Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/vmacache.h>
23#include <linux/mman.h>
24#include <linux/swap.h>
25#include <linux/file.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>
28#include <linux/slab.h>
29#include <linux/vmalloc.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/compiler.h>
33#include <linux/mount.h>
34#include <linux/personality.h>
35#include <linux/security.h>
36#include <linux/syscalls.h>
37#include <linux/audit.h>
38#include <linux/printk.h>
39
40#include <linux/uaccess.h>
41#include <asm/tlb.h>
42#include <asm/tlbflush.h>
43#include <asm/mmu_context.h>
44#include "internal.h"
45
46void *high_memory;
47EXPORT_SYMBOL(high_memory);
48struct page *mem_map;
49unsigned long max_mapnr;
50EXPORT_SYMBOL(max_mapnr);
51unsigned long highest_memmap_pfn;
52int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53int heap_stack_gap = 0;
54
55atomic_long_t mmap_pages_allocated;
56
57EXPORT_SYMBOL(mem_map);
58
59/* list of mapped, potentially shareable regions */
60static struct kmem_cache *vm_region_jar;
61struct rb_root nommu_region_tree = RB_ROOT;
62DECLARE_RWSEM(nommu_region_sem);
63
64const struct vm_operations_struct generic_file_vm_ops = {
65};
66
67/*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73unsigned int kobjsize(const void *objp)
74{
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112}
113
114/**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126{
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132}
133EXPORT_SYMBOL(follow_pfn);
134
135LIST_HEAD(vmap_area_list);
136
137void vfree(const void *addr)
138{
139 kfree(addr);
140}
141EXPORT_SYMBOL(vfree);
142
143void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144{
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150}
151EXPORT_SYMBOL(__vmalloc);
152
153void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157{
158 return __vmalloc(size, gfp_mask);
159}
160
161void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163{
164 return __vmalloc(size, gfp_mask);
165}
166
167static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168{
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183}
184
185void *vmalloc_user(unsigned long size)
186{
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188}
189EXPORT_SYMBOL(vmalloc_user);
190
191struct page *vmalloc_to_page(const void *addr)
192{
193 return virt_to_page(addr);
194}
195EXPORT_SYMBOL(vmalloc_to_page);
196
197unsigned long vmalloc_to_pfn(const void *addr)
198{
199 return page_to_pfn(virt_to_page(addr));
200}
201EXPORT_SYMBOL(vmalloc_to_pfn);
202
203long vread(char *buf, char *addr, unsigned long count)
204{
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211}
212
213/*
214 * vmalloc - allocate virtually contiguous memory
215 *
216 * @size: allocation size
217 *
218 * Allocate enough pages to cover @size from the page level
219 * allocator and map them into contiguous kernel virtual space.
220 *
221 * For tight control over page level allocator and protection flags
222 * use __vmalloc() instead.
223 */
224void *vmalloc(unsigned long size)
225{
226 return __vmalloc(size, GFP_KERNEL);
227}
228EXPORT_SYMBOL(vmalloc);
229
230/*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242void *vzalloc(unsigned long size)
243{
244 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245}
246EXPORT_SYMBOL(vzalloc);
247
248/**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259void *vmalloc_node(unsigned long size, int node)
260{
261 return vmalloc(size);
262}
263EXPORT_SYMBOL(vmalloc_node);
264
265/**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277void *vzalloc_node(unsigned long size, int node)
278{
279 return vzalloc(size);
280}
281EXPORT_SYMBOL(vzalloc_node);
282
283/**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290void *vmalloc_32(unsigned long size)
291{
292 return __vmalloc(size, GFP_KERNEL);
293}
294EXPORT_SYMBOL(vmalloc_32);
295
296/**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306void *vmalloc_32_user(unsigned long size)
307{
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313}
314EXPORT_SYMBOL(vmalloc_32_user);
315
316void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317{
318 BUG();
319 return NULL;
320}
321EXPORT_SYMBOL(vmap);
322
323void vunmap(const void *addr)
324{
325 BUG();
326}
327EXPORT_SYMBOL(vunmap);
328
329void *vm_map_ram(struct page **pages, unsigned int count, int node)
330{
331 BUG();
332 return NULL;
333}
334EXPORT_SYMBOL(vm_map_ram);
335
336void vm_unmap_ram(const void *mem, unsigned int count)
337{
338 BUG();
339}
340EXPORT_SYMBOL(vm_unmap_ram);
341
342void vm_unmap_aliases(void)
343{
344}
345EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347void free_vm_area(struct vm_struct *area)
348{
349 BUG();
350}
351EXPORT_SYMBOL_GPL(free_vm_area);
352
353int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355{
356 return -EINVAL;
357}
358EXPORT_SYMBOL(vm_insert_page);
359
360int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362{
363 return -EINVAL;
364}
365EXPORT_SYMBOL(vm_map_pages);
366
367int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369{
370 return -EINVAL;
371}
372EXPORT_SYMBOL(vm_map_pages_zero);
373
374/*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381SYSCALL_DEFINE1(brk, unsigned long, brk)
382{
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404}
405
406/*
407 * initialise the percpu counter for VM and region record slabs
408 */
409void __init mmap_init(void)
410{
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416}
417
418/*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422#ifdef CONFIG_DEBUG_NOMMU_REGIONS
423static noinline void validate_nommu_regions(void)
424{
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446}
447#else
448static void validate_nommu_regions(void)
449{
450}
451#endif
452
453/*
454 * add a region into the global tree
455 */
456static void add_nommu_region(struct vm_region *region)
457{
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(®ion->vm_rb, parent, p);
479 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482}
483
484/*
485 * delete a region from the global tree
486 */
487static void delete_nommu_region(struct vm_region *region)
488{
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(®ion->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494}
495
496/*
497 * free a contiguous series of pages
498 */
499static void free_page_series(unsigned long from, unsigned long to)
500{
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page(from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507}
508
509/*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536}
537
538/*
539 * release a reference to a region
540 */
541static void put_nommu_region(struct vm_region *region)
542{
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545}
546
547/*
548 * add a VMA into a process's mm_struct in the appropriate place in the list
549 * and tree and add to the address space's page tree also if not an anonymous
550 * page
551 * - should be called with mm->mmap_lock held writelocked
552 */
553static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
554{
555 struct vm_area_struct *pvma, *prev;
556 struct address_space *mapping;
557 struct rb_node **p, *parent, *rb_prev;
558
559 BUG_ON(!vma->vm_region);
560
561 mm->map_count++;
562 vma->vm_mm = mm;
563
564 /* add the VMA to the mapping */
565 if (vma->vm_file) {
566 mapping = vma->vm_file->f_mapping;
567
568 i_mmap_lock_write(mapping);
569 flush_dcache_mmap_lock(mapping);
570 vma_interval_tree_insert(vma, &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574
575 /* add the VMA to the tree */
576 parent = rb_prev = NULL;
577 p = &mm->mm_rb.rb_node;
578 while (*p) {
579 parent = *p;
580 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
581
582 /* sort by: start addr, end addr, VMA struct addr in that order
583 * (the latter is necessary as we may get identical VMAs) */
584 if (vma->vm_start < pvma->vm_start)
585 p = &(*p)->rb_left;
586 else if (vma->vm_start > pvma->vm_start) {
587 rb_prev = parent;
588 p = &(*p)->rb_right;
589 } else if (vma->vm_end < pvma->vm_end)
590 p = &(*p)->rb_left;
591 else if (vma->vm_end > pvma->vm_end) {
592 rb_prev = parent;
593 p = &(*p)->rb_right;
594 } else if (vma < pvma)
595 p = &(*p)->rb_left;
596 else if (vma > pvma) {
597 rb_prev = parent;
598 p = &(*p)->rb_right;
599 } else
600 BUG();
601 }
602
603 rb_link_node(&vma->vm_rb, parent, p);
604 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
605
606 /* add VMA to the VMA list also */
607 prev = NULL;
608 if (rb_prev)
609 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610
611 __vma_link_list(mm, vma, prev);
612}
613
614/*
615 * delete a VMA from its owning mm_struct and address space
616 */
617static void delete_vma_from_mm(struct vm_area_struct *vma)
618{
619 int i;
620 struct address_space *mapping;
621 struct mm_struct *mm = vma->vm_mm;
622 struct task_struct *curr = current;
623
624 mm->map_count--;
625 for (i = 0; i < VMACACHE_SIZE; i++) {
626 /* if the vma is cached, invalidate the entire cache */
627 if (curr->vmacache.vmas[i] == vma) {
628 vmacache_invalidate(mm);
629 break;
630 }
631 }
632
633 /* remove the VMA from the mapping */
634 if (vma->vm_file) {
635 mapping = vma->vm_file->f_mapping;
636
637 i_mmap_lock_write(mapping);
638 flush_dcache_mmap_lock(mapping);
639 vma_interval_tree_remove(vma, &mapping->i_mmap);
640 flush_dcache_mmap_unlock(mapping);
641 i_mmap_unlock_write(mapping);
642 }
643
644 /* remove from the MM's tree and list */
645 rb_erase(&vma->vm_rb, &mm->mm_rb);
646
647 __vma_unlink_list(mm, vma);
648}
649
650/*
651 * destroy a VMA record
652 */
653static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
654{
655 if (vma->vm_ops && vma->vm_ops->close)
656 vma->vm_ops->close(vma);
657 if (vma->vm_file)
658 fput(vma->vm_file);
659 put_nommu_region(vma->vm_region);
660 vm_area_free(vma);
661}
662
663/*
664 * look up the first VMA in which addr resides, NULL if none
665 * - should be called with mm->mmap_lock at least held readlocked
666 */
667struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
668{
669 struct vm_area_struct *vma;
670
671 /* check the cache first */
672 vma = vmacache_find(mm, addr);
673 if (likely(vma))
674 return vma;
675
676 /* trawl the list (there may be multiple mappings in which addr
677 * resides) */
678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
679 if (vma->vm_start > addr)
680 return NULL;
681 if (vma->vm_end > addr) {
682 vmacache_update(addr, vma);
683 return vma;
684 }
685 }
686
687 return NULL;
688}
689EXPORT_SYMBOL(find_vma);
690
691/*
692 * find a VMA
693 * - we don't extend stack VMAs under NOMMU conditions
694 */
695struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
696{
697 return find_vma(mm, addr);
698}
699
700/*
701 * expand a stack to a given address
702 * - not supported under NOMMU conditions
703 */
704int expand_stack(struct vm_area_struct *vma, unsigned long address)
705{
706 return -ENOMEM;
707}
708
709/*
710 * look up the first VMA exactly that exactly matches addr
711 * - should be called with mm->mmap_lock at least held readlocked
712 */
713static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
714 unsigned long addr,
715 unsigned long len)
716{
717 struct vm_area_struct *vma;
718 unsigned long end = addr + len;
719
720 /* check the cache first */
721 vma = vmacache_find_exact(mm, addr, end);
722 if (vma)
723 return vma;
724
725 /* trawl the list (there may be multiple mappings in which addr
726 * resides) */
