Linux Audio

Check our new training course

Loading...
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2016 Facebook
  4 * Copyright (C) 2013-2014 Jens Axboe
  5 */
  6
  7#include <linux/sched.h>
  8#include <linux/random.h>
  9#include <linux/sbitmap.h>
 10#include <linux/seq_file.h>
 11
 12static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
 13{
 14	unsigned depth = sb->depth;
 15
 16	sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
 17	if (!sb->alloc_hint)
 18		return -ENOMEM;
 19
 20	if (depth && !sb->round_robin) {
 21		int i;
 22
 23		for_each_possible_cpu(i)
 24			*per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth;
 25	}
 26	return 0;
 27}
 28
 29static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
 30						    unsigned int depth)
 31{
 32	unsigned hint;
 33
 34	hint = this_cpu_read(*sb->alloc_hint);
 35	if (unlikely(hint >= depth)) {
 36		hint = depth ? prandom_u32() % depth : 0;
 37		this_cpu_write(*sb->alloc_hint, hint);
 38	}
 39
 40	return hint;
 41}
 42
 43static inline void update_alloc_hint_after_get(struct sbitmap *sb,
 44					       unsigned int depth,
 45					       unsigned int hint,
 46					       unsigned int nr)
 47{
 48	if (nr == -1) {
 49		/* If the map is full, a hint won't do us much good. */
 50		this_cpu_write(*sb->alloc_hint, 0);
 51	} else if (nr == hint || unlikely(sb->round_robin)) {
 52		/* Only update the hint if we used it. */
 53		hint = nr + 1;
 54		if (hint >= depth - 1)
 55			hint = 0;
 56		this_cpu_write(*sb->alloc_hint, hint);
 57	}
 58}
 59
 60/*
 61 * See if we have deferred clears that we can batch move
 62 */
 63static inline bool sbitmap_deferred_clear(struct sbitmap_word *map)
 64{
 65	unsigned long mask;
 
 
 66
 67	if (!READ_ONCE(map->cleared))
 68		return false;
 
 
 69
 70	/*
 71	 * First get a stable cleared mask, setting the old mask to 0.
 72	 */
 73	mask = xchg(&map->cleared, 0);
 74
 75	/*
 76	 * Now clear the masked bits in our free word
 77	 */
 78	atomic_long_andnot(mask, (atomic_long_t *)&map->word);
 79	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
 80	return true;
 
 
 
 
 
 81}
 82
 83int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
 84		      gfp_t flags, int node, bool round_robin,
 85		      bool alloc_hint)
 86{
 87	unsigned int bits_per_word;
 88	unsigned int i;
 89
 90	if (shift < 0)
 91		shift = sbitmap_calculate_shift(depth);
 92
 
 
 
 
 
 
 
 
 
 
 93	bits_per_word = 1U << shift;
 94	if (bits_per_word > BITS_PER_LONG)
 95		return -EINVAL;
 96
 97	sb->shift = shift;
 98	sb->depth = depth;
 99	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
100	sb->round_robin = round_robin;
101
102	if (depth == 0) {
103		sb->map = NULL;
104		return 0;
105	}
106
107	if (alloc_hint) {
108		if (init_alloc_hint(sb, flags))
109			return -ENOMEM;
110	} else {
111		sb->alloc_hint = NULL;
112	}
113
114	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
115	if (!sb->map) {
116		free_percpu(sb->alloc_hint);
117		return -ENOMEM;
118	}
119
120	for (i = 0; i < sb->map_nr; i++) {
121		sb->map[i].depth = min(depth, bits_per_word);
122		depth -= sb->map[i].depth;
 
123	}
124	return 0;
125}
126EXPORT_SYMBOL_GPL(sbitmap_init_node);
127
128void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
129{
130	unsigned int bits_per_word = 1U << sb->shift;
131	unsigned int i;
132
133	for (i = 0; i < sb->map_nr; i++)
134		sbitmap_deferred_clear(&sb->map[i]);
135
136	sb->depth = depth;
137	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
138
139	for (i = 0; i < sb->map_nr; i++) {
140		sb->map[i].depth = min(depth, bits_per_word);
141		depth -= sb->map[i].depth;
142	}
143}
144EXPORT_SYMBOL_GPL(sbitmap_resize);
145
146static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
147			      unsigned int hint, bool wrap)
148{
 
149	int nr;
150
151	/* don't wrap if starting from 0 */
152	wrap = wrap && hint;
153
154	while (1) {
155		nr = find_next_zero_bit(word, depth, hint);
156		if (unlikely(nr >= depth)) {
157			/*
158			 * We started with an offset, and we didn't reset the
159			 * offset to 0 in a failure case, so start from 0 to
160			 * exhaust the map.
161			 */
162			if (hint && wrap) {
163				hint = 0;
164				continue;
165			}
166			return -1;
167		}
168
169		if (!test_and_set_bit_lock(nr, word))
170			break;
171
172		hint = nr + 1;
173		if (hint >= depth - 1)
174			hint = 0;
175	}
176
177	return nr;
178}
179
180static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
181				     unsigned int alloc_hint)
182{
183	struct sbitmap_word *map = &sb->map[index];
184	int nr;
185
186	do {
187		nr = __sbitmap_get_word(&map->word, map->depth, alloc_hint,
188					!sb->round_robin);
 
