Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>		/* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
 
 
 
  27#include <linux/string.h>
  28#include <linux/xarray.h>
 
 
 
 
 
 
 
 
 
  29
  30/*
  31 * Radix tree node cache.
  32 */
  33struct kmem_cache *radix_tree_node_cachep;
  34
  35/*
  36 * The radix tree is variable-height, so an insert operation not only has
  37 * to build the branch to its corresponding item, it also has to build the
  38 * branch to existing items if the size has to be increased (by
  39 * radix_tree_extend).
  40 *
  41 * The worst case is a zero height tree with just a single item at index 0,
  42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  44 * Hence:
  45 */
  46#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  47
  48/*
  49 * The IDR does not have to be as high as the radix tree since it uses
  50 * signed integers, not unsigned longs.
  51 */
  52#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  53#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  54						RADIX_TREE_MAP_SHIFT))
  55#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  56
  57/*
  58 * Per-cpu pool of preloaded nodes
  59 */
  60DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
  61	.lock = INIT_LOCAL_LOCK(lock),
 
 
  62};
  63EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
  64
  65static inline struct radix_tree_node *entry_to_node(void *ptr)
  66{
  67	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  68}
  69
  70static inline void *node_to_entry(void *ptr)
  71{
  72	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  73}
  74
  75#define RADIX_TREE_RETRY	XA_RETRY_ENTRY
  76
  77static inline unsigned long
  78get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  79{
  80	return parent ? slot - parent->slots : 0;
  81}
  82
  83static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  84			struct radix_tree_node **nodep, unsigned long index)
  85{
  86	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  87	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  88
  89	*nodep = (void *)entry;
  90	return offset;
  91}
  92
  93static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  94{
  95	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  96}
  97
  98static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  99		int offset)
 100{
 101	__set_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 105		int offset)
 106{
 107	__clear_bit(offset, node->tags[tag]);
 108}
 109
 110static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 111		int offset)
 112{
 113	return test_bit(offset, node->tags[tag]);
 114}
 115
 116static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 117{
 118	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 119}
 120
 121static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 122{
 123	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 124}
 125
 126static inline void root_tag_clear_all(struct radix_tree_root *root)
 127{
 128	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 129}
 130
 131static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 132{
 133	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 134}
 135
 136static inline unsigned root_tags_get(const struct radix_tree_root *root)
 137{
 138	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 139}
 140
 141static inline bool is_idr(const struct radix_tree_root *root)
 142{
 143	return !!(root->xa_flags & ROOT_IS_IDR);
 144}
 145
 146/*
 147 * Returns 1 if any slot in the node has this tag set.
 148 * Otherwise returns 0.
 149 */
 150static inline int any_tag_set(const struct radix_tree_node *node,
 151							unsigned int tag)
 152{
 153	unsigned idx;
 154	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 155		if (node->tags[tag][idx])
 156			return 1;
 157	}
 158	return 0;
 159}
 160
 161static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 162{
 163	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 164}
 165
 166/**
 167 * radix_tree_find_next_bit - find the next set bit in a memory region
 168 *
 169 * @node: where to begin the search
 170 * @tag: the tag index
 171 * @offset: the bitnumber to start searching at
 172 *
 173 * Unrollable variant of find_next_bit() for constant size arrays.
 174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 175 * Returns next bit offset, or size if nothing found.
 176 */
 177static __always_inline unsigned long
 178radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 179			 unsigned long offset)
 180{
 181	const unsigned long *addr = node->tags[tag];
 
 182
 183	if (offset < RADIX_TREE_MAP_SIZE) {
 184		unsigned long tmp;
 185
 186		addr += offset / BITS_PER_LONG;
 187		tmp = *addr >> (offset % BITS_PER_LONG);
 188		if (tmp)
 189			return __ffs(tmp) + offset;
 190		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 191		while (offset < RADIX_TREE_MAP_SIZE) {
 192			tmp = *++addr;
 193			if (tmp)
 194				return __ffs(tmp) + offset;
 195			offset += BITS_PER_LONG;
 196		}
 197	}
 198	return RADIX_TREE_MAP_SIZE;
 199}
 200
 201static unsigned int iter_offset(const struct radix_tree_iter *iter)
 
 202{
 203	return iter->index & RADIX_TREE_MAP_MASK;
 204}
 205
 206/*
 207 * The maximum index which can be stored in a radix tree
 208 */
 209static inline unsigned long shift_maxindex(unsigned int shift)
 210{
 211	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 212}
 213
 214static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 215{
 216	return shift_maxindex(node->shift);
 217}
 218
 219static unsigned long next_index(unsigned long index,
 220				const struct radix_tree_node *node,
 221				unsigned long offset)
 222{
 223	return (index & ~node_maxindex(node)) + (offset << node->shift);
 
 
 
 
 
 
 
 
 
 
 
 
 
 224}
 
 225
 226/*
 227 * This assumes that the caller has performed appropriate preallocation, and
 228 * that the caller has pinned this thread of control to the current CPU.
 229 */
 230static struct radix_tree_node *
 231radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 232			struct radix_tree_root *root,
 233			unsigned int shift, unsigned int offset,
 234			unsigned int count, unsigned int nr_values)
 235{
 236	struct radix_tree_node *ret = NULL;
 
 237
 238	/*
 239	 * Preload code isn't irq safe and it doesn't make sense to use
 240	 * preloading during an interrupt anyway as all the allocations have
 241	 * to be atomic. So just do normal allocation when in interrupt.
 242	 */
 243	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 244		struct radix_tree_preload *rtp;
 245
 246		/*
 247		 * Even if the caller has preloaded, try to allocate from the
 248		 * cache first for the new node to get accounted to the memory
 249		 * cgroup.
 250		 */
 251		ret = kmem_cache_alloc(radix_tree_node_cachep,
 252				       gfp_mask | __GFP_NOWARN);
 253		if (ret)
 254			goto out;
 255
 256		/*
 257		 * Provided the caller has preloaded here, we will always
 258		 * succeed in getting a node here (and never reach
 259		 * kmem_cache_alloc)
 260		 */
 261		rtp = this_cpu_ptr(&radix_tree_preloads);
 262		if (rtp->nr) {
 263			ret = rtp->nodes;
 264			rtp->nodes = ret->parent;
 
 265			rtp->nr--;
 266		}
 267		/*
 268		 * Update the allocation stack trace as this is more useful
 269		 * for debugging.
 270		 */
 271		kmemleak_update_trace(ret);
 272		goto out;
 273	}
 274	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 
 275out:
 276	BUG_ON(radix_tree_is_internal_node(ret));
 277	if (ret) {
 278		ret->shift = shift;
 279		ret->offset = offset;
 280		ret->count = count;
 281		ret->nr_values = nr_values;
 282		ret->parent = parent;
 283		ret->array = root;
 284	}
 285	return ret;
 286}
 287
 288void radix_tree_node_rcu_free(struct rcu_head *head)
 289{
 290	struct radix_tree_node *node =
 291			container_of(head, struct radix_tree_node, rcu_head);
 
 292
 293	/*
 294	 * Must only free zeroed nodes into the slab.  We can be left with
 295	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 296	 * and tags here.
 297	 */
 298	memset(node->slots, 0, sizeof(node->slots));
 299	memset(node->tags, 0, sizeof(node->tags));
 300	INIT_LIST_HEAD(&node->private_list);
 
 
 301
 302	kmem_cache_free(radix_tree_node_cachep, node);
 303}
 304
 305static inline void
 306radix_tree_node_free(struct radix_tree_node *node)
 307{
 308	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 309}
 310
 311/*
 312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 313 * ensure that the addition of a single element in the tree cannot fail.  On
 314 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 315 * with preemption not disabled.
 316 *
 317 * To make use of this facility, the radix tree must be initialised without
 318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 319 */
 320static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 321{
 322	struct radix_tree_preload *rtp;
 323	struct radix_tree_node *node;
 324	int ret = -ENOMEM;
 325
 326	/*
 327	 * Nodes preloaded by one cgroup can be used by another cgroup, so
 328	 * they should never be accounted to any particular memory cgroup.
 329	 */
 330	gfp_mask &= ~__GFP_ACCOUNT;
 331
 332	local_lock(&radix_tree_preloads.lock);
 333	rtp = this_cpu_ptr(&radix_tree_preloads);
 334	while (rtp->nr < nr) {
 335		local_unlock(&radix_tree_preloads.lock);
 336		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 337		if (node == NULL)
 338			goto out;
 339		local_lock(&radix_tree_preloads.lock);
 340		rtp = this_cpu_ptr(&radix_tree_preloads);
 341		if (rtp->nr < nr) {
 342			node->parent = rtp->nodes;
 343			rtp->nodes = node;
 344			rtp->nr++;
 345		} else {
 346			kmem_cache_free(radix_tree_node_cachep, node);
 347		}
 348	}
 349	ret = 0;
 350out:
 351	return ret;
 352}
 353
 354/*
 355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 356 * ensure that the addition of a single element in the tree cannot fail.  On
 357 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 358 * with preemption not disabled.
 359 *
 360 * To make use of this facility, the radix tree must be initialised without
 361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 362 */
 363int radix_tree_preload(gfp_t gfp_mask)
 364{
 365	/* Warn on non-sensical use... */
 366	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 367	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 368}
 369EXPORT_SYMBOL(radix_tree_preload);
 370
 371/*
 372 * The same as above function, except we don't guarantee preloading happens.
 373 * We do it, if we decide it helps. On success, return zero with preemption
 374 * disabled. On error, return -ENOMEM with preemption not disabled.
 375 */
 376int radix_tree_maybe_preload(gfp_t gfp_mask)
 377{
 378	if (gfpflags_allow_blocking(gfp_mask))
 379		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 380	/* Preloading doesn't help anything with this gfp mask, skip it */
 381	local_lock(&radix_tree_preloads.lock);
 382	return 0;
 383}
 384EXPORT_SYMBOL(radix_tree_maybe_preload);
 385
 386static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 387		struct radix_tree_node **nodep, unsigned long *maxindex)
 
 
 
 388{
 389	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 390
 391	*nodep = node;
 392
 393	if (likely(radix_tree_is_internal_node(node))) {
 394		node = entry_to_node(node);
 395		*maxindex = node_maxindex(node);
 396		return node->shift + RADIX_TREE_MAP_SHIFT;
 397	}
 398
 399	*maxindex = 0;
 400	return 0;
 401}
 402
 403/*
 404 *	Extend a radix tree so it can store key @index.
 405 */
 406static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 407				unsigned long index, unsigned int shift)
 408{
 409	void *entry;
 410	unsigned int maxshift;
 
 411	int tag;
 412
 413	/* Figure out what the shift should be.  */
 414	maxshift = shift;
 415	while (index > shift_maxindex(maxshift))
 416		maxshift += RADIX_TREE_MAP_SHIFT;
 417
 418	entry = rcu_dereference_raw(root->xa_head);
 419	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 420		goto out;
 
 421
 422	do {
 423		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 424							root, shift, 0, 1, 0);
 425		if (!node)
 426			return -ENOMEM;
 427
 428		if (is_idr(root)) {
 429			all_tag_set(node, IDR_FREE);
 430			if (!root_tag_get(root, IDR_FREE)) {
 431				tag_clear(node, IDR_FREE, 0);
 432				root_tag_set(root, IDR_FREE);
 433			}
 434		} else {
 435			/* Propagate the aggregated tag info to the new child */
 436			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 437				if (root_tag_get(root, tag))
 438					tag_set(node, tag, 0);
 439			}
 440		}
 441
 442		BUG_ON(shift > BITS_PER_LONG);
 443		if (radix_tree_is_internal_node(entry)) {
 444			entry_to_node(entry)->parent = node;
 445		} else if (xa_is_value(entry)) {
 446			/* Moving a value entry root->xa_head to a node */
 447			node->nr_values = 1;
 
 
 
 
 
