Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
 
 
 
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19#define dev_fmt pr_fmt
  20
  21#include <linux/device.h>
 
  22#include <linux/export.h>
  23#include <linux/mutex.h>
  24#include <linux/pm.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm-trace.h>
  27#include <linux/pm_wakeirq.h>
  28#include <linux/interrupt.h>
  29#include <linux/sched.h>
  30#include <linux/sched/debug.h>
  31#include <linux/async.h>
  32#include <linux/suspend.h>
  33#include <trace/events/power.h>
  34#include <linux/cpufreq.h>
  35#include <linux/cpuidle.h>
  36#include <linux/devfreq.h>
  37#include <linux/timer.h>
  38
  39#include "../base.h"
  40#include "power.h"
  41
  42typedef int (*pm_callback_t)(struct device *);
  43
  44#define list_for_each_entry_rcu_locked(pos, head, member) \
  45	list_for_each_entry_rcu(pos, head, member, \
  46			device_links_read_lock_held())
  47
  48/*
  49 * The entries in the dpm_list list are in a depth first order, simply
  50 * because children are guaranteed to be discovered after parents, and
  51 * are inserted at the back of the list on discovery.
  52 *
  53 * Since device_pm_add() may be called with a device lock held,
  54 * we must never try to acquire a device lock while holding
  55 * dpm_list_mutex.
  56 */
  57
  58LIST_HEAD(dpm_list);
  59static LIST_HEAD(dpm_prepared_list);
  60static LIST_HEAD(dpm_suspended_list);
  61static LIST_HEAD(dpm_late_early_list);
  62static LIST_HEAD(dpm_noirq_list);
  63
  64struct suspend_stats suspend_stats;
  65static DEFINE_MUTEX(dpm_list_mtx);
  66static pm_message_t pm_transition;
  67
  68static int async_error;
  69
  70static const char *pm_verb(int event)
  71{
  72	switch (event) {
  73	case PM_EVENT_SUSPEND:
  74		return "suspend";
  75	case PM_EVENT_RESUME:
  76		return "resume";
  77	case PM_EVENT_FREEZE:
  78		return "freeze";
  79	case PM_EVENT_QUIESCE:
  80		return "quiesce";
  81	case PM_EVENT_HIBERNATE:
  82		return "hibernate";
  83	case PM_EVENT_THAW:
  84		return "thaw";
  85	case PM_EVENT_RESTORE:
  86		return "restore";
  87	case PM_EVENT_RECOVER:
  88		return "recover";
  89	default:
  90		return "(unknown PM event)";
  91	}
  92}
  93
  94/**
  95 * device_pm_sleep_init - Initialize system suspend-related device fields.
  96 * @dev: Device object being initialized.
  97 */
  98void device_pm_sleep_init(struct device *dev)
  99{
 100	dev->power.is_prepared = false;
 101	dev->power.is_suspended = false;
 102	dev->power.is_noirq_suspended = false;
 103	dev->power.is_late_suspended = false;
 104	init_completion(&dev->power.completion);
 105	complete_all(&dev->power.completion);
 106	dev->power.wakeup = NULL;
 107	INIT_LIST_HEAD(&dev->power.entry);
 108}
 109
 110/**
 111 * device_pm_lock - Lock the list of active devices used by the PM core.
 112 */
 113void device_pm_lock(void)
 114{
 115	mutex_lock(&dpm_list_mtx);
 116}
 117
 118/**
 119 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 120 */
 121void device_pm_unlock(void)
 122{
 123	mutex_unlock(&dpm_list_mtx);
 124}
 125
 126/**
 127 * device_pm_add - Add a device to the PM core's list of active devices.
 128 * @dev: Device to add to the list.
 129 */
 130void device_pm_add(struct device *dev)
 131{
 132	/* Skip PM setup/initialization. */
 133	if (device_pm_not_required(dev))
 134		return;
 135
 136	pr_debug("Adding info for %s:%s\n",
 137		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 138	device_pm_check_callbacks(dev);
 139	mutex_lock(&dpm_list_mtx);
 140	if (dev->parent && dev->parent->power.is_prepared)
 141		dev_warn(dev, "parent %s should not be sleeping\n",
 142			dev_name(dev->parent));
 143	list_add_tail(&dev->power.entry, &dpm_list);
 144	dev->power.in_dpm_list = true;
 145	mutex_unlock(&dpm_list_mtx);
 146}
 147
 148/**
 149 * device_pm_remove - Remove a device from the PM core's list of active devices.
 150 * @dev: Device to be removed from the list.
 151 */
 152void device_pm_remove(struct device *dev)
 153{
 154	if (device_pm_not_required(dev))
 155		return;
 156
 157	pr_debug("Removing info for %s:%s\n",
 158		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 159	complete_all(&dev->power.completion);
 160	mutex_lock(&dpm_list_mtx);
 161	list_del_init(&dev->power.entry);
 162	dev->power.in_dpm_list = false;
 163	mutex_unlock(&dpm_list_mtx);
 164	device_wakeup_disable(dev);
 165	pm_runtime_remove(dev);
 166	device_pm_check_callbacks(dev);
 167}
 168
 169/**
 170 * device_pm_move_before - Move device in the PM core's list of active devices.
 171 * @deva: Device to move in dpm_list.
 172 * @devb: Device @deva should come before.
 173 */
 174void device_pm_move_before(struct device *deva, struct device *devb)
 175{
 176	pr_debug("Moving %s:%s before %s:%s\n",
 177		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 178		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 179	/* Delete deva from dpm_list and reinsert before devb. */
 180	list_move_tail(&deva->power.entry, &devb->power.entry);
 181}
 182
 183/**
 184 * device_pm_move_after - Move device in the PM core's list of active devices.
 185 * @deva: Device to move in dpm_list.
 186 * @devb: Device @deva should come after.
 187 */
 188void device_pm_move_after(struct device *deva, struct device *devb)
 189{
 190	pr_debug("Moving %s:%s after %s:%s\n",
 191		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 192		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 193	/* Delete deva from dpm_list and reinsert after devb. */
 194	list_move(&deva->power.entry, &devb->power.entry);
 195}
 196
 197/**
 198 * device_pm_move_last - Move device to end of the PM core's list of devices.
 199 * @dev: Device to move in dpm_list.
 200 */
 201void device_pm_move_last(struct device *dev)
 202{
 203	pr_debug("Moving %s:%s to end of list\n",
 204		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 205	list_move_tail(&dev->power.entry, &dpm_list);
 206}
 207
 208static ktime_t initcall_debug_start(struct device *dev, void *cb)
 209{
 210	if (!pm_print_times_enabled)
 211		return 0;
 212
 213	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 214		 task_pid_nr(current),
 215		 dev->parent ? dev_name(dev->parent) : "none");
 216	return ktime_get();
 
 
 
 
 217}
 218
 219static void initcall_debug_report(struct device *dev, ktime_t calltime,
 220				  void *cb, int error)
 221{
 222	ktime_t rettime;
 223
 224	if (!pm_print_times_enabled)
 225		return;
 226
 227	rettime = ktime_get();
 228	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 229		 (unsigned long long)ktime_us_delta(rettime, calltime));
 
 
 
 
 230}
 231
 232/**
 233 * dpm_wait - Wait for a PM operation to complete.
 234 * @dev: Device to wait for.
 235 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 236 */
 237static void dpm_wait(struct device *dev, bool async)
 238{
 239	if (!dev)
 240		return;
 241
 242	if (async || (pm_async_enabled && dev->power.async_suspend))
 243		wait_for_completion(&dev->power.completion);
 244}
 245
 246static int dpm_wait_fn(struct device *dev, void *async_ptr)
 247{
 248	dpm_wait(dev, *((bool *)async_ptr));
 249	return 0;
 250}
 251
 252static void dpm_wait_for_children(struct device *dev, bool async)
 253{
 254       device_for_each_child(dev, &async, dpm_wait_fn);
 255}
 256
 257static void dpm_wait_for_suppliers(struct device *dev, bool async)
 258{
 259	struct device_link *link;
 260	int idx;
 261
 262	idx = device_links_read_lock();
 263
 264	/*
 265	 * If the supplier goes away right after we've checked the link to it,
 266	 * we'll wait for its completion to change the state, but that's fine,
 267	 * because the only things that will block as a result are the SRCU
 268	 * callbacks freeing the link objects for the links in the list we're
 269	 * walking.
 270	 */
 271	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
 272		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 273			dpm_wait(link->supplier, async);
 274
 275	device_links_read_unlock(idx);
 276}
 277
 278static bool dpm_wait_for_superior(struct device *dev, bool async)
 279{
 280	struct device *parent;
 281
 282	/*
 283	 * If the device is resumed asynchronously and the parent's callback
 284	 * deletes both the device and the parent itself, the parent object may
 285	 * be freed while this function is running, so avoid that by reference
 286	 * counting the parent once more unless the device has been deleted
 287	 * already (in which case return right away).
 288	 */
 289	mutex_lock(&dpm_list_mtx);
 290
 291	if (!device_pm_initialized(dev)) {
 292		mutex_unlock(&dpm_list_mtx);
 293		return false;
 294	}
 295
 296	parent = get_device(dev->parent);
 297
 298	mutex_unlock(&dpm_list_mtx);
 299
 300	dpm_wait(parent, async);
 301	put_device(parent);
 302
 303	dpm_wait_for_suppliers(dev, async);
 304
 305	/*
 306	 * If the parent's callback has deleted the device, attempting to resume
 307	 * it would be invalid, so avoid doing that then.
 308	 */
 309	return device_pm_initialized(dev);
 310}
 311
 312static void dpm_wait_for_consumers(struct device *dev, bool async)
 313{
 314	struct device_link *link;
 315	int idx;
 316
 317	idx = device_links_read_lock();
 318
 319	/*
 320	 * The status of a device link can only be changed from "dormant" by a
 321	 * probe, but that cannot happen during system suspend/resume.  In
 322	 * theory it can change to "dormant" at that time, but then it is
 323	 * reasonable to wait for the target device anyway (eg. if it goes
 324	 * away, it's better to wait for it to go away completely and then
 325	 * continue instead of trying to continue in parallel with its
 326	 * unregistration).
 327	 */
 328	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
 329		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 330			dpm_wait(link->consumer, async);
 331
 332	device_links_read_unlock(idx);
 333}
 334
 335static void dpm_wait_for_subordinate(struct device *dev, bool async)
 336{
 337	dpm_wait_for_children(dev, async);
 338	dpm_wait_for_consumers(dev, async);
 339}
 340
 341/**
 342 * pm_op - Return the PM operation appropriate for given PM event.
 343 * @ops: PM operations to choose from.
 344 * @state: PM transition of the system being carried out.
 345 */
 346static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 347{
 348	switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350	case PM_EVENT_SUSPEND:
 351		return ops->suspend;
 352	case PM_EVENT_RESUME:
 353		return ops->resume;
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356	case PM_EVENT_FREEZE:
 357	case PM_EVENT_QUIESCE:
 358		return ops->freeze;
 359	case PM_EVENT_HIBERNATE:
 360		return ops->poweroff;
 361	case PM_EVENT_THAW:
 362	case PM_EVENT_RECOVER:
 363		return ops->thaw;
 
 364	case PM_EVENT_RESTORE:
 365		return ops->restore;
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 367	}
 368
 369	return NULL;
 370}
 371
 372/**
 373 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * Runtime PM is disabled for @dev while this function is being executed.
 378 */
 379static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 380				      pm_message_t state)
 381{
 382	switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384	case PM_EVENT_SUSPEND:
 385		return ops->suspend_late;
 386	case PM_EVENT_RESUME:
 387		return ops->resume_early;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390	case PM_EVENT_FREEZE:
 391	case PM_EVENT_QUIESCE:
 392		return ops->freeze_late;
 393	case PM_EVENT_HIBERNATE:
 394		return ops->poweroff_late;
 395	case PM_EVENT_THAW:
 396	case PM_EVENT_RECOVER:
 397		return ops->thaw_early;
 398	case PM_EVENT_RESTORE:
 399		return ops->restore_early;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401	}
 402
 403	return NULL;
 404}
 405
 406/**
 407 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 408 * @ops: PM operations to choose from.
 409 * @state: PM transition of the system being carried out.
 410 *
 411 * The driver of @dev will not receive interrupts while this function is being
 412 * executed.
 413 */
 414static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 415{
 416	switch (state.event) {
 417#ifdef CONFIG_SUSPEND
 418	case PM_EVENT_SUSPEND:
 419		return ops->suspend_noirq;
 420	case PM_EVENT_RESUME:
 421		return ops->resume_noirq;
 422#endif /* CONFIG_SUSPEND */
 423#ifdef CONFIG_HIBERNATE_CALLBACKS
 424	case PM_EVENT_FREEZE:
 425	case PM_EVENT_QUIESCE:
 426		return ops->freeze_noirq;
 427	case PM_EVENT_HIBERNATE:
 428		return ops->poweroff_noirq;
 429	case PM_EVENT_THAW:
 430	case PM_EVENT_RECOVER:
 431		return ops->thaw_noirq;
 432	case PM_EVENT_RESTORE:
 433		return ops->restore_noirq;
 434#endif /* CONFIG_HIBERNATE_CALLBACKS */
 435	}
 436
 437	return NULL;
 438}
 439
 440static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 441{
 442	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
 443		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 444		", may wakeup" : "", dev->power.driver_flags);
 445}
 446
 447static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 448			int error)
 449{
 450	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
 451		error);
 452}
 453
 454static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 455			  const char *info)
 456{
 457	ktime_t calltime;
 458	u64 usecs64;
 459	int usecs;
 460
 461	calltime = ktime_get();
 462	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 463	do_div(usecs64, NSEC_PER_USEC);
 464	usecs = usecs64;
 465	if (usecs == 0)
 466		usecs = 1;
 467
 468	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 469		  info ?: "", info ? " " : "", pm_verb(state.event),
 470		  error ? "aborted" : "complete",
 471		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 472}
 473
 474static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 475			    pm_message_t state, const char *info)
 476{
 477	ktime_t calltime;
 478	int error;
 479
 480	if (!cb)
 481		return 0;
 482
 483	calltime = initcall_debug_start(dev, cb);
 484
 485	pm_dev_dbg(dev, state, info);
 486	trace_device_pm_callback_start(dev, info, state.event);
 487	error = cb(dev);
 488	trace_device_pm_callback_end(dev, error);
 489	suspend_report_result(cb, error);
 490
 491	initcall_debug_report(dev, calltime, cb, error);
 492
 493	return error;
 494}
 495
 496#ifdef CONFIG_DPM_WATCHDOG
 497struct dpm_watchdog {
 498	struct device		*dev;
 499	struct task_struct	*tsk;
 500	struct timer_list	timer;
 501};
 502
 503#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 504	struct dpm_watchdog wd
 505
 506/**
 507 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 508 * @t: The timer that PM watchdog depends on.
 509 *
 510 * Called when a driver has timed out suspending or resuming.
 511 * There's not much we can do here to recover so panic() to
 512 * capture a crash-dump in pstore.
 513 */
 514static void dpm_watchdog_handler(struct timer_list *t)
 515{
 516	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 517
 518	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 519	show_stack(wd->tsk, NULL, KERN_EMERG);
 520	panic("%s %s: unrecoverable failure\n",
 521		dev_driver_string(wd->dev), dev_name(wd->dev));
 522}
 523
 524/**
 525 * dpm_watchdog_set - Enable pm watchdog for given device.
 526 * @wd: Watchdog. Must be allocated on the stack.
 527 * @dev: Device to handle.
 528 */
 529static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 530{
 531	struct timer_list *timer = &wd->timer;
 532
 533	wd->dev = dev;
 534	wd->tsk = current;
 535
 536	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 537	/* use same timeout value for both suspend and resume */
 538	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 
 
