
4853 status = ice_read_sr_word(hw, (offset + i), &buf);
4854 if (status) {
4855 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
4856 return status;
4857 }
4858 /* shift 16 bits at a time to fill 64 bits */
4859 ldo->phy_type_high |= ((u64)buf << (i * 16));
4860 }
4861
4862 return status;
4863}
4864
4865/**
4866 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
4867 * @caps: get PHY capability data
4868 */
4869bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
4870{
4871 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
4872 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
4873 ICE_AQC_PHY_AN_EN_CLAUSE73 |
4874 ICE_AQC_PHY_AN_EN_CLAUSE37))
4875 return true;
4876
4877 return false;
4878}
4879
4880/**
4881 * ice_aq_set_lldp_mib - Set the LLDP MIB
4882 * @hw: pointer to the HW struct
4883 * @mib_type: Local, Remote or both Local and Remote MIBs
4884 * @buf: pointer to the caller-supplied buffer to store the MIB block
4885 * @buf_size: size of the buffer (in bytes)
4886 * @cd: pointer to command details structure or NULL
4887 *
4888 * Set the LLDP MIB. (0x0A08)
4889 */
4890enum ice_status
4891ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
4892 struct ice_sq_cd *cd)
4893{
4894 struct ice_aqc_lldp_set_local_mib *cmd;
4895 struct ice_aq_desc desc;
4896
4897 cmd = &desc.params.lldp_set_mib;
4898
4899 if (buf_size == 0 || !buf)
4900 return ICE_ERR_PARAM;
4901
4902 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
4903
4904 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
4905 desc.datalen = cpu_to_le16(buf_size);
4906
4907 cmd->type = mib_type;
4908 cmd->length = cpu_to_le16(buf_size);
4909
4910 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4911}
4912
4913/**
4914 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
4915 * @hw: pointer to HW struct
4916 */
4917bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
4918{
4919 if (hw->mac_type != ICE_MAC_E810)
4920 return false;
4921
4922 if (hw->api_maj_ver == ICE_FW_API_LLDP_FLTR_MAJ) {
4923 if (hw->api_min_ver > ICE_FW_API_LLDP_FLTR_MIN)
4924 return true;
4925 if (hw->api_min_ver == ICE_FW_API_LLDP_FLTR_MIN &&
4926 hw->api_patch >= ICE_FW_API_LLDP_FLTR_PATCH)
4927 return true;
4928 } else if (hw->api_maj_ver > ICE_FW_API_LLDP_FLTR_MAJ) {
4929 return true;
4930 }
4931 return false;
4932}
4933
4934/**
4935 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
4936 * @hw: pointer to HW struct
4937 * @vsi_num: absolute HW index for VSI
4938 * @add: boolean for if adding or removing a filter
4939 */
4940enum ice_status
4941ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
4942{
4943 struct ice_aqc_lldp_filter_ctrl *cmd;
4944 struct ice_aq_desc desc;
4945
4946 cmd = &desc.params.lldp_filter_ctrl;
4947
4948 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
4949
4950 if (add)
4951 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
4952 else
4953 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
4954
4955 cmd->vsi_num = cpu_to_le16(vsi_num);
4956
4957 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4958}
4959
4960/**
4961 * ice_fw_supports_report_dflt_cfg
4962 * @hw: pointer to the hardware structure
4963 *
4964 * Checks if the firmware supports report default configuration
4965 */
4966bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
4967{
4968 if (hw->api_maj_ver == ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4969 if (hw->api_min_ver > ICE_FW_API_REPORT_DFLT_CFG_MIN)
4970 return true;
4971 if (hw->api_min_ver == ICE_FW_API_REPORT_DFLT_CFG_MIN &&
4972 hw->api_patch >= ICE_FW_API_REPORT_DFLT_CFG_PATCH)
4973 return true;
4974 } else if (hw->api_maj_ver > ICE_FW_API_REPORT_DFLT_CFG_MAJ) {
4975 return true;
4976 }
4977 return false;
4978}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018-2023, Intel Corporation. */
3
4#include "ice_common.h"
5#include "ice_sched.h"
6#include "ice_adminq_cmd.h"
7#include "ice_flow.h"
8#include "ice_ptp_hw.h"
9
10#define ICE_PF_RESET_WAIT_COUNT 300
11#define ICE_MAX_NETLIST_SIZE 10
12
13static const char * const ice_link_mode_str_low[] = {
14 [0] = "100BASE_TX",
15 [1] = "100M_SGMII",
16 [2] = "1000BASE_T",
17 [3] = "1000BASE_SX",
18 [4] = "1000BASE_LX",
19 [5] = "1000BASE_KX",
20 [6] = "1G_SGMII",
21 [7] = "2500BASE_T",
22 [8] = "2500BASE_X",
23 [9] = "2500BASE_KX",
24 [10] = "5GBASE_T",
25 [11] = "5GBASE_KR",
26 [12] = "10GBASE_T",
27 [13] = "10G_SFI_DA",
28 [14] = "10GBASE_SR",
29 [15] = "10GBASE_LR",
30 [16] = "10GBASE_KR_CR1",
31 [17] = "10G_SFI_AOC_ACC",
32 [18] = "10G_SFI_C2C",
33 [19] = "25GBASE_T",
34 [20] = "25GBASE_CR",
35 [21] = "25GBASE_CR_S",
36 [22] = "25GBASE_CR1",
37 [23] = "25GBASE_SR",
38 [24] = "25GBASE_LR",
39 [25] = "25GBASE_KR",
40 [26] = "25GBASE_KR_S",
41 [27] = "25GBASE_KR1",
42 [28] = "25G_AUI_AOC_ACC",
43 [29] = "25G_AUI_C2C",
44 [30] = "40GBASE_CR4",
45 [31] = "40GBASE_SR4",
46 [32] = "40GBASE_LR4",
47 [33] = "40GBASE_KR4",
48 [34] = "40G_XLAUI_AOC_ACC",
49 [35] = "40G_XLAUI",
50 [36] = "50GBASE_CR2",
51 [37] = "50GBASE_SR2",
52 [38] = "50GBASE_LR2",
53 [39] = "50GBASE_KR2",
54 [40] = "50G_LAUI2_AOC_ACC",
55 [41] = "50G_LAUI2",
56 [42] = "50G_AUI2_AOC_ACC",
57 [43] = "50G_AUI2",
58 [44] = "50GBASE_CP",
59 [45] = "50GBASE_SR",
60 [46] = "50GBASE_FR",
61 [47] = "50GBASE_LR",
62 [48] = "50GBASE_KR_PAM4",
63 [49] = "50G_AUI1_AOC_ACC",
64 [50] = "50G_AUI1",
65 [51] = "100GBASE_CR4",
66 [52] = "100GBASE_SR4",
67 [53] = "100GBASE_LR4",
68 [54] = "100GBASE_KR4",
69 [55] = "100G_CAUI4_AOC_ACC",
70 [56] = "100G_CAUI4",
71 [57] = "100G_AUI4_AOC_ACC",
72 [58] = "100G_AUI4",
73 [59] = "100GBASE_CR_PAM4",
74 [60] = "100GBASE_KR_PAM4",
75 [61] = "100GBASE_CP2",
76 [62] = "100GBASE_SR2",
77 [63] = "100GBASE_DR",
78};
79
80static const char * const ice_link_mode_str_high[] = {
81 [0] = "100GBASE_KR2_PAM4",
82 [1] = "100G_CAUI2_AOC_ACC",
83 [2] = "100G_CAUI2",
84 [3] = "100G_AUI2_AOC_ACC",
85 [4] = "100G_AUI2",
86};
87
88/**
89 * ice_dump_phy_type - helper function to dump phy_type
90 * @hw: pointer to the HW structure
91 * @low: 64 bit value for phy_type_low
92 * @high: 64 bit value for phy_type_high
93 * @prefix: prefix string to differentiate multiple dumps
94 */
95static void
96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
97{
98 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
99
100 for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
101 if (low & BIT_ULL(i))
102 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
103 prefix, i, ice_link_mode_str_low[i]);
104 }
105
106 ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
107
108 for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
109 if (high & BIT_ULL(i))
110 ice_debug(hw, ICE_DBG_PHY, "%s: bit(%d): %s\n",
111 prefix, i, ice_link_mode_str_high[i]);
112 }
113}
114
115/**
116 * ice_set_mac_type - Sets MAC type
117 * @hw: pointer to the HW structure
118 *
119 * This function sets the MAC type of the adapter based on the
120 * vendor ID and device ID stored in the HW structure.
121 */
122static int ice_set_mac_type(struct ice_hw *hw)
123{
124 if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
125 return -ENODEV;
126
127 switch (hw->device_id) {
128 case ICE_DEV_ID_E810C_BACKPLANE:
129 case ICE_DEV_ID_E810C_QSFP:
130 case ICE_DEV_ID_E810C_SFP:
131 case ICE_DEV_ID_E810_XXV_BACKPLANE:
132 case ICE_DEV_ID_E810_XXV_QSFP:
133 case ICE_DEV_ID_E810_XXV_SFP:
134 hw->mac_type = ICE_MAC_E810;
135 break;
136 case ICE_DEV_ID_E823C_10G_BASE_T:
137 case ICE_DEV_ID_E823C_BACKPLANE:
138 case ICE_DEV_ID_E823C_QSFP:
139 case ICE_DEV_ID_E823C_SFP:
140 case ICE_DEV_ID_E823C_SGMII:
141 case ICE_DEV_ID_E822C_10G_BASE_T:
142 case ICE_DEV_ID_E822C_BACKPLANE:
143 case ICE_DEV_ID_E822C_QSFP:
144 case ICE_DEV_ID_E822C_SFP:
145 case ICE_DEV_ID_E822C_SGMII:
146 case ICE_DEV_ID_E822L_10G_BASE_T:
147 case ICE_DEV_ID_E822L_BACKPLANE:
148 case ICE_DEV_ID_E822L_SFP:
149 case ICE_DEV_ID_E822L_SGMII:
150 case ICE_DEV_ID_E823L_10G_BASE_T:
151 case ICE_DEV_ID_E823L_1GBE:
152 case ICE_DEV_ID_E823L_BACKPLANE:
153 case ICE_DEV_ID_E823L_QSFP:
154 case ICE_DEV_ID_E823L_SFP:
155 hw->mac_type = ICE_MAC_GENERIC;
156 break;
157 case ICE_DEV_ID_E825C_BACKPLANE:
158 case ICE_DEV_ID_E825C_QSFP:
159 case ICE_DEV_ID_E825C_SFP:
160 case ICE_DEV_ID_E825C_SGMII:
161 hw->mac_type = ICE_MAC_GENERIC_3K_E825;
162 break;
163 case ICE_DEV_ID_E830_BACKPLANE:
164 case ICE_DEV_ID_E830_QSFP56:
165 case ICE_DEV_ID_E830_SFP:
166 case ICE_DEV_ID_E830_SFP_DD:
167 hw->mac_type = ICE_MAC_E830;
168 break;
169 default:
170 hw->mac_type = ICE_MAC_UNKNOWN;
171 break;
172 }
173
174 ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
175 return 0;
176}
177
178/**
179 * ice_is_generic_mac - check if device's mac_type is generic
180 * @hw: pointer to the hardware structure
181 *
182 * Return: true if mac_type is generic (with SBQ support), false if not
183 */
184bool ice_is_generic_mac(struct ice_hw *hw)
185{
186 return (hw->mac_type == ICE_MAC_GENERIC ||
187 hw->mac_type == ICE_MAC_GENERIC_3K_E825);
188}
189
190/**
191 * ice_is_e810
192 * @hw: pointer to the hardware structure
193 *
194 * returns true if the device is E810 based, false if not.
195 */
196bool ice_is_e810(struct ice_hw *hw)
197{
198 return hw->mac_type == ICE_MAC_E810;
199}
200
201/**
202 * ice_is_e810t
203 * @hw: pointer to the hardware structure
204 *
205 * returns true if the device is E810T based, false if not.
206 */
207bool ice_is_e810t(struct ice_hw *hw)
208{
209 switch (hw->device_id) {
210 case ICE_DEV_ID_E810C_SFP:
211 switch (hw->subsystem_device_id) {
212 case ICE_SUBDEV_ID_E810T:
213 case ICE_SUBDEV_ID_E810T2:
214 case ICE_SUBDEV_ID_E810T3:
215 case ICE_SUBDEV_ID_E810T4:
216 case ICE_SUBDEV_ID_E810T6:
217 case ICE_SUBDEV_ID_E810T7:
218 return true;
219 }
220 break;
221 case ICE_DEV_ID_E810C_QSFP:
222 switch (hw->subsystem_device_id) {
223 case ICE_SUBDEV_ID_E810T2:
224 case ICE_SUBDEV_ID_E810T3:
225 case ICE_SUBDEV_ID_E810T5:
226 return true;
227 }
228 break;
229 default:
230 break;
231 }
232
233 return false;
234}
235
236/**
237 * ice_is_e823
238 * @hw: pointer to the hardware structure
239 *
240 * returns true if the device is E823-L or E823-C based, false if not.
241 */
242bool ice_is_e823(struct ice_hw *hw)
243{
244 switch (hw->device_id) {
245 case ICE_DEV_ID_E823L_BACKPLANE:
246 case ICE_DEV_ID_E823L_SFP:
247 case ICE_DEV_ID_E823L_10G_BASE_T:
248 case ICE_DEV_ID_E823L_1GBE:
249 case ICE_DEV_ID_E823L_QSFP:
250 case ICE_DEV_ID_E823C_BACKPLANE:
251 case ICE_DEV_ID_E823C_QSFP:
252 case ICE_DEV_ID_E823C_SFP:
253 case ICE_DEV_ID_E823C_10G_BASE_T:
254 case ICE_DEV_ID_E823C_SGMII:
255 return true;
256 default:
257 return false;
258 }
259}
260
261/**
262 * ice_is_e825c - Check if a device is E825C family device
263 * @hw: pointer to the hardware structure
264 *
265 * Return: true if the device is E825-C based, false if not.
266 */
267bool ice_is_e825c(struct ice_hw *hw)
268{
269 switch (hw->device_id) {
270 case ICE_DEV_ID_E825C_BACKPLANE:
271 case ICE_DEV_ID_E825C_QSFP:
272 case ICE_DEV_ID_E825C_SFP:
273 case ICE_DEV_ID_E825C_SGMII:
274 return true;
275 default:
276 return false;
277 }
278}
279
280/**
281 * ice_clear_pf_cfg - Clear PF configuration
282 * @hw: pointer to the hardware structure
283 *
284 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
285 * configuration, flow director filters, etc.).
286 */
287int ice_clear_pf_cfg(struct ice_hw *hw)
288{
289 struct ice_aq_desc desc;
290
291 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
292
293 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
294}
295
296/**
297 * ice_aq_manage_mac_read - manage MAC address read command
298 * @hw: pointer to the HW struct
299 * @buf: a virtual buffer to hold the manage MAC read response
300 * @buf_size: Size of the virtual buffer
301 * @cd: pointer to command details structure or NULL
302 *
303 * This function is used to return per PF station MAC address (0x0107).
304 * NOTE: Upon successful completion of this command, MAC address information
305 * is returned in user specified buffer. Please interpret user specified
306 * buffer as "manage_mac_read" response.
307 * Response such as various MAC addresses are stored in HW struct (port.mac)
308 * ice_discover_dev_caps is expected to be called before this function is
309 * called.
310 */
311static int
312ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
313 struct ice_sq_cd *cd)
314{
315 struct ice_aqc_manage_mac_read_resp *resp;
316 struct ice_aqc_manage_mac_read *cmd;
317 struct ice_aq_desc desc;
318 int status;
319 u16 flags;
320 u8 i;
321
322 cmd = &desc.params.mac_read;
323
324 if (buf_size < sizeof(*resp))
325 return -EINVAL;
326
327 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
328
329 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
330 if (status)
331 return status;
332
333 resp = buf;
334 flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
335
336 if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
337 ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
338 return -EIO;
339 }
340
341 /* A single port can report up to two (LAN and WoL) addresses */
342 for (i = 0; i < cmd->num_addr; i++)
343 if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
344 ether_addr_copy(hw->port_info->mac.lan_addr,
345 resp[i].mac_addr);
346 ether_addr_copy(hw->port_info->mac.perm_addr,
347 resp[i].mac_addr);
348 break;
349 }
350
351 return 0;
352}
353
354/**
355 * ice_aq_get_phy_caps - returns PHY capabilities
356 * @pi: port information structure
357 * @qual_mods: report qualified modules
358 * @report_mode: report mode capabilities
359 * @pcaps: structure for PHY capabilities to be filled
360 * @cd: pointer to command details structure or NULL
361 *
362 * Returns the various PHY capabilities supported on the Port (0x0600)
363 */
364int
365ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
366 struct ice_aqc_get_phy_caps_data *pcaps,
367 struct ice_sq_cd *cd)
368{
369 struct ice_aqc_get_phy_caps *cmd;
370 u16 pcaps_size = sizeof(*pcaps);
371 struct ice_aq_desc desc;
372 const char *prefix;
373 struct ice_hw *hw;
374 int status;
375
376 cmd = &desc.params.get_phy;
377
378 if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
379 return -EINVAL;
380 hw = pi->hw;
381
382 if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
383 !ice_fw_supports_report_dflt_cfg(hw))
384 return -EINVAL;
385
386 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
387
388 if (qual_mods)
389 cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
390
391 cmd->param0 |= cpu_to_le16(report_mode);
392 status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
393
394 ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
395
396 switch (report_mode) {
397 case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
398 prefix = "phy_caps_media";
399 break;
400 case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
401 prefix = "phy_caps_no_media";
402 break;
403 case ICE_AQC_REPORT_ACTIVE_CFG:
404 prefix = "phy_caps_active";
405 break;
406 case ICE_AQC_REPORT_DFLT_CFG:
407 prefix = "phy_caps_default";
408 break;
409 default:
410 prefix = "phy_caps_invalid";
411 }
412
413 ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
414 le64_to_cpu(pcaps->phy_type_high), prefix);
415
416 ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
417 prefix, report_mode);
418 ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
419 ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
420 pcaps->low_power_ctrl_an);
421 ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
422 pcaps->eee_cap);
423 ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
424 pcaps->eeer_value);
425 ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
426 pcaps->link_fec_options);
427 ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
428 prefix, pcaps->module_compliance_enforcement);
429 ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
430 prefix, pcaps->extended_compliance_code);
431 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
432 pcaps->module_type[0]);
433 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
434 pcaps->module_type[1]);
435 ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
436 pcaps->module_type[2]);
437
438 if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
439 pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
440 pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
441 memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
442 sizeof(pi->phy.link_info.module_type));
443 }
444
445 return status;
446}
447
448/**
449 * ice_aq_get_link_topo_handle - get link topology node return status
450 * @pi: port information structure
451 * @node_type: requested node type
452 * @cd: pointer to command details structure or NULL
453 *
454 * Get link topology node return status for specified node type (0x06E0)
455 *
456 * Node type cage can be used to determine if cage is present. If AQC
457 * returns error (ENOENT), then no cage present. If no cage present, then
458 * connection type is backplane or BASE-T.
459 */
460static int
461ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
462 struct ice_sq_cd *cd)
463{
464 struct ice_aqc_get_link_topo *cmd;
465 struct ice_aq_desc desc;
466
467 cmd = &desc.params.get_link_topo;
468
469 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
470
471 cmd->addr.topo_params.node_type_ctx =
472 (ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
473 ICE_AQC_LINK_TOPO_NODE_CTX_S);
474
475 /* set node type */
476 cmd->addr.topo_params.node_type_ctx |=
477 (ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
478
479 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
480}
481
482/**
483 * ice_aq_get_netlist_node
484 * @hw: pointer to the hw struct
485 * @cmd: get_link_topo AQ structure
486 * @node_part_number: output node part number if node found
487 * @node_handle: output node handle parameter if node found
488 *
489 * Get netlist node handle.
490 */
491int
492ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
493 u8 *node_part_number, u16 *node_handle)
494{
495 struct ice_aq_desc desc;
496
497 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
498 desc.params.get_link_topo = *cmd;
499
500 if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
501 return -EINTR;
502
503 if (node_handle)
504 *node_handle =
505 le16_to_cpu(desc.params.get_link_topo.addr.handle);
506 if (node_part_number)
507 *node_part_number = desc.params.get_link_topo.node_part_num;
508
509 return 0;
510}
511
512/**
513 * ice_find_netlist_node
514 * @hw: pointer to the hw struct
515 * @node_type_ctx: type of netlist node to look for
516 * @node_part_number: node part number to look for
517 * @node_handle: output parameter if node found - optional
518 *
519 * Scan the netlist for a node handle of the given node type and part number.
520 *
521 * If node_handle is non-NULL it will be modified on function exit. It is only
522 * valid if the function returns zero, and should be ignored on any non-zero
523 * return value.
524 *
525 * Returns: 0 if the node is found, -ENOENT if no handle was found, and
526 * a negative error code on failure to access the AQ.
527 */
528static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type_ctx,
529 u8 node_part_number, u16 *node_handle)
530{
531 u8 idx;
532
533 for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
534 struct ice_aqc_get_link_topo cmd = {};
535 u8 rec_node_part_number;
536 int status;
537
538 cmd.addr.topo_params.node_type_ctx =
539 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M,
540 node_type_ctx);
541 cmd.addr.topo_params.index = idx;
542
543 status = ice_aq_get_netlist_node(hw, &cmd,
544 &rec_node_part_number,
545 node_handle);
546 if (status)
547 return status;
548
549 if (rec_node_part_number == node_part_number)
550 return 0;
551 }
552
553 return -ENOENT;
554}
555
556/**
557 * ice_is_media_cage_present
558 * @pi: port information structure
559 *
560 * Returns true if media cage is present, else false. If no cage, then
561 * media type is backplane or BASE-T.
562 */
563static bool ice_is_media_cage_present(struct ice_port_info *pi)
564{
565 /* Node type cage can be used to determine if cage is present. If AQC
566 * returns error (ENOENT), then no cage present. If no cage present then
567 * connection type is backplane or BASE-T.
