Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
 
 
  17#include "xfs_dir2.h"
 
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_ialloc.h"
  24#include "xfs_bmap.h"
  25#include "xfs_bmap_util.h"
  26#include "xfs_errortag.h"
  27#include "xfs_error.h"
  28#include "xfs_quota.h"
  29#include "xfs_filestream.h"
 
  30#include "xfs_trace.h"
  31#include "xfs_icache.h"
  32#include "xfs_symlink.h"
  33#include "xfs_trans_priv.h"
  34#include "xfs_log.h"
  35#include "xfs_bmap_btree.h"
  36#include "xfs_reflink.h"
  37#include "xfs_ag.h"
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
 
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  49	struct xfs_inode *);
  50
  51/*
  52 * helper function to extract extent size hint from inode
  53 */
  54xfs_extlen_t
  55xfs_get_extsz_hint(
  56	struct xfs_inode	*ip)
  57{
  58	/*
  59	 * No point in aligning allocations if we need to COW to actually
  60	 * write to them.
  61	 */
  62	if (xfs_is_always_cow_inode(ip))
  63		return 0;
  64	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  65		return ip->i_extsize;
  66	if (XFS_IS_REALTIME_INODE(ip))
  67		return ip->i_mount->m_sb.sb_rextsize;
  68	return 0;
  69}
  70
  71/*
  72 * Helper function to extract CoW extent size hint from inode.
  73 * Between the extent size hint and the CoW extent size hint, we
  74 * return the greater of the two.  If the value is zero (automatic),
  75 * use the default size.
  76 */
  77xfs_extlen_t
  78xfs_get_cowextsz_hint(
  79	struct xfs_inode	*ip)
  80{
  81	xfs_extlen_t		a, b;
  82
  83	a = 0;
  84	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  85		a = ip->i_cowextsize;
  86	b = xfs_get_extsz_hint(ip);
  87
  88	a = max(a, b);
  89	if (a == 0)
  90		return XFS_DEFAULT_COWEXTSZ_HINT;
  91	return a;
  92}
  93
  94/*
  95 * These two are wrapper routines around the xfs_ilock() routine used to
  96 * centralize some grungy code.  They are used in places that wish to lock the
  97 * inode solely for reading the extents.  The reason these places can't just
  98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  99 * bringing in of the extents from disk for a file in b-tree format.  If the
 100 * inode is in b-tree format, then we need to lock the inode exclusively until
 101 * the extents are read in.  Locking it exclusively all the time would limit
 102 * our parallelism unnecessarily, though.  What we do instead is check to see
 103 * if the extents have been read in yet, and only lock the inode exclusively
 104 * if they have not.
 105 *
 106 * The functions return a value which should be given to the corresponding
 107 * xfs_iunlock() call.
 108 */
 109uint
 110xfs_ilock_data_map_shared(
 111	struct xfs_inode	*ip)
 112{
 113	uint			lock_mode = XFS_ILOCK_SHARED;
 114
 115	if (xfs_need_iread_extents(&ip->i_df))
 
 116		lock_mode = XFS_ILOCK_EXCL;
 117	xfs_ilock(ip, lock_mode);
 118	return lock_mode;
 119}
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
 