189		if (nr != -1)
190			break;
191		if (!sbitmap_deferred_clear(map))
192			break;
193	} while (1);
194
195	return nr;
196}
197
198static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
199{
200	unsigned int i, index;
201	int nr = -1;
202
203	index = SB_NR_TO_INDEX(sb, alloc_hint);
204
205	/*
206	 * Unless we're doing round robin tag allocation, just use the
207	 * alloc_hint to find the right word index. No point in looping
208	 * twice in find_next_zero_bit() for that case.
209	 */
210	if (sb->round_robin)
211		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
212	else
213		alloc_hint = 0;
214
215	for (i = 0; i < sb->map_nr; i++) {
216		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint);
 
217		if (nr != -1) {
218			nr += index << sb->shift;
219			break;
220		}
221
222		/* Jump to next index. */
223		alloc_hint = 0;
224		if (++index >= sb->map_nr)
225			index = 0;
226	}
227
228	return nr;
229}
230
231int sbitmap_get(struct sbitmap *sb)
232{
233	int nr;
234	unsigned int hint, depth;
235
236	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
237		return -1;
238
239	depth = READ_ONCE(sb->depth);
240	hint = update_alloc_hint_before_get(sb, depth);
241	nr = __sbitmap_get(sb, hint);
242	update_alloc_hint_after_get(sb, depth, hint, nr);
243
244	return nr;
245}
246EXPORT_SYMBOL_GPL(sbitmap_get);
247
248static int __sbitmap_get_shallow(struct sbitmap *sb,
249				 unsigned int alloc_hint,
250				 unsigned long shallow_depth)
251{
252	unsigned int i, index;
253	int nr = -1;
254
255	index = SB_NR_TO_INDEX(sb, alloc_hint);
256
257	for (i = 0; i < sb->map_nr; i++) {
258again:
259		nr = __sbitmap_get_word(&sb->map[index].word,
260					min(sb->map[index].depth, shallow_depth),
261					SB_NR_TO_BIT(sb, alloc_hint), true);
262		if (nr != -1) {
263			nr += index << sb->shift;
264			break;
265		}
266
267		if (sbitmap_deferred_clear(&sb->map[index]))
268			goto again;
269
270		/* Jump to next index. */
271		index++;
272		alloc_hint = index << sb->shift;
273
274		if (index >= sb->map_nr) {
275			index = 0;
276			alloc_hint = 0;
277		}
278	}
279
280	return nr;
281}
282
283int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
284{
285	int nr;
286	unsigned int hint, depth;
287
288	if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
289		return -1;
290
291	depth = READ_ONCE(sb->depth);
292	hint = update_alloc_hint_before_get(sb, depth);
293	nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
294	update_alloc_hint_after_get(sb, depth, hint, nr);
295
296	return nr;
297}
298EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
299
300bool sbitmap_any_bit_set(const struct sbitmap *sb)
301{
302	unsigned int i;
303
304	for (i = 0; i < sb->map_nr; i++) {
305		if (sb->map[i].word & ~sb->map[i].cleared)
306			return true;
307	}
308	return false;
309}
310EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
313{
314	unsigned int i, weight = 0;
315
316	for (i = 0; i < sb->map_nr; i++) {
317		const struct sbitmap_word *word = &sb->map[i];
318
319		if (set)
320			weight += bitmap_weight(&word->word, word->depth);
321		else
322			weight += bitmap_weight(&word->cleared, word->depth);
323	}
324	return weight;
325}
326
327static unsigned int sbitmap_cleared(const struct sbitmap *sb)
328{
329	return __sbitmap_weight(sb, false);
330}
331
332unsigned int sbitmap_weight(const struct sbitmap *sb)
333{
334	return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
335}
336EXPORT_SYMBOL_GPL(sbitmap_weight);
337
338void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
339{
340	seq_printf(m, "depth=%u\n", sb->depth);
341	seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
342	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
343	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
344	seq_printf(m, "map_nr=%u\n", sb->map_nr);
345}
346EXPORT_SYMBOL_GPL(sbitmap_show);
347
348static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
349{
350	if ((offset & 0xf) == 0) {
351		if (offset != 0)
352			seq_putc(m, '\n');
353		seq_printf(m, "%08x:", offset);
354	}
355	if ((offset & 0x1) == 0)
356		seq_putc(m, ' ');
357	seq_printf(m, "%02x", byte);
358}
359
360void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
361{
362	u8 byte = 0;
363	unsigned int byte_bits = 0;
364	unsigned int offset = 0;
365	int i;
366
367	for (i = 0; i < sb->map_nr; i++) {
368		unsigned long word = READ_ONCE(sb->map[i].word);
369		unsigned long cleared = READ_ONCE(sb->map[i].cleared);
370		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
371
372		word &= ~cleared;
373
374		while (word_bits > 0) {
375			unsigned int bits = min(8 - byte_bits, word_bits);
376
377			byte |= (word & (BIT(bits) - 1)) << byte_bits;
378			byte_bits += bits;
379			if (byte_bits == 8) {
380				emit_byte(m, offset, byte);
381				byte = 0;
382				byte_bits = 0;
383				offset++;
384			}
385			word >>= bits;
386			word_bits -= bits;
387		}
388	}
389	if (byte_bits) {
390		emit_byte(m, offset, byte);
391		offset++;
392	}
393	if (offset)
394		seq_putc(m, '\n');
395}
396EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
397
398static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
399					unsigned int depth)
400{
401	unsigned int wake_batch;
402	unsigned int shallow_depth;
403
404	/*
405	 * For each batch, we wake up one queue. We need to make sure that our
406	 * batch size is small enough that the full depth of the bitmap,
407	 * potentially limited by a shallow depth, is enough to wake up all of
408	 * the queues.
409	 *
410	 * Each full word of the bitmap has bits_per_word bits, and there might
411	 * be a partial word. There are depth / bits_per_word full words and
412	 * depth % bits_per_word bits left over. In bitwise arithmetic:
413	 *
414	 * bits_per_word = 1 << shift
415	 * depth / bits_per_word = depth >> shift
416	 * depth % bits_per_word = depth & ((1 << shift) - 1)
417	 *
418	 * Each word can be limited to sbq->min_shallow_depth bits.
419	 */
420	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
421	depth = ((depth >> sbq->sb.shift) * shallow_depth +
422		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
423	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
424			     SBQ_WAKE_BATCH);
425
426	return wake_batch;
427}
428
429int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
430			    int shift, bool round_robin, gfp_t flags, int node)
431{
432	int ret;
433	int i;
434
435	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
436				round_robin, true);
437	if (ret)
438		return ret;
439
 