568 */
569 return !ice_aq_get_link_topo_handle(pi,
570 ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
571 NULL);
572}
573
574/**
575 * ice_get_media_type - Gets media type
576 * @pi: port information structure
577 */
578static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
579{
580 struct ice_link_status *hw_link_info;
581
582 if (!pi)
583 return ICE_MEDIA_UNKNOWN;
584
585 hw_link_info = &pi->phy.link_info;
586 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
587 /* If more than one media type is selected, report unknown */
588 return ICE_MEDIA_UNKNOWN;
589
590 if (hw_link_info->phy_type_low) {
591 /* 1G SGMII is a special case where some DA cable PHYs
592 * may show this as an option when it really shouldn't
593 * be since SGMII is meant to be between a MAC and a PHY
594 * in a backplane. Try to detect this case and handle it
595 */
596 if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
597 (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
598 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
599 hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
600 ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
601 return ICE_MEDIA_DA;
602
603 switch (hw_link_info->phy_type_low) {
604 case ICE_PHY_TYPE_LOW_1000BASE_SX:
605 case ICE_PHY_TYPE_LOW_1000BASE_LX:
606 case ICE_PHY_TYPE_LOW_10GBASE_SR:
607 case ICE_PHY_TYPE_LOW_10GBASE_LR:
608 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
609 case ICE_PHY_TYPE_LOW_25GBASE_SR:
610 case ICE_PHY_TYPE_LOW_25GBASE_LR:
611 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
612 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
613 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
614 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
615 case ICE_PHY_TYPE_LOW_50GBASE_SR:
616 case ICE_PHY_TYPE_LOW_50GBASE_FR:
617 case ICE_PHY_TYPE_LOW_50GBASE_LR:
618 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
619 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
620 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
621 case ICE_PHY_TYPE_LOW_100GBASE_DR:
622 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
623 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
624 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
625 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
626 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
627 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
628 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
629 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
630 return ICE_MEDIA_FIBER;
631 case ICE_PHY_TYPE_LOW_100BASE_TX:
632 case ICE_PHY_TYPE_LOW_1000BASE_T:
633 case ICE_PHY_TYPE_LOW_2500BASE_T:
634 case ICE_PHY_TYPE_LOW_5GBASE_T:
635 case ICE_PHY_TYPE_LOW_10GBASE_T:
636 case ICE_PHY_TYPE_LOW_25GBASE_T:
637 return ICE_MEDIA_BASET;
638 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
639 case ICE_PHY_TYPE_LOW_25GBASE_CR:
640 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
641 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
642 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
643 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
644 case ICE_PHY_TYPE_LOW_50GBASE_CP:
645 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
646 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
647 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
648 return ICE_MEDIA_DA;
649 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
650 case ICE_PHY_TYPE_LOW_40G_XLAUI:
651 case ICE_PHY_TYPE_LOW_50G_LAUI2:
652 case ICE_PHY_TYPE_LOW_50G_AUI2:
653 case ICE_PHY_TYPE_LOW_50G_AUI1:
654 case ICE_PHY_TYPE_LOW_100G_AUI4:
655 case ICE_PHY_TYPE_LOW_100G_CAUI4:
656 if (ice_is_media_cage_present(pi))
657 return ICE_MEDIA_DA;
658 fallthrough;
659 case ICE_PHY_TYPE_LOW_1000BASE_KX:
660 case ICE_PHY_TYPE_LOW_2500BASE_KX:
661 case ICE_PHY_TYPE_LOW_2500BASE_X:
662 case ICE_PHY_TYPE_LOW_5GBASE_KR:
663 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
664 case ICE_PHY_TYPE_LOW_25GBASE_KR:
665 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
666 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
667 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
668 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
669 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
670 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
671 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
672 return ICE_MEDIA_BACKPLANE;
673 }
674 } else {
675 switch (hw_link_info->phy_type_high) {
676 case ICE_PHY_TYPE_HIGH_100G_AUI2:
677 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
678 if (ice_is_media_cage_present(pi))
679 return ICE_MEDIA_DA;
680 fallthrough;
681 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
682 return ICE_MEDIA_BACKPLANE;
683 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
684 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
685 return ICE_MEDIA_FIBER;
686 }
687 }
688 return ICE_MEDIA_UNKNOWN;
689}
690
691/**
692 * ice_get_link_status_datalen
693 * @hw: pointer to the HW struct
694 *
695 * Returns datalength for the Get Link Status AQ command, which is bigger for
696 * newer adapter families handled by ice driver.
697 */
698static u16 ice_get_link_status_datalen(struct ice_hw *hw)
699{
700 switch (hw->mac_type) {
701 case ICE_MAC_E830:
702 return ICE_AQC_LS_DATA_SIZE_V2;
703 case ICE_MAC_E810:
704 default:
705 return ICE_AQC_LS_DATA_SIZE_V1;
706 }
707}
708
709/**
710 * ice_aq_get_link_info
711 * @pi: port information structure
712 * @ena_lse: enable/disable LinkStatusEvent reporting
713 * @link: pointer to link status structure - optional
714 * @cd: pointer to command details structure or NULL
715 *
716 * Get Link Status (0x607). Returns the link status of the adapter.
717 */
718int
719ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
720 struct ice_link_status *link, struct ice_sq_cd *cd)
721{
722 struct ice_aqc_get_link_status_data link_data = { 0 };
723 struct ice_aqc_get_link_status *resp;
724 struct ice_link_status *li_old, *li;
725 enum ice_media_type *hw_media_type;
726 struct ice_fc_info *hw_fc_info;
727 bool tx_pause, rx_pause;
728 struct ice_aq_desc desc;
729 struct ice_hw *hw;
730 u16 cmd_flags;
731 int status;
732
733 if (!pi)
734 return -EINVAL;
735 hw = pi->hw;
736 li_old = &pi->phy.link_info_old;
737 hw_media_type = &pi->phy.media_type;
738 li = &pi->phy.link_info;
739 hw_fc_info = &pi->fc;
740
741 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
742 cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
743 resp = &desc.params.get_link_status;
744 resp->cmd_flags = cpu_to_le16(cmd_flags);
745 resp->lport_num = pi->lport;
746
747 status = ice_aq_send_cmd(hw, &desc, &link_data,
748 ice_get_link_status_datalen(hw), cd);
749 if (status)
750 return status;
751
752 /* save off old link status information */
753 *li_old = *li;
754
755 /* update current link status information */
756 li->link_speed = le16_to_cpu(link_data.link_speed);
757 li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
758 li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
759 *hw_media_type = ice_get_media_type(pi);
760 li->link_info = link_data.link_info;
761 li->link_cfg_err = link_data.link_cfg_err;
762 li->an_info = link_data.an_info;
763 li->ext_info = link_data.ext_info;
764 li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
765 li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
766 li->topo_media_conflict = link_data.topo_media_conflict;
767 li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
768 ICE_AQ_CFG_PACING_TYPE_M);
769
770 /* update fc info */
771 tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
772 rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
773 if (tx_pause && rx_pause)
774 hw_fc_info->current_mode = ICE_FC_FULL;
775 else if (tx_pause)
776 hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
777 else if (rx_pause)
778 hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
779 else
780 hw_fc_info->current_mode = ICE_FC_NONE;
781
782 li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
783
784 ice_debug(hw, ICE_DBG_LINK, "get link info\n");
785 ice_debug(hw, ICE_DBG_LINK, " link_speed = 0x%x\n", li->link_speed);
786 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
787 (unsigned long long)li->phy_type_low);
788 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
789 (unsigned long long)li->phy_type_high);
790 ice_debug(hw, ICE_DBG_LINK, " media_type = 0x%x\n", *hw_media_type);
791 ice_debug(hw, ICE_DBG_LINK, " link_info = 0x%x\n", li->link_info);
792 ice_debug(hw, ICE_DBG_LINK, " link_cfg_err = 0x%x\n", li->link_cfg_err);
793 ice_debug(hw, ICE_DBG_LINK, " an_info = 0x%x\n", li->an_info);
794 ice_debug(hw, ICE_DBG_LINK, " ext_info = 0x%x\n", li->ext_info);
795 ice_debug(hw, ICE_DBG_LINK, " fec_info = 0x%x\n", li->fec_info);
796 ice_debug(hw, ICE_DBG_LINK, " lse_ena = 0x%x\n", li->lse_ena);
797 ice_debug(hw, ICE_DBG_LINK, " max_frame = 0x%x\n",
798 li->max_frame_size);
799 ice_debug(hw, ICE_DBG_LINK, " pacing = 0x%x\n", li->pacing);
800
801 /* save link status information */
802 if (link)
803 *link = *li;
804
805 /* flag cleared so calling functions don't call AQ again */
806 pi->phy.get_link_info = false;
807
808 return 0;
809}
810
811/**
812 * ice_fill_tx_timer_and_fc_thresh
813 * @hw: pointer to the HW struct
814 * @cmd: pointer to MAC cfg structure
815 *
816 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
817 * descriptor
818 */
819static void
820ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
821 struct ice_aqc_set_mac_cfg *cmd)
822{
823 u32 val, fc_thres_m;
824
825 /* We read back the transmit timer and FC threshold value of
826 * LFC. Thus, we will use index =
827 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
828 *
829 * Also, because we are operating on transmit timer and FC
830 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
831 */
832#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
833#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
834
835 if (hw->mac_type == ICE_MAC_E830) {
836 /* Retrieve the transmit timer */
837 val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
838 cmd->tx_tmr_value =
839 le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
840
841 /* Retrieve the fc threshold */
842 val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
843 fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
844 } else {
845 /* Retrieve the transmit timer */
846 val = rd32(hw,
847 E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
848 cmd->tx_tmr_value =
849 le16_encode_bits(val,
850 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
851
852 /* Retrieve the fc threshold */
853 val = rd32(hw,
854 E800_REFRESH_TMR(E800_IDX_OF_LFC));
855 fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
856 }
857 cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
858}
859
860/**
861 * ice_aq_set_mac_cfg
862 * @hw: pointer to the HW struct
863 * @max_frame_size: Maximum Frame Size to be supported
864 * @cd: pointer to command details structure or NULL
865 *
866 * Set MAC configuration (0x0603)
867 */
868int
869ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
870{
871 struct ice_aqc_set_mac_cfg *cmd;
872 struct ice_aq_desc desc;
873
874 cmd = &desc.params.set_mac_cfg;
875
876 if (max_frame_size == 0)
877 return -EINVAL;
878
879 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
880
881 cmd->max_frame_size = cpu_to_le16(max_frame_size);
882
883 ice_fill_tx_timer_and_fc_thresh(hw, cmd);
884
885 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
886}
887
888/**
889 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
890 * @hw: pointer to the HW struct
891 */
892static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
893{
894 struct ice_switch_info *sw;
895 int status;
896
897 hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
898 sizeof(*hw->switch_info), GFP_KERNEL);
899 sw = hw->switch_info;
900
901 if (!sw)
902 return -ENOMEM;
903
904 INIT_LIST_HEAD(&sw->vsi_list_map_head);
905 sw->prof_res_bm_init = 0;
906
907 status = ice_init_def_sw_recp(hw);
908 if (status) {
909 devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
910 return status;
911 }
912 return 0;
913}
914
915/**
916 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
917 * @hw: pointer to the HW struct
918 */
919static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
920{
921 struct ice_switch_info *sw = hw->switch_info;
922 struct ice_vsi_list_map_info *v_pos_map;
923 struct ice_vsi_list_map_info *v_tmp_map;
924 struct ice_sw_recipe *recps;
925 u8 i;
926
927 list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
928 list_entry) {
929 list_del(&v_pos_map->list_entry);
930 devm_kfree(ice_hw_to_dev(hw), v_pos_map);
931 }
932 recps = sw->recp_list;
933 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
934 struct ice_recp_grp_entry *rg_entry, *tmprg_entry;
935
936 recps[i].root_rid = i;
937 list_for_each_entry_safe(rg_entry, tmprg_entry,
938 &recps[i].rg_list, l_entry) {
939 list_del(&rg_entry->l_entry);
940 devm_kfree(ice_hw_to_dev(hw), rg_entry);
941 }
942
943 if (recps[i].adv_rule) {
944 struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
945 struct ice_adv_fltr_mgmt_list_entry *lst_itr;
946
947 mutex_destroy(&recps[i].filt_rule_lock);
948 list_for_each_entry_safe(lst_itr, tmp_entry,
949 &recps[i].filt_rules,
950 list_entry) {
951 list_del(&lst_itr->list_entry);
952 devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
953 devm_kfree(ice_hw_to_dev(hw), lst_itr);
954 }
955 } else {
956 struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
957
958 mutex_destroy(&recps[i].filt_rule_lock);
959 list_for_each_entry_safe(lst_itr, tmp_entry,
960 &recps[i].filt_rules,
961 list_entry) {
962 list_del(&lst_itr->list_entry);
963 devm_kfree(ice_hw_to_dev(hw), lst_itr);
964 }
965 }
966 devm_kfree(ice_hw_to_dev(hw), recps[i].root_buf);
967 }
968 ice_rm_all_sw_replay_rule_info(hw);
969 devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
970 devm_kfree(ice_hw_to_dev(hw), sw);
971}
972
973/**
974 * ice_get_itr_intrl_gran
975 * @hw: pointer to the HW struct
976 *
977 * Determines the ITR/INTRL granularities based on the maximum aggregate
978 * bandwidth according to the device's configuration during power-on.
979 */
980static void ice_get_itr_intrl_gran(struct ice_hw *hw)
981{
982 u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
983 rd32(hw, GL_PWR_MODE_CTL));
984
985 switch (max_agg_bw) {
986 case ICE_MAX_AGG_BW_200G:
987 case ICE_MAX_AGG_BW_100G:
988 case ICE_MAX_AGG_BW_50G:
989 hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
990 hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
991 break;
992 case ICE_MAX_AGG_BW_25G:
993 hw->itr_gran = ICE_ITR_GRAN_MAX_25;
994 hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
995 break;
996 }
997}
998
999/**
1000 * ice_init_hw - main hardware initialization routine
1001 * @hw: pointer to the hardware structure
1002 */
1003int ice_init_hw(struct ice_hw *hw)
1004{
1005 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1006 void *mac_buf __free(kfree) = NULL;
1007 u16 mac_buf_len;
1008 int status;
1009
1010 /* Set MAC type based on DeviceID */
1011 status = ice_set_mac_type(hw);
1012 if (status)
1013 return status;
1014
1015 hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
1016
1017 status = ice_reset(hw, ICE_RESET_PFR);
1018 if (status)
1019 return status;
1020
1021 ice_get_itr_intrl_gran(hw);
1022
1023 status = ice_create_all_ctrlq(hw);
1024 if (status)
1025 goto err_unroll_cqinit;
1026
1027 status = ice_fwlog_init(hw);
1028 if (status)
1029 ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1030 status);
1031
1032 status = ice_clear_pf_cfg(hw);
1033 if (status)
1034 goto err_unroll_cqinit;
1035
1036 /* Set bit to enable Flow Director filters */
1037 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1038 INIT_LIST_HEAD(&hw->fdir_list_head);
1039
1040 ice_clear_pxe_mode(hw);
1041
1042 status = ice_init_nvm(hw);
1043 if (status)
1044 goto err_unroll_cqinit;
1045
1046 status = ice_get_caps(hw);
1047 if (status)
1048 goto err_unroll_cqinit;
1049
1050 if (!hw->port_info)
1051 hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1052 sizeof(*hw->port_info),
1053 GFP_KERNEL);
1054 if (!hw->port_info) {
1055 status = -ENOMEM;
1056 goto err_unroll_cqinit;
1057 }
1058
1059 /* set the back pointer to HW */
1060 hw->port_info->hw = hw;
1061
1062 /* Initialize port_info struct with switch configuration data */
1063 status = ice_get_initial_sw_cfg(hw);
1064 if (status)
1065 goto err_unroll_alloc;
1066
1067 hw->evb_veb = true;
1068
1069 /* init xarray for identifying scheduling nodes uniquely */
1070 xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1071
1072 /* Query the allocated resources for Tx scheduler */
1073 status = ice_sched_query_res_alloc(hw);
1074 if (status) {
1075 ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
1076 goto err_unroll_alloc;
1077 }
1078 ice_sched_get_psm_clk_freq(hw);
1079
1080 /* Initialize port_info struct with scheduler data */
1081 status = ice_sched_init_port(hw->port_info);
1082 if (status)
1083 goto err_unroll_sched;
1084
1085 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1086 if (!pcaps) {
1087 status = -ENOMEM;
1088 goto err_unroll_sched;
1089 }
1090
1091 /* Initialize port_info struct with PHY capabilities */
1092 status = ice_aq_get_phy_caps(hw->port_info, false,
1093 ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1094 NULL);
1095 if (status)
1096 dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1097 status);
1098
1099 /* Initialize port_info struct with link information */
1100 status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1101 if (status)
1102 goto err_unroll_sched;
1103
1104 /* need a valid SW entry point to build a Tx tree */
1105 if (!hw->sw_entry_point_layer) {
1106 ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1107 status = -EIO;
1108 goto err_unroll_sched;
1109 }
1110 INIT_LIST_HEAD(&hw->agg_list);
1111 /* Initialize max burst size */
1112 if (!hw->max_burst_size)
1113 ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1114
1115 status = ice_init_fltr_mgmt_struct(hw);
1116 if (status)
1117 goto err_unroll_sched;
1118
1119 /* Get MAC information */
1120 /* A single port can report up to two (LAN and WoL) addresses */
1121 mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1122 GFP_KERNEL);
1123 if (!mac_buf) {
1124 status = -ENOMEM;
1125 goto err_unroll_fltr_mgmt_struct;
1126 }
1127
1128 mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1129 status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
1130
1131 if (status)
1132 goto err_unroll_fltr_mgmt_struct;
1133 /* enable jumbo frame support at MAC level */
1134 status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1135 if (status)
1136 goto err_unroll_fltr_mgmt_struct;
1137 /* Obtain counter base index which would be used by flow director */
1138 status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1139 if (status)
1140 goto err_unroll_fltr_mgmt_struct;
1141 status = ice_init_hw_tbls(hw);
1142 if (status)
1143 goto err_unroll_fltr_mgmt_struct;
1144 mutex_init(&hw->tnl_lock);
1145 return 0;
1146
1147err_unroll_fltr_mgmt_struct:
1148 ice_cleanup_fltr_mgmt_struct(hw);
1149err_unroll_sched:
1150 ice_sched_cleanup_all(hw);
1151err_unroll_alloc:
1152 devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1153err_unroll_cqinit:
1154 ice_destroy_all_ctrlq(hw);
1155 return status;
1156}
1157
1158/**
1159 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1160 * @hw: pointer to the hardware structure
1161 *
1162 * This should be called only during nominal operation, not as a result of
1163 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1164 * applicable initializations if it fails for any reason.
1165 */
1166void ice_deinit_hw(struct ice_hw *hw)
1167{
1168 ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1169 ice_cleanup_fltr_mgmt_struct(hw);
1170
1171 ice_sched_cleanup_all(hw);
1172 ice_sched_clear_agg(hw);
1173 ice_free_seg(hw);
1174 ice_free_hw_tbls(hw);
1175 mutex_destroy(&hw->tnl_lock);
1176
1177 ice_fwlog_deinit(hw);
1178 ice_destroy_all_ctrlq(hw);
1179
1180 /* Clear VSI contexts if not already cleared */
1181 ice_clear_all_vsi_ctx(hw);
1182}
1183
1184/**
1185 * ice_check_reset - Check to see if a global reset is complete
1186 * @hw: pointer to the hardware structure
1187 */
1188int ice_check_reset(struct ice_hw *hw)
1189{
1190 u32 cnt, reg = 0, grst_timeout, uld_mask;
1191
1192 /* Poll for Device Active state in case a recent CORER, GLOBR,
1193 * or EMPR has occurred. The grst delay value is in 100ms units.
1194 * Add 1sec for outstanding AQ commands that can take a long time.
1195 */
1196 grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1197 rd32(hw, GLGEN_RSTCTL)) + 10;
1198
1199 for (cnt = 0; cnt < grst_timeout; cnt++) {
1200 mdelay(100);
1201 reg = rd32(hw, GLGEN_RSTAT);
1202 if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1203 break;
1204 }
1205
1206 if (cnt == grst_timeout) {
1207 ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1208 return -EIO;
1209 }
1210
1211#define ICE_RESET_DONE_MASK (GLNVM_ULD_PCIER_DONE_M |\
1212 GLNVM_ULD_PCIER_DONE_1_M |\
1213 GLNVM_ULD_CORER_DONE_M |\
1214 GLNVM_ULD_GLOBR_DONE_M |\
1215 GLNVM_ULD_POR_DONE_M |\
1216 GLNVM_ULD_POR_DONE_1_M |\
1217 GLNVM_ULD_PCIER_DONE_2_M)
1218
1219 uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1220 GLNVM_ULD_PE_DONE_M : 0);
1221
1222 /* Device is Active; check Global Reset processes are done */
1223 for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1224 reg = rd32(hw, GLNVM_ULD) & uld_mask;
1225 if (reg == uld_mask) {
1226 ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
1227 break;
1228 }
1229 mdelay(10);
1230 }
1231
1232 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1233 ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
1234 reg);
1235 return -EIO;
1236 }
1237
1238 return 0;
1239}
1240
1241/**
1242 * ice_pf_reset - Reset the PF
1243 * @hw: pointer to the hardware structure
1244 *
1245 * If a global reset has been triggered, this function checks
1246 * for its completion and then issues the PF reset
1247 */
1248static int ice_pf_reset(struct ice_hw *hw)
1249{
1250 u32 cnt, reg;
1251
1252 /* If at function entry a global reset was already in progress, i.e.
1253 * state is not 'device active' or any of the reset done bits are not
1254 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1255 * global reset is done.
1256 */
1257 if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1258 (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1259 /* poll on global reset currently in progress until done */
1260 if (ice_check_reset(hw))
1261 return -EIO;
1262
1263 return 0;
1264 }
1265
1266 /* Reset the PF */
1267 reg = rd32(hw, PFGEN_CTRL);
1268
1269 wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1270
1271 /* Wait for the PFR to complete. The wait time is the global config lock
1272 * timeout plus the PFR timeout which will account for a possible reset
1273 * that is occurring during a download package operation.
1274 */
1275 for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1276 ICE_PF_RESET_WAIT_COUNT; cnt++) {
1277 reg = rd32(hw, PFGEN_CTRL);
1278 if (!(reg & PFGEN_CTRL_PFSWR_M))
1279 break;
1280
1281 mdelay(1);
1282 }
1283
1284 if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1285 ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1286 return -EIO;
1287 }
1288
1289 return 0;
1290}
1291
1292/**
1293 * ice_reset - Perform different types of reset
1294 * @hw: pointer to the hardware structure
1295 * @req: reset request
1296 *
1297 * This function triggers a reset as specified by the req parameter.
1298 *
1299 * Note:
1300 * If anything other than a PF reset is triggered, PXE mode is restored.
1301 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1302 * interface has been restored in the rebuild flow.
