Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>		/* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
  27#include <linux/string.h>
  28#include <linux/xarray.h>
 
 
 
  29
  30/*
  31 * Radix tree node cache.
  32 */
  33struct kmem_cache *radix_tree_node_cachep;
  34
  35/*
  36 * The radix tree is variable-height, so an insert operation not only has
  37 * to build the branch to its corresponding item, it also has to build the
  38 * branch to existing items if the size has to be increased (by
  39 * radix_tree_extend).
  40 *
  41 * The worst case is a zero height tree with just a single item at index 0,
  42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  44 * Hence:
  45 */
  46#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  47
  48/*
  49 * The IDR does not have to be as high as the radix tree since it uses
  50 * signed integers, not unsigned longs.
  51 */
  52#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  53#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  54						RADIX_TREE_MAP_SHIFT))
  55#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  56
  57/*
 
 
 
 
 
 
 
 
  58 * Per-cpu pool of preloaded nodes
  59 */
  60DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
  61	.lock = INIT_LOCAL_LOCK(lock),
 
 
  62};
  63EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
  64
  65static inline struct radix_tree_node *entry_to_node(void *ptr)
  66{
  67	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  68}
  69
  70static inline void *node_to_entry(void *ptr)
  71{
  72	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  73}
  74
  75#define RADIX_TREE_RETRY	XA_RETRY_ENTRY
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77static inline unsigned long
  78get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  79{
  80	return parent ? slot - parent->slots : 0;
  81}
  82
  83static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  84			struct radix_tree_node **nodep, unsigned long index)
  85{
  86	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  87	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  88
 
 
 
 
 
 
 
 
 
 
 
  89	*nodep = (void *)entry;
  90	return offset;
  91}
  92
  93static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  94{
  95	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  96}
  97
  98static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  99		int offset)
 100{
 101	__set_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 105		int offset)
 106{
 107	__clear_bit(offset, node->tags[tag]);
 108}
 109
 110static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 111		int offset)
 112{
 113	return test_bit(offset, node->tags[tag]);
 114}
 115
 116static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 117{
 118	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 119}
 120
 121static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 122{
 123	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 124}
 125
 126static inline void root_tag_clear_all(struct radix_tree_root *root)
 127{
 128	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 129}
 130
 131static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 132{
 133	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 134}
 135
 136static inline unsigned root_tags_get(const struct radix_tree_root *root)
 137{
 138	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 139}
 140
 141static inline bool is_idr(const struct radix_tree_root *root)
 142{
 143	return !!(root->xa_flags & ROOT_IS_IDR);
 144}
 145
 146/*
 147 * Returns 1 if any slot in the node has this tag set.
 148 * Otherwise returns 0.
 149 */
 150static inline int any_tag_set(const struct radix_tree_node *node,
 151							unsigned int tag)
 152{
 153	unsigned idx;
 154	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 155		if (node->tags[tag][idx])
 156			return 1;
 157	}
 158	return 0;
 159}
 160
 161static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 162{
 163	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 164}
 165
 166/**
 167 * radix_tree_find_next_bit - find the next set bit in a memory region
 168 *
 169 * @node: where to begin the search
 170 * @tag: the tag index
 171 * @offset: the bitnumber to start searching at
 172 *
 173 * Unrollable variant of find_next_bit() for constant size arrays.
 174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 175 * Returns next bit offset, or size if nothing found.
 176 */
 177static __always_inline unsigned long
 178radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 179			 unsigned long offset)
 180{
 181	const unsigned long *addr = node->tags[tag];
 182
 183	if (offset < RADIX_TREE_MAP_SIZE) {
 184		unsigned long tmp;
 185
 186		addr += offset / BITS_PER_LONG;
 187		tmp = *addr >> (offset % BITS_PER_LONG);
 188		if (tmp)
 189			return __ffs(tmp) + offset;
 190		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 191		while (offset < RADIX_TREE_MAP_SIZE) {
 192			tmp = *++addr;
 193			if (tmp)
 194				return __ffs(tmp) + offset;
 195			offset += BITS_PER_LONG;
 196		}
 197	}
 198	return RADIX_TREE_MAP_SIZE;
 199}
 200
 201static unsigned int iter_offset(const struct radix_tree_iter *iter)
 202{
 203	return iter->index & RADIX_TREE_MAP_MASK;
 204}
 205
 206/*
 207 * The maximum index which can be stored in a radix tree
 208 */
 209static inline unsigned long shift_maxindex(unsigned int shift)
 210{
 211	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 212}
 213
 214static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 215{
 216	return shift_maxindex(node->shift);
 217}
 218
 219static unsigned long next_index(unsigned long index,
 220				const struct radix_tree_node *node,
 221				unsigned long offset)
 222{
 223	return (index & ~node_maxindex(node)) + (offset << node->shift);
 224}
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226/*
 227 * This assumes that the caller has performed appropriate preallocation, and
 228 * that the caller has pinned this thread of control to the current CPU.
 229 */
 230static struct radix_tree_node *
 231radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 232			struct radix_tree_root *root,
 233			unsigned int shift, unsigned int offset,
 234			unsigned int count, unsigned int nr_values)
 235{
 236	struct radix_tree_node *ret = NULL;
 237
 238	/*
 239	 * Preload code isn't irq safe and it doesn't make sense to use
 240	 * preloading during an interrupt anyway as all the allocations have
 241	 * to be atomic. So just do normal allocation when in interrupt.
 242	 */
 243	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 244		struct radix_tree_preload *rtp;
 245
 246		/*
 247		 * Even if the caller has preloaded, try to allocate from the
 248		 * cache first for the new node to get accounted to the memory
 249		 * cgroup.
 250		 */
 251		ret = kmem_cache_alloc(radix_tree_node_cachep,
 252				       gfp_mask | __GFP_NOWARN);
 253		if (ret)
 254			goto out;
 255
 256		/*
 257		 * Provided the caller has preloaded here, we will always
 258		 * succeed in getting a node here (and never reach
 259		 * kmem_cache_alloc)
 260		 */
 261		rtp = this_cpu_ptr(&radix_tree_preloads);
 262		if (rtp->nr) {
 263			ret = rtp->nodes;
 264			rtp->nodes = ret->parent;
 265			rtp->nr--;
 266		}
 267		/*
 268		 * Update the allocation stack trace as this is more useful
 269		 * for debugging.
 270		 */
 271		kmemleak_update_trace(ret);
 272		goto out;
 273	}
 274	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 275out:
 276	BUG_ON(radix_tree_is_internal_node(ret));
 277	if (ret) {
 278		ret->shift = shift;
 279		ret->offset = offset;
 280		ret->count = count;
 281		ret->nr_values = nr_values;
 282		ret->parent = parent;
 283		ret->array = root;
 284	}
 285	return ret;
 286}
 287
 288void radix_tree_node_rcu_free(struct rcu_head *head)
 289{
 290	struct radix_tree_node *node =
 291			container_of(head, struct radix_tree_node, rcu_head);
 292
 293	/*
 294	 * Must only free zeroed nodes into the slab.  We can be left with
 295	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 296	 * and tags here.
 297	 */
 298	memset(node->slots, 0, sizeof(node->slots));
 299	memset(node->tags, 0, sizeof(node->tags));
 300	INIT_LIST_HEAD(&node->private_list);
 301
 302	kmem_cache_free(radix_tree_node_cachep, node);
 303}
 304
 305static inline void
 306radix_tree_node_free(struct radix_tree_node *node)
 307{
 308	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 309}
 310
 311/*
 312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 313 * ensure that the addition of a single element in the tree cannot fail.  On
 314 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 315 * with preemption not disabled.
 316 *
 317 * To make use of this facility, the radix tree must be initialised without
 318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 319 */
 320static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 321{
 322	struct radix_tree_preload *rtp;
 323	struct radix_tree_node *node;
 324	int ret = -ENOMEM;
 325
 326	/*
 327	 * Nodes preloaded by one cgroup can be used by another cgroup, so
 328	 * they should never be accounted to any particular memory cgroup.
 329	 */
 330	gfp_mask &= ~__GFP_ACCOUNT;
 331
 332	local_lock(&radix_tree_preloads.lock);
 333	rtp = this_cpu_ptr(&radix_tree_preloads);
 334	while (rtp->nr < nr) {
 335		local_unlock(&radix_tree_preloads.lock);
 336		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 337		if (node == NULL)
 338			goto out;
 339		local_lock(&radix_tree_preloads.lock);
 340		rtp = this_cpu_ptr(&radix_tree_preloads);
 341		if (rtp->nr < nr) {
 342			node->parent = rtp->nodes;
 343			rtp->nodes = node;
 344			rtp->nr++;
 345		} else {
 346			kmem_cache_free(radix_tree_node_cachep, node);
 347		}
 348	}
 349	ret = 0;
 350out:
 351	return ret;
 352}
 353
 354/*
 355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 356 * ensure that the addition of a single element in the tree cannot fail.  On
 357 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 358 * with preemption not disabled.
 359 *
 360 * To make use of this facility, the radix tree must be initialised without
 361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 362 */
 363int radix_tree_preload(gfp_t gfp_mask)
 364{
 365	/* Warn on non-sensical use... */
 366	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 367	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 368}
 369EXPORT_SYMBOL(radix_tree_preload);
 370
 371/*
 372 * The same as above function, except we don't guarantee preloading happens.
 373 * We do it, if we decide it helps. On success, return zero with preemption
 374 * disabled. On error, return -ENOMEM with preemption not disabled.
 375 */
 376int radix_tree_maybe_preload(gfp_t gfp_mask)
 377{
 378	if (gfpflags_allow_blocking(gfp_mask))
 379		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 380	/* Preloading doesn't help anything with this gfp mask, skip it */
 381	local_lock(&radix_tree_preloads.lock);
 382	return 0;
 383}
 384EXPORT_SYMBOL(radix_tree_maybe_preload);
 385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 387		struct radix_tree_node **nodep, unsigned long *maxindex)
 388{
 389	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 390
 391	*nodep = node;
 392
 393	if (likely(radix_tree_is_internal_node(node))) {
 394		node = entry_to_node(node);
 395		*maxindex = node_maxindex(node);
 396		return node->shift + RADIX_TREE_MAP_SHIFT;
 397	}
 398
 399	*maxindex = 0;
 400	return 0;
 401}
 402
 403/*
 404 *	Extend a radix tree so it can store key @index.
 405 */
 406static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 407				unsigned long index, unsigned int shift)
 408{
 409	void *entry;
 410	unsigned int maxshift;
 411	int tag;
 412
 413	/* Figure out what the shift should be.  */
 414	maxshift = shift;
 415	while (index > shift_maxindex(maxshift))
 416		maxshift += RADIX_TREE_MAP_SHIFT;
 417
 418	entry = rcu_dereference_raw(root->xa_head);
 419	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 420		goto out;
 421
 422	do {
 423		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 424							root, shift, 0, 1, 0);
 425		if (!node)
 426			return -ENOMEM;
 427
 428		if (is_idr(root)) {
 429			all_tag_set(node, IDR_FREE);
 430			if (!root_tag_get(root, IDR_FREE)) {
 431				tag_clear(node, IDR_FREE, 0);
 432				root_tag_set(root, IDR_FREE);
 433			}
 434		} else {
 435			/* Propagate the aggregated tag info to the new child */
 436			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 437				if (root_tag_get(root, tag))
 438					tag_set(node, tag, 0);
 439			}
 440		}
 441
 442		BUG_ON(shift > BITS_PER_LONG);
 443		if (radix_tree_is_internal_node(entry)) {
 444			entry_to_node(entry)->parent = node;
 445		} else if (xa_is_value(entry)) {
 446			/* Moving a value entry root->xa_head to a node */
 447			node->nr_values = 1;
 448		}
 449		/*
 450		 * entry was already in the radix tree, so we do not need
 451		 * rcu_assign_pointer here
 452		 */
 453		node->slots[0] = (void __rcu *)entry;
 454		entry = node_to_entry(node);
 455		rcu_assign_pointer(root->xa_head, entry);
 456		shift += RADIX_TREE_MAP_SHIFT;
 457	} while (shift <= maxshift);
 458out:
 459	return maxshift + RADIX_TREE_MAP_SHIFT;
 460}
 461
 462/**
 463 *	radix_tree_shrink    -    shrink radix tree to minimum height
 464 *	@root:		radix tree root
 465 */
 466static inline bool radix_tree_shrink(struct radix_tree_root *root)
 
 467{
 468	bool shrunk = false;
 469
 470	for (;;) {
 471		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 472		struct radix_tree_node *child;
 473
 474		if (!radix_tree_is_internal_node(node))
 475			break;
 476		node = entry_to_node(node);
 477
 478		/*
 479		 * The candidate node has more than one child, or its child
 480		 * is not at the leftmost slot, we cannot shrink.
 
