Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/power/main.c - Where the driver meets power management.
   4 *
   5 * Copyright (c) 2003 Patrick Mochel
   6 * Copyright (c) 2003 Open Source Development Lab
   7 *
 
 
 
   8 * The driver model core calls device_pm_add() when a device is registered.
   9 * This will initialize the embedded device_pm_info object in the device
  10 * and add it to the list of power-controlled devices. sysfs entries for
  11 * controlling device power management will also be added.
  12 *
  13 * A separate list is used for keeping track of power info, because the power
  14 * domain dependencies may differ from the ancestral dependencies that the
  15 * subsystem list maintains.
  16 */
  17
  18#define pr_fmt(fmt) "PM: " fmt
  19#define dev_fmt pr_fmt
  20
  21#include <linux/device.h>
  22#include <linux/export.h>
  23#include <linux/mutex.h>
  24#include <linux/pm.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm-trace.h>
  27#include <linux/pm_wakeirq.h>
  28#include <linux/interrupt.h>
  29#include <linux/sched.h>
  30#include <linux/sched/debug.h>
  31#include <linux/async.h>
  32#include <linux/suspend.h>
  33#include <trace/events/power.h>
  34#include <linux/cpufreq.h>
  35#include <linux/cpuidle.h>
  36#include <linux/devfreq.h>
  37#include <linux/timer.h>
  38
  39#include "../base.h"
  40#include "power.h"
  41
  42typedef int (*pm_callback_t)(struct device *);
  43
  44#define list_for_each_entry_rcu_locked(pos, head, member) \
  45	list_for_each_entry_rcu(pos, head, member, \
  46			device_links_read_lock_held())
  47
  48/*
  49 * The entries in the dpm_list list are in a depth first order, simply
  50 * because children are guaranteed to be discovered after parents, and
  51 * are inserted at the back of the list on discovery.
  52 *
  53 * Since device_pm_add() may be called with a device lock held,
  54 * we must never try to acquire a device lock while holding
  55 * dpm_list_mutex.
  56 */
  57
  58LIST_HEAD(dpm_list);
  59static LIST_HEAD(dpm_prepared_list);
  60static LIST_HEAD(dpm_suspended_list);
  61static LIST_HEAD(dpm_late_early_list);
  62static LIST_HEAD(dpm_noirq_list);
  63
  64struct suspend_stats suspend_stats;
  65static DEFINE_MUTEX(dpm_list_mtx);
  66static pm_message_t pm_transition;
  67
  68static int async_error;
  69
  70static const char *pm_verb(int event)
  71{
  72	switch (event) {
  73	case PM_EVENT_SUSPEND:
  74		return "suspend";
  75	case PM_EVENT_RESUME:
  76		return "resume";
  77	case PM_EVENT_FREEZE:
  78		return "freeze";
  79	case PM_EVENT_QUIESCE:
  80		return "quiesce";
  81	case PM_EVENT_HIBERNATE:
  82		return "hibernate";
  83	case PM_EVENT_THAW:
  84		return "thaw";
  85	case PM_EVENT_RESTORE:
  86		return "restore";
  87	case PM_EVENT_RECOVER:
  88		return "recover";
  89	default:
  90		return "(unknown PM event)";
  91	}
  92}
  93
  94/**
  95 * device_pm_sleep_init - Initialize system suspend-related device fields.
  96 * @dev: Device object being initialized.
  97 */
  98void device_pm_sleep_init(struct device *dev)
  99{
 100	dev->power.is_prepared = false;
 101	dev->power.is_suspended = false;
 102	dev->power.is_noirq_suspended = false;
 103	dev->power.is_late_suspended = false;
 104	init_completion(&dev->power.completion);
 105	complete_all(&dev->power.completion);
 106	dev->power.wakeup = NULL;
 107	INIT_LIST_HEAD(&dev->power.entry);
 108}
 109
 110/**
 111 * device_pm_lock - Lock the list of active devices used by the PM core.
 112 */
 113void device_pm_lock(void)
 114{
 115	mutex_lock(&dpm_list_mtx);
 116}
 117
 118/**
 119 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 120 */
 121void device_pm_unlock(void)
 122{
 123	mutex_unlock(&dpm_list_mtx);
 124}
 125
 126/**
 127 * device_pm_add - Add a device to the PM core's list of active devices.
 128 * @dev: Device to add to the list.
 129 */
 130void device_pm_add(struct device *dev)
 131{
 132	/* Skip PM setup/initialization. */
 133	if (device_pm_not_required(dev))
 134		return;
 135
 136	pr_debug("Adding info for %s:%s\n",
 137		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 138	device_pm_check_callbacks(dev);
 139	mutex_lock(&dpm_list_mtx);
 140	if (dev->parent && dev->parent->power.is_prepared)
 141		dev_warn(dev, "parent %s should not be sleeping\n",
 142			dev_name(dev->parent));
 143	list_add_tail(&dev->power.entry, &dpm_list);
 144	dev->power.in_dpm_list = true;
 145	mutex_unlock(&dpm_list_mtx);
 146}
 147
 148/**
 149 * device_pm_remove - Remove a device from the PM core's list of active devices.
 150 * @dev: Device to be removed from the list.
 151 */
 152void device_pm_remove(struct device *dev)
 153{
 154	if (device_pm_not_required(dev))
 155		return;
 156
 157	pr_debug("Removing info for %s:%s\n",
 158		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 159	complete_all(&dev->power.completion);
 160	mutex_lock(&dpm_list_mtx);
 161	list_del_init(&dev->power.entry);
 162	dev->power.in_dpm_list = false;
 163	mutex_unlock(&dpm_list_mtx);
 164	device_wakeup_disable(dev);
 165	pm_runtime_remove(dev);
 166	device_pm_check_callbacks(dev);
 167}
 168
 169/**
 170 * device_pm_move_before - Move device in the PM core's list of active devices.
 171 * @deva: Device to move in dpm_list.
 172 * @devb: Device @deva should come before.
 173 */
 174void device_pm_move_before(struct device *deva, struct device *devb)
 175{
 176	pr_debug("Moving %s:%s before %s:%s\n",
 177		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 178		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 179	/* Delete deva from dpm_list and reinsert before devb. */
 180	list_move_tail(&deva->power.entry, &devb->power.entry);
 181}
 182
 183/**
 184 * device_pm_move_after - Move device in the PM core's list of active devices.
 185 * @deva: Device to move in dpm_list.
 186 * @devb: Device @deva should come after.
 187 */
 188void device_pm_move_after(struct device *deva, struct device *devb)
 189{
 190	pr_debug("Moving %s:%s after %s:%s\n",
 191		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 192		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 193	/* Delete deva from dpm_list and reinsert after devb. */
 194	list_move(&deva->power.entry, &devb->power.entry);
 195}
 196
 197/**
 198 * device_pm_move_last - Move device to end of the PM core's list of devices.
 199 * @dev: Device to move in dpm_list.
 200 */
 201void device_pm_move_last(struct device *dev)
 202{
 203	pr_debug("Moving %s:%s to end of list\n",
 204		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 205	list_move_tail(&dev->power.entry, &dpm_list);
 206}
 207
 208static ktime_t initcall_debug_start(struct device *dev, void *cb)
 209{
 210	if (!pm_print_times_enabled)
 211		return 0;
 212
 213	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
 214		 task_pid_nr(current),
 215		 dev->parent ? dev_name(dev->parent) : "none");
 216	return ktime_get();
 
 
 
 
 217}
 218
 219static void initcall_debug_report(struct device *dev, ktime_t calltime,
 220				  void *cb, int error)
 
 221{
 222	ktime_t rettime;
 223
 224	if (!pm_print_times_enabled)
 225		return;
 226
 227	rettime = ktime_get();
 228	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
 229		 (unsigned long long)ktime_us_delta(rettime, calltime));
 
 
 
 
 230}
 231
 232/**
 233 * dpm_wait - Wait for a PM operation to complete.
 234 * @dev: Device to wait for.
 235 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 236 */
 237static void dpm_wait(struct device *dev, bool async)
 238{
 239	if (!dev)
 240		return;
 241
 242	if (async || (pm_async_enabled && dev->power.async_suspend))
 243		wait_for_completion(&dev->power.completion);
 244}
 245
 246static int dpm_wait_fn(struct device *dev, void *async_ptr)
 247{
 248	dpm_wait(dev, *((bool *)async_ptr));
 249	return 0;
 250}
 251
 252static void dpm_wait_for_children(struct device *dev, bool async)
 253{
 254       device_for_each_child(dev, &async, dpm_wait_fn);
 255}
 256
 257static void dpm_wait_for_suppliers(struct device *dev, bool async)
 258{
 259	struct device_link *link;
 260	int idx;
 261
 262	idx = device_links_read_lock();
 263
 264	/*
 265	 * If the supplier goes away right after we've checked the link to it,
 266	 * we'll wait for its completion to change the state, but that's fine,
 267	 * because the only things that will block as a result are the SRCU
 268	 * callbacks freeing the link objects for the links in the list we're
 269	 * walking.
 270	 */
 271	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
 272		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 273			dpm_wait(link->supplier, async);
 274
 275	device_links_read_unlock(idx);
 276}
 277
 278static bool dpm_wait_for_superior(struct device *dev, bool async)
 279{
 280	struct device *parent;
 281
 282	/*
 283	 * If the device is resumed asynchronously and the parent's callback
 284	 * deletes both the device and the parent itself, the parent object may
 285	 * be freed while this function is running, so avoid that by reference
 286	 * counting the parent once more unless the device has been deleted
 287	 * already (in which case return right away).
 288	 */
 289	mutex_lock(&dpm_list_mtx);
 290
 291	if (!device_pm_initialized(dev)) {
 292		mutex_unlock(&dpm_list_mtx);
 293		return false;
 294	}
 295
 296	parent = get_device(dev->parent);
 297
 298	mutex_unlock(&dpm_list_mtx);
 299
 300	dpm_wait(parent, async);
 301	put_device(parent);
 302
 303	dpm_wait_for_suppliers(dev, async);
 304
 305	/*
 306	 * If the parent's callback has deleted the device, attempting to resume
 307	 * it would be invalid, so avoid doing that then.
 308	 */
 309	return device_pm_initialized(dev);
 310}
 311
 312static void dpm_wait_for_consumers(struct device *dev, bool async)
 313{
 314	struct device_link *link;
 315	int idx;
 316
 317	idx = device_links_read_lock();
 318
 319	/*
 320	 * The status of a device link can only be changed from "dormant" by a
 321	 * probe, but that cannot happen during system suspend/resume.  In
 322	 * theory it can change to "dormant" at that time, but then it is
 323	 * reasonable to wait for the target device anyway (eg. if it goes
 324	 * away, it's better to wait for it to go away completely and then
 325	 * continue instead of trying to continue in parallel with its
 326	 * unregistration).
 327	 */
 328	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
 329		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 330			dpm_wait(link->consumer, async);
 331
 332	device_links_read_unlock(idx);
 333}
 334
 335static void dpm_wait_for_subordinate(struct device *dev, bool async)
 336{
 337	dpm_wait_for_children(dev, async);
 338	dpm_wait_for_consumers(dev, async);
 339}
 340
 341/**
 342 * pm_op - Return the PM operation appropriate for given PM event.
 343 * @ops: PM operations to choose from.
 344 * @state: PM transition of the system being carried out.
 345 */
 346static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 347{
 348	switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350	case PM_EVENT_SUSPEND:
 351		return ops->suspend;
 352	case PM_EVENT_RESUME:
 353		return ops->resume;
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356	case PM_EVENT_FREEZE:
 357	case PM_EVENT_QUIESCE:
 358		return ops->freeze;
 359	case PM_EVENT_HIBERNATE:
 360		return ops->poweroff;
 361	case PM_EVENT_THAW:
 362	case PM_EVENT_RECOVER:
 363		return ops->thaw;
 