1303 */
1304int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1305{
1306 u32 val = 0;
1307
1308 switch (req) {
1309 case ICE_RESET_PFR:
1310 return ice_pf_reset(hw);
1311 case ICE_RESET_CORER:
1312 ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1313 val = GLGEN_RTRIG_CORER_M;
1314 break;
1315 case ICE_RESET_GLOBR:
1316 ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1317 val = GLGEN_RTRIG_GLOBR_M;
1318 break;
1319 default:
1320 return -EINVAL;
1321 }
1322
1323 val |= rd32(hw, GLGEN_RTRIG);
1324 wr32(hw, GLGEN_RTRIG, val);
1325 ice_flush(hw);
1326
1327 /* wait for the FW to be ready */
1328 return ice_check_reset(hw);
1329}
1330
1331/**
1332 * ice_copy_rxq_ctx_to_hw
1333 * @hw: pointer to the hardware structure
1334 * @ice_rxq_ctx: pointer to the rxq context
1335 * @rxq_index: the index of the Rx queue
1336 *
1337 * Copies rxq context from dense structure to HW register space
1338 */
1339static int
1340ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1341{
1342 u8 i;
1343
1344 if (!ice_rxq_ctx)
1345 return -EINVAL;
1346
1347 if (rxq_index > QRX_CTRL_MAX_INDEX)
1348 return -EINVAL;
1349
1350 /* Copy each dword separately to HW */
1351 for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1352 wr32(hw, QRX_CONTEXT(i, rxq_index),
1353 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1354
1355 ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1356 *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1357 }
1358
1359 return 0;
1360}
1361
1362/* LAN Rx Queue Context */
1363static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1364 /* Field Width LSB */
1365 ICE_CTX_STORE(ice_rlan_ctx, head, 13, 0),
1366 ICE_CTX_STORE(ice_rlan_ctx, cpuid, 8, 13),
1367 ICE_CTX_STORE(ice_rlan_ctx, base, 57, 32),
1368 ICE_CTX_STORE(ice_rlan_ctx, qlen, 13, 89),
1369 ICE_CTX_STORE(ice_rlan_ctx, dbuf, 7, 102),
1370 ICE_CTX_STORE(ice_rlan_ctx, hbuf, 5, 109),
1371 ICE_CTX_STORE(ice_rlan_ctx, dtype, 2, 114),
1372 ICE_CTX_STORE(ice_rlan_ctx, dsize, 1, 116),
1373 ICE_CTX_STORE(ice_rlan_ctx, crcstrip, 1, 117),
1374 ICE_CTX_STORE(ice_rlan_ctx, l2tsel, 1, 119),
1375 ICE_CTX_STORE(ice_rlan_ctx, hsplit_0, 4, 120),
1376 ICE_CTX_STORE(ice_rlan_ctx, hsplit_1, 2, 124),
1377 ICE_CTX_STORE(ice_rlan_ctx, showiv, 1, 127),
1378 ICE_CTX_STORE(ice_rlan_ctx, rxmax, 14, 174),
1379 ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena, 1, 193),
1380 ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena, 1, 194),
1381 ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena, 1, 195),
1382 ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena, 1, 196),
1383 ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh, 3, 198),
1384 ICE_CTX_STORE(ice_rlan_ctx, prefena, 1, 201),
1385 { 0 }
1386};
1387
1388/**
1389 * ice_write_rxq_ctx
1390 * @hw: pointer to the hardware structure
1391 * @rlan_ctx: pointer to the rxq context
1392 * @rxq_index: the index of the Rx queue
1393 *
1394 * Converts rxq context from sparse to dense structure and then writes
1395 * it to HW register space and enables the hardware to prefetch descriptors
1396 * instead of only fetching them on demand
1397 */
1398int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1399 u32 rxq_index)
1400{
1401 u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1402
1403 if (!rlan_ctx)
1404 return -EINVAL;
1405
1406 rlan_ctx->prefena = 1;
1407
1408 ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1409 return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1410}
1411
1412/* LAN Tx Queue Context */
1413const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1414 /* Field Width LSB */
1415 ICE_CTX_STORE(ice_tlan_ctx, base, 57, 0),
1416 ICE_CTX_STORE(ice_tlan_ctx, port_num, 3, 57),
1417 ICE_CTX_STORE(ice_tlan_ctx, cgd_num, 5, 60),
1418 ICE_CTX_STORE(ice_tlan_ctx, pf_num, 3, 65),
1419 ICE_CTX_STORE(ice_tlan_ctx, vmvf_num, 10, 68),
1420 ICE_CTX_STORE(ice_tlan_ctx, vmvf_type, 2, 78),
1421 ICE_CTX_STORE(ice_tlan_ctx, src_vsi, 10, 80),
1422 ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena, 1, 90),
1423 ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag, 1, 91),
1424 ICE_CTX_STORE(ice_tlan_ctx, alt_vlan, 1, 92),
1425 ICE_CTX_STORE(ice_tlan_ctx, cpuid, 8, 93),
1426 ICE_CTX_STORE(ice_tlan_ctx, wb_mode, 1, 101),
1427 ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc, 1, 102),
1428 ICE_CTX_STORE(ice_tlan_ctx, tphrd, 1, 103),
1429 ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc, 1, 104),
1430 ICE_CTX_STORE(ice_tlan_ctx, cmpq_id, 9, 105),
1431 ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func, 14, 114),
1432 ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode, 1, 128),
1433 ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id, 6, 129),
1434 ICE_CTX_STORE(ice_tlan_ctx, qlen, 13, 135),
1435 ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx, 4, 148),
1436 ICE_CTX_STORE(ice_tlan_ctx, tso_ena, 1, 152),
1437 ICE_CTX_STORE(ice_tlan_ctx, tso_qnum, 11, 153),
1438 ICE_CTX_STORE(ice_tlan_ctx, legacy_int, 1, 164),
1439 ICE_CTX_STORE(ice_tlan_ctx, drop_ena, 1, 165),
1440 ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx, 2, 166),
1441 ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx, 3, 168),
1442 ICE_CTX_STORE(ice_tlan_ctx, int_q_state, 122, 171),
1443 { 0 }
1444};
1445
1446/* Sideband Queue command wrappers */
1447
1448/**
1449 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1450 * @hw: pointer to the HW struct
1451 * @desc: descriptor describing the command
1452 * @buf: buffer to use for indirect commands (NULL for direct commands)
1453 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1454 * @cd: pointer to command details structure
1455 */
1456static int
1457ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1458 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1459{
1460 return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1461 (struct ice_aq_desc *)desc, buf, buf_size, cd);
1462}
1463
1464/**
1465 * ice_sbq_rw_reg - Fill Sideband Queue command
1466 * @hw: pointer to the HW struct
1467 * @in: message info to be filled in descriptor
1468 */
1469int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in)
1470{
1471 struct ice_sbq_cmd_desc desc = {0};
1472 struct ice_sbq_msg_req msg = {0};
1473 u16 msg_len;
1474 int status;
1475
1476 msg_len = sizeof(msg);
1477
1478 msg.dest_dev = in->dest_dev;
1479 msg.opcode = in->opcode;
1480 msg.flags = ICE_SBQ_MSG_FLAGS;
1481 msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1482 msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1483 msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1484
1485 if (in->opcode)
1486 msg.data = cpu_to_le32(in->data);
1487 else
1488 /* data read comes back in completion, so shorten the struct by
1489 * sizeof(msg.data)
1490 */
1491 msg_len -= sizeof(msg.data);
1492
1493 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
1494 desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1495 desc.param0.cmd_len = cpu_to_le16(msg_len);
1496 status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1497 if (!status && !in->opcode)
1498 in->data = le32_to_cpu
1499 (((struct ice_sbq_msg_cmpl *)&msg)->data);
1500 return status;
1501}
1502
1503/* FW Admin Queue command wrappers */
1504
1505/* Software lock/mutex that is meant to be held while the Global Config Lock
1506 * in firmware is acquired by the software to prevent most (but not all) types
1507 * of AQ commands from being sent to FW
1508 */
1509DEFINE_MUTEX(ice_global_cfg_lock_sw);
1510
1511/**
1512 * ice_should_retry_sq_send_cmd
1513 * @opcode: AQ opcode
1514 *
1515 * Decide if we should retry the send command routine for the ATQ, depending
1516 * on the opcode.
1517 */
1518static bool ice_should_retry_sq_send_cmd(u16 opcode)
1519{
1520 switch (opcode) {
1521 case ice_aqc_opc_get_link_topo:
1522 case ice_aqc_opc_lldp_stop:
1523 case ice_aqc_opc_lldp_start:
1524 case ice_aqc_opc_lldp_filter_ctrl:
1525 return true;
1526 }
1527
1528 return false;
1529}
1530
1531/**
1532 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1533 * @hw: pointer to the HW struct
1534 * @cq: pointer to the specific Control queue
1535 * @desc: prefilled descriptor describing the command
1536 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1537 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1538 * @cd: pointer to command details structure
1539 *
1540 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1541 * Queue if the EBUSY AQ error is returned.
1542 */
1543static int
1544ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1545 struct ice_aq_desc *desc, void *buf, u16 buf_size,
1546 struct ice_sq_cd *cd)
1547{
1548 struct ice_aq_desc desc_cpy;
1549 bool is_cmd_for_retry;
1550 u8 idx = 0;
1551 u16 opcode;
1552 int status;
1553
1554 opcode = le16_to_cpu(desc->opcode);
1555 is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1556 memset(&desc_cpy, 0, sizeof(desc_cpy));
1557
1558 if (is_cmd_for_retry) {
1559 /* All retryable cmds are direct, without buf. */
1560 WARN_ON(buf);
1561
1562 memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1563 }
1564
1565 do {
1566 status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1567
1568 if (!is_cmd_for_retry || !status ||
1569 hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1570 break;
1571
1572 memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1573
1574 msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1575
1576 } while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1577
1578 return status;
1579}
1580
1581/**
1582 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1583 * @hw: pointer to the HW struct
1584 * @desc: descriptor describing the command
1585 * @buf: buffer to use for indirect commands (NULL for direct commands)
1586 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1587 * @cd: pointer to command details structure
1588 *
1589 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1590 */
1591int
1592ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1593 u16 buf_size, struct ice_sq_cd *cd)
1594{
1595 struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1596 bool lock_acquired = false;
1597 int status;
1598
1599 /* When a package download is in process (i.e. when the firmware's
1600 * Global Configuration Lock resource is held), only the Download
1601 * Package, Get Version, Get Package Info List, Upload Section,
1602 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1603 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1604 * Recipes to Profile Association, and Release Resource (with resource
1605 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1606 * must block until the package download completes and the Global Config
1607 * Lock is released. See also ice_acquire_global_cfg_lock().
1608 */
1609 switch (le16_to_cpu(desc->opcode)) {
1610 case ice_aqc_opc_download_pkg:
1611 case ice_aqc_opc_get_pkg_info_list:
1612 case ice_aqc_opc_get_ver:
1613 case ice_aqc_opc_upload_section:
1614 case ice_aqc_opc_update_pkg:
1615 case ice_aqc_opc_set_port_params:
1616 case ice_aqc_opc_get_vlan_mode_parameters:
1617 case ice_aqc_opc_set_vlan_mode_parameters:
1618 case ice_aqc_opc_add_recipe:
1619 case ice_aqc_opc_recipe_to_profile:
1620 case ice_aqc_opc_get_recipe:
1621 case ice_aqc_opc_get_recipe_to_profile:
1622 break;
1623 case ice_aqc_opc_release_res:
1624 if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1625 break;
1626 fallthrough;
1627 default:
1628 mutex_lock(&ice_global_cfg_lock_sw);
1629 lock_acquired = true;
1630 break;
1631 }
1632
1633 status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1634 if (lock_acquired)
1635 mutex_unlock(&ice_global_cfg_lock_sw);
1636
1637 return status;
1638}
1639
1640/**
1641 * ice_aq_get_fw_ver
1642 * @hw: pointer to the HW struct
1643 * @cd: pointer to command details structure or NULL
1644 *
1645 * Get the firmware version (0x0001) from the admin queue commands
1646 */
1647int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1648{
1649 struct ice_aqc_get_ver *resp;
1650 struct ice_aq_desc desc;
1651 int status;
1652
1653 resp = &desc.params.get_ver;
1654
1655 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1656
1657 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1658
1659 if (!status) {
1660 hw->fw_branch = resp->fw_branch;
1661 hw->fw_maj_ver = resp->fw_major;
1662 hw->fw_min_ver = resp->fw_minor;
1663 hw->fw_patch = resp->fw_patch;
1664 hw->fw_build = le32_to_cpu(resp->fw_build);
1665 hw->api_branch = resp->api_branch;
1666 hw->api_maj_ver = resp->api_major;
1667 hw->api_min_ver = resp->api_minor;
1668 hw->api_patch = resp->api_patch;
1669 }
1670
1671 return status;
1672}
1673
1674/**
1675 * ice_aq_send_driver_ver
1676 * @hw: pointer to the HW struct
1677 * @dv: driver's major, minor version
1678 * @cd: pointer to command details structure or NULL
1679 *
1680 * Send the driver version (0x0002) to the firmware
1681 */
1682int
1683ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1684 struct ice_sq_cd *cd)
1685{
1686 struct ice_aqc_driver_ver *cmd;
1687 struct ice_aq_desc desc;
1688 u16 len;
1689
1690 cmd = &desc.params.driver_ver;
1691
1692 if (!dv)
1693 return -EINVAL;
1694
1695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1696
1697 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1698 cmd->major_ver = dv->major_ver;
1699 cmd->minor_ver = dv->minor_ver;
1700 cmd->build_ver = dv->build_ver;
1701 cmd->subbuild_ver = dv->subbuild_ver;
1702
1703 len = 0;
1704 while (len < sizeof(dv->driver_string) &&
1705 isascii(dv->driver_string[len]) && dv->driver_string[len])
1706 len++;
1707
1708 return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1709}
1710
1711/**
1712 * ice_aq_q_shutdown
1713 * @hw: pointer to the HW struct
1714 * @unloading: is the driver unloading itself
1715 *
1716 * Tell the Firmware that we're shutting down the AdminQ and whether
1717 * or not the driver is unloading as well (0x0003).
1718 */
1719int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1720{
1721 struct ice_aqc_q_shutdown *cmd;
1722 struct ice_aq_desc desc;
1723
1724 cmd = &desc.params.q_shutdown;
1725
1726 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1727
1728 if (unloading)
1729 cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1730
1731 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1732}
1733
1734/**
1735 * ice_aq_req_res
1736 * @hw: pointer to the HW struct
1737 * @res: resource ID
1738 * @access: access type
1739 * @sdp_number: resource number
1740 * @timeout: the maximum time in ms that the driver may hold the resource
1741 * @cd: pointer to command details structure or NULL
1742 *
1743 * Requests common resource using the admin queue commands (0x0008).
1744 * When attempting to acquire the Global Config Lock, the driver can
1745 * learn of three states:
1746 * 1) 0 - acquired lock, and can perform download package
1747 * 2) -EIO - did not get lock, driver should fail to load
1748 * 3) -EALREADY - did not get lock, but another driver has
1749 * successfully downloaded the package; the driver does
1750 * not have to download the package and can continue
1751 * loading
1752 *
1753 * Note that if the caller is in an acquire lock, perform action, release lock
1754 * phase of operation, it is possible that the FW may detect a timeout and issue
1755 * a CORER. In this case, the driver will receive a CORER interrupt and will
1756 * have to determine its cause. The calling thread that is handling this flow
1757 * will likely get an error propagated back to it indicating the Download
1758 * Package, Update Package or the Release Resource AQ commands timed out.
1759 */
1760static int
1761ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1762 enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1763 struct ice_sq_cd *cd)
1764{
1765 struct ice_aqc_req_res *cmd_resp;
1766 struct ice_aq_desc desc;
1767 int status;
1768
1769 cmd_resp = &desc.params.res_owner;
1770
1771 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1772
1773 cmd_resp->res_id = cpu_to_le16(res);
1774 cmd_resp->access_type = cpu_to_le16(access);
1775 cmd_resp->res_number = cpu_to_le32(sdp_number);
1776 cmd_resp->timeout = cpu_to_le32(*timeout);
1777 *timeout = 0;
1778
1779 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1780
1781 /* The completion specifies the maximum time in ms that the driver
1782 * may hold the resource in the Timeout field.
1783 */
1784
1785 /* Global config lock response utilizes an additional status field.
1786 *
1787 * If the Global config lock resource is held by some other driver, the
1788 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1789 * and the timeout field indicates the maximum time the current owner
1790 * of the resource has to free it.
1791 */
1792 if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1793 if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1794 *timeout = le32_to_cpu(cmd_resp->timeout);
1795 return 0;
1796 } else if (le16_to_cpu(cmd_resp->status) ==
1797 ICE_AQ_RES_GLBL_IN_PROG) {
1798 *timeout = le32_to_cpu(cmd_resp->timeout);
1799 return -EIO;
1800 } else if (le16_to_cpu(cmd_resp->status) ==
1801 ICE_AQ_RES_GLBL_DONE) {
1802 return -EALREADY;
1803 }
1804
1805 /* invalid FW response, force a timeout immediately */
1806 *timeout = 0;
1807 return -EIO;
1808 }
1809
1810 /* If the resource is held by some other driver, the command completes
1811 * with a busy return value and the timeout field indicates the maximum
1812 * time the current owner of the resource has to free it.
1813 */
1814 if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1815 *timeout = le32_to_cpu(cmd_resp->timeout);
1816
1817 return status;
1818}
1819
1820/**
1821 * ice_aq_release_res
1822 * @hw: pointer to the HW struct
1823 * @res: resource ID
1824 * @sdp_number: resource number
1825 * @cd: pointer to command details structure or NULL
1826 *
1827 * release common resource using the admin queue commands (0x0009)
1828 */
1829static int
1830ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1831 struct ice_sq_cd *cd)
1832{
1833 struct ice_aqc_req_res *cmd;
1834 struct ice_aq_desc desc;
1835
1836 cmd = &desc.params.res_owner;
1837
1838 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1839
1840 cmd->res_id = cpu_to_le16(res);
1841 cmd->res_number = cpu_to_le32(sdp_number);
1842
1843 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1844}
1845
1846/**
1847 * ice_acquire_res
1848 * @hw: pointer to the HW structure
1849 * @res: resource ID
1850 * @access: access type (read or write)
1851 * @timeout: timeout in milliseconds
1852 *
1853 * This function will attempt to acquire the ownership of a resource.
1854 */
1855int
1856ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1857 enum ice_aq_res_access_type access, u32 timeout)
1858{
1859#define ICE_RES_POLLING_DELAY_MS 10
1860 u32 delay = ICE_RES_POLLING_DELAY_MS;
1861 u32 time_left = timeout;
1862 int status;
1863
1864 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1865
1866 /* A return code of -EALREADY means that another driver has
1867 * previously acquired the resource and performed any necessary updates;
1868 * in this case the caller does not obtain the resource and has no
1869 * further work to do.
1870 */
1871 if (status == -EALREADY)
1872 goto ice_acquire_res_exit;
1873
1874 if (status)
1875 ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
1876
1877 /* If necessary, poll until the current lock owner timeouts */
1878 timeout = time_left;
1879 while (status && timeout && time_left) {
1880 mdelay(delay);
1881 timeout = (timeout > delay) ? timeout - delay : 0;
1882 status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1883
1884 if (status == -EALREADY)
1885 /* lock free, but no work to do */
1886 break;
1887
1888 if (!status)
1889 /* lock acquired */
1890 break;
1891 }
1892 if (status && status != -EALREADY)
1893 ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1894
1895ice_acquire_res_exit:
1896 if (status == -EALREADY) {
1897 if (access == ICE_RES_WRITE)
1898 ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
1899 else
1900 ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
1901 }
1902 return status;
1903}
1904
1905/**
1906 * ice_release_res
1907 * @hw: pointer to the HW structure
1908 * @res: resource ID
1909 *
1910 * This function will release a resource using the proper Admin Command.
1911 */
1912void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1913{
1914 unsigned long timeout;
1915 int status;
1916
1917 /* there are some rare cases when trying to release the resource
1918 * results in an admin queue timeout, so handle them correctly
1919 */
1920 timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1921 do {
1922 status = ice_aq_release_res(hw, res, 0, NULL);
1923 if (status != -EIO)
1924 break;
1925 usleep_range(1000, 2000);
1926 } while (time_before(jiffies, timeout));
1927}
1928
1929/**
1930 * ice_aq_alloc_free_res - command to allocate/free resources
1931 * @hw: pointer to the HW struct
1932 * @buf: Indirect buffer to hold data parameters and response
1933 * @buf_size: size of buffer for indirect commands
1934 * @opc: pass in the command opcode
1935 *
1936 * Helper function to allocate/free resources using the admin queue commands
1937 */
1938int ice_aq_alloc_free_res(struct ice_hw *hw,
1939 struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1940 enum ice_adminq_opc opc)
1941{
1942 struct ice_aqc_alloc_free_res_cmd *cmd;
1943 struct ice_aq_desc desc;
1944
1945 cmd = &desc.params.sw_res_ctrl;
1946
1947 if (!buf || buf_size < flex_array_size(buf, elem, 1))
1948 return -EINVAL;
1949
1950 ice_fill_dflt_direct_cmd_desc(&desc, opc);
1951
1952 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1953
1954 cmd->num_entries = cpu_to_le16(1);
1955
1956 return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1957}
1958
1959/**
1960 * ice_alloc_hw_res - allocate resource
1961 * @hw: pointer to the HW struct
1962 * @type: type of resource
1963 * @num: number of resources to allocate
1964 * @btm: allocate from bottom
1965 * @res: pointer to array that will receive the resources
1966 */
1967int
1968ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
1969{
1970 struct ice_aqc_alloc_free_res_elem *buf;
1971 u16 buf_len;
1972 int status;
1973
1974 buf_len = struct_size(buf, elem, num);
1975 buf = kzalloc(buf_len, GFP_KERNEL);
1976 if (!buf)
1977 return -ENOMEM;
1978
1979 /* Prepare buffer to allocate resource. */
1980 buf->num_elems = cpu_to_le16(num);
1981 buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
1982 ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
1983 if (btm)
1984 buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
1985
1986 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
1987 if (status)
1988 goto ice_alloc_res_exit;
1989
1990 memcpy(res, buf->elem, sizeof(*buf->elem) * num);
1991
1992ice_alloc_res_exit:
1993 kfree(buf);
1994 return status;
1995}
1996
1997/**
1998 * ice_free_hw_res - free allocated HW resource
1999 * @hw: pointer to the HW struct
2000 * @type: type of resource to free
2001 * @num: number of resources
2002 * @res: pointer to array that contains the resources to free
2003 */
2004int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2005{
2006 struct ice_aqc_alloc_free_res_elem *buf;
2007 u16 buf_len;
2008 int status;
2009
2010 buf_len = struct_size(buf, elem, num);
2011 buf = kzalloc(buf_len, GFP_KERNEL);
2012 if (!buf)
2013 return -ENOMEM;
2014
2015 /* Prepare buffer to free resource. */
2016 buf->num_elems = cpu_to_le16(num);
2017 buf->res_type = cpu_to_le16(type);
2018 memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2019
2020 status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2021 if (status)
2022 ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2023
2024 kfree(buf);
2025 return status;
2026}
2027
2028/**
2029 * ice_get_num_per_func - determine number of resources per PF
2030 * @hw: pointer to the HW structure
2031 * @max: value to be evenly split between each PF
2032 *
2033 * Determine the number of valid functions by going through the bitmap returned
2034 * from parsing capabilities and use this to calculate the number of resources
2035 * per PF based on the max value passed in.
