Loading...
1/*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12#ifndef _LINUX_EDAC_H_
13#define _LINUX_EDAC_H_
14
15#include <linux/atomic.h>
16#include <linux/device.h>
17#include <linux/completion.h>
18#include <linux/workqueue.h>
19#include <linux/debugfs.h>
20#include <linux/numa.h>
21
22#define EDAC_DEVICE_NAME_LEN 31
23
24struct device;
25
26#define EDAC_OPSTATE_INVAL -1
27#define EDAC_OPSTATE_POLL 0
28#define EDAC_OPSTATE_NMI 1
29#define EDAC_OPSTATE_INT 2
30
31extern int edac_op_state;
32
33struct bus_type *edac_get_sysfs_subsys(void);
34
35static inline void opstate_init(void)
36{
37 switch (edac_op_state) {
38 case EDAC_OPSTATE_POLL:
39 case EDAC_OPSTATE_NMI:
40 break;
41 default:
42 edac_op_state = EDAC_OPSTATE_POLL;
43 }
44 return;
45}
46
47/* Max length of a DIMM label*/
48#define EDAC_MC_LABEL_LEN 31
49
50/* Maximum size of the location string */
51#define LOCATION_SIZE 256
52
53/* Defines the maximum number of labels that can be reported */
54#define EDAC_MAX_LABELS 8
55
56/* String used to join two or more labels */
57#define OTHER_LABEL " or "
58
59/**
60 * enum dev_type - describe the type of memory DRAM chips used at the stick
61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
62 * @DEV_X1: 1 bit for data
63 * @DEV_X2: 2 bits for data
64 * @DEV_X4: 4 bits for data
65 * @DEV_X8: 8 bits for data
66 * @DEV_X16: 16 bits for data
67 * @DEV_X32: 32 bits for data
68 * @DEV_X64: 64 bits for data
69 *
70 * Typical values are x4 and x8.
71 */
72enum dev_type {
73 DEV_UNKNOWN = 0,
74 DEV_X1,
75 DEV_X2,
76 DEV_X4,
77 DEV_X8,
78 DEV_X16,
79 DEV_X32, /* Do these parts exist? */
80 DEV_X64 /* Do these parts exist? */
81};
82
83#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
84#define DEV_FLAG_X1 BIT(DEV_X1)
85#define DEV_FLAG_X2 BIT(DEV_X2)
86#define DEV_FLAG_X4 BIT(DEV_X4)
87#define DEV_FLAG_X8 BIT(DEV_X8)
88#define DEV_FLAG_X16 BIT(DEV_X16)
89#define DEV_FLAG_X32 BIT(DEV_X32)
90#define DEV_FLAG_X64 BIT(DEV_X64)
91
92/**
93 * enum hw_event_mc_err_type - type of the detected error
94 *
95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
96 * corrected error was detected
97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
98 * can't be corrected by ECC, but it is not
99 * fatal (maybe it is on an unused memory area,
100 * or the memory controller could recover from
101 * it for example, by re-trying the operation).
102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
103 * error whose handling is not urgent. This could
104 * be due to hardware data poisoning where the
105 * system can continue operation until the poisoned
106 * data is consumed. Preemptive measures may also
107 * be taken, e.g. offlining pages, etc.
108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
109 * be recovered.
110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
111 * type of error: informational logs.
112 */
113enum hw_event_mc_err_type {
114 HW_EVENT_ERR_CORRECTED,
115 HW_EVENT_ERR_UNCORRECTED,
116 HW_EVENT_ERR_DEFERRED,
117 HW_EVENT_ERR_FATAL,
118 HW_EVENT_ERR_INFO,
119};
120
121static inline char *mc_event_error_type(const unsigned int err_type)
122{
123 switch (err_type) {
124 case HW_EVENT_ERR_CORRECTED:
125 return "Corrected";
126 case HW_EVENT_ERR_UNCORRECTED:
127 return "Uncorrected";
128 case HW_EVENT_ERR_DEFERRED:
129 return "Deferred";
130 case HW_EVENT_ERR_FATAL:
131 return "Fatal";
132 default:
133 case HW_EVENT_ERR_INFO:
134 return "Info";
135 }
136}
137
138/**
139 * enum mem_type - memory types. For a more detailed reference, please see
140 * http://en.wikipedia.org/wiki/DRAM
141 *
142 * @MEM_EMPTY: Empty csrow
143 * @MEM_RESERVED: Reserved csrow type
144 * @MEM_UNKNOWN: Unknown csrow type
145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
148 * @MEM_SDR: SDR - Single data rate SDRAM
149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
150 * They use 3 pins for chip select: Pins 0 and 2 are
151 * for rank 0; pins 1 and 3 are for rank 1, if the memory
152 * is dual-rank.
153 * @MEM_RDR: Registered SDR SDRAM
154 * @MEM_DDR: Double data rate SDRAM
155 * http://en.wikipedia.org/wiki/DDR_SDRAM
156 * @MEM_RDDR: Registered Double data rate SDRAM
157 * This is a variant of the DDR memories.
158 * A registered memory has a buffer inside it, hiding
159 * part of the memory details to the memory controller.
160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
162 * Those memories are labeled as "PC2-" instead of "PC" to
163 * differentiate from DDR.
164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
165 * and JESD206.
166 * Those memories are accessed per DIMM slot, and not by
167 * a chip select signal.
168 * @MEM_RDDR2: Registered DDR2 RAM
169 * This is a variant of the DDR2 memories.
170 * @MEM_XDR: Rambus XDR
171 * It is an evolution of the original RAMBUS memories,
172 * created to compete with DDR2. Weren't used on any
173 * x86 arch, but cell_edac PPC memory controller uses it.
174 * @MEM_DDR3: DDR3 RAM
175 * @MEM_RDDR3: Registered DDR3 RAM
176 * This is a variant of the DDR3 memories.
177 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
178 * @MEM_LPDDR3: Low-Power DDR3 memory.