 364	case PM_EVENT_RESTORE:
 365		return ops->restore;
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 367	}
 368
 369	return NULL;
 370}
 371
 372/**
 373 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * Runtime PM is disabled for @dev while this function is being executed.
 378 */
 379static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 380				      pm_message_t state)
 381{
 382	switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384	case PM_EVENT_SUSPEND:
 385		return ops->suspend_late;
 386	case PM_EVENT_RESUME:
 387		return ops->resume_early;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390	case PM_EVENT_FREEZE:
 391	case PM_EVENT_QUIESCE:
 392		return ops->freeze_late;
 393	case PM_EVENT_HIBERNATE:
 394		return ops->poweroff_late;
 395	case PM_EVENT_THAW:
 396	case PM_EVENT_RECOVER:
 397		return ops->thaw_early;
 398	case PM_EVENT_RESTORE:
 399		return ops->restore_early;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401	}
 402
 403	return NULL;
 404}
 405
 406/**
 407 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 408 * @ops: PM operations to choose from.
 409 * @state: PM transition of the system being carried out.
 410 *
 411 * The driver of @dev will not receive interrupts while this function is being
 412 * executed.
 413 */
 414static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 415{
 416	switch (state.event) {
 417#ifdef CONFIG_SUSPEND
 418	case PM_EVENT_SUSPEND:
 419		return ops->suspend_noirq;
 420	case PM_EVENT_RESUME:
 421		return ops->resume_noirq;
 422#endif /* CONFIG_SUSPEND */
 423#ifdef CONFIG_HIBERNATE_CALLBACKS
 424	case PM_EVENT_FREEZE:
 425	case PM_EVENT_QUIESCE:
 426		return ops->freeze_noirq;
 427	case PM_EVENT_HIBERNATE:
 428		return ops->poweroff_noirq;
 429	case PM_EVENT_THAW:
 430	case PM_EVENT_RECOVER:
 431		return ops->thaw_noirq;
 432	case PM_EVENT_RESTORE:
 433		return ops->restore_noirq;
 434#endif /* CONFIG_HIBERNATE_CALLBACKS */
 435	}
 436
 437	return NULL;
 438}
 439
 440static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 441{
 442	dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
 443		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 444		", may wakeup" : "", dev->power.driver_flags);
 445}
 446
 447static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 448			int error)
 449{
 450	dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
 451		error);
 452}
 453
 454static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 455			  const char *info)
 456{
 457	ktime_t calltime;
 458	u64 usecs64;
 459	int usecs;
 460
 461	calltime = ktime_get();
 462	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 463	do_div(usecs64, NSEC_PER_USEC);
 464	usecs = usecs64;
 465	if (usecs == 0)
 466		usecs = 1;
 467
 468	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 469		  info ?: "", info ? " " : "", pm_verb(state.event),
 470		  error ? "aborted" : "complete",
 471		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 472}
 473
 474static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 475			    pm_message_t state, const char *info)
 476{
 477	ktime_t calltime;
 478	int error;
 479
 480	if (!cb)
 481		return 0;
 482
 483	calltime = initcall_debug_start(dev, cb);
 484
 485	pm_dev_dbg(dev, state, info);
 486	trace_device_pm_callback_start(dev, info, state.event);
 487	error = cb(dev);
 488	trace_device_pm_callback_end(dev, error);
 489	suspend_report_result(cb, error);
 490
 491	initcall_debug_report(dev, calltime, cb, error);
 492
 493	return error;
 494}
 495
 496#ifdef CONFIG_DPM_WATCHDOG
 497struct dpm_watchdog {
 498	struct device		*dev;
 499	struct task_struct	*tsk;
 500	struct timer_list	timer;
 501};
 502
 503#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 504	struct dpm_watchdog wd
 505
 506/**
 507 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 508 * @t: The timer that PM watchdog depends on.
 509 *
 510 * Called when a driver has timed out suspending or resuming.
 511 * There's not much we can do here to recover so panic() to
 512 * capture a crash-dump in pstore.
 513 */
 514static void dpm_watchdog_handler(struct timer_list *t)
 515{
 516	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 517
 518	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 519	show_stack(wd->tsk, NULL, KERN_EMERG);
 520	panic("%s %s: unrecoverable failure\n",
 521		dev_driver_string(wd->dev), dev_name(wd->dev));
 522}
 523
 524/**
 525 * dpm_watchdog_set - Enable pm watchdog for given device.
 526 * @wd: Watchdog. Must be allocated on the stack.
 527 * @dev: Device to handle.
 528 */
 529static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 530{
 531	struct timer_list *timer = &wd->timer;
 532
 533	wd->dev = dev;
 534	wd->tsk = current;
 535
 536	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 537	/* use same timeout value for both suspend and resume */
 538	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 539	add_timer(timer);
 540}
 541
 542/**
 543 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 544 * @wd: Watchdog to disable.
 545 */
 546static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 547{
 548	struct timer_list *timer = &wd->timer;
 549
 550	del_timer_sync(timer);
 551	destroy_timer_on_stack(timer);
 552}
 553#else
 554#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 555#define dpm_watchdog_set(x, y)
 556#define dpm_watchdog_clear(x)
 557#endif
 558
 559/*------------------------- Resume routines -------------------------*/
 560
 561/**
 562 * dev_pm_skip_resume - System-wide device resume optimization check.
 563 * @dev: Target device.
 564 *
 565 * Return:
 566 * - %false if the transition under way is RESTORE.
 567 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
 568 * - The logical negation of %power.must_resume otherwise (that is, when the
 569 *   transition under way is RESUME).
 570 */
 571bool dev_pm_skip_resume(struct device *dev)
 572{
 573	if (pm_transition.event == PM_EVENT_RESTORE)
 574		return false;
 
 575
 576	if (pm_transition.event == PM_EVENT_THAW)
 577		return dev_pm_skip_suspend(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579	return !dev->power.must_resume;
 
 
 
 
 
 
 
 
 
 580}
 581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582/**
 583 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 584 * @dev: Device to handle.
 585 * @state: PM transition of the system being carried out.
 586 * @async: If true, the device is being resumed asynchronously.
 587 *
 588 * The driver of @dev will not receive interrupts while this function is being
 589 * executed.
 590 */
 591static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 592{
 593	pm_callback_t callback = NULL;
 594	const char *info = NULL;
 595	bool skip_resume;
 596	int error = 0;
 597
 598	TRACE_DEVICE(dev);
 599	TRACE_RESUME(0);
 600
 601	if (dev->power.syscore || dev->power.direct_complete)
 602		goto Out;
 603
 604	if (!dev->power.is_noirq_suspended)
 605		goto Out;
 606
 607	if (!dpm_wait_for_superior(dev, async))
 608		goto Out;
 609
 610	skip_resume = dev_pm_skip_resume(dev);
 611	/*
 612	 * If the driver callback is skipped below or by the middle layer
 613	 * callback and device_resume_early() also skips the driver callback for
 614	 * this device later, it needs to appear as "suspended" to PM-runtime,
 615	 * so change its status accordingly.
 616	 *
 617	 * Otherwise, the device is going to be resumed, so set its PM-runtime
 618	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
 619	 * to avoid confusing drivers that don't use it.
 620	 */
 621	if (skip_resume)
 622		pm_runtime_set_suspended(dev);
 623	else if (dev_pm_skip_suspend(dev))
 624		pm_runtime_set_active(dev);
 625
 626	if (dev->pm_domain) {
 627		info = "noirq power domain ";
 628		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 629	} else if (dev->type && dev->type->pm) {
 630		info = "noirq type ";
 631		callback = pm_noirq_op(dev->type->pm, state);
 632	} else if (dev->class && dev->class->pm) {
 633		info = "noirq class ";
 634		callback = pm_noirq_op(dev->class->pm, state);
 635	} else if (dev->bus && dev->bus->pm) {
 636		info = "noirq bus ";
 637		callback = pm_noirq_op(dev->bus->pm, state);
 638	}
 639	if (callback)
 640		goto Run;
 641
 642	if (skip_resume)
 643		goto Skip;
 644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645	if (dev->driver && dev->driver->pm) {
 646		info = "noirq driver ";
 647		callback = pm_noirq_op(dev->driver->pm, state);
 648	}
 649
 650Run:
 651	error = dpm_run_callback(callback, dev, state, info);
 652
 653Skip:
 654	dev->power.is_noirq_suspended = false;
 655
 
 
 
 
 
 
 
 
 
 
 
 
 656Out:
 657	complete_all(&dev->power.completion);
 658	TRACE_RESUME(error);
 659	return error;
 660}
 661
 662static bool is_async(struct device *dev)
 663{
 664	return dev->power.async_suspend && pm_async_enabled
 665		&& !pm_trace_is_enabled();
 666}
 667
 668static bool dpm_async_fn(struct device *dev, async_func_t func)
 669{
 670	reinit_completion(&dev->power.completion);
 671
 672	if (is_async(dev)) {
 673		get_device(dev);
 674		async_schedule_dev(func, dev);
 675		return true;
 676	}
 677
 678	return false;
 679}
 680
 681static void async_resume_noirq(void *data, async_cookie_t cookie)
 682{
 683	struct device *dev = (struct device *)data;
 684	int error;
 685
 686	error = device_resume_noirq(dev, pm_transition, true);
 687	if (error)
 688		pm_dev_err(dev, pm_transition, " async", error);
 689
 690	put_device(dev);
 691}
 692
 693static void dpm_noirq_resume_devices(pm_message_t state)
 694{
 695	struct device *dev;
 696	ktime_t starttime = ktime_get();
 697
 698	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 699	mutex_lock(&dpm_list_mtx);
 700	pm_transition = state;
 701
 702	/*
 703	 * Advanced the async threads upfront,
 704	 * in case the starting of async threads is
 705	 * delayed by non-async resuming devices.
 706	 */
 707	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
 708		dpm_async_fn(dev, async_resume_noirq);
 
 
 
 
 
 709
 710	while (!list_empty(&dpm_noirq_list)) {
 711		dev = to_device(dpm_noirq_list.next);
 712		get_device(dev);
 713		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 714		mutex_unlock(&dpm_list_mtx);
 715
 716		if (!is_async(dev)) {
 717			int error;
 718
 719			error = device_resume_noirq(dev, state, false);
 720			if (error) {
 721				suspend_stats.failed_resume_noirq++;
 722				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 723				dpm_save_failed_dev(dev_name(dev));
 724				pm_dev_err(dev, state, " noirq", error);
 725			}
 726		}
 727
 728		mutex_lock(&dpm_list_mtx);
 729		put_device(dev);
 730	}
 731	mutex_unlock(&dpm_list_mtx);
 732	async_synchronize_full();
 733	dpm_show_time(starttime, state, 0, "noirq");
 734	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 735}
 736
 
 
 
 
 
 
 
 737/**
 738 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 739 * @state: PM transition of the system being carried out.
 740 *
 741 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 742 * allow device drivers' interrupt handlers to be called.
 743 */
 744void dpm_resume_noirq(pm_message_t state)
 745{
 746	dpm_noirq_resume_devices(state);
 
 
 747
 748	resume_device_irqs();
 749	device_wakeup_disarm_wake_irqs();
 
 
 
 
 750
 751	cpuidle_resume();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752}
 753
 754/**
 755 * device_resume_early - Execute an "early resume" callback for given device.
 756 * @dev: Device to handle.
 757 * @state: PM transition of the system being carried out.
 758 * @async: If true, the device is being resumed asynchronously.
 759 *
 760 * Runtime PM is disabled for @dev while this function is being executed.
 761 */
 762static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 763{
 764	pm_callback_t callback = NULL;
 765	const char *info = NULL;
 766	int error = 0;
 767
 768	TRACE_DEVICE(dev);
 769	TRACE_RESUME(0);
 770
 771	if (dev->power.syscore || dev->power.direct_complete)
 772		goto Out;
 773
 774	if (!dev->power.is_late_suspended)
 775		goto Out;
 776
 777	if (!dpm_wait_for_superior(dev, async))
 778		goto Out;
 779
 780	if (dev->pm_domain) {
 781		info = "early power domain ";
 782		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 783	} else if (dev->type && dev->type->pm) {
 784		info = "early type ";
 785		callback = pm_late_early_op(dev->type->pm, state);
 786	} else if (dev->class && dev->class->pm) {
 787		info = "early class ";
 788		callback = pm_late_early_op(dev->class->pm, state);
 789	} else if (dev->bus && dev->bus->pm) {
 790		info = "early bus ";
 791		callback = pm_late_early_op(dev->bus->pm, state);
 792	}
 793	if (callback)
 794		goto Run;
 795
 796	if (dev_pm_skip_resume(dev))
 797		goto Skip;
 798
 799	if (dev->driver && dev->driver->pm) {
 800		info = "early driver ";
 801		callback = pm_late_early_op(dev->driver->pm, state);
 802	}
 803
 804Run:
 805	error = dpm_run_callback(callback, dev, state, info);
 806
 807Skip:
 808	dev->power.is_late_suspended = false;
 809
 810Out:
 811	TRACE_RESUME(error);
 812
 813	pm_runtime_enable(dev);
 814	complete_all(&dev->power.completion);
 815	return error;
 816}
 817
 818static void async_resume_early(void *data, async_cookie_t cookie)
 819{
 820	struct device *dev = (struct device *)data;
 821	int error;
 822
 823	error = device_resume_early(dev, pm_transition, true);
 824	if (error)
 825		pm_dev_err(dev, pm_transition, " async", error);
 826
 827	put_device(dev);
 828}
 829
 830/**
 831 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 832 * @state: PM transition of the system being carried out.
 833 */
 834void dpm_resume_early(pm_message_t state)
 835{
 836	struct device *dev;
 837	ktime_t starttime = ktime_get();
 838
 839	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 840	mutex_lock(&dpm_list_mtx);
 841	pm_transition = state;
 842
 843	/*
 844	 * Advanced the async threads upfront,
 845	 * in case the starting of async threads is
 846	 * delayed by non-async resuming devices.
 847	 */
 848	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
 849		dpm_async_fn(dev, async_resume_early);
 
 
 
 
 
 850
 851	while (!list_empty(&dpm_late_early_list)) {
 852		dev = to_device(dpm_late_early_list.next);
 853		get_device(dev);
 854		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 855		mutex_unlock(&dpm_list_mtx);
 856
 857		if (!is_async(dev)) {
 858			int error;
 859
 860			error = device_resume_early(dev, state, false);
 861			if (error) {
 862				suspend_stats.failed_resume_early++;
 863				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 864				dpm_save_failed_dev(dev_name(dev));
 865				pm_dev_err(dev, state, " early", error);
 866			}
 867		}
 868		mutex_lock(&dpm_list_mtx);
 869		put_device(dev);
 870	}
 871	mutex_unlock(&dpm_list_mtx);
 872	async_synchronize_full();
 873	dpm_show_time(starttime, state, 0, "early");
 874	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 875}
 876
 877/**
 878 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 879 * @state: PM transition of the system being carried out.
 880 */
 881void dpm_resume_start(pm_message_t state)
 882{
 883	dpm_resume_noirq(state);
 884	dpm_resume_early(state);
 885}
 886EXPORT_SYMBOL_GPL(dpm_resume_start);
 887
 888/**
 889 * device_resume - Execute "resume" callbacks for given device.
 890 * @dev: Device to handle.
 891 * @state: PM transition of the system being carried out.
 892 * @async: If true, the device is being resumed asynchronously.
 893 */
 894static int device_resume(struct device *dev, pm_message_t state, bool async)
 895{
 896	pm_callback_t callback = NULL;
 897	const char *info = NULL;
 898	int error = 0;
 899	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 900
 901	TRACE_DEVICE(dev);
 902	TRACE_RESUME(0);
 903
 904	if (dev->power.syscore)
 905		goto Complete;
 906
 907	if (dev->power.direct_complete) {
 908		/* Match the pm_runtime_disable() in __device_suspend(). */
 909		pm_runtime_enable(dev);
 910		goto Complete;
 911	}
 912
 913	if (!dpm_wait_for_superior(dev, async))
 914		goto Complete;
 915
 916	dpm_watchdog_set(&wd, dev);
 917	device_lock(dev);
 918
 919	/*
 920	 * This is a fib.  But we'll allow new children to be added below
 921	 * a resumed device, even if the device hasn't been completed yet.
 922	 */
 923	dev->power.is_prepared = false;
 924
 925	if (!dev->power.is_suspended)
 926		goto Unlock;
 927
 928	if (dev->pm_domain) {
 929		info = "power domain ";
 930		callback = pm_op(&dev->pm_domain->ops, state);
 931		goto Driver;
 932	}
 933
 934	if (dev->type && dev->type->pm) {
 935		info = "type ";
 936		callback = pm_op(dev->type->pm, state);
 937		goto Driver;
 938	}
 939
 940	if (dev->class && dev->class->pm) {
 941		info = "class ";
 942		callback = pm_op(dev->class->pm, state);
 943		goto Driver;
 944	}
 945
 946	if (dev->bus) {
 947		if (dev->bus->pm) {
 948			info = "bus ";
 949			callback = pm_op(dev->bus->pm, state);
 950		} else if (dev->bus->resume) {
 951			info = "legacy bus ";
 952			callback = dev->bus->resume;
 953			goto End;
 954		}
 955	}
 956
 957 Driver:
 958	if (!callback && dev->driver && dev->driver->pm) {
 959		info = "driver ";
 960		callback = pm_op(dev->driver->pm, state);
 961	}
 962
 963 End:
 964	error = dpm_run_callback(callback, dev, state, info);
 965	dev->power.is_suspended = false;
 966
 967 Unlock:
 968	device_unlock(dev);
 969	dpm_watchdog_clear(&wd);
 970
 971 Complete:
 972	complete_all(&dev->power.completion);
 973
 974	TRACE_RESUME(error);
 975
 976	return error;
 977}
 978
 979static void async_resume(void *data, async_cookie_t cookie)
 980{
 981	struct device *dev = (struct device *)data;
 982	int error;
 983
 984	error = device_resume(dev, pm_transition, true);
 985	if (error)
 986		pm_dev_err(dev, pm_transition, " async", error);
 987	put_device(dev);
 988}
 989
 990/**
 991 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 992 * @state: PM transition of the system being carried out.
 993 *
 994 * Execute the appropriate "resume" callback for all devices whose status
 995 * indicates that they are suspended.
 996 */
 997void dpm_resume(pm_message_t state)
 998{
 999	struct device *dev;
1000	ktime_t starttime = ktime_get();
1001
1002	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1003	might_sleep();
1004
1005	mutex_lock(&dpm_list_mtx);
1006	pm_transition = state;
1007	async_error = 0;
1008
1009	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1010		dpm_async_fn(dev, async_resume);
 