2036 */
2037static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2038{
2039 u8 funcs;
2040
2041#define ICE_CAPS_VALID_FUNCS_M 0xFF
2042 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2043 ICE_CAPS_VALID_FUNCS_M);
2044
2045 if (!funcs)
2046 return 0;
2047
2048 return max / funcs;
2049}
2050
2051/**
2052 * ice_parse_common_caps - parse common device/function capabilities
2053 * @hw: pointer to the HW struct
2054 * @caps: pointer to common capabilities structure
2055 * @elem: the capability element to parse
2056 * @prefix: message prefix for tracing capabilities
2057 *
2058 * Given a capability element, extract relevant details into the common
2059 * capability structure.
2060 *
2061 * Returns: true if the capability matches one of the common capability ids,
2062 * false otherwise.
2063 */
2064static bool
2065ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2066 struct ice_aqc_list_caps_elem *elem, const char *prefix)
2067{
2068 u32 logical_id = le32_to_cpu(elem->logical_id);
2069 u32 phys_id = le32_to_cpu(elem->phys_id);
2070 u32 number = le32_to_cpu(elem->number);
2071 u16 cap = le16_to_cpu(elem->cap);
2072 bool found = true;
2073
2074 switch (cap) {
2075 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2076 caps->valid_functions = number;
2077 ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2078 caps->valid_functions);
2079 break;
2080 case ICE_AQC_CAPS_SRIOV:
2081 caps->sr_iov_1_1 = (number == 1);
2082 ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2083 caps->sr_iov_1_1);
2084 break;
2085 case ICE_AQC_CAPS_DCB:
2086 caps->dcb = (number == 1);
2087 caps->active_tc_bitmap = logical_id;
2088 caps->maxtc = phys_id;
2089 ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2090 ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2091 caps->active_tc_bitmap);
2092 ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2093 break;
2094 case ICE_AQC_CAPS_RSS:
2095 caps->rss_table_size = number;
2096 caps->rss_table_entry_width = logical_id;
2097 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2098 caps->rss_table_size);
2099 ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2100 caps->rss_table_entry_width);
2101 break;
2102 case ICE_AQC_CAPS_RXQS:
2103 caps->num_rxq = number;
2104 caps->rxq_first_id = phys_id;
2105 ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2106 caps->num_rxq);
2107 ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2108 caps->rxq_first_id);
2109 break;
2110 case ICE_AQC_CAPS_TXQS:
2111 caps->num_txq = number;
2112 caps->txq_first_id = phys_id;
2113 ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2114 caps->num_txq);
2115 ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2116 caps->txq_first_id);
2117 break;
2118 case ICE_AQC_CAPS_MSIX:
2119 caps->num_msix_vectors = number;
2120 caps->msix_vector_first_id = phys_id;
2121 ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2122 caps->num_msix_vectors);
2123 ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2124 caps->msix_vector_first_id);
2125 break;
2126 case ICE_AQC_CAPS_PENDING_NVM_VER:
2127 caps->nvm_update_pending_nvm = true;
2128 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2129 break;
2130 case ICE_AQC_CAPS_PENDING_OROM_VER:
2131 caps->nvm_update_pending_orom = true;
2132 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2133 break;
2134 case ICE_AQC_CAPS_PENDING_NET_VER:
2135 caps->nvm_update_pending_netlist = true;
2136 ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2137 break;
2138 case ICE_AQC_CAPS_NVM_MGMT:
2139 caps->nvm_unified_update =
2140 (number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2141 true : false;
2142 ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2143 caps->nvm_unified_update);
2144 break;
2145 case ICE_AQC_CAPS_RDMA:
2146 caps->rdma = (number == 1);
2147 ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2148 break;
2149 case ICE_AQC_CAPS_MAX_MTU:
2150 caps->max_mtu = number;
2151 ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2152 prefix, caps->max_mtu);
2153 break;
2154 case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2155 caps->pcie_reset_avoidance = (number > 0);
2156 ice_debug(hw, ICE_DBG_INIT,
2157 "%s: pcie_reset_avoidance = %d\n", prefix,
2158 caps->pcie_reset_avoidance);
2159 break;
2160 case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2161 caps->reset_restrict_support = (number == 1);
2162 ice_debug(hw, ICE_DBG_INIT,
2163 "%s: reset_restrict_support = %d\n", prefix,
2164 caps->reset_restrict_support);
2165 break;
2166 case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2167 caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2168 ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2169 prefix, caps->roce_lag);
2170 caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2171 ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2172 prefix, caps->sriov_lag);
2173 break;
2174 default:
2175 /* Not one of the recognized common capabilities */
2176 found = false;
2177 }
2178
2179 return found;
2180}
2181
2182/**
2183 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2184 * @hw: pointer to the HW structure
2185 * @caps: pointer to capabilities structure to fix
2186 *
2187 * Re-calculate the capabilities that are dependent on the number of physical
2188 * ports; i.e. some features are not supported or function differently on
2189 * devices with more than 4 ports.
2190 */
2191static void
2192ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2193{
2194 /* This assumes device capabilities are always scanned before function
2195 * capabilities during the initialization flow.
2196 */
2197 if (hw->dev_caps.num_funcs > 4) {
2198 /* Max 4 TCs per port */
2199 caps->maxtc = 4;
2200 ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2201 caps->maxtc);
2202 if (caps->rdma) {
2203 ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2204 caps->rdma = 0;
2205 }
2206
2207 /* print message only when processing device capabilities
2208 * during initialization.
2209 */
2210 if (caps == &hw->dev_caps.common_cap)
2211 dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2212 }
2213}
2214
2215/**
2216 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2217 * @hw: pointer to the HW struct
2218 * @func_p: pointer to function capabilities structure
2219 * @cap: pointer to the capability element to parse
2220 *
2221 * Extract function capabilities for ICE_AQC_CAPS_VF.
2222 */
2223static void
2224ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2225 struct ice_aqc_list_caps_elem *cap)
2226{
2227 u32 logical_id = le32_to_cpu(cap->logical_id);
2228 u32 number = le32_to_cpu(cap->number);
2229
2230 func_p->num_allocd_vfs = number;
2231 func_p->vf_base_id = logical_id;
2232 ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2233 func_p->num_allocd_vfs);
2234 ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2235 func_p->vf_base_id);
2236}
2237
2238/**
2239 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2240 * @hw: pointer to the HW struct
2241 * @func_p: pointer to function capabilities structure
2242 * @cap: pointer to the capability element to parse
2243 *
2244 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2245 */
2246static void
2247ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2248 struct ice_aqc_list_caps_elem *cap)
2249{
2250 func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2251 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2252 le32_to_cpu(cap->number));
2253 ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2254 func_p->guar_num_vsi);
2255}
2256
2257/**
2258 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2259 * @hw: pointer to the HW struct
2260 * @func_p: pointer to function capabilities structure
2261 * @cap: pointer to the capability element to parse
2262 *
2263 * Extract function capabilities for ICE_AQC_CAPS_1588.
2264 */
2265static void
2266ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2267 struct ice_aqc_list_caps_elem *cap)
2268{
2269 struct ice_ts_func_info *info = &func_p->ts_func_info;
2270 u32 number = le32_to_cpu(cap->number);
2271
2272 info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2273 func_p->common_cap.ieee_1588 = info->ena;
2274
2275 info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2276 info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2277 info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2278 info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2279
2280 info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2281 info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2282
2283 if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2284 info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2285 } else {
2286 /* Unknown clock frequency, so assume a (probably incorrect)
2287 * default to avoid out-of-bounds look ups of frequency
2288 * related information.
2289 */
2290 ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2291 info->clk_freq);
2292 info->time_ref = ICE_TIME_REF_FREQ_25_000;
2293 }
2294
2295 ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2296 func_p->common_cap.ieee_1588);
2297 ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2298 info->src_tmr_owned);
2299 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2300 info->tmr_ena);
2301 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2302 info->tmr_index_owned);
2303 ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2304 info->tmr_index_assoc);
2305 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2306 info->clk_freq);
2307 ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2308 info->clk_src);
2309}
2310
2311/**
2312 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2313 * @hw: pointer to the HW struct
2314 * @func_p: pointer to function capabilities structure
2315 *
2316 * Extract function capabilities for ICE_AQC_CAPS_FD.
2317 */
2318static void
2319ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2320{
2321 u32 reg_val, gsize, bsize;
2322
2323 reg_val = rd32(hw, GLQF_FD_SIZE);
2324 switch (hw->mac_type) {
2325 case ICE_MAC_E830:
2326 gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2327 bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2328 break;
2329 case ICE_MAC_E810:
2330 default:
2331 gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2332 bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2333 }
2334 func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2335 func_p->fd_fltr_best_effort = bsize;
2336
2337 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2338 func_p->fd_fltr_guar);
2339 ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2340 func_p->fd_fltr_best_effort);
2341}
2342
2343/**
2344 * ice_parse_func_caps - Parse function capabilities
2345 * @hw: pointer to the HW struct
2346 * @func_p: pointer to function capabilities structure
2347 * @buf: buffer containing the function capability records
2348 * @cap_count: the number of capabilities
2349 *
2350 * Helper function to parse function (0x000A) capabilities list. For
2351 * capabilities shared between device and function, this relies on
2352 * ice_parse_common_caps.
2353 *
2354 * Loop through the list of provided capabilities and extract the relevant
2355 * data into the function capabilities structured.
2356 */
2357static void
2358ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2359 void *buf, u32 cap_count)
2360{
2361 struct ice_aqc_list_caps_elem *cap_resp;
2362 u32 i;
2363
2364 cap_resp = buf;
2365
2366 memset(func_p, 0, sizeof(*func_p));
2367
2368 for (i = 0; i < cap_count; i++) {
2369 u16 cap = le16_to_cpu(cap_resp[i].cap);
2370 bool found;
2371
2372 found = ice_parse_common_caps(hw, &func_p->common_cap,
2373 &cap_resp[i], "func caps");
2374
2375 switch (cap) {
2376 case ICE_AQC_CAPS_VF:
2377 ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2378 break;
2379 case ICE_AQC_CAPS_VSI:
2380 ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2381 break;
2382 case ICE_AQC_CAPS_1588:
2383 ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2384 break;
2385 case ICE_AQC_CAPS_FD:
2386 ice_parse_fdir_func_caps(hw, func_p);
2387 break;
2388 default:
2389 /* Don't list common capabilities as unknown */
2390 if (!found)
2391 ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2392 i, cap);
2393 break;
2394 }
2395 }
2396
2397 ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2398}
2399
2400/**
2401 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2402 * @hw: pointer to the HW struct
2403 * @dev_p: pointer to device capabilities structure
2404 * @cap: capability element to parse
2405 *
2406 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2407 */
2408static void
2409ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2410 struct ice_aqc_list_caps_elem *cap)
2411{
2412 u32 number = le32_to_cpu(cap->number);
2413
2414 dev_p->num_funcs = hweight32(number);
2415 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2416 dev_p->num_funcs);
2417}
2418
2419/**
2420 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2421 * @hw: pointer to the HW struct
2422 * @dev_p: pointer to device capabilities structure
2423 * @cap: capability element to parse
2424 *
2425 * Parse ICE_AQC_CAPS_VF for device capabilities.
2426 */
2427static void
2428ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2429 struct ice_aqc_list_caps_elem *cap)
2430{
2431 u32 number = le32_to_cpu(cap->number);
2432
2433 dev_p->num_vfs_exposed = number;
2434 ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2435 dev_p->num_vfs_exposed);
2436}
2437
2438/**
2439 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2440 * @hw: pointer to the HW struct
2441 * @dev_p: pointer to device capabilities structure
2442 * @cap: capability element to parse
2443 *
2444 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2445 */
2446static void
2447ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2448 struct ice_aqc_list_caps_elem *cap)
2449{
2450 u32 number = le32_to_cpu(cap->number);
2451
2452 dev_p->num_vsi_allocd_to_host = number;
2453 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2454 dev_p->num_vsi_allocd_to_host);
2455}
2456
2457/**
2458 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2459 * @hw: pointer to the HW struct
2460 * @dev_p: pointer to device capabilities structure
2461 * @cap: capability element to parse
2462 *
2463 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2464 */
2465static void
2466ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2467 struct ice_aqc_list_caps_elem *cap)
2468{
2469 struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2470 u32 logical_id = le32_to_cpu(cap->logical_id);
2471 u32 phys_id = le32_to_cpu(cap->phys_id);
2472 u32 number = le32_to_cpu(cap->number);
2473
2474 info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2475 dev_p->common_cap.ieee_1588 = info->ena;
2476
2477 info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2478 info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2479 info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2480
2481 info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2482 info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2483 info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2484
2485 info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2486 info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2487
2488 info->ena_ports = logical_id;
2489 info->tmr_own_map = phys_id;
2490
2491 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2492 dev_p->common_cap.ieee_1588);
2493 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2494 info->tmr0_owner);
2495 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2496 info->tmr0_owned);
2497 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2498 info->tmr0_ena);
2499 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2500 info->tmr1_owner);
2501 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2502 info->tmr1_owned);
2503 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2504 info->tmr1_ena);
2505 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2506 info->ts_ll_read);
2507 ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2508 info->ts_ll_int_read);
2509 ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2510 info->ena_ports);
2511 ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2512 info->tmr_own_map);
2513}
2514
2515/**
2516 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2517 * @hw: pointer to the HW struct
2518 * @dev_p: pointer to device capabilities structure
2519 * @cap: capability element to parse
2520 *
2521 * Parse ICE_AQC_CAPS_FD for device capabilities.
2522 */
2523static void
2524ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2525 struct ice_aqc_list_caps_elem *cap)
2526{
2527 u32 number = le32_to_cpu(cap->number);
2528
2529 dev_p->num_flow_director_fltr = number;
2530 ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2531 dev_p->num_flow_director_fltr);
2532}
2533
2534/**
2535 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2536 * @hw: pointer to the HW struct
2537 * @dev_p: pointer to device capabilities structure
2538 * @cap: capability element to parse
2539 *
2540 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2541 * enabled sensors.
2542 */
2543static void
2544ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2545 struct ice_aqc_list_caps_elem *cap)
2546{
2547 dev_p->supported_sensors = le32_to_cpu(cap->number);
2548
2549 ice_debug(hw, ICE_DBG_INIT,
2550 "dev caps: supported sensors (bitmap) = 0x%x\n",
2551 dev_p->supported_sensors);
2552}
2553
2554/**
2555 * ice_parse_dev_caps - Parse device capabilities
2556 * @hw: pointer to the HW struct
2557 * @dev_p: pointer to device capabilities structure
2558 * @buf: buffer containing the device capability records
2559 * @cap_count: the number of capabilities
2560 *
2561 * Helper device to parse device (0x000B) capabilities list. For
2562 * capabilities shared between device and function, this relies on
2563 * ice_parse_common_caps.
2564 *
2565 * Loop through the list of provided capabilities and extract the relevant
2566 * data into the device capabilities structured.
2567 */
2568static void
2569ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2570 void *buf, u32 cap_count)
2571{
2572 struct ice_aqc_list_caps_elem *cap_resp;
2573 u32 i;
2574
2575 cap_resp = buf;
2576
2577 memset(dev_p, 0, sizeof(*dev_p));
2578
2579 for (i = 0; i < cap_count; i++) {
2580 u16 cap = le16_to_cpu(cap_resp[i].cap);
2581 bool found;
2582
2583 found = ice_parse_common_caps(hw, &dev_p->common_cap,
2584 &cap_resp[i], "dev caps");
2585
2586 switch (cap) {
2587 case ICE_AQC_CAPS_VALID_FUNCTIONS:
2588 ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
2589 break;
2590 case ICE_AQC_CAPS_VF:
2591 ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
2592 break;
2593 case ICE_AQC_CAPS_VSI:
2594 ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2595 break;
2596 case ICE_AQC_CAPS_1588:
2597 ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2598 break;
2599 case ICE_AQC_CAPS_FD:
2600 ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2601 break;
2602 case ICE_AQC_CAPS_SENSOR_READING:
2603 ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
2604 break;
2605 default:
2606 /* Don't list common capabilities as unknown */
2607 if (!found)
2608 ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2609 i, cap);
2610 break;
2611 }
2612 }
2613
2614 ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2615}
2616
2617/**
2618 * ice_is_pf_c827 - check if pf contains c827 phy
2619 * @hw: pointer to the hw struct
2620 */
2621bool ice_is_pf_c827(struct ice_hw *hw)
2622{
2623 struct ice_aqc_get_link_topo cmd = {};
2624 u8 node_part_number;
2625 u16 node_handle;
2626 int status;
2627
2628 if (hw->mac_type != ICE_MAC_E810)
2629 return false;
2630
2631 if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2632 return true;
2633
2634 cmd.addr.topo_params.node_type_ctx =
2635 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2636 FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2637 cmd.addr.topo_params.index = 0;
2638
2639 status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2640 &node_handle);
2641
2642 if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2643 return false;
2644
2645 if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2646 return true;
2647
2648 return false;
2649}
2650
2651/**
2652 * ice_is_phy_rclk_in_netlist
2653 * @hw: pointer to the hw struct
2654 *
2655 * Check if the PHY Recovered Clock device is present in the netlist
2656 */
2657bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2658{
2659 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2660 ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2661 ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2662 ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2663 return false;
2664
2665 return true;
2666}
2667
2668/**
2669 * ice_is_clock_mux_in_netlist
2670 * @hw: pointer to the hw struct
2671 *
2672 * Check if the Clock Multiplexer device is present in the netlist
2673 */
2674bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2675{
2676 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2677 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2678 NULL))
2679 return false;
2680
2681 return true;
2682}
2683
2684/**
2685 * ice_is_cgu_in_netlist - check for CGU presence
2686 * @hw: pointer to the hw struct
2687 *
2688 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2689 * Save the CGU part number in the hw structure for later use.
2690 * Return:
2691 * * true - cgu is present
2692 * * false - cgu is not present
2693 */
2694bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2695{
2696 if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2697 ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2698 NULL)) {
2699 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2700 return true;
2701 } else if (!ice_find_netlist_node(hw,
2702 ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2703 ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2704 NULL)) {
2705 hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2706 return true;
2707 }
2708
2709 return false;
2710}
2711
2712/**
2713 * ice_is_gps_in_netlist
2714 * @hw: pointer to the hw struct
2715 *
2716 * Check if the GPS generic device is present in the netlist
2717 */
2718bool ice_is_gps_in_netlist(struct ice_hw *hw)
2719{
2720 if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2721 ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2722 return false;
2723
2724 return true;
2725}
2726
2727/**
2728 * ice_aq_list_caps - query function/device capabilities
2729 * @hw: pointer to the HW struct
2730 * @buf: a buffer to hold the capabilities
2731 * @buf_size: size of the buffer
2732 * @cap_count: if not NULL, set to the number of capabilities reported
2733 * @opc: capabilities type to discover, device or function
2734 * @cd: pointer to command details structure or NULL
2735 *
2736 * Get the function (0x000A) or device (0x000B) capabilities description from
2737 * firmware and store it in the buffer.
2738 *
2739 * If the cap_count pointer is not NULL, then it is set to the number of
2740 * capabilities firmware will report. Note that if the buffer size is too
2741 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2742 * cap_count will still be updated in this case. It is recommended that the
2743 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2744 * firmware could return) to avoid this.
2745 */
2746int
2747ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2748 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2749{
2750 struct ice_aqc_list_caps *cmd;
2751 struct ice_aq_desc desc;
2752 int status;
2753
2754 cmd = &desc.params.get_cap;
2755
2756 if (opc != ice_aqc_opc_list_func_caps &&
2757 opc != ice_aqc_opc_list_dev_caps)
2758 return -EINVAL;
2759
2760 ice_fill_dflt_direct_cmd_desc(&desc, opc);
2761 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2762
2763 if (cap_count)
2764 *cap_count = le32_to_cpu(cmd->count);
2765
2766 return status;
2767}
2768
2769/**
2770 * ice_discover_dev_caps - Read and extract device capabilities
2771 * @hw: pointer to the hardware structure
2772 * @dev_caps: pointer to device capabilities structure
2773 *
2774 * Read the device capabilities and extract them into the dev_caps structure
2775 * for later use.
2776 */
2777int
2778ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2779{
2780 u32 cap_count = 0;
2781 void *cbuf;
2782 int status;
2783
2784 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2785 if (!cbuf)
2786 return -ENOMEM;
2787
2788 /* Although the driver doesn't know the number of capabilities the
2789 * device will return, we can simply send a 4KB buffer, the maximum
2790 * possible size that firmware can return.
2791 */
2792 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2793
2794 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2795 ice_aqc_opc_list_dev_caps, NULL);
2796 if (!status)
2797 ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2798 kfree(cbuf);
2799
2800 return status;
2801}
2802
2803/**
2804 * ice_discover_func_caps - Read and extract function capabilities
2805 * @hw: pointer to the hardware structure
2806 * @func_caps: pointer to function capabilities structure
2807 *
2808 * Read the function capabilities and extract them into the func_caps structure
2809 * for later use.
2810 */
2811static int
2812ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2813{
2814 u32 cap_count = 0;
2815 void *cbuf;
2816 int status;
2817
2818 cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2819 if (!cbuf)
2820 return -ENOMEM;
2821
2822 /* Although the driver doesn't know the number of capabilities the
2823 * device will return, we can simply send a 4KB buffer, the maximum
2824 * possible size that firmware can return.