179 * @MEM_DDR4: Unbuffered DDR4 RAM
180 * @MEM_RDDR4: Registered DDR4 RAM
181 * This is a variant of the DDR4 memories.
182 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
183 * @MEM_LPDDR4: Low-Power DDR4 memory.
184 * @MEM_DDR5: Unbuffered DDR5 RAM
185 * @MEM_NVDIMM: Non-volatile RAM
186 * @MEM_WIO2: Wide I/O 2.
187 */
188enum mem_type {
189 MEM_EMPTY = 0,
190 MEM_RESERVED,
191 MEM_UNKNOWN,
192 MEM_FPM,
193 MEM_EDO,
194 MEM_BEDO,
195 MEM_SDR,
196 MEM_RDR,
197 MEM_DDR,
198 MEM_RDDR,
199 MEM_RMBS,
200 MEM_DDR2,
201 MEM_FB_DDR2,
202 MEM_RDDR2,
203 MEM_XDR,
204 MEM_DDR3,
205 MEM_RDDR3,
206 MEM_LRDDR3,
207 MEM_LPDDR3,
208 MEM_DDR4,
209 MEM_RDDR4,
210 MEM_LRDDR4,
211 MEM_LPDDR4,
212 MEM_DDR5,
213 MEM_NVDIMM,
214 MEM_WIO2,
215};
216
217#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
218#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
219#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
220#define MEM_FLAG_FPM BIT(MEM_FPM)
221#define MEM_FLAG_EDO BIT(MEM_EDO)
222#define MEM_FLAG_BEDO BIT(MEM_BEDO)
223#define MEM_FLAG_SDR BIT(MEM_SDR)
224#define MEM_FLAG_RDR BIT(MEM_RDR)
225#define MEM_FLAG_DDR BIT(MEM_DDR)
226#define MEM_FLAG_RDDR BIT(MEM_RDDR)
227#define MEM_FLAG_RMBS BIT(MEM_RMBS)
228#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
229#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
230#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
231#define MEM_FLAG_XDR BIT(MEM_XDR)
232#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
233#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
234#define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3)
235#define MEM_FLAG_DDR4 BIT(MEM_DDR4)
236#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
237#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
238#define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4)
239#define MEM_FLAG_DDR5 BIT(MEM_DDR5)
240#define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM)
241#define MEM_FLAG_WIO2 BIT(MEM_WIO2)
242
243/**
244 * enum edac_type - Error Detection and Correction capabilities and mode
245 * @EDAC_UNKNOWN: Unknown if ECC is available
246 * @EDAC_NONE: Doesn't support ECC
247 * @EDAC_RESERVED: Reserved ECC type
248 * @EDAC_PARITY: Detects parity errors
249 * @EDAC_EC: Error Checking - no correction
250 * @EDAC_SECDED: Single bit error correction, Double detection
251 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
252 * @EDAC_S4ECD4ED: Chipkill x4 devices
253 * @EDAC_S8ECD8ED: Chipkill x8 devices
254 * @EDAC_S16ECD16ED: Chipkill x16 devices
255 */
256enum edac_type {
257 EDAC_UNKNOWN = 0,
258 EDAC_NONE,
259 EDAC_RESERVED,
260 EDAC_PARITY,
261 EDAC_EC,
262 EDAC_SECDED,
263 EDAC_S2ECD2ED,
264 EDAC_S4ECD4ED,
265 EDAC_S8ECD8ED,
266 EDAC_S16ECD16ED,
267};
268
269#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
270#define EDAC_FLAG_NONE BIT(EDAC_NONE)
271#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
272#define EDAC_FLAG_EC BIT(EDAC_EC)
273#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
274#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
275#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
276#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
277#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
278
279/**
280 * enum scrub_type - scrubbing capabilities
281 * @SCRUB_UNKNOWN: Unknown if scrubber is available
282 * @SCRUB_NONE: No scrubber
283 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
284 * @SCRUB_SW_SRC: Software scrub only errors
285 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
286 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
287 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
288 * @SCRUB_HW_SRC: Hardware scrub only errors
289 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
290 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
291 */
292enum scrub_type {
293 SCRUB_UNKNOWN = 0,
294 SCRUB_NONE,
295 SCRUB_SW_PROG,
296 SCRUB_SW_SRC,
297 SCRUB_SW_PROG_SRC,
298 SCRUB_SW_TUNABLE,
299 SCRUB_HW_PROG,
300 SCRUB_HW_SRC,
301 SCRUB_HW_PROG_SRC,
302 SCRUB_HW_TUNABLE
303};
304
305#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
306#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
307#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
308#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
309#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
310#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
311#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
312#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
313
314/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
315
316/* EDAC internal operation states */
317#define OP_ALLOC 0x100
318#define OP_RUNNING_POLL 0x201
319#define OP_RUNNING_INTERRUPT 0x202
320#define OP_RUNNING_POLL_INTR 0x203
321#define OP_OFFLINE 0x300
322
323/**
324 * enum edac_mc_layer_type - memory controller hierarchy layer
325 *
326 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
327 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
328 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
329 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
330 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
331 * as a single memory area. This is used when
332 * retrieving errors from a firmware driven driver.
333 *
334 * This enum is used by the drivers to tell edac_mc_sysfs what name should
335 * be used when describing a memory stick location.
336 */
337enum edac_mc_layer_type {
338 EDAC_MC_LAYER_BRANCH,
339 EDAC_MC_LAYER_CHANNEL,
340 EDAC_MC_LAYER_SLOT,
341 EDAC_MC_LAYER_CHIP_SELECT,
342 EDAC_MC_LAYER_ALL_MEM,
343};
344
345/**
346 * struct edac_mc_layer - describes the memory controller hierarchy
347 * @type: layer type
348 * @size: number of components per layer. For example,
349 * if the channel layer has two channels, size = 2
350 * @is_virt_csrow: This layer is part of the "csrow" when old API
351 * compatibility mode is enabled. Otherwise, it is
352 * a channel
353 */
354struct edac_mc_layer {
355 enum edac_mc_layer_type type;
356 unsigned size;
357 bool is_virt_csrow;
358};
359
360/*
361 * Maximum number of layers used by the memory controller to uniquely
362 * identify a single memory stick.