727 for (vma = mm->mmap; vma; vma = vma->vm_next) {
728 if (vma->vm_start < addr)
729 continue;
730 if (vma->vm_start > addr)
731 return NULL;
732 if (vma->vm_end == end) {
733 vmacache_update(addr, vma);
734 return vma;
735 }
736 }
737
738 return NULL;
739}
740
741/*
742 * determine whether a mapping should be permitted and, if so, what sort of
743 * mapping we're capable of supporting
744 */
745static int validate_mmap_request(struct file *file,
746 unsigned long addr,
747 unsigned long len,
748 unsigned long prot,
749 unsigned long flags,
750 unsigned long pgoff,
751 unsigned long *_capabilities)
752{
753 unsigned long capabilities, rlen;
754 int ret;
755
756 /* do the simple checks first */
757 if (flags & MAP_FIXED)
758 return -EINVAL;
759
760 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
761 (flags & MAP_TYPE) != MAP_SHARED)
762 return -EINVAL;
763
764 if (!len)
765 return -EINVAL;
766
767 /* Careful about overflows.. */
768 rlen = PAGE_ALIGN(len);
769 if (!rlen || rlen > TASK_SIZE)
770 return -ENOMEM;
771
772 /* offset overflow? */
773 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
774 return -EOVERFLOW;
775
776 if (file) {
777 /* files must support mmap */
778 if (!file->f_op->mmap)
779 return -ENODEV;
780
781 /* work out if what we've got could possibly be shared
782 * - we support chardevs that provide their own "memory"
783 * - we support files/blockdevs that are memory backed
784 */
785 if (file->f_op->mmap_capabilities) {
786 capabilities = file->f_op->mmap_capabilities(file);
787 } else {
788 /* no explicit capabilities set, so assume some
789 * defaults */
790 switch (file_inode(file)->i_mode & S_IFMT) {
791 case S_IFREG:
792 case S_IFBLK:
793 capabilities = NOMMU_MAP_COPY;
794 break;
795
796 case S_IFCHR:
797 capabilities =
798 NOMMU_MAP_DIRECT |
799 NOMMU_MAP_READ |
800 NOMMU_MAP_WRITE;
801 break;
802
803 default:
804 return -EINVAL;
805 }
806 }
807
808 /* eliminate any capabilities that we can't support on this
809 * device */
810 if (!file->f_op->get_unmapped_area)
811 capabilities &= ~NOMMU_MAP_DIRECT;
812 if (!(file->f_mode & FMODE_CAN_READ))
813 capabilities &= ~NOMMU_MAP_COPY;
814
815 /* The file shall have been opened with read permission. */
816 if (!(file->f_mode & FMODE_READ))
817 return -EACCES;
818
819 if (flags & MAP_SHARED) {
820 /* do checks for writing, appending and locking */
821 if ((prot & PROT_WRITE) &&
822 !(file->f_mode & FMODE_WRITE))
823 return -EACCES;
824
825 if (IS_APPEND(file_inode(file)) &&
826 (file->f_mode & FMODE_WRITE))
827 return -EACCES;
828
829 if (locks_verify_locked(file))
830 return -EAGAIN;
831
832 if (!(capabilities & NOMMU_MAP_DIRECT))
833 return -ENODEV;
834
835 /* we mustn't privatise shared mappings */
836 capabilities &= ~NOMMU_MAP_COPY;
837 } else {
838 /* we're going to read the file into private memory we
839 * allocate */
840 if (!(capabilities & NOMMU_MAP_COPY))
841 return -ENODEV;
842
843 /* we don't permit a private writable mapping to be
844 * shared with the backing device */
845 if (prot & PROT_WRITE)
846 capabilities &= ~NOMMU_MAP_DIRECT;
847 }
848
849 if (capabilities & NOMMU_MAP_DIRECT) {
850 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
851 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
852 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
853 ) {
854 capabilities &= ~NOMMU_MAP_DIRECT;
855 if (flags & MAP_SHARED) {
856 pr_warn("MAP_SHARED not completely supported on !MMU\n");
857 return -EINVAL;
858 }
859 }
860 }
861
862 /* handle executable mappings and implied executable
863 * mappings */
864 if (path_noexec(&file->f_path)) {
865 if (prot & PROT_EXEC)
866 return -EPERM;
867 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
868 /* handle implication of PROT_EXEC by PROT_READ */
869 if (current->personality & READ_IMPLIES_EXEC) {
870 if (capabilities & NOMMU_MAP_EXEC)
871 prot |= PROT_EXEC;
872 }
873 } else if ((prot & PROT_READ) &&
874 (prot & PROT_EXEC) &&
875 !(capabilities & NOMMU_MAP_EXEC)
876 ) {
877 /* backing file is not executable, try to copy */
878 capabilities &= ~NOMMU_MAP_DIRECT;
879 }
880 } else {
881 /* anonymous mappings are always memory backed and can be
882 * privately mapped
883 */
884 capabilities = NOMMU_MAP_COPY;
885
886 /* handle PROT_EXEC implication by PROT_READ */
887 if ((prot & PROT_READ) &&
888 (current->personality & READ_IMPLIES_EXEC))
889 prot |= PROT_EXEC;
890 }
891
892 /* allow the security API to have its say */
893 ret = security_mmap_addr(addr);
894 if (ret < 0)
895 return ret;
896
897 /* looks okay */
898 *_capabilities = capabilities;
899 return 0;
900}
901
902/*
903 * we've determined that we can make the mapping, now translate what we
904 * now know into VMA flags
905 */
906static unsigned long determine_vm_flags(struct file *file,
907 unsigned long prot,
908 unsigned long flags,
909 unsigned long capabilities)
910{
911 unsigned long vm_flags;
912
913 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
914 /* vm_flags |= mm->def_flags; */
915
916 if (!(capabilities & NOMMU_MAP_DIRECT)) {
917 /* attempt to share read-only copies of mapped file chunks */
918 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
919 if (file && !(prot & PROT_WRITE))
920 vm_flags |= VM_MAYSHARE;
921 } else {
922 /* overlay a shareable mapping on the backing device or inode
923 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
924 * romfs/cramfs */
925 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
926 if (flags & MAP_SHARED)
927 vm_flags |= VM_SHARED;
928 }
929
930 /* refuse to let anyone share private mappings with this process if
931 * it's being traced - otherwise breakpoints set in it may interfere
932 * with another untraced process
933 */
934 if ((flags & MAP_PRIVATE) && current->ptrace)
935 vm_flags &= ~VM_MAYSHARE;
936
937 return vm_flags;
938}
939
940/*
941 * set up a shared mapping on a file (the driver or filesystem provides and
942 * pins the storage)
943 */
944static int do_mmap_shared_file(struct vm_area_struct *vma)
945{
946 int ret;
947
948 ret = call_mmap(vma->vm_file, vma);
949 if (ret == 0) {
950 vma->vm_region->vm_top = vma->vm_region->vm_end;
951 return 0;
952 }
953 if (ret != -ENOSYS)
954 return ret;
955
956 /* getting -ENOSYS indicates that direct mmap isn't possible (as
957 * opposed to tried but failed) so we can only give a suitable error as
958 * it's not possible to make a private copy if MAP_SHARED was given */
959 return -ENODEV;
960}
961
962/*
963 * set up a private mapping or an anonymous shared mapping
964 */
965static int do_mmap_private(struct vm_area_struct *vma,
966 struct vm_region *region,
967 unsigned long len,
968 unsigned long capabilities)
969{
970 unsigned long total, point;
971 void *base;
972 int ret, order;
973
974 /* invoke the file's mapping function so that it can keep track of
975 * shared mappings on devices or memory
976 * - VM_MAYSHARE will be set if it may attempt to share
977 */
978 if (capabilities & NOMMU_MAP_DIRECT) {
979 ret = call_mmap(vma->vm_file, vma);
980 if (ret == 0) {
981 /* shouldn't return success if we're not sharing */
982 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
983 vma->vm_region->vm_top = vma->vm_region->vm_end;
984 return 0;
985 }
986 if (ret != -ENOSYS)
987 return ret;
988
989 /* getting an ENOSYS error indicates that direct mmap isn't
990 * possible (as opposed to tried but failed) so we'll try to
991 * make a private copy of the data and map that instead */
992 }
993
994
995 /* allocate some memory to hold the mapping
996 * - note that this may not return a page-aligned address if the object
997 * we're allocating is smaller than a page
998 */
999 order = get_order(len);
1000 total = 1 << order;
1001 point = len >> PAGE_SHIFT;
1002
1003 /* we don't want to allocate a power-of-2 sized page set */
1004 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1005 total = point;
1006
1007 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1008 if (!base)
1009 goto enomem;
1010
1011 atomic_long_add(total, &mmap_pages_allocated);
1012
1013 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1014 region->vm_start = (unsigned long) base;
1015 region->vm_end = region->vm_start + len;
1016 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1017
1018 vma->vm_start = region->vm_start;
1019 vma->vm_end = region->vm_start + len;
1020
1021 if (vma->vm_file) {
1022 /* read the contents of a file into the copy */
1023 loff_t fpos;
1024
1025 fpos = vma->vm_pgoff;
1026 fpos <<= PAGE_SHIFT;
1027
1028 ret = kernel_read(vma->vm_file, base, len, &fpos);
1029 if (ret < 0)
1030 goto error_free;
1031
1032 /* clear the last little bit */
1033 if (ret < len)
1034 memset(base + ret, 0, len - ret);
1035
1036 } else {
1037 vma_set_anonymous(vma);
1038 }
1039
1040 return 0;
1041
1042error_free:
1043 free_page_series(region->vm_start, region->vm_top);
1044 region->vm_start = vma->vm_start = 0;
1045 region->vm_end = vma->vm_end = 0;
1046 region->vm_top = 0;
1047 return ret;
1048
1049enomem:
1050 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1051 len, current->pid, current->comm);
1052 show_free_areas(0, NULL);
1053 return -ENOMEM;
1054}
1055
1056/*
1057 * handle mapping creation for uClinux
1058 */
1059unsigned long do_mmap(struct file *file,
1060 unsigned long addr,
1061 unsigned long len,
1062 unsigned long prot,
1063 unsigned long flags,
1064 unsigned long pgoff,
1065 unsigned long *populate,
1066 struct list_head *uf)
1067{
1068 struct vm_area_struct *vma;
1069 struct vm_region *region;
1070 struct rb_node *rb;
1071 vm_flags_t vm_flags;
1072 unsigned long capabilities, result;
1073 int ret;
1074
1075 *populate = 0;
1076
1077 /* decide whether we should attempt the mapping, and if so what sort of
1078 * mapping */
1079 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1080 &capabilities);
1081 if (ret < 0)
1082 return ret;
1083
1084 /* we ignore the address hint */
1085 addr = 0;
1086 len = PAGE_ALIGN(len);
1087
1088 /* we've determined that we can make the mapping, now translate what we
1089 * now know into VMA flags */
1090 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1091
1092 /* we're going to need to record the mapping */
1093 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1094 if (!region)
1095 goto error_getting_region;
1096
1097 vma = vm_area_alloc(current->mm);
1098 if (!vma)
1099 goto error_getting_vma;
1100
1101 region->vm_usage = 1;
1102 region->vm_flags = vm_flags;
1103 region->vm_pgoff = pgoff;
1104
1105 vma->vm_flags = vm_flags;
1106 vma->vm_pgoff = pgoff;
1107
1108 if (file) {
1109 region->vm_file = get_file(file);
1110 vma->vm_file = get_file(file);
1111 }
1112
1113 down_write(&nommu_region_sem);
1114
1115 /* if we want to share, we need to check for regions created by other
1116 * mmap() calls that overlap with our proposed mapping
1117 * - we can only share with a superset match on most regular files
1118 * - shared mappings on character devices and memory backed files are
1119 * permitted to overlap inexactly as far as we are concerned for in
1120 * these cases, sharing is handled in the driver or filesystem rather
1121 * than here
1122 */
1123 if (vm_flags & VM_MAYSHARE) {
1124 struct vm_region *pregion;
1125 unsigned long pglen, rpglen, pgend, rpgend, start;
1126
1127 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 pgend = pgoff + pglen;
1129
1130 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1131 pregion = rb_entry(rb, struct vm_region, vm_rb);
1132
1133 if (!(pregion->vm_flags & VM_MAYSHARE))
1134 continue;