 481		 */
 482		if (node->count != 1)
 483			break;
 484		child = rcu_dereference_raw(node->slots[0]);
 485		if (!child)
 486			break;
 487
 488		/*
 489		 * For an IDR, we must not shrink entry 0 into the root in
 490		 * case somebody calls idr_replace() with a pointer that
 491		 * appears to be an internal entry
 492		 */
 493		if (!node->shift && is_idr(root))
 494			break;
 495
 496		if (radix_tree_is_internal_node(child))
 497			entry_to_node(child)->parent = NULL;
 498
 499		/*
 500		 * We don't need rcu_assign_pointer(), since we are simply
 501		 * moving the node from one part of the tree to another: if it
 502		 * was safe to dereference the old pointer to it
 503		 * (node->slots[0]), it will be safe to dereference the new
 504		 * one (root->xa_head) as far as dependent read barriers go.
 505		 */
 506		root->xa_head = (void __rcu *)child;
 507		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 508			root_tag_clear(root, IDR_FREE);
 509
 510		/*
 511		 * We have a dilemma here. The node's slot[0] must not be
 512		 * NULLed in case there are concurrent lookups expecting to
 513		 * find the item. However if this was a bottom-level node,
 514		 * then it may be subject to the slot pointer being visible
 515		 * to callers dereferencing it. If item corresponding to
 516		 * slot[0] is subsequently deleted, these callers would expect
 517		 * their slot to become empty sooner or later.
 518		 *
 519		 * For example, lockless pagecache will look up a slot, deref
 520		 * the page pointer, and if the page has 0 refcount it means it
 521		 * was concurrently deleted from pagecache so try the deref
 522		 * again. Fortunately there is already a requirement for logic
 523		 * to retry the entire slot lookup -- the indirect pointer
 524		 * problem (replacing direct root node with an indirect pointer
 525		 * also results in a stale slot). So tag the slot as indirect
 526		 * to force callers to retry.
 527		 */
 528		node->count = 0;
 529		if (!radix_tree_is_internal_node(child)) {
 530			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 
 
 531		}
 532
 533		WARN_ON_ONCE(!list_empty(&node->private_list));
 534		radix_tree_node_free(node);
 535		shrunk = true;
 536	}
 537
 538	return shrunk;
 539}
 540
 541static bool delete_node(struct radix_tree_root *root,
 542			struct radix_tree_node *node)
 
 543{
 544	bool deleted = false;
 545
 546	do {
 547		struct radix_tree_node *parent;
 548
 549		if (node->count) {
 550			if (node_to_entry(node) ==
 551					rcu_dereference_raw(root->xa_head))
 552				deleted |= radix_tree_shrink(root);
 
 553			return deleted;
 554		}
 555
 556		parent = node->parent;
 557		if (parent) {
 558			parent->slots[node->offset] = NULL;
 559			parent->count--;
 560		} else {
 561			/*
 562			 * Shouldn't the tags already have all been cleared
 563			 * by the caller?
 564			 */
 565			if (!is_idr(root))
 566				root_tag_clear_all(root);
 567			root->xa_head = NULL;
 568		}
 569
 570		WARN_ON_ONCE(!list_empty(&node->private_list));
 571		radix_tree_node_free(node);
 572		deleted = true;
 573
 574		node = parent;
 575	} while (node);
 576
 577	return deleted;
 578}
 579
 580/**
 581 *	__radix_tree_create	-	create a slot in a radix tree
 582 *	@root:		radix tree root
 583 *	@index:		index key
 
 584 *	@nodep:		returns node
 585 *	@slotp:		returns slot
 586 *
 587 *	Create, if necessary, and return the node and slot for an item
 588 *	at position @index in the radix tree @root.
 589 *
 590 *	Until there is more than one item in the tree, no nodes are
 591 *	allocated and @root->xa_head is used as a direct slot instead of
 592 *	pointing to a node, in which case *@nodep will be NULL.
 593 *
 594 *	Returns -ENOMEM, or 0 for success.
 595 */
 596static int __radix_tree_create(struct radix_tree_root *root,
 597		unsigned long index, struct radix_tree_node **nodep,
 598		void __rcu ***slotp)
 599{
 600	struct radix_tree_node *node = NULL, *child;
 601	void __rcu **slot = (void __rcu **)&root->xa_head;
 602	unsigned long maxindex;
 603	unsigned int shift, offset = 0;
 604	unsigned long max = index;
 605	gfp_t gfp = root_gfp_mask(root);
 606
 607	shift = radix_tree_load_root(root, &child, &maxindex);
 608
 609	/* Make sure the tree is high enough.  */
 
 
 610	if (max > maxindex) {
 611		int error = radix_tree_extend(root, gfp, max, shift);
 612		if (error < 0)
 613			return error;
 614		shift = error;
 615		child = rcu_dereference_raw(root->xa_head);
 616	}
 617
 618	while (shift > 0) {
 619		shift -= RADIX_TREE_MAP_SHIFT;
 620		if (child == NULL) {
 621			/* Have to add a child node.  */
 622			child = radix_tree_node_alloc(gfp, node, root, shift,
 623							offset, 0, 0);
 624			if (!child)
 625				return -ENOMEM;
 626			rcu_assign_pointer(*slot, node_to_entry(child));
 627			if (node)
 628				node->count++;
 629		} else if (!radix_tree_is_internal_node(child))
 630			break;
 631
 632		/* Go a level down */
 633		node = entry_to_node(child);
 634		offset = radix_tree_descend(node, &child, index);
 635		slot = &node->slots[offset];
 636	}
 637
 638	if (nodep)
 639		*nodep = node;
 640	if (slotp)
 641		*slotp = slot;
 642	return 0;
 643}
 644
 645/*
 646 * Free any nodes below this node.  The tree is presumed to not need
 647 * shrinking, and any user data in the tree is presumed to not need a
 648 * destructor called on it.  If we need to add a destructor, we can
 649 * add that functionality later.  Note that we may not clear tags or
 650 * slots from the tree as an RCU walker may still have a pointer into
 651 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 652 * but we'll still have to clear those in rcu_free.
 653 */
 654static void radix_tree_free_nodes(struct radix_tree_node *node)
 655{
 656	unsigned offset = 0;
 657	struct radix_tree_node *child = entry_to_node(node);
 658
 659	for (;;) {
 660		void *entry = rcu_dereference_raw(child->slots[offset]);
 661		if (xa_is_node(entry) && child->shift) {
 
 662			child = entry_to_node(entry);
 663			offset = 0;
 664			continue;
 665		}
 666		offset++;
 667		while (offset == RADIX_TREE_MAP_SIZE) {
 668			struct radix_tree_node *old = child;
 669			offset = child->offset + 1;
 670			child = child->parent;
 671			WARN_ON_ONCE(!list_empty(&old->private_list));
 672			radix_tree_node_free(old);
 673			if (old == entry_to_node(node))
 674				return;
 675		}
 676	}
 677}
 678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679static inline int insert_entries(struct radix_tree_node *node,
 680		void __rcu **slot, void *item, bool replace)
 681{
 682	if (*slot)
 683		return -EEXIST;
 684	rcu_assign_pointer(*slot, item);
 685	if (node) {
 686		node->count++;
 687		if (xa_is_value(item))
 688			node->nr_values++;
 689	}
 690	return 1;
 691}
 
 692
 693/**
 694 *	radix_tree_insert    -    insert into a radix tree
 695 *	@root:		radix tree root
 696 *	@index:		index key
 
 697 *	@item:		item to insert
 698 *
 699 *	Insert an item into the radix tree at position @index.
 700 */
 701int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 702			void *item)
 703{
 704	struct radix_tree_node *node;
 705	void __rcu **slot;
 706	int error;
 707
 708	BUG_ON(radix_tree_is_internal_node(item));
 709
 710	error = __radix_tree_create(root, index, &node, &slot);
 711	if (error)
 712		return error;
 713
 714	error = insert_entries(node, slot, item, false);
 715	if (error < 0)
 716		return error;
 717
 718	if (node) {
 719		unsigned offset = get_slot_offset(node, slot);
 720		BUG_ON(tag_get(node, 0, offset));
 721		BUG_ON(tag_get(node, 1, offset));
 722		BUG_ON(tag_get(node, 2, offset));
 723	} else {
 724		BUG_ON(root_tags_get(root));
 725	}
 726
 727	return 0;
 728}
 729EXPORT_SYMBOL(radix_tree_insert);
 730
 731/**
 732 *	__radix_tree_lookup	-	lookup an item in a radix tree
 733 *	@root:		radix tree root
 734 *	@index:		index key
 735 *	@nodep:		returns node
 736 *	@slotp:		returns slot
 737 *
 738 *	Lookup and return the item at position @index in the radix
 739 *	tree @root.
 740 *
 741 *	Until there is more than one item in the tree, no nodes are
 742 *	allocated and @root->xa_head is used as a direct slot instead of
 743 *	pointing to a node, in which case *@nodep will be NULL.
 744 */
 745void *__radix_tree_lookup(const struct radix_tree_root *root,
 746			  unsigned long index, struct radix_tree_node **nodep,
 747			  void __rcu ***slotp)
 748{
 749	struct radix_tree_node *node, *parent;
 750	unsigned long maxindex;
 751	void __rcu **slot;
 752
 753 restart:
 754	parent = NULL;
 755	slot = (void __rcu **)&root->xa_head;
 756	radix_tree_load_root(root, &node, &maxindex);
 757	if (index > maxindex)
 758		return NULL;
 759
 760	while (radix_tree_is_internal_node(node)) {
 761		unsigned offset;
 762
 
 
 763		parent = entry_to_node(node);
 764		offset = radix_tree_descend(parent, &node, index);
 765		slot = parent->slots + offset;
 766		if (node == RADIX_TREE_RETRY)
 767			goto restart;
 768		if (parent->shift == 0)
 769			break;
 770	}
 771
 772	if (nodep)
 773		*nodep = parent;
 774	if (slotp)
 775		*slotp = slot;
 776	return node;
 777}
 778
 779/**
 780 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 781 *	@root:		radix tree root
 782 *	@index:		index key
 783 *
 784 *	Returns:  the slot corresponding to the position @index in the
 785 *	radix tree @root. This is useful for update-if-exists operations.
 786 *
 787 *	This function can be called under rcu_read_lock iff the slot is not
 788 *	modified by radix_tree_replace_slot, otherwise it must be called
 789 *	exclusive from other writers. Any dereference of the slot must be done
 790 *	using radix_tree_deref_slot.
 791 */
 792void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 793				unsigned long index)
 794{
 795	void __rcu **slot;
 796
 797	if (!__radix_tree_lookup(root, index, NULL, &slot))
 798		return NULL;
 799	return slot;
 800}
 801EXPORT_SYMBOL(radix_tree_lookup_slot);
 802
 803/**
 804 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 805 *	@root:		radix tree root
 806 *	@index:		index key
 807 *
 808 *	Lookup the item at the position @index in the radix tree @root.
 809 *
 810 *	This function can be called under rcu_read_lock, however the caller
 811 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 812 *	them safely). No RCU barriers are required to access or modify the
 813 *	returned item, however.
 814 */
 815void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 816{
 817	return __radix_tree_lookup(root, index, NULL, NULL);
 818}
 819EXPORT_SYMBOL(radix_tree_lookup);
 820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821static void replace_slot(void __rcu **slot, void *item,
 822		struct radix_tree_node *node, int count, int values)
 823{
 824	if (node && (count || values)) {
 
 
 
 825		node->count += count;
 826		node->nr_values += values;
 
 827	}
 828
 829	rcu_assign_pointer(*slot, item);
 830}
 831
 832static bool node_tag_get(const struct radix_tree_root *root,
 833				const struct radix_tree_node *node,
 834				unsigned int tag, unsigned int offset)
 835{
 836	if (node)
 837		return tag_get(node, tag, offset);
 838	return root_tag_get(root, tag);
 839}
 840
 841/*
 842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 843 * free, don't adjust the count, even if it's transitioning between NULL and
 844 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 845 * have empty bits, but it only stores NULL in slots when they're being
 846 * deleted.
 847 */
 848static int calculate_count(struct radix_tree_root *root,
 849				struct radix_tree_node *node, void __rcu **slot,
 850				void *item, void *old)
 851{
 852	if (is_idr(root)) {
 853		unsigned offset = get_slot_offset(node, slot);
 854		bool free = node_tag_get(root, node, IDR_FREE, offset);
 855		if (!free)
 856			return 0;
 857		if (!old)
 858			return 1;
 859	}
 860	return !!item - !!old;
 861}
 862
 863/**
 864 * __radix_tree_replace		- replace item in a slot
 865 * @root:		radix tree root
 866 * @node:		pointer to tree node
 867 * @slot:		pointer to slot in @node
 868 * @item:		new item to store in the slot.
 
 869 *
 870 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 871 * across slot lookup and replacement.
 872 */
 873void __radix_tree_replace(struct radix_tree_root *root,
 874			  struct radix_tree_node *node,
 875			  void __rcu **slot, void *item)
 
 876{
 877	void *old = rcu_dereference_raw(*slot);
 878	int values = !!xa_is_value(item) - !!xa_is_value(old);
 
 879	int count = calculate_count(root, node, slot, item, old);
 880
 881	/*
 882	 * This function supports replacing value entries and
 883	 * deleting entries, but that needs accounting against the
 884	 * node unless the slot is root->xa_head.
 885	 */
 886	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 887			(count || values));
 888	replace_slot(slot, item, node, count, values);
 889
 890	if (!node)
 891		return;
 892
 893	delete_node(root, node);
 
 
 
 894}
 895
 896/**
 897 * radix_tree_replace_slot	- replace item in a slot
 898 * @root:	radix tree root
 899 * @slot:	pointer to slot
 900 * @item:	new item to store in the slot.
 901 *
 902 * For use with radix_tree_lookup_slot() and
 903 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 904 * across slot lookup and replacement.
 905 *
 906 * NOTE: This cannot be used to switch between non-entries (empty slots),
 907 * regular entries, and value entries, as that requires accounting
 908 * inside the radix tree node. When switching from one type of entry or
 909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 910 * radix_tree_iter_replace().
 911 */
 912void radix_tree_replace_slot(struct radix_tree_root *root,
 913			     void __rcu **slot, void *item)
 914{
 915	__radix_tree_replace(root, NULL, slot, item);
 916}
 917EXPORT_SYMBOL(radix_tree_replace_slot);
 918
 919/**
 920 * radix_tree_iter_replace - replace item in a slot
 921 * @root:	radix tree root
 922 * @iter:	iterator state
 923 * @slot:	pointer to slot
 924 * @item:	new item to store in the slot.
 925 *
 926 * For use with radix_tree_for_each_slot().
 927 * Caller must hold tree write locked.
 928 */
 929void radix_tree_iter_replace(struct radix_tree_root *root,
 930				const struct radix_tree_iter *iter,
 931				void __rcu **slot, void *item)
 932{
 933	__radix_tree_replace(root, iter->node, slot, item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934}
 
 935
 936static void node_tag_set(struct radix_tree_root *root,
 937				struct radix_tree_node *node,
 938				unsigned int tag, unsigned int offset)
 939{
 940	while (node) {
 941		if (tag_get(node, tag, offset))
 942			return;
 943		tag_set(node, tag, offset);
 944		offset = node->offset;
 945		node = node->parent;
 946	}
 947
 948	if (!root_tag_get(root, tag))
 949		root_tag_set(root, tag);
 950}
 951
 952/**
 953 *	radix_tree_tag_set - set a tag on a radix tree node
 954 *	@root:		radix tree root
 955 *	@index:		index key
 956 *	@tag:		tag index
 957 *
 958 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 959 *	corresponding to @index in the radix tree.  From
 960 *	the root all the way down to the leaf node.
 961 *
 962 *	Returns the address of the tagged item.  Setting a tag on a not-present
 963 *	item is a bug.
 964 */
 965void *radix_tree_tag_set(struct radix_tree_root *root,
 966			unsigned long index, unsigned int tag)
 967{
 968	struct radix_tree_node *node, *parent;
 969	unsigned long maxindex;
 970
 971	radix_tree_load_root(root, &node, &maxindex);
 972	BUG_ON(index > maxindex);
 973
 974	while (radix_tree_is_internal_node(node)) {
 975		unsigned offset;
 976
 977		parent = entry_to_node(node);
 978		offset = radix_tree_descend(parent, &node, index);
 979		BUG_ON(!node);
 980
 981		if (!tag_get(parent, tag, offset))
 982			tag_set(parent, tag, offset);
 983	}
 984
 985	/* set the root's tag bit */
 986	if (!root_tag_get(root, tag))
 987		root_tag_set(root, tag);
 988
 989	return node;
 990}
 991EXPORT_SYMBOL(radix_tree_tag_set);
 992
 
 
 
 
 
 
 
 
 
 
 