 128		lock_mode = XFS_ILOCK_EXCL;
 129	xfs_ilock(ip, lock_mode);
 130	return lock_mode;
 131}
 132
 133/*
 134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 135 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 136 * various combinations of the locks to be obtained.
 137 *
 138 * The 3 locks should always be ordered so that the IO lock is obtained first,
 139 * the mmap lock second and the ilock last in order to prevent deadlock.
 140 *
 141 * Basic locking order:
 142 *
 143 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 144 *
 145 * mmap_lock locking order:
 146 *
 147 * i_rwsem -> page lock -> mmap_lock
 148 * mmap_lock -> i_mmap_lock -> page_lock
 149 *
 150 * The difference in mmap_lock locking order mean that we cannot hold the
 151 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 152 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 153 * in get_user_pages() to map the user pages into the kernel address space for
 154 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 155 * page faults already hold the mmap_lock.
 156 *
 157 * Hence to serialise fully against both syscall and mmap based IO, we need to
 158 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 159 * taken in places where we need to invalidate the page cache in a race
 160 * free manner (e.g. truncate, hole punch and other extent manipulation
 161 * functions).
 162 */
 163void
 164xfs_ilock(
 165	xfs_inode_t		*ip,
 166	uint			lock_flags)
 167{
 168	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 169
 170	/*
 171	 * You can't set both SHARED and EXCL for the same lock,
 172	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 173	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 174	 */
 175	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 176	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 177	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 178	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 179	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 180	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 181	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 182
 183	if (lock_flags & XFS_IOLOCK_EXCL) {
 184		down_write_nested(&VFS_I(ip)->i_rwsem,
 185				  XFS_IOLOCK_DEP(lock_flags));
 186	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 187		down_read_nested(&VFS_I(ip)->i_rwsem,
 188				 XFS_IOLOCK_DEP(lock_flags));
 189	}
 190
 191	if (lock_flags & XFS_MMAPLOCK_EXCL)
 192		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 193	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 194		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195
 196	if (lock_flags & XFS_ILOCK_EXCL)
 197		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 198	else if (lock_flags & XFS_ILOCK_SHARED)
 199		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200}
 201
 202/*
 203 * This is just like xfs_ilock(), except that the caller
 204 * is guaranteed not to sleep.  It returns 1 if it gets
 205 * the requested locks and 0 otherwise.  If the IO lock is
 206 * obtained but the inode lock cannot be, then the IO lock
 207 * is dropped before returning.
 208 *
 209 * ip -- the inode being locked
 210 * lock_flags -- this parameter indicates the inode's locks to be
 211 *       to be locked.  See the comment for xfs_ilock() for a list
 212 *	 of valid values.
 213 */
 214int
 215xfs_ilock_nowait(
 216	xfs_inode_t		*ip,
 217	uint			lock_flags)
 218{
 219	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 220
 221	/*
 222	 * You can't set both SHARED and EXCL for the same lock,
 223	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 224	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 225	 */
 226	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 227	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 228	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 229	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 230	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 231	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 232	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 233
 234	if (lock_flags & XFS_IOLOCK_EXCL) {
 235		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 236			goto out;
 237	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 238		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 239			goto out;
 240	}
 241
 242	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 243		if (!mrtryupdate(&ip->i_mmaplock))
 244			goto out_undo_iolock;
 245	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 246		if (!mrtryaccess(&ip->i_mmaplock))
 247			goto out_undo_iolock;
 248	}
 249
 250	if (lock_flags & XFS_ILOCK_EXCL) {
 251		if (!mrtryupdate(&ip->i_lock))
 252			goto out_undo_mmaplock;
 253	} else if (lock_flags & XFS_ILOCK_SHARED) {
 254		if (!mrtryaccess(&ip->i_lock))
 255			goto out_undo_mmaplock;
 256	}
 257	return 1;
 258
 259out_undo_mmaplock:
 260	if (lock_flags & XFS_MMAPLOCK_EXCL)
 261		mrunlock_excl(&ip->i_mmaplock);
 262	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 263		mrunlock_shared(&ip->i_mmaplock);
 264out_undo_iolock:
 265	if (lock_flags & XFS_IOLOCK_EXCL)
 266		up_write(&VFS_I(ip)->i_rwsem);
 267	else if (lock_flags & XFS_IOLOCK_SHARED)
 268		up_read(&VFS_I(ip)->i_rwsem);
 269out:
 270	return 0;
 271}
 272
 273/*
 274 * xfs_iunlock() is used to drop the inode locks acquired with
 275 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 277 * that we know which locks to drop.
 278 *
 279 * ip -- the inode being unlocked
 280 * lock_flags -- this parameter indicates the inode's locks to be
 281 *       to be unlocked.  See the comment for xfs_ilock() for a list
 282 *	 of valid values for this parameter.
 283 *
 284 */
 285void
 286xfs_iunlock(
 287	xfs_inode_t		*ip,
 288	uint			lock_flags)
 289{
 290	/*
 291	 * You can't set both SHARED and EXCL for the same lock,
 292	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 293	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 294	 */
 295	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 296	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 297	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 298	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 299	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 300	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 301	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 302	ASSERT(lock_flags != 0);
 303
 304	if (lock_flags & XFS_IOLOCK_EXCL)
 305		up_write(&VFS_I(ip)->i_rwsem);
 306	else if (lock_flags & XFS_IOLOCK_SHARED)
 307		up_read(&VFS_I(ip)->i_rwsem);
 308
 309	if (lock_flags & XFS_MMAPLOCK_EXCL)
 310		mrunlock_excl(&ip->i_mmaplock);
 311	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 312		mrunlock_shared(&ip->i_mmaplock);
 313
 314	if (lock_flags & XFS_ILOCK_EXCL)
 315		mrunlock_excl(&ip->i_lock);
 316	else if (lock_flags & XFS_ILOCK_SHARED)
 317		mrunlock_shared(&ip->i_lock);
 318
 319	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 320}
 321
 322/*
 323 * give up write locks.  the i/o lock cannot be held nested
 324 * if it is being demoted.
 325 */
 326void
 327xfs_ilock_demote(
 328	xfs_inode_t		*ip,
 329	uint			lock_flags)
 330{
 331	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 332	ASSERT((lock_flags &
 333		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 334
 335	if (lock_flags & XFS_ILOCK_EXCL)
 336		mrdemote(&ip->i_lock);
 337	if (lock_flags & XFS_MMAPLOCK_EXCL)
 338		mrdemote(&ip->i_mmaplock);
 339	if (lock_flags & XFS_IOLOCK_EXCL)
 340		downgrade_write(&VFS_I(ip)->i_rwsem);
 341
 342	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 343}
 344
 345#if defined(DEBUG) || defined(XFS_WARN)
 346int
 347xfs_isilocked(
 348	xfs_inode_t		*ip,
 349	uint			lock_flags)
 350{
 351	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 352		if (!(lock_flags & XFS_ILOCK_SHARED))
 353			return !!ip->i_lock.mr_writer;
 354		return rwsem_is_locked(&ip->i_lock.mr_lock);
 355	}
 356
 357	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 358		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 359			return !!ip->i_mmaplock.mr_writer;
 360		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 361	}
 362
 363	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 364		if (!(lock_flags & XFS_IOLOCK_SHARED))
 365			return !debug_locks ||
 366				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 367		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 368	}
 369
 370	ASSERT(0);
 371	return 0;
 372}
 373#endif
 374
 
 
 
 
 
 
 
 
 375/*
 376 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 377 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 378 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 379 * errors and warnings.
 380 */
 381#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 382static bool
 383xfs_lockdep_subclass_ok(
 384	int subclass)
 385{
 386	return subclass < MAX_LOCKDEP_SUBCLASSES;
 387}
 388#else
 389#define xfs_lockdep_subclass_ok(subclass)	(true)
 390#endif
 391
 392/*
 393 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 394 * value. This can be called for any type of inode lock combination, including
 395 * parent locking. Care must be taken to ensure we don't overrun the subclass
 396 * storage fields in the class mask we build.
 397 */
 398static inline int
 399xfs_lock_inumorder(int lock_mode, int subclass)
 400{
 401	int	class = 0;
 402
 403	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 404			      XFS_ILOCK_RTSUM)));
 405	ASSERT(xfs_lockdep_subclass_ok(subclass));
 406
 407	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 408		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 
 
 409		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 410	}
 411
 412	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 413		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 414		class += subclass << XFS_MMAPLOCK_SHIFT;
 415	}
 416
 417	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_ILOCK_SHIFT;
 420	}
 421
 422	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 423}
 424
 425/*
 426 * The following routine will lock n inodes in exclusive mode.  We assume the
 427 * caller calls us with the inodes in i_ino order.
 428 *
 429 * We need to detect deadlock where an inode that we lock is in the AIL and we
 430 * start waiting for another inode that is locked by a thread in a long running
 431 * transaction (such as truncate). This can result in deadlock since the long
 432 * running trans might need to wait for the inode we just locked in order to
 433 * push the tail and free space in the log.
 434 *
 435 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 436 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 437 * lock more than one at a time, lockdep will report false positives saying we
 438 * have violated locking orders.
 439 */
 440static void
 441xfs_lock_inodes(
 442	struct xfs_inode	**ips,
 443	int			inodes,
 444	uint			lock_mode)
 445{
 446	int			attempts = 0, i, j, try_lock;
 447	struct xfs_log_item	*lp;
 448
 449	/*
 450	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 451	 * support an arbitrary depth of locking here, but absolute limits on
 452	 * inodes depend on the type of locking and the limits placed by
 453	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 454	 * the asserts.
 455	 */
 456	ASSERT(ips && inodes >= 2 && inodes <= 5);
 457	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 458			    XFS_ILOCK_EXCL));
 459	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 460			      XFS_ILOCK_SHARED)));
 