363 * NOTE: Changing this constant requires not only to change the constant
364 * below, but also to change the existing code at the core, as there are
365 * some code there that are optimized for 3 layers.
366 */
367#define EDAC_MAX_LAYERS 3
368
369struct dimm_info {
370 struct device dev;
371
372 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
373
374 /* Memory location data */
375 unsigned int location[EDAC_MAX_LAYERS];
376
377 struct mem_ctl_info *mci; /* the parent */
378 unsigned int idx; /* index within the parent dimm array */
379
380 u32 grain; /* granularity of reported error in bytes */
381 enum dev_type dtype; /* memory device type */
382 enum mem_type mtype; /* memory dimm type */
383 enum edac_type edac_mode; /* EDAC mode for this dimm */
384
385 u32 nr_pages; /* number of pages on this dimm */
386
387 unsigned int csrow, cschannel; /* Points to the old API data */
388
389 u16 smbios_handle; /* Handle for SMBIOS type 17 */
390
391 u32 ce_count;
392 u32 ue_count;
393};
394
395/**
396 * struct rank_info - contains the information for one DIMM rank
397 *
398 * @chan_idx: channel number where the rank is (typically, 0 or 1)
399 * @ce_count: number of correctable errors for this rank
400 * @csrow: A pointer to the chip select row structure (the parent
401 * structure). The location of the rank is given by
402 * the (csrow->csrow_idx, chan_idx) vector.
403 * @dimm: A pointer to the DIMM structure, where the DIMM label
404 * information is stored.
405 *
406 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
407 * This is a bad assumption, but it makes this patch easier. Later
408 * patches in this series will fix this issue.
409 */
410struct rank_info {
411 int chan_idx;
412 struct csrow_info *csrow;
413 struct dimm_info *dimm;
414
415 u32 ce_count; /* Correctable Errors for this csrow */
416};
417
418struct csrow_info {
419 struct device dev;
420
421 /* Used only by edac_mc_find_csrow_by_page() */
422 unsigned long first_page; /* first page number in csrow */
423 unsigned long last_page; /* last page number in csrow */
424 unsigned long page_mask; /* used for interleaving -
425 * 0UL for non intlv */
426
427 int csrow_idx; /* the chip-select row */
428
429 u32 ue_count; /* Uncorrectable Errors for this csrow */
430 u32 ce_count; /* Correctable Errors for this csrow */
431
432 struct mem_ctl_info *mci; /* the parent */
433
434 /* channel information for this csrow */
435 u32 nr_channels;
436 struct rank_info **channels;
437};
438
439/*
440 * struct errcount_attribute - used to store the several error counts
441 */
442struct errcount_attribute_data {
443 int n_layers;
444 int pos[EDAC_MAX_LAYERS];
445 int layer0, layer1, layer2;
446};
447
448/**
449 * struct edac_raw_error_desc - Raw error report structure
450 * @grain: minimum granularity for an error report, in bytes
451 * @error_count: number of errors of the same type
452 * @type: severity of the error (CE/UE/Fatal)
453 * @top_layer: top layer of the error (layer[0])
454 * @mid_layer: middle layer of the error (layer[1])
455 * @low_layer: low layer of the error (layer[2])
456 * @page_frame_number: page where the error happened
457 * @offset_in_page: page offset
458 * @syndrome: syndrome of the error (or 0 if unknown or if
459 * the syndrome is not applicable)
460 * @msg: error message
461 * @location: location of the error
462 * @label: label of the affected DIMM(s)
463 * @other_detail: other driver-specific detail about the error
464 */
465struct edac_raw_error_desc {
466 char location[LOCATION_SIZE];
467 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
468 long grain;
469
470 u16 error_count;
471 enum hw_event_mc_err_type type;
472 int top_layer;
473 int mid_layer;
474 int low_layer;
475 unsigned long page_frame_number;
476 unsigned long offset_in_page;
477 unsigned long syndrome;
478 const char *msg;
479 const char *other_detail;
480};
481
482/* MEMORY controller information structure
483 */
484struct mem_ctl_info {
485 struct device dev;
486 struct bus_type *bus;
487
488 struct list_head link; /* for global list of mem_ctl_info structs */
489
490 struct module *owner; /* Module owner of this control struct */
491
492 unsigned long mtype_cap; /* memory types supported by mc */
493 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
494 unsigned long edac_cap; /* configuration capabilities - this is
495 * closely related to edac_ctl_cap. The
496 * difference is that the controller may be
497 * capable of s4ecd4ed which would be listed
498 * in edac_ctl_cap, but if channels aren't
499 * capable of s4ecd4ed then the edac_cap would
500 * not have that capability.
501 */
502 unsigned long scrub_cap; /* chipset scrub capabilities */
503 enum scrub_type scrub_mode; /* current scrub mode */
504
505 /* Translates sdram memory scrub rate given in bytes/sec to the
506 internal representation and configures whatever else needs
507 to be configured.
508 */
509 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
510
511 /* Get the current sdram memory scrub rate from the internal
512 representation and converts it to the closest matching
513 bandwidth in bytes/sec.
514 */
515 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
516
517
518 /* pointer to edac checking routine */
519 void (*edac_check) (struct mem_ctl_info * mci);
520
521 /*
522 * Remaps memory pages: controller pages to physical pages.
523 * For most MC's, this will be NULL.
524 */
525 /* FIXME - why not send the phys page to begin with? */
526 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
527 unsigned long page);
528 int mc_idx;
529 struct csrow_info **csrows;
530 unsigned int nr_csrows, num_cschannel;
531
532 /*
533 * Memory Controller hierarchy
534 *
535 * There are basically two types of memory controller: the ones that
536 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
537 * All old memory controllers enumerate memories per rank, but most
538 * of the recent drivers enumerate memories per DIMM, instead.