 
 993static void node_tag_clear(struct radix_tree_root *root,
 994				struct radix_tree_node *node,
 995				unsigned int tag, unsigned int offset)
 996{
 997	while (node) {
 998		if (!tag_get(node, tag, offset))
 999			return;
1000		tag_clear(node, tag, offset);
1001		if (any_tag_set(node, tag))
1002			return;
1003
1004		offset = node->offset;
1005		node = node->parent;
1006	}
1007
1008	/* clear the root's tag bit */
1009	if (root_tag_get(root, tag))
1010		root_tag_clear(root, tag);
1011}
1012
1013/**
1014 *	radix_tree_tag_clear - clear a tag on a radix tree node
1015 *	@root:		radix tree root
1016 *	@index:		index key
1017 *	@tag:		tag index
1018 *
1019 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1020 *	corresponding to @index in the radix tree.  If this causes
1021 *	the leaf node to have no tags set then clear the tag in the
1022 *	next-to-leaf node, etc.
1023 *
1024 *	Returns the address of the tagged item on success, else NULL.  ie:
1025 *	has the same return value and semantics as radix_tree_lookup().
1026 */
1027void *radix_tree_tag_clear(struct radix_tree_root *root,
1028			unsigned long index, unsigned int tag)
1029{
1030	struct radix_tree_node *node, *parent;
1031	unsigned long maxindex;
1032	int offset;
1033
1034	radix_tree_load_root(root, &node, &maxindex);
1035	if (index > maxindex)
1036		return NULL;
1037
1038	parent = NULL;
1039
1040	while (radix_tree_is_internal_node(node)) {
1041		parent = entry_to_node(node);
1042		offset = radix_tree_descend(parent, &node, index);
1043	}
1044
1045	if (node)
1046		node_tag_clear(root, parent, tag, offset);
1047
1048	return node;
1049}
1050EXPORT_SYMBOL(radix_tree_tag_clear);
1051
1052/**
1053  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1054  * @root: radix tree root
1055  * @iter: iterator state
1056  * @tag: tag to clear
1057  */
1058void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1059			const struct radix_tree_iter *iter, unsigned int tag)
1060{
1061	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1062}
1063
1064/**
1065 * radix_tree_tag_get - get a tag on a radix tree node
1066 * @root:		radix tree root
1067 * @index:		index key
1068 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1069 *
1070 * Return values:
1071 *
1072 *  0: tag not present or not set
1073 *  1: tag set
1074 *
1075 * Note that the return value of this function may not be relied on, even if
1076 * the RCU lock is held, unless tag modification and node deletion are excluded
1077 * from concurrency.
1078 */
1079int radix_tree_tag_get(const struct radix_tree_root *root,
1080			unsigned long index, unsigned int tag)
1081{
1082	struct radix_tree_node *node, *parent;
1083	unsigned long maxindex;
1084
1085	if (!root_tag_get(root, tag))
1086		return 0;
1087
1088	radix_tree_load_root(root, &node, &maxindex);
1089	if (index > maxindex)
1090		return 0;
1091
1092	while (radix_tree_is_internal_node(node)) {
1093		unsigned offset;
1094
1095		parent = entry_to_node(node);
1096		offset = radix_tree_descend(parent, &node, index);
1097
1098		if (!tag_get(parent, tag, offset))
1099			return 0;
1100		if (node == RADIX_TREE_RETRY)
1101			break;
1102	}
1103
1104	return 1;
1105}
1106EXPORT_SYMBOL(radix_tree_tag_get);
1107
 
 
 
 
 
 
 
 
1108/* Construct iter->tags bit-mask from node->tags[tag] array */
1109static void set_iter_tags(struct radix_tree_iter *iter,
1110				struct radix_tree_node *node, unsigned offset,
1111				unsigned tag)
1112{
1113	unsigned tag_long = offset / BITS_PER_LONG;
1114	unsigned tag_bit  = offset % BITS_PER_LONG;
1115
1116	if (!node) {
1117		iter->tags = 1;
1118		return;
1119	}
1120
1121	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1122
1123	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1124	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1125		/* Pick tags from next element */
1126		if (tag_bit)
1127			iter->tags |= node->tags[tag][tag_long + 1] <<
1128						(BITS_PER_LONG - tag_bit);
1129		/* Clip chunk size, here only BITS_PER_LONG tags */
1130		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1131	}
1132}
1133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1134void __rcu **radix_tree_iter_resume(void __rcu **slot,
1135					struct radix_tree_iter *iter)
1136{
 
 
1137	slot++;
1138	iter->index = __radix_tree_iter_add(iter, 1);
 
1139	iter->next_index = iter->index;
1140	iter->tags = 0;
1141	return NULL;
1142}
1143EXPORT_SYMBOL(radix_tree_iter_resume);
1144
1145/**
1146 * radix_tree_next_chunk - find next chunk of slots for iteration
1147 *
1148 * @root:	radix tree root
1149 * @iter:	iterator state
1150 * @flags:	RADIX_TREE_ITER_* flags and tag index
1151 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1152 */
1153void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1154			     struct radix_tree_iter *iter, unsigned flags)
1155{
1156	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1157	struct radix_tree_node *node, *child;
1158	unsigned long index, offset, maxindex;
1159
1160	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1161		return NULL;
1162
1163	/*
1164	 * Catch next_index overflow after ~0UL. iter->index never overflows
1165	 * during iterating; it can be zero only at the beginning.
1166	 * And we cannot overflow iter->next_index in a single step,
1167	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1168	 *
1169	 * This condition also used by radix_tree_next_slot() to stop
1170	 * contiguous iterating, and forbid switching to the next chunk.
1171	 */
1172	index = iter->next_index;
1173	if (!index && iter->index)
1174		return NULL;
1175
1176 restart:
1177	radix_tree_load_root(root, &child, &maxindex);
1178	if (index > maxindex)
1179		return NULL;
1180	if (!child)
1181		return NULL;
1182
1183	if (!radix_tree_is_internal_node(child)) {
1184		/* Single-slot tree */
1185		iter->index = index;
1186		iter->next_index = maxindex + 1;
1187		iter->tags = 1;
1188		iter->node = NULL;
1189		return (void __rcu **)&root->xa_head;
 
1190	}
1191
1192	do {
1193		node = entry_to_node(child);
1194		offset = radix_tree_descend(node, &child, index);
1195
1196		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1197				!tag_get(node, tag, offset) : !child) {
1198			/* Hole detected */
1199			if (flags & RADIX_TREE_ITER_CONTIG)
1200				return NULL;
1201
1202			if (flags & RADIX_TREE_ITER_TAGGED)
1203				offset = radix_tree_find_next_bit(node, tag,
1204						offset + 1);
1205			else
1206				while (++offset	< RADIX_TREE_MAP_SIZE) {
1207					void *slot = rcu_dereference_raw(
1208							node->slots[offset]);
 
 
1209					if (slot)
1210						break;
1211				}
1212			index &= ~node_maxindex(node);
1213			index += offset << node->shift;
1214			/* Overflow after ~0UL */
1215			if (!index)
1216				return NULL;
1217			if (offset == RADIX_TREE_MAP_SIZE)
1218				goto restart;
1219			child = rcu_dereference_raw(node->slots[offset]);
1220		}
1221
1222		if (!child)
1223			goto restart;
1224		if (child == RADIX_TREE_RETRY)
1225			break;
1226	} while (node->shift && radix_tree_is_internal_node(child));
1227
1228	/* Update the iterator state */
1229	iter->index = (index &~ node_maxindex(node)) | offset;
1230	iter->next_index = (index | node_maxindex(node)) + 1;
1231	iter->node = node;
 
1232
1233	if (flags & RADIX_TREE_ITER_TAGGED)
1234		set_iter_tags(iter, node, offset, tag);
1235
1236	return node->slots + offset;
1237}
1238EXPORT_SYMBOL(radix_tree_next_chunk);
1239
1240/**
1241 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1242 *	@root:		radix tree root
1243 *	@results:	where the results of the lookup are placed
1244 *	@first_index:	start the lookup from this key
1245 *	@max_items:	place up to this many items at *results
1246 *
1247 *	Performs an index-ascending scan of the tree for present items.  Places
1248 *	them at *@results and returns the number of items which were placed at
1249 *	*@results.
1250 *
1251 *	The implementation is naive.
1252 *
1253 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1254 *	rcu_read_lock. In this case, rather than the returned results being
1255 *	an atomic snapshot of the tree at a single point in time, the
1256 *	semantics of an RCU protected gang lookup are as though multiple
1257 *	radix_tree_lookups have been issued in individual locks, and results
1258 *	stored in 'results'.
1259 */
1260unsigned int
1261radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1262			unsigned long first_index, unsigned int max_items)
1263{
1264	struct radix_tree_iter iter;
1265	void __rcu **slot;
1266	unsigned int ret = 0;
1267
1268	if (unlikely(!max_items))
1269		return 0;
1270
1271	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1272		results[ret] = rcu_dereference_raw(*slot);
1273		if (!results[ret])
1274			continue;
1275		if (radix_tree_is_internal_node(results[ret])) {
1276			slot = radix_tree_iter_retry(&iter);
1277			continue;
1278		}
1279		if (++ret == max_items)
1280			break;
1281	}
1282
1283	return ret;
1284}
1285EXPORT_SYMBOL(radix_tree_gang_lookup);
1286
1287/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1289 *	                             based on a tag
1290 *	@root:		radix tree root
1291 *	@results:	where the results of the lookup are placed
1292 *	@first_index:	start the lookup from this key
1293 *	@max_items:	place up to this many items at *results
1294 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1295 *
1296 *	Performs an index-ascending scan of the tree for present items which
1297 *	have the tag indexed by @tag set.  Places the items at *@results and
1298 *	returns the number of items which were placed at *@results.
1299 */
1300unsigned int
1301radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1302		unsigned long first_index, unsigned int max_items,
1303		unsigned int tag)
1304{
1305	struct radix_tree_iter iter;
1306	void __rcu **slot;
1307	unsigned int ret = 0;
1308
1309	if (unlikely(!max_items))
1310		return 0;
1311
1312	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1313		results[ret] = rcu_dereference_raw(*slot);
1314		if (!results[ret])
1315			continue;
1316		if (radix_tree_is_internal_node(results[ret])) {
1317			slot = radix_tree_iter_retry(&iter);
1318			continue;
1319		}
1320		if (++ret == max_items)
1321			break;
1322	}
1323
1324	return ret;
1325}
1326EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1327
1328/**
1329 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1330 *					  radix tree based on a tag
1331 *	@root:		radix tree root
1332 *	@results:	where the results of the lookup are placed
1333 *	@first_index:	start the lookup from this key
1334 *	@max_items:	place up to this many items at *results
1335 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1336 *
1337 *	Performs an index-ascending scan of the tree for present items which
1338 *	have the tag indexed by @tag set.  Places the slots at *@results and
1339 *	returns the number of slots which were placed at *@results.
1340 */
1341unsigned int
1342radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1343		void __rcu ***results, unsigned long first_index,
1344		unsigned int max_items, unsigned int tag)
1345{
1346	struct radix_tree_iter iter;
1347	void __rcu **slot;
1348	unsigned int ret = 0;
1349
1350	if (unlikely(!max_items))
1351		return 0;
1352
1353	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1354		results[ret] = slot;
1355		if (++ret == max_items)
1356			break;
1357	}
1358
1359	return ret;
1360}
1361EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363static bool __radix_tree_delete(struct radix_tree_root *root,
1364				struct radix_tree_node *node, void __rcu **slot)
1365{
1366	void *old = rcu_dereference_raw(*slot);
1367	int values = xa_is_value(old) ? -1 : 0;
1368	unsigned offset = get_slot_offset(node, slot);
1369	int tag;
1370
1371	if (is_idr(root))
1372		node_tag_set(root, node, IDR_FREE, offset);
1373	else
1374		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1375			node_tag_clear(root, node, tag, offset);
1376
1377	replace_slot(slot, NULL, node, -1, values);
1378	return node && delete_node(root, node);
1379}
1380
1381/**
1382 * radix_tree_iter_delete - delete the entry at this iterator position
1383 * @root: radix tree root
1384 * @iter: iterator state
1385 * @slot: pointer to slot
1386 *
1387 * Delete the entry at the position currently pointed to by the iterator.
1388 * This may result in the current node being freed; if it is, the iterator
1389 * is advanced so that it will not reference the freed memory.  This
1390 * function may be called without any locking if there are no other threads
1391 * which can access this tree.
1392 */
1393void radix_tree_iter_delete(struct radix_tree_root *root,
1394				struct radix_tree_iter *iter, void __rcu **slot)
1395{
1396	if (__radix_tree_delete(root, iter->node, slot))
1397		iter->index = iter->next_index;
1398}
1399EXPORT_SYMBOL(radix_tree_iter_delete);
1400
1401/**
1402 * radix_tree_delete_item - delete an item from a radix tree
1403 * @root: radix tree root
1404 * @index: index key
1405 * @item: expected item
1406 *
1407 * Remove @item at @index from the radix tree rooted at @root.
1408 *
1409 * Return: the deleted entry, or %NULL if it was not present
1410 * or the entry at the given @index was not @item.
1411 */
1412void *radix_tree_delete_item(struct radix_tree_root *root,
1413			     unsigned long index, void *item)
1414{
1415	struct radix_tree_node *node = NULL;
1416	void __rcu **slot = NULL;
1417	void *entry;
1418
1419	entry = __radix_tree_lookup(root, index, &node, &slot);
1420	if (!slot)
1421		return NULL;
1422	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1423						get_slot_offset(node, slot))))
1424		return NULL;
1425
1426	if (item && entry != item)
1427		return NULL;
1428
1429	__radix_tree_delete(root, node, slot);
1430
1431	return entry;
1432}
1433EXPORT_SYMBOL(radix_tree_delete_item);
1434
1435/**
1436 * radix_tree_delete - delete an entry from a radix tree
1437 * @root: radix tree root
1438 * @index: index key
1439 *
1440 * Remove the entry at @index from the radix tree rooted at @root.
1441 *
1442 * Return: The deleted entry, or %NULL if it was not present.
1443 */
1444void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1445{
1446	return radix_tree_delete_item(root, index, NULL);
1447}
1448EXPORT_SYMBOL(radix_tree_delete);
1449
 
 
 
 
 
 
 
 
 
 
 
 
 