 
 461	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 462		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 463	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 464		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 465
 466	if (lock_mode & XFS_IOLOCK_EXCL) {
 467		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 468	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 469		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 470
 471	try_lock = 0;
 472	i = 0;
 473again:
 474	for (; i < inodes; i++) {
 475		ASSERT(ips[i]);
 476
 477		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 478			continue;
 479
 480		/*
 481		 * If try_lock is not set yet, make sure all locked inodes are
 482		 * not in the AIL.  If any are, set try_lock to be used later.
 483		 */
 484		if (!try_lock) {
 485			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 486				lp = &ips[j]->i_itemp->ili_item;
 487				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 488					try_lock++;
 489			}
 490		}
 491
 492		/*
 493		 * If any of the previous locks we have locked is in the AIL,
 494		 * we must TRY to get the second and subsequent locks. If
 495		 * we can't get any, we must release all we have
 496		 * and try again.
 497		 */
 498		if (!try_lock) {
 499			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 500			continue;
 501		}
 502
 503		/* try_lock means we have an inode locked that is in the AIL. */
 504		ASSERT(i != 0);
 505		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 506			continue;
 507
 508		/*
 509		 * Unlock all previous guys and try again.  xfs_iunlock will try
 510		 * to push the tail if the inode is in the AIL.
 511		 */
 512		attempts++;
 513		for (j = i - 1; j >= 0; j--) {
 514			/*
 515			 * Check to see if we've already unlocked this one.  Not
 516			 * the first one going back, and the inode ptr is the
 517			 * same.
 518			 */
 519			if (j != (i - 1) && ips[j] == ips[j + 1])
 520				continue;
 521
 522			xfs_iunlock(ips[j], lock_mode);
 523		}
 524
 525		if ((attempts % 5) == 0) {
 526			delay(1); /* Don't just spin the CPU */
 
 
 
 527		}
 528		i = 0;
 529		try_lock = 0;
 530		goto again;
 531	}
 
 
 
 
 
 
 
 
 
 
 532}
 533
 534/*
 535 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 536 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 537 * more than one at a time, lockdep will report false positives saying we have
 538 * violated locking orders.  The iolock must be double-locked separately since
 539 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 540 * SHARED.
 541 */
 542void
 543xfs_lock_two_inodes(
 544	struct xfs_inode	*ip0,
 545	uint			ip0_mode,
 546	struct xfs_inode	*ip1,
 547	uint			ip1_mode)
 548{
 549	struct xfs_inode	*temp;
 550	uint			mode_temp;
 551	int			attempts = 0;
 552	struct xfs_log_item	*lp;
 553
 554	ASSERT(hweight32(ip0_mode) == 1);
 555	ASSERT(hweight32(ip1_mode) == 1);
 556	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 557	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 558	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 559	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 560	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566
 567	ASSERT(ip0->i_ino != ip1->i_ino);
 568
 569	if (ip0->i_ino > ip1->i_ino) {
 570		temp = ip0;
 571		ip0 = ip1;
 572		ip1 = temp;
 573		mode_temp = ip0_mode;
 574		ip0_mode = ip1_mode;
 575		ip1_mode = mode_temp;
 576	}
 577
 578 again:
 579	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 580
 581	/*
 582	 * If the first lock we have locked is in the AIL, we must TRY to get
 583	 * the second lock. If we can't get it, we must release the first one
 584	 * and try again.
 585	 */
 586	lp = &ip0->i_itemp->ili_item;
 587	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 588		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 589			xfs_iunlock(ip0, ip0_mode);
 590			if ((++attempts % 5) == 0)
 591				delay(1); /* Don't just spin the CPU */
 592			goto again;
 593		}
 594	} else {
 595		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 596	}
 597}
 598
 599uint
 600xfs_ip2xflags(
 
 601	struct xfs_inode	*ip)
 602{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603	uint			flags = 0;
 604
 605	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 606		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 607			flags |= FS_XFLAG_REALTIME;
 608		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 609			flags |= FS_XFLAG_PREALLOC;
 610		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 611			flags |= FS_XFLAG_IMMUTABLE;
 612		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 613			flags |= FS_XFLAG_APPEND;
 614		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 615			flags |= FS_XFLAG_SYNC;
 616		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 617			flags |= FS_XFLAG_NOATIME;
 618		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 619			flags |= FS_XFLAG_NODUMP;
 620		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 621			flags |= FS_XFLAG_RTINHERIT;
 622		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 623			flags |= FS_XFLAG_PROJINHERIT;
 624		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 625			flags |= FS_XFLAG_NOSYMLINKS;
 626		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 627			flags |= FS_XFLAG_EXTSIZE;
 628		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 629			flags |= FS_XFLAG_EXTSZINHERIT;
 630		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 631			flags |= FS_XFLAG_NODEFRAG;
 632		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 633			flags |= FS_XFLAG_FILESTREAM;
 634	}
 635
 636	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 637		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 638			flags |= FS_XFLAG_DAX;
 639		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 640			flags |= FS_XFLAG_COWEXTSIZE;
 641	}
 642
 643	if (XFS_IFORK_Q(ip))
 644		flags |= FS_XFLAG_HASATTR;
 
 645	return flags;
 646}
 647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648/*
 649 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 650 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 651 * ci_name->name will point to a the actual name (caller must free) or
 652 * will be set to NULL if an exact match is found.
 653 */
 654int
 655xfs_lookup(
 656	xfs_inode_t		*dp,
 657	struct xfs_name		*name,
 658	xfs_inode_t		**ipp,
 659	struct xfs_name		*ci_name)
 660{
 661	xfs_ino_t		inum;
 662	int			error;
 663
 664	trace_xfs_lookup(dp, name);
 665
 666	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 667		return -EIO;
 668
 
 669	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 670	if (error)
 671		goto out_unlock;
 672
 673	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 674	if (error)
 675		goto out_free_name;
 676
 
 677	return 0;
 678
 679out_free_name:
 680	if (ci_name)
 681		kmem_free(ci_name->name);
 682out_unlock:
 