 
 
 
 
1011
1012	while (!list_empty(&dpm_suspended_list)) {
1013		dev = to_device(dpm_suspended_list.next);
1014		get_device(dev);
1015		if (!is_async(dev)) {
1016			int error;
1017
1018			mutex_unlock(&dpm_list_mtx);
1019
1020			error = device_resume(dev, state, false);
1021			if (error) {
1022				suspend_stats.failed_resume++;
1023				dpm_save_failed_step(SUSPEND_RESUME);
1024				dpm_save_failed_dev(dev_name(dev));
1025				pm_dev_err(dev, state, "", error);
1026			}
1027
1028			mutex_lock(&dpm_list_mtx);
1029		}
1030		if (!list_empty(&dev->power.entry))
1031			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1032		put_device(dev);
1033	}
1034	mutex_unlock(&dpm_list_mtx);
1035	async_synchronize_full();
1036	dpm_show_time(starttime, state, 0, NULL);
1037
1038	cpufreq_resume();
1039	devfreq_resume();
1040	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1041}
1042
1043/**
1044 * device_complete - Complete a PM transition for given device.
1045 * @dev: Device to handle.
1046 * @state: PM transition of the system being carried out.
1047 */
1048static void device_complete(struct device *dev, pm_message_t state)
1049{
1050	void (*callback)(struct device *) = NULL;
1051	const char *info = NULL;
1052
1053	if (dev->power.syscore)
1054		return;
1055
1056	device_lock(dev);
1057
1058	if (dev->pm_domain) {
1059		info = "completing power domain ";
1060		callback = dev->pm_domain->ops.complete;
1061	} else if (dev->type && dev->type->pm) {
1062		info = "completing type ";
1063		callback = dev->type->pm->complete;
1064	} else if (dev->class && dev->class->pm) {
1065		info = "completing class ";
1066		callback = dev->class->pm->complete;
1067	} else if (dev->bus && dev->bus->pm) {
1068		info = "completing bus ";
1069		callback = dev->bus->pm->complete;
1070	}
1071
1072	if (!callback && dev->driver && dev->driver->pm) {
1073		info = "completing driver ";
1074		callback = dev->driver->pm->complete;
1075	}
1076
1077	if (callback) {
1078		pm_dev_dbg(dev, state, info);
1079		callback(dev);
1080	}
1081
1082	device_unlock(dev);
1083
1084	pm_runtime_put(dev);
1085}
1086
1087/**
1088 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1089 * @state: PM transition of the system being carried out.
1090 *
1091 * Execute the ->complete() callbacks for all devices whose PM status is not
1092 * DPM_ON (this allows new devices to be registered).
1093 */
1094void dpm_complete(pm_message_t state)
1095{
1096	struct list_head list;
1097
1098	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1099	might_sleep();
1100
1101	INIT_LIST_HEAD(&list);
1102	mutex_lock(&dpm_list_mtx);
1103	while (!list_empty(&dpm_prepared_list)) {
1104		struct device *dev = to_device(dpm_prepared_list.prev);
1105
1106		get_device(dev);
1107		dev->power.is_prepared = false;
1108		list_move(&dev->power.entry, &list);
1109		mutex_unlock(&dpm_list_mtx);
1110
1111		trace_device_pm_callback_start(dev, "", state.event);
1112		device_complete(dev, state);
1113		trace_device_pm_callback_end(dev, 0);
1114
1115		mutex_lock(&dpm_list_mtx);
1116		put_device(dev);
1117	}
1118	list_splice(&list, &dpm_list);
1119	mutex_unlock(&dpm_list_mtx);
1120
1121	/* Allow device probing and trigger re-probing of deferred devices */
1122	device_unblock_probing();
1123	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1124}
1125
1126/**
1127 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1128 * @state: PM transition of the system being carried out.
1129 *
1130 * Execute "resume" callbacks for all devices and complete the PM transition of
1131 * the system.
1132 */
1133void dpm_resume_end(pm_message_t state)
1134{
1135	dpm_resume(state);
1136	dpm_complete(state);
1137}
1138EXPORT_SYMBOL_GPL(dpm_resume_end);
1139
1140
1141/*------------------------- Suspend routines -------------------------*/
1142
1143/**
1144 * resume_event - Return a "resume" message for given "suspend" sleep state.
1145 * @sleep_state: PM message representing a sleep state.
1146 *
1147 * Return a PM message representing the resume event corresponding to given
1148 * sleep state.
1149 */
1150static pm_message_t resume_event(pm_message_t sleep_state)
1151{
1152	switch (sleep_state.event) {
1153	case PM_EVENT_SUSPEND:
1154		return PMSG_RESUME;
1155	case PM_EVENT_FREEZE:
1156	case PM_EVENT_QUIESCE:
1157		return PMSG_RECOVER;
1158	case PM_EVENT_HIBERNATE:
1159		return PMSG_RESTORE;
1160	}
1161	return PMSG_ON;
1162}
1163
1164static void dpm_superior_set_must_resume(struct device *dev)
1165{
1166	struct device_link *link;
1167	int idx;
1168
1169	if (dev->parent)
1170		dev->parent->power.must_resume = true;
1171
1172	idx = device_links_read_lock();
1173
1174	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1175		link->supplier->power.must_resume = true;
1176
1177	device_links_read_unlock(idx);
1178}
1179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180/**
1181 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1182 * @dev: Device to handle.
1183 * @state: PM transition of the system being carried out.
1184 * @async: If true, the device is being suspended asynchronously.
1185 *
1186 * The driver of @dev will not receive interrupts while this function is being
1187 * executed.
1188 */
1189static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1190{
1191	pm_callback_t callback = NULL;
1192	const char *info = NULL;
 
1193	int error = 0;
1194
1195	TRACE_DEVICE(dev);
1196	TRACE_SUSPEND(0);
1197
1198	dpm_wait_for_subordinate(dev, async);
1199
1200	if (async_error)
1201		goto Complete;
1202
 
 
 
 
 
1203	if (dev->power.syscore || dev->power.direct_complete)
1204		goto Complete;
1205
1206	if (dev->pm_domain) {
1207		info = "noirq power domain ";
1208		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1209	} else if (dev->type && dev->type->pm) {
1210		info = "noirq type ";
1211		callback = pm_noirq_op(dev->type->pm, state);
1212	} else if (dev->class && dev->class->pm) {
1213		info = "noirq class ";
1214		callback = pm_noirq_op(dev->class->pm, state);
1215	} else if (dev->bus && dev->bus->pm) {
1216		info = "noirq bus ";
1217		callback = pm_noirq_op(dev->bus->pm, state);
1218	}
1219	if (callback)
1220		goto Run;
1221
1222	if (dev_pm_skip_suspend(dev))
 
 
1223		goto Skip;
1224
1225	if (dev->driver && dev->driver->pm) {
1226		info = "noirq driver ";
1227		callback = pm_noirq_op(dev->driver->pm, state);
1228	}
1229
1230Run:
1231	error = dpm_run_callback(callback, dev, state, info);
1232	if (error) {
1233		async_error = error;
1234		goto Complete;
1235	}
1236
1237Skip:
1238	dev->power.is_noirq_suspended = true;
1239
1240	/*
1241	 * Skipping the resume of devices that were in use right before the
1242	 * system suspend (as indicated by their PM-runtime usage counters)
1243	 * would be suboptimal.  Also resume them if doing that is not allowed
1244	 * to be skipped.
1245	 */
1246	if (atomic_read(&dev->power.usage_count) > 1 ||
1247	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1248	      dev->power.may_skip_resume))
1249		dev->power.must_resume = true;
 
1250
1251	if (dev->power.must_resume)
1252		dpm_superior_set_must_resume(dev);
1253
1254Complete:
1255	complete_all(&dev->power.completion);
1256	TRACE_SUSPEND(error);
1257	return error;
1258}
1259
1260static void async_suspend_noirq(void *data, async_cookie_t cookie)
1261{
1262	struct device *dev = (struct device *)data;
1263	int error;
1264
1265	error = __device_suspend_noirq(dev, pm_transition, true);
1266	if (error) {
1267		dpm_save_failed_dev(dev_name(dev));
1268		pm_dev_err(dev, pm_transition, " async", error);
1269	}
1270
1271	put_device(dev);
1272}
1273
1274static int device_suspend_noirq(struct device *dev)
1275{
1276	if (dpm_async_fn(dev, async_suspend_noirq))
1277		return 0;
1278
 
 
 
 
 
1279	return __device_suspend_noirq(dev, pm_transition, false);
1280}
1281
1282static int dpm_noirq_suspend_devices(pm_message_t state)
 
 
 
 
 
 
 
1283{
1284	ktime_t starttime = ktime_get();
1285	int error = 0;
1286
1287	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1288	mutex_lock(&dpm_list_mtx);
1289	pm_transition = state;
1290	async_error = 0;
1291
1292	while (!list_empty(&dpm_late_early_list)) {
1293		struct device *dev = to_device(dpm_late_early_list.prev);
1294
1295		get_device(dev);
1296		mutex_unlock(&dpm_list_mtx);
1297
1298		error = device_suspend_noirq(dev);
1299
1300		mutex_lock(&dpm_list_mtx);
1301		if (error) {
1302			pm_dev_err(dev, state, " noirq", error);
1303			dpm_save_failed_dev(dev_name(dev));
1304			put_device(dev);
1305			break;
1306		}
1307		if (!list_empty(&dev->power.entry))
1308			list_move(&dev->power.entry, &dpm_noirq_list);
1309		put_device(dev);
1310
1311		if (async_error)
1312			break;
1313	}
1314	mutex_unlock(&dpm_list_mtx);
1315	async_synchronize_full();
1316	if (!error)
1317		error = async_error;
1318
1319	if (error) {
1320		suspend_stats.failed_suspend_noirq++;
1321		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1322	}
1323	dpm_show_time(starttime, state, error, "noirq");
1324	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1325	return error;
1326}
1327
1328/**
1329 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1330 * @state: PM transition of the system being carried out.
1331 *
1332 * Prevent device drivers' interrupt handlers from being called and invoke
1333 * "noirq" suspend callbacks for all non-sysdev devices.
1334 */
1335int dpm_suspend_noirq(pm_message_t state)
1336{
1337	int ret;
1338
1339	cpuidle_pause();
1340
1341	device_wakeup_arm_wake_irqs();
1342	suspend_device_irqs();
1343
1344	ret = dpm_noirq_suspend_devices(state);
1345	if (ret)
1346		dpm_resume_noirq(resume_event(state));
1347
1348	return ret;
1349}
1350
1351static void dpm_propagate_wakeup_to_parent(struct device *dev)
1352{
1353	struct device *parent = dev->parent;
1354
1355	if (!parent)
1356		return;
1357
1358	spin_lock_irq(&parent->power.lock);
1359
1360	if (device_wakeup_path(dev) && !parent->power.ignore_children)
1361		parent->power.wakeup_path = true;
1362
1363	spin_unlock_irq(&parent->power.lock);
1364}
1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366/**
1367 * __device_suspend_late - Execute a "late suspend" callback for given device.
1368 * @dev: Device to handle.
1369 * @state: PM transition of the system being carried out.
1370 * @async: If true, the device is being suspended asynchronously.
1371 *
1372 * Runtime PM is disabled for @dev while this function is being executed.
1373 */
1374static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1375{
1376	pm_callback_t callback = NULL;
1377	const char *info = NULL;
1378	int error = 0;
1379
1380	TRACE_DEVICE(dev);
1381	TRACE_SUSPEND(0);
1382
1383	__pm_runtime_disable(dev, false);
1384
1385	dpm_wait_for_subordinate(dev, async);
1386
1387	if (async_error)
1388		goto Complete;
1389
1390	if (pm_wakeup_pending()) {
1391		async_error = -EBUSY;
1392		goto Complete;
1393	}
1394
1395	if (dev->power.syscore || dev->power.direct_complete)
1396		goto Complete;
1397
1398	if (dev->pm_domain) {
1399		info = "late power domain ";
1400		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1401	} else if (dev->type && dev->type->pm) {
1402		info = "late type ";
1403		callback = pm_late_early_op(dev->type->pm, state);
1404	} else if (dev->class && dev->class->pm) {
1405		info = "late class ";
1406		callback = pm_late_early_op(dev->class->pm, state);
1407	} else if (dev->bus && dev->bus->pm) {
1408		info = "late bus ";
1409		callback = pm_late_early_op(dev->bus->pm, state);
1410	}
1411	if (callback)
1412		goto Run;
1413
1414	if (dev_pm_skip_suspend(dev))
 