1135
1136 /* search for overlapping mappings on the same file */
1137 if (file_inode(pregion->vm_file) !=
1138 file_inode(file))
1139 continue;
1140
1141 if (pregion->vm_pgoff >= pgend)
1142 continue;
1143
1144 rpglen = pregion->vm_end - pregion->vm_start;
1145 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1146 rpgend = pregion->vm_pgoff + rpglen;
1147 if (pgoff >= rpgend)
1148 continue;
1149
1150 /* handle inexactly overlapping matches between
1151 * mappings */
1152 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1153 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1154 /* new mapping is not a subset of the region */
1155 if (!(capabilities & NOMMU_MAP_DIRECT))
1156 goto sharing_violation;
1157 continue;
1158 }
1159
1160 /* we've found a region we can share */
1161 pregion->vm_usage++;
1162 vma->vm_region = pregion;
1163 start = pregion->vm_start;
1164 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1165 vma->vm_start = start;
1166 vma->vm_end = start + len;
1167
1168 if (pregion->vm_flags & VM_MAPPED_COPY)
1169 vma->vm_flags |= VM_MAPPED_COPY;
1170 else {
1171 ret = do_mmap_shared_file(vma);
1172 if (ret < 0) {
1173 vma->vm_region = NULL;
1174 vma->vm_start = 0;
1175 vma->vm_end = 0;
1176 pregion->vm_usage--;
1177 pregion = NULL;
1178 goto error_just_free;
1179 }
1180 }
1181 fput(region->vm_file);
1182 kmem_cache_free(vm_region_jar, region);
1183 region = pregion;
1184 result = start;
1185 goto share;
1186 }
1187
1188 /* obtain the address at which to make a shared mapping
1189 * - this is the hook for quasi-memory character devices to
1190 * tell us the location of a shared mapping
1191 */
1192 if (capabilities & NOMMU_MAP_DIRECT) {
1193 addr = file->f_op->get_unmapped_area(file, addr, len,
1194 pgoff, flags);
1195 if (IS_ERR_VALUE(addr)) {
1196 ret = addr;
1197 if (ret != -ENOSYS)
1198 goto error_just_free;
1199
1200 /* the driver refused to tell us where to site
1201 * the mapping so we'll have to attempt to copy
1202 * it */
1203 ret = -ENODEV;
1204 if (!(capabilities & NOMMU_MAP_COPY))
1205 goto error_just_free;
1206
1207 capabilities &= ~NOMMU_MAP_DIRECT;
1208 } else {
1209 vma->vm_start = region->vm_start = addr;
1210 vma->vm_end = region->vm_end = addr + len;
1211 }
1212 }
1213 }
1214
1215 vma->vm_region = region;
1216
1217 /* set up the mapping
1218 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1219 */
1220 if (file && vma->vm_flags & VM_SHARED)
1221 ret = do_mmap_shared_file(vma);
1222 else
1223 ret = do_mmap_private(vma, region, len, capabilities);
1224 if (ret < 0)
1225 goto error_just_free;
1226 add_nommu_region(region);
1227
1228 /* clear anonymous mappings that don't ask for uninitialized data */
1229 if (!vma->vm_file &&
1230 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1231 !(flags & MAP_UNINITIALIZED)))
1232 memset((void *)region->vm_start, 0,
1233 region->vm_end - region->vm_start);
1234
1235 /* okay... we have a mapping; now we have to register it */
1236 result = vma->vm_start;
1237
1238 current->mm->total_vm += len >> PAGE_SHIFT;
1239
1240share:
1241 add_vma_to_mm(current->mm, vma);
1242
1243 /* we flush the region from the icache only when the first executable
1244 * mapping of it is made */
1245 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1246 flush_icache_user_range(region->vm_start, region->vm_end);
1247 region->vm_icache_flushed = true;
1248 }
1249
1250 up_write(&nommu_region_sem);
1251
1252 return result;
1253
1254error_just_free:
1255 up_write(&nommu_region_sem);
1256error:
1257 if (region->vm_file)
1258 fput(region->vm_file);
1259 kmem_cache_free(vm_region_jar, region);
1260 if (vma->vm_file)
1261 fput(vma->vm_file);
1262 vm_area_free(vma);
1263 return ret;
1264
1265sharing_violation:
1266 up_write(&nommu_region_sem);
1267 pr_warn("Attempt to share mismatched mappings\n");
1268 ret = -EINVAL;
1269 goto error;
1270
1271error_getting_vma:
1272 kmem_cache_free(vm_region_jar, region);
1273 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1274 len, current->pid);
1275 show_free_areas(0, NULL);
1276 return -ENOMEM;
1277
1278error_getting_region:
1279 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1280 len, current->pid);
1281 show_free_areas(0, NULL);
1282 return -ENOMEM;
1283}
1284
1285unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1286 unsigned long prot, unsigned long flags,
1287 unsigned long fd, unsigned long pgoff)
1288{
1289 struct file *file = NULL;
1290 unsigned long retval = -EBADF;
1291
1292 audit_mmap_fd(fd, flags);
1293 if (!(flags & MAP_ANONYMOUS)) {
1294 file = fget(fd);
1295 if (!file)
1296 goto out;
1297 }
1298
1299 flags &= ~MAP_DENYWRITE;
1300
1301 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1302
1303 if (file)
1304 fput(file);
1305out:
1306 return retval;
1307}
1308
1309SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1310 unsigned long, prot, unsigned long, flags,
1311 unsigned long, fd, unsigned long, pgoff)
1312{
1313 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1314}
1315
1316#ifdef __ARCH_WANT_SYS_OLD_MMAP
1317struct mmap_arg_struct {
1318 unsigned long addr;
1319 unsigned long len;
1320 unsigned long prot;
1321 unsigned long flags;
1322 unsigned long fd;
1323 unsigned long offset;
1324};
1325
1326SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1327{
1328 struct mmap_arg_struct a;
1329
1330 if (copy_from_user(&a, arg, sizeof(a)))
1331 return -EFAULT;
1332 if (offset_in_page(a.offset))
1333 return -EINVAL;
1334
1335 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1336 a.offset >> PAGE_SHIFT);
1337}
1338#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1339
1340/*
1341 * split a vma into two pieces at address 'addr', a new vma is allocated either
1342 * for the first part or the tail.
1343 */
1344int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1345 unsigned long addr, int new_below)
1346{
1347 struct vm_area_struct *new;
1348 struct vm_region *region;
1349 unsigned long npages;
1350
1351 /* we're only permitted to split anonymous regions (these should have
1352 * only a single usage on the region) */
1353 if (vma->vm_file)
1354 return -ENOMEM;
1355
1356 if (mm->map_count >= sysctl_max_map_count)
1357 return -ENOMEM;
1358
1359 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1360 if (!region)
1361 return -ENOMEM;
1362
1363 new = vm_area_dup(vma);
1364 if (!new) {
1365 kmem_cache_free(vm_region_jar, region);
1366 return -ENOMEM;
1367 }
1368
1369 /* most fields are the same, copy all, and then fixup */
1370 *region = *vma->vm_region;
1371 new->vm_region = region;
1372
1373 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1374
1375 if (new_below) {
1376 region->vm_top = region->vm_end = new->vm_end = addr;
1377 } else {
1378 region->vm_start = new->vm_start = addr;
1379 region->vm_pgoff = new->vm_pgoff += npages;
1380 }
1381
1382 if (new->vm_ops && new->vm_ops->open)
1383 new->vm_ops->open(new);
1384
1385 delete_vma_from_mm(vma);
1386 down_write(&nommu_region_sem);
1387 delete_nommu_region(vma->vm_region);
1388 if (new_below) {
1389 vma->vm_region->vm_start = vma->vm_start = addr;
1390 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1391 } else {
1392 vma->vm_region->vm_end = vma->vm_end = addr;
1393 vma->vm_region->vm_top = addr;
1394 }
1395 add_nommu_region(vma->vm_region);
1396 add_nommu_region(new->vm_region);
1397 up_write(&nommu_region_sem);
1398 add_vma_to_mm(mm, vma);
1399 add_vma_to_mm(mm, new);
1400 return 0;
1401}
1402
1403/*
1404 * shrink a VMA by removing the specified chunk from either the beginning or
1405 * the end
1406 */
1407static int shrink_vma(struct mm_struct *mm,
1408 struct vm_area_struct *vma,
1409 unsigned long from, unsigned long to)
1410{
1411 struct vm_region *region;
1412
1413 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1414 * and list */
1415 delete_vma_from_mm(vma);
1416 if (from > vma->vm_start)
1417 vma->vm_end = from;
1418 else
1419 vma->vm_start = to;
1420 add_vma_to_mm(mm, vma);
1421
1422 /* cut the backing region down to size */
1423 region = vma->vm_region;
1424 BUG_ON(region->vm_usage != 1);
1425
1426 down_write(&nommu_region_sem);
1427 delete_nommu_region(region);
1428 if (from > region->vm_start) {
1429 to = region->vm_top;
1430 region->vm_top = region->vm_end = from;
1431 } else {
1432 region->vm_start = to;
1433 }
1434 add_nommu_region(region);
1435 up_write(&nommu_region_sem);
1436
1437 free_page_series(from, to);
1438 return 0;
1439}
1440
1441/*
1442 * release a mapping
1443 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1444 * VMA, though it need not cover the whole VMA
1445 */
1446int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1447{
1448 struct vm_area_struct *vma;
1449 unsigned long end;
1450 int ret;
1451
1452 len = PAGE_ALIGN(len);
1453 if (len == 0)
1454 return -EINVAL;
1455
1456 end = start + len;
1457
1458 /* find the first potentially overlapping VMA */
1459 vma = find_vma(mm, start);
1460 if (!vma) {
1461 static int limit;
1462 if (limit < 5) {
1463 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1464 current->pid, current->comm,
1465 start, start + len - 1);
1466 limit++;
1467 }
1468 return -EINVAL;
1469 }
1470
1471 /* we're allowed to split an anonymous VMA but not a file-backed one */
1472 if (vma->vm_file) {
1473 do {
1474 if (start > vma->vm_start)
1475 return -EINVAL;
1476 if (end == vma->vm_end)
1477 goto erase_whole_vma;
1478 vma = vma->vm_next;
1479 } while (vma);
1480 return -EINVAL;
1481 } else {
1482 /* the chunk must be a subset of the VMA found */
1483 if (start == vma->vm_start && end == vma->vm_end)
1484 goto erase_whole_vma;
1485 if (start < vma->vm_start || end > vma->vm_end)
1486 return -EINVAL;
1487 if (offset_in_page(start))
1488 return -EINVAL;
1489 if (end != vma->vm_end && offset_in_page(end))
1490 return -EINVAL;
1491 if (start != vma->vm_start && end != vma->vm_end) {
1492 ret = split_vma(mm, vma, start, 1);
1493 if (ret < 0)
1494 return ret;
1495 }
1496 return shrink_vma(mm, vma, start, end);
1497 }
1498
1499erase_whole_vma:
1500 delete_vma_from_mm(vma);
1501 delete_vma(mm, vma);
1502 return 0;
1503}
1504
1505int vm_munmap(unsigned long addr, size_t len)
1506{
1507 struct mm_struct *mm = current->mm;
1508 int ret;
1509
1510 mmap_write_lock(mm);
1511 ret = do_munmap(mm, addr, len, NULL);
1512 mmap_write_unlock(mm);
1513 return ret;
1514}
1515EXPORT_SYMBOL(vm_munmap);
1516
1517SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1518{
1519 return vm_munmap(addr, len);
1520}
1521
1522/*
1523 * release all the mappings made in a process's VM space
1524 */
1525void exit_mmap(struct mm_struct *mm)
1526{
1527 struct vm_area_struct *vma;
1528
1529 if (!mm)
1530 return;
1531
1532 mm->total_vm = 0;
1533
1534 while ((vma = mm->mmap)) {
1535 mm->mmap = vma->vm_next;
1536 delete_vma_from_mm(vma);
1537 delete_vma(mm, vma);
1538 cond_resched();
1539 }
1540}
1541
1542int vm_brk(unsigned long addr, unsigned long len)
1543{
1544 return -ENOMEM;
1545}
1546
1547/*
1548 * expand (or shrink) an existing mapping, potentially moving it at the same
1549 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1550 *
1551 * under NOMMU conditions, we only permit changing a mapping's size, and only
1552 * as long as it stays within the region allocated by do_mmap_private() and the
1553 * block is not shareable
1554 *
1555 * MREMAP_FIXED is not supported under NOMMU conditions
1556 */
1557static unsigned long do_mremap(unsigned long addr,
1558 unsigned long old_len, unsigned long new_len,
1559 unsigned long flags, unsigned long new_addr)