1450/**
1451 *	radix_tree_tagged - test whether any items in the tree are tagged
1452 *	@root:		radix tree root
1453 *	@tag:		tag to test
1454 */
1455int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1456{
1457	return root_tag_get(root, tag);
1458}
1459EXPORT_SYMBOL(radix_tree_tagged);
1460
1461/**
1462 * idr_preload - preload for idr_alloc()
1463 * @gfp_mask: allocation mask to use for preloading
1464 *
1465 * Preallocate memory to use for the next call to idr_alloc().  This function
1466 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1467 */
1468void idr_preload(gfp_t gfp_mask)
1469{
1470	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1471		local_lock(&radix_tree_preloads.lock);
1472}
1473EXPORT_SYMBOL(idr_preload);
1474
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475void __rcu **idr_get_free(struct radix_tree_root *root,
1476			      struct radix_tree_iter *iter, gfp_t gfp,
1477			      unsigned long max)
1478{
1479	struct radix_tree_node *node = NULL, *child;
1480	void __rcu **slot = (void __rcu **)&root->xa_head;
1481	unsigned long maxindex, start = iter->next_index;
1482	unsigned int shift, offset = 0;
1483
1484 grow:
1485	shift = radix_tree_load_root(root, &child, &maxindex);
1486	if (!radix_tree_tagged(root, IDR_FREE))
1487		start = max(start, maxindex + 1);
1488	if (start > max)
1489		return ERR_PTR(-ENOSPC);
1490
1491	if (start > maxindex) {
1492		int error = radix_tree_extend(root, gfp, start, shift);
1493		if (error < 0)
1494			return ERR_PTR(error);
1495		shift = error;
1496		child = rcu_dereference_raw(root->xa_head);
1497	}
1498	if (start == 0 && shift == 0)
1499		shift = RADIX_TREE_MAP_SHIFT;
1500
1501	while (shift) {
1502		shift -= RADIX_TREE_MAP_SHIFT;
1503		if (child == NULL) {
1504			/* Have to add a child node.  */
1505			child = radix_tree_node_alloc(gfp, node, root, shift,
1506							offset, 0, 0);
1507			if (!child)
1508				return ERR_PTR(-ENOMEM);
1509			all_tag_set(child, IDR_FREE);
1510			rcu_assign_pointer(*slot, node_to_entry(child));
1511			if (node)
1512				node->count++;
1513		} else if (!radix_tree_is_internal_node(child))
1514			break;
1515
1516		node = entry_to_node(child);
1517		offset = radix_tree_descend(node, &child, start);
1518		if (!tag_get(node, IDR_FREE, offset)) {
1519			offset = radix_tree_find_next_bit(node, IDR_FREE,
1520							offset + 1);
1521			start = next_index(start, node, offset);
1522			if (start > max || start == 0)
1523				return ERR_PTR(-ENOSPC);
1524			while (offset == RADIX_TREE_MAP_SIZE) {
1525				offset = node->offset + 1;
1526				node = node->parent;
1527				if (!node)
1528					goto grow;
1529				shift = node->shift;
1530			}
1531			child = rcu_dereference_raw(node->slots[offset]);
1532		}
1533		slot = &node->slots[offset];
1534	}
1535
1536	iter->index = start;
1537	if (node)
1538		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1539	else
1540		iter->next_index = 1;
1541	iter->node = node;
 
1542	set_iter_tags(iter, node, offset, IDR_FREE);
1543
1544	return slot;
1545}
1546
1547/**
1548 * idr_destroy - release all internal memory from an IDR
1549 * @idr: idr handle
1550 *
1551 * After this function is called, the IDR is empty, and may be reused or
1552 * the data structure containing it may be freed.
1553 *
1554 * A typical clean-up sequence for objects stored in an idr tree will use
1555 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1556 * free the memory used to keep track of those objects.
1557 */
1558void idr_destroy(struct idr *idr)
1559{
1560	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1561	if (radix_tree_is_internal_node(node))
1562		radix_tree_free_nodes(node);
1563	idr->idr_rt.xa_head = NULL;
1564	root_tag_set(&idr->idr_rt, IDR_FREE);
1565}
1566EXPORT_SYMBOL(idr_destroy);
1567
1568static void
1569radix_tree_node_ctor(void *arg)
1570{
1571	struct radix_tree_node *node = arg;
1572
1573	memset(node, 0, sizeof(*node));
1574	INIT_LIST_HEAD(&node->private_list);
1575}
1576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1577static int radix_tree_cpu_dead(unsigned int cpu)
1578{
1579	struct radix_tree_preload *rtp;
1580	struct radix_tree_node *node;
1581
1582	/* Free per-cpu pool of preloaded nodes */
1583	rtp = &per_cpu(radix_tree_preloads, cpu);
1584	while (rtp->nr) {
1585		node = rtp->nodes;
1586		rtp->nodes = node->parent;
1587		kmem_cache_free(radix_tree_node_cachep, node);
1588		rtp->nr--;
1589	}
 
 
1590	return 0;
1591}
1592
1593void __init radix_tree_init(void)
1594{
1595	int ret;
1596
1597	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1598	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1599	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1600	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1601			sizeof(struct radix_tree_node), 0,
1602			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1603			radix_tree_node_ctor);
 
1604	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1605					NULL, radix_tree_cpu_dead);
1606	WARN_ON(ret < 0);
1607}
v4.17
 
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bitmap.h>
  26#include <linux/bitops.h>
  27#include <linux/bug.h>
  28#include <linux/cpu.h>
  29#include <linux/errno.h>
  30#include <linux/export.h>
  31#include <linux/idr.h>
  32#include <linux/init.h>
  33#include <linux/kernel.h>
  34#include <linux/kmemleak.h>
  35#include <linux/percpu.h>
  36#include <linux/preempt.h>		/* in_interrupt() */
  37#include <linux/radix-tree.h>
  38#include <linux/rcupdate.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41
  42
  43/* Number of nodes in fully populated tree of given height */
  44static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  45
  46/*
  47 * Radix tree node cache.
  48 */
  49static struct kmem_cache *radix_tree_node_cachep;
  50
  51/*
  52 * The radix tree is variable-height, so an insert operation not only has
  53 * to build the branch to its corresponding item, it also has to build the
  54 * branch to existing items if the size has to be increased (by
  55 * radix_tree_extend).
  56 *
  57 * The worst case is a zero height tree with just a single item at index 0,
  58 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  59 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  60 * Hence:
  61 */
  62#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  63
  64/*
  65 * The IDR does not have to be as high as the radix tree since it uses
  66 * signed integers, not unsigned longs.
  67 */
  68#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  69#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  70						RADIX_TREE_MAP_SHIFT))
  71#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  72
  73/*
  74 * The IDA is even shorter since it uses a bitmap at the last level.
  75 */
  76#define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  77#define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
  78						RADIX_TREE_MAP_SHIFT))
  79#define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
  80
  81/*
  82 * Per-cpu pool of preloaded nodes
  83 */
  84struct radix_tree_preload {
  85	unsigned nr;
  86	/* nodes->parent points to next preallocated node */
  87	struct radix_tree_node *nodes;
  88};
  89static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  90
  91static inline struct radix_tree_node *entry_to_node(void *ptr)
  92{
  93	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  94}
  95
  96static inline void *node_to_entry(void *ptr)
  97{
  98	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  99}
 100
 101#define RADIX_TREE_RETRY	node_to_entry(NULL)
 102
 103#ifdef CONFIG_RADIX_TREE_MULTIORDER
 104/* Sibling slots point directly to another slot in the same node */
 105static inline
 106bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 107{
 108	void __rcu **ptr = node;
 109	return (parent->slots <= ptr) &&
 110			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
 111}
 112#else
 113static inline
 114bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 115{
 116	return false;
 117}
 118#endif
 119
 120static inline unsigned long
 121get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 122{
 123	return slot - parent->slots;
 124}
 125
 126static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 127			struct radix_tree_node **nodep, unsigned long index)
 128{
 129	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 130	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 131
 132#ifdef CONFIG_RADIX_TREE_MULTIORDER
 133	if (radix_tree_is_internal_node(entry)) {
 134		if (is_sibling_entry(parent, entry)) {
 135			void __rcu **sibentry;
 136			sibentry = (void __rcu **) entry_to_node(entry);
 137			offset = get_slot_offset(parent, sibentry);
 138			entry = rcu_dereference_raw(*sibentry);
 139		}
 140	}
 141#endif
 142
 143	*nodep = (void *)entry;
 144	return offset;
 145}
 146
 147static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 148{
 149	return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
 150}
 151
 152static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 153		int offset)
 154{
 155	__set_bit(offset, node->tags[tag]);
 156}
 157
 158static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 159		int offset)
 160{
 161	__clear_bit(offset, node->tags[tag]);
 162}
 163
 164static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 165		int offset)
 166{
 167	return test_bit(offset, node->tags[tag]);
 168}
 169
 170static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 171{
 172	root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 173}
 174
 175static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 176{
 177	root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 178}
 179
 180static inline void root_tag_clear_all(struct radix_tree_root *root)
 181{
 182	root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
 183}
 184
 185static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 186{
 187	return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
 188}
 189
 190static inline unsigned root_tags_get(const struct radix_tree_root *root)
 191{
 192	return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
 193}
 194
 195static inline bool is_idr(const struct radix_tree_root *root)
 196{
 197	return !!(root->gfp_mask & ROOT_IS_IDR);
 198}
 199
 200/*
 201 * Returns 1 if any slot in the node has this tag set.
 202 * Otherwise returns 0.
 203 */
 204static inline int any_tag_set(const struct radix_tree_node *node,
 205							unsigned int tag)
 206{
 207	unsigned idx;
 208	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 209		if (node->tags[tag][idx])
 210			return 1;
 211	}
 212	return 0;
 213}
 214
 215static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 216{
 217	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 218}
 219
 220/**
 221 * radix_tree_find_next_bit - find the next set bit in a memory region
 222 *
 223 * @addr: The address to base the search on
 224 * @size: The bitmap size in bits
 225 * @offset: The bitnumber to start searching at
 226 *
 227 * Unrollable variant of find_next_bit() for constant size arrays.
 228 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 229 * Returns next bit offset, or size if nothing found.
 230 */
 231static __always_inline unsigned long
 232radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 233			 unsigned long offset)
 234{
 235	const unsigned long *addr = node->tags[tag];
 236
 237	if (offset < RADIX_TREE_MAP_SIZE) {
 238		unsigned long tmp;
 239
 240		addr += offset / BITS_PER_LONG;
 241		tmp = *addr >> (offset % BITS_PER_LONG);
 242		if (tmp)
 243			return __ffs(tmp) + offset;
 244		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 245		while (offset < RADIX_TREE_MAP_SIZE) {
 246			tmp = *++addr;
 247			if (tmp)
 248				return __ffs(tmp) + offset;
 249			offset += BITS_PER_LONG;
 250		}
 251	}
 252	return RADIX_TREE_MAP_SIZE;
 253}
 254
 255static unsigned int iter_offset(const struct radix_tree_iter *iter)
 256{
 257	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 258}
 259
 260/*
 261 * The maximum index which can be stored in a radix tree
 262 */
 263static inline unsigned long shift_maxindex(unsigned int shift)
 264{
 265	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 266}
 267
 268static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 269{
 270	return shift_maxindex(node->shift);
 271}
 272
 273static unsigned long next_index(unsigned long index,
 274				const struct radix_tree_node *node,
 275				unsigned long offset)
 276{
 277	return (index & ~node_maxindex(node)) + (offset << node->shift);
 278}
 279
 280#ifndef __KERNEL__
 281static void dump_node(struct radix_tree_node *node, unsigned long index)
 282{
 283	unsigned long i;
 284
 285	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 286		node, node->offset, index, index | node_maxindex(node),
 287		node->parent,
 288		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 289		node->shift, node->count, node->exceptional);
 290
 291	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 292		unsigned long first = index | (i << node->shift);
 293		unsigned long last = first | ((1UL << node->shift) - 1);
 294		void *entry = node->slots[i];
 295		if (!entry)
 296			continue;
 297		if (entry == RADIX_TREE_RETRY) {
 298			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 299					i, first, last, node);
 300		} else if (!radix_tree_is_internal_node(entry)) {
 301			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 302					entry, i, first, last, node);
 303		} else if (is_sibling_entry(node, entry)) {
 304			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 305					entry, i, first, last, node,
 306					*(void **)entry_to_node(entry));
 307		} else {
 308			dump_node(entry_to_node(entry), first);
 309		}
 310	}
 311}
 312
 313/* For debug */
 314static void radix_tree_dump(struct radix_tree_root *root)
 315{
 316	pr_debug("radix root: %p rnode %p tags %x\n",
 317			root, root->rnode,
 318			root->gfp_mask >> ROOT_TAG_SHIFT);
 319	if (!radix_tree_is_internal_node(root->rnode))
 320		return;
 321	dump_node(entry_to_node(root->rnode), 0);
 322}
 323
 324static void dump_ida_node(void *entry, unsigned long index)
 325{
 326	unsigned long i;
 327
 328	if (!entry)
 329		return;
 330
 331	if (radix_tree_is_internal_node(entry)) {
 332		struct radix_tree_node *node = entry_to_node(entry);
 333
 334		pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
 335			node, node->offset, index * IDA_BITMAP_BITS,
 336			((index | node_maxindex(node)) + 1) *
 337				IDA_BITMAP_BITS - 1,
 338			node->parent, node->tags[0][0], node->shift,
 339			node->count);
 340		for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 341			dump_ida_node(node->slots[i],
 342					index | (i << node->shift));
 343	} else if (radix_tree_exceptional_entry(entry)) {
 344		pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
 345				entry, (int)(index & RADIX_TREE_MAP_MASK),
 346				index * IDA_BITMAP_BITS,
 347				index * IDA_BITMAP_BITS + BITS_PER_LONG -
 348					RADIX_TREE_EXCEPTIONAL_SHIFT,
 349				(unsigned long)entry >>
 350					RADIX_TREE_EXCEPTIONAL_SHIFT);
 351	} else {
 352		struct ida_bitmap *bitmap = entry;
 353
 354		pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
 355				(int)(index & RADIX_TREE_MAP_MASK),
 356				index * IDA_BITMAP_BITS,
 357				(index + 1) * IDA_BITMAP_BITS - 1);
 358		for (i = 0; i < IDA_BITMAP_LONGS; i++)
 359			pr_cont(" %lx", bitmap->bitmap[i]);
 360		pr_cont("\n");
 361	}
 362}
 363
 364static void ida_dump(struct ida *ida)
 365{
 366	struct radix_tree_root *root = &ida->ida_rt;
 367	pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
 368				root->gfp_mask >> ROOT_TAG_SHIFT);
 369	dump_ida_node(root->rnode, 0);
 370}
 371#endif
 372
 373/*
 374 * This assumes that the caller has performed appropriate preallocation, and
 375 * that the caller has pinned this thread of control to the current CPU.
 376 */
 377static struct radix_tree_node *
 378radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 379			struct radix_tree_root *root,
 380			unsigned int shift, unsigned int offset,
 381			unsigned int count, unsigned int exceptional)
 382{
 383	struct radix_tree_node *ret = NULL;
 384
 385	/*
 386	 * Preload code isn't irq safe and it doesn't make sense to use
 387	 * preloading during an interrupt anyway as all the allocations have
 388	 * to be atomic. So just do normal allocation when in interrupt.
 389	 */
 390	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 391		struct radix_tree_preload *rtp;
 392
 393		/*
 394		 * Even if the caller has preloaded, try to allocate from the
 395		 * cache first for the new node to get accounted to the memory
 396		 * cgroup.
 397		 */
 398		ret = kmem_cache_alloc(radix_tree_node_cachep,
 399				       gfp_mask | __GFP_NOWARN);
 400		if (ret)
 401			goto out;
 402
 403		/*
 404		 * Provided the caller has preloaded here, we will always
 405		 * succeed in getting a node here (and never reach
 406		 * kmem_cache_alloc)
 407		 */
 408		rtp = this_cpu_ptr(&radix_tree_preloads);
 409		if (rtp->nr) {
 410			ret = rtp->nodes;
 411			rtp->nodes = ret->parent;
 412			rtp->nr--;
 413		}
 414		/*
 415		 * Update the allocation stack trace as this is more useful
 416		 * for debugging.
 417		 */
 418		kmemleak_update_trace(ret);
 419		goto out;
 420	}
 421	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 422out:
 423	BUG_ON(radix_tree_is_internal_node(ret));
 424	if (ret) {
 425		ret->shift = shift;
 426		ret->offset = offset;
 427		ret->count = count;
 428		ret->exceptional = exceptional;
 429		ret->parent = parent;
 430		ret->root = root;
 431	}
 432	return ret;
 433}
 434
 435static void radix_tree_node_rcu_free(struct rcu_head *head)
 436{
 437	struct radix_tree_node *node =
 438			container_of(head, struct radix_tree_node, rcu_head);
 439
 440	/*
 441	 * Must only free zeroed nodes into the slab.  We can be left with
 442	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 443	 * and tags here.
 444	 */
 445	memset(node->slots, 0, sizeof(node->slots));
 446	memset(node->tags, 0, sizeof(node->tags));
 447	INIT_LIST_HEAD(&node->private_list);
 448
 449	kmem_cache_free(radix_tree_node_cachep, node);
 450}
 451
 452static inline void
 453radix_tree_node_free(struct radix_tree_node *node)
 454{
 455	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 456}
 457
 458/*
 459 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 460 * ensure that the addition of a single element in the tree cannot fail.  On
 461 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 462 * with preemption not disabled.
 463 *
 464 * To make use of this facility, the radix tree must be initialised without
 465 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 466 */
 467static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 468{
 469	struct radix_tree_preload *rtp;
 470	struct radix_tree_node *node;
 471	int ret = -ENOMEM;
 472
 473	/*
 474	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 475	 * they should never be accounted to any particular memory cgroup.
 476	 */
 477	gfp_mask &= ~__GFP_ACCOUNT;
 478
 479	preempt_disable();
 480	rtp = this_cpu_ptr(&radix_tree_preloads);
 481	while (rtp->nr < nr) {
 482		preempt_enable();
 483		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 484		if (node == NULL)
 485			goto out;
 486		preempt_disable();
 487		rtp = this_cpu_ptr(&radix_tree_preloads);
 488		if (rtp->nr < nr) {
 489			node->parent = rtp->nodes;
 490			rtp->nodes = node;
 491			rtp->nr++;
 492		} else {
 493			kmem_cache_free(radix_tree_node_cachep, node);
 494		}
 495	}
 496	ret = 0;
 497out:
 498	return ret;
 499}
 500
 501/*
 502 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 503 * ensure that the addition of a single element in the tree cannot fail.  On
 504 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 505 * with preemption not disabled.
 506 *
 507 * To make use of this facility, the radix tree must be initialised without
 508 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 509 */
 510int radix_tree_preload(gfp_t gfp_mask)
 511{
 512	/* Warn on non-sensical use... */
 513	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 514	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 515}
 516EXPORT_SYMBOL(radix_tree_preload);
 517
 518/*
 519 * The same as above function, except we don't guarantee preloading happens.
 520 * We do it, if we decide it helps. On success, return zero with preemption
 521 * disabled. On error, return -ENOMEM with preemption not disabled.
 522 */
 523int radix_tree_maybe_preload(gfp_t gfp_mask)
 524{
 525	if (gfpflags_allow_blocking(gfp_mask))
 526		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 527	/* Preloading doesn't help anything with this gfp mask, skip it */
 528	preempt_disable();
 529	return 0;
 530}
 531EXPORT_SYMBOL(radix_tree_maybe_preload);
 532
 533#ifdef CONFIG_RADIX_TREE_MULTIORDER
 534/*
 535 * Preload with enough objects to ensure that we can split a single entry
 536 * of order @old_order into many entries of size @new_order
 537 */
 538int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 539							gfp_t gfp_mask)
 540{
 541	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 542	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 543				(new_order / RADIX_TREE_MAP_SHIFT);
 544	unsigned nr = 0;
 545
 546	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 547	BUG_ON(new_order >= old_order);
 548
 549	while (layers--)
 550		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 551	return __radix_tree_preload(gfp_mask, top * nr);
 552}
 553#endif
 554
 555/*
 556 * The same as function above, but preload number of nodes required to insert
 557 * (1 << order) continuous naturally-aligned elements.
 558 */
 559int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 560{
 561	unsigned long nr_subtrees;
 562	int nr_nodes, subtree_height;
 563
 564	/* Preloading doesn't help anything with this gfp mask, skip it */
 565	if (!gfpflags_allow_blocking(gfp_mask)) {
 566		preempt_disable();
 567		return 0;
 568	}
 569
 570	/*
 571	 * Calculate number and height of fully populated subtrees it takes to
 572	 * store (1 << order) elements.
 573	 */
 574	nr_subtrees = 1 << order;
 575	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 576			subtree_height++)
 577		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 578
 579	/*
 580	 * The worst case is zero height tree with a single item at index 0 and
 581	 * then inserting items starting at ULONG_MAX - (1 << order).
 582	 *
 583	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 584	 * 0-index item.
 585	 */
 586	nr_nodes = RADIX_TREE_MAX_PATH;
 587
 588	/* Plus branch to fully populated subtrees. */
 589	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 590
 591	/* Root node is shared. */
 592	nr_nodes--;
 593
 594	/* Plus nodes required to build subtrees. */
 595	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 596
 597	return __radix_tree_preload(gfp_mask, nr_nodes);
 598}
 599
 600static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 601		struct radix_tree_node **nodep, unsigned long *maxindex)
 602{
 603	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 604
 605	*nodep = node;
 606
 607	if (likely(radix_tree_is_internal_node(node))) {
 608		node = entry_to_node(node);
 609		*maxindex = node_maxindex(node);
 610		return node->shift + RADIX_TREE_MAP_SHIFT;
 611	}
 612
 613	*maxindex = 0;
 614	return 0;
 615}
 616
 617/*
 618 *	Extend a radix tree so it can store key @index.
 619 */
 620static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 621				unsigned long index, unsigned int shift)
 622{
 623	void *entry;
 624	unsigned int maxshift;
 625	int tag;
 626
 627	/* Figure out what the shift should be.  */
 628	maxshift = shift;
 629	while (index > shift_maxindex(maxshift))
 630		maxshift += RADIX_TREE_MAP_SHIFT;
 631
 632	entry = rcu_dereference_raw(root->rnode);
 633	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 634		goto out;
 635
 636	do {
 637		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 638							root, shift, 0, 1, 0);
 639		if (!node)
 640			return -ENOMEM;
 641
 642		if (is_idr(root)) {
 643			all_tag_set(node, IDR_FREE);
 644			if (!root_tag_get(root, IDR_FREE)) {
 645				tag_clear(node, IDR_FREE, 0);
 646				root_tag_set(root, IDR_FREE);
 647			}
 648		} else {
 649			/* Propagate the aggregated tag info to the new child */
 650			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 651				if (root_tag_get(root, tag))
 652					tag_set(node, tag, 0);
 653			}
 654		}
 655
 656		BUG_ON(shift > BITS_PER_LONG);
 657		if (radix_tree_is_internal_node(entry)) {
 658			entry_to_node(entry)->parent = node;
 659		} else if (radix_tree_exceptional_entry(entry)) {
 660			/* Moving an exceptional root->rnode to a node */
 661			node->exceptional = 1;
 662		}
 663		/*
 664		 * entry was already in the radix tree, so we do not need
 665		 * rcu_assign_pointer here
 666		 */
 667		node->slots[0] = (void __rcu *)entry;
 668		entry = node_to_entry(node);
 669		rcu_assign_pointer(root->rnode, entry);
 670		shift += RADIX_TREE_MAP_SHIFT;
 671	} while (shift <= maxshift);
 672out:
 673	return maxshift + RADIX_TREE_MAP_SHIFT;
 674}
 675
 676/**
 677 *	radix_tree_shrink    -    shrink radix tree to minimum height
 678 *	@root		radix tree root
 679 */
 680static inline bool radix_tree_shrink(struct radix_tree_root *root,
 681				     radix_tree_update_node_t update_node)
 682{
 683	bool shrunk = false;
 684
 685	for (;;) {
 686		struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 687		struct radix_tree_node *child;
 688
 689		if (!radix_tree_is_internal_node(node))
 690			break;
 691		node = entry_to_node(node);
 692
 693		/*
 694		 * The candidate node has more than one child, or its child
 695		 * is not at the leftmost slot, or the child is a multiorder
 696		 * entry, we cannot shrink.
 697		 */
 698		if (node->count != 1)
 699			break;
 700		child = rcu_dereference_raw(node->slots[0]);
 701		if (!child)
 702			break;
 703		if (!radix_tree_is_internal_node(child) && node->shift)
 