1415		goto Skip;
1416
1417	if (dev->driver && dev->driver->pm) {
1418		info = "late driver ";
1419		callback = pm_late_early_op(dev->driver->pm, state);
1420	}
1421
1422Run:
1423	error = dpm_run_callback(callback, dev, state, info);
1424	if (error) {
1425		async_error = error;
1426		goto Complete;
1427	}
1428	dpm_propagate_wakeup_to_parent(dev);
1429
1430Skip:
1431	dev->power.is_late_suspended = true;
1432
1433Complete:
1434	TRACE_SUSPEND(error);
1435	complete_all(&dev->power.completion);
1436	return error;
1437}
1438
1439static void async_suspend_late(void *data, async_cookie_t cookie)
1440{
1441	struct device *dev = (struct device *)data;
1442	int error;
1443
1444	error = __device_suspend_late(dev, pm_transition, true);
1445	if (error) {
1446		dpm_save_failed_dev(dev_name(dev));
1447		pm_dev_err(dev, pm_transition, " async", error);
1448	}
1449	put_device(dev);
1450}
1451
1452static int device_suspend_late(struct device *dev)
1453{
1454	if (dpm_async_fn(dev, async_suspend_late))
 
 
 
 
1455		return 0;
 
1456
1457	return __device_suspend_late(dev, pm_transition, false);
1458}
1459
1460/**
1461 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1462 * @state: PM transition of the system being carried out.
1463 */
1464int dpm_suspend_late(pm_message_t state)
1465{
1466	ktime_t starttime = ktime_get();
1467	int error = 0;
1468
1469	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1470	mutex_lock(&dpm_list_mtx);
1471	pm_transition = state;
1472	async_error = 0;
1473
1474	while (!list_empty(&dpm_suspended_list)) {
1475		struct device *dev = to_device(dpm_suspended_list.prev);
1476
1477		get_device(dev);
1478		mutex_unlock(&dpm_list_mtx);
1479
1480		error = device_suspend_late(dev);
1481
1482		mutex_lock(&dpm_list_mtx);
1483		if (!list_empty(&dev->power.entry))
1484			list_move(&dev->power.entry, &dpm_late_early_list);
1485
1486		if (error) {
1487			pm_dev_err(dev, state, " late", error);
1488			dpm_save_failed_dev(dev_name(dev));
1489			put_device(dev);
1490			break;
1491		}
1492		put_device(dev);
1493
1494		if (async_error)
1495			break;
1496	}
1497	mutex_unlock(&dpm_list_mtx);
1498	async_synchronize_full();
1499	if (!error)
1500		error = async_error;
1501	if (error) {
1502		suspend_stats.failed_suspend_late++;
1503		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1504		dpm_resume_early(resume_event(state));
1505	}
1506	dpm_show_time(starttime, state, error, "late");
1507	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1508	return error;
1509}
1510
1511/**
1512 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1513 * @state: PM transition of the system being carried out.
1514 */
1515int dpm_suspend_end(pm_message_t state)
1516{
1517	ktime_t starttime = ktime_get();
1518	int error;
1519
1520	error = dpm_suspend_late(state);
1521	if (error)
1522		goto out;
1523
1524	error = dpm_suspend_noirq(state);
1525	if (error)
1526		dpm_resume_early(resume_event(state));
 
 
1527
1528out:
1529	dpm_show_time(starttime, state, error, "end");
1530	return error;
1531}
1532EXPORT_SYMBOL_GPL(dpm_suspend_end);
1533
1534/**
1535 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1536 * @dev: Device to suspend.
1537 * @state: PM transition of the system being carried out.
1538 * @cb: Suspend callback to execute.
1539 * @info: string description of caller.
1540 */
1541static int legacy_suspend(struct device *dev, pm_message_t state,
1542			  int (*cb)(struct device *dev, pm_message_t state),
1543			  const char *info)
1544{
1545	int error;
1546	ktime_t calltime;
1547
1548	calltime = initcall_debug_start(dev, cb);
1549
1550	trace_device_pm_callback_start(dev, info, state.event);
1551	error = cb(dev, state);
1552	trace_device_pm_callback_end(dev, error);
1553	suspend_report_result(cb, error);
1554
1555	initcall_debug_report(dev, calltime, cb, error);
1556
1557	return error;
1558}
1559
1560static void dpm_clear_superiors_direct_complete(struct device *dev)
1561{
1562	struct device_link *link;
1563	int idx;
1564
1565	if (dev->parent) {
1566		spin_lock_irq(&dev->parent->power.lock);
1567		dev->parent->power.direct_complete = false;
1568		spin_unlock_irq(&dev->parent->power.lock);
1569	}
1570
1571	idx = device_links_read_lock();
1572
1573	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1574		spin_lock_irq(&link->supplier->power.lock);
1575		link->supplier->power.direct_complete = false;
1576		spin_unlock_irq(&link->supplier->power.lock);
1577	}
1578
1579	device_links_read_unlock(idx);
1580}
1581
1582/**
1583 * __device_suspend - Execute "suspend" callbacks for given device.
1584 * @dev: Device to handle.
1585 * @state: PM transition of the system being carried out.
1586 * @async: If true, the device is being suspended asynchronously.
1587 */
1588static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1589{
1590	pm_callback_t callback = NULL;
1591	const char *info = NULL;
1592	int error = 0;
1593	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1594
1595	TRACE_DEVICE(dev);
1596	TRACE_SUSPEND(0);
1597
1598	dpm_wait_for_subordinate(dev, async);
1599
1600	if (async_error) {
1601		dev->power.direct_complete = false;
1602		goto Complete;
1603	}
1604
1605	/*
1606	 * Wait for possible runtime PM transitions of the device in progress
1607	 * to complete and if there's a runtime resume request pending for it,
1608	 * resume it before proceeding with invoking the system-wide suspend
1609	 * callbacks for it.
1610	 *
1611	 * If the system-wide suspend callbacks below change the configuration
1612	 * of the device, they must disable runtime PM for it or otherwise
1613	 * ensure that its runtime-resume callbacks will not be confused by that
1614	 * change in case they are invoked going forward.
1615	 */
1616	pm_runtime_barrier(dev);
 
1617
1618	if (pm_wakeup_pending()) {
1619		dev->power.direct_complete = false;
1620		async_error = -EBUSY;
1621		goto Complete;
1622	}
1623
1624	if (dev->power.syscore)
1625		goto Complete;
1626
1627	/* Avoid direct_complete to let wakeup_path propagate. */
1628	if (device_may_wakeup(dev) || device_wakeup_path(dev))
1629		dev->power.direct_complete = false;
1630
1631	if (dev->power.direct_complete) {
1632		if (pm_runtime_status_suspended(dev)) {
1633			pm_runtime_disable(dev);
1634			if (pm_runtime_status_suspended(dev)) {
1635				pm_dev_dbg(dev, state, "direct-complete ");
1636				goto Complete;
1637			}
1638
1639			pm_runtime_enable(dev);
1640		}
1641		dev->power.direct_complete = false;
1642	}
1643
1644	dev->power.may_skip_resume = true;
1645	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1646
1647	dpm_watchdog_set(&wd, dev);
1648	device_lock(dev);
1649
1650	if (dev->pm_domain) {
1651		info = "power domain ";
1652		callback = pm_op(&dev->pm_domain->ops, state);
1653		goto Run;
1654	}
1655
1656	if (dev->type && dev->type->pm) {
1657		info = "type ";
1658		callback = pm_op(dev->type->pm, state);
1659		goto Run;
1660	}
1661
1662	if (dev->class && dev->class->pm) {
1663		info = "class ";
1664		callback = pm_op(dev->class->pm, state);
1665		goto Run;
1666	}
1667
1668	if (dev->bus) {
1669		if (dev->bus->pm) {
1670			info = "bus ";
1671			callback = pm_op(dev->bus->pm, state);
1672		} else if (dev->bus->suspend) {
1673			pm_dev_dbg(dev, state, "legacy bus ");
1674			error = legacy_suspend(dev, state, dev->bus->suspend,
1675						"legacy bus ");
1676			goto End;
1677		}
1678	}
1679
1680 Run:
1681	if (!callback && dev->driver && dev->driver->pm) {
1682		info = "driver ";
1683		callback = pm_op(dev->driver->pm, state);
1684	}
1685
1686	error = dpm_run_callback(callback, dev, state, info);
1687
1688 End:
1689	if (!error) {
1690		dev->power.is_suspended = true;
1691		if (device_may_wakeup(dev))
1692			dev->power.wakeup_path = true;
1693
1694		dpm_propagate_wakeup_to_parent(dev);
1695		dpm_clear_superiors_direct_complete(dev);
1696	}
1697
1698	device_unlock(dev);
1699	dpm_watchdog_clear(&wd);
1700
1701 Complete:
1702	if (error)
1703		async_error = error;
1704
1705	complete_all(&dev->power.completion);
1706	TRACE_SUSPEND(error);
1707	return error;
1708}
1709
1710static void async_suspend(void *data, async_cookie_t cookie)
1711{
1712	struct device *dev = (struct device *)data;
1713	int error;
1714
1715	error = __device_suspend(dev, pm_transition, true);
1716	if (error) {
1717		dpm_save_failed_dev(dev_name(dev));
1718		pm_dev_err(dev, pm_transition, " async", error);
1719	}
1720
1721	put_device(dev);
1722}
1723
1724static int device_suspend(struct device *dev)
1725{
1726	if (dpm_async_fn(dev, async_suspend))
 
 
 
 
1727		return 0;
 
1728
1729	return __device_suspend(dev, pm_transition, false);
1730}
1731
1732/**
1733 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1734 * @state: PM transition of the system being carried out.
1735 */
1736int dpm_suspend(pm_message_t state)
1737{
1738	ktime_t starttime = ktime_get();
1739	int error = 0;
1740
1741	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1742	might_sleep();
1743
1744	devfreq_suspend();
1745	cpufreq_suspend();
1746
1747	mutex_lock(&dpm_list_mtx);
1748	pm_transition = state;
1749	async_error = 0;
1750	while (!list_empty(&dpm_prepared_list)) {
1751		struct device *dev = to_device(dpm_prepared_list.prev);
1752
1753		get_device(dev);
1754		mutex_unlock(&dpm_list_mtx);
1755
1756		error = device_suspend(dev);
1757
1758		mutex_lock(&dpm_list_mtx);
1759		if (error) {
1760			pm_dev_err(dev, state, "", error);
1761			dpm_save_failed_dev(dev_name(dev));
1762			put_device(dev);
1763			break;
1764		}
1765		if (!list_empty(&dev->power.entry))
1766			list_move(&dev->power.entry, &dpm_suspended_list);
1767		put_device(dev);
1768		if (async_error)
1769			break;
1770	}
1771	mutex_unlock(&dpm_list_mtx);
1772	async_synchronize_full();
1773	if (!error)
1774		error = async_error;
1775	if (error) {
1776		suspend_stats.failed_suspend++;
1777		dpm_save_failed_step(SUSPEND_SUSPEND);
1778	}
1779	dpm_show_time(starttime, state, error, NULL);
1780	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1781	return error;
1782}
1783
1784/**
1785 * device_prepare - Prepare a device for system power transition.
1786 * @dev: Device to handle.
1787 * @state: PM transition of the system being carried out.
1788 *
1789 * Execute the ->prepare() callback(s) for given device.  No new children of the
1790 * device may be registered after this function has returned.
1791 */
1792static int device_prepare(struct device *dev, pm_message_t state)
1793{
1794	int (*callback)(struct device *) = NULL;
1795	int ret = 0;
1796
1797	if (dev->power.syscore)
1798		return 0;
1799
 
 
 
 
1800	/*
1801	 * If a device's parent goes into runtime suspend at the wrong time,
1802	 * it won't be possible to resume the device.  To prevent this we
1803	 * block runtime suspend here, during the prepare phase, and allow
1804	 * it again during the complete phase.
1805	 */
1806	pm_runtime_get_noresume(dev);
1807
1808	device_lock(dev);
1809
1810	dev->power.wakeup_path = false;
1811
1812	if (dev->power.no_pm_callbacks)
1813		goto unlock;
1814
1815	if (dev->pm_domain)
1816		callback = dev->pm_domain->ops.prepare;
1817	else if (dev->type && dev->type->pm)
1818		callback = dev->type->pm->prepare;
1819	else if (dev->class && dev->class->pm)
1820		callback = dev->class->pm->prepare;
1821	else if (dev->bus && dev->bus->pm)
1822		callback = dev->bus->pm->prepare;
1823
1824	if (!callback && dev->driver && dev->driver->pm)
1825		callback = dev->driver->pm->prepare;
1826
1827	if (callback)
1828		ret = callback(dev);
1829
1830unlock:
1831	device_unlock(dev);
1832
1833	if (ret < 0) {
1834		suspend_report_result(callback, ret);
1835		pm_runtime_put(dev);
1836		return ret;
1837	}
1838	/*
1839	 * A positive return value from ->prepare() means "this device appears
1840	 * to be runtime-suspended and its state is fine, so if it really is
1841	 * runtime-suspended, you can leave it in that state provided that you
1842	 * will do the same thing with all of its descendants".  This only
1843	 * applies to suspend transitions, however.
1844	 */
1845	spin_lock_irq(&dev->power.lock);
1846	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1847		(ret > 0 || dev->power.no_pm_callbacks) &&
1848		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 
1849	spin_unlock_irq(&dev->power.lock);
1850	return 0;
1851}
1852
1853/**
1854 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1855 * @state: PM transition of the system being carried out.
1856 *
1857 * Execute the ->prepare() callback(s) for all devices.
1858 */
1859int dpm_prepare(pm_message_t state)
1860{
1861	int error = 0;
1862
1863	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1864	might_sleep();
1865
1866	/*
1867	 * Give a chance for the known devices to complete their probes, before
1868	 * disable probing of devices. This sync point is important at least
1869	 * at boot time + hibernation restore.
1870	 */
1871	wait_for_device_probe();
1872	/*
1873	 * It is unsafe if probing of devices will happen during suspend or
1874	 * hibernation and system behavior will be unpredictable in this case.
1875	 * So, let's prohibit device's probing here and defer their probes
1876	 * instead. The normal behavior will be restored in dpm_complete().
1877	 */
1878	device_block_probing();
1879
1880	mutex_lock(&dpm_list_mtx);
1881	while (!list_empty(&dpm_list)) {
1882		struct device *dev = to_device(dpm_list.next);
1883
1884		get_device(dev);
1885		mutex_unlock(&dpm_list_mtx);
1886
1887		trace_device_pm_callback_start(dev, "", state.event);
1888		error = device_prepare(dev, state);
1889		trace_device_pm_callback_end(dev, error);
1890
1891		mutex_lock(&dpm_list_mtx);
1892		if (error) {
1893			if (error == -EAGAIN) {
1894				put_device(dev);
1895				error = 0;
1896				continue;
1897			}
1898			dev_info(dev, "not prepared for power transition: code %d\n",
1899				 error);
 