 
 
 
 
 
 
 
 
 
 
440	sbq->min_shallow_depth = UINT_MAX;
441	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
442	atomic_set(&sbq->wake_index, 0);
443	atomic_set(&sbq->ws_active, 0);
444
445	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
446	if (!sbq->ws) {
 
447		sbitmap_free(&sbq->sb);
448		return -ENOMEM;
449	}
450
451	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
452		init_waitqueue_head(&sbq->ws[i].wait);
453		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
454	}
455
 
456	return 0;
457}
458EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
459
460static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
461					    unsigned int depth)
462{
463	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
464	int i;
465
466	if (sbq->wake_batch != wake_batch) {
467		WRITE_ONCE(sbq->wake_batch, wake_batch);
468		/*
469		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
470		 * to ensure that the batch size is updated before the wait
471		 * counts.
472		 */
473		smp_mb();
474		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
475			atomic_set(&sbq->ws[i].wait_cnt, 1);
476	}
477}
478
479void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
480{
481	sbitmap_queue_update_wake_batch(sbq, depth);
482	sbitmap_resize(&sbq->sb, depth);
483}
484EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
485
486int __sbitmap_queue_get(struct sbitmap_queue *sbq)
487{
488	return sbitmap_get(&sbq->sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489}
490EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
491
492int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
493				unsigned int shallow_depth)
494{
 
 
 