 448		}
 449		/*
 450		 * entry was already in the radix tree, so we do not need
 451		 * rcu_assign_pointer here
 452		 */
 453		node->slots[0] = (void __rcu *)entry;
 454		entry = node_to_entry(node);
 455		rcu_assign_pointer(root->xa_head, entry);
 456		shift += RADIX_TREE_MAP_SHIFT;
 457	} while (shift <= maxshift);
 458out:
 459	return maxshift + RADIX_TREE_MAP_SHIFT;
 460}
 461
 462/**
 463 *	radix_tree_shrink    -    shrink radix tree to minimum height
 464 *	@root:		radix tree root
 465 */
 466static inline bool radix_tree_shrink(struct radix_tree_root *root)
 467{
 468	bool shrunk = false;
 469
 470	for (;;) {
 471		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 472		struct radix_tree_node *child;
 473
 474		if (!radix_tree_is_internal_node(node))
 475			break;
 476		node = entry_to_node(node);
 477
 478		/*
 479		 * The candidate node has more than one child, or its child
 480		 * is not at the leftmost slot, we cannot shrink.
 481		 */
 482		if (node->count != 1)
 483			break;
 484		child = rcu_dereference_raw(node->slots[0]);
 485		if (!child)
 486			break;
 487
 488		/*
 489		 * For an IDR, we must not shrink entry 0 into the root in
 490		 * case somebody calls idr_replace() with a pointer that
 491		 * appears to be an internal entry
 492		 */
 493		if (!node->shift && is_idr(root))
 494			break;
 495
 496		if (radix_tree_is_internal_node(child))
 497			entry_to_node(child)->parent = NULL;
 498
 499		/*
 500		 * We don't need rcu_assign_pointer(), since we are simply
 501		 * moving the node from one part of the tree to another: if it
 502		 * was safe to dereference the old pointer to it
 503		 * (node->slots[0]), it will be safe to dereference the new
 504		 * one (root->xa_head) as far as dependent read barriers go.
 505		 */
 506		root->xa_head = (void __rcu *)child;
 507		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 508			root_tag_clear(root, IDR_FREE);
 509
 510		/*
 511		 * We have a dilemma here. The node's slot[0] must not be
 512		 * NULLed in case there are concurrent lookups expecting to
 513		 * find the item. However if this was a bottom-level node,
 514		 * then it may be subject to the slot pointer being visible
 515		 * to callers dereferencing it. If item corresponding to
 516		 * slot[0] is subsequently deleted, these callers would expect
 517		 * their slot to become empty sooner or later.
 518		 *
 519		 * For example, lockless pagecache will look up a slot, deref
 520		 * the page pointer, and if the page has 0 refcount it means it
 521		 * was concurrently deleted from pagecache so try the deref
 522		 * again. Fortunately there is already a requirement for logic
 523		 * to retry the entire slot lookup -- the indirect pointer
 524		 * problem (replacing direct root node with an indirect pointer
 525		 * also results in a stale slot). So tag the slot as indirect
 526		 * to force callers to retry.
 527		 */
 528		node->count = 0;
 529		if (!radix_tree_is_internal_node(child)) {
 530			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 531		}
 532
 533		WARN_ON_ONCE(!list_empty(&node->private_list));
 534		radix_tree_node_free(node);
 535		shrunk = true;
 536	}
 537
 538	return shrunk;
 539}
 540
 541static bool delete_node(struct radix_tree_root *root,
 542			struct radix_tree_node *node)
 543{
 544	bool deleted = false;
 545
 546	do {
 547		struct radix_tree_node *parent;
 548
 549		if (node->count) {
 550			if (node_to_entry(node) ==
 551					rcu_dereference_raw(root->xa_head))
 552				deleted |= radix_tree_shrink(root);
 553			return deleted;
 554		}
 555
 556		parent = node->parent;
 557		if (parent) {
 558			parent->slots[node->offset] = NULL;
 559			parent->count--;
 560		} else {
 561			/*
 562			 * Shouldn't the tags already have all been cleared
 563			 * by the caller?
 564			 */
 565			if (!is_idr(root))
 566				root_tag_clear_all(root);
 567			root->xa_head = NULL;
 568		}
 569
 570		WARN_ON_ONCE(!list_empty(&node->private_list));
 571		radix_tree_node_free(node);
 572		deleted = true;
 573
 574		node = parent;
 575	} while (node);
 576
 577	return deleted;
 578}
 579
 580/**
 581 *	__radix_tree_create	-	create a slot in a radix tree
 582 *	@root:		radix tree root
 583 *	@index:		index key
 
 584 *	@nodep:		returns node
 585 *	@slotp:		returns slot
 586 *
 587 *	Create, if necessary, and return the node and slot for an item
 588 *	at position @index in the radix tree @root.
 589 *
 590 *	Until there is more than one item in the tree, no nodes are
 591 *	allocated and @root->xa_head is used as a direct slot instead of
 592 *	pointing to a node, in which case *@nodep will be NULL.
 593 *
 594 *	Returns -ENOMEM, or 0 for success.
 595 */
 596static int __radix_tree_create(struct radix_tree_root *root,
 597		unsigned long index, struct radix_tree_node **nodep,
 598		void __rcu ***slotp)
 599{
 600	struct radix_tree_node *node = NULL, *child;
 601	void __rcu **slot = (void __rcu **)&root->xa_head;
 602	unsigned long maxindex;
 603	unsigned int shift, offset = 0;
 604	unsigned long max = index;
 605	gfp_t gfp = root_gfp_mask(root);
 606
 607	shift = radix_tree_load_root(root, &child, &maxindex);
 608
 609	/* Make sure the tree is high enough.  */
 610	if (max > maxindex) {
 611		int error = radix_tree_extend(root, gfp, max, shift);
 612		if (error < 0)
 613			return error;
 614		shift = error;
 615		child = rcu_dereference_raw(root->xa_head);
 616	}
 617
 618	while (shift > 0) {
 619		shift -= RADIX_TREE_MAP_SHIFT;
 620		if (child == NULL) {
 
 
 
 
 
 621			/* Have to add a child node.  */
 622			child = radix_tree_node_alloc(gfp, node, root, shift,
 623							offset, 0, 0);
 624			if (!child)
 625				return -ENOMEM;
 626			rcu_assign_pointer(*slot, node_to_entry(child));
 627			if (node)
 
 
 
 628				node->count++;
 629		} else if (!radix_tree_is_internal_node(child))
 
 
 
 
 630			break;
 631
 632		/* Go a level down */
 633		node = entry_to_node(child);
 634		offset = radix_tree_descend(node, &child, index);
 635		slot = &node->slots[offset];
 
 
 636	}
 637
 638	if (nodep)
 639		*nodep = node;
 640	if (slotp)
 641		*slotp = slot;
 642	return 0;
 643}
 644
 645/*
 646 * Free any nodes below this node.  The tree is presumed to not need
 647 * shrinking, and any user data in the tree is presumed to not need a
 648 * destructor called on it.  If we need to add a destructor, we can
 649 * add that functionality later.  Note that we may not clear tags or
 650 * slots from the tree as an RCU walker may still have a pointer into
 651 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 652 * but we'll still have to clear those in rcu_free.
 653 */
 654static void radix_tree_free_nodes(struct radix_tree_node *node)
 655{
 656	unsigned offset = 0;
 657	struct radix_tree_node *child = entry_to_node(node);
 658
 659	for (;;) {
 660		void *entry = rcu_dereference_raw(child->slots[offset]);
 661		if (xa_is_node(entry) && child->shift) {
 662			child = entry_to_node(entry);
 663			offset = 0;
 664			continue;
 665		}
 666		offset++;
 667		while (offset == RADIX_TREE_MAP_SIZE) {
 668			struct radix_tree_node *old = child;
 669			offset = child->offset + 1;
 670			child = child->parent;
 671			WARN_ON_ONCE(!list_empty(&old->private_list));
 672			radix_tree_node_free(old);
 673			if (old == entry_to_node(node))
 674				return;
 675		}
 676	}
 677}
 678
 679static inline int insert_entries(struct radix_tree_node *node,
 680		void __rcu **slot, void *item, bool replace)
 681{
 682	if (*slot)
 683		return -EEXIST;
 684	rcu_assign_pointer(*slot, item);
 685	if (node) {
 686		node->count++;
 687		if (xa_is_value(item))
 688			node->nr_values++;
 689	}
 690	return 1;
 691}
 692
 693/**
 694 *	radix_tree_insert    -    insert into a radix tree
 695 *	@root:		radix tree root
 696 *	@index:		index key
 
 697 *	@item:		item to insert
 698 *
 699 *	Insert an item into the radix tree at position @index.
 700 */
 701int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 702			void *item)
 703{
 704	struct radix_tree_node *node;
 705	void __rcu **slot;
 706	int error;
 707
 708	BUG_ON(radix_tree_is_internal_node(item));
 709
 710	error = __radix_tree_create(root, index, &node, &slot);
 711	if (error)
 712		return error;
 713
 714	error = insert_entries(node, slot, item, false);
 715	if (error < 0)
 716		return error;
 717
 718	if (node) {
 719		unsigned offset = get_slot_offset(node, slot);
 720		BUG_ON(tag_get(node, 0, offset));
 721		BUG_ON(tag_get(node, 1, offset));
 722		BUG_ON(tag_get(node, 2, offset));
 723	} else {
 724		BUG_ON(root_tags_get(root));
 
 725	}
 726
 727	return 0;
 728}
 729EXPORT_SYMBOL(radix_tree_insert);
 730
 731/**
 732 *	__radix_tree_lookup	-	lookup an item in a radix tree
 733 *	@root:		radix tree root
 734 *	@index:		index key
 735 *	@nodep:		returns node
 736 *	@slotp:		returns slot
 737 *
 738 *	Lookup and return the item at position @index in the radix
 739 *	tree @root.
 740 *
 741 *	Until there is more than one item in the tree, no nodes are
 742 *	allocated and @root->xa_head is used as a direct slot instead of
 743 *	pointing to a node, in which case *@nodep will be NULL.
 744 */
 745void *__radix_tree_lookup(const struct radix_tree_root *root,
 746			  unsigned long index, struct radix_tree_node **nodep,
 747			  void __rcu ***slotp)
 748{
 749	struct radix_tree_node *node, *parent;
 750	unsigned long maxindex;
 751	void __rcu **slot;
 752
 753 restart:
 754	parent = NULL;
 755	slot = (void __rcu **)&root->xa_head;
 756	radix_tree_load_root(root, &node, &maxindex);
 757	if (index > maxindex)
 758		return NULL;
 759
 760	while (radix_tree_is_internal_node(node)) {
 761		unsigned offset;
 
 
 
 
 
 
 
 
 
 762
 763		parent = entry_to_node(node);
 764		offset = radix_tree_descend(parent, &node, index);
 765		slot = parent->slots + offset;
 766		if (node == RADIX_TREE_RETRY)
 767			goto restart;
 768		if (parent->shift == 0)
 
 
 
 
 
 
 
 769			break;
 770	}
 
 
 