539 * When the memory controller is per rank, csbased is true.
540 */
541 unsigned int n_layers;
542 struct edac_mc_layer *layers;
543 bool csbased;
544
545 /*
546 * DIMM info. Will eventually remove the entire csrows_info some day
547 */
548 unsigned int tot_dimms;
549 struct dimm_info **dimms;
550
551 /*
552 * FIXME - what about controllers on other busses? - IDs must be
553 * unique. dev pointer should be sufficiently unique, but
554 * BUS:SLOT.FUNC numbers may not be unique.
555 */
556 struct device *pdev;
557 const char *mod_name;
558 const char *ctl_name;
559 const char *dev_name;
560 void *pvt_info;
561 unsigned long start_time; /* mci load start time (in jiffies) */
562
563 /*
564 * drivers shouldn't access those fields directly, as the core
565 * already handles that.
566 */
567 u32 ce_noinfo_count, ue_noinfo_count;
568 u32 ue_mc, ce_mc;
569
570 struct completion complete;
571
572 /* Additional top controller level attributes, but specified
573 * by the low level driver.
574 *
575 * Set by the low level driver to provide attributes at the
576 * controller level.
577 * An array of structures, NULL terminated
578 *
579 * If attributes are desired, then set to array of attributes
580 * If no attributes are desired, leave NULL
581 */
582 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
583
584 /* work struct for this MC */
585 struct delayed_work work;
586
587 /*
588 * Used to report an error - by being at the global struct
589 * makes the memory allocated by the EDAC core
590 */
591 struct edac_raw_error_desc error_desc;
592
593 /* the internal state of this controller instance */
594 int op_state;
595
596 struct dentry *debugfs;
597 u8 fake_inject_layer[EDAC_MAX_LAYERS];
598 bool fake_inject_ue;
599 u16 fake_inject_count;
600};
601
602#define mci_for_each_dimm(mci, dimm) \
603 for ((dimm) = (mci)->dimms[0]; \
604 (dimm); \
605 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \
606 ? (mci)->dimms[(dimm)->idx + 1] \
607 : NULL)
608
609/**
610 * edac_get_dimm - Get DIMM info from a memory controller given by
611 * [layer0,layer1,layer2] position
612 *
613 * @mci: MC descriptor struct mem_ctl_info
614 * @layer0: layer0 position
615 * @layer1: layer1 position. Unused if n_layers < 2
616 * @layer2: layer2 position. Unused if n_layers < 3
617 *
618 * For 1 layer, this function returns "dimms[layer0]";
619 *
620 * For 2 layers, this function is similar to allocating a two-dimensional
621 * array and returning "dimms[layer0][layer1]";
622 *
623 * For 3 layers, this function is similar to allocating a tri-dimensional
624 * array and returning "dimms[layer0][layer1][layer2]";
625 */
626static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci,
627 int layer0, int layer1, int layer2)
628{
629 int index;
630
631 if (layer0 < 0
632 || (mci->n_layers > 1 && layer1 < 0)
633 || (mci->n_layers > 2 && layer2 < 0))
634 return NULL;
635
636 index = layer0;
637
638 if (mci->n_layers > 1)
639 index = index * mci->layers[1].size + layer1;
640
641 if (mci->n_layers > 2)
642 index = index * mci->layers[2].size + layer2;
643
644 if (index < 0 || index >= mci->tot_dimms)
645 return NULL;
646
647 if (WARN_ON_ONCE(mci->dimms[index]->idx != index))
648 return NULL;
649
650 return mci->dimms[index];
651}
652#endif /* _LINUX_EDAC_H_ */
1/*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12#ifndef _LINUX_EDAC_H_
13#define _LINUX_EDAC_H_
14
15#include <linux/atomic.h>
16#include <linux/device.h>
17#include <linux/completion.h>
18#include <linux/workqueue.h>
19#include <linux/debugfs.h>
20
21struct device;
22
23#define EDAC_OPSTATE_INVAL -1
24#define EDAC_OPSTATE_POLL 0
25#define EDAC_OPSTATE_NMI 1
26#define EDAC_OPSTATE_INT 2
27
28extern int edac_op_state;
29extern int edac_err_assert;
30extern atomic_t edac_handlers;
31
32extern int edac_handler_set(void);
33extern void edac_atomic_assert_error(void);
34extern struct bus_type *edac_get_sysfs_subsys(void);
35
36enum {
37 EDAC_REPORTING_ENABLED,
38 EDAC_REPORTING_DISABLED,
39 EDAC_REPORTING_FORCE
40};
41
42extern int edac_report_status;
43#ifdef CONFIG_EDAC
44static inline int get_edac_report_status(void)
45{
46 return edac_report_status;
47}
48
49static inline void set_edac_report_status(int new)
50{
51 edac_report_status = new;
52}
53#else
54static inline int get_edac_report_status(void)
55{
56 return EDAC_REPORTING_DISABLED;
57}
58
59static inline void set_edac_report_status(int new)
60{
61}
62#endif
63
64static inline void opstate_init(void)
65{
66 switch (edac_op_state) {
67 case EDAC_OPSTATE_POLL:
68 case EDAC_OPSTATE_NMI:
69 break;
70 default:
71 edac_op_state = EDAC_OPSTATE_POLL;
72 }
73 return;
74}
75
76/* Max length of a DIMM label*/
77#define EDAC_MC_LABEL_LEN 31
78
79/* Maximum size of the location string */
80#define LOCATION_SIZE 256
81
82/* Defines the maximum number of labels that can be reported */
83#define EDAC_MAX_LABELS 8
84
85/* String used to join two or more labels */
86#define OTHER_LABEL " or "
87
88/**
89 * enum dev_type - describe the type of memory DRAM chips used at the stick
90 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
91 * @DEV_X1: 1 bit for data
92 * @DEV_X2: 2 bits for data
93 * @DEV_X4: 4 bits for data
94 * @DEV_X8: 8 bits for data
95 * @DEV_X16: 16 bits for data
96 * @DEV_X32: 32 bits for data
97 * @DEV_X64: 64 bits for data
98 *
99 * Typical values are x4 and x8.