495	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
496
497	return sbitmap_get_shallow(&sbq->sb, shallow_depth);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
498}
499EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
500
501void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
502				     unsigned int min_shallow_depth)
503{
504	sbq->min_shallow_depth = min_shallow_depth;
505	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
506}
507EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
508
509static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
510{
511	int i, wake_index;
512
513	if (!atomic_read(&sbq->ws_active))
514		return NULL;
515
516	wake_index = atomic_read(&sbq->wake_index);
517	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
518		struct sbq_wait_state *ws = &sbq->ws[wake_index];
519
520		if (waitqueue_active(&ws->wait)) {
521			if (wake_index != atomic_read(&sbq->wake_index))
522				atomic_set(&sbq->wake_index, wake_index);
523			return ws;
524		}
525
526		wake_index = sbq_index_inc(wake_index);
527	}
528
529	return NULL;
530}
531
532static bool __sbq_wake_up(struct sbitmap_queue *sbq)
533{
534	struct sbq_wait_state *ws;
535	unsigned int wake_batch;
536	int wait_cnt;
537
538	ws = sbq_wake_ptr(sbq);
539	if (!ws)
540		return false;
541
542	wait_cnt = atomic_dec_return(&ws->wait_cnt);
543	if (wait_cnt <= 0) {
544		int ret;
545
546		wake_batch = READ_ONCE(sbq->wake_batch);
547
548		/*
549		 * Pairs with the memory barrier in sbitmap_queue_resize() to
550		 * ensure that we see the batch size update before the wait
551		 * count is reset.
552		 */
553		smp_mb__before_atomic();
554
555		/*
556		 * For concurrent callers of this, the one that failed the
557		 * atomic_cmpxhcg() race should call this function again
558		 * to wakeup a new batch on a different 'ws'.
559		 */
560		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
561		if (ret == wait_cnt) {
562			sbq_index_atomic_inc(&sbq->wake_index);
563			wake_up_nr(&ws->wait, wake_batch);
564			return false;
565		}
566
567		return true;
568	}
569
570	return false;
571}
572
573void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
574{
575	while (__sbq_wake_up(sbq))
576		;
577}
578EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
579
580void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
581			 unsigned int cpu)
582{
583	/*
584	 * Once the clear bit is set, the bit may be allocated out.
585	 *
586	 * Orders READ/WRITE on the associated instance(such as request
587	 * of blk_mq) by this bit for avoiding race with re-allocation,
588	 * and its pair is the memory barrier implied in __sbitmap_get_word.
589	 *
590	 * One invariant is that the clear bit has to be zero when the bit
591	 * is in use.
592	 */
593	smp_mb__before_atomic();
594	sbitmap_deferred_clear_bit(&sbq->sb, nr);
595
596	/*
597	 * Pairs with the memory barrier in set_current_state() to ensure the
598	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
599	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
600	 * waiter. See the comment on waitqueue_active().
601	 */
602	smp_mb__after_atomic();
603	sbitmap_queue_wake_up(sbq);
604
605	if (likely(!sbq->sb.round_robin && nr < sbq->sb.depth))
606		*per_cpu_ptr(sbq->sb.alloc_hint, cpu) = nr;
607}
608EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
609
610void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
611{
612	int i, wake_index;
613
614	/*
615	 * Pairs with the memory barrier in set_current_state() like in
616	 * sbitmap_queue_wake_up().
617	 */
618	smp_mb();
619	wake_index = atomic_read(&sbq->wake_index);
620	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
621		struct sbq_wait_state *ws = &sbq->ws[wake_index];
622
623		if (waitqueue_active(&ws->wait))
624			wake_up(&ws->wait);
625
626		wake_index = sbq_index_inc(wake_index);
627	}
628}
629EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
630
631void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
632{
633	bool first;
634	int i;
635
636	sbitmap_show(&sbq->sb, m);
637
638	seq_puts(m, "alloc_hint={");
639	first = true;
640	for_each_possible_cpu(i) {
641		if (!first)
642			seq_puts(m, ", ");
643		first = false;
644		seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
645	}
646	seq_puts(m, "}\n");
647
648	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
649	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
650	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
651
652	seq_puts(m, "ws={\n");
653	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
654		struct sbq_wait_state *ws = &sbq->ws[i];
655
656		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
657			   atomic_read(&ws->wait_cnt),
658			   waitqueue_active(&ws->wait) ? "active" : "inactive");
659	}
660	seq_puts(m, "}\n");
661
662	seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
663	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
664}
665EXPORT_SYMBOL_GPL(sbitmap_queue_show);
666
667void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
668			    struct sbq_wait_state *ws,
669			    struct sbq_wait *sbq_wait)
670{
671	if (!sbq_wait->sbq) {
672		sbq_wait->sbq = sbq;
673		atomic_inc(&sbq->ws_active);
674		add_wait_queue(&ws->wait, &sbq_wait->wait);
675	}
 
676}
677EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
678
679void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
680{
681	list_del_init(&sbq_wait->wait.entry);
682	if (sbq_wait->sbq) {
683		atomic_dec(&sbq_wait->sbq->ws_active);
684		sbq_wait->sbq = NULL;
685	}
686}
687EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
688
689void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
690			     struct sbq_wait_state *ws,
691			     struct sbq_wait *sbq_wait, int state)
692{
693	if (!sbq_wait->sbq) {
694		atomic_inc(&sbq->ws_active);
695		sbq_wait->sbq = sbq;
696	}
697	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
698}
699EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
700
701void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
702			 struct sbq_wait *sbq_wait)
703{
704	finish_wait(&ws->wait, &sbq_wait->wait);
705	if (sbq_wait->sbq) {
706		atomic_dec(&sbq->ws_active);
707		sbq_wait->sbq = NULL;
708	}
709}
710EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2016 Facebook
  4 * Copyright (C) 2013-2014 Jens Axboe
  5 */
  6
  7#include <linux/sched.h>
  8#include <linux/random.h>
  9#include <linux/sbitmap.h>
 10#include <linux/seq_file.h>
 11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 12/*
 13 * See if we have deferred clears that we can batch move
 14 */
 15static inline bool sbitmap_deferred_clear(struct sbitmap *sb, int index)
 16{
 17	unsigned long mask, val;
 18	bool ret = false;
 19	unsigned long flags;
 20
 21	spin_lock_irqsave(&sb->map[index].swap_lock, flags);
 22
 23	if (!sb->map[index].cleared)
 24		goto out_unlock;
 25
 26	/*
 27	 * First get a stable cleared mask, setting the old mask to 0.
 28	 */
 29	mask = xchg(&sb->map[index].cleared, 0);
 30
 31	/*
 32	 * Now clear the masked bits in our free word
 33	 */
 34	do {
 35		val = sb->map[index].word;
 36	} while (cmpxchg(&sb->map[index].word, val, val & ~mask) != val);
 37
 38	ret = true;
 39out_unlock:
 40	spin_unlock_irqrestore(&sb->map[index].swap_lock, flags);
 41	return ret;
 42}
 43
 44int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
 45		      gfp_t flags, int node)
 