 
 771
 772	if (nodep)
 773		*nodep = parent;
 774	if (slotp)
 775		*slotp = slot;
 776	return node;
 777}
 778
 779/**
 780 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 781 *	@root:		radix tree root
 782 *	@index:		index key
 783 *
 784 *	Returns:  the slot corresponding to the position @index in the
 785 *	radix tree @root. This is useful for update-if-exists operations.
 786 *
 787 *	This function can be called under rcu_read_lock iff the slot is not
 788 *	modified by radix_tree_replace_slot, otherwise it must be called
 789 *	exclusive from other writers. Any dereference of the slot must be done
 790 *	using radix_tree_deref_slot.
 791 */
 792void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 793				unsigned long index)
 794{
 795	void __rcu **slot;
 796
 797	if (!__radix_tree_lookup(root, index, NULL, &slot))
 798		return NULL;
 799	return slot;
 800}
 801EXPORT_SYMBOL(radix_tree_lookup_slot);
 802
 803/**
 804 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 805 *	@root:		radix tree root
 806 *	@index:		index key
 807 *
 808 *	Lookup the item at the position @index in the radix tree @root.
 809 *
 810 *	This function can be called under rcu_read_lock, however the caller
 811 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 812 *	them safely). No RCU barriers are required to access or modify the
 813 *	returned item, however.
 814 */
 815void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 816{
 817	return __radix_tree_lookup(root, index, NULL, NULL);
 818}
 819EXPORT_SYMBOL(radix_tree_lookup);
 820
 821static void replace_slot(void __rcu **slot, void *item,
 822		struct radix_tree_node *node, int count, int values)
 823{
 824	if (node && (count || values)) {
 825		node->count += count;
 826		node->nr_values += values;
 827	}
 828
 829	rcu_assign_pointer(*slot, item);
 830}
 831
 832static bool node_tag_get(const struct radix_tree_root *root,
 833				const struct radix_tree_node *node,
 834				unsigned int tag, unsigned int offset)
 835{
 836	if (node)
 837		return tag_get(node, tag, offset);
 838	return root_tag_get(root, tag);
 839}
 840
 841/*
 842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 843 * free, don't adjust the count, even if it's transitioning between NULL and
 844 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 845 * have empty bits, but it only stores NULL in slots when they're being
 846 * deleted.
 847 */
 848static int calculate_count(struct radix_tree_root *root,
 849				struct radix_tree_node *node, void __rcu **slot,
 850				void *item, void *old)
 851{
 852	if (is_idr(root)) {
 853		unsigned offset = get_slot_offset(node, slot);
 854		bool free = node_tag_get(root, node, IDR_FREE, offset);
 855		if (!free)
 856			return 0;
 857		if (!old)
 858			return 1;
 859	}
 860	return !!item - !!old;
 861}
 862
 863/**
 864 * __radix_tree_replace		- replace item in a slot
 865 * @root:		radix tree root
 866 * @node:		pointer to tree node
 867 * @slot:		pointer to slot in @node
 868 * @item:		new item to store in the slot.
 869 *
 870 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 871 * across slot lookup and replacement.
 872 */
 873void __radix_tree_replace(struct radix_tree_root *root,
 874			  struct radix_tree_node *node,
 875			  void __rcu **slot, void *item)
 876{
 877	void *old = rcu_dereference_raw(*slot);
 878	int values = !!xa_is_value(item) - !!xa_is_value(old);
 879	int count = calculate_count(root, node, slot, item, old);
 880
 881	/*
 882	 * This function supports replacing value entries and
 883	 * deleting entries, but that needs accounting against the
 884	 * node unless the slot is root->xa_head.
 885	 */
 886	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 887			(count || values));
 888	replace_slot(slot, item, node, count, values);
 889
 890	if (!node)
 891		return;
 892
 893	delete_node(root, node);
 894}
 895
 896/**
 897 * radix_tree_replace_slot	- replace item in a slot
 898 * @root:	radix tree root
 899 * @slot:	pointer to slot
 900 * @item:	new item to store in the slot.
 901 *
 902 * For use with radix_tree_lookup_slot() and
 903 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 904 * across slot lookup and replacement.
 905 *
 906 * NOTE: This cannot be used to switch between non-entries (empty slots),
 907 * regular entries, and value entries, as that requires accounting
 908 * inside the radix tree node. When switching from one type of entry or
 909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 910 * radix_tree_iter_replace().
 911 */
 912void radix_tree_replace_slot(struct radix_tree_root *root,
 913			     void __rcu **slot, void *item)
 914{
 915	__radix_tree_replace(root, NULL, slot, item);
 916}
 917EXPORT_SYMBOL(radix_tree_replace_slot);
 918
 919/**
 920 * radix_tree_iter_replace - replace item in a slot
 921 * @root:	radix tree root
 922 * @iter:	iterator state
 923 * @slot:	pointer to slot
 924 * @item:	new item to store in the slot.
 925 *
 926 * For use with radix_tree_for_each_slot().
 927 * Caller must hold tree write locked.
 928 */
 929void radix_tree_iter_replace(struct radix_tree_root *root,
 930				const struct radix_tree_iter *iter,
 931				void __rcu **slot, void *item)
 932{
 933	__radix_tree_replace(root, iter->node, slot, item);
 934}
 935
 936static void node_tag_set(struct radix_tree_root *root,
 937				struct radix_tree_node *node,
 938				unsigned int tag, unsigned int offset)
 939{
 940	while (node) {
 941		if (tag_get(node, tag, offset))
 942			return;
 943		tag_set(node, tag, offset);
 944		offset = node->offset;
 945		node = node->parent;
 946	}
 947
 948	if (!root_tag_get(root, tag))
 949		root_tag_set(root, tag);
 950}
 951
 952/**
 953 *	radix_tree_tag_set - set a tag on a radix tree node
 954 *	@root:		radix tree root
 955 *	@index:		index key
 956 *	@tag:		tag index
 957 *
 958 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 959 *	corresponding to @index in the radix tree.  From
 960 *	the root all the way down to the leaf node.
 961 *
 962 *	Returns the address of the tagged item.  Setting a tag on a not-present
 963 *	item is a bug.
 964 */
 965void *radix_tree_tag_set(struct radix_tree_root *root,
 966			unsigned long index, unsigned int tag)
 967{
 968	struct radix_tree_node *node, *parent;
 969	unsigned long maxindex;
 970
 971	radix_tree_load_root(root, &node, &maxindex);
 972	BUG_ON(index > maxindex);
 973
 974	while (radix_tree_is_internal_node(node)) {
 975		unsigned offset;
 976
 977		parent = entry_to_node(node);
 978		offset = radix_tree_descend(parent, &node, index);
 979		BUG_ON(!node);
 980
 981		if (!tag_get(parent, tag, offset))
 982			tag_set(parent, tag, offset);
 
 
 
 
 
 
 
 983	}
 984
 985	/* set the root's tag bit */
 986	if (!root_tag_get(root, tag))
 987		root_tag_set(root, tag);
 988
 989	return node;
 990}
 991EXPORT_SYMBOL(radix_tree_tag_set);
 992
 993static void node_tag_clear(struct radix_tree_root *root,
 994				struct radix_tree_node *node,
 995				unsigned int tag, unsigned int offset)
 996{
 997	while (node) {
 998		if (!tag_get(node, tag, offset))
 999			return;
1000		tag_clear(node, tag, offset);
1001		if (any_tag_set(node, tag))
1002			return;
1003
1004		offset = node->offset;
1005		node = node->parent;
1006	}
1007
1008	/* clear the root's tag bit */
1009	if (root_tag_get(root, tag))
1010		root_tag_clear(root, tag);
1011}
1012
1013/**
1014 *	radix_tree_tag_clear - clear a tag on a radix tree node
1015 *	@root:		radix tree root
1016 *	@index:		index key
1017 *	@tag:		tag index
1018 *
1019 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1020 *	corresponding to @index in the radix tree.  If this causes
1021 *	the leaf node to have no tags set then clear the tag in the
1022 *	next-to-leaf node, etc.
1023 *
1024 *	Returns the address of the tagged item on success, else NULL.  ie:
1025 *	has the same return value and semantics as radix_tree_lookup().
1026 */
1027void *radix_tree_tag_clear(struct radix_tree_root *root,
1028			unsigned long index, unsigned int tag)
1029{
1030	struct radix_tree_node *node, *parent;
1031	unsigned long maxindex;
1032	int offset;
 
1033
1034	radix_tree_load_root(root, &node, &maxindex);
1035	if (index > maxindex)
1036		return NULL;
1037
1038	parent = NULL;
 
1039
1040	while (radix_tree_is_internal_node(node)) {
1041		parent = entry_to_node(node);
1042		offset = radix_tree_descend(parent, &node, index);
 
 
 
 
 
 
 
 
1043	}
1044
1045	if (node)
1046		node_tag_clear(root, parent, tag, offset);
1047
1048	return node;
1049}
1050EXPORT_SYMBOL(radix_tree_tag_clear);
 
 
 
1051
1052/**
1053  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054  * @root: radix tree root
1055  * @iter: iterator state
1056  * @tag: tag to clear
1057  */
1058void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059			const struct radix_tree_iter *iter, unsigned int tag)
1060{
1061	node_tag_clear(root, iter->node, tag, iter_offset(iter));
 
1062}
 
1063
1064/**
1065 * radix_tree_tag_get - get a tag on a radix tree node
1066 * @root:		radix tree root
1067 * @index:		index key
1068 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1069 *
1070 * Return values:
1071 *
1072 *  0: tag not present or not set
1073 *  1: tag set
1074 *
1075 * Note that the return value of this function may not be relied on, even if
1076 * the RCU lock is held, unless tag modification and node deletion are excluded
1077 * from concurrency.
1078 */
1079int radix_tree_tag_get(const struct radix_tree_root *root,
1080			unsigned long index, unsigned int tag)
1081{
1082	struct radix_tree_node *node, *parent;
1083	unsigned long maxindex;
1084
 
1085	if (!root_tag_get(root, tag))
1086		return 0;
1087
1088	radix_tree_load_root(root, &node, &maxindex);
1089	if (index > maxindex)
1090		return 0;
1091
1092	while (radix_tree_is_internal_node(node)) {
1093		unsigned offset;
 
1094
1095		parent = entry_to_node(node);
1096		offset = radix_tree_descend(parent, &node, index);
1097
1098		if (!tag_get(parent, tag, offset))
1099			return 0;
1100		if (node == RADIX_TREE_RETRY)
1101			break;
1102	}
1103
1104	return 1;
1105}
1106EXPORT_SYMBOL(radix_tree_tag_get);
1107
1108/* Construct iter->tags bit-mask from node->tags[tag] array */
1109static void set_iter_tags(struct radix_tree_iter *iter,
1110				struct radix_tree_node *node, unsigned offset,
1111				unsigned tag)
1112{
1113	unsigned tag_long = offset / BITS_PER_LONG;
1114	unsigned tag_bit  = offset % BITS_PER_LONG;
1115
1116	if (!node) {
1117		iter->tags = 1;
1118		return;
1119	}
1120
1121	iter->tags = node->tags[tag][tag_long] >> tag_bit;
 
 
1122
1123	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125		/* Pick tags from next element */
1126		if (tag_bit)
1127			iter->tags |= node->tags[tag][tag_long + 1] <<
1128						(BITS_PER_LONG - tag_bit);
1129		/* Clip chunk size, here only BITS_PER_LONG tags */
1130		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
 
 
1131	}
1132}
1133
1134void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135					struct radix_tree_iter *iter)
1136{
1137	slot++;
1138	iter->index = __radix_tree_iter_add(iter, 1);
1139	iter->next_index = iter->index;
1140	iter->tags = 0;
1141	return NULL;
1142}
1143EXPORT_SYMBOL(radix_tree_iter_resume);
1144
1145/**
1146 * radix_tree_next_chunk - find next chunk of slots for iteration
1147 *
1148 * @root:	radix tree root
1149 * @iter:	iterator state
1150 * @flags:	RADIX_TREE_ITER_* flags and tag index
1151 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1152 */
1153void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1154			     struct radix_tree_iter *iter, unsigned flags)
1155{
1156	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1157	struct radix_tree_node *node, *child;
1158	unsigned long index, offset, maxindex;
1159
1160	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1161		return NULL;
1162
1163	/*
1164	 * Catch next_index overflow after ~0UL. iter->index never overflows
1165	 * during iterating; it can be zero only at the beginning.
1166	 * And we cannot overflow iter->next_index in a single step,
1167	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1168	 *
1169	 * This condition also used by radix_tree_next_slot() to stop
1170	 * contiguous iterating, and forbid switching to the next chunk.
1171	 */
1172	index = iter->next_index;
1173	if (!index && iter->index)
1174		return NULL;
1175
1176 restart:
1177	radix_tree_load_root(root, &child, &maxindex);
1178	if (index > maxindex)
1179		return NULL;
1180	if (!child)
1181		return NULL;
1182
1183	if (!radix_tree_is_internal_node(child)) {
1184		/* Single-slot tree */
1185		iter->index = index;
1186		iter->next_index = maxindex + 1;
1187		iter->tags = 1;
1188		iter->node = NULL;
1189		return (void __rcu **)&root->xa_head;
1190	}
1191
1192	do {
1193		node = entry_to_node(child);
1194		offset = radix_tree_descend(node, &child, index);
 
1195
 
 
 
 
 
 
 
1196		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1197				!tag_get(node, tag, offset) : !child) {
 
1198			/* Hole detected */
1199			if (flags & RADIX_TREE_ITER_CONTIG)
1200				return NULL;
1201
1202			if (flags & RADIX_TREE_ITER_TAGGED)
1203				offset = radix_tree_find_next_bit(node, tag,
 
 
1204						offset + 1);
1205			else
1206				while (++offset	< RADIX_TREE_MAP_SIZE) {
1207					void *slot = rcu_dereference_raw(
1208							node->slots[offset]);
1209					if (slot)
1210						break;
1211				}
1212			index &= ~node_maxindex(node);
1213			index += offset << node->shift;
1214			/* Overflow after ~0UL */
1215			if (!index)
1216				return NULL;
1217			if (offset == RADIX_TREE_MAP_SIZE)
1218				goto restart;
1219			child = rcu_dereference_raw(node->slots[offset]);
1220		}
1221
1222		if (!child)
 