 683	*ipp = NULL;
 684	return error;
 685}
 686
 687/* Propagate di_flags from a parent inode to a child inode. */
 688static void
 689xfs_inode_inherit_flags(
 690	struct xfs_inode	*ip,
 691	const struct xfs_inode	*pip)
 692{
 693	unsigned int		di_flags = 0;
 694	xfs_failaddr_t		failaddr;
 695	umode_t			mode = VFS_I(ip)->i_mode;
 696
 697	if (S_ISDIR(mode)) {
 698		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 699			di_flags |= XFS_DIFLAG_RTINHERIT;
 700		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 701			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 702			ip->i_extsize = pip->i_extsize;
 703		}
 704		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 705			di_flags |= XFS_DIFLAG_PROJINHERIT;
 706	} else if (S_ISREG(mode)) {
 707		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 708		    xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
 709			di_flags |= XFS_DIFLAG_REALTIME;
 710		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 711			di_flags |= XFS_DIFLAG_EXTSIZE;
 712			ip->i_extsize = pip->i_extsize;
 713		}
 714	}
 715	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 716	    xfs_inherit_noatime)
 717		di_flags |= XFS_DIFLAG_NOATIME;
 718	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 719	    xfs_inherit_nodump)
 720		di_flags |= XFS_DIFLAG_NODUMP;
 721	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 722	    xfs_inherit_sync)
 723		di_flags |= XFS_DIFLAG_SYNC;
 724	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 725	    xfs_inherit_nosymlinks)
 726		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 727	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 728	    xfs_inherit_nodefrag)
 729		di_flags |= XFS_DIFLAG_NODEFRAG;
 730	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 731		di_flags |= XFS_DIFLAG_FILESTREAM;
 732
 733	ip->i_diflags |= di_flags;
 734
 735	/*
 736	 * Inode verifiers on older kernels only check that the extent size
 737	 * hint is an integer multiple of the rt extent size on realtime files.
 738	 * They did not check the hint alignment on a directory with both
 739	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 740	 * propagated from a directory into a new realtime file, new file
 741	 * allocations will fail due to math errors in the rt allocator and/or
 742	 * trip the verifiers.  Validate the hint settings in the new file so
 743	 * that we don't let broken hints propagate.
 744	 */
 745	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 746			VFS_I(ip)->i_mode, ip->i_diflags);
 747	if (failaddr) {
 748		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 749				   XFS_DIFLAG_EXTSZINHERIT);
 750		ip->i_extsize = 0;
 751	}
 752}
 753
 754/* Propagate di_flags2 from a parent inode to a child inode. */
 755static void
 756xfs_inode_inherit_flags2(
 757	struct xfs_inode	*ip,
 758	const struct xfs_inode	*pip)
 759{
 760	xfs_failaddr_t		failaddr;
 761
 762	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 763		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 764		ip->i_cowextsize = pip->i_cowextsize;
 765	}
 766	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 767		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 768
 769	/* Don't let invalid cowextsize hints propagate. */
 770	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 771			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 772	if (failaddr) {
 773		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 774		ip->i_cowextsize = 0;
 775	}
 776}
 777
 778/*
 779 * Initialise a newly allocated inode and return the in-core inode to the
 780 * caller locked exclusively.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781 */
 782int
 783xfs_init_new_inode(
 784	struct user_namespace	*mnt_userns,
 785	struct xfs_trans	*tp,
 786	struct xfs_inode	*pip,
 787	xfs_ino_t		ino,
 788	umode_t			mode,
 789	xfs_nlink_t		nlink,
 790	dev_t			rdev,
 791	prid_t			prid,
 792	bool			init_xattrs,
 793	struct xfs_inode	**ipp)
 794{
 795	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 796	struct xfs_mount	*mp = tp->t_mountp;
 797	struct xfs_inode	*ip;
 798	unsigned int		flags;
 799	int			error;
 800	struct timespec64	tv;
 801	struct inode		*inode;
 802
 803	/*
 804	 * Protect against obviously corrupt allocation btree records. Later
 805	 * xfs_iget checks will catch re-allocation of other active in-memory
 806	 * and on-disk inodes. If we don't catch reallocating the parent inode
 807	 * here we will deadlock in xfs_iget() so we have to do these checks
 808	 * first.
 809	 */
 810	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 811		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 812		return -EFSCORRUPTED;
 
 
 
 
 813	}
 
 814
 815	/*
 816	 * Get the in-core inode with the lock held exclusively to prevent
 817	 * others from looking at until we're done.
 
 818	 */
 819	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 
 820	if (error)
 821		return error;
 822
 823	ASSERT(ip != NULL);
 824	inode = VFS_I(ip);
 825	set_nlink(inode, nlink);
 826	inode->i_rdev = rdev;
 827	ip->i_projid = prid;
 828
 829	if (dir && !(dir->i_mode & S_ISGID) &&
 830	    (mp->m_flags & XFS_MOUNT_GRPID)) {
 831		inode_fsuid_set(inode, mnt_userns);
 832		inode->i_gid = dir->i_gid;
 833		inode->i_mode = mode;
 834	} else {
 835		inode_init_owner(mnt_userns, inode, dir, mode);
 
 
 
 
 
 
 
 
 
 
 
 836	}
 837
 838	/*
 839	 * If the group ID of the new file does not match the effective group
 840	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 841	 * (and only if the irix_sgid_inherit compatibility variable is set).
 842	 */
 843	if (irix_sgid_inherit &&
 844	    (inode->i_mode & S_ISGID) &&
 845	    !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
 846		inode->i_mode &= ~S_ISGID;
 847
 848	ip->i_disk_size = 0;
 849	ip->i_df.if_nextents = 0;
 850	ASSERT(ip->i_nblocks == 0);
 851
 852	tv = current_time(inode);
 853	inode->i_mtime = tv;
 854	inode->i_atime = tv;
 855	inode->i_ctime = tv;
 856
 857	ip->i_extsize = 0;
 858	ip->i_diflags = 0;
 859
 860	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 861		inode_set_iversion(inode, 1);
 862		ip->i_cowextsize = 0;
 863		ip->i_crtime = tv;
 
 
 