 46{
 47	unsigned int bits_per_word;
 48	unsigned int i;
 49
 50	if (shift < 0) {
 51		shift = ilog2(BITS_PER_LONG);
 52		/*
 53		 * If the bitmap is small, shrink the number of bits per word so
 54		 * we spread over a few cachelines, at least. If less than 4
 55		 * bits, just forget about it, it's not going to work optimally
 56		 * anyway.
 57		 */
 58		if (depth >= 4) {
 59			while ((4U << shift) > depth)
 60				shift--;
 61		}
 62	}
 63	bits_per_word = 1U << shift;
 64	if (bits_per_word > BITS_PER_LONG)
 65		return -EINVAL;
 66
 67	sb->shift = shift;
 68	sb->depth = depth;
 69	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
 
 70
 71	if (depth == 0) {
 72		sb->map = NULL;
 73		return 0;
 74	}
 75
 
 
 
 
 
 
 
 76	sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
 77	if (!sb->map)
 
 78		return -ENOMEM;
 
 79
 80	for (i = 0; i < sb->map_nr; i++) {
 81		sb->map[i].depth = min(depth, bits_per_word);
 82		depth -= sb->map[i].depth;
 83		spin_lock_init(&sb->map[i].swap_lock);
 84	}
 85	return 0;
 86}
 87EXPORT_SYMBOL_GPL(sbitmap_init_node);
 88
 89void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
 90{
 91	unsigned int bits_per_word = 1U << sb->shift;
 92	unsigned int i;
 93
 94	for (i = 0; i < sb->map_nr; i++)
 95		sbitmap_deferred_clear(sb, i);
 96
 97	sb->depth = depth;
 98	sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
 99
100	for (i = 0; i < sb->map_nr; i++) {
101		sb->map[i].depth = min(depth, bits_per_word);
102		depth -= sb->map[i].depth;
103	}
104}
105EXPORT_SYMBOL_GPL(sbitmap_resize);
106
107static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
108			      unsigned int hint, bool wrap)
109{
110	unsigned int orig_hint = hint;
111	int nr;
112
 
 
 
113	while (1) {
114		nr = find_next_zero_bit(word, depth, hint);
115		if (unlikely(nr >= depth)) {
116			/*
117			 * We started with an offset, and we didn't reset the
118			 * offset to 0 in a failure case, so start from 0 to
119			 * exhaust the map.
120			 */
121			if (orig_hint && hint && wrap) {
122				hint = orig_hint = 0;
123				continue;
124			}
125			return -1;
126		}
127
128		if (!test_and_set_bit_lock(nr, word))
129			break;
130
131		hint = nr + 1;
132		if (hint >= depth - 1)
133			hint = 0;
134	}
135
136	return nr;
137}
138
139static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
140				     unsigned int alloc_hint, bool round_robin)
141{
 
142	int nr;
143
144	do {
145		nr = __sbitmap_get_word(&sb->map[index].word,
146					sb->map[index].depth, alloc_hint,
147					!round_robin);
148		if (nr != -1)
149			break;
150		if (!sbitmap_deferred_clear(sb, index))
151			break;
152	} while (1);
153
154	return nr;
155}
156
157int sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint, bool round_robin)
158{
159	unsigned int i, index;
160	int nr = -1;
161
162	index = SB_NR_TO_INDEX(sb, alloc_hint);
163
164	/*
165	 * Unless we're doing round robin tag allocation, just use the
166	 * alloc_hint to find the right word index. No point in looping
167	 * twice in find_next_zero_bit() for that case.
168	 */
169	if (round_robin)
170		alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
171	else
172		alloc_hint = 0;
173
174	for (i = 0; i < sb->map_nr; i++) {
175		nr = sbitmap_find_bit_in_index(sb, index, alloc_hint,
176						round_robin);
177		if (nr != -1) {
178			nr += index << sb->shift;
179			break;
180		}
181
182		/* Jump to next index. */
183		alloc_hint = 0;
184		if (++index >= sb->map_nr)
185			index = 0;
186	}
187
188	return nr;
189}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190EXPORT_SYMBOL_GPL(sbitmap_get);
191
192int sbitmap_get_shallow(struct sbitmap *sb, unsigned int alloc_hint,
193			unsigned long shallow_depth)
 