 
 
 
 
1223			goto restart;
1224		if (child == RADIX_TREE_RETRY)
1225			break;
1226	} while (node->shift && radix_tree_is_internal_node(child));
 
 
 
1227
1228	/* Update the iterator state */
1229	iter->index = (index &~ node_maxindex(node)) | offset;
1230	iter->next_index = (index | node_maxindex(node)) + 1;
1231	iter->node = node;
1232
1233	if (flags & RADIX_TREE_ITER_TAGGED)
1234		set_iter_tags(iter, node, offset, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235
1236	return node->slots + offset;
1237}
1238EXPORT_SYMBOL(radix_tree_next_chunk);
1239
1240/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1242 *	@root:		radix tree root
1243 *	@results:	where the results of the lookup are placed
1244 *	@first_index:	start the lookup from this key
1245 *	@max_items:	place up to this many items at *results
1246 *
1247 *	Performs an index-ascending scan of the tree for present items.  Places
1248 *	them at *@results and returns the number of items which were placed at
1249 *	*@results.
1250 *
1251 *	The implementation is naive.
1252 *
1253 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1254 *	rcu_read_lock. In this case, rather than the returned results being
1255 *	an atomic snapshot of the tree at a single point in time, the
1256 *	semantics of an RCU protected gang lookup are as though multiple
1257 *	radix_tree_lookups have been issued in individual locks, and results
1258 *	stored in 'results'.
1259 */
1260unsigned int
1261radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1262			unsigned long first_index, unsigned int max_items)
1263{
1264	struct radix_tree_iter iter;
1265	void __rcu **slot;
1266	unsigned int ret = 0;
1267
1268	if (unlikely(!max_items))
1269		return 0;
1270
1271	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1272		results[ret] = rcu_dereference_raw(*slot);
1273		if (!results[ret])
1274			continue;
1275		if (radix_tree_is_internal_node(results[ret])) {
1276			slot = radix_tree_iter_retry(&iter);
1277			continue;
1278		}
1279		if (++ret == max_items)
1280			break;
1281	}
1282
1283	return ret;
1284}
1285EXPORT_SYMBOL(radix_tree_gang_lookup);
1286
1287/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289 *	                             based on a tag
1290 *	@root:		radix tree root
1291 *	@results:	where the results of the lookup are placed
1292 *	@first_index:	start the lookup from this key
1293 *	@max_items:	place up to this many items at *results
1294 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1295 *
1296 *	Performs an index-ascending scan of the tree for present items which
1297 *	have the tag indexed by @tag set.  Places the items at *@results and
1298 *	returns the number of items which were placed at *@results.
1299 */
1300unsigned int
1301radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1302		unsigned long first_index, unsigned int max_items,
1303		unsigned int tag)
1304{
1305	struct radix_tree_iter iter;
1306	void __rcu **slot;
1307	unsigned int ret = 0;
1308
1309	if (unlikely(!max_items))
1310		return 0;
1311
1312	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1313		results[ret] = rcu_dereference_raw(*slot);
1314		if (!results[ret])
1315			continue;
1316		if (radix_tree_is_internal_node(results[ret])) {
1317			slot = radix_tree_iter_retry(&iter);
1318			continue;
1319		}
1320		if (++ret == max_items)
1321			break;
1322	}
1323
1324	return ret;
1325}
1326EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1327
1328/**
1329 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1330 *					  radix tree based on a tag
1331 *	@root:		radix tree root
1332 *	@results:	where the results of the lookup are placed
1333 *	@first_index:	start the lookup from this key
1334 *	@max_items:	place up to this many items at *results
1335 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1336 *
1337 *	Performs an index-ascending scan of the tree for present items which
1338 *	have the tag indexed by @tag set.  Places the slots at *@results and
1339 *	returns the number of slots which were placed at *@results.
1340 */
1341unsigned int
1342radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1343		void __rcu ***results, unsigned long first_index,
1344		unsigned int max_items, unsigned int tag)
1345{
1346	struct radix_tree_iter iter;
1347	void __rcu **slot;
1348	unsigned int ret = 0;
1349
1350	if (unlikely(!max_items))
1351		return 0;
1352
1353	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1354		results[ret] = slot;
1355		if (++ret == max_items)
1356			break;
1357	}
1358
1359	return ret;
1360}
1361EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1362
1363static bool __radix_tree_delete(struct radix_tree_root *root,
1364				struct radix_tree_node *node, void __rcu **slot)
 
 
 
 
 
 
1365{
1366	void *old = rcu_dereference_raw(*slot);
1367	int values = xa_is_value(old) ? -1 : 0;
1368	unsigned offset = get_slot_offset(node, slot);
1369	int tag;
1370
1371	if (is_idr(root))
1372		node_tag_set(root, node, IDR_FREE, offset);
1373	else
1374		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1375			node_tag_clear(root, node, tag, offset);
 
 
 
 
 
 
 
 
 
 
 
1376
1377	replace_slot(slot, NULL, node, -1, values);
1378	return node && delete_node(root, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379}
1380
1381/**
1382 * radix_tree_iter_delete - delete the entry at this iterator position
1383 * @root: radix tree root
1384 * @iter: iterator state
1385 * @slot: pointer to slot
1386 *
1387 * Delete the entry at the position currently pointed to by the iterator.
1388 * This may result in the current node being freed; if it is, the iterator
1389 * is advanced so that it will not reference the freed memory.  This
1390 * function may be called without any locking if there are no other threads
1391 * which can access this tree.
1392 */
1393void radix_tree_iter_delete(struct radix_tree_root *root,
1394				struct radix_tree_iter *iter, void __rcu **slot)
1395{
1396	if (__radix_tree_delete(root, iter->node, slot))
1397		iter->index = iter->next_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398}
1399EXPORT_SYMBOL(radix_tree_iter_delete);
1400
1401/**
1402 * radix_tree_delete_item - delete an item from a radix tree
1403 * @root: radix tree root
1404 * @index: index key
1405 * @item: expected item
1406 *
1407 * Remove @item at @index from the radix tree rooted at @root.
1408 *
1409 * Return: the deleted entry, or %NULL if it was not present
1410 * or the entry at the given @index was not @item.
1411 */
1412void *radix_tree_delete_item(struct radix_tree_root *root,
1413			     unsigned long index, void *item)
1414{
1415	struct radix_tree_node *node = NULL;
1416	void __rcu **slot = NULL;
 
1417	void *entry;
 
1418
1419	entry = __radix_tree_lookup(root, index, &node, &slot);
1420	if (!slot)
1421		return NULL;
1422	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1423						get_slot_offset(node, slot))))
1424		return NULL;
1425
1426	if (item && entry != item)
1427		return NULL;
1428
1429	__radix_tree_delete(root, node, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431	return entry;
1432}
1433EXPORT_SYMBOL(radix_tree_delete_item);
1434
1435/**
1436 * radix_tree_delete - delete an entry from a radix tree
1437 * @root: radix tree root
1438 * @index: index key
1439 *
1440 * Remove the entry at @index from the radix tree rooted at @root.
1441 *
1442 * Return: The deleted entry, or %NULL if it was not present.
1443 */
1444void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1445{
1446	return radix_tree_delete_item(root, index, NULL);
1447}
1448EXPORT_SYMBOL(radix_tree_delete);
1449
1450/**
1451 *	radix_tree_tagged - test whether any items in the tree are tagged
1452 *	@root:		radix tree root
1453 *	@tag:		tag to test
1454 */
1455int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1456{
1457	return root_tag_get(root, tag);
1458}
1459EXPORT_SYMBOL(radix_tree_tagged);
1460
1461/**
1462 * idr_preload - preload for idr_alloc()
1463 * @gfp_mask: allocation mask to use for preloading
1464 *
1465 * Preallocate memory to use for the next call to idr_alloc().  This function
1466 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1467 */
1468void idr_preload(gfp_t gfp_mask)
1469{
1470	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1471		local_lock(&radix_tree_preloads.lock);
1472}
1473EXPORT_SYMBOL(idr_preload);
1474
1475void __rcu **idr_get_free(struct radix_tree_root *root,
1476			      struct radix_tree_iter *iter, gfp_t gfp,
1477			      unsigned long max)
1478{
1479	struct radix_tree_node *node = NULL, *child;
1480	void __rcu **slot = (void __rcu **)&root->xa_head;
1481	unsigned long maxindex, start = iter->next_index;
1482	unsigned int shift, offset = 0;
1483
1484 grow:
1485	shift = radix_tree_load_root(root, &child, &maxindex);
1486	if (!radix_tree_tagged(root, IDR_FREE))
1487		start = max(start, maxindex + 1);
1488	if (start > max)
1489		return ERR_PTR(-ENOSPC);
1490
1491	if (start > maxindex) {
1492		int error = radix_tree_extend(root, gfp, start, shift);
1493		if (error < 0)
1494			return ERR_PTR(error);
1495		shift = error;
1496		child = rcu_dereference_raw(root->xa_head);
1497	}
1498	if (start == 0 && shift == 0)
1499		shift = RADIX_TREE_MAP_SHIFT;
1500
1501	while (shift) {
1502		shift -= RADIX_TREE_MAP_SHIFT;
1503		if (child == NULL) {
1504			/* Have to add a child node.  */
1505			child = radix_tree_node_alloc(gfp, node, root, shift,
1506							offset, 0, 0);
1507			if (!child)
1508				return ERR_PTR(-ENOMEM);
1509			all_tag_set(child, IDR_FREE);
1510			rcu_assign_pointer(*slot, node_to_entry(child));
1511			if (node)
1512				node->count++;
1513		} else if (!radix_tree_is_internal_node(child))
1514			break;
1515
1516		node = entry_to_node(child);
1517		offset = radix_tree_descend(node, &child, start);
1518		if (!tag_get(node, IDR_FREE, offset)) {
1519			offset = radix_tree_find_next_bit(node, IDR_FREE,
1520							offset + 1);
1521			start = next_index(start, node, offset);
1522			if (start > max || start == 0)
1523				return ERR_PTR(-ENOSPC);
1524			while (offset == RADIX_TREE_MAP_SIZE) {
1525				offset = node->offset + 1;
1526				node = node->parent;
1527				if (!node)
1528					goto grow;
1529				shift = node->shift;
1530			}
1531			child = rcu_dereference_raw(node->slots[offset]);
1532		}
1533		slot = &node->slots[offset];
1534	}
1535
1536	iter->index = start;
1537	if (node)
1538		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1539	else
1540		iter->next_index = 1;
1541	iter->node = node;
1542	set_iter_tags(iter, node, offset, IDR_FREE);
1543
1544	return slot;
 
1545}
1546
1547/**
1548 * idr_destroy - release all internal memory from an IDR
1549 * @idr: idr handle
1550 *
1551 * After this function is called, the IDR is empty, and may be reused or
1552 * the data structure containing it may be freed.
1553 *
1554 * A typical clean-up sequence for objects stored in an idr tree will use
1555 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1556 * free the memory used to keep track of those objects.
1557 */
1558void idr_destroy(struct idr *idr)
1559{
1560	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1561	if (radix_tree_is_internal_node(node))
1562		radix_tree_free_nodes(node);
1563	idr->idr_rt.xa_head = NULL;
1564	root_tag_set(&idr->idr_rt, IDR_FREE);
 
 
 
1565}
1566EXPORT_SYMBOL(idr_destroy);
1567
1568static void
1569radix_tree_node_ctor(void *arg)
1570{
1571	struct radix_tree_node *node = arg;
1572
1573	memset(node, 0, sizeof(*node));
1574	INIT_LIST_HEAD(&node->private_list);
1575}
1576
1577static int radix_tree_cpu_dead(unsigned int cpu)
 
 
1578{
1579	struct radix_tree_preload *rtp;
1580	struct radix_tree_node *node;
 
1581
1582	/* Free per-cpu pool of preloaded nodes */
1583	rtp = &per_cpu(radix_tree_preloads, cpu);
1584	while (rtp->nr) {
1585		node = rtp->nodes;
1586		rtp->nodes = node->parent;
1587		kmem_cache_free(radix_tree_node_cachep, node);
1588		rtp->nr--;
1589	}
1590	return 0;
 
 
1591}
1592
1593void __init radix_tree_init(void)
1594{
1595	int ret;
1596
1597	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1598	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1599	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1600	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1601			sizeof(struct radix_tree_node), 0,
1602			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1603			radix_tree_node_ctor);
1604	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1605					NULL, radix_tree_cpu_dead);
1606	WARN_ON(ret < 0);
1607}
v4.6
 