 539	add_timer(timer);
 540}
 541
 542/**
 543 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 544 * @wd: Watchdog to disable.
 545 */
 546static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 547{
 548	struct timer_list *timer = &wd->timer;
 549
 550	del_timer_sync(timer);
 551	destroy_timer_on_stack(timer);
 552}
 553#else
 554#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 555#define dpm_watchdog_set(x, y)
 556#define dpm_watchdog_clear(x)
 557#endif
 558
 559/*------------------------- Resume routines -------------------------*/
 560
 561/**
 562 * dev_pm_skip_resume - System-wide device resume optimization check.
 563 * @dev: Target device.
 564 *
 565 * Return:
 566 * - %false if the transition under way is RESTORE.
 567 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
 568 * - The logical negation of %power.must_resume otherwise (that is, when the
 569 *   transition under way is RESUME).
 570 */
 571bool dev_pm_skip_resume(struct device *dev)
 572{
 573	if (pm_transition.event == PM_EVENT_RESTORE)
 574		return false;
 575
 576	if (pm_transition.event == PM_EVENT_THAW)
 577		return dev_pm_skip_suspend(dev);
 578
 579	return !dev->power.must_resume;
 580}
 581
 582/**
 583 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 584 * @dev: Device to handle.
 585 * @state: PM transition of the system being carried out.
 586 * @async: If true, the device is being resumed asynchronously.
 587 *
 588 * The driver of @dev will not receive interrupts while this function is being
 589 * executed.
 590 */
 591static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 592{
 593	pm_callback_t callback = NULL;
 594	const char *info = NULL;
 595	bool skip_resume;
 596	int error = 0;
 597
 598	TRACE_DEVICE(dev);
 599	TRACE_RESUME(0);
 600
 601	if (dev->power.syscore || dev->power.direct_complete)
 602		goto Out;
 603
 604	if (!dev->power.is_noirq_suspended)
 605		goto Out;
 606
 607	if (!dpm_wait_for_superior(dev, async))
 608		goto Out;
 609
 610	skip_resume = dev_pm_skip_resume(dev);
 611	/*
 612	 * If the driver callback is skipped below or by the middle layer
 613	 * callback and device_resume_early() also skips the driver callback for
 614	 * this device later, it needs to appear as "suspended" to PM-runtime,
 615	 * so change its status accordingly.
 616	 *
 617	 * Otherwise, the device is going to be resumed, so set its PM-runtime
 618	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
 619	 * to avoid confusing drivers that don't use it.
 620	 */
 621	if (skip_resume)
 622		pm_runtime_set_suspended(dev);
 623	else if (dev_pm_skip_suspend(dev))
 624		pm_runtime_set_active(dev);
 625
 626	if (dev->pm_domain) {
 627		info = "noirq power domain ";
 628		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 629	} else if (dev->type && dev->type->pm) {
 630		info = "noirq type ";
 631		callback = pm_noirq_op(dev->type->pm, state);
 632	} else if (dev->class && dev->class->pm) {
 633		info = "noirq class ";
 634		callback = pm_noirq_op(dev->class->pm, state);
 635	} else if (dev->bus && dev->bus->pm) {
 636		info = "noirq bus ";
 637		callback = pm_noirq_op(dev->bus->pm, state);
 638	}
 639	if (callback)
 640		goto Run;
 641
 642	if (skip_resume)
 643		goto Skip;
 644
 645	if (dev->driver && dev->driver->pm) {
 646		info = "noirq driver ";
 647		callback = pm_noirq_op(dev->driver->pm, state);
 648	}
 649
 650Run:
 651	error = dpm_run_callback(callback, dev, state, info);
 652
 653Skip:
 654	dev->power.is_noirq_suspended = false;
 655
 656Out:
 657	complete_all(&dev->power.completion);
 658	TRACE_RESUME(error);
 659	return error;
 660}
 661
 662static bool is_async(struct device *dev)
 663{
 664	return dev->power.async_suspend && pm_async_enabled
 665		&& !pm_trace_is_enabled();
 666}
 667
 668static bool dpm_async_fn(struct device *dev, async_func_t func)
 669{
 670	reinit_completion(&dev->power.completion);
 671
 672	if (is_async(dev)) {
 673		get_device(dev);
 674		async_schedule_dev(func, dev);
 675		return true;
 676	}
 677
 678	return false;
 679}
 680
 681static void async_resume_noirq(void *data, async_cookie_t cookie)
 682{
 683	struct device *dev = (struct device *)data;
 684	int error;
 685
 686	error = device_resume_noirq(dev, pm_transition, true);
 687	if (error)
 688		pm_dev_err(dev, pm_transition, " async", error);
 689
 690	put_device(dev);
 691}
 692
 693static void dpm_noirq_resume_devices(pm_message_t state)
 
 
 
 
 
 
 
 694{
 695	struct device *dev;
 696	ktime_t starttime = ktime_get();
 697
 698	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 699	mutex_lock(&dpm_list_mtx);
 700	pm_transition = state;
 701
 702	/*
 703	 * Advanced the async threads upfront,
 704	 * in case the starting of async threads is
 705	 * delayed by non-async resuming devices.
 706	 */
 707	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 708		dpm_async_fn(dev, async_resume_noirq);
 
 
 
 
 
 709
 710	while (!list_empty(&dpm_noirq_list)) {
 711		dev = to_device(dpm_noirq_list.next);
 712		get_device(dev);
 713		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 714		mutex_unlock(&dpm_list_mtx);
 715
 716		if (!is_async(dev)) {
 717			int error;
 718
 719			error = device_resume_noirq(dev, state, false);
 720			if (error) {
 721				suspend_stats.failed_resume_noirq++;
 722				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 723				dpm_save_failed_dev(dev_name(dev));
 724				pm_dev_err(dev, state, " noirq", error);
 725			}
 726		}
 727
 728		mutex_lock(&dpm_list_mtx);
 729		put_device(dev);
 730	}
 731	mutex_unlock(&dpm_list_mtx);
 732	async_synchronize_full();
 733	dpm_show_time(starttime, state, 0, "noirq");
 734	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 735}
 736
 737/**
 738 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 739 * @state: PM transition of the system being carried out.
 740 *
 741 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 742 * allow device drivers' interrupt handlers to be called.
 743 */
 744void dpm_resume_noirq(pm_message_t state)
 745{
 746	dpm_noirq_resume_devices(state);
 747
 748	resume_device_irqs();
 749	device_wakeup_disarm_wake_irqs();
 750
 751	cpuidle_resume();
 
 752}
 753
 754/**
 755 * device_resume_early - Execute an "early resume" callback for given device.
 756 * @dev: Device to handle.
 757 * @state: PM transition of the system being carried out.
 758 * @async: If true, the device is being resumed asynchronously.
 759 *
 760 * Runtime PM is disabled for @dev while this function is being executed.
 761 */
 762static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 763{
 764	pm_callback_t callback = NULL;
 765	const char *info = NULL;
 766	int error = 0;
 767
 768	TRACE_DEVICE(dev);
 769	TRACE_RESUME(0);
 770
 771	if (dev->power.syscore || dev->power.direct_complete)
 772		goto Out;
 773
 774	if (!dev->power.is_late_suspended)
 775		goto Out;
 776
 777	if (!dpm_wait_for_superior(dev, async))
 778		goto Out;
 779
 780	if (dev->pm_domain) {
 781		info = "early power domain ";
 782		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 783	} else if (dev->type && dev->type->pm) {
 784		info = "early type ";
 785		callback = pm_late_early_op(dev->type->pm, state);
 786	} else if (dev->class && dev->class->pm) {
 787		info = "early class ";
 788		callback = pm_late_early_op(dev->class->pm, state);
 789	} else if (dev->bus && dev->bus->pm) {
 790		info = "early bus ";
 791		callback = pm_late_early_op(dev->bus->pm, state);
 792	}
 793	if (callback)
 794		goto Run;
 795
 796	if (dev_pm_skip_resume(dev))
 797		goto Skip;
 798
 799	if (dev->driver && dev->driver->pm) {
 800		info = "early driver ";
 801		callback = pm_late_early_op(dev->driver->pm, state);
 802	}
 803
 804Run:
 805	error = dpm_run_callback(callback, dev, state, info);
 806
 807Skip:
 808	dev->power.is_late_suspended = false;
 809
 810Out:
 811	TRACE_RESUME(error);
 812
 813	pm_runtime_enable(dev);
 814	complete_all(&dev->power.completion);
 815	return error;
 816}
 817
 818static void async_resume_early(void *data, async_cookie_t cookie)
 819{
 820	struct device *dev = (struct device *)data;
 821	int error;
 822
 823	error = device_resume_early(dev, pm_transition, true);
 824	if (error)
 825		pm_dev_err(dev, pm_transition, " async", error);
 826
 827	put_device(dev);
 828}
 829
 830/**
 831 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 832 * @state: PM transition of the system being carried out.
 833 */
 834void dpm_resume_early(pm_message_t state)
 835{
 836	struct device *dev;
 837	ktime_t starttime = ktime_get();
 838
 839	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 840	mutex_lock(&dpm_list_mtx);
 841	pm_transition = state;
 842
 843	/*
 844	 * Advanced the async threads upfront,
 845	 * in case the starting of async threads is
 846	 * delayed by non-async resuming devices.
 847	 */
 848	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 849		dpm_async_fn(dev, async_resume_early);
 
 
 
 
 
 850
 851	while (!list_empty(&dpm_late_early_list)) {
 852		dev = to_device(dpm_late_early_list.next);
 853		get_device(dev);
 854		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 855		mutex_unlock(&dpm_list_mtx);
 856
 857		if (!is_async(dev)) {
 858			int error;
 859
 860			error = device_resume_early(dev, state, false);
 861			if (error) {
 862				suspend_stats.failed_resume_early++;
 863				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 864				dpm_save_failed_dev(dev_name(dev));
 865				pm_dev_err(dev, state, " early", error);
 866			}
 867		}
 868		mutex_lock(&dpm_list_mtx);
 869		put_device(dev);
 870	}
 871	mutex_unlock(&dpm_list_mtx);
 872	async_synchronize_full();
 873	dpm_show_time(starttime, state, 0, "early");
 874	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 875}
 876
 877/**
 878 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 879 * @state: PM transition of the system being carried out.
 880 */
 881void dpm_resume_start(pm_message_t state)
 882{
 883	dpm_resume_noirq(state);
 884	dpm_resume_early(state);
 885}
 886EXPORT_SYMBOL_GPL(dpm_resume_start);
 887
 888/**
 889 * device_resume - Execute "resume" callbacks for given device.
 890 * @dev: Device to handle.
 891 * @state: PM transition of the system being carried out.
 892 * @async: If true, the device is being resumed asynchronously.
 893 */
 894static int device_resume(struct device *dev, pm_message_t state, bool async)
 895{
 896	pm_callback_t callback = NULL;
 897	const char *info = NULL;
 898	int error = 0;
 899	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 900
 901	TRACE_DEVICE(dev);
 902	TRACE_RESUME(0);
 903
 904	if (dev->power.syscore)
 905		goto Complete;
 906
 907	if (dev->power.direct_complete) {
 908		/* Match the pm_runtime_disable() in __device_suspend(). */
 909		pm_runtime_enable(dev);
 910		goto Complete;
 911	}
 912
 913	if (!dpm_wait_for_superior(dev, async))
 914		goto Complete;
 915
 916	dpm_watchdog_set(&wd, dev);
 917	device_lock(dev);
 918
 919	/*
 920	 * This is a fib.  But we'll allow new children to be added below
 921	 * a resumed device, even if the device hasn't been completed yet.
 922	 */
 923	dev->power.is_prepared = false;
 924
 925	if (!dev->power.is_suspended)
 926		goto Unlock;
 927
 928	if (dev->pm_domain) {
 929		info = "power domain ";
 930		callback = pm_op(&dev->pm_domain->ops, state);
 931		goto Driver;
 932	}
 933
 934	if (dev->type && dev->type->pm) {
 935		info = "type ";
 936		callback = pm_op(dev->type->pm, state);
 937		goto Driver;
 938	}
 939
 940	if (dev->class && dev->class->pm) {
 941		info = "class ";
 942		callback = pm_op(dev->class->pm, state);
 943		goto Driver;
 
 
 
 
 