100 */
101enum dev_type {
102 DEV_UNKNOWN = 0,
103 DEV_X1,
104 DEV_X2,
105 DEV_X4,
106 DEV_X8,
107 DEV_X16,
108 DEV_X32, /* Do these parts exist? */
109 DEV_X64 /* Do these parts exist? */
110};
111
112#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
113#define DEV_FLAG_X1 BIT(DEV_X1)
114#define DEV_FLAG_X2 BIT(DEV_X2)
115#define DEV_FLAG_X4 BIT(DEV_X4)
116#define DEV_FLAG_X8 BIT(DEV_X8)
117#define DEV_FLAG_X16 BIT(DEV_X16)
118#define DEV_FLAG_X32 BIT(DEV_X32)
119#define DEV_FLAG_X64 BIT(DEV_X64)
120
121/**
122 * enum hw_event_mc_err_type - type of the detected error
123 *
124 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
125 * corrected error was detected
126 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
127 * can't be corrected by ECC, but it is not
128 * fatal (maybe it is on an unused memory area,
129 * or the memory controller could recover from
130 * it for example, by re-trying the operation).
131 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
132 * be recovered.
133 */
134enum hw_event_mc_err_type {
135 HW_EVENT_ERR_CORRECTED,
136 HW_EVENT_ERR_UNCORRECTED,
137 HW_EVENT_ERR_FATAL,
138 HW_EVENT_ERR_INFO,
139};
140
141static inline char *mc_event_error_type(const unsigned int err_type)
142{
143 switch (err_type) {
144 case HW_EVENT_ERR_CORRECTED:
145 return "Corrected";
146 case HW_EVENT_ERR_UNCORRECTED:
147 return "Uncorrected";
148 case HW_EVENT_ERR_FATAL:
149 return "Fatal";
150 default:
151 case HW_EVENT_ERR_INFO:
152 return "Info";
153 }
154}
155
156/**
157 * enum mem_type - memory types. For a more detailed reference, please see
158 * http://en.wikipedia.org/wiki/DRAM
159 *
160 * @MEM_EMPTY Empty csrow
161 * @MEM_RESERVED: Reserved csrow type
162 * @MEM_UNKNOWN: Unknown csrow type
163 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
164 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
165 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
166 * @MEM_SDR: SDR - Single data rate SDRAM
167 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
168 * They use 3 pins for chip select: Pins 0 and 2 are
169 * for rank 0; pins 1 and 3 are for rank 1, if the memory
170 * is dual-rank.
171 * @MEM_RDR: Registered SDR SDRAM
172 * @MEM_DDR: Double data rate SDRAM
173 * http://en.wikipedia.org/wiki/DDR_SDRAM
174 * @MEM_RDDR: Registered Double data rate SDRAM
175 * This is a variant of the DDR memories.
176 * A registered memory has a buffer inside it, hiding
177 * part of the memory details to the memory controller.
178 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
179 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
180 * Those memories are labed as "PC2-" instead of "PC" to
181 * differenciate from DDR.
182 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
183 * and JESD206.
184 * Those memories are accessed per DIMM slot, and not by
185 * a chip select signal.
186 * @MEM_RDDR2: Registered DDR2 RAM
187 * This is a variant of the DDR2 memories.
188 * @MEM_XDR: Rambus XDR
189 * It is an evolution of the original RAMBUS memories,
190 * created to compete with DDR2. Weren't used on any
191 * x86 arch, but cell_edac PPC memory controller uses it.
192 * @MEM_DDR3: DDR3 RAM
193 * @MEM_RDDR3: Registered DDR3 RAM
194 * This is a variant of the DDR3 memories.
195 * @MEM_LRDDR3 Load-Reduced DDR3 memory.
196 * @MEM_DDR4: Unbuffered DDR4 RAM
197 * @MEM_RDDR4: Registered DDR4 RAM
198 * This is a variant of the DDR4 memories.
199 */
200enum mem_type {
201 MEM_EMPTY = 0,
202 MEM_RESERVED,
203 MEM_UNKNOWN,
204 MEM_FPM,
205 MEM_EDO,
206 MEM_BEDO,
207 MEM_SDR,
208 MEM_RDR,
209 MEM_DDR,
210 MEM_RDDR,
211 MEM_RMBS,
212 MEM_DDR2,
213 MEM_FB_DDR2,
214 MEM_RDDR2,
215 MEM_XDR,
216 MEM_DDR3,
217 MEM_RDDR3,
218 MEM_LRDDR3,
219 MEM_DDR4,
220 MEM_RDDR4,
221};
222
223#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
224#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
225#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
226#define MEM_FLAG_FPM BIT(MEM_FPM)
227#define MEM_FLAG_EDO BIT(MEM_EDO)
228#define MEM_FLAG_BEDO BIT(MEM_BEDO)
229#define MEM_FLAG_SDR BIT(MEM_SDR)
230#define MEM_FLAG_RDR BIT(MEM_RDR)
231#define MEM_FLAG_DDR BIT(MEM_DDR)
232#define MEM_FLAG_RDDR BIT(MEM_RDDR)
233#define MEM_FLAG_RMBS BIT(MEM_RMBS)
234#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
235#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
236#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
237#define MEM_FLAG_XDR BIT(MEM_XDR)
238#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
239#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
240#define MEM_FLAG_DDR4 BIT(MEM_DDR4)
241#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
242
243/**
244 * enum edac-type - Error Detection and Correction capabilities and mode
245 * @EDAC_UNKNOWN: Unknown if ECC is available
246 * @EDAC_NONE: Doesn't support ECC
247 * @EDAC_RESERVED: Reserved ECC type
248 * @EDAC_PARITY: Detects parity errors
249 * @EDAC_EC: Error Checking - no correction
250 * @EDAC_SECDED: Single bit error correction, Double detection
251 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
252 * @EDAC_S4ECD4ED: Chipkill x4 devices
253 * @EDAC_S8ECD8ED: Chipkill x8 devices
254 * @EDAC_S16ECD16ED: Chipkill x16 devices
255 */
256enum edac_type {
257 EDAC_UNKNOWN = 0,
258 EDAC_NONE,
259 EDAC_RESERVED,
260 EDAC_PARITY,
261 EDAC_EC,
262 EDAC_SECDED,
263 EDAC_S2ECD2ED,
264 EDAC_S4ECD4ED,
265 EDAC_S8ECD8ED,
266 EDAC_S16ECD16ED,
267};
268
269#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
270#define EDAC_FLAG_NONE BIT(EDAC_NONE)
271#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
272#define EDAC_FLAG_EC BIT(EDAC_EC)
273#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
274#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
275#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
276#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
277#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