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2, or (at
  11 * your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
 
 
 
 
  23#include <linux/errno.h>
 
 
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
 
 
  27#include <linux/radix-tree.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/kmemleak.h>
  31#include <linux/notifier.h>
  32#include <linux/cpu.h>
  33#include <linux/string.h>
  34#include <linux/bitops.h>
  35#include <linux/rcupdate.h>
  36#include <linux/preempt.h>		/* in_interrupt() */
  37
  38
  39/*
  40 * The height_to_maxindex array needs to be one deeper than the maximum
  41 * path as height 0 holds only 1 entry.
  42 */
  43static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  44
  45/*
  46 * Radix tree node cache.
  47 */
  48static struct kmem_cache *radix_tree_node_cachep;
  49
  50/*
  51 * The radix tree is variable-height, so an insert operation not only has
  52 * to build the branch to its corresponding item, it also has to build the
  53 * branch to existing items if the size has to be increased (by
  54 * radix_tree_extend).
  55 *
  56 * The worst case is a zero height tree with just a single item at index 0,
  57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  59 * Hence:
  60 */
  61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  62
  63/*
 
 
 
 
 
 
 
 
 
  64 * Per-cpu pool of preloaded nodes
  65 */
  66struct radix_tree_preload {
  67	int nr;
  68	/* nodes->private_data points to next preallocated node */
  69	struct radix_tree_node *nodes;
  70};
  71static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
 
 
 
 
 
 
 
 
 
 
 
 
  72
  73static inline void *ptr_to_indirect(void *ptr)
 
  74{
  75	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  76}
  77
  78static inline void *indirect_to_ptr(void *ptr)
 
  79{
  80	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
 
 
 
 
  81}
  82
  83static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  84{
  85	return root->gfp_mask & __GFP_BITS_MASK;
  86}
  87
  88static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  89		int offset)
  90{
  91	__set_bit(offset, node->tags[tag]);
  92}
  93
  94static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  95		int offset)
  96{
  97	__clear_bit(offset, node->tags[tag]);
  98}
  99
 100static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 101		int offset)
 102{
 103	return test_bit(offset, node->tags[tag]);
 104}
 105
 106static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 107{
 108	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 109}
 110
 111static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 112{
 113	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 114}
 115
 116static inline void root_tag_clear_all(struct radix_tree_root *root)
 117{
 118	root->gfp_mask &= __GFP_BITS_MASK;
 
 
 
 
 
 
 
 
 
 
 119}
 120
 121static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 122{
 123	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 124}
 125
 126/*
 127 * Returns 1 if any slot in the node has this tag set.
 128 * Otherwise returns 0.
 129 */
 130static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 
 131{
 132	int idx;
 133	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 134		if (node->tags[tag][idx])
 135			return 1;
 136	}
 137	return 0;
 138}
 139
 
 
 
 
 
 140/**
 141 * radix_tree_find_next_bit - find the next set bit in a memory region
 142 *
 143 * @addr: The address to base the search on
 144 * @size: The bitmap size in bits
 145 * @offset: The bitnumber to start searching at
 146 *
 147 * Unrollable variant of find_next_bit() for constant size arrays.
 148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 149 * Returns next bit offset, or size if nothing found.
 150 */
 151static __always_inline unsigned long
 152radix_tree_find_next_bit(const unsigned long *addr,
 153			 unsigned long size, unsigned long offset)
 154{
 155	if (!__builtin_constant_p(size))
 156		return find_next_bit(addr, size, offset);
 157
 158	if (offset < size) {
 159		unsigned long tmp;
 160
 161		addr += offset / BITS_PER_LONG;
 162		tmp = *addr >> (offset % BITS_PER_LONG);
 163		if (tmp)
 164			return __ffs(tmp) + offset;
 165		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 166		while (offset < size) {
 167			tmp = *++addr;
 168			if (tmp)
 169				return __ffs(tmp) + offset;
 170			offset += BITS_PER_LONG;
 171		}
 172	}
 173	return size;
 174}
 175
 176#if 0
 177static void dump_node(void *slot, int height, int offset)
 178{
 179	struct radix_tree_node *node;
 180	int i;
 181
 182	if (!slot)
 183		return;
 
 
 
 
 
 184
 185	if (height == 0) {
 186		pr_debug("radix entry %p offset %d\n", slot, offset);
 187		return;
 188	}
 189
 190	node = indirect_to_ptr(slot);
 191	pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
 192		slot, offset, node->tags[0][0], node->tags[1][0],
 193		node->tags[2][0], node->path, node->count, node->parent);
 194
 195	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 196		dump_node(node->slots[i], height - 1, i);
 197}
 198
 199/* For debug */
 200static void radix_tree_dump(struct radix_tree_root *root)
 201{
 202	pr_debug("radix root: %p height %d rnode %p tags %x\n",
 203			root, root->height, root->rnode,
 204			root->gfp_mask >> __GFP_BITS_SHIFT);
 205	if (!radix_tree_is_indirect_ptr(root->rnode))
 206		return;
 207	dump_node(root->rnode, root->height, 0);
 208}
 209#endif
 210
 211/*
 212 * This assumes that the caller has performed appropriate preallocation, and
 213 * that the caller has pinned this thread of control to the current CPU.
 214 */
 215static struct radix_tree_node *
 216radix_tree_node_alloc(struct radix_tree_root *root)
 
 
 
 217{
 218	struct radix_tree_node *ret = NULL;
 219	gfp_t gfp_mask = root_gfp_mask(root);
 220
 221	/*
 222	 * Preload code isn't irq safe and it doesn't make sence to use
 223	 * preloading in the interrupt anyway as all the allocations have to
 224	 * be atomic. So just do normal allocation when in interrupt.
 225	 */
 226	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 227		struct radix_tree_preload *rtp;
 228
 229		/*
 230		 * Even if the caller has preloaded, try to allocate from the
 231		 * cache first for the new node to get accounted.
 
 232		 */
 233		ret = kmem_cache_alloc(radix_tree_node_cachep,
 234				       gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
 235		if (ret)
 236			goto out;
 237
 238		/*
 239		 * Provided the caller has preloaded here, we will always
 240		 * succeed in getting a node here (and never reach
 241		 * kmem_cache_alloc)
 242		 */
 243		rtp = this_cpu_ptr(&radix_tree_preloads);
 244		if (rtp->nr) {
 245			ret = rtp->nodes;
 246			rtp->nodes = ret->private_data;
 247			ret->private_data = NULL;
 248			rtp->nr--;
 249		}
 250		/*
 251		 * Update the allocation stack trace as this is more useful
 252		 * for debugging.
 253		 */
 254		kmemleak_update_trace(ret);
 255		goto out;
 256	}
 257	ret = kmem_cache_alloc(radix_tree_node_cachep,
 258			       gfp_mask | __GFP_ACCOUNT);
 259out:
 260	BUG_ON(radix_tree_is_indirect_ptr(ret));
 
 
 
 
 
 
 
 
 261	return ret;
 262}
 263
 264static void radix_tree_node_rcu_free(struct rcu_head *head)
 265{
 266	struct radix_tree_node *node =
 267			container_of(head, struct radix_tree_node, rcu_head);
 268	int i;
 269
 270	/*
 271	 * must only free zeroed nodes into the slab. radix_tree_shrink
 272	 * can leave us with a non-NULL entry in the first slot, so clear
 273	 * that here to make sure.
 274	 */
 275	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 276		tag_clear(node, i, 0);
 277
 278	node->slots[0] = NULL;
 279	node->count = 0;
 280
 281	kmem_cache_free(radix_tree_node_cachep, node);
 282}
 283
 284static inline void
 285radix_tree_node_free(struct radix_tree_node *node)
 286{
 287	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 288}
 289
 290/*
 291 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 292 * ensure that the addition of a single element in the tree cannot fail.  On
 293 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 294 * with preemption not disabled.
 295 *
 296 * To make use of this facility, the radix tree must be initialised without
 297 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 298 */
 299static int __radix_tree_preload(gfp_t gfp_mask)
 300{
 301	struct radix_tree_preload *rtp;
 302	struct radix_tree_node *node;
 303	int ret = -ENOMEM;
 304
 305	preempt_disable();
 
 
 
 
 
 
 306	rtp = this_cpu_ptr(&radix_tree_preloads);
 307	while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 308		preempt_enable();
 309		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 310		if (node == NULL)
 311			goto out;
 312		preempt_disable();
 313		rtp = this_cpu_ptr(&radix_tree_preloads);
 314		if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
 315			node->private_data = rtp->nodes;
 316			rtp->nodes = node;
 317			rtp->nr++;
 318		} else {
 319			kmem_cache_free(radix_tree_node_cachep, node);
 320		}
 321	}
 322	ret = 0;
 323out:
 324	return ret;
 325}
 326
 327/*
 328 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 329 * ensure that the addition of a single element in the tree cannot fail.  On
 330 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 331 * with preemption not disabled.
 332 *
 333 * To make use of this facility, the radix tree must be initialised without
 334 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 335 */
 336int radix_tree_preload(gfp_t gfp_mask)
 337{
 338	/* Warn on non-sensical use... */
 339	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 340	return __radix_tree_preload(gfp_mask);
 341}
 342EXPORT_SYMBOL(radix_tree_preload);
 343
 344/*
 345 * The same as above function, except we don't guarantee preloading happens.
 346 * We do it, if we decide it helps. On success, return zero with preemption
 347 * disabled. On error, return -ENOMEM with preemption not disabled.
 348 */
 349int radix_tree_maybe_preload(gfp_t gfp_mask)
 350{
 351	if (gfpflags_allow_blocking(gfp_mask))
 352		return __radix_tree_preload(gfp_mask);
 353	/* Preloading doesn't help anything with this gfp mask, skip it */
 354	preempt_disable();
 355	return 0;
 356}
 357EXPORT_SYMBOL(radix_tree_maybe_preload);
 358
 359/*
 360 *	Return the maximum key which can be store into a
 361 *	radix tree with height HEIGHT.
 362 */
 363static inline unsigned long radix_tree_maxindex(unsigned int height)
 364{
 365	return height_to_maxindex[height];
 
 
 
 
 
 
 
 
 
 
 
 366}
 367
 368/*
 369 *	Extend a radix tree so it can store key @index.
 370 */
 371static int radix_tree_extend(struct radix_tree_root *root,
 372				unsigned long index, unsigned order)
 373{
 374	struct radix_tree_node *node;
 375	struct radix_tree_node *slot;
 376	unsigned int height;
 377	int tag;
 378
 379	/* Figure out what the height should be.  */
 380	height = root->height + 1;
 381	while (index > radix_tree_maxindex(height))
 382		height++;
 383
 384	if ((root->rnode == NULL) && (order == 0)) {
 385		root->height = height;
 386		goto out;
 387	}
 388
 389	do {
 390		unsigned int newheight;
 391		if (!(node = radix_tree_node_alloc(root)))
 
 392			return -ENOMEM;
 393
 394		/* Propagate the aggregated tag info into the new root */
 395		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 396			if (root_tag_get(root, tag))
 397				tag_set(node, tag, 0);
 
 
 
 
 
 
 
 
 398		}
 399
 400		/* Increase the height.  */
 401		newheight = root->height+1;
 402		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
 403		node->path = newheight;
 404		node->count = 1;
 405		node->parent = NULL;
 406		slot = root->rnode;
 407		if (radix_tree_is_indirect_ptr(slot) && newheight > 1) {
 408			slot = indirect_to_ptr(slot);
 409			slot->parent = node;
 410			slot = ptr_to_indirect(slot);
 411		}
 412		node->slots[0] = slot;
 413		node = ptr_to_indirect(node);
 414		rcu_assign_pointer(root->rnode, node);
 415		root->height = newheight;
 416	} while (height > root->height);
 
 
 