194{
195	unsigned int i, index;
196	int nr = -1;
197
198	index = SB_NR_TO_INDEX(sb, alloc_hint);
199
200	for (i = 0; i < sb->map_nr; i++) {
201again:
202		nr = __sbitmap_get_word(&sb->map[index].word,
203					min(sb->map[index].depth, shallow_depth),
204					SB_NR_TO_BIT(sb, alloc_hint), true);
205		if (nr != -1) {
206			nr += index << sb->shift;
207			break;
208		}
209
210		if (sbitmap_deferred_clear(sb, index))
211			goto again;
212
213		/* Jump to next index. */
214		index++;
215		alloc_hint = index << sb->shift;
216
217		if (index >= sb->map_nr) {
218			index = 0;
219			alloc_hint = 0;
220		}
221	}
222
223	return nr;
224}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
226
227bool sbitmap_any_bit_set(const struct sbitmap *sb)
228{
229	unsigned int i;
230
231	for (i = 0; i < sb->map_nr; i++) {
232		if (sb->map[i].word & ~sb->map[i].cleared)
233			return true;
234	}
235	return false;
236}
237EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
238
239bool sbitmap_any_bit_clear(const struct sbitmap *sb)
240{
241	unsigned int i;
242
243	for (i = 0; i < sb->map_nr; i++) {
244		const struct sbitmap_word *word = &sb->map[i];
245		unsigned long mask = word->word & ~word->cleared;
246		unsigned long ret;
247
248		ret = find_first_zero_bit(&mask, word->depth);
249		if (ret < word->depth)
250			return true;
251	}
252	return false;
253}
254EXPORT_SYMBOL_GPL(sbitmap_any_bit_clear);
255
256static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
257{
258	unsigned int i, weight = 0;
259
260	for (i = 0; i < sb->map_nr; i++) {
261		const struct sbitmap_word *word = &sb->map[i];
262
263		if (set)
264			weight += bitmap_weight(&word->word, word->depth);
265		else
266			weight += bitmap_weight(&word->cleared, word->depth);
267	}
268	return weight;
269}
270
271static unsigned int sbitmap_weight(const struct sbitmap *sb)
272{
273	return __sbitmap_weight(sb, true);
274}
275
276static unsigned int sbitmap_cleared(const struct sbitmap *sb)
277{
278	return __sbitmap_weight(sb, false);
279}
 
280
281void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
282{
283	seq_printf(m, "depth=%u\n", sb->depth);
284	seq_printf(m, "busy=%u\n", sbitmap_weight(sb) - sbitmap_cleared(sb));
285	seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
286	seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
287	seq_printf(m, "map_nr=%u\n", sb->map_nr);
288}
289EXPORT_SYMBOL_GPL(sbitmap_show);
290
291static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
292{
293	if ((offset & 0xf) == 0) {
294		if (offset != 0)
295			seq_putc(m, '\n');
296		seq_printf(m, "%08x:", offset);
297	}
298	if ((offset & 0x1) == 0)
299		seq_putc(m, ' ');
300	seq_printf(m, "%02x", byte);
301}
302
303void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
304{
305	u8 byte = 0;
306	unsigned int byte_bits = 0;
307	unsigned int offset = 0;
308	int i;
309
310	for (i = 0; i < sb->map_nr; i++) {
311		unsigned long word = READ_ONCE(sb->map[i].word);
 
312		unsigned int word_bits = READ_ONCE(sb->map[i].depth);
313
 
 
314		while (word_bits > 0) {
315			unsigned int bits = min(8 - byte_bits, word_bits);
316
317			byte |= (word & (BIT(bits) - 1)) << byte_bits;
318			byte_bits += bits;
319			if (byte_bits == 8) {
320				emit_byte(m, offset, byte);
321				byte = 0;
322				byte_bits = 0;
323				offset++;
324			}
325			word >>= bits;
326			word_bits -= bits;
327		}
328	}
329	if (byte_bits) {
330		emit_byte(m, offset, byte);
331		offset++;
332	}
333	if (offset)
334		seq_putc(m, '\n');
335}
336EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
337
338static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
339					unsigned int depth)
340{
341	unsigned int wake_batch;
342	unsigned int shallow_depth;
343
344	/*
345	 * For each batch, we wake up one queue. We need to make sure that our
346	 * batch size is small enough that the full depth of the bitmap,
347	 * potentially limited by a shallow depth, is enough to wake up all of
348	 * the queues.
349	 *
350	 * Each full word of the bitmap has bits_per_word bits, and there might
351	 * be a partial word. There are depth / bits_per_word full words and
352	 * depth % bits_per_word bits left over. In bitwise arithmetic:
353	 *
354	 * bits_per_word = 1 << shift
355	 * depth / bits_per_word = depth >> shift
356	 * depth % bits_per_word = depth & ((1 << shift) - 1)
357	 *
358	 * Each word can be limited to sbq->min_shallow_depth bits.
359	 */
360	shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
361	depth = ((depth >> sbq->sb.shift) * shallow_depth +
362		 min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
363	wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
364			     SBQ_WAKE_BATCH);
365
366	return wake_batch;
367}
368
369int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
370			    int shift, bool round_robin, gfp_t flags, int node)
371{
372	int ret;
373	int i;
374
375	ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node);
 