 
 
 
 
 
 704			break;
 705
 706		if (radix_tree_is_internal_node(child))
 707			entry_to_node(child)->parent = NULL;
 708
 709		/*
 710		 * We don't need rcu_assign_pointer(), since we are simply
 711		 * moving the node from one part of the tree to another: if it
 712		 * was safe to dereference the old pointer to it
 713		 * (node->slots[0]), it will be safe to dereference the new
 714		 * one (root->rnode) as far as dependent read barriers go.
 715		 */
 716		root->rnode = (void __rcu *)child;
 717		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 718			root_tag_clear(root, IDR_FREE);
 719
 720		/*
 721		 * We have a dilemma here. The node's slot[0] must not be
 722		 * NULLed in case there are concurrent lookups expecting to
 723		 * find the item. However if this was a bottom-level node,
 724		 * then it may be subject to the slot pointer being visible
 725		 * to callers dereferencing it. If item corresponding to
 726		 * slot[0] is subsequently deleted, these callers would expect
 727		 * their slot to become empty sooner or later.
 728		 *
 729		 * For example, lockless pagecache will look up a slot, deref
 730		 * the page pointer, and if the page has 0 refcount it means it
 731		 * was concurrently deleted from pagecache so try the deref
 732		 * again. Fortunately there is already a requirement for logic
 733		 * to retry the entire slot lookup -- the indirect pointer
 734		 * problem (replacing direct root node with an indirect pointer
 735		 * also results in a stale slot). So tag the slot as indirect
 736		 * to force callers to retry.
 737		 */
 738		node->count = 0;
 739		if (!radix_tree_is_internal_node(child)) {
 740			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 741			if (update_node)
 742				update_node(node);
 743		}
 744
 745		WARN_ON_ONCE(!list_empty(&node->private_list));
 746		radix_tree_node_free(node);
 747		shrunk = true;
 748	}
 749
 750	return shrunk;
 751}
 752
 753static bool delete_node(struct radix_tree_root *root,
 754			struct radix_tree_node *node,
 755			radix_tree_update_node_t update_node)
 756{
 757	bool deleted = false;
 758
 759	do {
 760		struct radix_tree_node *parent;
 761
 762		if (node->count) {
 763			if (node_to_entry(node) ==
 764					rcu_dereference_raw(root->rnode))
 765				deleted |= radix_tree_shrink(root,
 766								update_node);
 767			return deleted;
 768		}
 769
 770		parent = node->parent;
 771		if (parent) {
 772			parent->slots[node->offset] = NULL;
 773			parent->count--;
 774		} else {
 775			/*
 776			 * Shouldn't the tags already have all been cleared
 777			 * by the caller?
 778			 */
 779			if (!is_idr(root))
 780				root_tag_clear_all(root);
 781			root->rnode = NULL;
 782		}
 783
 784		WARN_ON_ONCE(!list_empty(&node->private_list));
 785		radix_tree_node_free(node);
 786		deleted = true;
 787
 788		node = parent;
 789	} while (node);
 790
 791	return deleted;
 792}
 793
 794/**
 795 *	__radix_tree_create	-	create a slot in a radix tree
 796 *	@root:		radix tree root
 797 *	@index:		index key
 798 *	@order:		index occupies 2^order aligned slots
 799 *	@nodep:		returns node
 800 *	@slotp:		returns slot
 801 *
 802 *	Create, if necessary, and return the node and slot for an item
 803 *	at position @index in the radix tree @root.
 804 *
 805 *	Until there is more than one item in the tree, no nodes are
 806 *	allocated and @root->rnode is used as a direct slot instead of
 807 *	pointing to a node, in which case *@nodep will be NULL.
 808 *
 809 *	Returns -ENOMEM, or 0 for success.
 810 */
 811int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 812			unsigned order, struct radix_tree_node **nodep,
 813			void __rcu ***slotp)
 814{
 815	struct radix_tree_node *node = NULL, *child;
 816	void __rcu **slot = (void __rcu **)&root->rnode;
 817	unsigned long maxindex;
 818	unsigned int shift, offset = 0;
 819	unsigned long max = index | ((1UL << order) - 1);
 820	gfp_t gfp = root_gfp_mask(root);
 821
 822	shift = radix_tree_load_root(root, &child, &maxindex);
 823
 824	/* Make sure the tree is high enough.  */
 825	if (order > 0 && max == ((1UL << order) - 1))
 826		max++;
 827	if (max > maxindex) {
 828		int error = radix_tree_extend(root, gfp, max, shift);
 829		if (error < 0)
 830			return error;
 831		shift = error;
 832		child = rcu_dereference_raw(root->rnode);
 833	}
 834
 835	while (shift > order) {
 836		shift -= RADIX_TREE_MAP_SHIFT;
 837		if (child == NULL) {
 838			/* Have to add a child node.  */
 839			child = radix_tree_node_alloc(gfp, node, root, shift,
 840							offset, 0, 0);
 841			if (!child)
 842				return -ENOMEM;
 843			rcu_assign_pointer(*slot, node_to_entry(child));
 844			if (node)
 845				node->count++;
 846		} else if (!radix_tree_is_internal_node(child))
 847			break;
 848
 849		/* Go a level down */
 850		node = entry_to_node(child);
 851		offset = radix_tree_descend(node, &child, index);
 852		slot = &node->slots[offset];
 853	}
 854
 855	if (nodep)
 856		*nodep = node;
 857	if (slotp)
 858		*slotp = slot;
 859	return 0;
 860}
 861
 862/*
 863 * Free any nodes below this node.  The tree is presumed to not need
 864 * shrinking, and any user data in the tree is presumed to not need a
 865 * destructor called on it.  If we need to add a destructor, we can
 866 * add that functionality later.  Note that we may not clear tags or
 867 * slots from the tree as an RCU walker may still have a pointer into
 868 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 869 * but we'll still have to clear those in rcu_free.
 870 */
 871static void radix_tree_free_nodes(struct radix_tree_node *node)
 872{
 873	unsigned offset = 0;
 874	struct radix_tree_node *child = entry_to_node(node);
 875
 876	for (;;) {
 877		void *entry = rcu_dereference_raw(child->slots[offset]);
 878		if (radix_tree_is_internal_node(entry) &&
 879					!is_sibling_entry(child, entry)) {
 880			child = entry_to_node(entry);
 881			offset = 0;
 882			continue;
 883		}
 884		offset++;
 885		while (offset == RADIX_TREE_MAP_SIZE) {
 886			struct radix_tree_node *old = child;
 887			offset = child->offset + 1;
 888			child = child->parent;
 889			WARN_ON_ONCE(!list_empty(&old->private_list));
 890			radix_tree_node_free(old);
 891			if (old == entry_to_node(node))
 892				return;
 893		}
 894	}
 895}
 896
 897#ifdef CONFIG_RADIX_TREE_MULTIORDER
 898static inline int insert_entries(struct radix_tree_node *node,
 899		void __rcu **slot, void *item, unsigned order, bool replace)
 900{
 901	struct radix_tree_node *child;
 902	unsigned i, n, tag, offset, tags = 0;
 903
 904	if (node) {
 905		if (order > node->shift)
 906			n = 1 << (order - node->shift);
 907		else
 908			n = 1;
 909		offset = get_slot_offset(node, slot);
 910	} else {
 911		n = 1;
 912		offset = 0;
 913	}
 914
 915	if (n > 1) {
 916		offset = offset & ~(n - 1);
 917		slot = &node->slots[offset];
 918	}
 919	child = node_to_entry(slot);
 920
 921	for (i = 0; i < n; i++) {
 922		if (slot[i]) {
 923			if (replace) {
 924				node->count--;
 925				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 926					if (tag_get(node, tag, offset + i))
 927						tags |= 1 << tag;
 928			} else
 929				return -EEXIST;
 930		}
 931	}
 932
 933	for (i = 0; i < n; i++) {
 934		struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
 935		if (i) {
 936			rcu_assign_pointer(slot[i], child);
 937			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 938				if (tags & (1 << tag))
 939					tag_clear(node, tag, offset + i);
 940		} else {
 941			rcu_assign_pointer(slot[i], item);
 942			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 943				if (tags & (1 << tag))
 944					tag_set(node, tag, offset);
 945		}
 946		if (radix_tree_is_internal_node(old) &&
 947					!is_sibling_entry(node, old) &&
 948					(old != RADIX_TREE_RETRY))
 949			radix_tree_free_nodes(old);
 950		if (radix_tree_exceptional_entry(old))
 951			node->exceptional--;
 952	}
 953	if (node) {
 954		node->count += n;
 955		if (radix_tree_exceptional_entry(item))
 956			node->exceptional += n;
 957	}
 958	return n;
 959}
 960#else
 961static inline int insert_entries(struct radix_tree_node *node,
 962		void __rcu **slot, void *item, unsigned order, bool replace)
 963{
 964	if (*slot)
 965		return -EEXIST;
 966	rcu_assign_pointer(*slot, item);
 967	if (node) {
 968		node->count++;
 969		if (radix_tree_exceptional_entry(item))
 970			node->exceptional++;
 971	}
 972	return 1;
 973}
 974#endif
 975
 976/**
 977 *	__radix_tree_insert    -    insert into a radix tree
 978 *	@root:		radix tree root
 979 *	@index:		index key
 980 *	@order:		key covers the 2^order indices around index
 981 *	@item:		item to insert
 982 *
 983 *	Insert an item into the radix tree at position @index.
 984 */
 985int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 986			unsigned order, void *item)
 987{
 988	struct radix_tree_node *node;
 989	void __rcu **slot;
 990	int error;
 991
 992	BUG_ON(radix_tree_is_internal_node(item));
 993
 994	error = __radix_tree_create(root, index, order, &node, &slot);
 995	if (error)
 996		return error;
 997
 998	error = insert_entries(node, slot, item, order, false);
 999	if (error < 0)
1000		return error;
1001
1002	if (node) {
1003		unsigned offset = get_slot_offset(node, slot);
1004		BUG_ON(tag_get(node, 0, offset));
1005		BUG_ON(tag_get(node, 1, offset));
1006		BUG_ON(tag_get(node, 2, offset));
1007	} else {
1008		BUG_ON(root_tags_get(root));
1009	}
1010
1011	return 0;
1012}
1013EXPORT_SYMBOL(__radix_tree_insert);
1014
1015/**
1016 *	__radix_tree_lookup	-	lookup an item in a radix tree
1017 *	@root:		radix tree root
1018 *	@index:		index key
1019 *	@nodep:		returns node
1020 *	@slotp:		returns slot
1021 *
1022 *	Lookup and return the item at position @index in the radix
1023 *	tree @root.
1024 *
1025 *	Until there is more than one item in the tree, no nodes are
1026 *	allocated and @root->rnode is used as a direct slot instead of
1027 *	pointing to a node, in which case *@nodep will be NULL.
1028 */
1029void *__radix_tree_lookup(const struct radix_tree_root *root,
1030			  unsigned long index, struct radix_tree_node **nodep,
1031			  void __rcu ***slotp)
1032{
1033	struct radix_tree_node *node, *parent;
1034	unsigned long maxindex;
1035	void __rcu **slot;
1036
1037 restart:
1038	parent = NULL;
1039	slot = (void __rcu **)&root->rnode;
1040	radix_tree_load_root(root, &node, &maxindex);
1041	if (index > maxindex)
1042		return NULL;
1043
1044	while (radix_tree_is_internal_node(node)) {
1045		unsigned offset;
1046
1047		if (node == RADIX_TREE_RETRY)
1048			goto restart;
1049		parent = entry_to_node(node);
1050		offset = radix_tree_descend(parent, &node, index);
1051		slot = parent->slots + offset;
 
 
 
 
1052	}
1053
1054	if (nodep)
1055		*nodep = parent;
1056	if (slotp)
1057		*slotp = slot;
1058	return node;
1059}
1060
1061/**
1062 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
1063 *	@root:		radix tree root
1064 *	@index:		index key
1065 *
1066 *	Returns:  the slot corresponding to the position @index in the
1067 *	radix tree @root. This is useful for update-if-exists operations.
1068 *
1069 *	This function can be called under rcu_read_lock iff the slot is not
1070 *	modified by radix_tree_replace_slot, otherwise it must be called
1071 *	exclusive from other writers. Any dereference of the slot must be done
1072 *	using radix_tree_deref_slot.
1073 */
1074void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075				unsigned long index)
1076{
1077	void __rcu **slot;
1078
1079	if (!__radix_tree_lookup(root, index, NULL, &slot))
1080		return NULL;
1081	return slot;
1082}
1083EXPORT_SYMBOL(radix_tree_lookup_slot);
1084
1085/**
1086 *	radix_tree_lookup    -    perform lookup operation on a radix tree
1087 *	@root:		radix tree root
1088 *	@index:		index key
1089 *
1090 *	Lookup the item at the position @index in the radix tree @root.
1091 *
1092 *	This function can be called under rcu_read_lock, however the caller
1093 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 *	them safely). No RCU barriers are required to access or modify the
1095 *	returned item, however.
1096 */
1097void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098{
1099	return __radix_tree_lookup(root, index, NULL, NULL);
1100}
1101EXPORT_SYMBOL(radix_tree_lookup);
1102
1103static inline void replace_sibling_entries(struct radix_tree_node *node,
1104				void __rcu **slot, int count, int exceptional)
1105{
1106#ifdef CONFIG_RADIX_TREE_MULTIORDER
1107	void *ptr = node_to_entry(slot);
1108	unsigned offset = get_slot_offset(node, slot) + 1;
1109
1110	while (offset < RADIX_TREE_MAP_SIZE) {
1111		if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112			break;
1113		if (count < 0) {
1114			node->slots[offset] = NULL;
1115			node->count--;
1116		}
1117		node->exceptional += exceptional;
1118		offset++;
1119	}
1120#endif
1121}
1122
1123static void replace_slot(void __rcu **slot, void *item,
1124		struct radix_tree_node *node, int count, int exceptional)
1125{
1126	if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127		return;
1128
1129	if (node && (count || exceptional)) {
1130		node->count += count;
1131		node->exceptional += exceptional;
1132		replace_sibling_entries(node, slot, count, exceptional);
1133	}
1134
1135	rcu_assign_pointer(*slot, item);
1136}
1137
1138static bool node_tag_get(const struct radix_tree_root *root,
1139				const struct radix_tree_node *node,
1140				unsigned int tag, unsigned int offset)
1141{
1142	if (node)
1143		return tag_get(node, tag, offset);
1144	return root_tag_get(root, tag);
1145}
1146
1147/*
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1152 * deleted.
1153 */
1154static int calculate_count(struct radix_tree_root *root,
1155				struct radix_tree_node *node, void __rcu **slot,
1156				void *item, void *old)
1157{
1158	if (is_idr(root)) {
1159		unsigned offset = get_slot_offset(node, slot);
1160		bool free = node_tag_get(root, node, IDR_FREE, offset);
1161		if (!free)
1162			return 0;
1163		if (!old)
1164			return 1;
1165	}
1166	return !!item - !!old;
1167}
1168
1169/**
1170 * __radix_tree_replace		- replace item in a slot
1171 * @root:		radix tree root
1172 * @node:		pointer to tree node
1173 * @slot:		pointer to slot in @node
1174 * @item:		new item to store in the slot.
1175 * @update_node:	callback for changing leaf nodes
1176 *
1177 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1178 * across slot lookup and replacement.
1179 */
1180void __radix_tree_replace(struct radix_tree_root *root,
1181			  struct radix_tree_node *node,
1182			  void __rcu **slot, void *item,
1183			  radix_tree_update_node_t update_node)
1184{
1185	void *old = rcu_dereference_raw(*slot);
1186	int exceptional = !!radix_tree_exceptional_entry(item) -
1187				!!radix_tree_exceptional_entry(old);
1188	int count = calculate_count(root, node, slot, item, old);
1189
1190	/*
1191	 * This function supports replacing exceptional entries and
1192	 * deleting entries, but that needs accounting against the
1193	 * node unless the slot is root->rnode.
1194	 */
1195	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1196			(count || exceptional));
1197	replace_slot(slot, item, node, count, exceptional);
1198
1199	if (!node)
1200		return;
1201
1202	if (update_node)
1203		update_node(node);
1204
1205	delete_node(root, node, update_node);
1206}
1207
1208/**
1209 * radix_tree_replace_slot	- replace item in a slot
1210 * @root:	radix tree root
1211 * @slot:	pointer to slot
1212 * @item:	new item to store in the slot.
1213 *
1214 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1215 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1216 * across slot lookup and replacement.
1217 *
1218 * NOTE: This cannot be used to switch between non-entries (empty slots),
1219 * regular entries, and exceptional entries, as that requires accounting
1220 * inside the radix tree node. When switching from one type of entry or
1221 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1222 * radix_tree_iter_replace().
1223 */
1224void radix_tree_replace_slot(struct radix_tree_root *root,
1225			     void __rcu **slot, void *item)
1226{
1227	__radix_tree_replace(root, NULL, slot, item, NULL);
1228}
1229EXPORT_SYMBOL(radix_tree_replace_slot);
1230
1231/**
1232 * radix_tree_iter_replace - replace item in a slot
1233 * @root:	radix tree root
 