1560{
1561 struct vm_area_struct *vma;
1562
1563 /* insanity checks first */
1564 old_len = PAGE_ALIGN(old_len);
1565 new_len = PAGE_ALIGN(new_len);
1566 if (old_len == 0 || new_len == 0)
1567 return (unsigned long) -EINVAL;
1568
1569 if (offset_in_page(addr))
1570 return -EINVAL;
1571
1572 if (flags & MREMAP_FIXED && new_addr != addr)
1573 return (unsigned long) -EINVAL;
1574
1575 vma = find_vma_exact(current->mm, addr, old_len);
1576 if (!vma)
1577 return (unsigned long) -EINVAL;
1578
1579 if (vma->vm_end != vma->vm_start + old_len)
1580 return (unsigned long) -EFAULT;
1581
1582 if (vma->vm_flags & VM_MAYSHARE)
1583 return (unsigned long) -EPERM;
1584
1585 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1586 return (unsigned long) -ENOMEM;
1587
1588 /* all checks complete - do it */
1589 vma->vm_end = vma->vm_start + new_len;
1590 return vma->vm_start;
1591}
1592
1593SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1594 unsigned long, new_len, unsigned long, flags,
1595 unsigned long, new_addr)
1596{
1597 unsigned long ret;
1598
1599 mmap_write_lock(current->mm);
1600 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1601 mmap_write_unlock(current->mm);
1602 return ret;
1603}
1604
1605struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1606 unsigned int foll_flags)
1607{
1608 return NULL;
1609}
1610
1611int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1612 unsigned long pfn, unsigned long size, pgprot_t prot)
1613{
1614 if (addr != (pfn << PAGE_SHIFT))
1615 return -EINVAL;
1616
1617 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1618 return 0;
1619}
1620EXPORT_SYMBOL(remap_pfn_range);
1621
1622int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1623{
1624 unsigned long pfn = start >> PAGE_SHIFT;
1625 unsigned long vm_len = vma->vm_end - vma->vm_start;
1626
1627 pfn += vma->vm_pgoff;
1628 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1629}
1630EXPORT_SYMBOL(vm_iomap_memory);
1631
1632int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1633 unsigned long pgoff)
1634{
1635 unsigned int size = vma->vm_end - vma->vm_start;
1636
1637 if (!(vma->vm_flags & VM_USERMAP))
1638 return -EINVAL;
1639
1640 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1641 vma->vm_end = vma->vm_start + size;
1642
1643 return 0;
1644}
1645EXPORT_SYMBOL(remap_vmalloc_range);
1646
1647unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1648 unsigned long len, unsigned long pgoff, unsigned long flags)
1649{
1650 return -ENOMEM;
1651}
1652
1653vm_fault_t filemap_fault(struct vm_fault *vmf)
1654{
1655 BUG();
1656 return 0;
1657}
1658EXPORT_SYMBOL(filemap_fault);
1659
1660vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1661 pgoff_t start_pgoff, pgoff_t end_pgoff)
1662{
1663 BUG();
1664 return 0;
1665}
1666EXPORT_SYMBOL(filemap_map_pages);
1667
1668int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1669 int len, unsigned int gup_flags)
1670{
1671 struct vm_area_struct *vma;
1672 int write = gup_flags & FOLL_WRITE;
1673
1674 if (mmap_read_lock_killable(mm))
1675 return 0;
1676
1677 /* the access must start within one of the target process's mappings */
1678 vma = find_vma(mm, addr);
1679 if (vma) {
1680 /* don't overrun this mapping */
1681 if (addr + len >= vma->vm_end)
1682 len = vma->vm_end - addr;
1683
1684 /* only read or write mappings where it is permitted */
1685 if (write && vma->vm_flags & VM_MAYWRITE)
1686 copy_to_user_page(vma, NULL, addr,
1687 (void *) addr, buf, len);
1688 else if (!write && vma->vm_flags & VM_MAYREAD)
1689 copy_from_user_page(vma, NULL, addr,
1690 buf, (void *) addr, len);
1691 else
1692 len = 0;
1693 } else {
1694 len = 0;
1695 }
1696
1697 mmap_read_unlock(mm);
1698
1699 return len;
1700}
1701
1702/**
1703 * access_remote_vm - access another process' address space
1704 * @mm: the mm_struct of the target address space
1705 * @addr: start address to access
1706 * @buf: source or destination buffer
1707 * @len: number of bytes to transfer
1708 * @gup_flags: flags modifying lookup behaviour
1709 *
1710 * The caller must hold a reference on @mm.
1711 */
1712int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1713 void *buf, int len, unsigned int gup_flags)
1714{
1715 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1716}
1717
1718/*
1719 * Access another process' address space.
1720 * - source/target buffer must be kernel space
1721 */
1722int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1723 unsigned int gup_flags)
1724{
1725 struct mm_struct *mm;
1726
1727 if (addr + len < addr)
1728 return 0;
1729
1730 mm = get_task_mm(tsk);
1731 if (!mm)
1732 return 0;
1733
1734 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1735
1736 mmput(mm);
1737 return len;
1738}
1739EXPORT_SYMBOL_GPL(access_process_vm);
1740
1741/**
1742 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1743 * @inode: The inode to check
1744 * @size: The current filesize of the inode
1745 * @newsize: The proposed filesize of the inode
1746 *
1747 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1748 * make sure that any outstanding VMAs aren't broken and then shrink the
1749 * vm_regions that extend beyond so that do_mmap() doesn't
1750 * automatically grant mappings that are too large.
1751 */
1752int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1753 size_t newsize)
1754{
1755 struct vm_area_struct *vma;
1756 struct vm_region *region;
1757 pgoff_t low, high;
1758 size_t r_size, r_top;
1759
1760 low = newsize >> PAGE_SHIFT;
1761 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1762
1763 down_write(&nommu_region_sem);
1764 i_mmap_lock_read(inode->i_mapping);
1765
1766 /* search for VMAs that fall within the dead zone */
1767 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1768 /* found one - only interested if it's shared out of the page
1769 * cache */
1770 if (vma->vm_flags & VM_SHARED) {
1771 i_mmap_unlock_read(inode->i_mapping);
1772 up_write(&nommu_region_sem);
1773 return -ETXTBSY; /* not quite true, but near enough */
1774 }
1775 }
1776
1777 /* reduce any regions that overlap the dead zone - if in existence,
1778 * these will be pointed to by VMAs that don't overlap the dead zone
1779 *
1780 * we don't check for any regions that start beyond the EOF as there
1781 * shouldn't be any
1782 */
1783 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1784 if (!(vma->vm_flags & VM_SHARED))
1785 continue;
1786
1787 region = vma->vm_region;
1788 r_size = region->vm_top - region->vm_start;
1789 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1790
1791 if (r_top > newsize) {
1792 region->vm_top -= r_top - newsize;
1793 if (region->vm_end > region->vm_top)
1794 region->vm_end = region->vm_top;
1795 }
1796 }
1797
1798 i_mmap_unlock_read(inode->i_mapping);
1799 up_write(&nommu_region_sem);
1800 return 0;
1801}
1802
1803/*
1804 * Initialise sysctl_user_reserve_kbytes.
1805 *
1806 * This is intended to prevent a user from starting a single memory hogging
1807 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1808 * mode.
1809 *
1810 * The default value is min(3% of free memory, 128MB)
1811 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1812 */
1813static int __meminit init_user_reserve(void)
1814{
1815 unsigned long free_kbytes;
1816
1817 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1818
1819 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1820 return 0;
1821}
1822subsys_initcall(init_user_reserve);
1823
1824/*
1825 * Initialise sysctl_admin_reserve_kbytes.
1826 *
1827 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1828 * to log in and kill a memory hogging process.
1829 *
1830 * Systems with more than 256MB will reserve 8MB, enough to recover
1831 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1832 * only reserve 3% of free pages by default.
1833 */
1834static int __meminit init_admin_reserve(void)
1835{
1836 unsigned long free_kbytes;
1837
1838 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1839
1840 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1841 return 0;
1842}
1843subsys_initcall(init_admin_reserve);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include <linux/export.h>
20#include <linux/mm.h>
21#include <linux/sched/mm.h>
22#include <linux/vmacache.h>
23#include <linux/mman.h>
24#include <linux/swap.h>
25#include <linux/file.h>
26#include <linux/highmem.h>
27#include <linux/pagemap.h>
28#include <linux/slab.h>
29#include <linux/vmalloc.h>
30#include <linux/blkdev.h>
31#include <linux/backing-dev.h>
32#include <linux/compiler.h>
33#include <linux/mount.h>
34#include <linux/personality.h>
35#include <linux/security.h>
36#include <linux/syscalls.h>
37#include <linux/audit.h>
38#include <linux/printk.h>
39
40#include <linux/uaccess.h>
41#include <asm/tlb.h>
42#include <asm/tlbflush.h>
43#include <asm/mmu_context.h>
44#include "internal.h"
45
46void *high_memory;
47EXPORT_SYMBOL(high_memory);
48struct page *mem_map;
49unsigned long max_mapnr;
50EXPORT_SYMBOL(max_mapnr);
51unsigned long highest_memmap_pfn;
52int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53int heap_stack_gap = 0;
54
55atomic_long_t mmap_pages_allocated;
56
57EXPORT_SYMBOL(mem_map);
58
59/* list of mapped, potentially shareable regions */
60static struct kmem_cache *vm_region_jar;
61struct rb_root nommu_region_tree = RB_ROOT;
62DECLARE_RWSEM(nommu_region_sem);
63
64const struct vm_operations_struct generic_file_vm_ops = {
65};
66
67/*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73unsigned int kobjsize(const void *objp)
74{
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112}
113
114/**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126{
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132}
133EXPORT_SYMBOL(follow_pfn);
134
135LIST_HEAD(vmap_area_list);
136
137void vfree(const void *addr)
138{
139 kfree(addr);
140}
141EXPORT_SYMBOL(vfree);
142
143void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144{
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150}
151EXPORT_SYMBOL(__vmalloc);
152
153void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154{
155 return __vmalloc(size, flags, PAGE_KERNEL);
156}
157
158void *vmalloc_user(unsigned long size)
159{
160 void *ret;
161
162 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
165
166 down_write(¤t->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(¤t->mm->mmap_sem);
171 }
172
173 return ret;
174}
175EXPORT_SYMBOL(vmalloc_user);
176
177struct page *vmalloc_to_page(const void *addr)
178{
179 return virt_to_page(addr);
180}
181EXPORT_SYMBOL(vmalloc_to_page);
182
183unsigned long vmalloc_to_pfn(const void *addr)
184{
185 return page_to_pfn(virt_to_page(addr));
186}
187EXPORT_SYMBOL(vmalloc_to_pfn);
188
189long vread(char *buf, char *addr, unsigned long count)
190{
191 /* Don't allow overflow */
192 if ((unsigned long) buf + count < count)
193 count = -(unsigned long) buf;
194
195 memcpy(buf, addr, count);
196 return count;
197}
198
199long vwrite(char *buf, char *addr, unsigned long count)
200{
201 /* Don't allow overflow */
202 if ((unsigned long) addr + count < count)
203 count = -(unsigned long) addr;
204
205 memcpy(addr, buf, count);
206 return count;
207}
208
209/*
210 * vmalloc - allocate virtually contiguous memory
211 *
212 * @size: allocation size
213 *
214 * Allocate enough pages to cover @size from the page level
215 * allocator and map them into contiguous kernel virtual space.
216 *
217 * For tight control over page level allocator and protection flags
218 * use __vmalloc() instead.