 864	}
 865
 
 866	flags = XFS_ILOG_CORE;
 867	switch (mode & S_IFMT) {
 868	case S_IFIFO:
 869	case S_IFCHR:
 870	case S_IFBLK:
 871	case S_IFSOCK:
 872		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 
 873		flags |= XFS_ILOG_DEV;
 874		break;
 875	case S_IFREG:
 876	case S_IFDIR:
 877		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 878			xfs_inode_inherit_flags(ip, pip);
 879		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 880			xfs_inode_inherit_flags2(ip, pip);
 881		fallthrough;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882	case S_IFLNK:
 883		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 884		ip->i_df.if_bytes = 0;
 885		ip->i_df.if_u1.if_root = NULL;
 
 886		break;
 887	default:
 888		ASSERT(0);
 889	}
 890
 891	/*
 892	 * If we need to create attributes immediately after allocating the
 893	 * inode, initialise an empty attribute fork right now. We use the
 894	 * default fork offset for attributes here as we don't know exactly what
 895	 * size or how many attributes we might be adding. We can do this
 896	 * safely here because we know the data fork is completely empty and
 897	 * this saves us from needing to run a separate transaction to set the
 898	 * fork offset in the immediate future.
 899	 */
 900	if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
 901		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 902		ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
 903	}
 904
 905	/*
 906	 * Log the new values stuffed into the inode.
 907	 */
 908	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 909	xfs_trans_log_inode(tp, ip, flags);
 910
 911	/* now that we have an i_mode we can setup the inode structure */
 912	xfs_setup_inode(ip);
 913
 914	*ipp = ip;
 915	return 0;
 916}
 917
 918/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919 * Decrement the link count on an inode & log the change.  If this causes the
 920 * link count to go to zero, move the inode to AGI unlinked list so that it can
 921 * be freed when the last active reference goes away via xfs_inactive().
 922 */
 923static int			/* error */
 924xfs_droplink(
 925	xfs_trans_t *tp,
 926	xfs_inode_t *ip)
 927{
 928	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 929
 930	drop_nlink(VFS_I(ip));
 931	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 932
 933	if (VFS_I(ip)->i_nlink)
 934		return 0;
 935
 936	return xfs_iunlink(tp, ip);
 937}
 938
 939/*
 940 * Increment the link count on an inode & log the change.
 941 */
 942static void
 943xfs_bumplink(
 944	xfs_trans_t *tp,
 945	xfs_inode_t *ip)
 946{
 947	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 948
 
 949	inc_nlink(VFS_I(ip));
 950	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 951}
 952
 953int
 954xfs_create(
 955	struct user_namespace	*mnt_userns,
 956	xfs_inode_t		*dp,
 957	struct xfs_name		*name,
 958	umode_t			mode,
 959	dev_t			rdev,
 960	bool			init_xattrs,
 961	xfs_inode_t		**ipp)
 962{
 963	int			is_dir = S_ISDIR(mode);
 964	struct xfs_mount	*mp = dp->i_mount;
 965	struct xfs_inode	*ip = NULL;
 966	struct xfs_trans	*tp = NULL;
 967	int			error;
 
 
 968	bool                    unlock_dp_on_error = false;
 969	prid_t			prid;
 970	struct xfs_dquot	*udqp = NULL;
 971	struct xfs_dquot	*gdqp = NULL;
 972	struct xfs_dquot	*pdqp = NULL;
 973	struct xfs_trans_res	*tres;
 974	uint			resblks;
 975	xfs_ino_t		ino;
 976
 977	trace_xfs_create(dp, name);
 978
 979	if (XFS_FORCED_SHUTDOWN(mp))
 980		return -EIO;
 981
 982	prid = xfs_get_initial_prid(dp);
 983
 984	/*
 985	 * Make sure that we have allocated dquot(s) on disk.
 986	 */
 987	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
 988			mapped_fsgid(mnt_userns), prid,
 989			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 990			&udqp, &gdqp, &pdqp);
 991	if (error)
 992		return error;
 993
 994	if (is_dir) {
 
 995		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 996		tres = &M_RES(mp)->tr_mkdir;
 
 997	} else {
 998		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 999		tres = &M_RES(mp)->tr_create;
 
1000	}
1001
1002	/*
1003	 * Initially assume that the file does not exist and
1004	 * reserve the resources for that case.  If that is not
1005	 * the case we'll drop the one we have and get a more
1006	 * appropriate transaction later.
1007	 */
1008	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009			&tp);
1010	if (error == -ENOSPC) {
1011		/* flush outstanding delalloc blocks and retry */
1012		xfs_flush_inodes(mp);
1013		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014				resblks, &tp);
 
 
 
 
1015	}
1016	if (error)
1017		goto out_release_dquots;
1018
1019	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 
 
1020	unlock_dp_on_error = true;
1021
1022	error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023			XFS_IEXT_DIR_MANIP_CNT(mp));
 
 
 
 
 
1024	if (error)
1025		goto out_trans_cancel;
1026
 
 
 
 
 
 
1027	/*
1028	 * A newly created regular or special file just has one directory
1029	 * entry pointing to them, but a directory also the "." entry
1030	 * pointing to itself.
1031	 */
1032	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033	if (!error)
1034		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036	if (error)
1037		goto out_trans_cancel;
1038
1039	/*
1040	 * Now we join the directory inode to the transaction.  We do not do it
1041	 * earlier because xfs_dialloc might commit the previous transaction
1042	 * (and release all the locks).  An error from here on will result in
1043	 * the transaction cancel unlocking dp so don't do it explicitly in the
1044	 * error path.
1045	 */
1046	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047	unlock_dp_on_error = false;
1048
1049	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050					resblks - XFS_IALLOC_SPACE_RES(mp));
 
1051	if (error) {
1052		ASSERT(error != -ENOSPC);
1053		goto out_trans_cancel;
1054	}
1055	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057
1058	if (is_dir) {
1059		error = xfs_dir_init(tp, ip, dp);
1060		if (error)
1061			goto out_trans_cancel;
1062
1063		xfs_bumplink(tp, dp);
 
 
1064	}
1065
1066	/*
1067	 * If this is a synchronous mount, make sure that the
1068	 * create transaction goes to disk before returning to
1069	 * the user.
1070	 */
1071	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072		xfs_trans_set_sync(tp);
1073
1074	/*
1075	 * Attach the dquot(s) to the inodes and modify them incore.
1076	 * These ids of the inode couldn't have changed since the new
1077	 * inode has been locked ever since it was created.
1078	 */
1079	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080
 
 
 