 
 944	}
 945
 946	if (dev->bus) {
 947		if (dev->bus->pm) {
 948			info = "bus ";
 949			callback = pm_op(dev->bus->pm, state);
 950		} else if (dev->bus->resume) {
 951			info = "legacy bus ";
 952			callback = dev->bus->resume;
 953			goto End;
 954		}
 955	}
 956
 957 Driver:
 958	if (!callback && dev->driver && dev->driver->pm) {
 959		info = "driver ";
 960		callback = pm_op(dev->driver->pm, state);
 961	}
 962
 963 End:
 964	error = dpm_run_callback(callback, dev, state, info);
 965	dev->power.is_suspended = false;
 966
 967 Unlock:
 968	device_unlock(dev);
 969	dpm_watchdog_clear(&wd);
 970
 971 Complete:
 972	complete_all(&dev->power.completion);
 973
 974	TRACE_RESUME(error);
 975
 976	return error;
 977}
 978
 979static void async_resume(void *data, async_cookie_t cookie)
 980{
 981	struct device *dev = (struct device *)data;
 982	int error;
 983
 984	error = device_resume(dev, pm_transition, true);
 985	if (error)
 986		pm_dev_err(dev, pm_transition, " async", error);
 987	put_device(dev);
 988}
 989
 990/**
 991 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 992 * @state: PM transition of the system being carried out.
 993 *
 994 * Execute the appropriate "resume" callback for all devices whose status
 995 * indicates that they are suspended.
 996 */
 997void dpm_resume(pm_message_t state)
 998{
 999	struct device *dev;
1000	ktime_t starttime = ktime_get();
1001
1002	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1003	might_sleep();
1004
1005	mutex_lock(&dpm_list_mtx);
1006	pm_transition = state;
1007	async_error = 0;
1008
1009	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1010		dpm_async_fn(dev, async_resume);
 
 
 
 
 
1011
1012	while (!list_empty(&dpm_suspended_list)) {
1013		dev = to_device(dpm_suspended_list.next);
1014		get_device(dev);
1015		if (!is_async(dev)) {
1016			int error;
1017
1018			mutex_unlock(&dpm_list_mtx);
1019
1020			error = device_resume(dev, state, false);
1021			if (error) {
1022				suspend_stats.failed_resume++;
1023				dpm_save_failed_step(SUSPEND_RESUME);
1024				dpm_save_failed_dev(dev_name(dev));
1025				pm_dev_err(dev, state, "", error);
1026			}
1027
1028			mutex_lock(&dpm_list_mtx);
1029		}
1030		if (!list_empty(&dev->power.entry))
1031			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1032		put_device(dev);
1033	}
1034	mutex_unlock(&dpm_list_mtx);
1035	async_synchronize_full();
1036	dpm_show_time(starttime, state, 0, NULL);
1037
1038	cpufreq_resume();
1039	devfreq_resume();
1040	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1041}
1042
1043/**
1044 * device_complete - Complete a PM transition for given device.
1045 * @dev: Device to handle.
1046 * @state: PM transition of the system being carried out.
1047 */
1048static void device_complete(struct device *dev, pm_message_t state)
1049{
1050	void (*callback)(struct device *) = NULL;
1051	const char *info = NULL;
1052
1053	if (dev->power.syscore)
1054		return;
1055
1056	device_lock(dev);
1057
1058	if (dev->pm_domain) {
1059		info = "completing power domain ";
1060		callback = dev->pm_domain->ops.complete;
1061	} else if (dev->type && dev->type->pm) {
1062		info = "completing type ";
1063		callback = dev->type->pm->complete;
1064	} else if (dev->class && dev->class->pm) {
1065		info = "completing class ";
1066		callback = dev->class->pm->complete;
1067	} else if (dev->bus && dev->bus->pm) {
1068		info = "completing bus ";
1069		callback = dev->bus->pm->complete;
1070	}
1071
1072	if (!callback && dev->driver && dev->driver->pm) {
1073		info = "completing driver ";
1074		callback = dev->driver->pm->complete;
1075	}
1076
1077	if (callback) {
1078		pm_dev_dbg(dev, state, info);
1079		callback(dev);
1080	}
1081
1082	device_unlock(dev);
1083
1084	pm_runtime_put(dev);
1085}
1086
1087/**
1088 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1089 * @state: PM transition of the system being carried out.
1090 *
1091 * Execute the ->complete() callbacks for all devices whose PM status is not
1092 * DPM_ON (this allows new devices to be registered).
1093 */
1094void dpm_complete(pm_message_t state)
1095{
1096	struct list_head list;
1097
1098	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1099	might_sleep();
1100
1101	INIT_LIST_HEAD(&list);
1102	mutex_lock(&dpm_list_mtx);
1103	while (!list_empty(&dpm_prepared_list)) {
1104		struct device *dev = to_device(dpm_prepared_list.prev);
1105
1106		get_device(dev);
1107		dev->power.is_prepared = false;
1108		list_move(&dev->power.entry, &list);
1109		mutex_unlock(&dpm_list_mtx);
1110
1111		trace_device_pm_callback_start(dev, "", state.event);
1112		device_complete(dev, state);
1113		trace_device_pm_callback_end(dev, 0);
1114
1115		mutex_lock(&dpm_list_mtx);
1116		put_device(dev);
1117	}
1118	list_splice(&list, &dpm_list);
1119	mutex_unlock(&dpm_list_mtx);
1120
1121	/* Allow device probing and trigger re-probing of deferred devices */
1122	device_unblock_probing();
1123	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1124}
1125
1126/**
1127 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1128 * @state: PM transition of the system being carried out.
1129 *
1130 * Execute "resume" callbacks for all devices and complete the PM transition of
1131 * the system.
1132 */
1133void dpm_resume_end(pm_message_t state)
1134{
1135	dpm_resume(state);
1136	dpm_complete(state);
1137}
1138EXPORT_SYMBOL_GPL(dpm_resume_end);
1139
1140
1141/*------------------------- Suspend routines -------------------------*/
1142
1143/**
1144 * resume_event - Return a "resume" message for given "suspend" sleep state.
1145 * @sleep_state: PM message representing a sleep state.
1146 *
1147 * Return a PM message representing the resume event corresponding to given
1148 * sleep state.
1149 */
1150static pm_message_t resume_event(pm_message_t sleep_state)
1151{
1152	switch (sleep_state.event) {
1153	case PM_EVENT_SUSPEND:
1154		return PMSG_RESUME;
1155	case PM_EVENT_FREEZE:
1156	case PM_EVENT_QUIESCE:
1157		return PMSG_RECOVER;
1158	case PM_EVENT_HIBERNATE:
1159		return PMSG_RESTORE;
1160	}
1161	return PMSG_ON;
1162}
1163
1164static void dpm_superior_set_must_resume(struct device *dev)
1165{
1166	struct device_link *link;
1167	int idx;
1168
1169	if (dev->parent)
1170		dev->parent->power.must_resume = true;
1171
1172	idx = device_links_read_lock();
1173
1174	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1175		link->supplier->power.must_resume = true;
1176
1177	device_links_read_unlock(idx);
1178}
1179
1180/**
1181 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1182 * @dev: Device to handle.
1183 * @state: PM transition of the system being carried out.
1184 * @async: If true, the device is being suspended asynchronously.
1185 *
1186 * The driver of @dev will not receive interrupts while this function is being
1187 * executed.
1188 */
1189static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1190{
1191	pm_callback_t callback = NULL;
1192	const char *info = NULL;
1193	int error = 0;
1194
1195	TRACE_DEVICE(dev);
1196	TRACE_SUSPEND(0);
1197
1198	dpm_wait_for_subordinate(dev, async);
1199
1200	if (async_error)
1201		goto Complete;
1202
 
 
 
 
 
1203	if (dev->power.syscore || dev->power.direct_complete)
1204		goto Complete;
1205
 
 
1206	if (dev->pm_domain) {
1207		info = "noirq power domain ";
1208		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1209	} else if (dev->type && dev->type->pm) {
1210		info = "noirq type ";
1211		callback = pm_noirq_op(dev->type->pm, state);
1212	} else if (dev->class && dev->class->pm) {
1213		info = "noirq class ";
1214		callback = pm_noirq_op(dev->class->pm, state);
1215	} else if (dev->bus && dev->bus->pm) {
1216		info = "noirq bus ";
1217		callback = pm_noirq_op(dev->bus->pm, state);
1218	}
1219	if (callback)
1220		goto Run;
1221
1222	if (dev_pm_skip_suspend(dev))
1223		goto Skip;
1224
1225	if (dev->driver && dev->driver->pm) {
1226		info = "noirq driver ";
1227		callback = pm_noirq_op(dev->driver->pm, state);
1228	}
1229
1230Run:
1231	error = dpm_run_callback(callback, dev, state, info);
1232	if (error) {
 
 
1233		async_error = error;
1234		goto Complete;
1235	}
1236
1237Skip:
1238	dev->power.is_noirq_suspended = true;
1239
1240	/*
1241	 * Skipping the resume of devices that were in use right before the
1242	 * system suspend (as indicated by their PM-runtime usage counters)
1243	 * would be suboptimal.  Also resume them if doing that is not allowed
1244	 * to be skipped.
1245	 */
1246	if (atomic_read(&dev->power.usage_count) > 1 ||
1247	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1248	      dev->power.may_skip_resume))
1249		dev->power.must_resume = true;
1250
1251	if (dev->power.must_resume)
1252		dpm_superior_set_must_resume(dev);
1253
1254Complete:
1255	complete_all(&dev->power.completion);
1256	TRACE_SUSPEND(error);
1257	return error;
1258}
1259
1260static void async_suspend_noirq(void *data, async_cookie_t cookie)
1261{
1262	struct device *dev = (struct device *)data;
1263	int error;
1264
1265	error = __device_suspend_noirq(dev, pm_transition, true);
1266	if (error) {
1267		dpm_save_failed_dev(dev_name(dev));
1268		pm_dev_err(dev, pm_transition, " async", error);
1269	}
1270
1271	put_device(dev);
1272}
1273
1274static int device_suspend_noirq(struct device *dev)
1275{
1276	if (dpm_async_fn(dev, async_suspend_noirq))
1277		return 0;
1278
 
 
 
 
 
1279	return __device_suspend_noirq(dev, pm_transition, false);
1280}
1281
1282static int dpm_noirq_suspend_devices(pm_message_t state)
 
 
 
 
 
 
 
1283{
1284	ktime_t starttime = ktime_get();
1285	int error = 0;
1286
1287	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
 
 
 
1288	mutex_lock(&dpm_list_mtx);
1289	pm_transition = state;
1290	async_error = 0;
1291
1292	while (!list_empty(&dpm_late_early_list)) {
1293		struct device *dev = to_device(dpm_late_early_list.prev);
1294
1295		get_device(dev);
1296		mutex_unlock(&dpm_list_mtx);
1297
1298		error = device_suspend_noirq(dev);
1299
1300		mutex_lock(&dpm_list_mtx);
1301		if (error) {
1302			pm_dev_err(dev, state, " noirq", error);
1303			dpm_save_failed_dev(dev_name(dev));
1304			put_device(dev);
1305			break;
1306		}
1307		if (!list_empty(&dev->power.entry))
1308			list_move(&dev->power.entry, &dpm_noirq_list);
1309		put_device(dev);
1310
1311		if (async_error)
1312			break;
1313	}
1314	mutex_unlock(&dpm_list_mtx);
1315	async_synchronize_full();
1316	if (!error)
1317		error = async_error;
1318
1319	if (error) {
1320		suspend_stats.failed_suspend_noirq++;
1321		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
 
 
 
1322	}
1323	dpm_show_time(starttime, state, error, "noirq");
1324	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1325	return error;
1326}
1327
1328/**
1329 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1330 * @state: PM transition of the system being carried out.
1331 *
1332 * Prevent device drivers' interrupt handlers from being called and invoke
1333 * "noirq" suspend callbacks for all non-sysdev devices.
1334 */
1335int dpm_suspend_noirq(pm_message_t state)
1336{
1337	int ret;
1338
1339	cpuidle_pause();
1340
1341	device_wakeup_arm_wake_irqs();
1342	suspend_device_irqs();
1343
1344	ret = dpm_noirq_suspend_devices(state);
1345	if (ret)
1346		dpm_resume_noirq(resume_event(state));
1347
1348	return ret;
1349}
1350
1351static void dpm_propagate_wakeup_to_parent(struct device *dev)
1352{
1353	struct device *parent = dev->parent;
1354
1355	if (!parent)
1356		return;
1357
1358	spin_lock_irq(&parent->power.lock);
1359
1360	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1361		parent->power.wakeup_path = true;
1362
1363	spin_unlock_irq(&parent->power.lock);
1364}
1365
1366/**
1367 * __device_suspend_late - Execute a "late suspend" callback for given device.
1368 * @dev: Device to handle.
1369 * @state: PM transition of the system being carried out.
1370 * @async: If true, the device is being suspended asynchronously.
1371 *
1372 * Runtime PM is disabled for @dev while this function is being executed.
1373 */
1374static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1375{
1376	pm_callback_t callback = NULL;
1377	const char *info = NULL;
1378	int error = 0;
1379
1380	TRACE_DEVICE(dev);
1381	TRACE_SUSPEND(0);
1382
1383	__pm_runtime_disable(dev, false);
1384
1385	dpm_wait_for_subordinate(dev, async);
1386
1387	if (async_error)
1388		goto Complete;
1389
1390	if (pm_wakeup_pending()) {
1391		async_error = -EBUSY;
1392		goto Complete;
1393	}
1394
1395	if (dev->power.syscore || dev->power.direct_complete)
1396		goto Complete;
1397
 