1900			put_device(dev);
1901			break;
1902		}
1903		dev->power.is_prepared = true;
1904		if (!list_empty(&dev->power.entry))
1905			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1906		put_device(dev);
1907	}
1908	mutex_unlock(&dpm_list_mtx);
1909	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1910	return error;
1911}
1912
1913/**
1914 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1915 * @state: PM transition of the system being carried out.
1916 *
1917 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1918 * callbacks for them.
1919 */
1920int dpm_suspend_start(pm_message_t state)
1921{
1922	ktime_t starttime = ktime_get();
1923	int error;
1924
1925	error = dpm_prepare(state);
1926	if (error) {
1927		suspend_stats.failed_prepare++;
1928		dpm_save_failed_step(SUSPEND_PREPARE);
1929	} else
1930		error = dpm_suspend(state);
1931	dpm_show_time(starttime, state, error, "start");
1932	return error;
1933}
1934EXPORT_SYMBOL_GPL(dpm_suspend_start);
1935
1936void __suspend_report_result(const char *function, void *fn, int ret)
1937{
1938	if (ret)
1939		pr_err("%s(): %pS returns %d\n", function, fn, ret);
1940}
1941EXPORT_SYMBOL_GPL(__suspend_report_result);
1942
1943/**
1944 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1945 * @subordinate: Device that needs to wait for @dev.
1946 * @dev: Device to wait for.
 
1947 */
1948int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1949{
1950	dpm_wait(dev, subordinate->power.async_suspend);
1951	return async_error;
1952}
1953EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1954
1955/**
1956 * dpm_for_each_dev - device iterator.
1957 * @data: data for the callback.
1958 * @fn: function to be called for each device.
1959 *
1960 * Iterate over devices in dpm_list, and call @fn for each device,
1961 * passing it @data.
1962 */
1963void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1964{
1965	struct device *dev;
1966
1967	if (!fn)
1968		return;
1969
1970	device_pm_lock();
1971	list_for_each_entry(dev, &dpm_list, power.entry)
1972		fn(dev, data);
1973	device_pm_unlock();
1974}
1975EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1976
1977static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1978{
1979	if (!ops)
1980		return true;
1981
1982	return !ops->prepare &&
1983	       !ops->suspend &&
1984	       !ops->suspend_late &&
1985	       !ops->suspend_noirq &&
1986	       !ops->resume_noirq &&
1987	       !ops->resume_early &&
1988	       !ops->resume &&
1989	       !ops->complete;
1990}
1991
1992void device_pm_check_callbacks(struct device *dev)
1993{
1994	spin_lock_irq(&dev->power.lock);
1995	dev->power.no_pm_callbacks =
1996		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
1997		 !dev->bus->suspend && !dev->bus->resume)) &&
1998		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1999		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2000		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2001		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2002		 !dev->driver->suspend && !dev->driver->resume));
2003	spin_unlock_irq(&dev->power.lock);
2004}
2005
2006bool dev_pm_skip_suspend(struct device *dev)
2007{
2008	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2009		pm_runtime_status_suspended(dev);
2010}
v4.17
 
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
 
 
 
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
 
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
 
 
 
 
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static const char *pm_verb(int event)
  65{
  66	switch (event) {
  67	case PM_EVENT_SUSPEND:
  68		return "suspend";
  69	case PM_EVENT_RESUME:
  70		return "resume";
  71	case PM_EVENT_FREEZE:
  72		return "freeze";
  73	case PM_EVENT_QUIESCE:
  74		return "quiesce";
  75	case PM_EVENT_HIBERNATE:
  76		return "hibernate";
  77	case PM_EVENT_THAW:
  78		return "thaw";
  79	case PM_EVENT_RESTORE:
  80		return "restore";
  81	case PM_EVENT_RECOVER:
  82		return "recover";
  83	default:
  84		return "(unknown PM event)";
  85	}
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94	dev->power.is_prepared = false;
  95	dev->power.is_suspended = false;
  96	dev->power.is_noirq_suspended = false;
  97	dev->power.is_late_suspended = false;
  98	init_completion(&dev->power.completion);
  99	complete_all(&dev->power.completion);
 100	dev->power.wakeup = NULL;
 101	INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109	mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117	mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126	pr_debug("PM: Adding info for %s:%s\n",
 
 
 
 
 127		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128	device_pm_check_callbacks(dev);
 129	mutex_lock(&dpm_list_mtx);
 130	if (dev->parent && dev->parent->power.is_prepared)
 131		dev_warn(dev, "parent %s should not be sleeping\n",
 132			dev_name(dev->parent));
 133	list_add_tail(&dev->power.entry, &dpm_list);
 134	dev->power.in_dpm_list = true;
 135	mutex_unlock(&dpm_list_mtx);
 136}
 137
 138/**
 139 * device_pm_remove - Remove a device from the PM core's list of active devices.
 140 * @dev: Device to be removed from the list.
 141 */
 142void device_pm_remove(struct device *dev)
 143{
 144	pr_debug("PM: Removing info for %s:%s\n",
 
 
 
 145		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 146	complete_all(&dev->power.completion);
 147	mutex_lock(&dpm_list_mtx);
 148	list_del_init(&dev->power.entry);
 149	dev->power.in_dpm_list = false;
 150	mutex_unlock(&dpm_list_mtx);
 151	device_wakeup_disable(dev);
 152	pm_runtime_remove(dev);
 153	device_pm_check_callbacks(dev);
 154}
 155
 156/**
 157 * device_pm_move_before - Move device in the PM core's list of active devices.
 158 * @deva: Device to move in dpm_list.
 159 * @devb: Device @deva should come before.
 160 */
 161void device_pm_move_before(struct device *deva, struct device *devb)
 162{
 163	pr_debug("PM: Moving %s:%s before %s:%s\n",
 164		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 165		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 166	/* Delete deva from dpm_list and reinsert before devb. */
 167	list_move_tail(&deva->power.entry, &devb->power.entry);
 168}
 169
 170/**
 171 * device_pm_move_after - Move device in the PM core's list of active devices.
 172 * @deva: Device to move in dpm_list.
 173 * @devb: Device @deva should come after.
 174 */
 175void device_pm_move_after(struct device *deva, struct device *devb)
 176{
 177	pr_debug("PM: Moving %s:%s after %s:%s\n",
 178		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 179		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 180	/* Delete deva from dpm_list and reinsert after devb. */
 181	list_move(&deva->power.entry, &devb->power.entry);
 182}
 183
 184/**
 185 * device_pm_move_last - Move device to end of the PM core's list of devices.
 186 * @dev: Device to move in dpm_list.
 187 */
 188void device_pm_move_last(struct device *dev)
 189{
 190	pr_debug("PM: Moving %s:%s to end of list\n",
 191		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 192	list_move_tail(&dev->power.entry, &dpm_list);
 193}
 194
 195static ktime_t initcall_debug_start(struct device *dev)
 196{
 197	ktime_t calltime = 0;
 
 198
 199	if (pm_print_times_enabled) {
 200		pr_info("calling  %s+ @ %i, parent: %s\n",
 201			dev_name(dev), task_pid_nr(current),
 202			dev->parent ? dev_name(dev->parent) : "none");
 203		calltime = ktime_get();
 204	}
 205
 206	return calltime;
 207}
 208
 209static void initcall_debug_report(struct device *dev, ktime_t calltime,
 210				  int error, pm_message_t state,
 211				  const char *info)
 212{
 213	ktime_t rettime;
 214	s64 nsecs;
 
 
 215
 216	rettime = ktime_get();
 217	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 218
 219	if (pm_print_times_enabled) {
 220		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 221			error, (unsigned long long)nsecs >> 10);
 222	}
 223}
 224
 225/**
 226 * dpm_wait - Wait for a PM operation to complete.
 227 * @dev: Device to wait for.
 228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 229 */
 230static void dpm_wait(struct device *dev, bool async)
 231{
 232	if (!dev)
 233		return;
 234
 235	if (async || (pm_async_enabled && dev->power.async_suspend))
 236		wait_for_completion(&dev->power.completion);
 237}
 238
 239static int dpm_wait_fn(struct device *dev, void *async_ptr)
 240{
 241	dpm_wait(dev, *((bool *)async_ptr));
 242	return 0;
 243}
 244
 245static void dpm_wait_for_children(struct device *dev, bool async)
 246{
 247       device_for_each_child(dev, &async, dpm_wait_fn);
 248}
 249
 250static void dpm_wait_for_suppliers(struct device *dev, bool async)
 251{
 252	struct device_link *link;
 253	int idx;
 254
 255	idx = device_links_read_lock();
 256
 257	/*
 258	 * If the supplier goes away right after we've checked the link to it,
 259	 * we'll wait for its completion to change the state, but that's fine,
 260	 * because the only things that will block as a result are the SRCU
 261	 * callbacks freeing the link objects for the links in the list we're
 262	 * walking.
 263	 */
 264	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 265		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 266			dpm_wait(link->supplier, async);
 267
 268	device_links_read_unlock(idx);
 269}
 270
 271static void dpm_wait_for_superior(struct device *dev, bool async)
 272{
 273	dpm_wait(dev->parent, async);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274	dpm_wait_for_suppliers(dev, async);
 
 
 
 
 