219 */
220void *vmalloc(unsigned long size)
221{
222 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
223}
224EXPORT_SYMBOL(vmalloc);
225
226/*
227 * vzalloc - allocate virtually contiguous memory with zero fill
228 *
229 * @size: allocation size
230 *
231 * Allocate enough pages to cover @size from the page level
232 * allocator and map them into contiguous kernel virtual space.
233 * The memory allocated is set to zero.
234 *
235 * For tight control over page level allocator and protection flags
236 * use __vmalloc() instead.
237 */
238void *vzalloc(unsigned long size)
239{
240 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242}
243EXPORT_SYMBOL(vzalloc);
244
245/**
246 * vmalloc_node - allocate memory on a specific node
247 * @size: allocation size
248 * @node: numa node
249 *
250 * Allocate enough pages to cover @size from the page level
251 * allocator and map them into contiguous kernel virtual space.
252 *
253 * For tight control over page level allocator and protection flags
254 * use __vmalloc() instead.
255 */
256void *vmalloc_node(unsigned long size, int node)
257{
258 return vmalloc(size);
259}
260EXPORT_SYMBOL(vmalloc_node);
261
262/**
263 * vzalloc_node - allocate memory on a specific node with zero fill
264 * @size: allocation size
265 * @node: numa node
266 *
267 * Allocate enough pages to cover @size from the page level
268 * allocator and map them into contiguous kernel virtual space.
269 * The memory allocated is set to zero.
270 *
271 * For tight control over page level allocator and protection flags
272 * use __vmalloc() instead.
273 */
274void *vzalloc_node(unsigned long size, int node)
275{
276 return vzalloc(size);
277}
278EXPORT_SYMBOL(vzalloc_node);
279
280/**
281 * vmalloc_exec - allocate virtually contiguous, executable memory
282 * @size: allocation size
283 *
284 * Kernel-internal function to allocate enough pages to cover @size
285 * the page level allocator and map them into contiguous and
286 * executable kernel virtual space.
287 *
288 * For tight control over page level allocator and protection flags
289 * use __vmalloc() instead.
290 */
291
292void *vmalloc_exec(unsigned long size)
293{
294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
295}
296
297/**
298 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
299 * @size: allocation size
300 *
301 * Allocate enough 32bit PA addressable pages to cover @size from the
302 * page level allocator and map them into contiguous kernel virtual space.
303 */
304void *vmalloc_32(unsigned long size)
305{
306 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
307}
308EXPORT_SYMBOL(vmalloc_32);
309
310/**
311 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
312 * @size: allocation size
313 *
314 * The resulting memory area is 32bit addressable and zeroed so it can be
315 * mapped to userspace without leaking data.
316 *
317 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
318 * remap_vmalloc_range() are permissible.
319 */
320void *vmalloc_32_user(unsigned long size)
321{
322 /*
323 * We'll have to sort out the ZONE_DMA bits for 64-bit,
324 * but for now this can simply use vmalloc_user() directly.
325 */
326 return vmalloc_user(size);
327}
328EXPORT_SYMBOL(vmalloc_32_user);
329
330void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
331{
332 BUG();
333 return NULL;
334}
335EXPORT_SYMBOL(vmap);
336
337void vunmap(const void *addr)
338{
339 BUG();
340}
341EXPORT_SYMBOL(vunmap);
342
343void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
344{
345 BUG();
346 return NULL;
347}
348EXPORT_SYMBOL(vm_map_ram);
349
350void vm_unmap_ram(const void *mem, unsigned int count)
351{
352 BUG();
353}
354EXPORT_SYMBOL(vm_unmap_ram);
355
356void vm_unmap_aliases(void)
357{
358}
359EXPORT_SYMBOL_GPL(vm_unmap_aliases);
360
361/*
362 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
363 * have one.
364 */
365void __weak vmalloc_sync_all(void)
366{
367}
368
369struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
370{
371 BUG();
372 return NULL;
373}
374EXPORT_SYMBOL_GPL(alloc_vm_area);
375
376void free_vm_area(struct vm_struct *area)
377{
378 BUG();
379}
380EXPORT_SYMBOL_GPL(free_vm_area);
381
382int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
383 struct page *page)
384{
385 return -EINVAL;
386}
387EXPORT_SYMBOL(vm_insert_page);
388
389int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
390 unsigned long num)
391{
392 return -EINVAL;
393}
394EXPORT_SYMBOL(vm_map_pages);
395
396int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
397 unsigned long num)
398{
399 return -EINVAL;
400}
401EXPORT_SYMBOL(vm_map_pages_zero);
402
403/*
404 * sys_brk() for the most part doesn't need the global kernel
405 * lock, except when an application is doing something nasty
406 * like trying to un-brk an area that has already been mapped
407 * to a regular file. in this case, the unmapping will need
408 * to invoke file system routines that need the global lock.
409 */
410SYSCALL_DEFINE1(brk, unsigned long, brk)
411{
412 struct mm_struct *mm = current->mm;
413
414 if (brk < mm->start_brk || brk > mm->context.end_brk)
415 return mm->brk;
416
417 if (mm->brk == brk)
418 return mm->brk;
419
420 /*
421 * Always allow shrinking brk
422 */
423 if (brk <= mm->brk) {
424 mm->brk = brk;
425 return brk;
426 }
427
428 /*
429 * Ok, looks good - let it rip.
430 */
431 flush_icache_range(mm->brk, brk);
432 return mm->brk = brk;
433}
434
435/*
436 * initialise the percpu counter for VM and region record slabs
437 */
438void __init mmap_init(void)
439{
440 int ret;
441
442 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
443 VM_BUG_ON(ret);
444 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
445}
446
447/*
448 * validate the region tree
449 * - the caller must hold the region lock
450 */
451#ifdef CONFIG_DEBUG_NOMMU_REGIONS
452static noinline void validate_nommu_regions(void)
453{
454 struct vm_region *region, *last;
455 struct rb_node *p, *lastp;
456
457 lastp = rb_first(&nommu_region_tree);
458 if (!lastp)
459 return;
460
461 last = rb_entry(lastp, struct vm_region, vm_rb);
462 BUG_ON(last->vm_end <= last->vm_start);
463 BUG_ON(last->vm_top < last->vm_end);
464
465 while ((p = rb_next(lastp))) {
466 region = rb_entry(p, struct vm_region, vm_rb);
467 last = rb_entry(lastp, struct vm_region, vm_rb);
468
469 BUG_ON(region->vm_end <= region->vm_start);
470 BUG_ON(region->vm_top < region->vm_end);
471 BUG_ON(region->vm_start < last->vm_top);
472
473 lastp = p;
474 }
475}
476#else
477static void validate_nommu_regions(void)
478{
479}
480#endif
481
482/*
483 * add a region into the global tree
484 */
485static void add_nommu_region(struct vm_region *region)
486{
487 struct vm_region *pregion;
488 struct rb_node **p, *parent;
489
490 validate_nommu_regions();
491
492 parent = NULL;
493 p = &nommu_region_tree.rb_node;
494 while (*p) {
495 parent = *p;
496 pregion = rb_entry(parent, struct vm_region, vm_rb);
497 if (region->vm_start < pregion->vm_start)
498 p = &(*p)->rb_left;
499 else if (region->vm_start > pregion->vm_start)
500 p = &(*p)->rb_right;
501 else if (pregion == region)
502 return;
503 else
504 BUG();
505 }
506
507 rb_link_node(®ion->vm_rb, parent, p);
508 rb_insert_color(®ion->vm_rb, &nommu_region_tree);
509
510 validate_nommu_regions();
511}
512
513/*
514 * delete a region from the global tree
515 */
516static void delete_nommu_region(struct vm_region *region)
517{
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 validate_nommu_regions();
521 rb_erase(®ion->vm_rb, &nommu_region_tree);
522 validate_nommu_regions();
523}
524
525/*
526 * free a contiguous series of pages
527 */
528static void free_page_series(unsigned long from, unsigned long to)
529{
530 for (; from < to; from += PAGE_SIZE) {
531 struct page *page = virt_to_page(from);
532
533 atomic_long_dec(&mmap_pages_allocated);
534 put_page(page);
535 }
536}
537
538/*
539 * release a reference to a region
540 * - the caller must hold the region semaphore for writing, which this releases
541 * - the region may not have been added to the tree yet, in which case vm_top
542 * will equal vm_start
543 */
544static void __put_nommu_region(struct vm_region *region)
545 __releases(nommu_region_sem)
546{
547 BUG_ON(!nommu_region_tree.rb_node);
548
549 if (--region->vm_usage == 0) {
550 if (region->vm_top > region->vm_start)
551 delete_nommu_region(region);
552 up_write(&nommu_region_sem);
553
554 if (region->vm_file)
555 fput(region->vm_file);
556
557 /* IO memory and memory shared directly out of the pagecache
558 * from ramfs/tmpfs mustn't be released here */
559 if (region->vm_flags & VM_MAPPED_COPY)
560 free_page_series(region->vm_start, region->vm_top);
561 kmem_cache_free(vm_region_jar, region);
562 } else {
563 up_write(&nommu_region_sem);
564 }
565}
566
567/*
568 * release a reference to a region
569 */
570static void put_nommu_region(struct vm_region *region)
571{
572 down_write(&nommu_region_sem);
573 __put_nommu_region(region);
574}
575
576/*
577 * add a VMA into a process's mm_struct in the appropriate place in the list
578 * and tree and add to the address space's page tree also if not an anonymous
579 * page
580 * - should be called with mm->mmap_sem held writelocked
581 */
582static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
583{
584 struct vm_area_struct *pvma, *prev;
585 struct address_space *mapping;
586 struct rb_node **p, *parent, *rb_prev;
587
588 BUG_ON(!vma->vm_region);
589
590 mm->map_count++;
591 vma->vm_mm = mm;
592
593 /* add the VMA to the mapping */
594 if (vma->vm_file) {
595 mapping = vma->vm_file->f_mapping;
596
597 i_mmap_lock_write(mapping);
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 i_mmap_unlock_write(mapping);
602 }
603
604 /* add the VMA to the tree */
605 parent = rb_prev = NULL;
606 p = &mm->mm_rb.rb_node;
607 while (*p) {
608 parent = *p;
609 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
610
611 /* sort by: start addr, end addr, VMA struct addr in that order
612 * (the latter is necessary as we may get identical VMAs) */
613 if (vma->vm_start < pvma->vm_start)
614 p = &(*p)->rb_left;
615 else if (vma->vm_start > pvma->vm_start) {
616 rb_prev = parent;
617 p = &(*p)->rb_right;
618 } else if (vma->vm_end < pvma->vm_end)
619 p = &(*p)->rb_left;
620 else if (vma->vm_end > pvma->vm_end) {
621 rb_prev = parent;
622 p = &(*p)->rb_right;
623 } else if (vma < pvma)