 
1398	if (dev->pm_domain) {
1399		info = "late power domain ";
1400		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1401	} else if (dev->type && dev->type->pm) {
1402		info = "late type ";
1403		callback = pm_late_early_op(dev->type->pm, state);
1404	} else if (dev->class && dev->class->pm) {
1405		info = "late class ";
1406		callback = pm_late_early_op(dev->class->pm, state);
1407	} else if (dev->bus && dev->bus->pm) {
1408		info = "late bus ";
1409		callback = pm_late_early_op(dev->bus->pm, state);
1410	}
1411	if (callback)
1412		goto Run;
1413
1414	if (dev_pm_skip_suspend(dev))
1415		goto Skip;
1416
1417	if (dev->driver && dev->driver->pm) {
1418		info = "late driver ";
1419		callback = pm_late_early_op(dev->driver->pm, state);
1420	}
1421
1422Run:
1423	error = dpm_run_callback(callback, dev, state, info);
1424	if (error) {
 
 
1425		async_error = error;
1426		goto Complete;
1427	}
1428	dpm_propagate_wakeup_to_parent(dev);
1429
1430Skip:
1431	dev->power.is_late_suspended = true;
1432
1433Complete:
1434	TRACE_SUSPEND(error);
1435	complete_all(&dev->power.completion);
1436	return error;
1437}
1438
1439static void async_suspend_late(void *data, async_cookie_t cookie)
1440{
1441	struct device *dev = (struct device *)data;
1442	int error;
1443
1444	error = __device_suspend_late(dev, pm_transition, true);
1445	if (error) {
1446		dpm_save_failed_dev(dev_name(dev));
1447		pm_dev_err(dev, pm_transition, " async", error);
1448	}
1449	put_device(dev);
1450}
1451
1452static int device_suspend_late(struct device *dev)
1453{
1454	if (dpm_async_fn(dev, async_suspend_late))
 
 
 
 
1455		return 0;
 
1456
1457	return __device_suspend_late(dev, pm_transition, false);
1458}
1459
1460/**
1461 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1462 * @state: PM transition of the system being carried out.
1463 */
1464int dpm_suspend_late(pm_message_t state)
1465{
1466	ktime_t starttime = ktime_get();
1467	int error = 0;
1468
1469	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1470	mutex_lock(&dpm_list_mtx);
1471	pm_transition = state;
1472	async_error = 0;
1473
1474	while (!list_empty(&dpm_suspended_list)) {
1475		struct device *dev = to_device(dpm_suspended_list.prev);
1476
1477		get_device(dev);
1478		mutex_unlock(&dpm_list_mtx);
1479
1480		error = device_suspend_late(dev);
1481
1482		mutex_lock(&dpm_list_mtx);
1483		if (!list_empty(&dev->power.entry))
1484			list_move(&dev->power.entry, &dpm_late_early_list);
1485
1486		if (error) {
1487			pm_dev_err(dev, state, " late", error);
1488			dpm_save_failed_dev(dev_name(dev));
1489			put_device(dev);
1490			break;
1491		}
 
 
1492		put_device(dev);
1493
1494		if (async_error)
1495			break;
1496	}
1497	mutex_unlock(&dpm_list_mtx);
1498	async_synchronize_full();
1499	if (!error)
1500		error = async_error;
1501	if (error) {
1502		suspend_stats.failed_suspend_late++;
1503		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1504		dpm_resume_early(resume_event(state));
 
 
1505	}
1506	dpm_show_time(starttime, state, error, "late");
1507	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1508	return error;
1509}
1510
1511/**
1512 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1513 * @state: PM transition of the system being carried out.
1514 */
1515int dpm_suspend_end(pm_message_t state)
1516{
1517	ktime_t starttime = ktime_get();
1518	int error;
1519
1520	error = dpm_suspend_late(state);
1521	if (error)
1522		goto out;
1523
1524	error = dpm_suspend_noirq(state);
1525	if (error)
1526		dpm_resume_early(resume_event(state));
 
 
1527
1528out:
1529	dpm_show_time(starttime, state, error, "end");
1530	return error;
1531}
1532EXPORT_SYMBOL_GPL(dpm_suspend_end);
1533
1534/**
1535 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1536 * @dev: Device to suspend.
1537 * @state: PM transition of the system being carried out.
1538 * @cb: Suspend callback to execute.
1539 * @info: string description of caller.
1540 */
1541static int legacy_suspend(struct device *dev, pm_message_t state,
1542			  int (*cb)(struct device *dev, pm_message_t state),
1543			  const char *info)
1544{
1545	int error;
1546	ktime_t calltime;
1547
1548	calltime = initcall_debug_start(dev, cb);
1549
1550	trace_device_pm_callback_start(dev, info, state.event);
1551	error = cb(dev, state);
1552	trace_device_pm_callback_end(dev, error);
1553	suspend_report_result(cb, error);
1554
1555	initcall_debug_report(dev, calltime, cb, error);
1556
1557	return error;
1558}
1559
1560static void dpm_clear_superiors_direct_complete(struct device *dev)
1561{
1562	struct device_link *link;
1563	int idx;
1564
1565	if (dev->parent) {
1566		spin_lock_irq(&dev->parent->power.lock);
1567		dev->parent->power.direct_complete = false;
1568		spin_unlock_irq(&dev->parent->power.lock);
1569	}
1570
1571	idx = device_links_read_lock();
1572
1573	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1574		spin_lock_irq(&link->supplier->power.lock);
1575		link->supplier->power.direct_complete = false;
1576		spin_unlock_irq(&link->supplier->power.lock);
1577	}
1578
1579	device_links_read_unlock(idx);
1580}
1581
1582/**
1583 * __device_suspend - Execute "suspend" callbacks for given device.
1584 * @dev: Device to handle.
1585 * @state: PM transition of the system being carried out.
1586 * @async: If true, the device is being suspended asynchronously.
1587 */
1588static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1589{
1590	pm_callback_t callback = NULL;
1591	const char *info = NULL;
1592	int error = 0;
1593	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1594
1595	TRACE_DEVICE(dev);
1596	TRACE_SUSPEND(0);
1597
1598	dpm_wait_for_subordinate(dev, async);
1599
1600	if (async_error) {
1601		dev->power.direct_complete = false;
1602		goto Complete;
1603	}
1604
1605	/*
1606	 * Wait for possible runtime PM transitions of the device in progress
1607	 * to complete and if there's a runtime resume request pending for it,
1608	 * resume it before proceeding with invoking the system-wide suspend
1609	 * callbacks for it.
1610	 *
1611	 * If the system-wide suspend callbacks below change the configuration
1612	 * of the device, they must disable runtime PM for it or otherwise
1613	 * ensure that its runtime-resume callbacks will not be confused by that
1614	 * change in case they are invoked going forward.
1615	 */
1616	pm_runtime_barrier(dev);
 
1617
1618	if (pm_wakeup_pending()) {
1619		dev->power.direct_complete = false;
1620		async_error = -EBUSY;
1621		goto Complete;
1622	}
1623
1624	if (dev->power.syscore)
1625		goto Complete;
1626
1627	/* Avoid direct_complete to let wakeup_path propagate. */
1628	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1629		dev->power.direct_complete = false;
1630
1631	if (dev->power.direct_complete) {
1632		if (pm_runtime_status_suspended(dev)) {
1633			pm_runtime_disable(dev);
1634			if (pm_runtime_status_suspended(dev)) {
1635				pm_dev_dbg(dev, state, "direct-complete ");
1636				goto Complete;
1637			}
1638
1639			pm_runtime_enable(dev);
1640		}
1641		dev->power.direct_complete = false;
1642	}
1643
1644	dev->power.may_skip_resume = true;
1645	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1646
1647	dpm_watchdog_set(&wd, dev);
1648	device_lock(dev);
1649
1650	if (dev->pm_domain) {
1651		info = "power domain ";
1652		callback = pm_op(&dev->pm_domain->ops, state);
1653		goto Run;
1654	}
1655
1656	if (dev->type && dev->type->pm) {
1657		info = "type ";
1658		callback = pm_op(dev->type->pm, state);
1659		goto Run;
1660	}
1661
1662	if (dev->class && dev->class->pm) {
1663		info = "class ";
1664		callback = pm_op(dev->class->pm, state);
1665		goto Run;
 
 
 
 
 
 
 
1666	}
1667
1668	if (dev->bus) {
1669		if (dev->bus->pm) {
1670			info = "bus ";
1671			callback = pm_op(dev->bus->pm, state);
1672		} else if (dev->bus->suspend) {
1673			pm_dev_dbg(dev, state, "legacy bus ");
1674			error = legacy_suspend(dev, state, dev->bus->suspend,
1675						"legacy bus ");
1676			goto End;
1677		}
1678	}
1679
1680 Run:
1681	if (!callback && dev->driver && dev->driver->pm) {
1682		info = "driver ";
1683		callback = pm_op(dev->driver->pm, state);
1684	}
1685
1686	error = dpm_run_callback(callback, dev, state, info);
1687
1688 End:
1689	if (!error) {
 
 
1690		dev->power.is_suspended = true;
1691		if (device_may_wakeup(dev))
1692			dev->power.wakeup_path = true;
 
 
 
 
 
1693
1694		dpm_propagate_wakeup_to_parent(dev);
1695		dpm_clear_superiors_direct_complete(dev);
1696	}
1697
1698	device_unlock(dev);
1699	dpm_watchdog_clear(&wd);
1700
1701 Complete:
 
1702	if (error)
1703		async_error = error;
1704
1705	complete_all(&dev->power.completion);
1706	TRACE_SUSPEND(error);
1707	return error;
1708}
1709
1710static void async_suspend(void *data, async_cookie_t cookie)
1711{
1712	struct device *dev = (struct device *)data;
1713	int error;
1714
1715	error = __device_suspend(dev, pm_transition, true);
1716	if (error) {
1717		dpm_save_failed_dev(dev_name(dev));
1718		pm_dev_err(dev, pm_transition, " async", error);
1719	}
1720
1721	put_device(dev);
1722}
1723
1724static int device_suspend(struct device *dev)
1725{
1726	if (dpm_async_fn(dev, async_suspend))
 
 
 
 
1727		return 0;
 
1728
1729	return __device_suspend(dev, pm_transition, false);
1730}
1731
1732/**
1733 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1734 * @state: PM transition of the system being carried out.
1735 */
1736int dpm_suspend(pm_message_t state)
1737{
1738	ktime_t starttime = ktime_get();
1739	int error = 0;
1740
1741	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1742	might_sleep();
1743
1744	devfreq_suspend();
1745	cpufreq_suspend();
1746
1747	mutex_lock(&dpm_list_mtx);
1748	pm_transition = state;
1749	async_error = 0;
1750	while (!list_empty(&dpm_prepared_list)) {
1751		struct device *dev = to_device(dpm_prepared_list.prev);
1752
1753		get_device(dev);
1754		mutex_unlock(&dpm_list_mtx);
1755
1756		error = device_suspend(dev);
1757
1758		mutex_lock(&dpm_list_mtx);
1759		if (error) {
1760			pm_dev_err(dev, state, "", error);
1761			dpm_save_failed_dev(dev_name(dev));
1762			put_device(dev);
1763			break;
1764		}
1765		if (!list_empty(&dev->power.entry))
1766			list_move(&dev->power.entry, &dpm_suspended_list);
1767		put_device(dev);
1768		if (async_error)
1769			break;
1770	}
1771	mutex_unlock(&dpm_list_mtx);
1772	async_synchronize_full();
1773	if (!error)
1774		error = async_error;
1775	if (error) {
1776		suspend_stats.failed_suspend++;
1777		dpm_save_failed_step(SUSPEND_SUSPEND);
1778	}
1779	dpm_show_time(starttime, state, error, NULL);
1780	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1781	return error;
1782}
1783
1784/**
1785 * device_prepare - Prepare a device for system power transition.
1786 * @dev: Device to handle.
1787 * @state: PM transition of the system being carried out.
1788 *
1789 * Execute the ->prepare() callback(s) for given device.  No new children of the
1790 * device may be registered after this function has returned.
1791 */
1792static int device_prepare(struct device *dev, pm_message_t state)
1793{
1794	int (*callback)(struct device *) = NULL;
 
1795	int ret = 0;
1796
1797	if (dev->power.syscore)
1798		return 0;
1799
1800	/*
1801	 * If a device's parent goes into runtime suspend at the wrong time,
1802	 * it won't be possible to resume the device.  To prevent this we
1803	 * block runtime suspend here, during the prepare phase, and allow
1804	 * it again during the complete phase.
1805	 */
1806	pm_runtime_get_noresume(dev);
1807
1808	device_lock(dev);
1809
1810	dev->power.wakeup_path = false;
1811
1812	if (dev->power.no_pm_callbacks)
 
1813		goto unlock;
 
1814
1815	if (dev->pm_domain)
 
1816		callback = dev->pm_domain->ops.prepare;
1817	else if (dev->type && dev->type->pm)
 
1818		callback = dev->type->pm->prepare;
1819	else if (dev->class && dev->class->pm)
 
1820		callback = dev->class->pm->prepare;
1821	else if (dev->bus && dev->bus->pm)
 
1822		callback = dev->bus->pm->prepare;
 
1823
1824	if (!callback && dev->driver && dev->driver->pm)
 
1825		callback = dev->driver->pm->prepare;
 