1234 * @slot:	pointer to slot
1235 * @item:	new item to store in the slot.
1236 *
1237 * For use with radix_tree_split() and radix_tree_for_each_slot().
1238 * Caller must hold tree write locked across split and replacement.
1239 */
1240void radix_tree_iter_replace(struct radix_tree_root *root,
1241				const struct radix_tree_iter *iter,
1242				void __rcu **slot, void *item)
1243{
1244	__radix_tree_replace(root, iter->node, slot, item, NULL);
1245}
1246
1247#ifdef CONFIG_RADIX_TREE_MULTIORDER
1248/**
1249 * radix_tree_join - replace multiple entries with one multiorder entry
1250 * @root: radix tree root
1251 * @index: an index inside the new entry
1252 * @order: order of the new entry
1253 * @item: new entry
1254 *
1255 * Call this function to replace several entries with one larger entry.
1256 * The existing entries are presumed to not need freeing as a result of
1257 * this call.
1258 *
1259 * The replacement entry will have all the tags set on it that were set
1260 * on any of the entries it is replacing.
1261 */
1262int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1263			unsigned order, void *item)
1264{
1265	struct radix_tree_node *node;
1266	void __rcu **slot;
1267	int error;
1268
1269	BUG_ON(radix_tree_is_internal_node(item));
1270
1271	error = __radix_tree_create(root, index, order, &node, &slot);
1272	if (!error)
1273		error = insert_entries(node, slot, item, order, true);
1274	if (error > 0)
1275		error = 0;
1276
1277	return error;
1278}
1279
1280/**
1281 * radix_tree_split - Split an entry into smaller entries
1282 * @root: radix tree root
1283 * @index: An index within the large entry
1284 * @order: Order of new entries
1285 *
1286 * Call this function as the first step in replacing a multiorder entry
1287 * with several entries of lower order.  After this function returns,
1288 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1289 * and call radix_tree_iter_replace() to set up each new entry.
1290 *
1291 * The tags from this entry are replicated to all the new entries.
1292 *
1293 * The radix tree should be locked against modification during the entire
1294 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1295 * should prompt RCU walkers to restart the lookup from the root.
1296 */
1297int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1298				unsigned order)
1299{
1300	struct radix_tree_node *parent, *node, *child;
1301	void __rcu **slot;
1302	unsigned int offset, end;
1303	unsigned n, tag, tags = 0;
1304	gfp_t gfp = root_gfp_mask(root);
1305
1306	if (!__radix_tree_lookup(root, index, &parent, &slot))
1307		return -ENOENT;
1308	if (!parent)
1309		return -ENOENT;
1310
1311	offset = get_slot_offset(parent, slot);
1312
1313	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1314		if (tag_get(parent, tag, offset))
1315			tags |= 1 << tag;
1316
1317	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1318		if (!is_sibling_entry(parent,
1319				rcu_dereference_raw(parent->slots[end])))
1320			break;
1321		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1322			if (tags & (1 << tag))
1323				tag_set(parent, tag, end);
1324		/* rcu_assign_pointer ensures tags are set before RETRY */
1325		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1326	}
1327	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1328	parent->exceptional -= (end - offset);
1329
1330	if (order == parent->shift)
1331		return 0;
1332	if (order > parent->shift) {
1333		while (offset < end)
1334			offset += insert_entries(parent, &parent->slots[offset],
1335					RADIX_TREE_RETRY, order, true);
1336		return 0;
1337	}
1338
1339	node = parent;
1340
1341	for (;;) {
1342		if (node->shift > order) {
1343			child = radix_tree_node_alloc(gfp, node, root,
1344					node->shift - RADIX_TREE_MAP_SHIFT,
1345					offset, 0, 0);
1346			if (!child)
1347				goto nomem;
1348			if (node != parent) {
1349				node->count++;
1350				rcu_assign_pointer(node->slots[offset],
1351							node_to_entry(child));
1352				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1353					if (tags & (1 << tag))
1354						tag_set(node, tag, offset);
1355			}
1356
1357			node = child;
1358			offset = 0;
1359			continue;
1360		}
1361
1362		n = insert_entries(node, &node->slots[offset],
1363					RADIX_TREE_RETRY, order, false);
1364		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1365
1366		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1367			if (tags & (1 << tag))
1368				tag_set(node, tag, offset);
1369		offset += n;
1370
1371		while (offset == RADIX_TREE_MAP_SIZE) {
1372			if (node == parent)
1373				break;
1374			offset = node->offset;
1375			child = node;
1376			node = node->parent;
1377			rcu_assign_pointer(node->slots[offset],
1378						node_to_entry(child));
1379			offset++;
1380		}
1381		if ((node == parent) && (offset == end))
1382			return 0;
1383	}
1384
1385 nomem:
1386	/* Shouldn't happen; did user forget to preload? */
1387	/* TODO: free all the allocated nodes */
1388	WARN_ON(1);
1389	return -ENOMEM;
1390}
1391#endif
1392
1393static void node_tag_set(struct radix_tree_root *root,
1394				struct radix_tree_node *node,
1395				unsigned int tag, unsigned int offset)
1396{
1397	while (node) {
1398		if (tag_get(node, tag, offset))
1399			return;
1400		tag_set(node, tag, offset);
1401		offset = node->offset;
1402		node = node->parent;
1403	}
1404
1405	if (!root_tag_get(root, tag))
1406		root_tag_set(root, tag);
1407}
1408
1409/**
1410 *	radix_tree_tag_set - set a tag on a radix tree node
1411 *	@root:		radix tree root
1412 *	@index:		index key
1413 *	@tag:		tag index
1414 *
1415 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1416 *	corresponding to @index in the radix tree.  From
1417 *	the root all the way down to the leaf node.
1418 *
1419 *	Returns the address of the tagged item.  Setting a tag on a not-present
1420 *	item is a bug.
1421 */
1422void *radix_tree_tag_set(struct radix_tree_root *root,
1423			unsigned long index, unsigned int tag)
1424{
1425	struct radix_tree_node *node, *parent;
1426	unsigned long maxindex;
1427
1428	radix_tree_load_root(root, &node, &maxindex);
1429	BUG_ON(index > maxindex);
1430
1431	while (radix_tree_is_internal_node(node)) {
1432		unsigned offset;
1433
1434		parent = entry_to_node(node);
1435		offset = radix_tree_descend(parent, &node, index);
1436		BUG_ON(!node);
1437
1438		if (!tag_get(parent, tag, offset))
1439			tag_set(parent, tag, offset);
1440	}
1441
1442	/* set the root's tag bit */
1443	if (!root_tag_get(root, tag))
1444		root_tag_set(root, tag);
1445
1446	return node;
1447}
1448EXPORT_SYMBOL(radix_tree_tag_set);
1449
1450/**
1451 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1452 * @root:	radix tree root
1453 * @iter:	iterator state
1454 * @tag:	tag to set
1455 */
1456void radix_tree_iter_tag_set(struct radix_tree_root *root,
1457			const struct radix_tree_iter *iter, unsigned int tag)
1458{
1459	node_tag_set(root, iter->node, tag, iter_offset(iter));
1460}
1461
1462static void node_tag_clear(struct radix_tree_root *root,
1463				struct radix_tree_node *node,
1464				unsigned int tag, unsigned int offset)
1465{
1466	while (node) {
1467		if (!tag_get(node, tag, offset))
1468			return;
1469		tag_clear(node, tag, offset);
1470		if (any_tag_set(node, tag))
1471			return;
1472
1473		offset = node->offset;
1474		node = node->parent;
1475	}
1476
1477	/* clear the root's tag bit */
1478	if (root_tag_get(root, tag))
1479		root_tag_clear(root, tag);
1480}
1481
1482/**
1483 *	radix_tree_tag_clear - clear a tag on a radix tree node
1484 *	@root:		radix tree root
1485 *	@index:		index key
1486 *	@tag:		tag index
1487 *
1488 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1489 *	corresponding to @index in the radix tree.  If this causes
1490 *	the leaf node to have no tags set then clear the tag in the
1491 *	next-to-leaf node, etc.
1492 *
1493 *	Returns the address of the tagged item on success, else NULL.  ie:
1494 *	has the same return value and semantics as radix_tree_lookup().
1495 */
1496void *radix_tree_tag_clear(struct radix_tree_root *root,
1497			unsigned long index, unsigned int tag)
1498{
1499	struct radix_tree_node *node, *parent;
1500	unsigned long maxindex;
1501	int uninitialized_var(offset);
1502
1503	radix_tree_load_root(root, &node, &maxindex);
1504	if (index > maxindex)
1505		return NULL;
1506
1507	parent = NULL;
1508
1509	while (radix_tree_is_internal_node(node)) {
1510		parent = entry_to_node(node);
1511		offset = radix_tree_descend(parent, &node, index);
1512	}
1513
1514	if (node)
1515		node_tag_clear(root, parent, tag, offset);
1516
1517	return node;
1518}
1519EXPORT_SYMBOL(radix_tree_tag_clear);
1520
1521/**
1522  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1523  * @root: radix tree root
1524  * @iter: iterator state
1525  * @tag: tag to clear
1526  */
1527void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1528			const struct radix_tree_iter *iter, unsigned int tag)
1529{
1530	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1531}
1532
1533/**
1534 * radix_tree_tag_get - get a tag on a radix tree node
1535 * @root:		radix tree root
1536 * @index:		index key
1537 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1538 *
1539 * Return values:
1540 *
1541 *  0: tag not present or not set
1542 *  1: tag set
1543 *
1544 * Note that the return value of this function may not be relied on, even if
1545 * the RCU lock is held, unless tag modification and node deletion are excluded
1546 * from concurrency.
1547 */
1548int radix_tree_tag_get(const struct radix_tree_root *root,
1549			unsigned long index, unsigned int tag)
1550{
1551	struct radix_tree_node *node, *parent;
1552	unsigned long maxindex;
1553
1554	if (!root_tag_get(root, tag))
1555		return 0;
1556
1557	radix_tree_load_root(root, &node, &maxindex);
1558	if (index > maxindex)
1559		return 0;
1560
1561	while (radix_tree_is_internal_node(node)) {
1562		unsigned offset;
1563
1564		parent = entry_to_node(node);
1565		offset = radix_tree_descend(parent, &node, index);
1566
1567		if (!tag_get(parent, tag, offset))
1568			return 0;
1569		if (node == RADIX_TREE_RETRY)
1570			break;
1571	}
1572
1573	return 1;
1574}
1575EXPORT_SYMBOL(radix_tree_tag_get);
1576
1577static inline void __set_iter_shift(struct radix_tree_iter *iter,
1578					unsigned int shift)
1579{
1580#ifdef CONFIG_RADIX_TREE_MULTIORDER
1581	iter->shift = shift;
1582#endif
1583}
1584
1585/* Construct iter->tags bit-mask from node->tags[tag] array */
1586static void set_iter_tags(struct radix_tree_iter *iter,
1587				struct radix_tree_node *node, unsigned offset,
1588				unsigned tag)
1589{
1590	unsigned tag_long = offset / BITS_PER_LONG;
1591	unsigned tag_bit  = offset % BITS_PER_LONG;
1592
1593	if (!node) {
1594		iter->tags = 1;
1595		return;
1596	}
1597
1598	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1599
1600	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1601	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1602		/* Pick tags from next element */
1603		if (tag_bit)
1604			iter->tags |= node->tags[tag][tag_long + 1] <<
1605						(BITS_PER_LONG - tag_bit);
1606		/* Clip chunk size, here only BITS_PER_LONG tags */
1607		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1608	}
1609}
1610
1611#ifdef CONFIG_RADIX_TREE_MULTIORDER
1612static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1613			void __rcu **slot, struct radix_tree_iter *iter)
1614{
1615	while (iter->index < iter->next_index) {
1616		*nodep = rcu_dereference_raw(*slot);
1617		if (*nodep && !is_sibling_entry(iter->node, *nodep))
1618			return slot;
1619		slot++;
1620		iter->index = __radix_tree_iter_add(iter, 1);
1621		iter->tags >>= 1;
1622	}
1623
1624	*nodep = NULL;
1625	return NULL;
1626}
1627
1628void __rcu **__radix_tree_next_slot(void __rcu **slot,
1629				struct radix_tree_iter *iter, unsigned flags)
1630{
1631	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1632	struct radix_tree_node *node;
1633
1634	slot = skip_siblings(&node, slot, iter);
1635
1636	while (radix_tree_is_internal_node(node)) {
1637		unsigned offset;
1638		unsigned long next_index;
1639
1640		if (node == RADIX_TREE_RETRY)
1641			return slot;
1642		node = entry_to_node(node);
1643		iter->node = node;
1644		iter->shift = node->shift;
1645
1646		if (flags & RADIX_TREE_ITER_TAGGED) {
1647			offset = radix_tree_find_next_bit(node, tag, 0);
1648			if (offset == RADIX_TREE_MAP_SIZE)
1649				return NULL;
1650			slot = &node->slots[offset];
1651			iter->index = __radix_tree_iter_add(iter, offset);
1652			set_iter_tags(iter, node, offset, tag);
1653			node = rcu_dereference_raw(*slot);
1654		} else {
1655			offset = 0;
1656			slot = &node->slots[0];
1657			for (;;) {
1658				node = rcu_dereference_raw(*slot);
1659				if (node)
1660					break;
1661				slot++;
1662				offset++;
1663				if (offset == RADIX_TREE_MAP_SIZE)
1664					return NULL;
1665			}
1666			iter->index = __radix_tree_iter_add(iter, offset);
1667		}
1668		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1669			goto none;
1670		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1671		if (next_index < iter->next_index)
1672			iter->next_index = next_index;
1673	}
1674
1675	return slot;
1676 none:
1677	iter->next_index = 0;
1678	return NULL;
1679}
1680EXPORT_SYMBOL(__radix_tree_next_slot);
1681#else
1682static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1683			void __rcu **slot, struct radix_tree_iter *iter)
1684{
1685	return slot;
1686}
1687#endif
1688
1689void __rcu **radix_tree_iter_resume(void __rcu **slot,
1690					struct radix_tree_iter *iter)
1691{
1692	struct radix_tree_node *node;
1693
1694	slot++;
1695	iter->index = __radix_tree_iter_add(iter, 1);
1696	skip_siblings(&node, slot, iter);
1697	iter->next_index = iter->index;
1698	iter->tags = 0;
1699	return NULL;
1700}
1701EXPORT_SYMBOL(radix_tree_iter_resume);
1702
1703/**
1704 * radix_tree_next_chunk - find next chunk of slots for iteration
1705 *
1706 * @root:	radix tree root
1707 * @iter:	iterator state
1708 * @flags:	RADIX_TREE_ITER_* flags and tag index
1709 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1710 */
1711void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1712			     struct radix_tree_iter *iter, unsigned flags)
1713{
1714	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1715	struct radix_tree_node *node, *child;