376	if (ret)
377		return ret;
378
379	sbq->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
380	if (!sbq->alloc_hint) {
381		sbitmap_free(&sbq->sb);
382		return -ENOMEM;
383	}
384
385	if (depth && !round_robin) {
386		for_each_possible_cpu(i)
387			*per_cpu_ptr(sbq->alloc_hint, i) = prandom_u32() % depth;
388	}
389
390	sbq->min_shallow_depth = UINT_MAX;
391	sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
392	atomic_set(&sbq->wake_index, 0);
393	atomic_set(&sbq->ws_active, 0);
394
395	sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
396	if (!sbq->ws) {
397		free_percpu(sbq->alloc_hint);
398		sbitmap_free(&sbq->sb);
399		return -ENOMEM;
400	}
401
402	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
403		init_waitqueue_head(&sbq->ws[i].wait);
404		atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
405	}
406
407	sbq->round_robin = round_robin;
408	return 0;
409}
410EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
411
412static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
413					    unsigned int depth)
414{
415	unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
416	int i;
417
418	if (sbq->wake_batch != wake_batch) {
419		WRITE_ONCE(sbq->wake_batch, wake_batch);
420		/*
421		 * Pairs with the memory barrier in sbitmap_queue_wake_up()
422		 * to ensure that the batch size is updated before the wait
423		 * counts.
424		 */
425		smp_mb();
426		for (i = 0; i < SBQ_WAIT_QUEUES; i++)
427			atomic_set(&sbq->ws[i].wait_cnt, 1);
428	}
429}
430
431void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
432{
433	sbitmap_queue_update_wake_batch(sbq, depth);
434	sbitmap_resize(&sbq->sb, depth);
435}
436EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
437
438int __sbitmap_queue_get(struct sbitmap_queue *sbq)
439{
440	unsigned int hint, depth;
441	int nr;
442
443	hint = this_cpu_read(*sbq->alloc_hint);
444	depth = READ_ONCE(sbq->sb.depth);
445	if (unlikely(hint >= depth)) {
446		hint = depth ? prandom_u32() % depth : 0;
447		this_cpu_write(*sbq->alloc_hint, hint);
448	}
449	nr = sbitmap_get(&sbq->sb, hint, sbq->round_robin);
450
451	if (nr == -1) {
452		/* If the map is full, a hint won't do us much good. */
453		this_cpu_write(*sbq->alloc_hint, 0);
454	} else if (nr == hint || unlikely(sbq->round_robin)) {
455		/* Only update the hint if we used it. */
456		hint = nr + 1;
457		if (hint >= depth - 1)
458			hint = 0;
459		this_cpu_write(*sbq->alloc_hint, hint);
460	}
461
462	return nr;
463}
464EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
465
466int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
467				unsigned int shallow_depth)
468{
469	unsigned int hint, depth;
470	int nr;
471
472	WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
473
474	hint = this_cpu_read(*sbq->alloc_hint);
475	depth = READ_ONCE(sbq->sb.depth);
476	if (unlikely(hint >= depth)) {
477		hint = depth ? prandom_u32() % depth : 0;
478		this_cpu_write(*sbq->alloc_hint, hint);
479	}
480	nr = sbitmap_get_shallow(&sbq->sb, hint, shallow_depth);
481
482	if (nr == -1) {
483		/* If the map is full, a hint won't do us much good. */
484		this_cpu_write(*sbq->alloc_hint, 0);
485	} else if (nr == hint || unlikely(sbq->round_robin)) {
486		/* Only update the hint if we used it. */
487		hint = nr + 1;
488		if (hint >= depth - 1)
489			hint = 0;
490		this_cpu_write(*sbq->alloc_hint, hint);
491	}
492
493	return nr;
494}
495EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
496
497void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
498				     unsigned int min_shallow_depth)
499{
500	sbq->min_shallow_depth = min_shallow_depth;
501	sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
502}
503EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
504
505static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
506{
507	int i, wake_index;
508
509	if (!atomic_read(&sbq->ws_active))
510		return NULL;
511
512	wake_index = atomic_read(&sbq->wake_index);
513	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
514		struct sbq_wait_state *ws = &sbq->ws[wake_index];
515
516		if (waitqueue_active(&ws->wait)) {
517			if (wake_index != atomic_read(&sbq->wake_index))
518				atomic_set(&sbq->wake_index, wake_index);
519			return ws;
520		}
521
522		wake_index = sbq_index_inc(wake_index);
523	}
524
525	return NULL;
526}
527
528static bool __sbq_wake_up(struct sbitmap_queue *sbq)
529{
530	struct sbq_wait_state *ws;
531	unsigned int wake_batch;
532	int wait_cnt;
533
534	ws = sbq_wake_ptr(sbq);
535	if (!ws)
536		return false;
537
538	wait_cnt = atomic_dec_return(&ws->wait_cnt);
539	if (wait_cnt <= 0) {
540		int ret;
541
542		wake_batch = READ_ONCE(sbq->wake_batch);
543
544		/*
545		 * Pairs with the memory barrier in sbitmap_queue_resize() to