1826
1827	if (callback)
1828		ret = callback(dev);
1829
1830unlock:
1831	device_unlock(dev);
1832
1833	if (ret < 0) {
1834		suspend_report_result(callback, ret);
1835		pm_runtime_put(dev);
1836		return ret;
1837	}
1838	/*
1839	 * A positive return value from ->prepare() means "this device appears
1840	 * to be runtime-suspended and its state is fine, so if it really is
1841	 * runtime-suspended, you can leave it in that state provided that you
1842	 * will do the same thing with all of its descendants".  This only
1843	 * applies to suspend transitions, however.
1844	 */
1845	spin_lock_irq(&dev->power.lock);
1846	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1847		(ret > 0 || dev->power.no_pm_callbacks) &&
1848		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1849	spin_unlock_irq(&dev->power.lock);
1850	return 0;
1851}
1852
1853/**
1854 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1855 * @state: PM transition of the system being carried out.
1856 *
1857 * Execute the ->prepare() callback(s) for all devices.
1858 */
1859int dpm_prepare(pm_message_t state)
1860{
1861	int error = 0;
1862
1863	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1864	might_sleep();
1865
1866	/*
1867	 * Give a chance for the known devices to complete their probes, before
1868	 * disable probing of devices. This sync point is important at least
1869	 * at boot time + hibernation restore.
1870	 */
1871	wait_for_device_probe();
1872	/*
1873	 * It is unsafe if probing of devices will happen during suspend or
1874	 * hibernation and system behavior will be unpredictable in this case.
1875	 * So, let's prohibit device's probing here and defer their probes
1876	 * instead. The normal behavior will be restored in dpm_complete().
1877	 */
1878	device_block_probing();
1879
1880	mutex_lock(&dpm_list_mtx);
1881	while (!list_empty(&dpm_list)) {
1882		struct device *dev = to_device(dpm_list.next);
1883
1884		get_device(dev);
1885		mutex_unlock(&dpm_list_mtx);
1886
1887		trace_device_pm_callback_start(dev, "", state.event);
1888		error = device_prepare(dev, state);
1889		trace_device_pm_callback_end(dev, error);
1890
1891		mutex_lock(&dpm_list_mtx);
1892		if (error) {
1893			if (error == -EAGAIN) {
1894				put_device(dev);
1895				error = 0;
1896				continue;
1897			}
1898			dev_info(dev, "not prepared for power transition: code %d\n",
1899				 error);
 
1900			put_device(dev);
1901			break;
1902		}
1903		dev->power.is_prepared = true;
1904		if (!list_empty(&dev->power.entry))
1905			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1906		put_device(dev);
1907	}
1908	mutex_unlock(&dpm_list_mtx);
1909	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1910	return error;
1911}
1912
1913/**
1914 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1915 * @state: PM transition of the system being carried out.
1916 *
1917 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1918 * callbacks for them.
1919 */
1920int dpm_suspend_start(pm_message_t state)
1921{
1922	ktime_t starttime = ktime_get();
1923	int error;
1924
1925	error = dpm_prepare(state);
1926	if (error) {
1927		suspend_stats.failed_prepare++;
1928		dpm_save_failed_step(SUSPEND_PREPARE);
1929	} else
1930		error = dpm_suspend(state);
1931	dpm_show_time(starttime, state, error, "start");
1932	return error;
1933}
1934EXPORT_SYMBOL_GPL(dpm_suspend_start);
1935
1936void __suspend_report_result(const char *function, void *fn, int ret)
1937{
1938	if (ret)
1939		pr_err("%s(): %pS returns %d\n", function, fn, ret);
1940}
1941EXPORT_SYMBOL_GPL(__suspend_report_result);
1942
1943/**
1944 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1945 * @subordinate: Device that needs to wait for @dev.
1946 * @dev: Device to wait for.
 
1947 */
1948int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1949{
1950	dpm_wait(dev, subordinate->power.async_suspend);
1951	return async_error;
1952}
1953EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1954
1955/**
1956 * dpm_for_each_dev - device iterator.
1957 * @data: data for the callback.
1958 * @fn: function to be called for each device.
1959 *
1960 * Iterate over devices in dpm_list, and call @fn for each device,
1961 * passing it @data.
1962 */
1963void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1964{
1965	struct device *dev;
1966
1967	if (!fn)
1968		return;
1969
1970	device_pm_lock();
1971	list_for_each_entry(dev, &dpm_list, power.entry)
1972		fn(dev, data);
1973	device_pm_unlock();
1974}
1975EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1976
1977static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1978{
1979	if (!ops)
1980		return true;
1981
1982	return !ops->prepare &&
1983	       !ops->suspend &&
1984	       !ops->suspend_late &&
1985	       !ops->suspend_noirq &&
1986	       !ops->resume_noirq &&
1987	       !ops->resume_early &&
1988	       !ops->resume &&
1989	       !ops->complete;
1990}
1991
1992void device_pm_check_callbacks(struct device *dev)
1993{
1994	spin_lock_irq(&dev->power.lock);
1995	dev->power.no_pm_callbacks =
1996		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1997		 !dev->bus->suspend && !dev->bus->resume)) &&
1998		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1999		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2000		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2001		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2002		 !dev->driver->suspend && !dev->driver->resume));
2003	spin_unlock_irq(&dev->power.lock);
2004}
2005
2006bool dev_pm_skip_suspend(struct device *dev)
2007{
2008	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2009		pm_runtime_status_suspended(dev);
2010}
v4.6
 
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
 
 
 
  20#include <linux/device.h>
  21#include <linux/kallsyms.h>
  22#include <linux/export.h>
  23#include <linux/mutex.h>
  24#include <linux/pm.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm-trace.h>
  27#include <linux/pm_wakeirq.h>
  28#include <linux/interrupt.h>
  29#include <linux/sched.h>
 
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
 
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
 
 
 
 
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static char *pm_verb(int event)
  65{
  66	switch (event) {
  67	case PM_EVENT_SUSPEND:
  68		return "suspend";
  69	case PM_EVENT_RESUME:
  70		return "resume";
  71	case PM_EVENT_FREEZE:
  72		return "freeze";
  73	case PM_EVENT_QUIESCE:
  74		return "quiesce";
  75	case PM_EVENT_HIBERNATE:
  76		return "hibernate";
  77	case PM_EVENT_THAW:
  78		return "thaw";
  79	case PM_EVENT_RESTORE:
  80		return "restore";
  81	case PM_EVENT_RECOVER:
  82		return "recover";
  83	default:
  84		return "(unknown PM event)";
  85	}
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94	dev->power.is_prepared = false;
  95	dev->power.is_suspended = false;
  96	dev->power.is_noirq_suspended = false;
  97	dev->power.is_late_suspended = false;
  98	init_completion(&dev->power.completion);
  99	complete_all(&dev->power.completion);
 100	dev->power.wakeup = NULL;
 101	INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109	mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117	mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126	pr_debug("PM: Adding info for %s:%s\n",
 
 
 
 
 127		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128	device_pm_check_callbacks(dev);
 129	mutex_lock(&dpm_list_mtx);
 130	if (dev->parent && dev->parent->power.is_prepared)
 131		dev_warn(dev, "parent %s should not be sleeping\n",
 132			dev_name(dev->parent));
 133	list_add_tail(&dev->power.entry, &dpm_list);
 
 134	mutex_unlock(&dpm_list_mtx);
 135}
 136
 137/**
 138 * device_pm_remove - Remove a device from the PM core's list of active devices.
 139 * @dev: Device to be removed from the list.
 140 */
 141void device_pm_remove(struct device *dev)
 142{
 143	pr_debug("PM: Removing info for %s:%s\n",
 
 
 
 144		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 145	complete_all(&dev->power.completion);
 146	mutex_lock(&dpm_list_mtx);
 147	list_del_init(&dev->power.entry);
 
 148	mutex_unlock(&dpm_list_mtx);
 149	device_wakeup_disable(dev);
 150	pm_runtime_remove(dev);
 151	device_pm_check_callbacks(dev);
 152}
 153
 154/**
 155 * device_pm_move_before - Move device in the PM core's list of active devices.
 156 * @deva: Device to move in dpm_list.
 157 * @devb: Device @deva should come before.
 158 */
 159void device_pm_move_before(struct device *deva, struct device *devb)
 160{
 161	pr_debug("PM: Moving %s:%s before %s:%s\n",
 162		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 163		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 164	/* Delete deva from dpm_list and reinsert before devb. */
 165	list_move_tail(&deva->power.entry, &devb->power.entry);
 166}
 167
 168/**
 169 * device_pm_move_after - Move device in the PM core's list of active devices.
 170 * @deva: Device to move in dpm_list.
 171 * @devb: Device @deva should come after.
 172 */
 173void device_pm_move_after(struct device *deva, struct device *devb)
 174{
 175	pr_debug("PM: Moving %s:%s after %s:%s\n",
 176		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 177		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 178	/* Delete deva from dpm_list and reinsert after devb. */
 179	list_move(&deva->power.entry, &devb->power.entry);
 180}
 181
 182/**
 183 * device_pm_move_last - Move device to end of the PM core's list of devices.
 184 * @dev: Device to move in dpm_list.
 185 */
 186void device_pm_move_last(struct device *dev)
 187{
 188	pr_debug("PM: Moving %s:%s to end of list\n",
 189		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 190	list_move_tail(&dev->power.entry, &dpm_list);
 191}
 192
 193static ktime_t initcall_debug_start(struct device *dev)
 194{
 195	ktime_t calltime = ktime_set(0, 0);
 
 196
 197	if (pm_print_times_enabled) {
 198		pr_info("calling  %s+ @ %i, parent: %s\n",
 199			dev_name(dev), task_pid_nr(current),
 200			dev->parent ? dev_name(dev->parent) : "none");
 201		calltime = ktime_get();
 202	}
 203
 204	return calltime;
 205}
 206
 207static void initcall_debug_report(struct device *dev, ktime_t calltime,
 208				  int error, pm_message_t state, char *info)
 209{
 210	ktime_t rettime;
 211	s64 nsecs;
 
 
 212
 213	rettime = ktime_get();
 214	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 215
 216	if (pm_print_times_enabled) {
 217		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 218			error, (unsigned long long)nsecs >> 10);
 219	}
 220}
 221
 222/**
 223 * dpm_wait - Wait for a PM operation to complete.
 224 * @dev: Device to wait for.
 225 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 226 */
 227static void dpm_wait(struct device *dev, bool async)
 228{
 229	if (!dev)
 230		return;
 231
 232	if (async || (pm_async_enabled && dev->power.async_suspend))
 233		wait_for_completion(&dev->power.completion);
 234}
 235
 236static int dpm_wait_fn(struct device *dev, void *async_ptr)
 237{
 238	dpm_wait(dev, *((bool *)async_ptr));
 239	return 0;
 240}
 241
 242static void dpm_wait_for_children(struct device *dev, bool async)
 243{
 244       device_for_each_child(dev, &async, dpm_wait_fn);
 245}
 246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247/**
 248 * pm_op - Return the PM operation appropriate for given PM event.
 249 * @ops: PM operations to choose from.
 250 * @state: PM transition of the system being carried out.
 251 */
 252static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 253{
 254	switch (state.event) {
 255#ifdef CONFIG_SUSPEND
 256	case PM_EVENT_SUSPEND:
 257		return ops->suspend;
 258	case PM_EVENT_RESUME:
 259		return ops->resume;
 260#endif /* CONFIG_SUSPEND */
 261#ifdef CONFIG_HIBERNATE_CALLBACKS
 262	case PM_EVENT_FREEZE:
 263	case PM_EVENT_QUIESCE:
 264		return ops->freeze;
 265	case PM_EVENT_HIBERNATE:
 266		return ops->poweroff;
 267	case PM_EVENT_THAW:
 268	case PM_EVENT_RECOVER:
 269		return ops->thaw;
 270		break;
 271	case PM_EVENT_RESTORE:
 272		return ops->restore;
 273#endif /* CONFIG_HIBERNATE_CALLBACKS */
 274	}
 275
 276	return NULL;
 277}
 278
 279/**
 280 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 281 * @ops: PM operations to choose from.
 282 * @state: PM transition of the system being carried out.
 283 *
 284 * Runtime PM is disabled for @dev while this function is being executed.
 285 */
 286static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 287				      pm_message_t state)
 288{
 289	switch (state.event) {
 290#ifdef CONFIG_SUSPEND
 291	case PM_EVENT_SUSPEND:
 292		return ops->suspend_late;
 293	case PM_EVENT_RESUME:
 294		return ops->resume_early;
 295#endif /* CONFIG_SUSPEND */
 296#ifdef CONFIG_HIBERNATE_CALLBACKS
 297	case PM_EVENT_FREEZE:
 298	case PM_EVENT_QUIESCE:
 299		return ops->freeze_late;
 300	case PM_EVENT_HIBERNATE:
 301		return ops->poweroff_late;
 302	case PM_EVENT_THAW:
 303	case PM_EVENT_RECOVER:
 304		return ops->thaw_early;
 305	case PM_EVENT_RESTORE:
 306		return ops->restore_early;
 307#endif /* CONFIG_HIBERNATE_CALLBACKS */
 308	}
 309
 310	return NULL;
 311}
 312
 313/**
 314 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 315 * @ops: PM operations to choose from.
 316 * @state: PM transition of the system being carried out.
 317 *
 318 * The driver of @dev will not receive interrupts while this function is being
 319 * executed.
 320 */
 321static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 322{
 323	switch (state.event) {
 324#ifdef CONFIG_SUSPEND
 325	case PM_EVENT_SUSPEND:
 326		return ops->suspend_noirq;
 327	case PM_EVENT_RESUME:
 328		return ops->resume_noirq;
 329#endif /* CONFIG_SUSPEND */
 330#ifdef CONFIG_HIBERNATE_CALLBACKS
 331	case PM_EVENT_FREEZE:
 332	case PM_EVENT_QUIESCE:
 333		return ops->freeze_noirq;
 334	case PM_EVENT_HIBERNATE:
 335		return ops->poweroff_noirq;
 336	case PM_EVENT_THAW:
 337	case PM_EVENT_RECOVER:
 338		return ops->thaw_noirq;
 339	case PM_EVENT_RESTORE:
 340		return ops->restore_noirq;
 341#endif /* CONFIG_HIBERNATE_CALLBACKS */
 342	}
 343
 344	return NULL;
 345}
 346
 347static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
 348{
 349	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 350		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 351		", may wakeup" : "");
 352}
 353
 354static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
 355			int error)
 356{
 357	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 358		dev_name(dev), pm_verb(state.event), info, error);
 359}
 360
 361static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
 
 362{
 363	ktime_t calltime;
 364	u64 usecs64;
 365	int usecs;
 366
 367	calltime = ktime_get();
 368	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 369	do_div(usecs64, NSEC_PER_USEC);
 370	usecs = usecs64;
 371	if (usecs == 0)
 372		usecs = 1;
 373	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
 374		info ?: "", info ? " " : "", pm_verb(state.event),
 375		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 
 