 
 275}
 276
 277static void dpm_wait_for_consumers(struct device *dev, bool async)
 278{
 279	struct device_link *link;
 280	int idx;
 281
 282	idx = device_links_read_lock();
 283
 284	/*
 285	 * The status of a device link can only be changed from "dormant" by a
 286	 * probe, but that cannot happen during system suspend/resume.  In
 287	 * theory it can change to "dormant" at that time, but then it is
 288	 * reasonable to wait for the target device anyway (eg. if it goes
 289	 * away, it's better to wait for it to go away completely and then
 290	 * continue instead of trying to continue in parallel with its
 291	 * unregistration).
 292	 */
 293	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 294		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 295			dpm_wait(link->consumer, async);
 296
 297	device_links_read_unlock(idx);
 298}
 299
 300static void dpm_wait_for_subordinate(struct device *dev, bool async)
 301{
 302	dpm_wait_for_children(dev, async);
 303	dpm_wait_for_consumers(dev, async);
 304}
 305
 306/**
 307 * pm_op - Return the PM operation appropriate for given PM event.
 308 * @ops: PM operations to choose from.
 309 * @state: PM transition of the system being carried out.
 310 */
 311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 312{
 313	switch (state.event) {
 314#ifdef CONFIG_SUSPEND
 315	case PM_EVENT_SUSPEND:
 316		return ops->suspend;
 317	case PM_EVENT_RESUME:
 318		return ops->resume;
 319#endif /* CONFIG_SUSPEND */
 320#ifdef CONFIG_HIBERNATE_CALLBACKS
 321	case PM_EVENT_FREEZE:
 322	case PM_EVENT_QUIESCE:
 323		return ops->freeze;
 324	case PM_EVENT_HIBERNATE:
 325		return ops->poweroff;
 326	case PM_EVENT_THAW:
 327	case PM_EVENT_RECOVER:
 328		return ops->thaw;
 329		break;
 330	case PM_EVENT_RESTORE:
 331		return ops->restore;
 332#endif /* CONFIG_HIBERNATE_CALLBACKS */
 333	}
 334
 335	return NULL;
 336}
 337
 338/**
 339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 340 * @ops: PM operations to choose from.
 341 * @state: PM transition of the system being carried out.
 342 *
 343 * Runtime PM is disabled for @dev while this function is being executed.
 344 */
 345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 346				      pm_message_t state)
 347{
 348	switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350	case PM_EVENT_SUSPEND:
 351		return ops->suspend_late;
 352	case PM_EVENT_RESUME:
 353		return ops->resume_early;
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356	case PM_EVENT_FREEZE:
 357	case PM_EVENT_QUIESCE:
 358		return ops->freeze_late;
 359	case PM_EVENT_HIBERNATE:
 360		return ops->poweroff_late;
 361	case PM_EVENT_THAW:
 362	case PM_EVENT_RECOVER:
 363		return ops->thaw_early;
 364	case PM_EVENT_RESTORE:
 365		return ops->restore_early;
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 367	}
 368
 369	return NULL;
 370}
 371
 372/**
 373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * The driver of @dev will not receive interrupts while this function is being
 378 * executed.
 379 */
 380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 381{
 382	switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384	case PM_EVENT_SUSPEND:
 385		return ops->suspend_noirq;
 386	case PM_EVENT_RESUME:
 387		return ops->resume_noirq;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390	case PM_EVENT_FREEZE:
 391	case PM_EVENT_QUIESCE:
 392		return ops->freeze_noirq;
 393	case PM_EVENT_HIBERNATE:
 394		return ops->poweroff_noirq;
 395	case PM_EVENT_THAW:
 396	case PM_EVENT_RECOVER:
 397		return ops->thaw_noirq;
 398	case PM_EVENT_RESTORE:
 399		return ops->restore_noirq;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401	}
 402
 403	return NULL;
 404}
 405
 406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 407{
 408	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 409		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 410		", may wakeup" : "");
 411}
 412
 413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 414			int error)
 415{
 416	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 417		dev_name(dev), pm_verb(state.event), info, error);
 418}
 419
 420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 421			  const char *info)
 422{
 423	ktime_t calltime;
 424	u64 usecs64;
 425	int usecs;
 426
 427	calltime = ktime_get();
 428	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 429	do_div(usecs64, NSEC_PER_USEC);
 430	usecs = usecs64;
 431	if (usecs == 0)
 432		usecs = 1;
 433
 434	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 435		  info ?: "", info ? " " : "", pm_verb(state.event),
 436		  error ? "aborted" : "complete",
 437		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 438}
 439
 440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 441			    pm_message_t state, const char *info)
 442{
 443	ktime_t calltime;
 444	int error;
 445
 446	if (!cb)
 447		return 0;
 448
 449	calltime = initcall_debug_start(dev);
 450
 451	pm_dev_dbg(dev, state, info);
 452	trace_device_pm_callback_start(dev, info, state.event);
 453	error = cb(dev);
 454	trace_device_pm_callback_end(dev, error);
 455	suspend_report_result(cb, error);
 456
 457	initcall_debug_report(dev, calltime, error, state, info);
 458
 459	return error;
 460}
 461
 462#ifdef CONFIG_DPM_WATCHDOG
 463struct dpm_watchdog {
 464	struct device		*dev;
 465	struct task_struct	*tsk;
 466	struct timer_list	timer;
 467};
 468
 469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 470	struct dpm_watchdog wd
 471
 472/**
 473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 474 * @data: Watchdog object address.
 475 *
 476 * Called when a driver has timed out suspending or resuming.
 477 * There's not much we can do here to recover so panic() to
 478 * capture a crash-dump in pstore.
 479 */
 480static void dpm_watchdog_handler(struct timer_list *t)
 481{
 482	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 483
 484	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 485	show_stack(wd->tsk, NULL);
 486	panic("%s %s: unrecoverable failure\n",
 487		dev_driver_string(wd->dev), dev_name(wd->dev));
 488}
 489
 490/**
 491 * dpm_watchdog_set - Enable pm watchdog for given device.
 492 * @wd: Watchdog. Must be allocated on the stack.
 493 * @dev: Device to handle.
 494 */
 495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 496{
 497	struct timer_list *timer = &wd->timer;
 498
 499	wd->dev = dev;
 500	wd->tsk = current;
 501
 502	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 503	/* use same timeout value for both suspend and resume */
 504	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 505	add_timer(timer);
 506}
 507
 508/**
 509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 510 * @wd: Watchdog to disable.
 511 */
 512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 513{
 514	struct timer_list *timer = &wd->timer;
 515
 516	del_timer_sync(timer);
 517	destroy_timer_on_stack(timer);
 518}
 519#else
 520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 521#define dpm_watchdog_set(x, y)
 522#define dpm_watchdog_clear(x)
 523#endif
 524
 525/*------------------------- Resume routines -------------------------*/
 526
 527/**
 528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
 529 * @dev: Target device.
 530 *
 531 * Make the core skip the "early resume" and "resume" phases for @dev.
 532 *
 533 * This function can be called by middle-layer code during the "noirq" phase of
 534 * system resume if necessary, but not by device drivers.
 
 535 */
 536void dev_pm_skip_next_resume_phases(struct device *dev)
 537{
 538	dev->power.is_late_suspended = false;
 539	dev->power.is_suspended = false;
 540}
 541
 542/**
 543 * suspend_event - Return a "suspend" message for given "resume" one.
 544 * @resume_msg: PM message representing a system-wide resume transition.
 545 */
 546static pm_message_t suspend_event(pm_message_t resume_msg)
 547{
 548	switch (resume_msg.event) {
 549	case PM_EVENT_RESUME:
 550		return PMSG_SUSPEND;
 551	case PM_EVENT_THAW:
 552	case PM_EVENT_RESTORE:
 553		return PMSG_FREEZE;
 554	case PM_EVENT_RECOVER:
 555		return PMSG_HIBERNATE;
 556	}
 557	return PMSG_ON;
 558}
 559
 560/**
 561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 562 * @dev: Target device.
 563 *
 564 * Checks whether or not the device may be left in suspend after a system-wide
 565 * transition to the working state.
 566 */
 567bool dev_pm_may_skip_resume(struct device *dev)
 568{
 569	return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 570}
 571
 572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 573						pm_message_t state,
 574						const char **info_p)
 575{
 576	pm_callback_t callback;
 577	const char *info;
 578
 579	if (dev->pm_domain) {
 580		info = "noirq power domain ";
 581		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 582	} else if (dev->type && dev->type->pm) {
 583		info = "noirq type ";
 584		callback = pm_noirq_op(dev->type->pm, state);
 585	} else if (dev->class && dev->class->pm) {
 586		info = "noirq class ";
 587		callback = pm_noirq_op(dev->class->pm, state);
 588	} else if (dev->bus && dev->bus->pm) {
 589		info = "noirq bus ";
 590		callback = pm_noirq_op(dev->bus->pm, state);
 591	} else {
 592		return NULL;
 593	}
 594
 595	if (info_p)
 596		*info_p = info;
 597
 598	return callback;
 599}
 600
 601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 602						 pm_message_t state,
 603						 const char **info_p);
 604
 605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 606						pm_message_t state,
 607						const char **info_p);
 608
 609/**
 610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 611 * @dev: Device to handle.
 612 * @state: PM transition of the system being carried out.
 613 * @async: If true, the device is being resumed asynchronously.
 614 *
 615 * The driver of @dev will not receive interrupts while this function is being
 616 * executed.
 617 */
 618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 619{
 620	pm_callback_t callback;
 621	const char *info;
 622	bool skip_resume;
 623	int error = 0;
 624
 625	TRACE_DEVICE(dev);
 626	TRACE_RESUME(0);
 627
 628	if (dev->power.syscore || dev->power.direct_complete)
 629		goto Out;
 630
 631	if (!dev->power.is_noirq_suspended)
 632		goto Out;
 633
 634	dpm_wait_for_superior(dev, async);
 
 635
 636	skip_resume = dev_pm_may_skip_resume(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637
 638	callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
 639	if (callback)
 640		goto Run;
 641
 642	if (skip_resume)
 643		goto Skip;
 644
 645	if (dev_pm_smart_suspend_and_suspended(dev)) {
 646		pm_message_t suspend_msg = suspend_event(state);
 647
 648		/*
 649		 * If "freeze" callbacks have been skipped during a transition
 650		 * related to hibernation, the subsequent "thaw" callbacks must
 651		 * be skipped too or bad things may happen.  Otherwise, resume
 652		 * callbacks are going to be run for the device, so its runtime
 653		 * PM status must be changed to reflect the new state after the
 654		 * transition under way.
 655		 */
 656		if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 657		    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 658			if (state.event == PM_EVENT_THAW) {
 659				skip_resume = true;
 660				goto Skip;
 661			} else {
 662				pm_runtime_set_active(dev);
 663			}
 664		}
 665	}
 666
 667	if (dev->driver && dev->driver->pm) {
 668		info = "noirq driver ";
 669		callback = pm_noirq_op(dev->driver->pm, state);
 670	}
 671
 672Run:
 673	error = dpm_run_callback(callback, dev, state, info);
 674
 675Skip:
 676	dev->power.is_noirq_suspended = false;
 677
 678	if (skip_resume) {
 679		/*
 680		 * The device is going to be left in suspend, but it might not
 681		 * have been in runtime suspend before the system suspended, so
 682		 * its runtime PM status needs to be updated to avoid confusing
 683		 * the runtime PM framework when runtime PM is enabled for the
 684		 * device again.
 685		 */
 686		pm_runtime_set_suspended(dev);
 687		dev_pm_skip_next_resume_phases(dev);
 688	}
 689
 690Out:
 691	complete_all(&dev->power.completion);
 692	TRACE_RESUME(error);
 693	return error;
 694}
 695
 696static bool is_async(struct device *dev)
 697{
 698	return dev->power.async_suspend && pm_async_enabled
 699		&& !pm_trace_is_enabled();
 700}
 701
 
 
 
 
 
 
 
 
 
 
 
 
 
 702static void async_resume_noirq(void *data, async_cookie_t cookie)
 703{
 704	struct device *dev = (struct device *)data;
 705	int error;
 706
 707	error = device_resume_noirq(dev, pm_transition, true);
 708	if (error)
 709		pm_dev_err(dev, pm_transition, " async", error);
 710
 711	put_device(dev);
 712}
 713
 714void dpm_noirq_resume_devices(pm_message_t state)
 715{
 716	struct device *dev;
 717	ktime_t starttime = ktime_get();
 718
 719	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 720	mutex_lock(&dpm_list_mtx);
 721	pm_transition = state;
 722
 723	/*
 724	 * Advanced the async threads upfront,
 725	 * in case the starting of async threads is
 726	 * delayed by non-async resuming devices.
 727	 */
 728	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 729		reinit_completion(&dev->power.completion);
 730		if (is_async(dev)) {
 731			get_device(dev);
 732			async_schedule(async_resume_noirq, dev);
 733		}
 734	}
 735
 736	while (!list_empty(&dpm_noirq_list)) {
 737		dev = to_device(dpm_noirq_list.next);
 738		get_device(dev);
 739		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740		mutex_unlock(&dpm_list_mtx);
 741
 742		if (!is_async(dev)) {
 743			int error;
 744
 745			error = device_resume_noirq(dev, state, false);
 746			if (error) {
 747				suspend_stats.failed_resume_noirq++;
 748				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749				dpm_save_failed_dev(dev_name(dev));
 750				pm_dev_err(dev, state, " noirq", error);
 751			}
 752		}
 753
 754		mutex_lock(&dpm_list_mtx);
 755		put_device(dev);
 756	}
 757	mutex_unlock(&dpm_list_mtx);
 758	async_synchronize_full();
 759	dpm_show_time(starttime, state, 0, "noirq");
 760	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763void dpm_noirq_end(void)
 764{
 765	resume_device_irqs();
 766	device_wakeup_disarm_wake_irqs();
 767	cpuidle_resume();
 768}
 769
 770/**
 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 772 * @state: PM transition of the system being carried out.
 773 *
 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 775 * allow device drivers' interrupt handlers to be called.
 776 */
 777void dpm_resume_noirq(pm_message_t state)
 778{
 779	dpm_noirq_resume_devices(state);
 780	dpm_noirq_end();
 781}
 782
 783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 784						pm_message_t state,
 785						const char **info_p)
 786{
 787	pm_callback_t callback;
 788	const char *info;
 789
 790	if (dev->pm_domain) {
 791		info = "early power domain ";
 792		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 793	} else if (dev->type && dev->type->pm) {
 794		info = "early type ";
 795		callback = pm_late_early_op(dev->type->pm, state);
 796	} else if (dev->class && dev->class->pm) {
 797		info = "early class ";
 798		callback = pm_late_early_op(dev->class->pm, state);
 799	} else if (dev->bus && dev->bus->pm) {
 800		info = "early bus ";
 801		callback = pm_late_early_op(dev->bus->pm, state);
 802	} else {
 803		return NULL;
 804	}
 805
 806	if (info_p)
 807		*info_p = info;
 808
 809	return callback;
 810}
 811
 812/**
 813 * device_resume_early - Execute an "early resume" callback for given device.
 814 * @dev: Device to handle.
 815 * @state: PM transition of the system being carried out.
 816 * @async: If true, the device is being resumed asynchronously.
 817 *
 818 * Runtime PM is disabled for @dev while this function is being executed.
 819 */
 820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 821{
 822	pm_callback_t callback;
 823	const char *info;
 824	int error = 0;
 825
 826	TRACE_DEVICE(dev);
 827	TRACE_RESUME(0);
 828
 829	if (dev->power.syscore || dev->power.direct_complete)
 830		goto Out;
 831
 832	if (!dev->power.is_late_suspended)
 833		goto Out;
 834
 835	dpm_wait_for_superior(dev, async);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	callback = dpm_subsys_resume_early_cb(dev, state, &info);
 
 838
 839	if (!callback && dev->driver && dev->driver->pm) {
 840		info = "early driver ";
 841		callback = pm_late_early_op(dev->driver->pm, state);
 842	}
 843
 
 844	error = dpm_run_callback(callback, dev, state, info);
 