278
279/**
280 * enum scrub_type - scrubbing capabilities
281 * @SCRUB_UNKNOWN Unknown if scrubber is available
282 * @SCRUB_NONE: No scrubber
283 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
284 * @SCRUB_SW_SRC: Software scrub only errors
285 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
286 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
287 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
288 * @SCRUB_HW_SRC: Hardware scrub only errors
289 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
290 * SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
291 */
292enum scrub_type {
293 SCRUB_UNKNOWN = 0,
294 SCRUB_NONE,
295 SCRUB_SW_PROG,
296 SCRUB_SW_SRC,
297 SCRUB_SW_PROG_SRC,
298 SCRUB_SW_TUNABLE,
299 SCRUB_HW_PROG,
300 SCRUB_HW_SRC,
301 SCRUB_HW_PROG_SRC,
302 SCRUB_HW_TUNABLE
303};
304
305#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
306#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
307#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
308#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
309#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
310#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
311#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
312#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
313
314/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
315
316/* EDAC internal operation states */
317#define OP_ALLOC 0x100
318#define OP_RUNNING_POLL 0x201
319#define OP_RUNNING_INTERRUPT 0x202
320#define OP_RUNNING_POLL_INTR 0x203
321#define OP_OFFLINE 0x300
322
323/*
324 * Concepts used at the EDAC subsystem
325 *
326 * There are several things to be aware of that aren't at all obvious:
327 *
328 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
329 *
330 * These are some of the many terms that are thrown about that don't always
331 * mean what people think they mean (Inconceivable!). In the interest of
332 * creating a common ground for discussion, terms and their definitions
333 * will be established.
334 *
335 * Memory devices: The individual DRAM chips on a memory stick. These
336 * devices commonly output 4 and 8 bits each (x4, x8).
337 * Grouping several of these in parallel provides the
338 * number of bits that the memory controller expects:
339 * typically 72 bits, in order to provide 64 bits +
340 * 8 bits of ECC data.
341 *
342 * Memory Stick: A printed circuit board that aggregates multiple
343 * memory devices in parallel. In general, this is the
344 * Field Replaceable Unit (FRU) which gets replaced, in
345 * the case of excessive errors. Most often it is also
346 * called DIMM (Dual Inline Memory Module).
347 *
348 * Memory Socket: A physical connector on the motherboard that accepts
349 * a single memory stick. Also called as "slot" on several
350 * datasheets.
351 *
352 * Channel: A memory controller channel, responsible to communicate
353 * with a group of DIMMs. Each channel has its own
354 * independent control (command) and data bus, and can
355 * be used independently or grouped with other channels.
356 *
357 * Branch: It is typically the highest hierarchy on a
358 * Fully-Buffered DIMM memory controller.
359 * Typically, it contains two channels.
360 * Two channels at the same branch can be used in single
361 * mode or in lockstep mode.
362 * When lockstep is enabled, the cacheline is doubled,
363 * but it generally brings some performance penalty.
364 * Also, it is generally not possible to point to just one
365 * memory stick when an error occurs, as the error
366 * correction code is calculated using two DIMMs instead
367 * of one. Due to that, it is capable of correcting more
368 * errors than on single mode.
369 *
370 * Single-channel: The data accessed by the memory controller is contained
371 * into one dimm only. E. g. if the data is 64 bits-wide,
372 * the data flows to the CPU using one 64 bits parallel
373 * access.
374 * Typically used with SDR, DDR, DDR2 and DDR3 memories.
375 * FB-DIMM and RAMBUS use a different concept for channel,
376 * so this concept doesn't apply there.
377 *
378 * Double-channel: The data size accessed by the memory controller is
379 * interlaced into two dimms, accessed at the same time.
380 * E. g. if the DIMM is 64 bits-wide (72 bits with ECC),
381 * the data flows to the CPU using a 128 bits parallel
382 * access.
383 *
384 * Chip-select row: This is the name of the DRAM signal used to select the
385 * DRAM ranks to be accessed. Common chip-select rows for
386 * single channel are 64 bits, for dual channel 128 bits.
387 * It may not be visible by the memory controller, as some
388 * DIMM types have a memory buffer that can hide direct
389 * access to it from the Memory Controller.
390 *
391 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memory.
392 * Motherboards commonly drive two chip-select pins to
393 * a memory stick. A single-ranked stick, will occupy
394 * only one of those rows. The other will be unused.
395 *
396 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
397 * access different sets of memory devices. The two
398 * rows cannot be accessed concurrently.
399 *
400 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
401 * A double-sided stick has two chip-select rows which
402 * access different sets of memory devices. The two
403 * rows cannot be accessed concurrently. "Double-sided"
404 * is irrespective of the memory devices being mounted
405 * on both sides of the memory stick.
406 *
407 * Socket set: All of the memory sticks that are required for
408 * a single memory access or all of the memory sticks
409 * spanned by a chip-select row. A single socket set
410 * has two chip-select rows and if double-sided sticks
411 * are used these will occupy those chip-select rows.
412 *
413 * Bank: This term is avoided because it is unclear when
414 * needing to distinguish between chip-select rows and
415 * socket sets.