1716	unsigned long index, offset, maxindex;
1717
1718	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1719		return NULL;
1720
1721	/*
1722	 * Catch next_index overflow after ~0UL. iter->index never overflows
1723	 * during iterating; it can be zero only at the beginning.
1724	 * And we cannot overflow iter->next_index in a single step,
1725	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1726	 *
1727	 * This condition also used by radix_tree_next_slot() to stop
1728	 * contiguous iterating, and forbid switching to the next chunk.
1729	 */
1730	index = iter->next_index;
1731	if (!index && iter->index)
1732		return NULL;
1733
1734 restart:
1735	radix_tree_load_root(root, &child, &maxindex);
1736	if (index > maxindex)
1737		return NULL;
1738	if (!child)
1739		return NULL;
1740
1741	if (!radix_tree_is_internal_node(child)) {
1742		/* Single-slot tree */
1743		iter->index = index;
1744		iter->next_index = maxindex + 1;
1745		iter->tags = 1;
1746		iter->node = NULL;
1747		__set_iter_shift(iter, 0);
1748		return (void __rcu **)&root->rnode;
1749	}
1750
1751	do {
1752		node = entry_to_node(child);
1753		offset = radix_tree_descend(node, &child, index);
1754
1755		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1756				!tag_get(node, tag, offset) : !child) {
1757			/* Hole detected */
1758			if (flags & RADIX_TREE_ITER_CONTIG)
1759				return NULL;
1760
1761			if (flags & RADIX_TREE_ITER_TAGGED)
1762				offset = radix_tree_find_next_bit(node, tag,
1763						offset + 1);
1764			else
1765				while (++offset	< RADIX_TREE_MAP_SIZE) {
1766					void *slot = rcu_dereference_raw(
1767							node->slots[offset]);
1768					if (is_sibling_entry(node, slot))
1769						continue;
1770					if (slot)
1771						break;
1772				}
1773			index &= ~node_maxindex(node);
1774			index += offset << node->shift;
1775			/* Overflow after ~0UL */
1776			if (!index)
1777				return NULL;
1778			if (offset == RADIX_TREE_MAP_SIZE)
1779				goto restart;
1780			child = rcu_dereference_raw(node->slots[offset]);
1781		}
1782
1783		if (!child)
1784			goto restart;
1785		if (child == RADIX_TREE_RETRY)
1786			break;
1787	} while (radix_tree_is_internal_node(child));
1788
1789	/* Update the iterator state */
1790	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1791	iter->next_index = (index | node_maxindex(node)) + 1;
1792	iter->node = node;
1793	__set_iter_shift(iter, node->shift);
1794
1795	if (flags & RADIX_TREE_ITER_TAGGED)
1796		set_iter_tags(iter, node, offset, tag);
1797
1798	return node->slots + offset;
1799}
1800EXPORT_SYMBOL(radix_tree_next_chunk);
1801
1802/**
1803 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1804 *	@root:		radix tree root
1805 *	@results:	where the results of the lookup are placed
1806 *	@first_index:	start the lookup from this key
1807 *	@max_items:	place up to this many items at *results
1808 *
1809 *	Performs an index-ascending scan of the tree for present items.  Places
1810 *	them at *@results and returns the number of items which were placed at
1811 *	*@results.
1812 *
1813 *	The implementation is naive.
1814 *
1815 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1816 *	rcu_read_lock. In this case, rather than the returned results being
1817 *	an atomic snapshot of the tree at a single point in time, the
1818 *	semantics of an RCU protected gang lookup are as though multiple
1819 *	radix_tree_lookups have been issued in individual locks, and results
1820 *	stored in 'results'.
1821 */
1822unsigned int
1823radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1824			unsigned long first_index, unsigned int max_items)
1825{
1826	struct radix_tree_iter iter;
1827	void __rcu **slot;
1828	unsigned int ret = 0;
1829
1830	if (unlikely(!max_items))
1831		return 0;
1832
1833	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1834		results[ret] = rcu_dereference_raw(*slot);
1835		if (!results[ret])
1836			continue;
1837		if (radix_tree_is_internal_node(results[ret])) {
1838			slot = radix_tree_iter_retry(&iter);
1839			continue;
1840		}
1841		if (++ret == max_items)
1842			break;
1843	}
1844
1845	return ret;
1846}
1847EXPORT_SYMBOL(radix_tree_gang_lookup);
1848
1849/**
1850 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1851 *	@root:		radix tree root
1852 *	@results:	where the results of the lookup are placed
1853 *	@indices:	where their indices should be placed (but usually NULL)
1854 *	@first_index:	start the lookup from this key
1855 *	@max_items:	place up to this many items at *results
1856 *
1857 *	Performs an index-ascending scan of the tree for present items.  Places
1858 *	their slots at *@results and returns the number of items which were
1859 *	placed at *@results.
1860 *
1861 *	The implementation is naive.
1862 *
1863 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1864 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1865 *	protection, radix_tree_deref_slot may fail requiring a retry.
1866 */
1867unsigned int
1868radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1869			void __rcu ***results, unsigned long *indices,
1870			unsigned long first_index, unsigned int max_items)
1871{
1872	struct radix_tree_iter iter;
1873	void __rcu **slot;
1874	unsigned int ret = 0;
1875
1876	if (unlikely(!max_items))
1877		return 0;
1878
1879	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1880		results[ret] = slot;
1881		if (indices)
1882			indices[ret] = iter.index;
1883		if (++ret == max_items)
1884			break;
1885	}
1886
1887	return ret;
1888}
1889EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1890
1891/**
1892 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1893 *	                             based on a tag
1894 *	@root:		radix tree root
1895 *	@results:	where the results of the lookup are placed
1896 *	@first_index:	start the lookup from this key
1897 *	@max_items:	place up to this many items at *results
1898 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1899 *
1900 *	Performs an index-ascending scan of the tree for present items which
1901 *	have the tag indexed by @tag set.  Places the items at *@results and
1902 *	returns the number of items which were placed at *@results.
1903 */
1904unsigned int
1905radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1906		unsigned long first_index, unsigned int max_items,
1907		unsigned int tag)
1908{
1909	struct radix_tree_iter iter;
1910	void __rcu **slot;
1911	unsigned int ret = 0;
1912
1913	if (unlikely(!max_items))
1914		return 0;
1915
1916	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1917		results[ret] = rcu_dereference_raw(*slot);
1918		if (!results[ret])
1919			continue;
1920		if (radix_tree_is_internal_node(results[ret])) {
1921			slot = radix_tree_iter_retry(&iter);
1922			continue;
1923		}
1924		if (++ret == max_items)
1925			break;
1926	}
1927
1928	return ret;
1929}
1930EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1931
1932/**
1933 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1934 *					  radix tree based on a tag
1935 *	@root:		radix tree root
1936 *	@results:	where the results of the lookup are placed
1937 *	@first_index:	start the lookup from this key
1938 *	@max_items:	place up to this many items at *results
1939 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1940 *
1941 *	Performs an index-ascending scan of the tree for present items which
1942 *	have the tag indexed by @tag set.  Places the slots at *@results and
1943 *	returns the number of slots which were placed at *@results.
1944 */
1945unsigned int
1946radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1947		void __rcu ***results, unsigned long first_index,
1948		unsigned int max_items, unsigned int tag)
1949{
1950	struct radix_tree_iter iter;
1951	void __rcu **slot;
1952	unsigned int ret = 0;
1953
1954	if (unlikely(!max_items))
1955		return 0;
1956
1957	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1958		results[ret] = slot;
1959		if (++ret == max_items)
1960			break;
1961	}
1962
1963	return ret;
1964}
1965EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1966
1967/**
1968 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1969 *	@root:		radix tree root
1970 *	@node:		node containing @index
1971 *	@update_node:	callback for changing leaf nodes
1972 *
1973 *	After clearing the slot at @index in @node from radix tree
1974 *	rooted at @root, call this function to attempt freeing the
1975 *	node and shrinking the tree.
1976 */
1977void __radix_tree_delete_node(struct radix_tree_root *root,
1978			      struct radix_tree_node *node,
1979			      radix_tree_update_node_t update_node)
1980{
1981	delete_node(root, node, update_node);
1982}
1983
1984static bool __radix_tree_delete(struct radix_tree_root *root,
1985				struct radix_tree_node *node, void __rcu **slot)
1986{
1987	void *old = rcu_dereference_raw(*slot);
1988	int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1989	unsigned offset = get_slot_offset(node, slot);
1990	int tag;
1991
1992	if (is_idr(root))
1993		node_tag_set(root, node, IDR_FREE, offset);
1994	else
1995		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1996			node_tag_clear(root, node, tag, offset);
1997
1998	replace_slot(slot, NULL, node, -1, exceptional);
1999	return node && delete_node(root, node, NULL);
2000}
2001
2002/**
2003 * radix_tree_iter_delete - delete the entry at this iterator position
2004 * @root: radix tree root
2005 * @iter: iterator state
2006 * @slot: pointer to slot
2007 *
2008 * Delete the entry at the position currently pointed to by the iterator.
2009 * This may result in the current node being freed; if it is, the iterator
2010 * is advanced so that it will not reference the freed memory.  This
2011 * function may be called without any locking if there are no other threads
2012 * which can access this tree.
2013 */
2014void radix_tree_iter_delete(struct radix_tree_root *root,
2015				struct radix_tree_iter *iter, void __rcu **slot)
2016{
2017	if (__radix_tree_delete(root, iter->node, slot))
2018		iter->index = iter->next_index;
2019}
2020EXPORT_SYMBOL(radix_tree_iter_delete);
2021
2022/**
2023 * radix_tree_delete_item - delete an item from a radix tree
2024 * @root: radix tree root
2025 * @index: index key
2026 * @item: expected item
2027 *
2028 * Remove @item at @index from the radix tree rooted at @root.
2029 *
2030 * Return: the deleted entry, or %NULL if it was not present
2031 * or the entry at the given @index was not @item.
2032 */
2033void *radix_tree_delete_item(struct radix_tree_root *root,
2034			     unsigned long index, void *item)
2035{
2036	struct radix_tree_node *node = NULL;
2037	void __rcu **slot = NULL;
2038	void *entry;
2039
2040	entry = __radix_tree_lookup(root, index, &node, &slot);
2041	if (!slot)
2042		return NULL;
2043	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2044						get_slot_offset(node, slot))))
2045		return NULL;
2046
2047	if (item && entry != item)
2048		return NULL;
2049
2050	__radix_tree_delete(root, node, slot);
2051
2052	return entry;
2053}
2054EXPORT_SYMBOL(radix_tree_delete_item);
2055
2056/**
2057 * radix_tree_delete - delete an entry from a radix tree
2058 * @root: radix tree root
2059 * @index: index key
2060 *
2061 * Remove the entry at @index from the radix tree rooted at @root.
2062 *
2063 * Return: The deleted entry, or %NULL if it was not present.
2064 */
2065void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2066{
2067	return radix_tree_delete_item(root, index, NULL);
2068}
2069EXPORT_SYMBOL(radix_tree_delete);
2070
2071void radix_tree_clear_tags(struct radix_tree_root *root,
2072			   struct radix_tree_node *node,
2073			   void __rcu **slot)
2074{
2075	if (node) {
2076		unsigned int tag, offset = get_slot_offset(node, slot);
2077		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2078			node_tag_clear(root, node, tag, offset);
2079	} else {
2080		root_tag_clear_all(root);
2081	}
2082}
2083
2084/**
2085 *	radix_tree_tagged - test whether any items in the tree are tagged
2086 *	@root:		radix tree root
2087 *	@tag:		tag to test
2088 */
2089int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2090{
2091	return root_tag_get(root, tag);
2092}
2093EXPORT_SYMBOL(radix_tree_tagged);
2094
2095/**
2096 * idr_preload - preload for idr_alloc()
2097 * @gfp_mask: allocation mask to use for preloading
2098 *
2099 * Preallocate memory to use for the next call to idr_alloc().  This function
2100 * returns with preemption disabled.  It will be enabled by idr_preload_end().
2101 */
2102void idr_preload(gfp_t gfp_mask)
2103{
2104	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2105		preempt_disable();
2106}
2107EXPORT_SYMBOL(idr_preload);
2108
2109/**
2110 * ida_pre_get - reserve resources for ida allocation
2111 * @ida: ida handle
2112 * @gfp: memory allocation flags
2113 *
2114 * This function should be called before calling ida_get_new_above().  If it
2115 * is unable to allocate memory, it will return %0.  On success, it returns %1.
2116 */
2117int ida_pre_get(struct ida *ida, gfp_t gfp)
2118{
2119	/*
2120	 * The IDA API has no preload_end() equivalent.  Instead,
2121	 * ida_get_new() can return -EAGAIN, prompting the caller
2122	 * to return to the ida_pre_get() step.
2123	 */
2124	if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2125		preempt_enable();
2126
2127	if (!this_cpu_read(ida_bitmap)) {
2128		struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp);
2129		if (!bitmap)
2130			return 0;
2131		if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2132			kfree(bitmap);
2133	}
2134
2135	return 1;
2136}
2137EXPORT_SYMBOL(ida_pre_get);
2138
2139void __rcu **idr_get_free(struct radix_tree_root *root,
2140			      struct radix_tree_iter *iter, gfp_t gfp,
2141			      unsigned long max)
2142{
2143	struct radix_tree_node *node = NULL, *child;
2144	void __rcu **slot = (void __rcu **)&root->rnode;
2145	unsigned long maxindex, start = iter->next_index;
2146	unsigned int shift, offset = 0;
2147
2148 grow:
2149	shift = radix_tree_load_root(root, &child, &maxindex);
2150	if (!radix_tree_tagged(root, IDR_FREE))
2151		start = max(start, maxindex + 1);
2152	if (start > max)
2153		return ERR_PTR(-ENOSPC);
2154
2155	if (start > maxindex) {
2156		int error = radix_tree_extend(root, gfp, start, shift);
2157		if (error < 0)
2158			return ERR_PTR(error);
2159		shift = error;
2160		child = rcu_dereference_raw(root->rnode);
2161	}
 