 
 845	dev->power.is_late_suspended = false;
 846
 847 Out:
 848	TRACE_RESUME(error);
 849
 850	pm_runtime_enable(dev);
 851	complete_all(&dev->power.completion);
 852	return error;
 853}
 854
 855static void async_resume_early(void *data, async_cookie_t cookie)
 856{
 857	struct device *dev = (struct device *)data;
 858	int error;
 859
 860	error = device_resume_early(dev, pm_transition, true);
 861	if (error)
 862		pm_dev_err(dev, pm_transition, " async", error);
 863
 864	put_device(dev);
 865}
 866
 867/**
 868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 869 * @state: PM transition of the system being carried out.
 870 */
 871void dpm_resume_early(pm_message_t state)
 872{
 873	struct device *dev;
 874	ktime_t starttime = ktime_get();
 875
 876	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 877	mutex_lock(&dpm_list_mtx);
 878	pm_transition = state;
 879
 880	/*
 881	 * Advanced the async threads upfront,
 882	 * in case the starting of async threads is
 883	 * delayed by non-async resuming devices.
 884	 */
 885	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 886		reinit_completion(&dev->power.completion);
 887		if (is_async(dev)) {
 888			get_device(dev);
 889			async_schedule(async_resume_early, dev);
 890		}
 891	}
 892
 893	while (!list_empty(&dpm_late_early_list)) {
 894		dev = to_device(dpm_late_early_list.next);
 895		get_device(dev);
 896		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 897		mutex_unlock(&dpm_list_mtx);
 898
 899		if (!is_async(dev)) {
 900			int error;
 901
 902			error = device_resume_early(dev, state, false);
 903			if (error) {
 904				suspend_stats.failed_resume_early++;
 905				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 906				dpm_save_failed_dev(dev_name(dev));
 907				pm_dev_err(dev, state, " early", error);
 908			}
 909		}
 910		mutex_lock(&dpm_list_mtx);
 911		put_device(dev);
 912	}
 913	mutex_unlock(&dpm_list_mtx);
 914	async_synchronize_full();
 915	dpm_show_time(starttime, state, 0, "early");
 916	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 917}
 918
 919/**
 920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 921 * @state: PM transition of the system being carried out.
 922 */
 923void dpm_resume_start(pm_message_t state)
 924{
 925	dpm_resume_noirq(state);
 926	dpm_resume_early(state);
 927}
 928EXPORT_SYMBOL_GPL(dpm_resume_start);
 929
 930/**
 931 * device_resume - Execute "resume" callbacks for given device.
 932 * @dev: Device to handle.
 933 * @state: PM transition of the system being carried out.
 934 * @async: If true, the device is being resumed asynchronously.
 935 */
 936static int device_resume(struct device *dev, pm_message_t state, bool async)
 937{
 938	pm_callback_t callback = NULL;
 939	const char *info = NULL;
 940	int error = 0;
 941	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 942
 943	TRACE_DEVICE(dev);
 944	TRACE_RESUME(0);
 945
 946	if (dev->power.syscore)
 947		goto Complete;
 948
 949	if (dev->power.direct_complete) {
 950		/* Match the pm_runtime_disable() in __device_suspend(). */
 951		pm_runtime_enable(dev);
 952		goto Complete;
 953	}
 954
 955	dpm_wait_for_superior(dev, async);
 
 
 956	dpm_watchdog_set(&wd, dev);
 957	device_lock(dev);
 958
 959	/*
 960	 * This is a fib.  But we'll allow new children to be added below
 961	 * a resumed device, even if the device hasn't been completed yet.
 962	 */
 963	dev->power.is_prepared = false;
 964
 965	if (!dev->power.is_suspended)
 966		goto Unlock;
 967
 968	if (dev->pm_domain) {
 969		info = "power domain ";
 970		callback = pm_op(&dev->pm_domain->ops, state);
 971		goto Driver;
 972	}
 973
 974	if (dev->type && dev->type->pm) {
 975		info = "type ";
 976		callback = pm_op(dev->type->pm, state);
 977		goto Driver;
 978	}
 979
 980	if (dev->class && dev->class->pm) {
 981		info = "class ";
 982		callback = pm_op(dev->class->pm, state);
 983		goto Driver;
 984	}
 985
 986	if (dev->bus) {
 987		if (dev->bus->pm) {
 988			info = "bus ";
 989			callback = pm_op(dev->bus->pm, state);
 990		} else if (dev->bus->resume) {
 991			info = "legacy bus ";
 992			callback = dev->bus->resume;
 993			goto End;
 994		}
 995	}
 996
 997 Driver:
 998	if (!callback && dev->driver && dev->driver->pm) {
 999		info = "driver ";
1000		callback = pm_op(dev->driver->pm, state);
1001	}
1002
1003 End:
1004	error = dpm_run_callback(callback, dev, state, info);
1005	dev->power.is_suspended = false;
1006
1007 Unlock:
1008	device_unlock(dev);
1009	dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012	complete_all(&dev->power.completion);
1013
1014	TRACE_RESUME(error);
1015
1016	return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021	struct device *dev = (struct device *)data;
1022	int error;
1023
1024	error = device_resume(dev, pm_transition, true);
1025	if (error)
1026		pm_dev_err(dev, pm_transition, " async", error);
1027	put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039	struct device *dev;
1040	ktime_t starttime = ktime_get();
1041
1042	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043	might_sleep();
1044
1045	mutex_lock(&dpm_list_mtx);
1046	pm_transition = state;
1047	async_error = 0;
1048
1049	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050		reinit_completion(&dev->power.completion);
1051		if (is_async(dev)) {
1052			get_device(dev);
1053			async_schedule(async_resume, dev);
1054		}
1055	}
1056
1057	while (!list_empty(&dpm_suspended_list)) {
1058		dev = to_device(dpm_suspended_list.next);
1059		get_device(dev);
1060		if (!is_async(dev)) {
1061			int error;
1062
1063			mutex_unlock(&dpm_list_mtx);
1064
1065			error = device_resume(dev, state, false);
1066			if (error) {
1067				suspend_stats.failed_resume++;
1068				dpm_save_failed_step(SUSPEND_RESUME);
1069				dpm_save_failed_dev(dev_name(dev));
1070				pm_dev_err(dev, state, "", error);
1071			}
1072
1073			mutex_lock(&dpm_list_mtx);
1074		}
1075		if (!list_empty(&dev->power.entry))
1076			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077		put_device(dev);
1078	}
1079	mutex_unlock(&dpm_list_mtx);
1080	async_synchronize_full();
1081	dpm_show_time(starttime, state, 0, NULL);
1082
1083	cpufreq_resume();
 
1084	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094	void (*callback)(struct device *) = NULL;
1095	const char *info = NULL;
1096
1097	if (dev->power.syscore)
1098		return;
1099
1100	device_lock(dev);
1101
1102	if (dev->pm_domain) {
1103		info = "completing power domain ";
1104		callback = dev->pm_domain->ops.complete;
1105	} else if (dev->type && dev->type->pm) {
1106		info = "completing type ";
1107		callback = dev->type->pm->complete;
1108	} else if (dev->class && dev->class->pm) {
1109		info = "completing class ";
1110		callback = dev->class->pm->complete;
1111	} else if (dev->bus && dev->bus->pm) {
1112		info = "completing bus ";
1113		callback = dev->bus->pm->complete;
1114	}
1115
1116	if (!callback && dev->driver && dev->driver->pm) {
1117		info = "completing driver ";
1118		callback = dev->driver->pm->complete;
1119	}
1120
1121	if (callback) {
1122		pm_dev_dbg(dev, state, info);
1123		callback(dev);
1124	}
1125
1126	device_unlock(dev);
1127
1128	pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140	struct list_head list;
1141
1142	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143	might_sleep();
1144
1145	INIT_LIST_HEAD(&list);
1146	mutex_lock(&dpm_list_mtx);
1147	while (!list_empty(&dpm_prepared_list)) {
1148		struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150		get_device(dev);
1151		dev->power.is_prepared = false;
1152		list_move(&dev->power.entry, &list);
1153		mutex_unlock(&dpm_list_mtx);
1154
1155		trace_device_pm_callback_start(dev, "", state.event);
1156		device_complete(dev, state);
1157		trace_device_pm_callback_end(dev, 0);
1158
1159		mutex_lock(&dpm_list_mtx);
1160		put_device(dev);
1161	}
1162	list_splice(&list, &dpm_list);
1163	mutex_unlock(&dpm_list_mtx);
1164
1165	/* Allow device probing and trigger re-probing of deferred devices */
1166	device_unblock_probing();
1167	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179	dpm_resume(state);
1180	dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196	switch (sleep_state.event) {
1197	case PM_EVENT_SUSPEND:
1198		return PMSG_RESUME;
1199	case PM_EVENT_FREEZE:
1200	case PM_EVENT_QUIESCE:
1201		return PMSG_RECOVER;
1202	case PM_EVENT_HIBERNATE:
1203		return PMSG_RESTORE;
1204	}
1205	return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210	struct device_link *link;
1211	int idx;
1212
1213	if (dev->parent)
1214		dev->parent->power.must_resume = true;
1215
1216	idx = device_links_read_lock();
1217
1218	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219		link->supplier->power.must_resume = true;
1220
1221	device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225						 pm_message_t state,
1226						 const char **info_p)
1227{
1228	pm_callback_t callback;
1229	const char *info;
1230
1231	if (dev->pm_domain) {
1232		info = "noirq power domain ";
1233		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234	} else if (dev->type && dev->type->pm) {
1235		info = "noirq type ";
1236		callback = pm_noirq_op(dev->type->pm, state);
1237	} else if (dev->class && dev->class->pm) {
1238		info = "noirq class ";
1239		callback = pm_noirq_op(dev->class->pm, state);
1240	} else if (dev->bus && dev->bus->pm) {
1241		info = "noirq bus ";
1242		callback = pm_noirq_op(dev->bus->pm, state);
1243	} else {
1244		return NULL;
1245	}
1246
1247	if (info_p)
1248		*info_p = info;
1249
1250	return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254			       bool no_subsys_suspend_noirq)
1255{
1256	pm_message_t resume_msg = resume_event(state);
1257
1258	/*
1259	 * If all of the device driver's "noirq", "late" and "early" callbacks
1260	 * are invoked directly by the core, the decision to allow the device to
1261	 * stay in suspend can be based on its current runtime PM status and its
1262	 * wakeup settings.
1263	 */
1264	if (no_subsys_suspend_noirq &&
1265	    !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266	    !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267	    !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268		return !pm_runtime_status_suspended(dev) &&
1269			(resume_msg.event != PM_EVENT_RESUME ||
1270			 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272	/*
1273	 * The only safe strategy here is to require that if the device may not
1274	 * be left in suspend, resume callbacks must be invoked for it.
1275	 */
1276	return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290	pm_callback_t callback;
1291	const char *info;
1292	bool no_subsys_cb = false;
1293	int error = 0;
1294
1295	TRACE_DEVICE(dev);
1296	TRACE_SUSPEND(0);
1297
1298	dpm_wait_for_subordinate(dev, async);
1299
1300	if (async_error)
1301		goto Complete;
1302
1303	if (pm_wakeup_pending()) {
1304		async_error = -EBUSY;
1305		goto Complete;
1306	}
1307
1308	if (dev->power.syscore || dev->power.direct_complete)
1309		goto Complete;
1310
1311	callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
1312	if (callback)
1313		goto Run;
1314
1315	no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317	if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318		goto Skip;
1319
1320	if (dev->driver && dev->driver->pm) {
1321		info = "noirq driver ";
1322		callback = pm_noirq_op(dev->driver->pm, state);
1323	}
1324
1325Run:
1326	error = dpm_run_callback(callback, dev, state, info);
1327	if (error) {
1328		async_error = error;
1329		goto Complete;
1330	}
1331
1332Skip:
1333	dev->power.is_noirq_suspended = true;
1334
1335	if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336		dev->power.must_resume = dev->power.must_resume ||
1337				atomic_read(&dev->power.usage_count) > 1 ||
1338				device_must_resume(dev, state, no_subsys_cb);
1339	} else {
 
 
 
 
1340		dev->power.must_resume = true;
1341	}
1342
1343	if (dev->power.must_resume)
1344		dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347	complete_all(&dev->power.completion);
1348	TRACE_SUSPEND(error);
1349	return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354	struct device *dev = (struct device *)data;
1355	int error;
1356
1357	error = __device_suspend_noirq(dev, pm_transition, true);
1358	if (error) {
1359		dpm_save_failed_dev(dev_name(dev));
1360		pm_dev_err(dev, pm_transition, " async", error);
1361	}
1362
1363	put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368	reinit_completion(&dev->power.completion);
 
1369
1370	if (is_async(dev)) {
1371		get_device(dev);
1372		async_schedule(async_suspend_noirq, dev);
1373		return 0;
1374	}
1375	return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380	cpuidle_pause();
1381	device_wakeup_arm_wake_irqs();
1382	suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387	ktime_t starttime = ktime_get();
1388	int error = 0;
1389
1390	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391	mutex_lock(&dpm_list_mtx);
1392	pm_transition = state;
1393	async_error = 0;
1394
1395	while (!list_empty(&dpm_late_early_list)) {
1396		struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398		get_device(dev);
1399		mutex_unlock(&dpm_list_mtx);
1400
1401		error = device_suspend_noirq(dev);
1402
1403		mutex_lock(&dpm_list_mtx);
1404		if (error) {
1405			pm_dev_err(dev, state, " noirq", error);
1406			dpm_save_failed_dev(dev_name(dev));
1407			put_device(dev);
1408			break;
1409		}
1410		if (!list_empty(&dev->power.entry))
1411			list_move(&dev->power.entry, &dpm_noirq_list);
1412		put_device(dev);
1413
1414		if (async_error)
1415			break;
1416	}
1417	mutex_unlock(&dpm_list_mtx);
1418	async_synchronize_full();
1419	if (!error)
1420		error = async_error;
1421
1422	if (error) {
1423		suspend_stats.failed_suspend_noirq++;
1424		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425	}
1426	dpm_show_time(starttime, state, error, "noirq");
1427	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428	return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440	int ret;
1441
1442	dpm_noirq_begin();
 
 
 
 
1443	ret = dpm_noirq_suspend_devices(state);
1444	if (ret)
1445		dpm_resume_noirq(resume_event(state));
1446
1447	return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452	struct device *parent = dev->parent;
1453
1454	if (!parent)
1455		return;
1456
1457	spin_lock_irq(&parent->power.lock);
1458
1459	if (dev->power.wakeup_path && !parent->power.ignore_children)
1460		parent->power.wakeup_path = true;
1461
1462	spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466						pm_message_t state,
1467						const char **info_p)
1468{
1469	pm_callback_t callback;
1470	const char *info;
1471
1472	if (dev->pm_domain) {
1473		info = "late power domain ";
1474		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475	} else if (dev->type && dev->type->pm) {
1476		info = "late type ";
1477		callback = pm_late_early_op(dev->type->pm, state);
1478	} else if (dev->class && dev->class->pm) {
1479		info = "late class ";
1480		callback = pm_late_early_op(dev->class->pm, state);
1481	} else if (dev->bus && dev->bus->pm) {
1482		info = "late bus ";
1483		callback = pm_late_early_op(dev->bus->pm, state);
1484	} else {
1485		return NULL;
1486	}
1487
1488	if (info_p)
1489		*info_p = info;
1490
1491	return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504	pm_callback_t callback;
1505	const char *info;
1506	int error = 0;
1507
1508	TRACE_DEVICE(dev);
1509	TRACE_SUSPEND(0);
1510
1511	__pm_runtime_disable(dev, false);
1512
1513	dpm_wait_for_subordinate(dev, async);
1514
1515	if (async_error)
1516		goto Complete;
1517
1518	if (pm_wakeup_pending()) {
1519		async_error = -EBUSY;
1520		goto Complete;
1521	}
1522
1523	if (dev->power.syscore || dev->power.direct_complete)
1524		goto Complete;
1525
1526	callback = dpm_subsys_suspend_late_cb(dev, state, &info);
 