416 *
417 * Controller pages:
418 *
419 * Physical pages:
420 *
421 * Virtual pages:
422 *
423 *
424 * STRUCTURE ORGANIZATION AND CHOICES
425 *
426 *
427 *
428 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
429 */
430
431/**
432 * enum edac_mc_layer - memory controller hierarchy layer
433 *
434 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
435 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
436 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
437 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
438 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
439 * as a single memory area. This is used when
440 * retrieving errors from a firmware driven driver.
441 *
442 * This enum is used by the drivers to tell edac_mc_sysfs what name should
443 * be used when describing a memory stick location.
444 */
445enum edac_mc_layer_type {
446 EDAC_MC_LAYER_BRANCH,
447 EDAC_MC_LAYER_CHANNEL,
448 EDAC_MC_LAYER_SLOT,
449 EDAC_MC_LAYER_CHIP_SELECT,
450 EDAC_MC_LAYER_ALL_MEM,
451};
452
453/**
454 * struct edac_mc_layer - describes the memory controller hierarchy
455 * @layer: layer type
456 * @size: number of components per layer. For example,
457 * if the channel layer has two channels, size = 2
458 * @is_virt_csrow: This layer is part of the "csrow" when old API
459 * compatibility mode is enabled. Otherwise, it is
460 * a channel
461 */
462struct edac_mc_layer {
463 enum edac_mc_layer_type type;
464 unsigned size;
465 bool is_virt_csrow;
466};
467
468/*
469 * Maximum number of layers used by the memory controller to uniquely
470 * identify a single memory stick.
471 * NOTE: Changing this constant requires not only to change the constant
472 * below, but also to change the existing code at the core, as there are
473 * some code there that are optimized for 3 layers.
474 */
475#define EDAC_MAX_LAYERS 3
476
477/**
478 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer array
479 * for the element given by [layer0,layer1,layer2] position
480 *
481 * @layers: a struct edac_mc_layer array, describing how many elements
482 * were allocated for each layer
483 * @n_layers: Number of layers at the @layers array
484 * @layer0: layer0 position
485 * @layer1: layer1 position. Unused if n_layers < 2
486 * @layer2: layer2 position. Unused if n_layers < 3
487 *
488 * For 1 layer, this macro returns &var[layer0] - &var
489 * For 2 layers, this macro is similar to allocate a bi-dimensional array
490 * and to return "&var[layer0][layer1] - &var"
491 * For 3 layers, this macro is similar to allocate a tri-dimensional array
492 * and to return "&var[layer0][layer1][layer2] - &var"
493 *
494 * A loop could be used here to make it more generic, but, as we only have
495 * 3 layers, this is a little faster.
496 * By design, layers can never be 0 or more than 3. If that ever happens,
497 * a NULL is returned, causing an OOPS during the memory allocation routine,
498 * with would point to the developer that he's doing something wrong.
499 */
500#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \
501 int __i; \
502 if ((nlayers) == 1) \
503 __i = layer0; \
504 else if ((nlayers) == 2) \
505 __i = (layer1) + ((layers[1]).size * (layer0)); \
506 else if ((nlayers) == 3) \
507 __i = (layer2) + ((layers[2]).size * ((layer1) + \
508 ((layers[1]).size * (layer0)))); \
509 else \
510 __i = -EINVAL; \
511 __i; \
512})
513
514/**
515 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array
516 * for the element given by [layer0,layer1,layer2] position
517 *
518 * @layers: a struct edac_mc_layer array, describing how many elements
519 * were allocated for each layer
520 * @var: name of the var where we want to get the pointer
521 * (like mci->dimms)
522 * @n_layers: Number of layers at the @layers array
523 * @layer0: layer0 position
524 * @layer1: layer1 position. Unused if n_layers < 2
525 * @layer2: layer2 position. Unused if n_layers < 3
526 *
527 * For 1 layer, this macro returns &var[layer0]
528 * For 2 layers, this macro is similar to allocate a bi-dimensional array
529 * and to return "&var[layer0][layer1]"
530 * For 3 layers, this macro is similar to allocate a tri-dimensional array
531 * and to return "&var[layer0][layer1][layer2]"
532 */
533#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \
534 typeof(*var) __p; \
535 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \
536 if (___i < 0) \
537 __p = NULL; \
538 else \
539 __p = (var)[___i]; \
540 __p; \
541})
542
543struct dimm_info {
544 struct device dev;
545
546 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
547
548 /* Memory location data */
549 unsigned location[EDAC_MAX_LAYERS];
550
551 struct mem_ctl_info *mci; /* the parent */
552
553 u32 grain; /* granularity of reported error in bytes */
554 enum dev_type dtype; /* memory device type */
555 enum mem_type mtype; /* memory dimm type */
556 enum edac_type edac_mode; /* EDAC mode for this dimm */
557
558 u32 nr_pages; /* number of pages on this dimm */
559
560 unsigned csrow, cschannel; /* Points to the old API data */
561};
562
563/**
564 * struct rank_info - contains the information for one DIMM rank
565 *
566 * @chan_idx: channel number where the rank is (typically, 0 or 1)
567 * @ce_count: number of correctable errors for this rank
568 * @csrow: A pointer to the chip select row structure (the parent
569 * structure). The location of the rank is given by
570 * the (csrow->csrow_idx, chan_idx) vector.
571 * @dimm: A pointer to the DIMM structure, where the DIMM label
572 * information is stored.
573 *
574 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
575 * This is a bad assumption, but it makes this patch easier. Later
576 * patches in this series will fix this issue.