 
2162
2163	while (shift) {
2164		shift -= RADIX_TREE_MAP_SHIFT;
2165		if (child == NULL) {
2166			/* Have to add a child node.  */
2167			child = radix_tree_node_alloc(gfp, node, root, shift,
2168							offset, 0, 0);
2169			if (!child)
2170				return ERR_PTR(-ENOMEM);
2171			all_tag_set(child, IDR_FREE);
2172			rcu_assign_pointer(*slot, node_to_entry(child));
2173			if (node)
2174				node->count++;
2175		} else if (!radix_tree_is_internal_node(child))
2176			break;
2177
2178		node = entry_to_node(child);
2179		offset = radix_tree_descend(node, &child, start);
2180		if (!tag_get(node, IDR_FREE, offset)) {
2181			offset = radix_tree_find_next_bit(node, IDR_FREE,
2182							offset + 1);
2183			start = next_index(start, node, offset);
2184			if (start > max)
2185				return ERR_PTR(-ENOSPC);
2186			while (offset == RADIX_TREE_MAP_SIZE) {
2187				offset = node->offset + 1;
2188				node = node->parent;
2189				if (!node)
2190					goto grow;
2191				shift = node->shift;
2192			}
2193			child = rcu_dereference_raw(node->slots[offset]);
2194		}
2195		slot = &node->slots[offset];
2196	}
2197
2198	iter->index = start;
2199	if (node)
2200		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2201	else
2202		iter->next_index = 1;
2203	iter->node = node;
2204	__set_iter_shift(iter, shift);
2205	set_iter_tags(iter, node, offset, IDR_FREE);
2206
2207	return slot;
2208}
2209
2210/**
2211 * idr_destroy - release all internal memory from an IDR
2212 * @idr: idr handle
2213 *
2214 * After this function is called, the IDR is empty, and may be reused or
2215 * the data structure containing it may be freed.
2216 *
2217 * A typical clean-up sequence for objects stored in an idr tree will use
2218 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2219 * free the memory used to keep track of those objects.
2220 */
2221void idr_destroy(struct idr *idr)
2222{
2223	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2224	if (radix_tree_is_internal_node(node))
2225		radix_tree_free_nodes(node);
2226	idr->idr_rt.rnode = NULL;
2227	root_tag_set(&idr->idr_rt, IDR_FREE);
2228}
2229EXPORT_SYMBOL(idr_destroy);
2230
2231static void
2232radix_tree_node_ctor(void *arg)
2233{
2234	struct radix_tree_node *node = arg;
2235
2236	memset(node, 0, sizeof(*node));
2237	INIT_LIST_HEAD(&node->private_list);
2238}
2239
2240static __init unsigned long __maxindex(unsigned int height)
2241{
2242	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2243	int shift = RADIX_TREE_INDEX_BITS - width;
2244
2245	if (shift < 0)
2246		return ~0UL;
2247	if (shift >= BITS_PER_LONG)
2248		return 0UL;
2249	return ~0UL >> shift;
2250}
2251
2252static __init void radix_tree_init_maxnodes(void)
2253{
2254	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2255	unsigned int i, j;
2256
2257	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2258		height_to_maxindex[i] = __maxindex(i);
2259	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2260		for (j = i; j > 0; j--)
2261			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2262	}
2263}
2264
2265static int radix_tree_cpu_dead(unsigned int cpu)
2266{
2267	struct radix_tree_preload *rtp;
2268	struct radix_tree_node *node;
2269
2270	/* Free per-cpu pool of preloaded nodes */
2271	rtp = &per_cpu(radix_tree_preloads, cpu);
2272	while (rtp->nr) {
2273		node = rtp->nodes;
2274		rtp->nodes = node->parent;
2275		kmem_cache_free(radix_tree_node_cachep, node);
2276		rtp->nr--;
2277	}
2278	kfree(per_cpu(ida_bitmap, cpu));
2279	per_cpu(ida_bitmap, cpu) = NULL;
2280	return 0;
2281}
2282
2283void __init radix_tree_init(void)
2284{
2285	int ret;
2286
2287	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2288	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
 
2289	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2290			sizeof(struct radix_tree_node), 0,
2291			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2292			radix_tree_node_ctor);
2293	radix_tree_init_maxnodes();
2294	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2295					NULL, radix_tree_cpu_dead);
2296	WARN_ON(ret < 0);
2297}