2825 */
2826 cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2827
2828 status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2829 ice_aqc_opc_list_func_caps, NULL);
2830 if (!status)
2831 ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2832 kfree(cbuf);
2833
2834 return status;
2835}
2836
2837/**
2838 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2839 * @hw: pointer to the hardware structure
2840 */
2841void ice_set_safe_mode_caps(struct ice_hw *hw)
2842{
2843 struct ice_hw_func_caps *func_caps = &hw->func_caps;
2844 struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2845 struct ice_hw_common_caps cached_caps;
2846 u32 num_funcs;
2847
2848 /* cache some func_caps values that should be restored after memset */
2849 cached_caps = func_caps->common_cap;
2850
2851 /* unset func capabilities */
2852 memset(func_caps, 0, sizeof(*func_caps));
2853
2854#define ICE_RESTORE_FUNC_CAP(name) \
2855 func_caps->common_cap.name = cached_caps.name
2856
2857 /* restore cached values */
2858 ICE_RESTORE_FUNC_CAP(valid_functions);
2859 ICE_RESTORE_FUNC_CAP(txq_first_id);
2860 ICE_RESTORE_FUNC_CAP(rxq_first_id);
2861 ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2862 ICE_RESTORE_FUNC_CAP(max_mtu);
2863 ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2864 ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2865 ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2866 ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2867
2868 /* one Tx and one Rx queue in safe mode */
2869 func_caps->common_cap.num_rxq = 1;
2870 func_caps->common_cap.num_txq = 1;
2871
2872 /* two MSIX vectors, one for traffic and one for misc causes */
2873 func_caps->common_cap.num_msix_vectors = 2;
2874 func_caps->guar_num_vsi = 1;
2875
2876 /* cache some dev_caps values that should be restored after memset */
2877 cached_caps = dev_caps->common_cap;
2878 num_funcs = dev_caps->num_funcs;
2879
2880 /* unset dev capabilities */
2881 memset(dev_caps, 0, sizeof(*dev_caps));
2882
2883#define ICE_RESTORE_DEV_CAP(name) \
2884 dev_caps->common_cap.name = cached_caps.name
2885
2886 /* restore cached values */
2887 ICE_RESTORE_DEV_CAP(valid_functions);
2888 ICE_RESTORE_DEV_CAP(txq_first_id);
2889 ICE_RESTORE_DEV_CAP(rxq_first_id);
2890 ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2891 ICE_RESTORE_DEV_CAP(max_mtu);
2892 ICE_RESTORE_DEV_CAP(nvm_unified_update);
2893 ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2894 ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2895 ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2896 dev_caps->num_funcs = num_funcs;
2897
2898 /* one Tx and one Rx queue per function in safe mode */
2899 dev_caps->common_cap.num_rxq = num_funcs;
2900 dev_caps->common_cap.num_txq = num_funcs;
2901
2902 /* two MSIX vectors per function */
2903 dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
2904}
2905
2906/**
2907 * ice_get_caps - get info about the HW
2908 * @hw: pointer to the hardware structure
2909 */
2910int ice_get_caps(struct ice_hw *hw)
2911{
2912 int status;
2913
2914 status = ice_discover_dev_caps(hw, &hw->dev_caps);
2915 if (status)
2916 return status;
2917
2918 return ice_discover_func_caps(hw, &hw->func_caps);
2919}
2920
2921/**
2922 * ice_aq_manage_mac_write - manage MAC address write command
2923 * @hw: pointer to the HW struct
2924 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
2925 * @flags: flags to control write behavior
2926 * @cd: pointer to command details structure or NULL
2927 *
2928 * This function is used to write MAC address to the NVM (0x0108).
2929 */
2930int
2931ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
2932 struct ice_sq_cd *cd)
2933{
2934 struct ice_aqc_manage_mac_write *cmd;
2935 struct ice_aq_desc desc;
2936
2937 cmd = &desc.params.mac_write;
2938 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
2939
2940 cmd->flags = flags;
2941 ether_addr_copy(cmd->mac_addr, mac_addr);
2942
2943 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2944}
2945
2946/**
2947 * ice_aq_clear_pxe_mode
2948 * @hw: pointer to the HW struct
2949 *
2950 * Tell the firmware that the driver is taking over from PXE (0x0110).
2951 */
2952static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
2953{
2954 struct ice_aq_desc desc;
2955
2956 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
2957 desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
2958
2959 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
2960}
2961
2962/**
2963 * ice_clear_pxe_mode - clear pxe operations mode
2964 * @hw: pointer to the HW struct
2965 *
2966 * Make sure all PXE mode settings are cleared, including things
2967 * like descriptor fetch/write-back mode.
2968 */
2969void ice_clear_pxe_mode(struct ice_hw *hw)
2970{
2971 if (ice_check_sq_alive(hw, &hw->adminq))
2972 ice_aq_clear_pxe_mode(hw);
2973}
2974
2975/**
2976 * ice_aq_set_port_params - set physical port parameters.
2977 * @pi: pointer to the port info struct
2978 * @double_vlan: if set double VLAN is enabled
2979 * @cd: pointer to command details structure or NULL
2980 *
2981 * Set Physical port parameters (0x0203)
2982 */
2983int
2984ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
2985 struct ice_sq_cd *cd)
2986
2987{
2988 struct ice_aqc_set_port_params *cmd;
2989 struct ice_hw *hw = pi->hw;
2990 struct ice_aq_desc desc;
2991 u16 cmd_flags = 0;
2992
2993 cmd = &desc.params.set_port_params;
2994
2995 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
2996 if (double_vlan)
2997 cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
2998 cmd->cmd_flags = cpu_to_le16(cmd_flags);
2999
3000 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3001}
3002
3003/**
3004 * ice_is_100m_speed_supported
3005 * @hw: pointer to the HW struct
3006 *
3007 * returns true if 100M speeds are supported by the device,
3008 * false otherwise.
3009 */
3010bool ice_is_100m_speed_supported(struct ice_hw *hw)
3011{
3012 switch (hw->device_id) {
3013 case ICE_DEV_ID_E822C_SGMII:
3014 case ICE_DEV_ID_E822L_SGMII:
3015 case ICE_DEV_ID_E823L_1GBE:
3016 case ICE_DEV_ID_E823C_SGMII:
3017 return true;
3018 default:
3019 return false;
3020 }
3021}
3022
3023/**
3024 * ice_get_link_speed_based_on_phy_type - returns link speed
3025 * @phy_type_low: lower part of phy_type
3026 * @phy_type_high: higher part of phy_type
3027 *
3028 * This helper function will convert an entry in PHY type structure
3029 * [phy_type_low, phy_type_high] to its corresponding link speed.
3030 * Note: In the structure of [phy_type_low, phy_type_high], there should
3031 * be one bit set, as this function will convert one PHY type to its
3032 * speed.
3033 * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3034 * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3035 */
3036static u16
3037ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
3038{
3039 u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3040 u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3041
3042 switch (phy_type_low) {
3043 case ICE_PHY_TYPE_LOW_100BASE_TX:
3044 case ICE_PHY_TYPE_LOW_100M_SGMII:
3045 speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3046 break;
3047 case ICE_PHY_TYPE_LOW_1000BASE_T:
3048 case ICE_PHY_TYPE_LOW_1000BASE_SX:
3049 case ICE_PHY_TYPE_LOW_1000BASE_LX:
3050 case ICE_PHY_TYPE_LOW_1000BASE_KX:
3051 case ICE_PHY_TYPE_LOW_1G_SGMII:
3052 speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3053 break;
3054 case ICE_PHY_TYPE_LOW_2500BASE_T:
3055 case ICE_PHY_TYPE_LOW_2500BASE_X:
3056 case ICE_PHY_TYPE_LOW_2500BASE_KX:
3057 speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3058 break;
3059 case ICE_PHY_TYPE_LOW_5GBASE_T:
3060 case ICE_PHY_TYPE_LOW_5GBASE_KR:
3061 speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3062 break;
3063 case ICE_PHY_TYPE_LOW_10GBASE_T:
3064 case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3065 case ICE_PHY_TYPE_LOW_10GBASE_SR:
3066 case ICE_PHY_TYPE_LOW_10GBASE_LR:
3067 case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3068 case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3069 case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3070 speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3071 break;
3072 case ICE_PHY_TYPE_LOW_25GBASE_T:
3073 case ICE_PHY_TYPE_LOW_25GBASE_CR:
3074 case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3075 case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3076 case ICE_PHY_TYPE_LOW_25GBASE_SR:
3077 case ICE_PHY_TYPE_LOW_25GBASE_LR:
3078 case ICE_PHY_TYPE_LOW_25GBASE_KR:
3079 case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3080 case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3081 case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3082 case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3083 speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3084 break;
3085 case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3086 case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3087 case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3088 case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3089 case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3090 case ICE_PHY_TYPE_LOW_40G_XLAUI:
3091 speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3092 break;
3093 case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3094 case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3095 case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3096 case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3097 case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3098 case ICE_PHY_TYPE_LOW_50G_LAUI2:
3099 case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3100 case ICE_PHY_TYPE_LOW_50G_AUI2:
3101 case ICE_PHY_TYPE_LOW_50GBASE_CP:
3102 case ICE_PHY_TYPE_LOW_50GBASE_SR:
3103 case ICE_PHY_TYPE_LOW_50GBASE_FR:
3104 case ICE_PHY_TYPE_LOW_50GBASE_LR:
3105 case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3106 case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3107 case ICE_PHY_TYPE_LOW_50G_AUI1:
3108 speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3109 break;
3110 case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3111 case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3112 case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3113 case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3114 case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3115 case ICE_PHY_TYPE_LOW_100G_CAUI4:
3116 case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3117 case ICE_PHY_TYPE_LOW_100G_AUI4:
3118 case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3119 case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3120 case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3121 case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3122 case ICE_PHY_TYPE_LOW_100GBASE_DR:
3123 speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3124 break;
3125 default:
3126 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3127 break;
3128 }
3129
3130 switch (phy_type_high) {
3131 case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3132 case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3133 case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3134 case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3135 case ICE_PHY_TYPE_HIGH_100G_AUI2:
3136 speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3137 break;
3138 case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3139 case ICE_PHY_TYPE_HIGH_200G_SR4:
3140 case ICE_PHY_TYPE_HIGH_200G_FR4:
3141 case ICE_PHY_TYPE_HIGH_200G_LR4:
3142 case ICE_PHY_TYPE_HIGH_200G_DR4:
3143 case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3144 case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3145 case ICE_PHY_TYPE_HIGH_200G_AUI4:
3146 speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3147 break;
3148 default:
3149 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3150 break;
3151 }
3152
3153 if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3154 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3155 return ICE_AQ_LINK_SPEED_UNKNOWN;
3156 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3157 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3158 return ICE_AQ_LINK_SPEED_UNKNOWN;
3159 else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3160 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3161 return speed_phy_type_low;
3162 else
3163 return speed_phy_type_high;
3164}
3165
3166/**
3167 * ice_update_phy_type
3168 * @phy_type_low: pointer to the lower part of phy_type
3169 * @phy_type_high: pointer to the higher part of phy_type
3170 * @link_speeds_bitmap: targeted link speeds bitmap
3171 *
3172 * Note: For the link_speeds_bitmap structure, you can check it at
3173 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3174 * link_speeds_bitmap include multiple speeds.
3175 *
3176 * Each entry in this [phy_type_low, phy_type_high] structure will
3177 * present a certain link speed. This helper function will turn on bits
3178 * in [phy_type_low, phy_type_high] structure based on the value of
3179 * link_speeds_bitmap input parameter.
3180 */
3181void
3182ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3183 u16 link_speeds_bitmap)
3184{
3185 u64 pt_high;
3186 u64 pt_low;
3187 int index;
3188 u16 speed;
3189
3190 /* We first check with low part of phy_type */
3191 for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3192 pt_low = BIT_ULL(index);
3193 speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3194
3195 if (link_speeds_bitmap & speed)
3196 *phy_type_low |= BIT_ULL(index);
3197 }
3198
3199 /* We then check with high part of phy_type */
3200 for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3201 pt_high = BIT_ULL(index);
3202 speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3203
3204 if (link_speeds_bitmap & speed)
3205 *phy_type_high |= BIT_ULL(index);
3206 }
3207}
3208
3209/**
3210 * ice_aq_set_phy_cfg
3211 * @hw: pointer to the HW struct
3212 * @pi: port info structure of the interested logical port
3213 * @cfg: structure with PHY configuration data to be set
3214 * @cd: pointer to command details structure or NULL
3215 *
3216 * Set the various PHY configuration parameters supported on the Port.
3217 * One or more of the Set PHY config parameters may be ignored in an MFP
3218 * mode as the PF may not have the privilege to set some of the PHY Config
3219 * parameters. This status will be indicated by the command response (0x0601).
3220 */
3221int
3222ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3223 struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3224{
3225 struct ice_aq_desc desc;
3226 int status;
3227
3228 if (!cfg)
3229 return -EINVAL;
3230
3231 /* Ensure that only valid bits of cfg->caps can be turned on. */
3232 if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3233 ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
3234 cfg->caps);
3235
3236 cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3237 }
3238
3239 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3240 desc.params.set_phy.lport_num = pi->lport;
3241 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3242
3243 ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3244 ice_debug(hw, ICE_DBG_LINK, " phy_type_low = 0x%llx\n",
3245 (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3246 ice_debug(hw, ICE_DBG_LINK, " phy_type_high = 0x%llx\n",
3247 (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3248 ice_debug(hw, ICE_DBG_LINK, " caps = 0x%x\n", cfg->caps);
3249 ice_debug(hw, ICE_DBG_LINK, " low_power_ctrl_an = 0x%x\n",
3250 cfg->low_power_ctrl_an);
3251 ice_debug(hw, ICE_DBG_LINK, " eee_cap = 0x%x\n", cfg->eee_cap);
3252 ice_debug(hw, ICE_DBG_LINK, " eeer_value = 0x%x\n", cfg->eeer_value);
3253 ice_debug(hw, ICE_DBG_LINK, " link_fec_opt = 0x%x\n",
3254 cfg->link_fec_opt);
3255
3256 status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3257 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3258 status = 0;
3259
3260 if (!status)
3261 pi->phy.curr_user_phy_cfg = *cfg;
3262
3263 return status;
3264}
3265
3266/**
3267 * ice_update_link_info - update status of the HW network link
3268 * @pi: port info structure of the interested logical port
3269 */
3270int ice_update_link_info(struct ice_port_info *pi)
3271{
3272 struct ice_link_status *li;
3273 int status;
3274
3275 if (!pi)
3276 return -EINVAL;
3277
3278 li = &pi->phy.link_info;
3279
3280 status = ice_aq_get_link_info(pi, true, NULL, NULL);
3281 if (status)
3282 return status;
3283
3284 if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3285 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3286
3287 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3288 if (!pcaps)
3289 return -ENOMEM;
3290
3291 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3292 pcaps, NULL);
3293 }
3294
3295 return status;
3296}
3297
3298/**
3299 * ice_cache_phy_user_req
3300 * @pi: port information structure
3301 * @cache_data: PHY logging data
3302 * @cache_mode: PHY logging mode
3303 *
3304 * Log the user request on (FC, FEC, SPEED) for later use.
3305 */
3306static void
3307ice_cache_phy_user_req(struct ice_port_info *pi,
3308 struct ice_phy_cache_mode_data cache_data,
3309 enum ice_phy_cache_mode cache_mode)
3310{
3311 if (!pi)
3312 return;
3313
3314 switch (cache_mode) {
3315 case ICE_FC_MODE:
3316 pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3317 break;
3318 case ICE_SPEED_MODE:
3319 pi->phy.curr_user_speed_req =
3320 cache_data.data.curr_user_speed_req;
3321 break;
3322 case ICE_FEC_MODE:
3323 pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3324 break;
3325 default:
3326 break;
3327 }
3328}
3329
3330/**
3331 * ice_caps_to_fc_mode
3332 * @caps: PHY capabilities
3333 *
3334 * Convert PHY FC capabilities to ice FC mode
3335 */
3336enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3337{
3338 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3339 caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3340 return ICE_FC_FULL;
3341
3342 if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3343 return ICE_FC_TX_PAUSE;
3344
3345 if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3346 return ICE_FC_RX_PAUSE;
3347
3348 return ICE_FC_NONE;
3349}
3350
3351/**
3352 * ice_caps_to_fec_mode
3353 * @caps: PHY capabilities
3354 * @fec_options: Link FEC options
3355 *
3356 * Convert PHY FEC capabilities to ice FEC mode
3357 */
3358enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3359{
3360 if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3361 return ICE_FEC_AUTO;
3362
3363 if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3364 ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3365 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3366 ICE_AQC_PHY_FEC_25G_KR_REQ))
3367 return ICE_FEC_BASER;
3368
3369 if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3370 ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3371 ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3372 return ICE_FEC_RS;
3373
3374 return ICE_FEC_NONE;
3375}
3376
3377/**
3378 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3379 * @pi: port information structure
3380 * @cfg: PHY configuration data to set FC mode
3381 * @req_mode: FC mode to configure
3382 */
3383int
3384ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3385 enum ice_fc_mode req_mode)
3386{
3387 struct ice_phy_cache_mode_data cache_data;
3388 u8 pause_mask = 0x0;
3389
3390 if (!pi || !cfg)
3391 return -EINVAL;
3392
3393 switch (req_mode) {
3394 case ICE_FC_FULL:
3395 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3396 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3397 break;
3398 case ICE_FC_RX_PAUSE:
3399 pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3400 break;
3401 case ICE_FC_TX_PAUSE:
3402 pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3403 break;
3404 default:
3405 break;
3406 }
3407
3408 /* clear the old pause settings */
3409 cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3410 ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3411
3412 /* set the new capabilities */
3413 cfg->caps |= pause_mask;
3414
3415 /* Cache user FC request */
3416 cache_data.data.curr_user_fc_req = req_mode;
3417 ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3418
3419 return 0;
3420}
3421
3422/**
3423 * ice_set_fc
3424 * @pi: port information structure
3425 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3426 * @ena_auto_link_update: enable automatic link update
3427 *
3428 * Set the requested flow control mode.
3429 */
3430int
3431ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3432{
3433 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3434 struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3435 struct ice_hw *hw;
3436 int status;
3437
3438 if (!pi || !aq_failures)
3439 return -EINVAL;
3440
3441 *aq_failures = 0;
3442 hw = pi->hw;
3443
3444 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3445 if (!pcaps)
3446 return -ENOMEM;
3447
3448 /* Get the current PHY config */
3449 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3450 pcaps, NULL);
3451 if (status) {
3452 *aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3453 goto out;
3454 }
3455
3456 ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
3457
3458 /* Configure the set PHY data */
3459 status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3460 if (status)
3461 goto out;
3462
3463 /* If the capabilities have changed, then set the new config */
3464 if (cfg.caps != pcaps->caps) {
3465 int retry_count, retry_max = 10;
3466
3467 /* Auto restart link so settings take effect */
3468 if (ena_auto_link_update)
3469 cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3470
3471 status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3472 if (status) {
3473 *aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3474 goto out;
3475 }
3476
3477 /* Update the link info
3478 * It sometimes takes a really long time for link to
3479 * come back from the atomic reset. Thus, we wait a
3480 * little bit.
3481 */
3482 for (retry_count = 0; retry_count < retry_max; retry_count++) {
3483 status = ice_update_link_info(pi);
3484
3485 if (!status)
3486 break;
3487
3488 mdelay(100);
3489 }
3490
3491 if (status)
3492 *aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3493 }
3494
3495out:
3496 return status;
3497}
3498
3499/**
3500 * ice_phy_caps_equals_cfg
3501 * @phy_caps: PHY capabilities
3502 * @phy_cfg: PHY configuration
3503 *
3504 * Helper function to determine if PHY capabilities matches PHY
3505 * configuration
3506 */
3507bool
3508ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3509 struct ice_aqc_set_phy_cfg_data *phy_cfg)
3510{
3511 u8 caps_mask, cfg_mask;
3512
3513 if (!phy_caps || !phy_cfg)
3514 return false;
3515
3516 /* These bits are not common between capabilities and configuration.
3517 * Do not use them to determine equality.
3518 */
3519 caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3520 ICE_AQC_GET_PHY_EN_MOD_QUAL);
3521 cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3522
3523 if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3524 phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3525 ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3526 phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3527 phy_caps->eee_cap != phy_cfg->eee_cap ||
3528 phy_caps->eeer_value != phy_cfg->eeer_value ||
3529 phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3530 return false;
3531
3532 return true;
3533}
3534
3535/**
3536 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3537 * @pi: port information structure
3538 * @caps: PHY ability structure to copy date from
3539 * @cfg: PHY configuration structure to copy data to
3540 *
3541 * Helper function to copy AQC PHY get ability data to PHY set configuration
3542 * data structure
3543 */
3544void
3545ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3546 struct ice_aqc_get_phy_caps_data *caps,
3547 struct ice_aqc_set_phy_cfg_data *cfg)
3548{
3549 if (!pi || !caps || !cfg)
3550 return;
3551
3552 memset(cfg, 0, sizeof(*cfg));
3553 cfg->phy_type_low = caps->phy_type_low;
3554 cfg->phy_type_high = caps->phy_type_high;
3555 cfg->caps = caps->caps;
3556 cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3557 cfg->eee_cap = caps->eee_cap;
3558 cfg->eeer_value = caps->eeer_value;
3559 cfg->link_fec_opt = caps->link_fec_options;
3560 cfg->module_compliance_enforcement =
3561 caps->module_compliance_enforcement;
3562}
3563
3564/**
3565 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3566 * @pi: port information structure
3567 * @cfg: PHY configuration data to set FEC mode
3568 * @fec: FEC mode to configure
3569 */
3570int
3571ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3572 enum ice_fec_mode fec)
3573{
3574 struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3575 struct ice_hw *hw;
3576 int status;
3577
3578 if (!pi || !cfg)
3579 return -EINVAL;
3580
3581 hw = pi->hw;
3582
3583 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3584 if (!pcaps)
3585 return -ENOMEM;
3586
3587 status = ice_aq_get_phy_caps(pi, false,
3588 (ice_fw_supports_report_dflt_cfg(hw) ?
3589 ICE_AQC_REPORT_DFLT_CFG :
3590 ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3591 if (status)
3592 goto out;
3593
3594 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3595 cfg->link_fec_opt = pcaps->link_fec_options;
3596
3597 switch (fec) {
3598 case ICE_FEC_BASER:
3599 /* Clear RS bits, and AND BASE-R ability
3600 * bits and OR request bits.
3601 */
3602 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3603 ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3604 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3605 ICE_AQC_PHY_FEC_25G_KR_REQ;
3606 break;
3607 case ICE_FEC_RS:
3608 /* Clear BASE-R bits, and AND RS ability
3609 * bits and OR request bits.