 
1081	error = xfs_trans_commit(tp);
1082	if (error)
1083		goto out_release_inode;
1084
1085	xfs_qm_dqrele(udqp);
1086	xfs_qm_dqrele(gdqp);
1087	xfs_qm_dqrele(pdqp);
1088
1089	*ipp = ip;
1090	return 0;
1091
 
 
1092 out_trans_cancel:
1093	xfs_trans_cancel(tp);
1094 out_release_inode:
1095	/*
1096	 * Wait until after the current transaction is aborted to finish the
1097	 * setup of the inode and release the inode.  This prevents recursive
1098	 * transactions and deadlocks from xfs_inactive.
1099	 */
1100	if (ip) {
1101		xfs_finish_inode_setup(ip);
1102		xfs_irele(ip);
1103	}
1104 out_release_dquots:
1105	xfs_qm_dqrele(udqp);
1106	xfs_qm_dqrele(gdqp);
1107	xfs_qm_dqrele(pdqp);
1108
1109	if (unlock_dp_on_error)
1110		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111	return error;
1112}
1113
1114int
1115xfs_create_tmpfile(
1116	struct user_namespace	*mnt_userns,
1117	struct xfs_inode	*dp,
 
1118	umode_t			mode,
1119	struct xfs_inode	**ipp)
1120{
1121	struct xfs_mount	*mp = dp->i_mount;
1122	struct xfs_inode	*ip = NULL;
1123	struct xfs_trans	*tp = NULL;
1124	int			error;
1125	prid_t                  prid;
1126	struct xfs_dquot	*udqp = NULL;
1127	struct xfs_dquot	*gdqp = NULL;
1128	struct xfs_dquot	*pdqp = NULL;
1129	struct xfs_trans_res	*tres;
1130	uint			resblks;
1131	xfs_ino_t		ino;
1132
1133	if (XFS_FORCED_SHUTDOWN(mp))
1134		return -EIO;
1135
1136	prid = xfs_get_initial_prid(dp);
1137
1138	/*
1139	 * Make sure that we have allocated dquot(s) on disk.
1140	 */
1141	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142			mapped_fsgid(mnt_userns), prid,
1143			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144			&udqp, &gdqp, &pdqp);
1145	if (error)
1146		return error;
1147
1148	resblks = XFS_IALLOC_SPACE_RES(mp);
 
 
1149	tres = &M_RES(mp)->tr_create_tmpfile;
 
 
 
 
 
 
 
 
1150
1151	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152			&tp);
1153	if (error)
1154		goto out_release_dquots;
1155
1156	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157	if (!error)
1158		error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159				0, 0, prid, false, &ip);
1160	if (error)
1161		goto out_trans_cancel;
1162
1163	if (mp->m_flags & XFS_MOUNT_WSYNC)
1164		xfs_trans_set_sync(tp);
1165
1166	/*
1167	 * Attach the dquot(s) to the inodes and modify them incore.
1168	 * These ids of the inode couldn't have changed since the new
1169	 * inode has been locked ever since it was created.
1170	 */
1171	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172
1173	error = xfs_iunlink(tp, ip);
1174	if (error)
1175		goto out_trans_cancel;
1176
1177	error = xfs_trans_commit(tp);
1178	if (error)
1179		goto out_release_inode;
1180
1181	xfs_qm_dqrele(udqp);
1182	xfs_qm_dqrele(gdqp);
1183	xfs_qm_dqrele(pdqp);
1184
1185	*ipp = ip;
1186	return 0;
1187
1188 out_trans_cancel:
1189	xfs_trans_cancel(tp);
1190 out_release_inode:
1191	/*
1192	 * Wait until after the current transaction is aborted to finish the
1193	 * setup of the inode and release the inode.  This prevents recursive
1194	 * transactions and deadlocks from xfs_inactive.
1195	 */
1196	if (ip) {
1197		xfs_finish_inode_setup(ip);
1198		xfs_irele(ip);
1199	}
1200 out_release_dquots:
1201	xfs_qm_dqrele(udqp);
1202	xfs_qm_dqrele(gdqp);
1203	xfs_qm_dqrele(pdqp);
1204
1205	return error;
1206}
1207
1208int
1209xfs_link(
1210	xfs_inode_t		*tdp,
1211	xfs_inode_t		*sip,
1212	struct xfs_name		*target_name)
1213{
1214	xfs_mount_t		*mp = tdp->i_mount;
1215	xfs_trans_t		*tp;
1216	int			error;
 
 
1217	int			resblks;
1218
1219	trace_xfs_link(tdp, target_name);
1220
1221	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222
1223	if (XFS_FORCED_SHUTDOWN(mp))
1224		return -EIO;
1225
1226	error = xfs_qm_dqattach(sip);
1227	if (error)
1228		goto std_return;
1229
1230	error = xfs_qm_dqattach(tdp);
1231	if (error)
1232		goto std_return;
1233
 
1234	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236	if (error == -ENOSPC) {
1237		resblks = 0;
1238		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239	}
1240	if (error)
1241		goto std_return;
1242
1243	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
 
1244
1245	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247
1248	error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249			XFS_IEXT_DIR_MANIP_CNT(mp));
1250	if (error)
1251		goto error_return;
1252
1253	/*
1254	 * If we are using project inheritance, we only allow hard link
1255	 * creation in our tree when the project IDs are the same; else
1256	 * the tree quota mechanism could be circumvented.
1257	 */
1258	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259		     tdp->i_projid != sip->i_projid)) {
1260		error = -EXDEV;
1261		goto error_return;
1262	}
1263
1264	if (!resblks) {
1265		error = xfs_dir_canenter(tp, tdp, target_name);
1266		if (error)
1267			goto error_return;
1268	}
1269
 
 
1270	/*
1271	 * Handle initial link state of O_TMPFILE inode
1272	 */
1273	if (VFS_I(sip)->i_nlink == 0) {
1274		struct xfs_perag	*pag;
1275
1276		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277		error = xfs_iunlink_remove(tp, pag, sip);
1278		xfs_perag_put(pag);
1279		if (error)
1280			goto error_return;
1281	}
1282
1283	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284				   resblks);
1285	if (error)
1286		goto error_return;
1287	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289
1290	xfs_bumplink(tp, sip);
 
 
1291
1292	/*
1293	 * If this is a synchronous mount, make sure that the
1294	 * link transaction goes to disk before returning to
1295	 * the user.
1296	 */
1297	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298		xfs_trans_set_sync(tp);
1299
 