 
 417out:
 418	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419}
 420
 421/**
 422 *	__radix_tree_create	-	create a slot in a radix tree
 423 *	@root:		radix tree root
 424 *	@index:		index key
 425 *	@order:		index occupies 2^order aligned slots
 426 *	@nodep:		returns node
 427 *	@slotp:		returns slot
 428 *
 429 *	Create, if necessary, and return the node and slot for an item
 430 *	at position @index in the radix tree @root.
 431 *
 432 *	Until there is more than one item in the tree, no nodes are
 433 *	allocated and @root->rnode is used as a direct slot instead of
 434 *	pointing to a node, in which case *@nodep will be NULL.
 435 *
 436 *	Returns -ENOMEM, or 0 for success.
 437 */
 438int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 439			unsigned order, struct radix_tree_node **nodep,
 440			void ***slotp)
 441{
 442	struct radix_tree_node *node = NULL, *slot;
 443	unsigned int height, shift, offset;
 444	int error;
 
 
 
 445
 446	BUG_ON((0 < order) && (order < RADIX_TREE_MAP_SHIFT));
 447
 448	/* Make sure the tree is high enough.  */
 449	if (index > radix_tree_maxindex(root->height)) {
 450		error = radix_tree_extend(root, index, order);
 451		if (error)
 452			return error;
 
 
 453	}
 454
 455	slot = root->rnode;
 456
 457	height = root->height;
 458	shift = height * RADIX_TREE_MAP_SHIFT;
 459
 460	offset = 0;			/* uninitialised var warning */
 461	while (shift > order) {
 462		if (slot == NULL) {
 463			/* Have to add a child node.  */
 464			if (!(slot = radix_tree_node_alloc(root)))
 
 
 465				return -ENOMEM;
 466			slot->path = height;
 467			slot->parent = node;
 468			if (node) {
 469				rcu_assign_pointer(node->slots[offset],
 470							ptr_to_indirect(slot));
 471				node->count++;
 472				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
 473			} else
 474				rcu_assign_pointer(root->rnode,
 475							ptr_to_indirect(slot));
 476		} else if (!radix_tree_is_indirect_ptr(slot))
 477			break;
 478
 479		/* Go a level down */
 480		height--;
 481		shift -= RADIX_TREE_MAP_SHIFT;
 482		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 483		node = indirect_to_ptr(slot);
 484		slot = node->slots[offset];
 485	}
 486
 487	/* Insert pointers to the canonical entry */
 488	if ((shift - order) > 0) {
 489		int i, n = 1 << (shift - order);
 490		offset = offset & ~(n - 1);
 491		slot = ptr_to_indirect(&node->slots[offset]);
 492		for (i = 0; i < n; i++) {
 493			if (node->slots[offset + i])
 494				return -EEXIST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495		}
 496
 497		for (i = 1; i < n; i++) {
 498			rcu_assign_pointer(node->slots[offset + i], slot);
 499			node->count++;
 
 
 
 
 
 500		}
 501	}
 
 502
 503	if (nodep)
 504		*nodep = node;
 505	if (slotp)
 506		*slotp = node ? node->slots + offset : (void **)&root->rnode;
 507	return 0;
 
 
 
 
 
 
 
 508}
 509
 510/**
 511 *	__radix_tree_insert    -    insert into a radix tree
 512 *	@root:		radix tree root
 513 *	@index:		index key
 514 *	@order:		key covers the 2^order indices around index
 515 *	@item:		item to insert
 516 *
 517 *	Insert an item into the radix tree at position @index.
 518 */
 519int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 520			unsigned order, void *item)
 521{
 522	struct radix_tree_node *node;
 523	void **slot;
 524	int error;
 525
 526	BUG_ON(radix_tree_is_indirect_ptr(item));
 527
 528	error = __radix_tree_create(root, index, order, &node, &slot);
 529	if (error)
 530		return error;
 531	if (*slot != NULL)
 532		return -EEXIST;
 533	rcu_assign_pointer(*slot, item);
 
 534
 535	if (node) {
 536		node->count++;
 537		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
 538		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
 
 539	} else {
 540		BUG_ON(root_tag_get(root, 0));
 541		BUG_ON(root_tag_get(root, 1));
 542	}
 543
 544	return 0;
 545}
 546EXPORT_SYMBOL(__radix_tree_insert);
 547
 548/**
 549 *	__radix_tree_lookup	-	lookup an item in a radix tree
 550 *	@root:		radix tree root
 551 *	@index:		index key
 552 *	@nodep:		returns node
 553 *	@slotp:		returns slot
 554 *
 555 *	Lookup and return the item at position @index in the radix
 556 *	tree @root.
 557 *
 558 *	Until there is more than one item in the tree, no nodes are
 559 *	allocated and @root->rnode is used as a direct slot instead of
 560 *	pointing to a node, in which case *@nodep will be NULL.
 561 */
 562void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 563			  struct radix_tree_node **nodep, void ***slotp)
 
 564{
 565	struct radix_tree_node *node, *parent;
 566	unsigned int height, shift;
 567	void **slot;
 568
 569	node = rcu_dereference_raw(root->rnode);
 570	if (node == NULL)
 
 
 
 571		return NULL;
 572
 573	if (!radix_tree_is_indirect_ptr(node)) {
 574		if (index > 0)
 575			return NULL;
 576
 577		if (nodep)
 578			*nodep = NULL;
 579		if (slotp)
 580			*slotp = (void **)&root->rnode;
 581		return node;
 582	}
 583	node = indirect_to_ptr(node);
 584
 585	height = node->path & RADIX_TREE_HEIGHT_MASK;
 586	if (index > radix_tree_maxindex(height))
 587		return NULL;
 588
 589	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 590
 591	do {
 592		parent = node;
 593		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
 594		node = rcu_dereference_raw(*slot);
 595		if (node == NULL)
 596			return NULL;
 597		if (!radix_tree_is_indirect_ptr(node))
 598			break;
 599		node = indirect_to_ptr(node);
 600
 601		shift -= RADIX_TREE_MAP_SHIFT;
 602		height--;
 603	} while (height > 0);
 604
 605	if (nodep)
 606		*nodep = parent;
 607	if (slotp)
 608		*slotp = slot;
 609	return node;
 610}
 611
 612/**
 613 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 614 *	@root:		radix tree root
 615 *	@index:		index key
 616 *
 617 *	Returns:  the slot corresponding to the position @index in the
 618 *	radix tree @root. This is useful for update-if-exists operations.
 619 *
 620 *	This function can be called under rcu_read_lock iff the slot is not
 621 *	modified by radix_tree_replace_slot, otherwise it must be called
 622 *	exclusive from other writers. Any dereference of the slot must be done
 623 *	using radix_tree_deref_slot.
 624 */
 625void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 
 626{
 627	void **slot;
 628
 629	if (!__radix_tree_lookup(root, index, NULL, &slot))
 630		return NULL;
 631	return slot;
 632}
 633EXPORT_SYMBOL(radix_tree_lookup_slot);
 634
 635/**
 636 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 637 *	@root:		radix tree root
 638 *	@index:		index key
 639 *
 640 *	Lookup the item at the position @index in the radix tree @root.
 641 *
 642 *	This function can be called under rcu_read_lock, however the caller
 643 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 644 *	them safely). No RCU barriers are required to access or modify the
 645 *	returned item, however.
 646 */
 647void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 648{
 649	return __radix_tree_lookup(root, index, NULL, NULL);
 650}
 651EXPORT_SYMBOL(radix_tree_lookup);
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653/**
 654 *	radix_tree_tag_set - set a tag on a radix tree node
 655 *	@root:		radix tree root
 656 *	@index:		index key
 657 *	@tag: 		tag index
 658 *
 659 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 660 *	corresponding to @index in the radix tree.  From
 661 *	the root all the way down to the leaf node.
 662 *
 663 *	Returns the address of the tagged item.   Setting a tag on a not-present
 664 *	item is a bug.
 665 */
 666void *radix_tree_tag_set(struct radix_tree_root *root,
 667			unsigned long index, unsigned int tag)
 668{
 669	unsigned int height, shift;
 670	struct radix_tree_node *slot;
 671
 672	height = root->height;
 673	BUG_ON(index > radix_tree_maxindex(height));
 674
 675	slot = indirect_to_ptr(root->rnode);
 676	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 677
 678	while (height > 0) {
 679		int offset;
 680
 681		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 682		if (!tag_get(slot, tag, offset))
 683			tag_set(slot, tag, offset);
 684		slot = slot->slots[offset];
 685		BUG_ON(slot == NULL);
 686		if (!radix_tree_is_indirect_ptr(slot))
 687			break;
 688		slot = indirect_to_ptr(slot);
 689		shift -= RADIX_TREE_MAP_SHIFT;
 690		height--;
 691	}
 692
 693	/* set the root's tag bit */
 694	if (slot && !root_tag_get(root, tag))
 695		root_tag_set(root, tag);
 696
 697	return slot;
 698}
 699EXPORT_SYMBOL(radix_tree_tag_set);
 700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 701/**
 702 *	radix_tree_tag_clear - clear a tag on a radix tree node
 703 *	@root:		radix tree root
 704 *	@index:		index key
 705 *	@tag: 		tag index
 706 *
 707 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 708 *	corresponding to @index in the radix tree.  If
 709 *	this causes the leaf node to have no tags set then clear the tag in the
 710 *	next-to-leaf node, etc.
 711 *
 712 *	Returns the address of the tagged item on success, else NULL.  ie:
 713 *	has the same return value and semantics as radix_tree_lookup().
 714 */
 715void *radix_tree_tag_clear(struct radix_tree_root *root,
 716			unsigned long index, unsigned int tag)
 717{
 718	struct radix_tree_node *node = NULL;
 719	struct radix_tree_node *slot = NULL;
 720	unsigned int height, shift;
 721	int uninitialized_var(offset);
 722
 723	height = root->height;
 724	if (index > radix_tree_maxindex(height))
 725		goto out;
 726
 727	shift = height * RADIX_TREE_MAP_SHIFT;
 728	slot = root->rnode;
 729
 730	while (shift) {
 731		if (slot == NULL)
 732			goto out;
 733		if (!radix_tree_is_indirect_ptr(slot))
 734			break;
 735		slot = indirect_to_ptr(slot);
 736
 737		shift -= RADIX_TREE_MAP_SHIFT;
 738		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 739		node = slot;
 740		slot = slot->slots[offset];
 741	}
 742
 743	if (slot == NULL)
 744		goto out;
 745
 746	while (node) {
 747		if (!tag_get(node, tag, offset))
 748			goto out;
 749		tag_clear(node, tag, offset);
 750		if (any_tag_set(node, tag))
 751			goto out;
 752
 753		index >>= RADIX_TREE_MAP_SHIFT;
 754		offset = index & RADIX_TREE_MAP_MASK;
 755		node = node->parent;
 756	}
 757
 758	/* clear the root's tag bit */
 759	if (root_tag_get(root, tag))
 760		root_tag_clear(root, tag);
 761
 762out:
 763	return slot;
 764}
 765EXPORT_SYMBOL(radix_tree_tag_clear);
 766
 767/**
 768 * radix_tree_tag_get - get a tag on a radix tree node
 769 * @root:		radix tree root
 770 * @index:		index key
 771 * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
 772 *
 773 * Return values:
 774 *
 775 *  0: tag not present or not set
 776 *  1: tag set
 777 *
 778 * Note that the return value of this function may not be relied on, even if
 779 * the RCU lock is held, unless tag modification and node deletion are excluded
 780 * from concurrency.
 781 */
 782int radix_tree_tag_get(struct radix_tree_root *root,
 783			unsigned long index, unsigned int tag)
 784{
 785	unsigned int height, shift;
 786	struct radix_tree_node *node;
 787
 788	/* check the root's tag bit */
 789	if (!root_tag_get(root, tag))
 790		return 0;
 791
 792	node = rcu_dereference_raw(root->rnode);
 793	if (node == NULL)
 794		return 0;
 795
 796	if (!radix_tree_is_indirect_ptr(node))
 797		return (index == 0);
 798	node = indirect_to_ptr(node);
 799
 800	height = node->path & RADIX_TREE_HEIGHT_MASK;
 801	if (index > radix_tree_maxindex(height))
 802		return 0;
 
 
 
 
 
 
 
 
 
 803
 804	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 
 
 
 
 
 
 805
 806	for ( ; ; ) {
 807		int offset;
 
 
 808
 809		if (node == NULL)
 810			return 0;
 811		node = indirect_to_ptr(node);
 812
 813		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 814		if (!tag_get(node, tag, offset))
 815			return 0;
 816		if (height == 1)
 817			return 1;
 818		node = rcu_dereference_raw(node->slots[offset]);
 819		if (!radix_tree_is_indirect_ptr(node))
 820			return 1;
 821		shift -= RADIX_TREE_MAP_SHIFT;
 822		height--;
 823	}
 824}
 825EXPORT_SYMBOL(radix_tree_tag_get);
 