3610 */
3611 cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3612 cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3613 ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3614 break;
3615 case ICE_FEC_NONE:
3616 /* Clear all FEC option bits. */
3617 cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3618 break;
3619 case ICE_FEC_AUTO:
3620 /* AND auto FEC bit, and all caps bits. */
3621 cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3622 cfg->link_fec_opt |= pcaps->link_fec_options;
3623 break;
3624 default:
3625 status = -EINVAL;
3626 break;
3627 }
3628
3629 if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3630 !ice_fw_supports_report_dflt_cfg(hw)) {
3631 struct ice_link_default_override_tlv tlv = { 0 };
3632
3633 status = ice_get_link_default_override(&tlv, pi);
3634 if (status)
3635 goto out;
3636
3637 if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3638 (tlv.options & ICE_LINK_OVERRIDE_EN))
3639 cfg->link_fec_opt = tlv.fec_options;
3640 }
3641
3642out:
3643 return status;
3644}
3645
3646/**
3647 * ice_get_link_status - get status of the HW network link
3648 * @pi: port information structure
3649 * @link_up: pointer to bool (true/false = linkup/linkdown)
3650 *
3651 * Variable link_up is true if link is up, false if link is down.
3652 * The variable link_up is invalid if status is non zero. As a
3653 * result of this call, link status reporting becomes enabled
3654 */
3655int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3656{
3657 struct ice_phy_info *phy_info;
3658 int status = 0;
3659
3660 if (!pi || !link_up)
3661 return -EINVAL;
3662
3663 phy_info = &pi->phy;
3664
3665 if (phy_info->get_link_info) {
3666 status = ice_update_link_info(pi);
3667
3668 if (status)
3669 ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
3670 status);
3671 }
3672
3673 *link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3674
3675 return status;
3676}
3677
3678/**
3679 * ice_aq_set_link_restart_an
3680 * @pi: pointer to the port information structure
3681 * @ena_link: if true: enable link, if false: disable link
3682 * @cd: pointer to command details structure or NULL
3683 *
3684 * Sets up the link and restarts the Auto-Negotiation over the link.
3685 */
3686int
3687ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3688 struct ice_sq_cd *cd)
3689{
3690 struct ice_aqc_restart_an *cmd;
3691 struct ice_aq_desc desc;
3692
3693 cmd = &desc.params.restart_an;
3694
3695 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3696
3697 cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3698 cmd->lport_num = pi->lport;
3699 if (ena_link)
3700 cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3701 else
3702 cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3703
3704 return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3705}
3706
3707/**
3708 * ice_aq_set_event_mask
3709 * @hw: pointer to the HW struct
3710 * @port_num: port number of the physical function
3711 * @mask: event mask to be set
3712 * @cd: pointer to command details structure or NULL
3713 *
3714 * Set event mask (0x0613)
3715 */
3716int
3717ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3718 struct ice_sq_cd *cd)
3719{
3720 struct ice_aqc_set_event_mask *cmd;
3721 struct ice_aq_desc desc;
3722
3723 cmd = &desc.params.set_event_mask;
3724
3725 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3726
3727 cmd->lport_num = port_num;
3728
3729 cmd->event_mask = cpu_to_le16(mask);
3730 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3731}
3732
3733/**
3734 * ice_aq_set_mac_loopback
3735 * @hw: pointer to the HW struct
3736 * @ena_lpbk: Enable or Disable loopback
3737 * @cd: pointer to command details structure or NULL
3738 *
3739 * Enable/disable loopback on a given port
3740 */
3741int
3742ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3743{
3744 struct ice_aqc_set_mac_lb *cmd;
3745 struct ice_aq_desc desc;
3746
3747 cmd = &desc.params.set_mac_lb;
3748
3749 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3750 if (ena_lpbk)
3751 cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3752
3753 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3754}
3755
3756/**
3757 * ice_aq_set_port_id_led
3758 * @pi: pointer to the port information
3759 * @is_orig_mode: is this LED set to original mode (by the net-list)
3760 * @cd: pointer to command details structure or NULL
3761 *
3762 * Set LED value for the given port (0x06e9)
3763 */
3764int
3765ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3766 struct ice_sq_cd *cd)
3767{
3768 struct ice_aqc_set_port_id_led *cmd;
3769 struct ice_hw *hw = pi->hw;
3770 struct ice_aq_desc desc;
3771
3772 cmd = &desc.params.set_port_id_led;
3773
3774 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3775
3776 if (is_orig_mode)
3777 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3778 else
3779 cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3780
3781 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3782}
3783
3784/**
3785 * ice_aq_get_port_options
3786 * @hw: pointer to the HW struct
3787 * @options: buffer for the resultant port options
3788 * @option_count: input - size of the buffer in port options structures,
3789 * output - number of returned port options
3790 * @lport: logical port to call the command with (optional)
3791 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3792 * when PF owns more than 1 port it must be true
3793 * @active_option_idx: index of active port option in returned buffer
3794 * @active_option_valid: active option in returned buffer is valid
3795 * @pending_option_idx: index of pending port option in returned buffer
3796 * @pending_option_valid: pending option in returned buffer is valid
3797 *
3798 * Calls Get Port Options AQC (0x06ea) and verifies result.
3799 */
3800int
3801ice_aq_get_port_options(struct ice_hw *hw,
3802 struct ice_aqc_get_port_options_elem *options,
3803 u8 *option_count, u8 lport, bool lport_valid,
3804 u8 *active_option_idx, bool *active_option_valid,
3805 u8 *pending_option_idx, bool *pending_option_valid)
3806{
3807 struct ice_aqc_get_port_options *cmd;
3808 struct ice_aq_desc desc;
3809 int status;
3810 u8 i;
3811
3812 /* options buffer shall be able to hold max returned options */
3813 if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
3814 return -EINVAL;
3815
3816 cmd = &desc.params.get_port_options;
3817 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
3818
3819 if (lport_valid)
3820 cmd->lport_num = lport;
3821 cmd->lport_num_valid = lport_valid;
3822
3823 status = ice_aq_send_cmd(hw, &desc, options,
3824 *option_count * sizeof(*options), NULL);
3825 if (status)
3826 return status;
3827
3828 /* verify direct FW response & set output parameters */
3829 *option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
3830 cmd->port_options_count);
3831 ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
3832 *active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
3833 cmd->port_options);
3834 if (*active_option_valid) {
3835 *active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
3836 cmd->port_options);
3837 if (*active_option_idx > (*option_count - 1))
3838 return -EIO;
3839 ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
3840 *active_option_idx);
3841 }
3842
3843 *pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
3844 cmd->pending_port_option_status);
3845 if (*pending_option_valid) {
3846 *pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
3847 cmd->pending_port_option_status);
3848 if (*pending_option_idx > (*option_count - 1))
3849 return -EIO;
3850 ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
3851 *pending_option_idx);
3852 }
3853
3854 /* mask output options fields */
3855 for (i = 0; i < *option_count; i++) {
3856 options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
3857 options[i].pmd);
3858 options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
3859 options[i].max_lane_speed);
3860 ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
3861 options[i].pmd, options[i].max_lane_speed);
3862 }
3863
3864 return 0;
3865}
3866
3867/**
3868 * ice_aq_set_port_option
3869 * @hw: pointer to the HW struct
3870 * @lport: logical port to call the command with
3871 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3872 * when PF owns more than 1 port it must be true
3873 * @new_option: new port option to be written
3874 *
3875 * Calls Set Port Options AQC (0x06eb).
3876 */
3877int
3878ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
3879 u8 new_option)
3880{
3881 struct ice_aqc_set_port_option *cmd;
3882 struct ice_aq_desc desc;
3883
3884 if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
3885 return -EINVAL;
3886
3887 cmd = &desc.params.set_port_option;
3888 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
3889
3890 if (lport_valid)
3891 cmd->lport_num = lport;
3892
3893 cmd->lport_num_valid = lport_valid;
3894 cmd->selected_port_option = new_option;
3895
3896 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3897}
3898
3899/**
3900 * ice_aq_sff_eeprom
3901 * @hw: pointer to the HW struct
3902 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
3903 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
3904 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
3905 * @page: QSFP page
3906 * @set_page: set or ignore the page
3907 * @data: pointer to data buffer to be read/written to the I2C device.
3908 * @length: 1-16 for read, 1 for write.
3909 * @write: 0 read, 1 for write.
3910 * @cd: pointer to command details structure or NULL
3911 *
3912 * Read/Write SFF EEPROM (0x06EE)
3913 */
3914int
3915ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
3916 u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
3917 bool write, struct ice_sq_cd *cd)
3918{
3919 struct ice_aqc_sff_eeprom *cmd;
3920 struct ice_aq_desc desc;
3921 u16 i2c_bus_addr;
3922 int status;
3923
3924 if (!data || (mem_addr & 0xff00))
3925 return -EINVAL;
3926
3927 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
3928 cmd = &desc.params.read_write_sff_param;
3929 desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
3930 cmd->lport_num = (u8)(lport & 0xff);
3931 cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
3932 i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
3933 FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
3934 if (write)
3935 i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
3936 cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
3937 cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
3938 cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
3939
3940 status = ice_aq_send_cmd(hw, &desc, data, length, cd);
3941 return status;
3942}
3943
3944static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
3945{
3946 switch (type) {
3947 case ICE_LUT_VSI:
3948 return ICE_LUT_VSI_SIZE;
3949 case ICE_LUT_GLOBAL:
3950 return ICE_LUT_GLOBAL_SIZE;
3951 case ICE_LUT_PF:
3952 return ICE_LUT_PF_SIZE;
3953 }
3954 WARN_ONCE(1, "incorrect type passed");
3955 return ICE_LUT_VSI_SIZE;
3956}
3957
3958static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
3959{
3960 switch (size) {
3961 case ICE_LUT_VSI_SIZE:
3962 return ICE_AQC_LUT_SIZE_SMALL;
3963 case ICE_LUT_GLOBAL_SIZE:
3964 return ICE_AQC_LUT_SIZE_512;
3965 case ICE_LUT_PF_SIZE:
3966 return ICE_AQC_LUT_SIZE_2K;
3967 }
3968 WARN_ONCE(1, "incorrect size passed");
3969 return 0;
3970}
3971
3972/**
3973 * __ice_aq_get_set_rss_lut
3974 * @hw: pointer to the hardware structure
3975 * @params: RSS LUT parameters
3976 * @set: set true to set the table, false to get the table
3977 *
3978 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
3979 */
3980static int
3981__ice_aq_get_set_rss_lut(struct ice_hw *hw,
3982 struct ice_aq_get_set_rss_lut_params *params, bool set)
3983{
3984 u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
3985 enum ice_lut_type lut_type = params->lut_type;
3986 struct ice_aqc_get_set_rss_lut *desc_params;
3987 enum ice_aqc_lut_flags flags;
3988 enum ice_lut_size lut_size;
3989 struct ice_aq_desc desc;
3990 u8 *lut = params->lut;
3991
3992
3993 if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
3994 return -EINVAL;
3995
3996 lut_size = ice_lut_type_to_size(lut_type);
3997 if (lut_size > params->lut_size)
3998 return -EINVAL;
3999 else if (set && lut_size != params->lut_size)
4000 return -EINVAL;
4001
4002 opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4003 ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4004 if (set)
4005 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4006
4007 desc_params = &desc.params.get_set_rss_lut;
4008 vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4009 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4010
4011 if (lut_type == ICE_LUT_GLOBAL)
4012 glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4013 params->global_lut_id);
4014
4015 flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4016 desc_params->flags = cpu_to_le16(flags);
4017
4018 return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
4019}
4020
4021/**
4022 * ice_aq_get_rss_lut
4023 * @hw: pointer to the hardware structure
4024 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
4025 *
4026 * get the RSS lookup table, PF or VSI type
4027 */
4028int
4029ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
4030{
4031 return __ice_aq_get_set_rss_lut(hw, get_params, false);
4032}
4033
4034/**
4035 * ice_aq_set_rss_lut
4036 * @hw: pointer to the hardware structure
4037 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
4038 *
4039 * set the RSS lookup table, PF or VSI type
4040 */
4041int
4042ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
4043{
4044 return __ice_aq_get_set_rss_lut(hw, set_params, true);
4045}
4046
4047/**
4048 * __ice_aq_get_set_rss_key
4049 * @hw: pointer to the HW struct
4050 * @vsi_id: VSI FW index
4051 * @key: pointer to key info struct
4052 * @set: set true to set the key, false to get the key
4053 *
4054 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4055 */
4056static int
4057__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4058 struct ice_aqc_get_set_rss_keys *key, bool set)
4059{
4060 struct ice_aqc_get_set_rss_key *desc_params;
4061 u16 key_size = sizeof(*key);
4062 struct ice_aq_desc desc;
4063
4064 if (set) {
4065 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4066 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4067 } else {
4068 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4069 }
4070
4071 desc_params = &desc.params.get_set_rss_key;
4072 desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4073
4074 return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4075}
4076
4077/**
4078 * ice_aq_get_rss_key
4079 * @hw: pointer to the HW struct
4080 * @vsi_handle: software VSI handle
4081 * @key: pointer to key info struct
4082 *
4083 * get the RSS key per VSI
4084 */
4085int
4086ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4087 struct ice_aqc_get_set_rss_keys *key)
4088{
4089 if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4090 return -EINVAL;
4091
4092 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4093 key, false);
4094}
4095
4096/**
4097 * ice_aq_set_rss_key
4098 * @hw: pointer to the HW struct
4099 * @vsi_handle: software VSI handle
4100 * @keys: pointer to key info struct
4101 *
4102 * set the RSS key per VSI
4103 */
4104int
4105ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4106 struct ice_aqc_get_set_rss_keys *keys)
4107{
4108 if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4109 return -EINVAL;
4110
4111 return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4112 keys, true);
4113}
4114
4115/**
4116 * ice_aq_add_lan_txq
4117 * @hw: pointer to the hardware structure
4118 * @num_qgrps: Number of added queue groups
4119 * @qg_list: list of queue groups to be added
4120 * @buf_size: size of buffer for indirect command
4121 * @cd: pointer to command details structure or NULL
4122 *
4123 * Add Tx LAN queue (0x0C30)
4124 *
4125 * NOTE:
4126 * Prior to calling add Tx LAN queue:
4127 * Initialize the following as part of the Tx queue context:
4128 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4129 * Cache profile and Packet shaper profile.
4130 *
4131 * After add Tx LAN queue AQ command is completed:
4132 * Interrupts should be associated with specific queues,
4133 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4134 * flow.
4135 */
4136static int
4137ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4138 struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4139 struct ice_sq_cd *cd)
4140{
4141 struct ice_aqc_add_tx_qgrp *list;
4142 struct ice_aqc_add_txqs *cmd;
4143 struct ice_aq_desc desc;
4144 u16 i, sum_size = 0;
4145
4146 cmd = &desc.params.add_txqs;
4147
4148 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4149
4150 if (!qg_list)
4151 return -EINVAL;
4152
4153 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4154 return -EINVAL;
4155
4156 for (i = 0, list = qg_list; i < num_qgrps; i++) {
4157 sum_size += struct_size(list, txqs, list->num_txqs);
4158 list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4159 list->num_txqs);
4160 }
4161
4162 if (buf_size != sum_size)
4163 return -EINVAL;
4164
4165 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4166
4167 cmd->num_qgrps = num_qgrps;
4168
4169 return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4170}
4171
4172/**
4173 * ice_aq_dis_lan_txq
4174 * @hw: pointer to the hardware structure
4175 * @num_qgrps: number of groups in the list
4176 * @qg_list: the list of groups to disable
4177 * @buf_size: the total size of the qg_list buffer in bytes
4178 * @rst_src: if called due to reset, specifies the reset source
4179 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4180 * @cd: pointer to command details structure or NULL
4181 *
4182 * Disable LAN Tx queue (0x0C31)
4183 */
4184static int
4185ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4186 struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4187 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4188 struct ice_sq_cd *cd)
4189{
4190 struct ice_aqc_dis_txq_item *item;
4191 struct ice_aqc_dis_txqs *cmd;
4192 struct ice_aq_desc desc;
4193 u16 vmvf_and_timeout;
4194 u16 i, sz = 0;
4195 int status;
4196
4197 cmd = &desc.params.dis_txqs;
4198 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4199
4200 /* qg_list can be NULL only in VM/VF reset flow */
4201 if (!qg_list && !rst_src)
4202 return -EINVAL;
4203
4204 if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4205 return -EINVAL;
4206
4207 cmd->num_entries = num_qgrps;
4208
4209 vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
4210
4211 switch (rst_src) {
4212 case ICE_VM_RESET:
4213 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4214 vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
4215 break;
4216 case ICE_VF_RESET:
4217 cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4218 /* In this case, FW expects vmvf_num to be absolute VF ID */
4219 vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4220 ICE_AQC_Q_DIS_VMVF_NUM_M;
4221 break;
4222 case ICE_NO_RESET:
4223 default:
4224 break;
4225 }
4226
4227 cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4228
4229 /* flush pipe on time out */
4230 cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4231 /* If no queue group info, we are in a reset flow. Issue the AQ */
4232 if (!qg_list)
4233 goto do_aq;
4234
4235 /* set RD bit to indicate that command buffer is provided by the driver
4236 * and it needs to be read by the firmware
4237 */
4238 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4239
4240 for (i = 0, item = qg_list; i < num_qgrps; i++) {
4241 u16 item_size = struct_size(item, q_id, item->num_qs);
4242
4243 /* If the num of queues is even, add 2 bytes of padding */
4244 if ((item->num_qs % 2) == 0)
4245 item_size += 2;
4246
4247 sz += item_size;
4248
4249 item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
4250 }
4251
4252 if (buf_size != sz)
4253 return -EINVAL;
4254
4255do_aq:
4256 status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4257 if (status) {
4258 if (!qg_list)
4259 ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4260 vmvf_num, hw->adminq.sq_last_status);
4261 else
4262 ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4263 le16_to_cpu(qg_list[0].q_id[0]),
4264 hw->adminq.sq_last_status);
4265 }
4266 return status;
4267}
4268
4269/**
4270 * ice_aq_cfg_lan_txq
4271 * @hw: pointer to the hardware structure
4272 * @buf: buffer for command
4273 * @buf_size: size of buffer in bytes
4274 * @num_qs: number of queues being configured
4275 * @oldport: origination lport
4276 * @newport: destination lport
4277 * @cd: pointer to command details structure or NULL
4278 *
4279 * Move/Configure LAN Tx queue (0x0C32)
4280 *
4281 * There is a better AQ command to use for moving nodes, so only coding
4282 * this one for configuring the node.
4283 */
4284int
4285ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4286 u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4287 struct ice_sq_cd *cd)
4288{
4289 struct ice_aqc_cfg_txqs *cmd;
4290 struct ice_aq_desc desc;
4291 int status;
4292
4293 cmd = &desc.params.cfg_txqs;
4294 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4295 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4296
4297 if (!buf)
4298 return -EINVAL;
4299
4300 cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4301 cmd->num_qs = num_qs;
4302 cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4303 cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4304 cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4305 cmd->blocked_cgds = 0;
4306
4307 status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4308 if (status)
4309 ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4310 hw->adminq.sq_last_status);
4311 return status;
4312}
4313
4314/**
4315 * ice_aq_add_rdma_qsets
4316 * @hw: pointer to the hardware structure
4317 * @num_qset_grps: Number of RDMA Qset groups
4318 * @qset_list: list of Qset groups to be added
4319 * @buf_size: size of buffer for indirect command
4320 * @cd: pointer to command details structure or NULL
4321 *
4322 * Add Tx RDMA Qsets (0x0C33)
4323 */
4324static int
4325ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4326 struct ice_aqc_add_rdma_qset_data *qset_list,
4327 u16 buf_size, struct ice_sq_cd *cd)
4328{
4329 struct ice_aqc_add_rdma_qset_data *list;
4330 struct ice_aqc_add_rdma_qset *cmd;
4331 struct ice_aq_desc desc;
4332 u16 i, sum_size = 0;
4333
4334 cmd = &desc.params.add_rdma_qset;
4335
4336 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4337
4338 if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4339 return -EINVAL;
4340
4341 for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4342 u16 num_qsets = le16_to_cpu(list->num_qsets);
4343
4344 sum_size += struct_size(list, rdma_qsets, num_qsets);
4345 list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4346 num_qsets);
4347 }
4348
4349 if (buf_size != sum_size)
4350 return -EINVAL;
4351
4352 desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4353
4354 cmd->num_qset_grps = num_qset_grps;
4355
4356 return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4357}
4358
4359/* End of FW Admin Queue command wrappers */
4360
4361/**
4362 * ice_pack_ctx_byte - write a byte to a packed context structure
4363 * @src_ctx: unpacked source context structure
4364 * @dest_ctx: packed destination context data
4365 * @ce_info: context element description
4366 */
4367static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4368 const struct ice_ctx_ele *ce_info)
4369{
4370 u8 src_byte, dest_byte, mask;
4371 u8 *from, *dest;
4372 u16 shift_width;
4373
4374 /* copy from the next struct field */
4375 from = src_ctx + ce_info->offset;
4376
4377 /* prepare the bits and mask */
4378 shift_width = ce_info->lsb % 8;
4379 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4380
4381 src_byte = *from;
4382 src_byte <<= shift_width;
4383 src_byte &= mask;
4384
4385 /* get the current bits from the target bit string */
4386 dest = dest_ctx + (ce_info->lsb / 8);
4387
4388 memcpy(&dest_byte, dest, sizeof(dest_byte));
4389
4390 dest_byte &= ~mask; /* get the bits not changing */
4391 dest_byte |= src_byte; /* add in the new bits */
4392
4393 /* put it all back */
4394 memcpy(dest, &dest_byte, sizeof(dest_byte));
4395}
4396
4397/**
4398 * ice_pack_ctx_word - write a word to a packed context structure
4399 * @src_ctx: unpacked source context structure
4400 * @dest_ctx: packed destination context data
4401 * @ce_info: context element description
4402 */
4403static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4404 const struct ice_ctx_ele *ce_info)
4405{
4406 u16 src_word, mask;
4407 __le16 dest_word;
4408 u8 *from, *dest;
4409 u16 shift_width;
4410
4411 /* copy from the next struct field */
4412 from = src_ctx + ce_info->offset;
4413
4414 /* prepare the bits and mask */
4415 shift_width = ce_info->lsb % 8;
4416 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4417
4418 /* don't swizzle the bits until after the mask because the mask bits
4419 * will be in a different bit position on big endian machines
4420 */
4421 src_word = *(u16 *)from;
4422 src_word <<= shift_width;
4423 src_word &= mask;
4424
4425 /* get the current bits from the target bit string */
4426 dest = dest_ctx + (ce_info->lsb / 8);
4427
4428 memcpy(&dest_word, dest, sizeof(dest_word));
4429
4430 dest_word &= ~(cpu_to_le16(mask)); /* get the bits not changing */
4431 dest_word |= cpu_to_le16(src_word); /* add in the new bits */
4432
4433 /* put it all back */
4434 memcpy(dest, &dest_word, sizeof(dest_word));
4435}
4436
4437/**
4438 * ice_pack_ctx_dword - write a dword to a packed context structure
4439 * @src_ctx: unpacked source context structure
4440 * @dest_ctx: packed destination context data
4441 * @ce_info: context element description
4442 */
4443static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4444 const struct ice_ctx_ele *ce_info)
4445{
4446 u32 src_dword, mask;
4447 __le32 dest_dword;
4448 u8 *from, *dest;
4449 u16 shift_width;
4450
4451 /* copy from the next struct field */
4452 from = src_ctx + ce_info->offset;
4453
4454 /* prepare the bits and mask */
4455 shift_width = ce_info->lsb % 8;
4456 mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4457
4458 /* don't swizzle the bits until after the mask because the mask bits
4459 * will be in a different bit position on big endian machines
4460 */
4461 src_dword = *(u32 *)from;
4462 src_dword <<= shift_width;
4463 src_dword &= mask;
4464
4465 /* get the current bits from the target bit string */
4466 dest = dest_ctx + (ce_info->lsb / 8);
4467
4468 memcpy(&dest_dword, dest, sizeof(dest_dword));
4469
4470 dest_dword &= ~(cpu_to_le32(mask)); /* get the bits not changing */
4471 dest_dword |= cpu_to_le32(src_dword); /* add in the new bits */
4472
4473 /* put it all back */
4474 memcpy(dest, &dest_dword, sizeof(dest_dword));
4475}
4476
4477/**
4478 * ice_pack_ctx_qword - write a qword to a packed context structure
4479 * @src_ctx: unpacked source context structure
4480 * @dest_ctx: packed destination context data
4481 * @ce_info: context element description
4482 */
4483static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4484 const struct ice_ctx_ele *ce_info)
4485{
4486 u64 src_qword, mask;
4487 __le64 dest_qword;
4488 u8 *from, *dest;
4489 u16 shift_width;
4490
4491 /* copy from the next struct field */
4492 from = src_ctx + ce_info->offset;
4493
4494 /* prepare the bits and mask */
4495 shift_width = ce_info->lsb % 8;
4496 mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
4497
4498 /* don't swizzle the bits until after the mask because the mask bits
4499 * will be in a different bit position on big endian machines
4500 */
4501 src_qword = *(u64 *)from;
4502 src_qword <<= shift_width;
4503 src_qword &= mask;
4504
4505 /* get the current bits from the target bit string */
4506 dest = dest_ctx + (ce_info->lsb / 8);
4507
4508 memcpy(&dest_qword, dest, sizeof(dest_qword));
4509
4510 dest_qword &= ~(cpu_to_le64(mask)); /* get the bits not changing */
4511 dest_qword |= cpu_to_le64(src_qword); /* add in the new bits */
4512
4513 /* put it all back */
4514 memcpy(dest, &dest_qword, sizeof(dest_qword));
4515}
4516
4517/**
4518 * ice_set_ctx - set context bits in packed structure
4519 * @hw: pointer to the hardware structure
4520 * @src_ctx: pointer to a generic non-packed context structure
4521 * @dest_ctx: pointer to memory for the packed structure
4522 * @ce_info: List of Rx context elements
4523 */
4524int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4525 const struct ice_ctx_ele *ce_info)
4526{
4527 int f;
4528
4529 for (f = 0; ce_info[f].width; f++) {
4530 /* We have to deal with each element of the FW response
4531 * using the correct size so that we are correct regardless
4532 * of the endianness of the machine.