 
 
 
 
 
1300	return xfs_trans_commit(tp);
1301
1302 error_return:
1303	xfs_trans_cancel(tp);
1304 std_return:
1305	return error;
1306}
1307
1308/* Clear the reflink flag and the cowblocks tag if possible. */
1309static void
1310xfs_itruncate_clear_reflink_flags(
1311	struct xfs_inode	*ip)
1312{
1313	struct xfs_ifork	*dfork;
1314	struct xfs_ifork	*cfork;
1315
1316	if (!xfs_is_reflink_inode(ip))
1317		return;
1318	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322	if (cfork->if_bytes == 0)
1323		xfs_inode_clear_cowblocks_tag(ip);
1324}
1325
1326/*
1327 * Free up the underlying blocks past new_size.  The new size must be smaller
1328 * than the current size.  This routine can be used both for the attribute and
1329 * data fork, and does not modify the inode size, which is left to the caller.
1330 *
1331 * The transaction passed to this routine must have made a permanent log
1332 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1333 * given transaction and start new ones, so make sure everything involved in
1334 * the transaction is tidy before calling here.  Some transaction will be
1335 * returned to the caller to be committed.  The incoming transaction must
1336 * already include the inode, and both inode locks must be held exclusively.
1337 * The inode must also be "held" within the transaction.  On return the inode
1338 * will be "held" within the returned transaction.  This routine does NOT
1339 * require any disk space to be reserved for it within the transaction.
1340 *
1341 * If we get an error, we must return with the inode locked and linked into the
1342 * current transaction. This keeps things simple for the higher level code,
1343 * because it always knows that the inode is locked and held in the transaction
1344 * that returns to it whether errors occur or not.  We don't mark the inode
1345 * dirty on error so that transactions can be easily aborted if possible.
1346 */
1347int
1348xfs_itruncate_extents_flags(
1349	struct xfs_trans	**tpp,
1350	struct xfs_inode	*ip,
1351	int			whichfork,
1352	xfs_fsize_t		new_size,
1353	int			flags)
1354{
1355	struct xfs_mount	*mp = ip->i_mount;
1356	struct xfs_trans	*tp = *tpp;
 
 
1357	xfs_fileoff_t		first_unmap_block;
 
1358	xfs_filblks_t		unmap_len;
1359	int			error = 0;
 
1360
1361	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364	ASSERT(new_size <= XFS_ISIZE(ip));
1365	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366	ASSERT(ip->i_itemp != NULL);
1367	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369
1370	trace_xfs_itruncate_extents_start(ip, new_size);
1371
1372	flags |= xfs_bmapi_aflag(whichfork);
1373
1374	/*
1375	 * Since it is possible for space to become allocated beyond
1376	 * the end of the file (in a crash where the space is allocated
1377	 * but the inode size is not yet updated), simply remove any
1378	 * blocks which show up between the new EOF and the maximum
1379	 * possible file size.
1380	 *
1381	 * We have to free all the blocks to the bmbt maximum offset, even if
1382	 * the page cache can't scale that far.
1383	 */
1384	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387		return 0;
1388	}
1389
1390	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391	while (unmap_len > 0) {
1392		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394				flags, XFS_ITRUNC_MAX_EXTENTS);
 
 
 
 
 
1395		if (error)
1396			goto out;
1397
1398		/* free the just unmapped extents */
1399		error = xfs_defer_finish(&tp);
 
 
 
1400		if (error)
1401			goto out;
1402	}
1403
1404	if (whichfork == XFS_DATA_FORK) {
1405		/* Remove all pending CoW reservations. */
1406		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407				first_unmap_block, XFS_MAX_FILEOFF, true);
1408		if (error)
1409			goto out;
1410
1411		xfs_itruncate_clear_reflink_flags(ip);
1412	}
1413
1414	/*
1415	 * Always re-log the inode so that our permanent transaction can keep
1416	 * on rolling it forward in the log.
1417	 */
1418	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419
1420	trace_xfs_itruncate_extents_end(ip, new_size);
1421
1422out:
1423	*tpp = tp;
1424	return error;
 
 
 
 
 
 
 
 
1425}
1426
1427int
1428xfs_release(
1429	xfs_inode_t	*ip)
1430{
1431	xfs_mount_t	*mp = ip->i_mount;
1432	int		error = 0;
1433
1434	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435		return 0;
1436
1437	/* If this is a read-only mount, don't do this (would generate I/O) */
1438	if (mp->m_flags & XFS_MOUNT_RDONLY)
1439		return 0;
1440
1441	if (!XFS_FORCED_SHUTDOWN(mp)) {
1442		int truncated;
1443
1444		/*
1445		 * If we previously truncated this file and removed old data
1446		 * in the process, we want to initiate "early" writeout on
1447		 * the last close.  This is an attempt to combat the notorious
1448		 * NULL files problem which is particularly noticeable from a
1449		 * truncate down, buffered (re-)write (delalloc), followed by
1450		 * a crash.  What we are effectively doing here is
1451		 * significantly reducing the time window where we'd otherwise
1452		 * be exposed to that problem.
1453		 */
1454		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455		if (truncated) {
1456			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457			if (ip->i_delayed_blks > 0) {
1458				error = filemap_flush(VFS_I(ip)->i_mapping);
1459				if (error)
1460					return error;
1461			}
1462		}
1463	}
1464
1465	if (VFS_I(ip)->i_nlink == 0)
1466		return 0;
1467
1468	/*
1469	 * If we can't get the iolock just skip truncating the blocks past EOF
1470	 * because we could deadlock with the mmap_lock otherwise. We'll get
1471	 * another chance to drop them once the last reference to the inode is
1472	 * dropped, so we'll never leak blocks permanently.
1473	 */
1474	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475		return 0;
1476
1477	if (xfs_can_free_eofblocks(ip, false)) {
 
1478		/*
1479		 * Check if the inode is being opened, written and closed
1480		 * frequently and we have delayed allocation blocks outstanding
1481		 * (e.g. streaming writes from the NFS server), truncating the
1482		 * blocks past EOF will cause fragmentation to occur.
 
1483		 *
1484		 * In this case don't do the truncation, but we have to be
1485		 * careful how we detect this case. Blocks beyond EOF show up as
1486		 * i_delayed_blks even when the inode is clean, so we need to
1487		 * truncate them away first before checking for a dirty release.
1488		 * Hence on the first dirty close we will still remove the
1489		 * speculative allocation, but after that we will leave it in
1490		 * place.
 