 
 
 
 
 
 
 
 
 
 826
 827/**
 828 * radix_tree_next_chunk - find next chunk of slots for iteration
 829 *
 830 * @root:	radix tree root
 831 * @iter:	iterator state
 832 * @flags:	RADIX_TREE_ITER_* flags and tag index
 833 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 834 */
 835void **radix_tree_next_chunk(struct radix_tree_root *root,
 836			     struct radix_tree_iter *iter, unsigned flags)
 837{
 838	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
 839	struct radix_tree_node *rnode, *node;
 840	unsigned long index, offset, height;
 841
 842	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 843		return NULL;
 844
 845	/*
 846	 * Catch next_index overflow after ~0UL. iter->index never overflows
 847	 * during iterating; it can be zero only at the beginning.
 848	 * And we cannot overflow iter->next_index in a single step,
 849	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 850	 *
 851	 * This condition also used by radix_tree_next_slot() to stop
 852	 * contiguous iterating, and forbid swithing to the next chunk.
 853	 */
 854	index = iter->next_index;
 855	if (!index && iter->index)
 856		return NULL;
 857
 858	rnode = rcu_dereference_raw(root->rnode);
 859	if (radix_tree_is_indirect_ptr(rnode)) {
 860		rnode = indirect_to_ptr(rnode);
 861	} else if (rnode && !index) {
 
 
 
 
 862		/* Single-slot tree */
 863		iter->index = 0;
 864		iter->next_index = 1;
 865		iter->tags = 1;
 866		return (void **)&root->rnode;
 867	} else
 868		return NULL;
 869
 870restart:
 871	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
 872	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 873	offset = index >> shift;
 874
 875	/* Index outside of the tree */
 876	if (offset >= RADIX_TREE_MAP_SIZE)
 877		return NULL;
 878
 879	node = rnode;
 880	while (1) {
 881		struct radix_tree_node *slot;
 882		if ((flags & RADIX_TREE_ITER_TAGGED) ?
 883				!test_bit(offset, node->tags[tag]) :
 884				!node->slots[offset]) {
 885			/* Hole detected */
 886			if (flags & RADIX_TREE_ITER_CONTIG)
 887				return NULL;
 888
 889			if (flags & RADIX_TREE_ITER_TAGGED)
 890				offset = radix_tree_find_next_bit(
 891						node->tags[tag],
 892						RADIX_TREE_MAP_SIZE,
 893						offset + 1);
 894			else
 895				while (++offset	< RADIX_TREE_MAP_SIZE) {
 896					if (node->slots[offset])
 
 
 897						break;
 898				}
 899			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
 900			index += offset << shift;
 901			/* Overflow after ~0UL */
 902			if (!index)
 903				return NULL;
 904			if (offset == RADIX_TREE_MAP_SIZE)
 905				goto restart;
 
 906		}
 907
 908		/* This is leaf-node */
 909		if (!shift)
 910			break;
 911
 912		slot = rcu_dereference_raw(node->slots[offset]);
 913		if (slot == NULL)
 914			goto restart;
 915		if (!radix_tree_is_indirect_ptr(slot))
 916			break;
 917		node = indirect_to_ptr(slot);
 918		shift -= RADIX_TREE_MAP_SHIFT;
 919		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 920	}
 921
 922	/* Update the iterator state */
 923	iter->index = index;
 924	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
 
 925
 926	/* Construct iter->tags bit-mask from node->tags[tag] array */
 927	if (flags & RADIX_TREE_ITER_TAGGED) {
 928		unsigned tag_long, tag_bit;
 929
 930		tag_long = offset / BITS_PER_LONG;
 931		tag_bit  = offset % BITS_PER_LONG;
 932		iter->tags = node->tags[tag][tag_long] >> tag_bit;
 933		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 934		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 935			/* Pick tags from next element */
 936			if (tag_bit)
 937				iter->tags |= node->tags[tag][tag_long + 1] <<
 938						(BITS_PER_LONG - tag_bit);
 939			/* Clip chunk size, here only BITS_PER_LONG tags */
 940			iter->next_index = index + BITS_PER_LONG;
 941		}
 942	}
 943
 944	return node->slots + offset;
 945}
 946EXPORT_SYMBOL(radix_tree_next_chunk);
 947
 948/**
 949 * radix_tree_range_tag_if_tagged - for each item in given range set given
 950 *				   tag if item has another tag set
 951 * @root:		radix tree root
 952 * @first_indexp:	pointer to a starting index of a range to scan
 953 * @last_index:		last index of a range to scan
 954 * @nr_to_tag:		maximum number items to tag
 955 * @iftag:		tag index to test
 956 * @settag:		tag index to set if tested tag is set
 957 *
 958 * This function scans range of radix tree from first_index to last_index
 959 * (inclusive).  For each item in the range if iftag is set, the function sets
 960 * also settag. The function stops either after tagging nr_to_tag items or
 961 * after reaching last_index.
 962 *
 963 * The tags must be set from the leaf level only and propagated back up the
 964 * path to the root. We must do this so that we resolve the full path before
 965 * setting any tags on intermediate nodes. If we set tags as we descend, then
 966 * we can get to the leaf node and find that the index that has the iftag
 967 * set is outside the range we are scanning. This reults in dangling tags and
 968 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 969 *
 970 * The function returns number of leaves where the tag was set and sets
 971 * *first_indexp to the first unscanned index.
 972 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 973 * be prepared to handle that.
 974 */
 975unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 976		unsigned long *first_indexp, unsigned long last_index,
 977		unsigned long nr_to_tag,
 978		unsigned int iftag, unsigned int settag)
 979{
 980	unsigned int height = root->height;
 981	struct radix_tree_node *node = NULL;
 982	struct radix_tree_node *slot;
 983	unsigned int shift;
 984	unsigned long tagged = 0;
 985	unsigned long index = *first_indexp;
 986
 987	last_index = min(last_index, radix_tree_maxindex(height));
 988	if (index > last_index)
 989		return 0;
 990	if (!nr_to_tag)
 991		return 0;
 992	if (!root_tag_get(root, iftag)) {
 993		*first_indexp = last_index + 1;
 994		return 0;
 995	}
 996	if (height == 0) {
 997		*first_indexp = last_index + 1;
 998		root_tag_set(root, settag);
 999		return 1;
1000	}
1001
1002	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1003	slot = indirect_to_ptr(root->rnode);
1004
1005	for (;;) {
1006		unsigned long upindex;
1007		int offset;
1008
1009		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1010		if (!slot->slots[offset])
1011			goto next;
1012		if (!tag_get(slot, iftag, offset))
1013			goto next;
1014		if (shift) {
1015			node = slot;
1016			slot = slot->slots[offset];
1017			if (radix_tree_is_indirect_ptr(slot)) {
1018				slot = indirect_to_ptr(slot);
1019				shift -= RADIX_TREE_MAP_SHIFT;
1020				continue;
1021			} else {
1022				slot = node;
1023				node = node->parent;
1024			}
1025		}
1026
1027		/* tag the leaf */
1028		tagged += 1 << shift;
1029		tag_set(slot, settag, offset);
1030
1031		/* walk back up the path tagging interior nodes */
1032		upindex = index;
1033		while (node) {
1034			upindex >>= RADIX_TREE_MAP_SHIFT;
1035			offset = upindex & RADIX_TREE_MAP_MASK;
1036
1037			/* stop if we find a node with the tag already set */
1038			if (tag_get(node, settag, offset))
1039				break;
1040			tag_set(node, settag, offset);
1041			node = node->parent;
1042		}
1043
1044		/*
1045		 * Small optimization: now clear that node pointer.
1046		 * Since all of this slot's ancestors now have the tag set
1047		 * from setting it above, we have no further need to walk
1048		 * back up the tree setting tags, until we update slot to
1049		 * point to another radix_tree_node.
1050		 */
1051		node = NULL;
1052
1053next:
1054		/* Go to next item at level determined by 'shift' */
1055		index = ((index >> shift) + 1) << shift;
1056		/* Overflow can happen when last_index is ~0UL... */
1057		if (index > last_index || !index)
1058			break;
1059		if (tagged >= nr_to_tag)
1060			break;
1061		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1062			/*
1063			 * We've fully scanned this node. Go up. Because
1064			 * last_index is guaranteed to be in the tree, what
1065			 * we do below cannot wander astray.
1066			 */
1067			slot = slot->parent;
1068			shift += RADIX_TREE_MAP_SHIFT;
1069		}
1070	}
1071	/*
1072	 * We need not to tag the root tag if there is no tag which is set with
1073	 * settag within the range from *first_indexp to last_index.
1074	 */
1075	if (tagged > 0)
1076		root_tag_set(root, settag);
1077	*first_indexp = index;
1078
1079	return tagged;
1080}
1081EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1082
1083/**
1084 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1085 *	@root:		radix tree root
1086 *	@results:	where the results of the lookup are placed
1087 *	@first_index:	start the lookup from this key
1088 *	@max_items:	place up to this many items at *results
1089 *
1090 *	Performs an index-ascending scan of the tree for present items.  Places
1091 *	them at *@results and returns the number of items which were placed at
1092 *	*@results.
1093 *
1094 *	The implementation is naive.
1095 *
1096 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1097 *	rcu_read_lock. In this case, rather than the returned results being
1098 *	an atomic snapshot of the tree at a single point in time, the semantics
1099 *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
1100 *	have been issued in individual locks, and results stored in 'results'.
 
1101 */
1102unsigned int
1103radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1104			unsigned long first_index, unsigned int max_items)
1105{
1106	struct radix_tree_iter iter;
1107	void **slot;
1108	unsigned int ret = 0;
1109
1110	if (unlikely(!max_items))
1111		return 0;
1112
1113	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1114		results[ret] = rcu_dereference_raw(*slot);
1115		if (!results[ret])
1116			continue;
1117		if (radix_tree_is_indirect_ptr(results[ret])) {
1118			slot = radix_tree_iter_retry(&iter);
1119			continue;
1120		}
1121		if (++ret == max_items)
1122			break;
1123	}
1124
1125	return ret;
1126}
1127EXPORT_SYMBOL(radix_tree_gang_lookup);
1128
1129/**
1130 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1131 *	@root:		radix tree root
1132 *	@results:	where the results of the lookup are placed
1133 *	@indices:	where their indices should be placed (but usually NULL)
1134 *	@first_index:	start the lookup from this key
1135 *	@max_items:	place up to this many items at *results
1136 *
1137 *	Performs an index-ascending scan of the tree for present items.  Places
1138 *	their slots at *@results and returns the number of items which were
1139 *	placed at *@results.
1140 *
1141 *	The implementation is naive.
1142 *
1143 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1144 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1145 *	protection, radix_tree_deref_slot may fail requiring a retry.
1146 */
1147unsigned int
1148radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1149			void ***results, unsigned long *indices,
1150			unsigned long first_index, unsigned int max_items)
1151{
1152	struct radix_tree_iter iter;
1153	void **slot;
1154	unsigned int ret = 0;
1155
1156	if (unlikely(!max_items))
1157		return 0;
1158
1159	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1160		results[ret] = slot;
1161		if (indices)
1162			indices[ret] = iter.index;
1163		if (++ret == max_items)
1164			break;
1165	}
1166
1167	return ret;
1168}
1169EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1170
1171/**
1172 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1173 *	                             based on a tag
1174 *	@root:		radix tree root
1175 *	@results:	where the results of the lookup are placed
1176 *	@first_index:	start the lookup from this key
1177 *	@max_items:	place up to this many items at *results
1178 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1179 *
1180 *	Performs an index-ascending scan of the tree for present items which
1181 *	have the tag indexed by @tag set.  Places the items at *@results and
1182 *	returns the number of items which were placed at *@results.
1183 */
1184unsigned int
1185radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1186		unsigned long first_index, unsigned int max_items,
1187		unsigned int tag)
1188{
1189	struct radix_tree_iter iter;
1190	void **slot;
1191	unsigned int ret = 0;
1192
1193	if (unlikely(!max_items))
1194		return 0;
1195
1196	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1197		results[ret] = rcu_dereference_raw(*slot);
1198		if (!results[ret])
1199			continue;
1200		if (radix_tree_is_indirect_ptr(results[ret])) {
1201			slot = radix_tree_iter_retry(&iter);
1202			continue;
1203		}
1204		if (++ret == max_items)
1205			break;
1206	}
1207
1208	return ret;
1209}
1210EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1211
1212/**
1213 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1214 *					  radix tree based on a tag
1215 *	@root:		radix tree root
1216 *	@results:	where the results of the lookup are placed
1217 *	@first_index:	start the lookup from this key
1218 *	@max_items:	place up to this many items at *results
1219 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1220 *
1221 *	Performs an index-ascending scan of the tree for present items which
1222 *	have the tag indexed by @tag set.  Places the slots at *@results and
1223 *	returns the number of slots which were placed at *@results.
1224 */
1225unsigned int
1226radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1227		unsigned long first_index, unsigned int max_items,
1228		unsigned int tag)
1229{
1230	struct radix_tree_iter iter;
1231	void **slot;
1232	unsigned int ret = 0;
1233
1234	if (unlikely(!max_items))
1235		return 0;
1236
1237	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1238		results[ret] = slot;
1239		if (++ret == max_items)
1240			break;
1241	}
1242
1243	return ret;
1244}
1245EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1246
1247#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1248#include <linux/sched.h> /* for cond_resched() */
1249
1250/*
1251 * This linear search is at present only useful to shmem_unuse_inode().
1252 */
1253static unsigned long __locate(struct radix_tree_node *slot, void *item,
1254			      unsigned long index, unsigned long *found_index)
1255{
1256	unsigned int shift, height;
1257	unsigned long i;
 