624 p = &(*p)->rb_left;
625 else if (vma > pvma) {
626 rb_prev = parent;
627 p = &(*p)->rb_right;
628 } else
629 BUG();
630 }
631
632 rb_link_node(&vma->vm_rb, parent, p);
633 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
634
635 /* add VMA to the VMA list also */
636 prev = NULL;
637 if (rb_prev)
638 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
639
640 __vma_link_list(mm, vma, prev, parent);
641}
642
643/*
644 * delete a VMA from its owning mm_struct and address space
645 */
646static void delete_vma_from_mm(struct vm_area_struct *vma)
647{
648 int i;
649 struct address_space *mapping;
650 struct mm_struct *mm = vma->vm_mm;
651 struct task_struct *curr = current;
652
653 mm->map_count--;
654 for (i = 0; i < VMACACHE_SIZE; i++) {
655 /* if the vma is cached, invalidate the entire cache */
656 if (curr->vmacache.vmas[i] == vma) {
657 vmacache_invalidate(mm);
658 break;
659 }
660 }
661
662 /* remove the VMA from the mapping */
663 if (vma->vm_file) {
664 mapping = vma->vm_file->f_mapping;
665
666 i_mmap_lock_write(mapping);
667 flush_dcache_mmap_lock(mapping);
668 vma_interval_tree_remove(vma, &mapping->i_mmap);
669 flush_dcache_mmap_unlock(mapping);
670 i_mmap_unlock_write(mapping);
671 }
672
673 /* remove from the MM's tree and list */
674 rb_erase(&vma->vm_rb, &mm->mm_rb);
675
676 if (vma->vm_prev)
677 vma->vm_prev->vm_next = vma->vm_next;
678 else
679 mm->mmap = vma->vm_next;
680
681 if (vma->vm_next)
682 vma->vm_next->vm_prev = vma->vm_prev;
683}
684
685/*
686 * destroy a VMA record
687 */
688static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
689{
690 if (vma->vm_ops && vma->vm_ops->close)
691 vma->vm_ops->close(vma);
692 if (vma->vm_file)
693 fput(vma->vm_file);
694 put_nommu_region(vma->vm_region);
695 vm_area_free(vma);
696}
697
698/*
699 * look up the first VMA in which addr resides, NULL if none
700 * - should be called with mm->mmap_sem at least held readlocked
701 */
702struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
703{
704 struct vm_area_struct *vma;
705
706 /* check the cache first */
707 vma = vmacache_find(mm, addr);
708 if (likely(vma))
709 return vma;
710
711 /* trawl the list (there may be multiple mappings in which addr
712 * resides) */
713 for (vma = mm->mmap; vma; vma = vma->vm_next) {
714 if (vma->vm_start > addr)
715 return NULL;
716 if (vma->vm_end > addr) {
717 vmacache_update(addr, vma);
718 return vma;
719 }
720 }
721
722 return NULL;
723}
724EXPORT_SYMBOL(find_vma);
725
726/*
727 * find a VMA
728 * - we don't extend stack VMAs under NOMMU conditions
729 */
730struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
731{
732 return find_vma(mm, addr);
733}
734
735/*
736 * expand a stack to a given address
737 * - not supported under NOMMU conditions
738 */
739int expand_stack(struct vm_area_struct *vma, unsigned long address)
740{
741 return -ENOMEM;
742}
743
744/*
745 * look up the first VMA exactly that exactly matches addr
746 * - should be called with mm->mmap_sem at least held readlocked
747 */
748static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
749 unsigned long addr,
750 unsigned long len)
751{
752 struct vm_area_struct *vma;
753 unsigned long end = addr + len;
754
755 /* check the cache first */
756 vma = vmacache_find_exact(mm, addr, end);
757 if (vma)
758 return vma;
759
760 /* trawl the list (there may be multiple mappings in which addr
761 * resides) */
762 for (vma = mm->mmap; vma; vma = vma->vm_next) {
763 if (vma->vm_start < addr)
764 continue;
765 if (vma->vm_start > addr)
766 return NULL;
767 if (vma->vm_end == end) {
768 vmacache_update(addr, vma);
769 return vma;
770 }
771 }
772
773 return NULL;
774}
775
776/*
777 * determine whether a mapping should be permitted and, if so, what sort of
778 * mapping we're capable of supporting
779 */
780static int validate_mmap_request(struct file *file,
781 unsigned long addr,
782 unsigned long len,
783 unsigned long prot,
784 unsigned long flags,
785 unsigned long pgoff,
786 unsigned long *_capabilities)
787{
788 unsigned long capabilities, rlen;
789 int ret;
790
791 /* do the simple checks first */
792 if (flags & MAP_FIXED)
793 return -EINVAL;
794
795 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
796 (flags & MAP_TYPE) != MAP_SHARED)
797 return -EINVAL;
798
799 if (!len)
800 return -EINVAL;
801
802 /* Careful about overflows.. */
803 rlen = PAGE_ALIGN(len);
804 if (!rlen || rlen > TASK_SIZE)
805 return -ENOMEM;
806
807 /* offset overflow? */
808 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
809 return -EOVERFLOW;
810
811 if (file) {
812 /* files must support mmap */
813 if (!file->f_op->mmap)
814 return -ENODEV;
815
816 /* work out if what we've got could possibly be shared
817 * - we support chardevs that provide their own "memory"
818 * - we support files/blockdevs that are memory backed
819 */
820 if (file->f_op->mmap_capabilities) {
821 capabilities = file->f_op->mmap_capabilities(file);
822 } else {
823 /* no explicit capabilities set, so assume some
824 * defaults */
825 switch (file_inode(file)->i_mode & S_IFMT) {
826 case S_IFREG:
827 case S_IFBLK:
828 capabilities = NOMMU_MAP_COPY;
829 break;
830
831 case S_IFCHR:
832 capabilities =
833 NOMMU_MAP_DIRECT |
834 NOMMU_MAP_READ |
835 NOMMU_MAP_WRITE;
836 break;
837
838 default:
839 return -EINVAL;
840 }
841 }
842
843 /* eliminate any capabilities that we can't support on this
844 * device */
845 if (!file->f_op->get_unmapped_area)
846 capabilities &= ~NOMMU_MAP_DIRECT;
847 if (!(file->f_mode & FMODE_CAN_READ))
848 capabilities &= ~NOMMU_MAP_COPY;
849
850 /* The file shall have been opened with read permission. */
851 if (!(file->f_mode & FMODE_READ))
852 return -EACCES;
853
854 if (flags & MAP_SHARED) {
855 /* do checks for writing, appending and locking */
856 if ((prot & PROT_WRITE) &&
857 !(file->f_mode & FMODE_WRITE))
858 return -EACCES;
859
860 if (IS_APPEND(file_inode(file)) &&
861 (file->f_mode & FMODE_WRITE))
862 return -EACCES;
863
864 if (locks_verify_locked(file))
865 return -EAGAIN;
866
867 if (!(capabilities & NOMMU_MAP_DIRECT))
868 return -ENODEV;
869
870 /* we mustn't privatise shared mappings */
871 capabilities &= ~NOMMU_MAP_COPY;
872 } else {
873 /* we're going to read the file into private memory we
874 * allocate */
875 if (!(capabilities & NOMMU_MAP_COPY))
876 return -ENODEV;
877
878 /* we don't permit a private writable mapping to be
879 * shared with the backing device */
880 if (prot & PROT_WRITE)
881 capabilities &= ~NOMMU_MAP_DIRECT;
882 }
883
884 if (capabilities & NOMMU_MAP_DIRECT) {
885 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
886 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
887 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
888 ) {
889 capabilities &= ~NOMMU_MAP_DIRECT;
890 if (flags & MAP_SHARED) {
891 pr_warn("MAP_SHARED not completely supported on !MMU\n");
892 return -EINVAL;
893 }
894 }
895 }
896
897 /* handle executable mappings and implied executable
898 * mappings */
899 if (path_noexec(&file->f_path)) {
900 if (prot & PROT_EXEC)
901 return -EPERM;
902 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
903 /* handle implication of PROT_EXEC by PROT_READ */
904 if (current->personality & READ_IMPLIES_EXEC) {
905 if (capabilities & NOMMU_MAP_EXEC)
906 prot |= PROT_EXEC;
907 }
908 } else if ((prot & PROT_READ) &&
909 (prot & PROT_EXEC) &&
910 !(capabilities & NOMMU_MAP_EXEC)
911 ) {
912 /* backing file is not executable, try to copy */
913 capabilities &= ~NOMMU_MAP_DIRECT;
914 }
915 } else {
916 /* anonymous mappings are always memory backed and can be
917 * privately mapped
918 */
919 capabilities = NOMMU_MAP_COPY;
920
921 /* handle PROT_EXEC implication by PROT_READ */
922 if ((prot & PROT_READ) &&
923 (current->personality & READ_IMPLIES_EXEC))
924 prot |= PROT_EXEC;
925 }
926
927 /* allow the security API to have its say */
928 ret = security_mmap_addr(addr);
929 if (ret < 0)
930 return ret;
931
932 /* looks okay */
933 *_capabilities = capabilities;
934 return 0;
935}
936
937/*
938 * we've determined that we can make the mapping, now translate what we
939 * now know into VMA flags
940 */
941static unsigned long determine_vm_flags(struct file *file,
942 unsigned long prot,
943 unsigned long flags,
944 unsigned long capabilities)
945{
946 unsigned long vm_flags;
947
948 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
949 /* vm_flags |= mm->def_flags; */
950
951 if (!(capabilities & NOMMU_MAP_DIRECT)) {
952 /* attempt to share read-only copies of mapped file chunks */
953 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
954 if (file && !(prot & PROT_WRITE))
955 vm_flags |= VM_MAYSHARE;
956 } else {
957 /* overlay a shareable mapping on the backing device or inode
958 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
959 * romfs/cramfs */
960 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
961 if (flags & MAP_SHARED)
962 vm_flags |= VM_SHARED;
963 }
964
965 /* refuse to let anyone share private mappings with this process if
966 * it's being traced - otherwise breakpoints set in it may interfere
967 * with another untraced process
968 */
969 if ((flags & MAP_PRIVATE) && current->ptrace)
970 vm_flags &= ~VM_MAYSHARE;
971
972 return vm_flags;
973}
974
975/*
976 * set up a shared mapping on a file (the driver or filesystem provides and
977 * pins the storage)
978 */
979static int do_mmap_shared_file(struct vm_area_struct *vma)
980{
981 int ret;
982
983 ret = call_mmap(vma->vm_file, vma);
984 if (ret == 0) {
985 vma->vm_region->vm_top = vma->vm_region->vm_end;
986 return 0;
987 }
988 if (ret != -ENOSYS)
989 return ret;
990
991 /* getting -ENOSYS indicates that direct mmap isn't possible (as
992 * opposed to tried but failed) so we can only give a suitable error as
993 * it's not possible to make a private copy if MAP_SHARED was given */
994 return -ENODEV;
995}
996
997/*
998 * set up a private mapping or an anonymous shared mapping
999 */
1000static int do_mmap_private(struct vm_area_struct *vma,
1001 struct vm_region *region,
1002 unsigned long len,
1003 unsigned long capabilities)
1004{
1005 unsigned long total, point;
1006 void *base;
1007 int ret, order;
1008
1009 /* invoke the file's mapping function so that it can keep track of
1010 * shared mappings on devices or memory
1011 * - VM_MAYSHARE will be set if it may attempt to share
1012 */