4533 */
4534 if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4535 ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4536 f, ce_info[f].width, ce_info[f].size_of);
4537 continue;
4538 }
4539 switch (ce_info[f].size_of) {
4540 case sizeof(u8):
4541 ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4542 break;
4543 case sizeof(u16):
4544 ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4545 break;
4546 case sizeof(u32):
4547 ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4548 break;
4549 case sizeof(u64):
4550 ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4551 break;
4552 default:
4553 return -EINVAL;
4554 }
4555 }
4556
4557 return 0;
4558}
4559
4560/**
4561 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4562 * @hw: pointer to the HW struct
4563 * @vsi_handle: software VSI handle
4564 * @tc: TC number
4565 * @q_handle: software queue handle
4566 */
4567struct ice_q_ctx *
4568ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4569{
4570 struct ice_vsi_ctx *vsi;
4571 struct ice_q_ctx *q_ctx;
4572
4573 vsi = ice_get_vsi_ctx(hw, vsi_handle);
4574 if (!vsi)
4575 return NULL;
4576 if (q_handle >= vsi->num_lan_q_entries[tc])
4577 return NULL;
4578 if (!vsi->lan_q_ctx[tc])
4579 return NULL;
4580 q_ctx = vsi->lan_q_ctx[tc];
4581 return &q_ctx[q_handle];
4582}
4583
4584/**
4585 * ice_ena_vsi_txq
4586 * @pi: port information structure
4587 * @vsi_handle: software VSI handle
4588 * @tc: TC number
4589 * @q_handle: software queue handle
4590 * @num_qgrps: Number of added queue groups
4591 * @buf: list of queue groups to be added
4592 * @buf_size: size of buffer for indirect command
4593 * @cd: pointer to command details structure or NULL
4594 *
4595 * This function adds one LAN queue
4596 */
4597int
4598ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4599 u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4600 struct ice_sq_cd *cd)
4601{
4602 struct ice_aqc_txsched_elem_data node = { 0 };
4603 struct ice_sched_node *parent;
4604 struct ice_q_ctx *q_ctx;
4605 struct ice_hw *hw;
4606 int status;
4607
4608 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4609 return -EIO;
4610
4611 if (num_qgrps > 1 || buf->num_txqs > 1)
4612 return -ENOSPC;
4613
4614 hw = pi->hw;
4615
4616 if (!ice_is_vsi_valid(hw, vsi_handle))
4617 return -EINVAL;
4618
4619 mutex_lock(&pi->sched_lock);
4620
4621 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4622 if (!q_ctx) {
4623 ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4624 q_handle);
4625 status = -EINVAL;
4626 goto ena_txq_exit;
4627 }
4628
4629 /* find a parent node */
4630 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4631 ICE_SCHED_NODE_OWNER_LAN);
4632 if (!parent) {
4633 status = -EINVAL;
4634 goto ena_txq_exit;
4635 }
4636
4637 buf->parent_teid = parent->info.node_teid;
4638 node.parent_teid = parent->info.node_teid;
4639 /* Mark that the values in the "generic" section as valid. The default
4640 * value in the "generic" section is zero. This means that :
4641 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4642 * - 0 priority among siblings, indicated by Bit 1-3.
4643 * - WFQ, indicated by Bit 4.
4644 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4645 * Bit 5-6.
4646 * - Bit 7 is reserved.
4647 * Without setting the generic section as valid in valid_sections, the
4648 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4649 */
4650 buf->txqs[0].info.valid_sections =
4651 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4652 ICE_AQC_ELEM_VALID_EIR;
4653 buf->txqs[0].info.generic = 0;
4654 buf->txqs[0].info.cir_bw.bw_profile_idx =
4655 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4656 buf->txqs[0].info.cir_bw.bw_alloc =
4657 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4658 buf->txqs[0].info.eir_bw.bw_profile_idx =
4659 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4660 buf->txqs[0].info.eir_bw.bw_alloc =
4661 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4662
4663 /* add the LAN queue */
4664 status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4665 if (status) {
4666 ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4667 le16_to_cpu(buf->txqs[0].txq_id),
4668 hw->adminq.sq_last_status);
4669 goto ena_txq_exit;
4670 }
4671
4672 node.node_teid = buf->txqs[0].q_teid;
4673 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4674 q_ctx->q_handle = q_handle;
4675 q_ctx->q_teid = le32_to_cpu(node.node_teid);
4676
4677 /* add a leaf node into scheduler tree queue layer */
4678 status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4679 if (!status)
4680 status = ice_sched_replay_q_bw(pi, q_ctx);
4681
4682ena_txq_exit:
4683 mutex_unlock(&pi->sched_lock);
4684 return status;
4685}
4686
4687/**
4688 * ice_dis_vsi_txq
4689 * @pi: port information structure
4690 * @vsi_handle: software VSI handle
4691 * @tc: TC number
4692 * @num_queues: number of queues
4693 * @q_handles: pointer to software queue handle array
4694 * @q_ids: pointer to the q_id array
4695 * @q_teids: pointer to queue node teids
4696 * @rst_src: if called due to reset, specifies the reset source
4697 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4698 * @cd: pointer to command details structure or NULL
4699 *
4700 * This function removes queues and their corresponding nodes in SW DB
4701 */
4702int
4703ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4704 u16 *q_handles, u16 *q_ids, u32 *q_teids,
4705 enum ice_disq_rst_src rst_src, u16 vmvf_num,
4706 struct ice_sq_cd *cd)
4707{
4708 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4709 u16 i, buf_size = __struct_size(qg_list);
4710 struct ice_q_ctx *q_ctx;
4711 int status = -ENOENT;
4712 struct ice_hw *hw;
4713
4714 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4715 return -EIO;
4716
4717 hw = pi->hw;
4718
4719 if (!num_queues) {
4720 /* if queue is disabled already yet the disable queue command
4721 * has to be sent to complete the VF reset, then call
4722 * ice_aq_dis_lan_txq without any queue information
4723 */
4724 if (rst_src)
4725 return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4726 vmvf_num, NULL);
4727 return -EIO;
4728 }
4729
4730 mutex_lock(&pi->sched_lock);
4731
4732 for (i = 0; i < num_queues; i++) {
4733 struct ice_sched_node *node;
4734
4735 node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4736 if (!node)
4737 continue;
4738 q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4739 if (!q_ctx) {
4740 ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4741 q_handles[i]);
4742 continue;
4743 }
4744 if (q_ctx->q_handle != q_handles[i]) {
4745 ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4746 q_ctx->q_handle, q_handles[i]);
4747 continue;
4748 }
4749 qg_list->parent_teid = node->info.parent_teid;
4750 qg_list->num_qs = 1;
4751 qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
4752 status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
4753 vmvf_num, cd);
4754
4755 if (status)
4756 break;
4757 ice_free_sched_node(pi, node);
4758 q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
4759 q_ctx->q_teid = ICE_INVAL_TEID;
4760 }
4761 mutex_unlock(&pi->sched_lock);
4762 return status;
4763}
4764
4765/**
4766 * ice_cfg_vsi_qs - configure the new/existing VSI queues
4767 * @pi: port information structure
4768 * @vsi_handle: software VSI handle
4769 * @tc_bitmap: TC bitmap
4770 * @maxqs: max queues array per TC
4771 * @owner: LAN or RDMA
4772 *
4773 * This function adds/updates the VSI queues per TC.
4774 */
4775static int
4776ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4777 u16 *maxqs, u8 owner)
4778{
4779 int status = 0;
4780 u8 i;
4781
4782 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4783 return -EIO;
4784
4785 if (!ice_is_vsi_valid(pi->hw, vsi_handle))
4786 return -EINVAL;
4787
4788 mutex_lock(&pi->sched_lock);
4789
4790 ice_for_each_traffic_class(i) {
4791 /* configuration is possible only if TC node is present */
4792 if (!ice_sched_get_tc_node(pi, i))
4793 continue;
4794
4795 status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
4796 ice_is_tc_ena(tc_bitmap, i));
4797 if (status)
4798 break;
4799 }
4800
4801 mutex_unlock(&pi->sched_lock);
4802 return status;
4803}
4804
4805/**
4806 * ice_cfg_vsi_lan - configure VSI LAN queues
4807 * @pi: port information structure
4808 * @vsi_handle: software VSI handle
4809 * @tc_bitmap: TC bitmap
4810 * @max_lanqs: max LAN queues array per TC
4811 *
4812 * This function adds/updates the VSI LAN queues per TC.
4813 */
4814int
4815ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
4816 u16 *max_lanqs)
4817{
4818 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
4819 ICE_SCHED_NODE_OWNER_LAN);
4820}
4821
4822/**
4823 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
4824 * @pi: port information structure
4825 * @vsi_handle: software VSI handle
4826 * @tc_bitmap: TC bitmap
4827 * @max_rdmaqs: max RDMA queues array per TC
4828 *
4829 * This function adds/updates the VSI RDMA queues per TC.
4830 */
4831int
4832ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
4833 u16 *max_rdmaqs)
4834{
4835 return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
4836 ICE_SCHED_NODE_OWNER_RDMA);
4837}
4838
4839/**
4840 * ice_ena_vsi_rdma_qset
4841 * @pi: port information structure
4842 * @vsi_handle: software VSI handle
4843 * @tc: TC number
4844 * @rdma_qset: pointer to RDMA Qset
4845 * @num_qsets: number of RDMA Qsets
4846 * @qset_teid: pointer to Qset node TEIDs
4847 *
4848 * This function adds RDMA Qset
4849 */
4850int
4851ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
4852 u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
4853{
4854 struct ice_aqc_txsched_elem_data node = { 0 };
4855 struct ice_aqc_add_rdma_qset_data *buf;
4856 struct ice_sched_node *parent;
4857 struct ice_hw *hw;
4858 u16 i, buf_size;
4859 int ret;
4860
4861 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4862 return -EIO;
4863 hw = pi->hw;
4864
4865 if (!ice_is_vsi_valid(hw, vsi_handle))
4866 return -EINVAL;
4867
4868 buf_size = struct_size(buf, rdma_qsets, num_qsets);
4869 buf = kzalloc(buf_size, GFP_KERNEL);
4870 if (!buf)
4871 return -ENOMEM;
4872 mutex_lock(&pi->sched_lock);
4873
4874 parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4875 ICE_SCHED_NODE_OWNER_RDMA);
4876 if (!parent) {
4877 ret = -EINVAL;
4878 goto rdma_error_exit;
4879 }
4880 buf->parent_teid = parent->info.node_teid;
4881 node.parent_teid = parent->info.node_teid;
4882
4883 buf->num_qsets = cpu_to_le16(num_qsets);
4884 for (i = 0; i < num_qsets; i++) {
4885 buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
4886 buf->rdma_qsets[i].info.valid_sections =
4887 ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4888 ICE_AQC_ELEM_VALID_EIR;
4889 buf->rdma_qsets[i].info.generic = 0;
4890 buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
4891 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4892 buf->rdma_qsets[i].info.cir_bw.bw_alloc =
4893 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4894 buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
4895 cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4896 buf->rdma_qsets[i].info.eir_bw.bw_alloc =
4897 cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4898 }
4899 ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
4900 if (ret) {
4901 ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
4902 goto rdma_error_exit;
4903 }
4904 node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4905 for (i = 0; i < num_qsets; i++) {
4906 node.node_teid = buf->rdma_qsets[i].qset_teid;
4907 ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
4908 &node, NULL);
4909 if (ret)
4910 break;
4911 qset_teid[i] = le32_to_cpu(node.node_teid);
4912 }
4913rdma_error_exit:
4914 mutex_unlock(&pi->sched_lock);
4915 kfree(buf);
4916 return ret;
4917}
4918
4919/**
4920 * ice_dis_vsi_rdma_qset - free RDMA resources
4921 * @pi: port_info struct
4922 * @count: number of RDMA Qsets to free
4923 * @qset_teid: TEID of Qset node
4924 * @q_id: list of queue IDs being disabled
4925 */
4926int
4927ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
4928 u16 *q_id)
4929{
4930 DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4931 u16 qg_size = __struct_size(qg_list);
4932 struct ice_hw *hw;
4933 int status = 0;
4934 int i;
4935
4936 if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4937 return -EIO;
4938
4939 hw = pi->hw;
4940
4941 mutex_lock(&pi->sched_lock);
4942
4943 for (i = 0; i < count; i++) {
4944 struct ice_sched_node *node;
4945
4946 node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
4947 if (!node)
4948 continue;
4949
4950 qg_list->parent_teid = node->info.parent_teid;
4951 qg_list->num_qs = 1;
4952 qg_list->q_id[0] =
4953 cpu_to_le16(q_id[i] |
4954 ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
4955
4956 status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
4957 ICE_NO_RESET, 0, NULL);
4958 if (status)
4959 break;
4960
4961 ice_free_sched_node(pi, node);
4962 }
4963
4964 mutex_unlock(&pi->sched_lock);
4965 return status;
4966}
4967
4968/**
4969 * ice_aq_get_cgu_abilities - get cgu abilities
4970 * @hw: pointer to the HW struct
4971 * @abilities: CGU abilities
4972 *
4973 * Get CGU abilities (0x0C61)
4974 * Return: 0 on success or negative value on failure.
4975 */
4976int
4977ice_aq_get_cgu_abilities(struct ice_hw *hw,
4978 struct ice_aqc_get_cgu_abilities *abilities)
4979{
4980 struct ice_aq_desc desc;
4981
4982 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
4983 return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
4984}
4985
4986/**
4987 * ice_aq_set_input_pin_cfg - set input pin config
4988 * @hw: pointer to the HW struct
4989 * @input_idx: Input index
4990 * @flags1: Input flags
4991 * @flags2: Input flags
4992 * @freq: Frequency in Hz
4993 * @phase_delay: Delay in ps
4994 *
4995 * Set CGU input config (0x0C62)
4996 * Return: 0 on success or negative value on failure.
4997 */
4998int
4999ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5000 u32 freq, s32 phase_delay)
5001{
5002 struct ice_aqc_set_cgu_input_config *cmd;
5003 struct ice_aq_desc desc;
5004
5005 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5006 cmd = &desc.params.set_cgu_input_config;
5007 cmd->input_idx = input_idx;
5008 cmd->flags1 = flags1;
5009 cmd->flags2 = flags2;
5010 cmd->freq = cpu_to_le32(freq);
5011 cmd->phase_delay = cpu_to_le32(phase_delay);
5012
5013 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5014}
5015
5016/**
5017 * ice_aq_get_input_pin_cfg - get input pin config
5018 * @hw: pointer to the HW struct
5019 * @input_idx: Input index
5020 * @status: Pin status
5021 * @type: Pin type
5022 * @flags1: Input flags
5023 * @flags2: Input flags
5024 * @freq: Frequency in Hz
5025 * @phase_delay: Delay in ps
5026 *
5027 * Get CGU input config (0x0C63)
5028 * Return: 0 on success or negative value on failure.
5029 */
5030int
5031ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5032 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5033{
5034 struct ice_aqc_get_cgu_input_config *cmd;
5035 struct ice_aq_desc desc;
5036 int ret;
5037
5038 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5039 cmd = &desc.params.get_cgu_input_config;
5040 cmd->input_idx = input_idx;
5041
5042 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5043 if (!ret) {
5044 if (status)
5045 *status = cmd->status;
5046 if (type)
5047 *type = cmd->type;
5048 if (flags1)
5049 *flags1 = cmd->flags1;
5050 if (flags2)
5051 *flags2 = cmd->flags2;
5052 if (freq)
5053 *freq = le32_to_cpu(cmd->freq);
5054 if (phase_delay)
5055 *phase_delay = le32_to_cpu(cmd->phase_delay);
5056 }
5057
5058 return ret;
5059}
5060
5061/**
5062 * ice_aq_set_output_pin_cfg - set output pin config
5063 * @hw: pointer to the HW struct
5064 * @output_idx: Output index
5065 * @flags: Output flags
5066 * @src_sel: Index of DPLL block
5067 * @freq: Output frequency
5068 * @phase_delay: Output phase compensation
5069 *
5070 * Set CGU output config (0x0C64)
5071 * Return: 0 on success or negative value on failure.
5072 */
5073int
5074ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5075 u8 src_sel, u32 freq, s32 phase_delay)
5076{
5077 struct ice_aqc_set_cgu_output_config *cmd;
5078 struct ice_aq_desc desc;
5079
5080 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5081 cmd = &desc.params.set_cgu_output_config;
5082 cmd->output_idx = output_idx;
5083 cmd->flags = flags;
5084 cmd->src_sel = src_sel;
5085 cmd->freq = cpu_to_le32(freq);
5086 cmd->phase_delay = cpu_to_le32(phase_delay);
5087
5088 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5089}
5090
5091/**
5092 * ice_aq_get_output_pin_cfg - get output pin config
5093 * @hw: pointer to the HW struct
5094 * @output_idx: Output index
5095 * @flags: Output flags
5096 * @src_sel: Internal DPLL source
5097 * @freq: Output frequency
5098 * @src_freq: Source frequency
5099 *
5100 * Get CGU output config (0x0C65)
5101 * Return: 0 on success or negative value on failure.
5102 */
5103int
5104ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5105 u8 *src_sel, u32 *freq, u32 *src_freq)
5106{
5107 struct ice_aqc_get_cgu_output_config *cmd;
5108 struct ice_aq_desc desc;
5109 int ret;
5110
5111 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5112 cmd = &desc.params.get_cgu_output_config;
5113 cmd->output_idx = output_idx;
5114
5115 ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5116 if (!ret) {
5117 if (flags)
5118 *flags = cmd->flags;
5119 if (src_sel)
5120 *src_sel = cmd->src_sel;
5121 if (freq)
5122 *freq = le32_to_cpu(cmd->freq);
5123 if (src_freq)
5124 *src_freq = le32_to_cpu(cmd->src_freq);
5125 }
5126
5127 return ret;
5128}
5129
5130/**
5131 * ice_aq_get_cgu_dpll_status - get dpll status
5132 * @hw: pointer to the HW struct
5133 * @dpll_num: DPLL index
5134 * @ref_state: Reference clock state
5135 * @config: current DPLL config
5136 * @dpll_state: current DPLL state
5137 * @phase_offset: Phase offset in ns
5138 * @eec_mode: EEC_mode
5139 *
5140 * Get CGU DPLL status (0x0C66)
5141 * Return: 0 on success or negative value on failure.
5142 */
5143int
5144ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5145 u8 *dpll_state, u8 *config, s64 *phase_offset,
5146 u8 *eec_mode)
5147{
5148 struct ice_aqc_get_cgu_dpll_status *cmd;
5149 struct ice_aq_desc desc;
5150 int status;
5151
5152 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5153 cmd = &desc.params.get_cgu_dpll_status;
5154 cmd->dpll_num = dpll_num;
5155
5156 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5157 if (!status) {
5158 *ref_state = cmd->ref_state;
5159 *dpll_state = cmd->dpll_state;
5160 *config = cmd->config;
5161 *phase_offset = le32_to_cpu(cmd->phase_offset_h);
5162 *phase_offset <<= 32;
5163 *phase_offset += le32_to_cpu(cmd->phase_offset_l);
5164 *phase_offset = sign_extend64(*phase_offset, 47);
5165 *eec_mode = cmd->eec_mode;
5166 }
5167
5168 return status;
5169}
5170
5171/**
5172 * ice_aq_set_cgu_dpll_config - set dpll config
5173 * @hw: pointer to the HW struct
5174 * @dpll_num: DPLL index
5175 * @ref_state: Reference clock state
5176 * @config: DPLL config
5177 * @eec_mode: EEC mode
5178 *
5179 * Set CGU DPLL config (0x0C67)
5180 * Return: 0 on success or negative value on failure.