 376}
 377
 378static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 379			    pm_message_t state, char *info)
 380{
 381	ktime_t calltime;
 382	int error;
 383
 384	if (!cb)
 385		return 0;
 386
 387	calltime = initcall_debug_start(dev);
 388
 389	pm_dev_dbg(dev, state, info);
 390	trace_device_pm_callback_start(dev, info, state.event);
 391	error = cb(dev);
 392	trace_device_pm_callback_end(dev, error);
 393	suspend_report_result(cb, error);
 394
 395	initcall_debug_report(dev, calltime, error, state, info);
 396
 397	return error;
 398}
 399
 400#ifdef CONFIG_DPM_WATCHDOG
 401struct dpm_watchdog {
 402	struct device		*dev;
 403	struct task_struct	*tsk;
 404	struct timer_list	timer;
 405};
 406
 407#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 408	struct dpm_watchdog wd
 409
 410/**
 411 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 412 * @data: Watchdog object address.
 413 *
 414 * Called when a driver has timed out suspending or resuming.
 415 * There's not much we can do here to recover so panic() to
 416 * capture a crash-dump in pstore.
 417 */
 418static void dpm_watchdog_handler(unsigned long data)
 419{
 420	struct dpm_watchdog *wd = (void *)data;
 421
 422	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 423	show_stack(wd->tsk, NULL);
 424	panic("%s %s: unrecoverable failure\n",
 425		dev_driver_string(wd->dev), dev_name(wd->dev));
 426}
 427
 428/**
 429 * dpm_watchdog_set - Enable pm watchdog for given device.
 430 * @wd: Watchdog. Must be allocated on the stack.
 431 * @dev: Device to handle.
 432 */
 433static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 434{
 435	struct timer_list *timer = &wd->timer;
 436
 437	wd->dev = dev;
 438	wd->tsk = current;
 439
 440	init_timer_on_stack(timer);
 441	/* use same timeout value for both suspend and resume */
 442	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 443	timer->function = dpm_watchdog_handler;
 444	timer->data = (unsigned long)wd;
 445	add_timer(timer);
 446}
 447
 448/**
 449 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 450 * @wd: Watchdog to disable.
 451 */
 452static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 453{
 454	struct timer_list *timer = &wd->timer;
 455
 456	del_timer_sync(timer);
 457	destroy_timer_on_stack(timer);
 458}
 459#else
 460#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 461#define dpm_watchdog_set(x, y)
 462#define dpm_watchdog_clear(x)
 463#endif
 464
 465/*------------------------- Resume routines -------------------------*/
 466
 467/**
 468 * device_resume_noirq - Execute an "early resume" callback for given device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469 * @dev: Device to handle.
 470 * @state: PM transition of the system being carried out.
 471 * @async: If true, the device is being resumed asynchronously.
 472 *
 473 * The driver of @dev will not receive interrupts while this function is being
 474 * executed.
 475 */
 476static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 477{
 478	pm_callback_t callback = NULL;
 479	char *info = NULL;
 
 480	int error = 0;
 481
 482	TRACE_DEVICE(dev);
 483	TRACE_RESUME(0);
 484
 485	if (dev->power.syscore || dev->power.direct_complete)
 486		goto Out;
 487
 488	if (!dev->power.is_noirq_suspended)
 489		goto Out;
 490
 491	dpm_wait(dev->parent, async);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492
 493	if (dev->pm_domain) {
 494		info = "noirq power domain ";
 495		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 496	} else if (dev->type && dev->type->pm) {
 497		info = "noirq type ";
 498		callback = pm_noirq_op(dev->type->pm, state);
 499	} else if (dev->class && dev->class->pm) {
 500		info = "noirq class ";
 501		callback = pm_noirq_op(dev->class->pm, state);
 502	} else if (dev->bus && dev->bus->pm) {
 503		info = "noirq bus ";
 504		callback = pm_noirq_op(dev->bus->pm, state);
 505	}
 
 
 
 
 
 506
 507	if (!callback && dev->driver && dev->driver->pm) {
 508		info = "noirq driver ";
 509		callback = pm_noirq_op(dev->driver->pm, state);
 510	}
 511
 
 512	error = dpm_run_callback(callback, dev, state, info);
 
 
 513	dev->power.is_noirq_suspended = false;
 514
 515 Out:
 516	complete_all(&dev->power.completion);
 517	TRACE_RESUME(error);
 518	return error;
 519}
 520
 521static bool is_async(struct device *dev)
 522{
 523	return dev->power.async_suspend && pm_async_enabled
 524		&& !pm_trace_is_enabled();
 525}
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 527static void async_resume_noirq(void *data, async_cookie_t cookie)
 528{
 529	struct device *dev = (struct device *)data;
 530	int error;
 531
 532	error = device_resume_noirq(dev, pm_transition, true);
 533	if (error)
 534		pm_dev_err(dev, pm_transition, " async", error);
 535
 536	put_device(dev);
 537}
 538
 539/**
 540 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 541 * @state: PM transition of the system being carried out.
 542 *
 543 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
 544 * enable device drivers to receive interrupts.
 545 */
 546void dpm_resume_noirq(pm_message_t state)
 547{
 548	struct device *dev;
 549	ktime_t starttime = ktime_get();
 550
 551	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 552	mutex_lock(&dpm_list_mtx);
 553	pm_transition = state;
 554
 555	/*
 556	 * Advanced the async threads upfront,
 557	 * in case the starting of async threads is
 558	 * delayed by non-async resuming devices.
 559	 */
 560	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 561		reinit_completion(&dev->power.completion);
 562		if (is_async(dev)) {
 563			get_device(dev);
 564			async_schedule(async_resume_noirq, dev);
 565		}
 566	}
 567
 568	while (!list_empty(&dpm_noirq_list)) {
 569		dev = to_device(dpm_noirq_list.next);
 570		get_device(dev);
 571		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 572		mutex_unlock(&dpm_list_mtx);
 573
 574		if (!is_async(dev)) {
 575			int error;
 576
 577			error = device_resume_noirq(dev, state, false);
 578			if (error) {
 579				suspend_stats.failed_resume_noirq++;
 580				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 581				dpm_save_failed_dev(dev_name(dev));
 582				pm_dev_err(dev, state, " noirq", error);
 583			}
 584		}
 585
 586		mutex_lock(&dpm_list_mtx);
 587		put_device(dev);
 588	}
 589	mutex_unlock(&dpm_list_mtx);
 590	async_synchronize_full();
 591	dpm_show_time(starttime, state, "noirq");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592	resume_device_irqs();
 593	device_wakeup_disarm_wake_irqs();
 
 594	cpuidle_resume();
 595	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 596}
 597
 598/**
 599 * device_resume_early - Execute an "early resume" callback for given device.
 600 * @dev: Device to handle.
 601 * @state: PM transition of the system being carried out.
 602 * @async: If true, the device is being resumed asynchronously.
 603 *
 604 * Runtime PM is disabled for @dev while this function is being executed.
 605 */
 606static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 607{
 608	pm_callback_t callback = NULL;
 609	char *info = NULL;
 610	int error = 0;
 611
 612	TRACE_DEVICE(dev);
 613	TRACE_RESUME(0);
 614
 615	if (dev->power.syscore || dev->power.direct_complete)
 616		goto Out;
 617
 618	if (!dev->power.is_late_suspended)
 619		goto Out;
 620
 621	dpm_wait(dev->parent, async);
 
 622
 623	if (dev->pm_domain) {
 624		info = "early power domain ";
 625		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 626	} else if (dev->type && dev->type->pm) {
 627		info = "early type ";
 628		callback = pm_late_early_op(dev->type->pm, state);
 629	} else if (dev->class && dev->class->pm) {
 630		info = "early class ";
 631		callback = pm_late_early_op(dev->class->pm, state);
 632	} else if (dev->bus && dev->bus->pm) {
 633		info = "early bus ";
 634		callback = pm_late_early_op(dev->bus->pm, state);
 635	}
 
 
 
 
 
 636
 637	if (!callback && dev->driver && dev->driver->pm) {
 638		info = "early driver ";
 639		callback = pm_late_early_op(dev->driver->pm, state);
 640	}
 641
 
 642	error = dpm_run_callback(callback, dev, state, info);
 
 
 643	dev->power.is_late_suspended = false;
 644
 645 Out:
 646	TRACE_RESUME(error);
 647
 648	pm_runtime_enable(dev);
 649	complete_all(&dev->power.completion);
 650	return error;
 651}
 652
 653static void async_resume_early(void *data, async_cookie_t cookie)
 654{
 655	struct device *dev = (struct device *)data;
 656	int error;
 657
 658	error = device_resume_early(dev, pm_transition, true);
 659	if (error)
 660		pm_dev_err(dev, pm_transition, " async", error);
 661
 662	put_device(dev);
 663}
 664
 665/**
 666 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 667 * @state: PM transition of the system being carried out.
 668 */
 669void dpm_resume_early(pm_message_t state)
 670{
 671	struct device *dev;
 672	ktime_t starttime = ktime_get();
 673
 674	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 675	mutex_lock(&dpm_list_mtx);
 676	pm_transition = state;
 677
 678	/*
 679	 * Advanced the async threads upfront,
 680	 * in case the starting of async threads is
 681	 * delayed by non-async resuming devices.
 682	 */
 683	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 684		reinit_completion(&dev->power.completion);
 685		if (is_async(dev)) {
 686			get_device(dev);
 687			async_schedule(async_resume_early, dev);
 688		}
 689	}
 690
 691	while (!list_empty(&dpm_late_early_list)) {
 692		dev = to_device(dpm_late_early_list.next);
 693		get_device(dev);
 694		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 695		mutex_unlock(&dpm_list_mtx);
 696
 697		if (!is_async(dev)) {
 698			int error;
 699
 700			error = device_resume_early(dev, state, false);
 701			if (error) {
 702				suspend_stats.failed_resume_early++;
 703				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 704				dpm_save_failed_dev(dev_name(dev));
 705				pm_dev_err(dev, state, " early", error);
 706			}
 707		}
 708		mutex_lock(&dpm_list_mtx);
 709		put_device(dev);
 710	}
 711	mutex_unlock(&dpm_list_mtx);
 712	async_synchronize_full();
 713	dpm_show_time(starttime, state, "early");
 714	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 715}
 716
 717/**
 718 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 719 * @state: PM transition of the system being carried out.
 720 */
 721void dpm_resume_start(pm_message_t state)
 722{
 723	dpm_resume_noirq(state);
 724	dpm_resume_early(state);
 725}
 726EXPORT_SYMBOL_GPL(dpm_resume_start);
 727
 728/**
 729 * device_resume - Execute "resume" callbacks for given device.
 730 * @dev: Device to handle.
 731 * @state: PM transition of the system being carried out.
 732 * @async: If true, the device is being resumed asynchronously.
 733 */
 734static int device_resume(struct device *dev, pm_message_t state, bool async)
 735{
 736	pm_callback_t callback = NULL;
 737	char *info = NULL;
 738	int error = 0;
 739	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 740
 741	TRACE_DEVICE(dev);
 742	TRACE_RESUME(0);
 743
 744	if (dev->power.syscore)
 745		goto Complete;
 746
 747	if (dev->power.direct_complete) {
 748		/* Match the pm_runtime_disable() in __device_suspend(). */
 749		pm_runtime_enable(dev);
 750		goto Complete;
 751	}
 752
 753	dpm_wait(dev->parent, async);
 
 
 754	dpm_watchdog_set(&wd, dev);
 755	device_lock(dev);
 756
 757	/*
 758	 * This is a fib.  But we'll allow new children to be added below
 759	 * a resumed device, even if the device hasn't been completed yet.
 760	 */
 761	dev->power.is_prepared = false;
 762
 763	if (!dev->power.is_suspended)
 764		goto Unlock;
 765
 766	if (dev->pm_domain) {
 767		info = "power domain ";
 768		callback = pm_op(&dev->pm_domain->ops, state);
 769		goto Driver;
 770	}
 771
 772	if (dev->type && dev->type->pm) {
 773		info = "type ";
 774		callback = pm_op(dev->type->pm, state);
 775		goto Driver;
 776	}
 777
 778	if (dev->class) {
 779		if (dev->class->pm) {
 780			info = "class ";
 781			callback = pm_op(dev->class->pm, state);
 782			goto Driver;
 783		} else if (dev->class->resume) {
 784			info = "legacy class ";
 785			callback = dev->class->resume;
 786			goto End;
 787		}
 788	}
 789
 790	if (dev->bus) {
 791		if (dev->bus->pm) {
 792			info = "bus ";
 793			callback = pm_op(dev->bus->pm, state);
 794		} else if (dev->bus->resume) {
 795			info = "legacy bus ";
 796			callback = dev->bus->resume;
 797			goto End;
 798		}
 799	}
 800
 801 Driver:
 802	if (!callback && dev->driver && dev->driver->pm) {
 803		info = "driver ";
 804		callback = pm_op(dev->driver->pm, state);
 805	}
 806
 807 End:
 808	error = dpm_run_callback(callback, dev, state, info);
 809	dev->power.is_suspended = false;
 810
 811 Unlock:
 812	device_unlock(dev);
 813	dpm_watchdog_clear(&wd);
 814
 815 Complete:
 816	complete_all(&dev->power.completion);
 817
 818	TRACE_RESUME(error);
 819
 820	return error;
 821}
 822
 823static void async_resume(void *data, async_cookie_t cookie)
 824{
 825	struct device *dev = (struct device *)data;
 826	int error;
 827
 828	error = device_resume(dev, pm_transition, true);
 829	if (error)
 830		pm_dev_err(dev, pm_transition, " async", error);
 831	put_device(dev);
 832}
 833
 834/**
 835 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 836 * @state: PM transition of the system being carried out.
 837 *
 838 * Execute the appropriate "resume" callback for all devices whose status
 839 * indicates that they are suspended.
 840 */
 841void dpm_resume(pm_message_t state)
 842{
 843	struct device *dev;
 844	ktime_t starttime = ktime_get();
 845
 846	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
 847	might_sleep();
 848
 849	mutex_lock(&dpm_list_mtx);
 850	pm_transition = state;
 851	async_error = 0;
 852
 853	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
 854		reinit_completion(&dev->power.completion);
 855		if (is_async(dev)) {
 856			get_device(dev);
 857			async_schedule(async_resume, dev);
 858		}
 859	}
 860
 861	while (!list_empty(&dpm_suspended_list)) {
 862		dev = to_device(dpm_suspended_list.next);
 863		get_device(dev);
 864		if (!is_async(dev)) {
 865			int error;
 866
 867			mutex_unlock(&dpm_list_mtx);
 868
 869			error = device_resume(dev, state, false);
 870			if (error) {
 871				suspend_stats.failed_resume++;
 872				dpm_save_failed_step(SUSPEND_RESUME);
 873				dpm_save_failed_dev(dev_name(dev));
 874				pm_dev_err(dev, state, "", error);
 875			}
 876
 877			mutex_lock(&dpm_list_mtx);
 878		}
 879		if (!list_empty(&dev->power.entry))
 880			list_move_tail(&dev->power.entry, &dpm_prepared_list);
 881		put_device(dev);
 882	}
 883	mutex_unlock(&dpm_list_mtx);
 884	async_synchronize_full();
 885	dpm_show_time(starttime, state, NULL);
 886
 887	cpufreq_resume();
 