1013 if (capabilities & NOMMU_MAP_DIRECT) {
1014 ret = call_mmap(vma->vm_file, vma);
1015 if (ret == 0) {
1016 /* shouldn't return success if we're not sharing */
1017 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1018 vma->vm_region->vm_top = vma->vm_region->vm_end;
1019 return 0;
1020 }
1021 if (ret != -ENOSYS)
1022 return ret;
1023
1024 /* getting an ENOSYS error indicates that direct mmap isn't
1025 * possible (as opposed to tried but failed) so we'll try to
1026 * make a private copy of the data and map that instead */
1027 }
1028
1029
1030 /* allocate some memory to hold the mapping
1031 * - note that this may not return a page-aligned address if the object
1032 * we're allocating is smaller than a page
1033 */
1034 order = get_order(len);
1035 total = 1 << order;
1036 point = len >> PAGE_SHIFT;
1037
1038 /* we don't want to allocate a power-of-2 sized page set */
1039 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1040 total = point;
1041
1042 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1043 if (!base)
1044 goto enomem;
1045
1046 atomic_long_add(total, &mmap_pages_allocated);
1047
1048 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1049 region->vm_start = (unsigned long) base;
1050 region->vm_end = region->vm_start + len;
1051 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1052
1053 vma->vm_start = region->vm_start;
1054 vma->vm_end = region->vm_start + len;
1055
1056 if (vma->vm_file) {
1057 /* read the contents of a file into the copy */
1058 loff_t fpos;
1059
1060 fpos = vma->vm_pgoff;
1061 fpos <<= PAGE_SHIFT;
1062
1063 ret = kernel_read(vma->vm_file, base, len, &fpos);
1064 if (ret < 0)
1065 goto error_free;
1066
1067 /* clear the last little bit */
1068 if (ret < len)
1069 memset(base + ret, 0, len - ret);
1070
1071 } else {
1072 vma_set_anonymous(vma);
1073 }
1074
1075 return 0;
1076
1077error_free:
1078 free_page_series(region->vm_start, region->vm_top);
1079 region->vm_start = vma->vm_start = 0;
1080 region->vm_end = vma->vm_end = 0;
1081 region->vm_top = 0;
1082 return ret;
1083
1084enomem:
1085 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1086 len, current->pid, current->comm);
1087 show_free_areas(0, NULL);
1088 return -ENOMEM;
1089}
1090
1091/*
1092 * handle mapping creation for uClinux
1093 */
1094unsigned long do_mmap(struct file *file,
1095 unsigned long addr,
1096 unsigned long len,
1097 unsigned long prot,
1098 unsigned long flags,
1099 vm_flags_t vm_flags,
1100 unsigned long pgoff,
1101 unsigned long *populate,
1102 struct list_head *uf)
1103{
1104 struct vm_area_struct *vma;
1105 struct vm_region *region;
1106 struct rb_node *rb;
1107 unsigned long capabilities, result;
1108 int ret;
1109
1110 *populate = 0;
1111
1112 /* decide whether we should attempt the mapping, and if so what sort of
1113 * mapping */
1114 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1115 &capabilities);
1116 if (ret < 0)
1117 return ret;
1118
1119 /* we ignore the address hint */
1120 addr = 0;
1121 len = PAGE_ALIGN(len);
1122
1123 /* we've determined that we can make the mapping, now translate what we
1124 * now know into VMA flags */
1125 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1126
1127 /* we're going to need to record the mapping */
1128 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1129 if (!region)
1130 goto error_getting_region;
1131
1132 vma = vm_area_alloc(current->mm);
1133 if (!vma)
1134 goto error_getting_vma;
1135
1136 region->vm_usage = 1;
1137 region->vm_flags = vm_flags;
1138 region->vm_pgoff = pgoff;
1139
1140 vma->vm_flags = vm_flags;
1141 vma->vm_pgoff = pgoff;
1142
1143 if (file) {
1144 region->vm_file = get_file(file);
1145 vma->vm_file = get_file(file);
1146 }
1147
1148 down_write(&nommu_region_sem);
1149
1150 /* if we want to share, we need to check for regions created by other
1151 * mmap() calls that overlap with our proposed mapping
1152 * - we can only share with a superset match on most regular files
1153 * - shared mappings on character devices and memory backed files are
1154 * permitted to overlap inexactly as far as we are concerned for in
1155 * these cases, sharing is handled in the driver or filesystem rather
1156 * than here
1157 */
1158 if (vm_flags & VM_MAYSHARE) {
1159 struct vm_region *pregion;
1160 unsigned long pglen, rpglen, pgend, rpgend, start;
1161
1162 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1163 pgend = pgoff + pglen;
1164
1165 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1166 pregion = rb_entry(rb, struct vm_region, vm_rb);
1167
1168 if (!(pregion->vm_flags & VM_MAYSHARE))
1169 continue;
1170
1171 /* search for overlapping mappings on the same file */
1172 if (file_inode(pregion->vm_file) !=
1173 file_inode(file))
1174 continue;
1175
1176 if (pregion->vm_pgoff >= pgend)
1177 continue;
1178
1179 rpglen = pregion->vm_end - pregion->vm_start;
1180 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 rpgend = pregion->vm_pgoff + rpglen;
1182 if (pgoff >= rpgend)
1183 continue;
1184
1185 /* handle inexactly overlapping matches between
1186 * mappings */
1187 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1188 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1189 /* new mapping is not a subset of the region */
1190 if (!(capabilities & NOMMU_MAP_DIRECT))
1191 goto sharing_violation;
1192 continue;
1193 }
1194
1195 /* we've found a region we can share */
1196 pregion->vm_usage++;
1197 vma->vm_region = pregion;
1198 start = pregion->vm_start;
1199 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1200 vma->vm_start = start;
1201 vma->vm_end = start + len;
1202
1203 if (pregion->vm_flags & VM_MAPPED_COPY)
1204 vma->vm_flags |= VM_MAPPED_COPY;
1205 else {
1206 ret = do_mmap_shared_file(vma);
1207 if (ret < 0) {
1208 vma->vm_region = NULL;
1209 vma->vm_start = 0;
1210 vma->vm_end = 0;
1211 pregion->vm_usage--;
1212 pregion = NULL;
1213 goto error_just_free;
1214 }
1215 }
1216 fput(region->vm_file);
1217 kmem_cache_free(vm_region_jar, region);
1218 region = pregion;
1219 result = start;
1220 goto share;
1221 }
1222
1223 /* obtain the address at which to make a shared mapping
1224 * - this is the hook for quasi-memory character devices to
1225 * tell us the location of a shared mapping
1226 */
1227 if (capabilities & NOMMU_MAP_DIRECT) {
1228 addr = file->f_op->get_unmapped_area(file, addr, len,
1229 pgoff, flags);
1230 if (IS_ERR_VALUE(addr)) {
1231 ret = addr;
1232 if (ret != -ENOSYS)
1233 goto error_just_free;
1234
1235 /* the driver refused to tell us where to site
1236 * the mapping so we'll have to attempt to copy
1237 * it */
1238 ret = -ENODEV;
1239 if (!(capabilities & NOMMU_MAP_COPY))
1240 goto error_just_free;
1241
1242 capabilities &= ~NOMMU_MAP_DIRECT;
1243 } else {
1244 vma->vm_start = region->vm_start = addr;
1245 vma->vm_end = region->vm_end = addr + len;
1246 }
1247 }
1248 }
1249
1250 vma->vm_region = region;
1251
1252 /* set up the mapping
1253 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1254 */
1255 if (file && vma->vm_flags & VM_SHARED)
1256 ret = do_mmap_shared_file(vma);
1257 else
1258 ret = do_mmap_private(vma, region, len, capabilities);
1259 if (ret < 0)
1260 goto error_just_free;
1261 add_nommu_region(region);
1262
1263 /* clear anonymous mappings that don't ask for uninitialized data */
1264 if (!vma->vm_file &&
1265 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1266 !(flags & MAP_UNINITIALIZED)))
1267 memset((void *)region->vm_start, 0,
1268 region->vm_end - region->vm_start);
1269
1270 /* okay... we have a mapping; now we have to register it */
1271 result = vma->vm_start;
1272
1273 current->mm->total_vm += len >> PAGE_SHIFT;
1274
1275share:
1276 add_vma_to_mm(current->mm, vma);
1277
1278 /* we flush the region from the icache only when the first executable
1279 * mapping of it is made */
1280 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1281 flush_icache_range(region->vm_start, region->vm_end);
1282 region->vm_icache_flushed = true;
1283 }
1284
1285 up_write(&nommu_region_sem);
1286
1287 return result;
1288
1289error_just_free:
1290 up_write(&nommu_region_sem);
1291error:
1292 if (region->vm_file)
1293 fput(region->vm_file);
1294 kmem_cache_free(vm_region_jar, region);
1295 if (vma->vm_file)
1296 fput(vma->vm_file);
1297 vm_area_free(vma);
1298 return ret;
1299
1300sharing_violation:
1301 up_write(&nommu_region_sem);
1302 pr_warn("Attempt to share mismatched mappings\n");
1303 ret = -EINVAL;
1304 goto error;
1305
1306error_getting_vma:
1307 kmem_cache_free(vm_region_jar, region);
1308 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1309 len, current->pid);
1310 show_free_areas(0, NULL);
1311 return -ENOMEM;
1312
1313error_getting_region:
1314 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1315 len, current->pid);
1316 show_free_areas(0, NULL);
1317 return -ENOMEM;
1318}
1319
1320unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1321 unsigned long prot, unsigned long flags,
1322 unsigned long fd, unsigned long pgoff)
1323{
1324 struct file *file = NULL;
1325 unsigned long retval = -EBADF;
1326
1327 audit_mmap_fd(fd, flags);
1328 if (!(flags & MAP_ANONYMOUS)) {
1329 file = fget(fd);
1330 if (!file)
1331 goto out;
1332 }
1333
1334 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1335
1336 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1337
1338 if (file)
1339 fput(file);
1340out:
1341 return retval;
1342}
1343
1344SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1345 unsigned long, prot, unsigned long, flags,
1346 unsigned long, fd, unsigned long, pgoff)
1347{
1348 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1349}
1350
1351#ifdef __ARCH_WANT_SYS_OLD_MMAP
1352struct mmap_arg_struct {
1353 unsigned long addr;
1354 unsigned long len;
1355 unsigned long prot;
1356 unsigned long flags;
1357 unsigned long fd;
1358 unsigned long offset;
1359};
1360
1361SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1362{
1363 struct mmap_arg_struct a;
1364
1365 if (copy_from_user(&a, arg, sizeof(a)))
1366 return -EFAULT;
1367 if (offset_in_page(a.offset))
1368 return -EINVAL;
1369
1370 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1371 a.offset >> PAGE_SHIFT);
1372}
1373#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1374
1375/*
1376 * split a vma into two pieces at address 'addr', a new vma is allocated either
1377 * for the first part or the tail.