5181 */
5182int
5183ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5184 u8 config, u8 eec_mode)
5185{
5186 struct ice_aqc_set_cgu_dpll_config *cmd;
5187 struct ice_aq_desc desc;
5188
5189 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5190 cmd = &desc.params.set_cgu_dpll_config;
5191 cmd->dpll_num = dpll_num;
5192 cmd->ref_state = ref_state;
5193 cmd->config = config;
5194 cmd->eec_mode = eec_mode;
5195
5196 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5197}
5198
5199/**
5200 * ice_aq_set_cgu_ref_prio - set input reference priority
5201 * @hw: pointer to the HW struct
5202 * @dpll_num: DPLL index
5203 * @ref_idx: Reference pin index
5204 * @ref_priority: Reference input priority
5205 *
5206 * Set CGU reference priority (0x0C68)
5207 * Return: 0 on success or negative value on failure.
5208 */
5209int
5210ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5211 u8 ref_priority)
5212{
5213 struct ice_aqc_set_cgu_ref_prio *cmd;
5214 struct ice_aq_desc desc;
5215
5216 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5217 cmd = &desc.params.set_cgu_ref_prio;
5218 cmd->dpll_num = dpll_num;
5219 cmd->ref_idx = ref_idx;
5220 cmd->ref_priority = ref_priority;
5221
5222 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5223}
5224
5225/**
5226 * ice_aq_get_cgu_ref_prio - get input reference priority
5227 * @hw: pointer to the HW struct
5228 * @dpll_num: DPLL index
5229 * @ref_idx: Reference pin index
5230 * @ref_prio: Reference input priority
5231 *
5232 * Get CGU reference priority (0x0C69)
5233 * Return: 0 on success or negative value on failure.
5234 */
5235int
5236ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5237 u8 *ref_prio)
5238{
5239 struct ice_aqc_get_cgu_ref_prio *cmd;
5240 struct ice_aq_desc desc;
5241 int status;
5242
5243 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5244 cmd = &desc.params.get_cgu_ref_prio;
5245 cmd->dpll_num = dpll_num;
5246 cmd->ref_idx = ref_idx;
5247
5248 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5249 if (!status)
5250 *ref_prio = cmd->ref_priority;
5251
5252 return status;
5253}
5254
5255/**
5256 * ice_aq_get_cgu_info - get cgu info
5257 * @hw: pointer to the HW struct
5258 * @cgu_id: CGU ID
5259 * @cgu_cfg_ver: CGU config version
5260 * @cgu_fw_ver: CGU firmware version
5261 *
5262 * Get CGU info (0x0C6A)
5263 * Return: 0 on success or negative value on failure.
5264 */
5265int
5266ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5267 u32 *cgu_fw_ver)
5268{
5269 struct ice_aqc_get_cgu_info *cmd;
5270 struct ice_aq_desc desc;
5271 int status;
5272
5273 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5274 cmd = &desc.params.get_cgu_info;
5275
5276 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5277 if (!status) {
5278 *cgu_id = le32_to_cpu(cmd->cgu_id);
5279 *cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5280 *cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5281 }
5282
5283 return status;
5284}
5285
5286/**
5287 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5288 * @hw: pointer to the HW struct
5289 * @phy_output: PHY reference clock output pin
5290 * @enable: GPIO state to be applied
5291 * @freq: PHY output frequency
5292 *
5293 * Set phy recovered clock as reference (0x0630)
5294 * Return: 0 on success or negative value on failure.
5295 */
5296int
5297ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5298 u32 *freq)
5299{
5300 struct ice_aqc_set_phy_rec_clk_out *cmd;
5301 struct ice_aq_desc desc;
5302 int status;
5303
5304 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5305 cmd = &desc.params.set_phy_rec_clk_out;
5306 cmd->phy_output = phy_output;
5307 cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5308 cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5309 cmd->freq = cpu_to_le32(*freq);
5310
5311 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5312 if (!status)
5313 *freq = le32_to_cpu(cmd->freq);
5314
5315 return status;
5316}
5317
5318/**
5319 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5320 * @hw: pointer to the HW struct
5321 * @phy_output: PHY reference clock output pin
5322 * @port_num: Port number
5323 * @flags: PHY flags
5324 * @node_handle: PHY output frequency
5325 *
5326 * Get PHY recovered clock output info (0x0631)
5327 * Return: 0 on success or negative value on failure.
5328 */
5329int
5330ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5331 u8 *flags, u16 *node_handle)
5332{
5333 struct ice_aqc_get_phy_rec_clk_out *cmd;
5334 struct ice_aq_desc desc;
5335 int status;
5336
5337 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5338 cmd = &desc.params.get_phy_rec_clk_out;
5339 cmd->phy_output = *phy_output;
5340
5341 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5342 if (!status) {
5343 *phy_output = cmd->phy_output;
5344 if (port_num)
5345 *port_num = cmd->port_num;
5346 if (flags)
5347 *flags = cmd->flags;
5348 if (node_handle)
5349 *node_handle = le16_to_cpu(cmd->node_handle);
5350 }
5351
5352 return status;
5353}
5354
5355/**
5356 * ice_aq_get_sensor_reading
5357 * @hw: pointer to the HW struct
5358 * @data: pointer to data to be read from the sensor
5359 *
5360 * Get sensor reading (0x0632)
5361 */
5362int ice_aq_get_sensor_reading(struct ice_hw *hw,
5363 struct ice_aqc_get_sensor_reading_resp *data)
5364{
5365 struct ice_aqc_get_sensor_reading *cmd;
5366 struct ice_aq_desc desc;
5367 int status;
5368
5369 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5370 cmd = &desc.params.get_sensor_reading;
5371#define ICE_INTERNAL_TEMP_SENSOR_FORMAT 0
5372#define ICE_INTERNAL_TEMP_SENSOR 0
5373 cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5374 cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5375
5376 status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5377 if (!status)
5378 memcpy(data, &desc.params.get_sensor_reading_resp,
5379 sizeof(*data));
5380
5381 return status;
5382}
5383
5384/**
5385 * ice_replay_pre_init - replay pre initialization
5386 * @hw: pointer to the HW struct
5387 *
5388 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5389 */
5390static int ice_replay_pre_init(struct ice_hw *hw)
5391{
5392 struct ice_switch_info *sw = hw->switch_info;
5393 u8 i;
5394
5395 /* Delete old entries from replay filter list head if there is any */
5396 ice_rm_all_sw_replay_rule_info(hw);
5397 /* In start of replay, move entries into replay_rules list, it
5398 * will allow adding rules entries back to filt_rules list,
5399 * which is operational list.
5400 */
5401 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5402 list_replace_init(&sw->recp_list[i].filt_rules,
5403 &sw->recp_list[i].filt_replay_rules);
5404 ice_sched_replay_agg_vsi_preinit(hw);
5405
5406 return 0;
5407}
5408
5409/**
5410 * ice_replay_vsi - replay VSI configuration
5411 * @hw: pointer to the HW struct
5412 * @vsi_handle: driver VSI handle
5413 *
5414 * Restore all VSI configuration after reset. It is required to call this
5415 * function with main VSI first.
5416 */
5417int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5418{
5419 int status;
5420
5421 if (!ice_is_vsi_valid(hw, vsi_handle))
5422 return -EINVAL;
5423
5424 /* Replay pre-initialization if there is any */
5425 if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5426 status = ice_replay_pre_init(hw);
5427 if (status)
5428 return status;
5429 }
5430 /* Replay per VSI all RSS configurations */
5431 status = ice_replay_rss_cfg(hw, vsi_handle);
5432 if (status)
5433 return status;
5434 /* Replay per VSI all filters */
5435 status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5436 if (!status)
5437 status = ice_replay_vsi_agg(hw, vsi_handle);
5438 return status;
5439}
5440
5441/**
5442 * ice_replay_post - post replay configuration cleanup
5443 * @hw: pointer to the HW struct
5444 *
5445 * Post replay cleanup.
5446 */
5447void ice_replay_post(struct ice_hw *hw)
5448{
5449 /* Delete old entries from replay filter list head */
5450 ice_rm_all_sw_replay_rule_info(hw);
5451 ice_sched_replay_agg(hw);
5452}
5453
5454/**
5455 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5456 * @hw: ptr to the hardware info
5457 * @reg: offset of 64 bit HW register to read from
5458 * @prev_stat_loaded: bool to specify if previous stats are loaded
5459 * @prev_stat: ptr to previous loaded stat value
5460 * @cur_stat: ptr to current stat value
5461 */
5462void
5463ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5464 u64 *prev_stat, u64 *cur_stat)
5465{
5466 u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5467
5468 /* device stats are not reset at PFR, they likely will not be zeroed
5469 * when the driver starts. Thus, save the value from the first read
5470 * without adding to the statistic value so that we report stats which
5471 * count up from zero.
5472 */
5473 if (!prev_stat_loaded) {
5474 *prev_stat = new_data;
5475 return;
5476 }
5477
5478 /* Calculate the difference between the new and old values, and then
5479 * add it to the software stat value.
5480 */
5481 if (new_data >= *prev_stat)
5482 *cur_stat += new_data - *prev_stat;
5483 else
5484 /* to manage the potential roll-over */
5485 *cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5486
5487 /* Update the previously stored value to prepare for next read */
5488 *prev_stat = new_data;
5489}
5490
5491/**
5492 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5493 * @hw: ptr to the hardware info
5494 * @reg: offset of HW register to read from
5495 * @prev_stat_loaded: bool to specify if previous stats are loaded
5496 * @prev_stat: ptr to previous loaded stat value
5497 * @cur_stat: ptr to current stat value
5498 */
5499void
5500ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5501 u64 *prev_stat, u64 *cur_stat)
5502{
5503 u32 new_data;
5504
5505 new_data = rd32(hw, reg);
5506
5507 /* device stats are not reset at PFR, they likely will not be zeroed
5508 * when the driver starts. Thus, save the value from the first read
5509 * without adding to the statistic value so that we report stats which
5510 * count up from zero.
5511 */
5512 if (!prev_stat_loaded) {
5513 *prev_stat = new_data;
5514 return;
5515 }
5516
5517 /* Calculate the difference between the new and old values, and then
5518 * add it to the software stat value.
5519 */
5520 if (new_data >= *prev_stat)
5521 *cur_stat += new_data - *prev_stat;
5522 else
5523 /* to manage the potential roll-over */
5524 *cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5525
5526 /* Update the previously stored value to prepare for next read */
5527 *prev_stat = new_data;
5528}
5529
5530/**
5531 * ice_sched_query_elem - query element information from HW
5532 * @hw: pointer to the HW struct
5533 * @node_teid: node TEID to be queried
5534 * @buf: buffer to element information
5535 *
5536 * This function queries HW element information
5537 */
5538int
5539ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5540 struct ice_aqc_txsched_elem_data *buf)
5541{
5542 u16 buf_size, num_elem_ret = 0;
5543 int status;
5544
5545 buf_size = sizeof(*buf);
5546 memset(buf, 0, buf_size);
5547 buf->node_teid = cpu_to_le32(node_teid);
5548 status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5549 NULL);
5550 if (status || num_elem_ret != 1)
5551 ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5552 return status;
5553}
5554
5555/**
5556 * ice_aq_read_i2c
5557 * @hw: pointer to the hw struct
5558 * @topo_addr: topology address for a device to communicate with
5559 * @bus_addr: 7-bit I2C bus address
5560 * @addr: I2C memory address (I2C offset) with up to 16 bits
5561 * @params: I2C parameters: bit [7] - Repeated start,
5562 * bits [6:5] data offset size,
5563 * bit [4] - I2C address type,
5564 * bits [3:0] - data size to read (0-16 bytes)
5565 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5566 * @cd: pointer to command details structure or NULL
5567 *
5568 * Read I2C (0x06E2)
5569 */
5570int
5571ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5572 u16 bus_addr, __le16 addr, u8 params, u8 *data,
5573 struct ice_sq_cd *cd)
5574{
5575 struct ice_aq_desc desc = { 0 };
5576 struct ice_aqc_i2c *cmd;
5577 u8 data_size;
5578 int status;
5579
5580 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5581 cmd = &desc.params.read_write_i2c;
5582
5583 if (!data)
5584 return -EINVAL;
5585
5586 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5587
5588 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5589 cmd->topo_addr = topo_addr;
5590 cmd->i2c_params = params;
5591 cmd->i2c_addr = addr;
5592
5593 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5594 if (!status) {
5595 struct ice_aqc_read_i2c_resp *resp;
5596 u8 i;
5597
5598 resp = &desc.params.read_i2c_resp;
5599 for (i = 0; i < data_size; i++) {
5600 *data = resp->i2c_data[i];
5601 data++;
5602 }
5603 }
5604
5605 return status;
5606}
5607
5608/**
5609 * ice_aq_write_i2c
5610 * @hw: pointer to the hw struct
5611 * @topo_addr: topology address for a device to communicate with
5612 * @bus_addr: 7-bit I2C bus address
5613 * @addr: I2C memory address (I2C offset) with up to 16 bits
5614 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5615 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5616 * @cd: pointer to command details structure or NULL
5617 *
5618 * Write I2C (0x06E3)
5619 *
5620 * * Return:
5621 * * 0 - Successful write to the i2c device
5622 * * -EINVAL - Data size greater than 4 bytes
5623 * * -EIO - FW error
5624 */
5625int
5626ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5627 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5628 struct ice_sq_cd *cd)
5629{
5630 struct ice_aq_desc desc = { 0 };
5631 struct ice_aqc_i2c *cmd;
5632 u8 data_size;
5633
5634 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5635 cmd = &desc.params.read_write_i2c;
5636
5637 data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5638
5639 /* data_size limited to 4 */
5640 if (data_size > 4)
5641 return -EINVAL;
5642
5643 cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5644 cmd->topo_addr = topo_addr;
5645 cmd->i2c_params = params;
5646 cmd->i2c_addr = addr;
5647
5648 memcpy(cmd->i2c_data, data, data_size);
5649
5650 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5651}
5652
5653/**
5654 * ice_aq_set_gpio
5655 * @hw: pointer to the hw struct
5656 * @gpio_ctrl_handle: GPIO controller node handle
5657 * @pin_idx: IO Number of the GPIO that needs to be set
5658 * @value: SW provide IO value to set in the LSB
5659 * @cd: pointer to command details structure or NULL
5660 *
5661 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5662 */
5663int
5664ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5665 struct ice_sq_cd *cd)
5666{
5667 struct ice_aqc_gpio *cmd;
5668 struct ice_aq_desc desc;
5669
5670 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5671 cmd = &desc.params.read_write_gpio;
5672 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5673 cmd->gpio_num = pin_idx;
5674 cmd->gpio_val = value ? 1 : 0;
5675
5676 return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5677}
5678
5679/**
5680 * ice_aq_get_gpio
5681 * @hw: pointer to the hw struct
5682 * @gpio_ctrl_handle: GPIO controller node handle
5683 * @pin_idx: IO Number of the GPIO that needs to be set
5684 * @value: IO value read
5685 * @cd: pointer to command details structure or NULL
5686 *
5687 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5688 * the topology
5689 */
5690int
5691ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5692 bool *value, struct ice_sq_cd *cd)
5693{
5694 struct ice_aqc_gpio *cmd;
5695 struct ice_aq_desc desc;
5696 int status;
5697
5698 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5699 cmd = &desc.params.read_write_gpio;
5700 cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5701 cmd->gpio_num = pin_idx;
5702
5703 status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5704 if (status)
5705 return status;
5706
5707 *value = !!cmd->gpio_val;
5708 return 0;
5709}
5710
5711/**
5712 * ice_is_fw_api_min_ver
5713 * @hw: pointer to the hardware structure
5714 * @maj: major version
5715 * @min: minor version
5716 * @patch: patch version
5717 *
5718 * Checks if the firmware API is minimum version
5719 */
5720static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5721{
5722 if (hw->api_maj_ver == maj) {
5723 if (hw->api_min_ver > min)
5724 return true;
5725 if (hw->api_min_ver == min && hw->api_patch >= patch)
5726 return true;
5727 } else if (hw->api_maj_ver > maj) {
5728 return true;
5729 }
5730
5731 return false;
5732}
5733
5734/**
5735 * ice_fw_supports_link_override
5736 * @hw: pointer to the hardware structure
5737 *
5738 * Checks if the firmware supports link override
5739 */
5740bool ice_fw_supports_link_override(struct ice_hw *hw)
5741{
5742 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5743 ICE_FW_API_LINK_OVERRIDE_MIN,
5744 ICE_FW_API_LINK_OVERRIDE_PATCH);
5745}
5746
5747/**
5748 * ice_get_link_default_override
5749 * @ldo: pointer to the link default override struct
5750 * @pi: pointer to the port info struct
5751 *
5752 * Gets the link default override for a port
5753 */
5754int
5755ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
5756 struct ice_port_info *pi)
5757{
5758 u16 i, tlv, tlv_len, tlv_start, buf, offset;
5759 struct ice_hw *hw = pi->hw;
5760 int status;
5761
5762 status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
5763 ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
5764 if (status) {
5765 ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
5766 return status;
5767 }
5768
5769 /* Each port has its own config; calculate for our port */
5770 tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
5771 ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
5772
5773 /* link options first */
5774 status = ice_read_sr_word(hw, tlv_start, &buf);
5775 if (status) {
5776 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5777 return status;
5778 }
5779 ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
5780 ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
5781 ICE_LINK_OVERRIDE_PHY_CFG_S;
5782
5783 /* link PHY config */
5784 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
5785 status = ice_read_sr_word(hw, offset, &buf);
5786 if (status) {
5787 ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
5788 return status;
5789 }
5790 ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
5791
5792 /* PHY types low */
5793 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
5794 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5795 status = ice_read_sr_word(hw, (offset + i), &buf);
5796 if (status) {
5797 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5798 return status;
5799 }
5800 /* shift 16 bits at a time to fill 64 bits */
5801 ldo->phy_type_low |= ((u64)buf << (i * 16));
5802 }
5803
5804 /* PHY types high */
5805 offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
5806 ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
5807 for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
5808 status = ice_read_sr_word(hw, (offset + i), &buf);
5809 if (status) {
5810 ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
5811 return status;
5812 }
5813 /* shift 16 bits at a time to fill 64 bits */
5814 ldo->phy_type_high |= ((u64)buf << (i * 16));
5815 }
5816
5817 return status;
5818}
5819
5820/**
5821 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
5822 * @caps: get PHY capability data
5823 */
5824bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
5825{
5826 if (caps->caps & ICE_AQC_PHY_AN_MODE ||
5827 caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
5828 ICE_AQC_PHY_AN_EN_CLAUSE73 |
5829 ICE_AQC_PHY_AN_EN_CLAUSE37))
5830 return true;
5831
5832 return false;
5833}
5834
5835/**
5836 * ice_aq_set_lldp_mib - Set the LLDP MIB
5837 * @hw: pointer to the HW struct
5838 * @mib_type: Local, Remote or both Local and Remote MIBs
5839 * @buf: pointer to the caller-supplied buffer to store the MIB block
5840 * @buf_size: size of the buffer (in bytes)
5841 * @cd: pointer to command details structure or NULL
5842 *
5843 * Set the LLDP MIB. (0x0A08)
5844 */
5845int
5846ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
5847 struct ice_sq_cd *cd)
5848{
5849 struct ice_aqc_lldp_set_local_mib *cmd;
5850 struct ice_aq_desc desc;
5851
5852 cmd = &desc.params.lldp_set_mib;
5853
5854 if (buf_size == 0 || !buf)
5855 return -EINVAL;
5856
5857 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
5858
5859 desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
5860 desc.datalen = cpu_to_le16(buf_size);
5861
5862 cmd->type = mib_type;
5863 cmd->length = cpu_to_le16(buf_size);
5864
5865 return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
5866}
5867
5868/**
5869 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
5870 * @hw: pointer to HW struct
5871 */
5872bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
5873{
5874 if (hw->mac_type != ICE_MAC_E810)
5875 return false;
5876
5877 return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
5878 ICE_FW_API_LLDP_FLTR_MIN,
5879 ICE_FW_API_LLDP_FLTR_PATCH);
5880}
5881
5882/**
5883 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
5884 * @hw: pointer to HW struct
5885 * @vsi_num: absolute HW index for VSI
5886 * @add: boolean for if adding or removing a filter
5887 */
5888int
5889ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
5890{
5891 struct ice_aqc_lldp_filter_ctrl *cmd;
5892 struct ice_aq_desc desc;
5893
5894 cmd = &desc.params.lldp_filter_ctrl;
5895
5896 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
5897
5898 if (add)
5899 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
5900 else
5901 cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
5902
5903 cmd->vsi_num = cpu_to_le16(vsi_num);
5904
5905 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5906}
5907
5908/**
5909 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
5910 * @hw: pointer to HW struct
5911 */
5912int ice_lldp_execute_pending_mib(struct ice_hw *hw)
5913{
5914 struct ice_aq_desc desc;
5915
5916 ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
5917
5918 return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5919}
5920
5921/**
5922 * ice_fw_supports_report_dflt_cfg
5923 * @hw: pointer to the hardware structure
5924 *
5925 * Checks if the firmware supports report default configuration
5926 */
5927bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
5928{
5929 return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
5930 ICE_FW_API_REPORT_DFLT_CFG_MIN,
5931 ICE_FW_API_REPORT_DFLT_CFG_PATCH);
5932}
5933
5934/* each of the indexes into the following array match the speed of a return
5935 * value from the list of AQ returned speeds like the range:
5936 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
5937 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
5938 * array. The array is defined as 15 elements long because the link_speed
5939 * returned by the firmware is a 16 bit * value, but is indexed
5940 * by [fls(speed) - 1]
5941 */
5942static const u32 ice_aq_to_link_speed[] = {
5943 SPEED_10, /* BIT(0) */
5944 SPEED_100,
5945 SPEED_1000,
5946 SPEED_2500,
5947 SPEED_5000,
5948 SPEED_10000,
5949 SPEED_20000,
5950 SPEED_25000,
5951 SPEED_40000,
5952 SPEED_50000,
5953 SPEED_100000, /* BIT(10) */
5954 SPEED_200000,
5955};
5956
5957/**
5958 * ice_get_link_speed - get integer speed from table
5959 * @index: array index from fls(aq speed) - 1
5960 *
5961 * Returns: u32 value containing integer speed
5962 */
5963u32 ice_get_link_speed(u16 index)
5964{
5965 if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
5966 return 0;
5967
5968 return ice_aq_to_link_speed[index];
5969}