 
1258
1259	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1260	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1261
1262	for ( ; height > 1; height--) {
1263		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1264		for (;;) {
1265			if (slot->slots[i] != NULL)
1266				break;
1267			index &= ~((1UL << shift) - 1);
1268			index += 1UL << shift;
1269			if (index == 0)
1270				goto out;	/* 32-bit wraparound */
1271			i++;
1272			if (i == RADIX_TREE_MAP_SIZE)
1273				goto out;
1274		}
1275
1276		slot = rcu_dereference_raw(slot->slots[i]);
1277		if (slot == NULL)
1278			goto out;
1279		if (!radix_tree_is_indirect_ptr(slot)) {
1280			if (slot == item) {
1281				*found_index = index + i;
1282				index = 0;
1283			} else {
1284				index += shift;
1285			}
1286			goto out;
1287		}
1288		slot = indirect_to_ptr(slot);
1289		shift -= RADIX_TREE_MAP_SHIFT;
1290	}
1291
1292	/* Bottom level: check items */
1293	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1294		if (slot->slots[i] == item) {
1295			*found_index = index + i;
1296			index = 0;
1297			goto out;
1298		}
1299	}
1300	index += RADIX_TREE_MAP_SIZE;
1301out:
1302	return index;
1303}
1304
1305/**
1306 *	radix_tree_locate_item - search through radix tree for item
1307 *	@root:		radix tree root
1308 *	@item:		item to be found
 
1309 *
1310 *	Returns index where item was found, or -1 if not found.
1311 *	Caller must hold no lock (since this time-consuming function needs
1312 *	to be preemptible), and must check afterwards if item is still there.
 
 
1313 */
1314unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
 
1315{
1316	struct radix_tree_node *node;
1317	unsigned long max_index;
1318	unsigned long cur_index = 0;
1319	unsigned long found_index = -1;
1320
1321	do {
1322		rcu_read_lock();
1323		node = rcu_dereference_raw(root->rnode);
1324		if (!radix_tree_is_indirect_ptr(node)) {
1325			rcu_read_unlock();
1326			if (node == item)
1327				found_index = 0;
1328			break;
1329		}
1330
1331		node = indirect_to_ptr(node);
1332		max_index = radix_tree_maxindex(node->path &
1333						RADIX_TREE_HEIGHT_MASK);
1334		if (cur_index > max_index) {
1335			rcu_read_unlock();
1336			break;
1337		}
1338
1339		cur_index = __locate(node, item, cur_index, &found_index);
1340		rcu_read_unlock();
1341		cond_resched();
1342	} while (cur_index != 0 && cur_index <= max_index);
1343
1344	return found_index;
1345}
1346#else
1347unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1348{
1349	return -1;
1350}
1351#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1352
1353/**
1354 *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1355 *	@root		radix tree root
1356 */
1357static inline void radix_tree_shrink(struct radix_tree_root *root)
1358{
1359	/* try to shrink tree height */
1360	while (root->height > 0) {
1361		struct radix_tree_node *to_free = root->rnode;
1362		struct radix_tree_node *slot;
1363
1364		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1365		to_free = indirect_to_ptr(to_free);
1366
1367		/*
1368		 * The candidate node has more than one child, or its child
1369		 * is not at the leftmost slot, or it is a multiorder entry,
1370		 * we cannot shrink.
1371		 */
1372		if (to_free->count != 1)
1373			break;
1374		slot = to_free->slots[0];
1375		if (!slot)
1376			break;
1377
1378		/*
1379		 * We don't need rcu_assign_pointer(), since we are simply
1380		 * moving the node from one part of the tree to another: if it
1381		 * was safe to dereference the old pointer to it
1382		 * (to_free->slots[0]), it will be safe to dereference the new
1383		 * one (root->rnode) as far as dependent read barriers go.
1384		 */
1385		if (root->height > 1) {
1386			if (!radix_tree_is_indirect_ptr(slot))
1387				break;
1388
1389			slot = indirect_to_ptr(slot);
1390			slot->parent = NULL;
1391			slot = ptr_to_indirect(slot);
1392		}
1393		root->rnode = slot;
1394		root->height--;
1395
1396		/*
1397		 * We have a dilemma here. The node's slot[0] must not be
1398		 * NULLed in case there are concurrent lookups expecting to
1399		 * find the item. However if this was a bottom-level node,
1400		 * then it may be subject to the slot pointer being visible
1401		 * to callers dereferencing it. If item corresponding to
1402		 * slot[0] is subsequently deleted, these callers would expect
1403		 * their slot to become empty sooner or later.
1404		 *
1405		 * For example, lockless pagecache will look up a slot, deref
1406		 * the page pointer, and if the page is 0 refcount it means it
1407		 * was concurrently deleted from pagecache so try the deref
1408		 * again. Fortunately there is already a requirement for logic
1409		 * to retry the entire slot lookup -- the indirect pointer
1410		 * problem (replacing direct root node with an indirect pointer
1411		 * also results in a stale slot). So tag the slot as indirect
1412		 * to force callers to retry.
1413		 */
1414		if (root->height == 0)
1415			*((unsigned long *)&to_free->slots[0]) |=
1416						RADIX_TREE_INDIRECT_PTR;
1417
1418		radix_tree_node_free(to_free);
1419	}
1420}
1421
1422/**
1423 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1424 *	@root:		radix tree root
1425 *	@node:		node containing @index
1426 *
1427 *	After clearing the slot at @index in @node from radix tree
1428 *	rooted at @root, call this function to attempt freeing the
1429 *	node and shrinking the tree.
1430 *
1431 *	Returns %true if @node was freed, %false otherwise.
1432 */
1433bool __radix_tree_delete_node(struct radix_tree_root *root,
1434			      struct radix_tree_node *node)
1435{
1436	bool deleted = false;
1437
1438	do {
1439		struct radix_tree_node *parent;
1440
1441		if (node->count) {
1442			if (node == indirect_to_ptr(root->rnode)) {
1443				radix_tree_shrink(root);
1444				if (root->height == 0)
1445					deleted = true;
1446			}
1447			return deleted;
1448		}
1449
1450		parent = node->parent;
1451		if (parent) {
1452			unsigned int offset;
1453
1454			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1455			parent->slots[offset] = NULL;
1456			parent->count--;
1457		} else {
1458			root_tag_clear_all(root);
1459			root->height = 0;
1460			root->rnode = NULL;
1461		}
1462
1463		radix_tree_node_free(node);
1464		deleted = true;
1465
1466		node = parent;
1467	} while (node);
1468
1469	return deleted;
1470}
 
1471
1472/**
1473 *	radix_tree_delete_item    -    delete an item from a radix tree
1474 *	@root:		radix tree root
1475 *	@index:		index key
1476 *	@item:		expected item
1477 *
1478 *	Remove @item at @index from the radix tree rooted at @root.
1479 *
1480 *	Returns the address of the deleted item, or NULL if it was not present
1481 *	or the entry at the given @index was not @item.
1482 */
1483void *radix_tree_delete_item(struct radix_tree_root *root,
1484			     unsigned long index, void *item)
1485{
1486	struct radix_tree_node *node;
1487	unsigned int offset, i;
1488	void **slot;
1489	void *entry;
1490	int tag;
1491
1492	entry = __radix_tree_lookup(root, index, &node, &slot);
1493	if (!entry)
 
 
 
1494		return NULL;
1495
1496	if (item && entry != item)
1497		return NULL;
1498
1499	if (!node) {
1500		root_tag_clear_all(root);
1501		root->rnode = NULL;
1502		return entry;
1503	}
1504
1505	offset = index & RADIX_TREE_MAP_MASK;
1506
1507	/*
1508	 * Clear all tags associated with the item to be deleted.
1509	 * This way of doing it would be inefficient, but seldom is any set.
1510	 */
1511	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1512		if (tag_get(node, tag, offset))
1513			radix_tree_tag_clear(root, index, tag);
1514	}
1515
1516	/* Delete any sibling slots pointing to this slot */
1517	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1518		if (node->slots[offset + i] != ptr_to_indirect(slot))
1519			break;
1520		node->slots[offset + i] = NULL;
1521		node->count--;
1522	}
1523	node->slots[offset] = NULL;
1524	node->count--;
1525
1526	__radix_tree_delete_node(root, node);
1527
1528	return entry;
1529}
1530EXPORT_SYMBOL(radix_tree_delete_item);
1531
1532/**
1533 *	radix_tree_delete    -    delete an item from a radix tree
1534 *	@root:		radix tree root
1535 *	@index:		index key
1536 *
1537 *	Remove the item at @index from the radix tree rooted at @root.
1538 *
1539 *	Returns the address of the deleted item, or NULL if it was not present.
1540 */
1541void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1542{
1543	return radix_tree_delete_item(root, index, NULL);
1544}
1545EXPORT_SYMBOL(radix_tree_delete);
1546
1547/**
1548 *	radix_tree_tagged - test whether any items in the tree are tagged
1549 *	@root:		radix tree root
1550 *	@tag:		tag to test
1551 */
1552int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1553{
1554	return root_tag_get(root, tag);
1555}
1556EXPORT_SYMBOL(radix_tree_tagged);
1557
1558static void
1559radix_tree_node_ctor(void *arg)
 
 
 
 
 
 
1560{
1561	struct radix_tree_node *node = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562
1563	memset(node, 0, sizeof(*node));
1564	INIT_LIST_HEAD(&node->private_list);
1565}
1566
1567static __init unsigned long __maxindex(unsigned int height)
 
 
 
 
 
 
 
 
 
 
 
1568{
1569	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1570	int shift = RADIX_TREE_INDEX_BITS - width;
1571
1572	if (shift < 0)
1573		return ~0UL;
1574	if (shift >= BITS_PER_LONG)
1575		return 0UL;
1576	return ~0UL >> shift;
1577}
 
1578
1579static __init void radix_tree_init_maxindex(void)
 
1580{
1581	unsigned int i;
1582
1583	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1584		height_to_maxindex[i] = __maxindex(i);
1585}
1586
1587static int radix_tree_callback(struct notifier_block *nfb,
1588                            unsigned long action,
1589                            void *hcpu)
1590{
1591       int cpu = (long)hcpu;
1592       struct radix_tree_preload *rtp;
1593       struct radix_tree_node *node;
1594
1595       /* Free per-cpu pool of perloaded nodes */
1596       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1597               rtp = &per_cpu(radix_tree_preloads, cpu);
1598               while (rtp->nr) {
1599			node = rtp->nodes;
1600			rtp->nodes = node->private_data;
1601			kmem_cache_free(radix_tree_node_cachep, node);
1602			rtp->nr--;
1603               }
1604       }
1605       return NOTIFY_OK;
1606}
1607
1608void __init radix_tree_init(void)
1609{
 
 
 
 
 
1610	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1611			sizeof(struct radix_tree_node), 0,
1612			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1613			radix_tree_node_ctor);
1614	radix_tree_init_maxindex();
1615	hotcpu_notifier(radix_tree_callback, 0);
 
1616}