 
 
 
 
 
 
 
 
 
 
 
1527	if (callback)
1528		goto Run;
1529
1530	if (dev_pm_smart_suspend_and_suspended(dev) &&
1531	    !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532		goto Skip;
1533
1534	if (dev->driver && dev->driver->pm) {
1535		info = "late driver ";
1536		callback = pm_late_early_op(dev->driver->pm, state);
1537	}
1538
1539Run:
1540	error = dpm_run_callback(callback, dev, state, info);
1541	if (error) {
1542		async_error = error;
1543		goto Complete;
1544	}
1545	dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548	dev->power.is_late_suspended = true;
1549
1550Complete:
1551	TRACE_SUSPEND(error);
1552	complete_all(&dev->power.completion);
1553	return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558	struct device *dev = (struct device *)data;
1559	int error;
1560
1561	error = __device_suspend_late(dev, pm_transition, true);
1562	if (error) {
1563		dpm_save_failed_dev(dev_name(dev));
1564		pm_dev_err(dev, pm_transition, " async", error);
1565	}
1566	put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571	reinit_completion(&dev->power.completion);
1572
1573	if (is_async(dev)) {
1574		get_device(dev);
1575		async_schedule(async_suspend_late, dev);
1576		return 0;
1577	}
1578
1579	return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588	ktime_t starttime = ktime_get();
1589	int error = 0;
1590
1591	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592	mutex_lock(&dpm_list_mtx);
1593	pm_transition = state;
1594	async_error = 0;
1595
1596	while (!list_empty(&dpm_suspended_list)) {
1597		struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599		get_device(dev);
1600		mutex_unlock(&dpm_list_mtx);
1601
1602		error = device_suspend_late(dev);
1603
1604		mutex_lock(&dpm_list_mtx);
1605		if (!list_empty(&dev->power.entry))
1606			list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608		if (error) {
1609			pm_dev_err(dev, state, " late", error);
1610			dpm_save_failed_dev(dev_name(dev));
1611			put_device(dev);
1612			break;
1613		}
1614		put_device(dev);
1615
1616		if (async_error)
1617			break;
1618	}
1619	mutex_unlock(&dpm_list_mtx);
1620	async_synchronize_full();
1621	if (!error)
1622		error = async_error;
1623	if (error) {
1624		suspend_stats.failed_suspend_late++;
1625		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626		dpm_resume_early(resume_event(state));
1627	}
1628	dpm_show_time(starttime, state, error, "late");
1629	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630	return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639	int error = dpm_suspend_late(state);
 
 
 
1640	if (error)
1641		return error;
1642
1643	error = dpm_suspend_noirq(state);
1644	if (error) {
1645		dpm_resume_early(resume_event(state));
1646		return error;
1647	}
1648
1649	return 0;
 
 
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661			  int (*cb)(struct device *dev, pm_message_t state),
1662			  const char *info)
1663{
1664	int error;
1665	ktime_t calltime;
1666
1667	calltime = initcall_debug_start(dev);
1668
1669	trace_device_pm_callback_start(dev, info, state.event);
1670	error = cb(dev, state);
1671	trace_device_pm_callback_end(dev, error);
1672	suspend_report_result(cb, error);
1673
1674	initcall_debug_report(dev, calltime, error, state, info);
1675
1676	return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681	struct device_link *link;
1682	int idx;
1683
1684	if (dev->parent) {
1685		spin_lock_irq(&dev->parent->power.lock);
1686		dev->parent->power.direct_complete = false;
1687		spin_unlock_irq(&dev->parent->power.lock);
1688	}
1689
1690	idx = device_links_read_lock();
1691
1692	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693		spin_lock_irq(&link->supplier->power.lock);
1694		link->supplier->power.direct_complete = false;
1695		spin_unlock_irq(&link->supplier->power.lock);
1696	}
1697
1698	device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709	pm_callback_t callback = NULL;
1710	const char *info = NULL;
1711	int error = 0;
1712	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714	TRACE_DEVICE(dev);
1715	TRACE_SUSPEND(0);
1716
1717	dpm_wait_for_subordinate(dev, async);
1718
1719	if (async_error)
 
1720		goto Complete;
 
1721
1722	/*
1723	 * If a device configured to wake up the system from sleep states
1724	 * has been suspended at run time and there's a resume request pending
1725	 * for it, this is equivalent to the device signaling wakeup, so the
1726	 * system suspend operation should be aborted.
 
 
 
 
 
1727	 */
1728	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729		pm_wakeup_event(dev, 0);
1730
1731	if (pm_wakeup_pending()) {
 
1732		async_error = -EBUSY;
1733		goto Complete;
1734	}
1735
1736	if (dev->power.syscore)
1737		goto Complete;
1738
 
 
 
 
1739	if (dev->power.direct_complete) {
1740		if (pm_runtime_status_suspended(dev)) {
1741			pm_runtime_disable(dev);
1742			if (pm_runtime_status_suspended(dev))
 
1743				goto Complete;
 
1744
1745			pm_runtime_enable(dev);
1746		}
1747		dev->power.direct_complete = false;
1748	}
1749
1750	dev->power.may_skip_resume = false;
1751	dev->power.must_resume = false;
1752
1753	dpm_watchdog_set(&wd, dev);
1754	device_lock(dev);
1755
1756	if (dev->pm_domain) {
1757		info = "power domain ";
1758		callback = pm_op(&dev->pm_domain->ops, state);
1759		goto Run;
1760	}
1761
1762	if (dev->type && dev->type->pm) {
1763		info = "type ";
1764		callback = pm_op(dev->type->pm, state);
1765		goto Run;
1766	}
1767
1768	if (dev->class && dev->class->pm) {
1769		info = "class ";
1770		callback = pm_op(dev->class->pm, state);
1771		goto Run;
1772	}
1773
1774	if (dev->bus) {
1775		if (dev->bus->pm) {
1776			info = "bus ";
1777			callback = pm_op(dev->bus->pm, state);
1778		} else if (dev->bus->suspend) {
1779			pm_dev_dbg(dev, state, "legacy bus ");
1780			error = legacy_suspend(dev, state, dev->bus->suspend,
1781						"legacy bus ");
1782			goto End;
1783		}
1784	}
1785
1786 Run:
1787	if (!callback && dev->driver && dev->driver->pm) {
1788		info = "driver ";
1789		callback = pm_op(dev->driver->pm, state);
1790	}
1791
1792	error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795	if (!error) {
1796		dev->power.is_suspended = true;
1797		if (device_may_wakeup(dev))
1798			dev->power.wakeup_path = true;
1799
1800		dpm_propagate_wakeup_to_parent(dev);
1801		dpm_clear_superiors_direct_complete(dev);
1802	}
1803
1804	device_unlock(dev);
1805	dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808	if (error)
1809		async_error = error;
1810
1811	complete_all(&dev->power.completion);
1812	TRACE_SUSPEND(error);
1813	return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818	struct device *dev = (struct device *)data;
1819	int error;
1820
1821	error = __device_suspend(dev, pm_transition, true);
1822	if (error) {
1823		dpm_save_failed_dev(dev_name(dev));
1824		pm_dev_err(dev, pm_transition, " async", error);
1825	}
1826
1827	put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832	reinit_completion(&dev->power.completion);
1833
1834	if (is_async(dev)) {
1835		get_device(dev);
1836		async_schedule(async_suspend, dev);
1837		return 0;
1838	}
1839
1840	return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849	ktime_t starttime = ktime_get();
1850	int error = 0;
1851
1852	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853	might_sleep();
1854
 
1855	cpufreq_suspend();
1856
1857	mutex_lock(&dpm_list_mtx);
1858	pm_transition = state;
1859	async_error = 0;
1860	while (!list_empty(&dpm_prepared_list)) {
1861		struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863		get_device(dev);
1864		mutex_unlock(&dpm_list_mtx);
1865
1866		error = device_suspend(dev);
1867
1868		mutex_lock(&dpm_list_mtx);
1869		if (error) {
1870			pm_dev_err(dev, state, "", error);
1871			dpm_save_failed_dev(dev_name(dev));
1872			put_device(dev);
1873			break;
1874		}
1875		if (!list_empty(&dev->power.entry))
1876			list_move(&dev->power.entry, &dpm_suspended_list);
1877		put_device(dev);
1878		if (async_error)
1879			break;
1880	}
1881	mutex_unlock(&dpm_list_mtx);
1882	async_synchronize_full();
1883	if (!error)
1884		error = async_error;
1885	if (error) {
1886		suspend_stats.failed_suspend++;
1887		dpm_save_failed_step(SUSPEND_SUSPEND);
1888	}
1889	dpm_show_time(starttime, state, error, NULL);
1890	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891	return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device.  No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904	int (*callback)(struct device *) = NULL;
1905	int ret = 0;
1906
1907	if (dev->power.syscore)
1908		return 0;
1909
1910	WARN_ON(!pm_runtime_enabled(dev) &&
1911		dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912					      DPM_FLAG_LEAVE_SUSPENDED));
1913
1914	/*
1915	 * If a device's parent goes into runtime suspend at the wrong time,
1916	 * it won't be possible to resume the device.  To prevent this we
1917	 * block runtime suspend here, during the prepare phase, and allow
1918	 * it again during the complete phase.
1919	 */
1920	pm_runtime_get_noresume(dev);
1921
1922	device_lock(dev);
1923
1924	dev->power.wakeup_path = false;
1925
1926	if (dev->power.no_pm_callbacks)
1927		goto unlock;
1928
1929	if (dev->pm_domain)
1930		callback = dev->pm_domain->ops.prepare;
1931	else if (dev->type && dev->type->pm)
1932		callback = dev->type->pm->prepare;
1933	else if (dev->class && dev->class->pm)
1934		callback = dev->class->pm->prepare;
1935	else if (dev->bus && dev->bus->pm)
1936		callback = dev->bus->pm->prepare;
1937
1938	if (!callback && dev->driver && dev->driver->pm)
1939		callback = dev->driver->pm->prepare;
1940
1941	if (callback)
1942		ret = callback(dev);
1943
1944unlock:
1945	device_unlock(dev);
1946
1947	if (ret < 0) {
1948		suspend_report_result(callback, ret);
1949		pm_runtime_put(dev);
1950		return ret;
1951	}
1952	/*
1953	 * A positive return value from ->prepare() means "this device appears
1954	 * to be runtime-suspended and its state is fine, so if it really is
1955	 * runtime-suspended, you can leave it in that state provided that you
1956	 * will do the same thing with all of its descendants".  This only
1957	 * applies to suspend transitions, however.
1958	 */
1959	spin_lock_irq(&dev->power.lock);
1960	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961		((pm_runtime_suspended(dev) && ret > 0) ||
1962		 dev->power.no_pm_callbacks) &&
1963		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964	spin_unlock_irq(&dev->power.lock);
1965	return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976	int error = 0;
1977
1978	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979	might_sleep();
1980
1981	/*
1982	 * Give a chance for the known devices to complete their probes, before
1983	 * disable probing of devices. This sync point is important at least
1984	 * at boot time + hibernation restore.
1985	 */
1986	wait_for_device_probe();
1987	/*
1988	 * It is unsafe if probing of devices will happen during suspend or
1989	 * hibernation and system behavior will be unpredictable in this case.
1990	 * So, let's prohibit device's probing here and defer their probes
1991	 * instead. The normal behavior will be restored in dpm_complete().
1992	 */
1993	device_block_probing();
1994
1995	mutex_lock(&dpm_list_mtx);
1996	while (!list_empty(&dpm_list)) {
1997		struct device *dev = to_device(dpm_list.next);
1998
1999		get_device(dev);
2000		mutex_unlock(&dpm_list_mtx);
2001
2002		trace_device_pm_callback_start(dev, "", state.event);
2003		error = device_prepare(dev, state);
2004		trace_device_pm_callback_end(dev, error);
2005
2006		mutex_lock(&dpm_list_mtx);
2007		if (error) {
2008			if (error == -EAGAIN) {
2009				put_device(dev);
2010				error = 0;
2011				continue;
2012			}
2013			printk(KERN_INFO "PM: Device %s not prepared "
2014				"for power transition: code %d\n",
2015				dev_name(dev), error);
2016			put_device(dev);
2017			break;
2018		}
2019		dev->power.is_prepared = true;
2020		if (!list_empty(&dev->power.entry))
2021			list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022		put_device(dev);
2023	}
2024	mutex_unlock(&dpm_list_mtx);
2025	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026	return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
 
2038	int error;
2039
2040	error = dpm_prepare(state);
2041	if (error) {
2042		suspend_stats.failed_prepare++;
2043		dpm_save_failed_step(SUSPEND_PREPARE);
2044	} else
2045		error = dpm_suspend(state);
 
2046	return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052	if (ret)
2053		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
 
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064	dpm_wait(dev, subordinate->power.async_suspend);
2065	return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079	struct device *dev;
2080
2081	if (!fn)
2082		return;
2083
2084	device_pm_lock();
2085	list_for_each_entry(dev, &dpm_list, power.entry)
2086		fn(dev, data);
2087	device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093	if (!ops)
2094		return true;
2095
2096	return !ops->prepare &&
2097	       !ops->suspend &&
2098	       !ops->suspend_late &&
2099	       !ops->suspend_noirq &&
2100	       !ops->resume_noirq &&
2101	       !ops->resume_early &&
2102	       !ops->resume &&
2103	       !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108	spin_lock_irq(&dev->power.lock);
2109	dev->power.no_pm_callbacks =
2110		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111		 !dev->bus->suspend && !dev->bus->resume)) &&
2112		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116		 !dev->driver->suspend && !dev->driver->resume));
2117	spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123		pm_runtime_status_suspended(dev);
2124}