1378 */
1379int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1380 unsigned long addr, int new_below)
1381{
1382 struct vm_area_struct *new;
1383 struct vm_region *region;
1384 unsigned long npages;
1385
1386 /* we're only permitted to split anonymous regions (these should have
1387 * only a single usage on the region) */
1388 if (vma->vm_file)
1389 return -ENOMEM;
1390
1391 if (mm->map_count >= sysctl_max_map_count)
1392 return -ENOMEM;
1393
1394 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1395 if (!region)
1396 return -ENOMEM;
1397
1398 new = vm_area_dup(vma);
1399 if (!new) {
1400 kmem_cache_free(vm_region_jar, region);
1401 return -ENOMEM;
1402 }
1403
1404 /* most fields are the same, copy all, and then fixup */
1405 *region = *vma->vm_region;
1406 new->vm_region = region;
1407
1408 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1409
1410 if (new_below) {
1411 region->vm_top = region->vm_end = new->vm_end = addr;
1412 } else {
1413 region->vm_start = new->vm_start = addr;
1414 region->vm_pgoff = new->vm_pgoff += npages;
1415 }
1416
1417 if (new->vm_ops && new->vm_ops->open)
1418 new->vm_ops->open(new);
1419
1420 delete_vma_from_mm(vma);
1421 down_write(&nommu_region_sem);
1422 delete_nommu_region(vma->vm_region);
1423 if (new_below) {
1424 vma->vm_region->vm_start = vma->vm_start = addr;
1425 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1426 } else {
1427 vma->vm_region->vm_end = vma->vm_end = addr;
1428 vma->vm_region->vm_top = addr;
1429 }
1430 add_nommu_region(vma->vm_region);
1431 add_nommu_region(new->vm_region);
1432 up_write(&nommu_region_sem);
1433 add_vma_to_mm(mm, vma);
1434 add_vma_to_mm(mm, new);
1435 return 0;
1436}
1437
1438/*
1439 * shrink a VMA by removing the specified chunk from either the beginning or
1440 * the end
1441 */
1442static int shrink_vma(struct mm_struct *mm,
1443 struct vm_area_struct *vma,
1444 unsigned long from, unsigned long to)
1445{
1446 struct vm_region *region;
1447
1448 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1449 * and list */
1450 delete_vma_from_mm(vma);
1451 if (from > vma->vm_start)
1452 vma->vm_end = from;
1453 else
1454 vma->vm_start = to;
1455 add_vma_to_mm(mm, vma);
1456
1457 /* cut the backing region down to size */
1458 region = vma->vm_region;
1459 BUG_ON(region->vm_usage != 1);
1460
1461 down_write(&nommu_region_sem);
1462 delete_nommu_region(region);
1463 if (from > region->vm_start) {
1464 to = region->vm_top;
1465 region->vm_top = region->vm_end = from;
1466 } else {
1467 region->vm_start = to;
1468 }
1469 add_nommu_region(region);
1470 up_write(&nommu_region_sem);
1471
1472 free_page_series(from, to);
1473 return 0;
1474}
1475
1476/*
1477 * release a mapping
1478 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1479 * VMA, though it need not cover the whole VMA
1480 */
1481int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1482{
1483 struct vm_area_struct *vma;
1484 unsigned long end;
1485 int ret;
1486
1487 len = PAGE_ALIGN(len);
1488 if (len == 0)
1489 return -EINVAL;
1490
1491 end = start + len;
1492
1493 /* find the first potentially overlapping VMA */
1494 vma = find_vma(mm, start);
1495 if (!vma) {
1496 static int limit;
1497 if (limit < 5) {
1498 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1499 current->pid, current->comm,
1500 start, start + len - 1);
1501 limit++;
1502 }
1503 return -EINVAL;
1504 }
1505
1506 /* we're allowed to split an anonymous VMA but not a file-backed one */
1507 if (vma->vm_file) {
1508 do {
1509 if (start > vma->vm_start)
1510 return -EINVAL;
1511 if (end == vma->vm_end)
1512 goto erase_whole_vma;
1513 vma = vma->vm_next;
1514 } while (vma);
1515 return -EINVAL;
1516 } else {
1517 /* the chunk must be a subset of the VMA found */
1518 if (start == vma->vm_start && end == vma->vm_end)
1519 goto erase_whole_vma;
1520 if (start < vma->vm_start || end > vma->vm_end)
1521 return -EINVAL;
1522 if (offset_in_page(start))
1523 return -EINVAL;
1524 if (end != vma->vm_end && offset_in_page(end))
1525 return -EINVAL;
1526 if (start != vma->vm_start && end != vma->vm_end) {
1527 ret = split_vma(mm, vma, start, 1);
1528 if (ret < 0)
1529 return ret;
1530 }
1531 return shrink_vma(mm, vma, start, end);
1532 }
1533
1534erase_whole_vma:
1535 delete_vma_from_mm(vma);
1536 delete_vma(mm, vma);
1537 return 0;
1538}
1539EXPORT_SYMBOL(do_munmap);
1540
1541int vm_munmap(unsigned long addr, size_t len)
1542{
1543 struct mm_struct *mm = current->mm;
1544 int ret;
1545
1546 down_write(&mm->mmap_sem);
1547 ret = do_munmap(mm, addr, len, NULL);
1548 up_write(&mm->mmap_sem);
1549 return ret;
1550}
1551EXPORT_SYMBOL(vm_munmap);
1552
1553SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1554{
1555 return vm_munmap(addr, len);
1556}
1557
1558/*
1559 * release all the mappings made in a process's VM space
1560 */
1561void exit_mmap(struct mm_struct *mm)
1562{
1563 struct vm_area_struct *vma;
1564
1565 if (!mm)
1566 return;
1567
1568 mm->total_vm = 0;
1569
1570 while ((vma = mm->mmap)) {
1571 mm->mmap = vma->vm_next;
1572 delete_vma_from_mm(vma);
1573 delete_vma(mm, vma);
1574 cond_resched();
1575 }
1576}
1577
1578int vm_brk(unsigned long addr, unsigned long len)
1579{
1580 return -ENOMEM;
1581}
1582
1583/*
1584 * expand (or shrink) an existing mapping, potentially moving it at the same
1585 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1586 *
1587 * under NOMMU conditions, we only permit changing a mapping's size, and only
1588 * as long as it stays within the region allocated by do_mmap_private() and the
1589 * block is not shareable
1590 *
1591 * MREMAP_FIXED is not supported under NOMMU conditions
1592 */
1593static unsigned long do_mremap(unsigned long addr,
1594 unsigned long old_len, unsigned long new_len,
1595 unsigned long flags, unsigned long new_addr)
1596{
1597 struct vm_area_struct *vma;
1598
1599 /* insanity checks first */
1600 old_len = PAGE_ALIGN(old_len);
1601 new_len = PAGE_ALIGN(new_len);
1602 if (old_len == 0 || new_len == 0)
1603 return (unsigned long) -EINVAL;
1604
1605 if (offset_in_page(addr))
1606 return -EINVAL;
1607
1608 if (flags & MREMAP_FIXED && new_addr != addr)
1609 return (unsigned long) -EINVAL;
1610
1611 vma = find_vma_exact(current->mm, addr, old_len);
1612 if (!vma)
1613 return (unsigned long) -EINVAL;
1614
1615 if (vma->vm_end != vma->vm_start + old_len)
1616 return (unsigned long) -EFAULT;
1617
1618 if (vma->vm_flags & VM_MAYSHARE)
1619 return (unsigned long) -EPERM;
1620
1621 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1622 return (unsigned long) -ENOMEM;
1623
1624 /* all checks complete - do it */
1625 vma->vm_end = vma->vm_start + new_len;
1626 return vma->vm_start;
1627}
1628
1629SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1630 unsigned long, new_len, unsigned long, flags,
1631 unsigned long, new_addr)
1632{
1633 unsigned long ret;
1634
1635 down_write(¤t->mm->mmap_sem);
1636 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1637 up_write(¤t->mm->mmap_sem);
1638 return ret;
1639}
1640
1641struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1642 unsigned int foll_flags)
1643{
1644 return NULL;
1645}
1646
1647int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1648 unsigned long pfn, unsigned long size, pgprot_t prot)
1649{
1650 if (addr != (pfn << PAGE_SHIFT))
1651 return -EINVAL;
1652
1653 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1654 return 0;
1655}
1656EXPORT_SYMBOL(remap_pfn_range);
1657
1658int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1659{
1660 unsigned long pfn = start >> PAGE_SHIFT;
1661 unsigned long vm_len = vma->vm_end - vma->vm_start;
1662
1663 pfn += vma->vm_pgoff;
1664 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1665}
1666EXPORT_SYMBOL(vm_iomap_memory);
1667
1668int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1669 unsigned long pgoff)
1670{
1671 unsigned int size = vma->vm_end - vma->vm_start;
1672
1673 if (!(vma->vm_flags & VM_USERMAP))
1674 return -EINVAL;
1675
1676 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1677 vma->vm_end = vma->vm_start + size;
1678
1679 return 0;
1680}
1681EXPORT_SYMBOL(remap_vmalloc_range);
1682
1683unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1684 unsigned long len, unsigned long pgoff, unsigned long flags)
1685{
1686 return -ENOMEM;
1687}
1688
1689vm_fault_t filemap_fault(struct vm_fault *vmf)
1690{
1691 BUG();
1692 return 0;
1693}
1694EXPORT_SYMBOL(filemap_fault);
1695
1696void filemap_map_pages(struct vm_fault *vmf,
1697 pgoff_t start_pgoff, pgoff_t end_pgoff)
1698{
1699 BUG();
1700}
1701EXPORT_SYMBOL(filemap_map_pages);
1702
1703int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1705{
1706 struct vm_area_struct *vma;
1707 int write = gup_flags & FOLL_WRITE;
1708
1709 if (down_read_killable(&mm->mmap_sem))
1710 return 0;
1711
1712 /* the access must start within one of the target process's mappings */
1713 vma = find_vma(mm, addr);
1714 if (vma) {
1715 /* don't overrun this mapping */
1716 if (addr + len >= vma->vm_end)
1717 len = vma->vm_end - addr;
1718
1719 /* only read or write mappings where it is permitted */
1720 if (write && vma->vm_flags & VM_MAYWRITE)
1721 copy_to_user_page(vma, NULL, addr,
1722 (void *) addr, buf, len);
1723 else if (!write && vma->vm_flags & VM_MAYREAD)
1724 copy_from_user_page(vma, NULL, addr,
1725 buf, (void *) addr, len);
1726 else
1727 len = 0;
1728 } else {
1729 len = 0;
1730 }
1731
1732 up_read(&mm->mmap_sem);
1733
1734 return len;
1735}
1736
1737/**
1738 * access_remote_vm - access another process' address space
1739 * @mm: the mm_struct of the target address space
1740 * @addr: start address to access
1741 * @buf: source or destination buffer
1742 * @len: number of bytes to transfer
1743 * @gup_flags: flags modifying lookup behaviour
1744 *
1745 * The caller must hold a reference on @mm.
1746 */
1747int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1748 void *buf, int len, unsigned int gup_flags)
1749{
1750 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1751}
1752
1753/*
1754 * Access another process' address space.
1755 * - source/target buffer must be kernel space
1756 */
1757int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1758 unsigned int gup_flags)
1759{
1760 struct mm_struct *mm;
1761
1762 if (addr + len < addr)
1763 return 0;
1764
1765 mm = get_task_mm(tsk);
1766 if (!mm)
1767 return 0;
1768
1769 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1770
1771 mmput(mm);
1772 return len;
1773}
1774EXPORT_SYMBOL_GPL(access_process_vm);
1775
1776/**
1777 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1778 * @inode: The inode to check
1779 * @size: The current filesize of the inode
1780 * @newsize: The proposed filesize of the inode
1781 *
1782 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1783 * make sure that that any outstanding VMAs aren't broken and then shrink the
1784 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1785 * automatically grant mappings that are too large.
1786 */
1787int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1788 size_t newsize)
1789{
1790 struct vm_area_struct *vma;
1791 struct vm_region *region;
1792 pgoff_t low, high;
1793 size_t r_size, r_top;
1794
1795 low = newsize >> PAGE_SHIFT;
1796 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1797
1798 down_write(&nommu_region_sem);
1799 i_mmap_lock_read(inode->i_mapping);
1800
1801 /* search for VMAs that fall within the dead zone */
1802 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1803 /* found one - only interested if it's shared out of the page
1804 * cache */
1805 if (vma->vm_flags & VM_SHARED) {
1806 i_mmap_unlock_read(inode->i_mapping);
1807 up_write(&nommu_region_sem);
1808 return -ETXTBSY; /* not quite true, but near enough */
1809 }
1810 }
1811
1812 /* reduce any regions that overlap the dead zone - if in existence,
1813 * these will be pointed to by VMAs that don't overlap the dead zone
1814 *
1815 * we don't check for any regions that start beyond the EOF as there
1816 * shouldn't be any
1817 */
1818 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1819 if (!(vma->vm_flags & VM_SHARED))
1820 continue;
1821
1822 region = vma->vm_region;
1823 r_size = region->vm_top - region->vm_start;
1824 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1825
1826 if (r_top > newsize) {
1827 region->vm_top -= r_top - newsize;
1828 if (region->vm_end > region->vm_top)
1829 region->vm_end = region->vm_top;
1830 }
1831 }
1832
1833 i_mmap_unlock_read(inode->i_mapping);
1834 up_write(&nommu_region_sem);
1835 return 0;
1836}
1837
1838/*
1839 * Initialise sysctl_user_reserve_kbytes.
1840 *
1841 * This is intended to prevent a user from starting a single memory hogging
1842 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1843 * mode.
1844 *
1845 * The default value is min(3% of free memory, 128MB)
1846 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1847 */
1848static int __meminit init_user_reserve(void)
1849{
1850 unsigned long free_kbytes;
1851
1852 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1853
1854 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1855 return 0;
1856}
1857subsys_initcall(init_user_reserve);
1858
1859/*
1860 * Initialise sysctl_admin_reserve_kbytes.
1861 *
1862 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1863 * to log in and kill a memory hogging process.
1864 *
1865 * Systems with more than 256MB will reserve 8MB, enough to recover
1866 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1867 * only reserve 3% of free pages by default.
1868 */
1869static int __meminit init_admin_reserve(void)
1870{
1871 unsigned long free_kbytes;
1872
1873 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1874
1875 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1876 return 0;
1877}
1878subsys_initcall(init_admin_reserve);