 888	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
 889}
 890
 891/**
 892 * device_complete - Complete a PM transition for given device.
 893 * @dev: Device to handle.
 894 * @state: PM transition of the system being carried out.
 895 */
 896static void device_complete(struct device *dev, pm_message_t state)
 897{
 898	void (*callback)(struct device *) = NULL;
 899	char *info = NULL;
 900
 901	if (dev->power.syscore)
 902		return;
 903
 904	device_lock(dev);
 905
 906	if (dev->pm_domain) {
 907		info = "completing power domain ";
 908		callback = dev->pm_domain->ops.complete;
 909	} else if (dev->type && dev->type->pm) {
 910		info = "completing type ";
 911		callback = dev->type->pm->complete;
 912	} else if (dev->class && dev->class->pm) {
 913		info = "completing class ";
 914		callback = dev->class->pm->complete;
 915	} else if (dev->bus && dev->bus->pm) {
 916		info = "completing bus ";
 917		callback = dev->bus->pm->complete;
 918	}
 919
 920	if (!callback && dev->driver && dev->driver->pm) {
 921		info = "completing driver ";
 922		callback = dev->driver->pm->complete;
 923	}
 924
 925	if (callback) {
 926		pm_dev_dbg(dev, state, info);
 927		callback(dev);
 928	}
 929
 930	device_unlock(dev);
 931
 932	pm_runtime_put(dev);
 933}
 934
 935/**
 936 * dpm_complete - Complete a PM transition for all non-sysdev devices.
 937 * @state: PM transition of the system being carried out.
 938 *
 939 * Execute the ->complete() callbacks for all devices whose PM status is not
 940 * DPM_ON (this allows new devices to be registered).
 941 */
 942void dpm_complete(pm_message_t state)
 943{
 944	struct list_head list;
 945
 946	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
 947	might_sleep();
 948
 949	INIT_LIST_HEAD(&list);
 950	mutex_lock(&dpm_list_mtx);
 951	while (!list_empty(&dpm_prepared_list)) {
 952		struct device *dev = to_device(dpm_prepared_list.prev);
 953
 954		get_device(dev);
 955		dev->power.is_prepared = false;
 956		list_move(&dev->power.entry, &list);
 957		mutex_unlock(&dpm_list_mtx);
 958
 959		trace_device_pm_callback_start(dev, "", state.event);
 960		device_complete(dev, state);
 961		trace_device_pm_callback_end(dev, 0);
 962
 963		mutex_lock(&dpm_list_mtx);
 964		put_device(dev);
 965	}
 966	list_splice(&list, &dpm_list);
 967	mutex_unlock(&dpm_list_mtx);
 968
 969	/* Allow device probing and trigger re-probing of deferred devices */
 970	device_unblock_probing();
 971	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
 972}
 973
 974/**
 975 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
 976 * @state: PM transition of the system being carried out.
 977 *
 978 * Execute "resume" callbacks for all devices and complete the PM transition of
 979 * the system.
 980 */
 981void dpm_resume_end(pm_message_t state)
 982{
 983	dpm_resume(state);
 984	dpm_complete(state);
 985}
 986EXPORT_SYMBOL_GPL(dpm_resume_end);
 987
 988
 989/*------------------------- Suspend routines -------------------------*/
 990
 991/**
 992 * resume_event - Return a "resume" message for given "suspend" sleep state.
 993 * @sleep_state: PM message representing a sleep state.
 994 *
 995 * Return a PM message representing the resume event corresponding to given
 996 * sleep state.
 997 */
 998static pm_message_t resume_event(pm_message_t sleep_state)
 999{
1000	switch (sleep_state.event) {
1001	case PM_EVENT_SUSPEND:
1002		return PMSG_RESUME;
1003	case PM_EVENT_FREEZE:
1004	case PM_EVENT_QUIESCE:
1005		return PMSG_RECOVER;
1006	case PM_EVENT_HIBERNATE:
1007		return PMSG_RESTORE;
1008	}
1009	return PMSG_ON;
1010}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012/**
1013 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1014 * @dev: Device to handle.
1015 * @state: PM transition of the system being carried out.
1016 * @async: If true, the device is being suspended asynchronously.
1017 *
1018 * The driver of @dev will not receive interrupts while this function is being
1019 * executed.
1020 */
1021static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1022{
1023	pm_callback_t callback = NULL;
1024	char *info = NULL;
1025	int error = 0;
1026
1027	TRACE_DEVICE(dev);
1028	TRACE_SUSPEND(0);
1029
 
 
1030	if (async_error)
1031		goto Complete;
1032
1033	if (pm_wakeup_pending()) {
1034		async_error = -EBUSY;
1035		goto Complete;
1036	}
1037
1038	if (dev->power.syscore || dev->power.direct_complete)
1039		goto Complete;
1040
1041	dpm_wait_for_children(dev, async);
1042
1043	if (dev->pm_domain) {
1044		info = "noirq power domain ";
1045		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1046	} else if (dev->type && dev->type->pm) {
1047		info = "noirq type ";
1048		callback = pm_noirq_op(dev->type->pm, state);
1049	} else if (dev->class && dev->class->pm) {
1050		info = "noirq class ";
1051		callback = pm_noirq_op(dev->class->pm, state);
1052	} else if (dev->bus && dev->bus->pm) {
1053		info = "noirq bus ";
1054		callback = pm_noirq_op(dev->bus->pm, state);
1055	}
 
 
 
 
 
1056
1057	if (!callback && dev->driver && dev->driver->pm) {
1058		info = "noirq driver ";
1059		callback = pm_noirq_op(dev->driver->pm, state);
1060	}
1061
 
1062	error = dpm_run_callback(callback, dev, state, info);
1063	if (!error)
1064		dev->power.is_noirq_suspended = true;
1065	else
1066		async_error = error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068Complete:
1069	complete_all(&dev->power.completion);
1070	TRACE_SUSPEND(error);
1071	return error;
1072}
1073
1074static void async_suspend_noirq(void *data, async_cookie_t cookie)
1075{
1076	struct device *dev = (struct device *)data;
1077	int error;
1078
1079	error = __device_suspend_noirq(dev, pm_transition, true);
1080	if (error) {
1081		dpm_save_failed_dev(dev_name(dev));
1082		pm_dev_err(dev, pm_transition, " async", error);
1083	}
1084
1085	put_device(dev);
1086}
1087
1088static int device_suspend_noirq(struct device *dev)
1089{
1090	reinit_completion(&dev->power.completion);
 
1091
1092	if (is_async(dev)) {
1093		get_device(dev);
1094		async_schedule(async_suspend_noirq, dev);
1095		return 0;
1096	}
1097	return __device_suspend_noirq(dev, pm_transition, false);
1098}
1099
1100/**
1101 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1102 * @state: PM transition of the system being carried out.
1103 *
1104 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1105 * handlers for all non-sysdev devices.
1106 */
1107int dpm_suspend_noirq(pm_message_t state)
1108{
1109	ktime_t starttime = ktime_get();
1110	int error = 0;
1111
1112	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1113	cpuidle_pause();
1114	device_wakeup_arm_wake_irqs();
1115	suspend_device_irqs();
1116	mutex_lock(&dpm_list_mtx);
1117	pm_transition = state;
1118	async_error = 0;
1119
1120	while (!list_empty(&dpm_late_early_list)) {
1121		struct device *dev = to_device(dpm_late_early_list.prev);
1122
1123		get_device(dev);
1124		mutex_unlock(&dpm_list_mtx);
1125
1126		error = device_suspend_noirq(dev);
1127
1128		mutex_lock(&dpm_list_mtx);
1129		if (error) {
1130			pm_dev_err(dev, state, " noirq", error);
1131			dpm_save_failed_dev(dev_name(dev));
1132			put_device(dev);
1133			break;
1134		}
1135		if (!list_empty(&dev->power.entry))
1136			list_move(&dev->power.entry, &dpm_noirq_list);
1137		put_device(dev);
1138
1139		if (async_error)
1140			break;
1141	}
1142	mutex_unlock(&dpm_list_mtx);
1143	async_synchronize_full();
1144	if (!error)
1145		error = async_error;
1146
1147	if (error) {
1148		suspend_stats.failed_suspend_noirq++;
1149		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1150		dpm_resume_noirq(resume_event(state));
1151	} else {
1152		dpm_show_time(starttime, state, "noirq");
1153	}
 
1154	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1155	return error;
1156}
1157
1158/**
1159 * device_suspend_late - Execute a "late suspend" callback for given device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160 * @dev: Device to handle.
1161 * @state: PM transition of the system being carried out.
1162 * @async: If true, the device is being suspended asynchronously.
1163 *
1164 * Runtime PM is disabled for @dev while this function is being executed.
1165 */
1166static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1167{
1168	pm_callback_t callback = NULL;
1169	char *info = NULL;
1170	int error = 0;
1171
1172	TRACE_DEVICE(dev);
1173	TRACE_SUSPEND(0);
1174
1175	__pm_runtime_disable(dev, false);
1176
 
 
1177	if (async_error)
1178		goto Complete;
1179
1180	if (pm_wakeup_pending()) {
1181		async_error = -EBUSY;
1182		goto Complete;
1183	}
1184
1185	if (dev->power.syscore || dev->power.direct_complete)
1186		goto Complete;
1187
1188	dpm_wait_for_children(dev, async);
1189
1190	if (dev->pm_domain) {
1191		info = "late power domain ";
1192		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1193	} else if (dev->type && dev->type->pm) {
1194		info = "late type ";
1195		callback = pm_late_early_op(dev->type->pm, state);
1196	} else if (dev->class && dev->class->pm) {
1197		info = "late class ";
1198		callback = pm_late_early_op(dev->class->pm, state);
1199	} else if (dev->bus && dev->bus->pm) {
1200		info = "late bus ";
1201		callback = pm_late_early_op(dev->bus->pm, state);
1202	}
 
 
1203
1204	if (!callback && dev->driver && dev->driver->pm) {
 
 
 
1205		info = "late driver ";
1206		callback = pm_late_early_op(dev->driver->pm, state);
1207	}
1208
 
1209	error = dpm_run_callback(callback, dev, state, info);
1210	if (!error)
1211		dev->power.is_late_suspended = true;
1212	else
1213		async_error = error;
 
 
 
 
 
 
1214
1215Complete:
1216	TRACE_SUSPEND(error);
1217	complete_all(&dev->power.completion);
1218	return error;
1219}
1220
1221static void async_suspend_late(void *data, async_cookie_t cookie)
1222{
1223	struct device *dev = (struct device *)data;
1224	int error;
1225
1226	error = __device_suspend_late(dev, pm_transition, true);
1227	if (error) {
1228		dpm_save_failed_dev(dev_name(dev));
1229		pm_dev_err(dev, pm_transition, " async", error);
1230	}
1231	put_device(dev);
1232}
1233
1234static int device_suspend_late(struct device *dev)
1235{
1236	reinit_completion(&dev->power.completion);
1237
1238	if (is_async(dev)) {
1239		get_device(dev);
1240		async_schedule(async_suspend_late, dev);
1241		return 0;
1242	}
1243
1244	return __device_suspend_late(dev, pm_transition, false);
1245}
1246
1247/**
1248 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1249 * @state: PM transition of the system being carried out.
1250 */
1251int dpm_suspend_late(pm_message_t state)
1252{
1253	ktime_t starttime = ktime_get();
1254	int error = 0;
1255
1256	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1257	mutex_lock(&dpm_list_mtx);
1258	pm_transition = state;
1259	async_error = 0;
1260
1261	while (!list_empty(&dpm_suspended_list)) {
1262		struct device *dev = to_device(dpm_suspended_list.prev);
1263
1264		get_device(dev);
1265		mutex_unlock(&dpm_list_mtx);
1266
1267		error = device_suspend_late(dev);
1268
1269		mutex_lock(&dpm_list_mtx);
 
 
 
1270		if (error) {
1271			pm_dev_err(dev, state, " late", error);
1272			dpm_save_failed_dev(dev_name(dev));
1273			put_device(dev);
1274			break;
1275		}
1276		if (!list_empty(&dev->power.entry))
1277			list_move(&dev->power.entry, &dpm_late_early_list);
1278		put_device(dev);
1279
1280		if (async_error)
1281			break;
1282	}
1283	mutex_unlock(&dpm_list_mtx);
1284	async_synchronize_full();
1285	if (!error)
1286		error = async_error;
1287	if (error) {
1288		suspend_stats.failed_suspend_late++;
1289		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1290		dpm_resume_early(resume_event(state));
1291	} else {
1292		dpm_show_time(starttime, state, "late");
1293	}
 
1294	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1295	return error;
1296}
1297
1298/**
1299 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1300 * @state: PM transition of the system being carried out.
1301 */
1302int dpm_suspend_end(pm_message_t state)
1303{
1304	int error = dpm_suspend_late(state);
 
 
 
1305	if (error)
1306		return error;
1307
1308	error = dpm_suspend_noirq(state);
1309	if (error) {
1310		dpm_resume_early(resume_event(state));
1311		return error;
1312	}
1313
1314	return 0;
 
 
1315}
1316EXPORT_SYMBOL_GPL(dpm_suspend_end);
1317
1318/**
1319 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1320 * @dev: Device to suspend.
1321 * @state: PM transition of the system being carried out.
1322 * @cb: Suspend callback to execute.
1323 * @info: string description of caller.
1324 */
1325static int legacy_suspend(struct device *dev, pm_message_t state,
1326			  int (*cb)(struct device *dev, pm_message_t state),
1327			  char *info)
1328{
1329	int error;
1330	ktime_t calltime;
1331
1332	calltime = initcall_debug_start(dev);
1333
1334	trace_device_pm_callback_start(dev, info, state.event);
1335	error = cb(dev, state);
1336	trace_device_pm_callback_end(dev, error);
1337	suspend_report_result(cb, error);
1338
1339	initcall_debug_report(dev, calltime, error, state, info);
1340
1341	return error;
1342}
1343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344/**
1345 * device_suspend - Execute "suspend" callbacks for given device.
1346 * @dev: Device to handle.
1347 * @state: PM transition of the system being carried out.
1348 * @async: If true, the device is being suspended asynchronously.
1349 */
1350static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1351{
1352	pm_callback_t callback = NULL;
1353	char *info = NULL;
1354	int error = 0;
1355	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1356
1357	TRACE_DEVICE(dev);
1358	TRACE_SUSPEND(0);
1359
1360	dpm_wait_for_children(dev, async);
1361
1362	if (async_error)
 
1363		goto Complete;
 
1364
1365	/*
1366	 * If a device configured to wake up the system from sleep states
1367	 * has been suspended at run time and there's a resume request pending
1368	 * for it, this is equivalent to the device signaling wakeup, so the
1369	 * system suspend operation should be aborted.
 