577 */
578struct rank_info {
579 int chan_idx;
580 struct csrow_info *csrow;
581 struct dimm_info *dimm;
582
583 u32 ce_count; /* Correctable Errors for this csrow */
584};
585
586struct csrow_info {
587 struct device dev;
588
589 /* Used only by edac_mc_find_csrow_by_page() */
590 unsigned long first_page; /* first page number in csrow */
591 unsigned long last_page; /* last page number in csrow */
592 unsigned long page_mask; /* used for interleaving -
593 * 0UL for non intlv */
594
595 int csrow_idx; /* the chip-select row */
596
597 u32 ue_count; /* Uncorrectable Errors for this csrow */
598 u32 ce_count; /* Correctable Errors for this csrow */
599
600 struct mem_ctl_info *mci; /* the parent */
601
602 /* channel information for this csrow */
603 u32 nr_channels;
604 struct rank_info **channels;
605};
606
607/*
608 * struct errcount_attribute - used to store the several error counts
609 */
610struct errcount_attribute_data {
611 int n_layers;
612 int pos[EDAC_MAX_LAYERS];
613 int layer0, layer1, layer2;
614};
615
616/**
617 * edac_raw_error_desc - Raw error report structure
618 * @grain: minimum granularity for an error report, in bytes
619 * @error_count: number of errors of the same type
620 * @top_layer: top layer of the error (layer[0])
621 * @mid_layer: middle layer of the error (layer[1])
622 * @low_layer: low layer of the error (layer[2])
623 * @page_frame_number: page where the error happened
624 * @offset_in_page: page offset
625 * @syndrome: syndrome of the error (or 0 if unknown or if
626 * the syndrome is not applicable)
627 * @msg: error message
628 * @location: location of the error
629 * @label: label of the affected DIMM(s)
630 * @other_detail: other driver-specific detail about the error
631 * @enable_per_layer_report: if false, the error affects all layers
632 * (typically, a memory controller error)
633 */
634struct edac_raw_error_desc {
635 /*
636 * NOTE: everything before grain won't be cleaned by
637 * edac_raw_error_desc_clean()
638 */
639 char location[LOCATION_SIZE];
640 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
641 long grain;
642
643 /* the vars below and grain will be cleaned on every new error report */
644 u16 error_count;
645 int top_layer;
646 int mid_layer;
647 int low_layer;
648 unsigned long page_frame_number;
649 unsigned long offset_in_page;
650 unsigned long syndrome;
651 const char *msg;
652 const char *other_detail;
653 bool enable_per_layer_report;
654};
655
656/* MEMORY controller information structure
657 */
658struct mem_ctl_info {
659 struct device dev;
660 struct bus_type *bus;
661
662 struct list_head link; /* for global list of mem_ctl_info structs */
663
664 struct module *owner; /* Module owner of this control struct */
665
666 unsigned long mtype_cap; /* memory types supported by mc */
667 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
668 unsigned long edac_cap; /* configuration capabilities - this is
669 * closely related to edac_ctl_cap. The
670 * difference is that the controller may be
671 * capable of s4ecd4ed which would be listed
672 * in edac_ctl_cap, but if channels aren't
673 * capable of s4ecd4ed then the edac_cap would
674 * not have that capability.
675 */
676 unsigned long scrub_cap; /* chipset scrub capabilities */
677 enum scrub_type scrub_mode; /* current scrub mode */
678
679 /* Translates sdram memory scrub rate given in bytes/sec to the
680 internal representation and configures whatever else needs
681 to be configured.
682 */
683 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
684
685 /* Get the current sdram memory scrub rate from the internal
686 representation and converts it to the closest matching
687 bandwidth in bytes/sec.
688 */
689 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
690
691
692 /* pointer to edac checking routine */
693 void (*edac_check) (struct mem_ctl_info * mci);
694
695 /*
696 * Remaps memory pages: controller pages to physical pages.
697 * For most MC's, this will be NULL.
698 */
699 /* FIXME - why not send the phys page to begin with? */
700 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
701 unsigned long page);
702 int mc_idx;
703 struct csrow_info **csrows;
704 unsigned nr_csrows, num_cschannel;
705
706 /*
707 * Memory Controller hierarchy
708 *
709 * There are basically two types of memory controller: the ones that
710 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
711 * All old memory controllers enumerate memories per rank, but most
712 * of the recent drivers enumerate memories per DIMM, instead.
713 * When the memory controller is per rank, csbased is true.
714 */
715 unsigned n_layers;
716 struct edac_mc_layer *layers;
717 bool csbased;
718
719 /*
720 * DIMM info. Will eventually remove the entire csrows_info some day
721 */
722 unsigned tot_dimms;
723 struct dimm_info **dimms;
724
725 /*
726 * FIXME - what about controllers on other busses? - IDs must be
727 * unique. dev pointer should be sufficiently unique, but
728 * BUS:SLOT.FUNC numbers may not be unique.
729 */
730 struct device *pdev;
731 const char *mod_name;
732 const char *mod_ver;
733 const char *ctl_name;
734 const char *dev_name;
735 void *pvt_info;
736 unsigned long start_time; /* mci load start time (in jiffies) */
737
738 /*
739 * drivers shouldn't access those fields directly, as the core
740 * already handles that.
741 */
742 u32 ce_noinfo_count, ue_noinfo_count;
743 u32 ue_mc, ce_mc;
744 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
745
746 struct completion complete;
747
748 /* Additional top controller level attributes, but specified
749 * by the low level driver.
750 *
751 * Set by the low level driver to provide attributes at the
752 * controller level.
753 * An array of structures, NULL terminated
754 *
755 * If attributes are desired, then set to array of attributes
756 * If no attributes are desired, leave NULL
757 */
758 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
759
760 /* work struct for this MC */
761 struct delayed_work work;
762
763 /*
764 * Used to report an error - by being at the global struct
765 * makes the memory allocated by the EDAC core
766 */
767 struct edac_raw_error_desc error_desc;
768
769 /* the internal state of this controller instance */
770 int op_state;
771
772 struct dentry *debugfs;
773 u8 fake_inject_layer[EDAC_MAX_LAYERS];
774 bool fake_inject_ue;
775 u16 fake_inject_count;
776};
777
778/*
779 * Maximum number of memory controllers in the coherent fabric.
780 */
781#define EDAC_MAX_MCS 16
782
783#endif