546		 * ensure that we see the batch size update before the wait
547		 * count is reset.
548		 */
549		smp_mb__before_atomic();
550
551		/*
552		 * For concurrent callers of this, the one that failed the
553		 * atomic_cmpxhcg() race should call this function again
554		 * to wakeup a new batch on a different 'ws'.
555		 */
556		ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
557		if (ret == wait_cnt) {
558			sbq_index_atomic_inc(&sbq->wake_index);
559			wake_up_nr(&ws->wait, wake_batch);
560			return false;
561		}
562
563		return true;
564	}
565
566	return false;
567}
568
569void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
570{
571	while (__sbq_wake_up(sbq))
572		;
573}
574EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
575
576void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
577			 unsigned int cpu)
578{
579	/*
580	 * Once the clear bit is set, the bit may be allocated out.
581	 *
582	 * Orders READ/WRITE on the asssociated instance(such as request
583	 * of blk_mq) by this bit for avoiding race with re-allocation,
584	 * and its pair is the memory barrier implied in __sbitmap_get_word.
585	 *
586	 * One invariant is that the clear bit has to be zero when the bit
587	 * is in use.
588	 */
589	smp_mb__before_atomic();
590	sbitmap_deferred_clear_bit(&sbq->sb, nr);
591
592	/*
593	 * Pairs with the memory barrier in set_current_state() to ensure the
594	 * proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
595	 * and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
596	 * waiter. See the comment on waitqueue_active().
597	 */
598	smp_mb__after_atomic();
599	sbitmap_queue_wake_up(sbq);
600
601	if (likely(!sbq->round_robin && nr < sbq->sb.depth))
602		*per_cpu_ptr(sbq->alloc_hint, cpu) = nr;
603}
604EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
605
606void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
607{
608	int i, wake_index;
609
610	/*
611	 * Pairs with the memory barrier in set_current_state() like in
612	 * sbitmap_queue_wake_up().
613	 */
614	smp_mb();
615	wake_index = atomic_read(&sbq->wake_index);
616	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
617		struct sbq_wait_state *ws = &sbq->ws[wake_index];
618
619		if (waitqueue_active(&ws->wait))
620			wake_up(&ws->wait);
621
622		wake_index = sbq_index_inc(wake_index);
623	}
624}
625EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
626
627void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
628{
629	bool first;
630	int i;
631
632	sbitmap_show(&sbq->sb, m);
633
634	seq_puts(m, "alloc_hint={");
635	first = true;
636	for_each_possible_cpu(i) {
637		if (!first)
638			seq_puts(m, ", ");
639		first = false;
640		seq_printf(m, "%u", *per_cpu_ptr(sbq->alloc_hint, i));
641	}
642	seq_puts(m, "}\n");
643
644	seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
645	seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
646	seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
647
648	seq_puts(m, "ws={\n");
649	for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
650		struct sbq_wait_state *ws = &sbq->ws[i];
651
652		seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
653			   atomic_read(&ws->wait_cnt),
654			   waitqueue_active(&ws->wait) ? "active" : "inactive");
655	}
656	seq_puts(m, "}\n");
657
658	seq_printf(m, "round_robin=%d\n", sbq->round_robin);
659	seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
660}
661EXPORT_SYMBOL_GPL(sbitmap_queue_show);
662
663void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
664			    struct sbq_wait_state *ws,
665			    struct sbq_wait *sbq_wait)
666{
667	if (!sbq_wait->sbq) {
668		sbq_wait->sbq = sbq;
669		atomic_inc(&sbq->ws_active);
 
670	}
671	add_wait_queue(&ws->wait, &sbq_wait->wait);
672}
673EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
674
675void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
676{
677	list_del_init(&sbq_wait->wait.entry);
678	if (sbq_wait->sbq) {
679		atomic_dec(&sbq_wait->sbq->ws_active);
680		sbq_wait->sbq = NULL;
681	}
682}
683EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
684
685void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
686			     struct sbq_wait_state *ws,
687			     struct sbq_wait *sbq_wait, int state)
688{
689	if (!sbq_wait->sbq) {
690		atomic_inc(&sbq->ws_active);
691		sbq_wait->sbq = sbq;
692	}
693	prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
694}
695EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
696
697void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
698			 struct sbq_wait *sbq_wait)
699{
700	finish_wait(&ws->wait, &sbq_wait->wait);
701	if (sbq_wait->sbq) {
702		atomic_dec(&sbq->ws_active);
703		sbq_wait->sbq = NULL;
704	}
705}
706EXPORT_SYMBOL_GPL(sbitmap_finish_wait);