 
 
 
 
1370	 */
1371	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1372		pm_wakeup_event(dev, 0);
1373
1374	if (pm_wakeup_pending()) {
 
1375		async_error = -EBUSY;
1376		goto Complete;
1377	}
1378
1379	if (dev->power.syscore)
1380		goto Complete;
1381
 
 
 
 
1382	if (dev->power.direct_complete) {
1383		if (pm_runtime_status_suspended(dev)) {
1384			pm_runtime_disable(dev);
1385			if (pm_runtime_status_suspended(dev))
 
1386				goto Complete;
 
1387
1388			pm_runtime_enable(dev);
1389		}
1390		dev->power.direct_complete = false;
1391	}
1392
 
 
 
1393	dpm_watchdog_set(&wd, dev);
1394	device_lock(dev);
1395
1396	if (dev->pm_domain) {
1397		info = "power domain ";
1398		callback = pm_op(&dev->pm_domain->ops, state);
1399		goto Run;
1400	}
1401
1402	if (dev->type && dev->type->pm) {
1403		info = "type ";
1404		callback = pm_op(dev->type->pm, state);
1405		goto Run;
1406	}
1407
1408	if (dev->class) {
1409		if (dev->class->pm) {
1410			info = "class ";
1411			callback = pm_op(dev->class->pm, state);
1412			goto Run;
1413		} else if (dev->class->suspend) {
1414			pm_dev_dbg(dev, state, "legacy class ");
1415			error = legacy_suspend(dev, state, dev->class->suspend,
1416						"legacy class ");
1417			goto End;
1418		}
1419	}
1420
1421	if (dev->bus) {
1422		if (dev->bus->pm) {
1423			info = "bus ";
1424			callback = pm_op(dev->bus->pm, state);
1425		} else if (dev->bus->suspend) {
1426			pm_dev_dbg(dev, state, "legacy bus ");
1427			error = legacy_suspend(dev, state, dev->bus->suspend,
1428						"legacy bus ");
1429			goto End;
1430		}
1431	}
1432
1433 Run:
1434	if (!callback && dev->driver && dev->driver->pm) {
1435		info = "driver ";
1436		callback = pm_op(dev->driver->pm, state);
1437	}
1438
1439	error = dpm_run_callback(callback, dev, state, info);
1440
1441 End:
1442	if (!error) {
1443		struct device *parent = dev->parent;
1444
1445		dev->power.is_suspended = true;
1446		if (parent) {
1447			spin_lock_irq(&parent->power.lock);
1448
1449			dev->parent->power.direct_complete = false;
1450			if (dev->power.wakeup_path
1451			    && !dev->parent->power.ignore_children)
1452				dev->parent->power.wakeup_path = true;
1453
1454			spin_unlock_irq(&parent->power.lock);
1455		}
1456	}
1457
1458	device_unlock(dev);
1459	dpm_watchdog_clear(&wd);
1460
1461 Complete:
1462	complete_all(&dev->power.completion);
1463	if (error)
1464		async_error = error;
1465
 
1466	TRACE_SUSPEND(error);
1467	return error;
1468}
1469
1470static void async_suspend(void *data, async_cookie_t cookie)
1471{
1472	struct device *dev = (struct device *)data;
1473	int error;
1474
1475	error = __device_suspend(dev, pm_transition, true);
1476	if (error) {
1477		dpm_save_failed_dev(dev_name(dev));
1478		pm_dev_err(dev, pm_transition, " async", error);
1479	}
1480
1481	put_device(dev);
1482}
1483
1484static int device_suspend(struct device *dev)
1485{
1486	reinit_completion(&dev->power.completion);
1487
1488	if (is_async(dev)) {
1489		get_device(dev);
1490		async_schedule(async_suspend, dev);
1491		return 0;
1492	}
1493
1494	return __device_suspend(dev, pm_transition, false);
1495}
1496
1497/**
1498 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1499 * @state: PM transition of the system being carried out.
1500 */
1501int dpm_suspend(pm_message_t state)
1502{
1503	ktime_t starttime = ktime_get();
1504	int error = 0;
1505
1506	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1507	might_sleep();
1508
 
1509	cpufreq_suspend();
1510
1511	mutex_lock(&dpm_list_mtx);
1512	pm_transition = state;
1513	async_error = 0;
1514	while (!list_empty(&dpm_prepared_list)) {
1515		struct device *dev = to_device(dpm_prepared_list.prev);
1516
1517		get_device(dev);
1518		mutex_unlock(&dpm_list_mtx);
1519
1520		error = device_suspend(dev);
1521
1522		mutex_lock(&dpm_list_mtx);
1523		if (error) {
1524			pm_dev_err(dev, state, "", error);
1525			dpm_save_failed_dev(dev_name(dev));
1526			put_device(dev);
1527			break;
1528		}
1529		if (!list_empty(&dev->power.entry))
1530			list_move(&dev->power.entry, &dpm_suspended_list);
1531		put_device(dev);
1532		if (async_error)
1533			break;
1534	}
1535	mutex_unlock(&dpm_list_mtx);
1536	async_synchronize_full();
1537	if (!error)
1538		error = async_error;
1539	if (error) {
1540		suspend_stats.failed_suspend++;
1541		dpm_save_failed_step(SUSPEND_SUSPEND);
1542	} else
1543		dpm_show_time(starttime, state, NULL);
1544	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1545	return error;
1546}
1547
1548/**
1549 * device_prepare - Prepare a device for system power transition.
1550 * @dev: Device to handle.
1551 * @state: PM transition of the system being carried out.
1552 *
1553 * Execute the ->prepare() callback(s) for given device.  No new children of the
1554 * device may be registered after this function has returned.
1555 */
1556static int device_prepare(struct device *dev, pm_message_t state)
1557{
1558	int (*callback)(struct device *) = NULL;
1559	char *info = NULL;
1560	int ret = 0;
1561
1562	if (dev->power.syscore)
1563		return 0;
1564
1565	/*
1566	 * If a device's parent goes into runtime suspend at the wrong time,
1567	 * it won't be possible to resume the device.  To prevent this we
1568	 * block runtime suspend here, during the prepare phase, and allow
1569	 * it again during the complete phase.
1570	 */
1571	pm_runtime_get_noresume(dev);
1572
1573	device_lock(dev);
1574
1575	dev->power.wakeup_path = device_may_wakeup(dev);
1576
1577	if (dev->power.no_pm_callbacks) {
1578		ret = 1;	/* Let device go direct_complete */
1579		goto unlock;
1580	}
1581
1582	if (dev->pm_domain) {
1583		info = "preparing power domain ";
1584		callback = dev->pm_domain->ops.prepare;
1585	} else if (dev->type && dev->type->pm) {
1586		info = "preparing type ";
1587		callback = dev->type->pm->prepare;
1588	} else if (dev->class && dev->class->pm) {
1589		info = "preparing class ";
1590		callback = dev->class->pm->prepare;
1591	} else if (dev->bus && dev->bus->pm) {
1592		info = "preparing bus ";
1593		callback = dev->bus->pm->prepare;
1594	}
1595
1596	if (!callback && dev->driver && dev->driver->pm) {
1597		info = "preparing driver ";
1598		callback = dev->driver->pm->prepare;
1599	}
1600
1601	if (callback)
1602		ret = callback(dev);
1603
1604unlock:
1605	device_unlock(dev);
1606
1607	if (ret < 0) {
1608		suspend_report_result(callback, ret);
1609		pm_runtime_put(dev);
1610		return ret;
1611	}
1612	/*
1613	 * A positive return value from ->prepare() means "this device appears
1614	 * to be runtime-suspended and its state is fine, so if it really is
1615	 * runtime-suspended, you can leave it in that state provided that you
1616	 * will do the same thing with all of its descendants".  This only
1617	 * applies to suspend transitions, however.
1618	 */
1619	spin_lock_irq(&dev->power.lock);
1620	dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
 
 
1621	spin_unlock_irq(&dev->power.lock);
1622	return 0;
1623}
1624
1625/**
1626 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for all devices.
1630 */
1631int dpm_prepare(pm_message_t state)
1632{
1633	int error = 0;
1634
1635	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1636	might_sleep();
1637
1638	/*
1639	 * Give a chance for the known devices to complete their probes, before
1640	 * disable probing of devices. This sync point is important at least
1641	 * at boot time + hibernation restore.
1642	 */
1643	wait_for_device_probe();
1644	/*
1645	 * It is unsafe if probing of devices will happen during suspend or
1646	 * hibernation and system behavior will be unpredictable in this case.
1647	 * So, let's prohibit device's probing here and defer their probes
1648	 * instead. The normal behavior will be restored in dpm_complete().
1649	 */
1650	device_block_probing();
1651
1652	mutex_lock(&dpm_list_mtx);
1653	while (!list_empty(&dpm_list)) {
1654		struct device *dev = to_device(dpm_list.next);
1655
1656		get_device(dev);
1657		mutex_unlock(&dpm_list_mtx);
1658
1659		trace_device_pm_callback_start(dev, "", state.event);
1660		error = device_prepare(dev, state);
1661		trace_device_pm_callback_end(dev, error);
1662
1663		mutex_lock(&dpm_list_mtx);
1664		if (error) {
1665			if (error == -EAGAIN) {
1666				put_device(dev);
1667				error = 0;
1668				continue;
1669			}
1670			printk(KERN_INFO "PM: Device %s not prepared "
1671				"for power transition: code %d\n",
1672				dev_name(dev), error);
1673			put_device(dev);
1674			break;
1675		}
1676		dev->power.is_prepared = true;
1677		if (!list_empty(&dev->power.entry))
1678			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1679		put_device(dev);
1680	}
1681	mutex_unlock(&dpm_list_mtx);
1682	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1683	return error;
1684}
1685
1686/**
1687 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1688 * @state: PM transition of the system being carried out.
1689 *
1690 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1691 * callbacks for them.
1692 */
1693int dpm_suspend_start(pm_message_t state)
1694{
 
1695	int error;
1696
1697	error = dpm_prepare(state);
1698	if (error) {
1699		suspend_stats.failed_prepare++;
1700		dpm_save_failed_step(SUSPEND_PREPARE);
1701	} else
1702		error = dpm_suspend(state);
 
1703	return error;
1704}
1705EXPORT_SYMBOL_GPL(dpm_suspend_start);
1706
1707void __suspend_report_result(const char *function, void *fn, int ret)
1708{
1709	if (ret)
1710		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1711}
1712EXPORT_SYMBOL_GPL(__suspend_report_result);
1713
1714/**
1715 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
 
1716 * @dev: Device to wait for.
1717 * @subordinate: Device that needs to wait for @dev.
1718 */
1719int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1720{
1721	dpm_wait(dev, subordinate->power.async_suspend);
1722	return async_error;
1723}
1724EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1725
1726/**
1727 * dpm_for_each_dev - device iterator.
1728 * @data: data for the callback.
1729 * @fn: function to be called for each device.
1730 *
1731 * Iterate over devices in dpm_list, and call @fn for each device,
1732 * passing it @data.
1733 */
1734void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1735{
1736	struct device *dev;
1737
1738	if (!fn)
1739		return;
1740
1741	device_pm_lock();
1742	list_for_each_entry(dev, &dpm_list, power.entry)
1743		fn(dev, data);
1744	device_pm_unlock();
1745}
1746EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1747
1748static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1749{
1750	if (!ops)
1751		return true;
1752
1753	return !ops->prepare &&
1754	       !ops->suspend &&
1755	       !ops->suspend_late &&
1756	       !ops->suspend_noirq &&
1757	       !ops->resume_noirq &&
1758	       !ops->resume_early &&
1759	       !ops->resume &&
1760	       !ops->complete;
1761}
1762
1763void device_pm_check_callbacks(struct device *dev)
1764{
1765	spin_lock_irq(&dev->power.lock);
1766	dev->power.no_pm_callbacks =
1767		(!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
 
1768		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1769		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1770		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1771		(!dev->driver || pm_ops_is_empty(dev->driver->pm));
 
1772	spin_unlock_irq(&dev->power.lock);
 
 
 
 
 
 
1773}