 
 
 
 
 
1491		 */
1492		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493			goto out_unlock;
1494
1495		error = xfs_free_eofblocks(ip);
1496		if (error)
1497			goto out_unlock;
1498
1499		/* delalloc blocks after truncation means it really is dirty */
1500		if (ip->i_delayed_blks)
1501			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502	}
1503
1504out_unlock:
1505	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506	return error;
1507}
1508
1509/*
1510 * xfs_inactive_truncate
1511 *
1512 * Called to perform a truncate when an inode becomes unlinked.
1513 */
1514STATIC int
1515xfs_inactive_truncate(
1516	struct xfs_inode *ip)
1517{
1518	struct xfs_mount	*mp = ip->i_mount;
1519	struct xfs_trans	*tp;
1520	int			error;
1521
1522	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 
1523	if (error) {
1524		ASSERT(XFS_FORCED_SHUTDOWN(mp));
 
1525		return error;
1526	}
 
1527	xfs_ilock(ip, XFS_ILOCK_EXCL);
1528	xfs_trans_ijoin(tp, ip, 0);
1529
1530	/*
1531	 * Log the inode size first to prevent stale data exposure in the event
1532	 * of a system crash before the truncate completes. See the related
1533	 * comment in xfs_vn_setattr_size() for details.
1534	 */
1535	ip->i_disk_size = 0;
1536	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537
1538	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539	if (error)
1540		goto error_trans_cancel;
1541
1542	ASSERT(ip->i_df.if_nextents == 0);
1543
1544	error = xfs_trans_commit(tp);
1545	if (error)
1546		goto error_unlock;
1547
1548	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549	return 0;
1550
1551error_trans_cancel:
1552	xfs_trans_cancel(tp);
1553error_unlock:
1554	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555	return error;
1556}
1557
1558/*
1559 * xfs_inactive_ifree()
1560 *
1561 * Perform the inode free when an inode is unlinked.
1562 */
1563STATIC int
1564xfs_inactive_ifree(
1565	struct xfs_inode *ip)
1566{
 
 
1567	struct xfs_mount	*mp = ip->i_mount;
1568	struct xfs_trans	*tp;
1569	int			error;
1570
 
 
1571	/*
1572	 * We try to use a per-AG reservation for any block needed by the finobt
1573	 * tree, but as the finobt feature predates the per-AG reservation
1574	 * support a degraded file system might not have enough space for the
1575	 * reservation at mount time.  In that case try to dip into the reserved
1576	 * pool and pray.
 
 
 
 
1577	 *
1578	 * Send a warning if the reservation does happen to fail, as the inode
1579	 * now remains allocated and sits on the unlinked list until the fs is
1580	 * repaired.
1581	 */
1582	if (unlikely(mp->m_finobt_nores)) {
1583		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585				&tp);
1586	} else {
1587		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588	}
1589	if (error) {
1590		if (error == -ENOSPC) {
1591			xfs_warn_ratelimited(mp,
1592			"Failed to remove inode(s) from unlinked list. "
1593			"Please free space, unmount and run xfs_repair.");
1594		} else {
1595			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596		}
 
1597		return error;
1598	}
1599
1600	/*
1601	 * We do not hold the inode locked across the entire rolling transaction
1602	 * here. We only need to hold it for the first transaction that
1603	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605	 * here breaks the relationship between cluster buffer invalidation and
1606	 * stale inode invalidation on cluster buffer item journal commit
1607	 * completion, and can result in leaving dirty stale inodes hanging
1608	 * around in memory.
1609	 *
1610	 * We have no need for serialising this inode operation against other
1611	 * operations - we freed the inode and hence reallocation is required
1612	 * and that will serialise on reallocating the space the deferops need
1613	 * to free. Hence we can unlock the inode on the first commit of
1614	 * the transaction rather than roll it right through the deferops. This
1615	 * avoids relogging the XFS_ISTALE inode.
1616	 *
1617	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1618	 * by asserting that the inode is still locked when it returns.
1619	 */
1620	xfs_ilock(ip, XFS_ILOCK_EXCL);
1621	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622
1623	error = xfs_ifree(tp, ip);
1624	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625	if (error) {
1626		/*
1627		 * If we fail to free the inode, shut down.  The cancel
1628		 * might do that, we need to make sure.  Otherwise the
1629		 * inode might be lost for a long time or forever.
1630		 */
1631		if (!XFS_FORCED_SHUTDOWN(mp)) {
1632			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633				__func__, error);
1634			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635		}
1636		xfs_trans_cancel(tp);
 
1637		return error;
1638	}
1639
1640	/*
1641	 * Credit the quota account(s). The inode is gone.
1642	 */
1643	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644
1645	/*
1646	 * Just ignore errors at this point.  There is nothing we can do except
1647	 * to try to keep going. Make sure it's not a silent error.
1648	 */
 
 
 
 
 
 
1649	error = xfs_trans_commit(tp);
1650	if (error)
1651		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652			__func__, error);
1653
 
1654	return 0;
1655}
1656
1657/*
1658 * xfs_inactive
1659 *
1660 * This is called when the vnode reference count for the vnode
1661 * goes to zero.  If the file has been unlinked, then it must
1662 * now be truncated.  Also, we clear all of the read-ahead state
1663 * kept for the inode here since the file is now closed.
1664 */
1665void
1666xfs_inactive(
1667	xfs_inode_t	*ip)
1668{
1669	struct xfs_mount	*mp;
1670	int			error;
1671	int			truncate = 0;
1672
1673	/*
1674	 * If the inode is already free, then there can be nothing
1675	 * to clean up here.
1676	 */
1677	if (VFS_I(ip)->i_mode == 0) {
 
1678		ASSERT(ip->i_df.if_broot_bytes == 0);
1679		goto out;
1680	}
1681
1682	mp = ip->i_mount;
1683	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684
1685	/* If this is a read-only mount, don't do this (would generate I/O) */
1686	if (mp->m_flags & XFS_MOUNT_RDONLY)
1687		goto out;
1688
1689	/* Metadata inodes require explicit resource cleanup. */
1690	if (xfs_is_metadata_inode(ip))
1691		goto out;
1692
1693	/* Try to clean out the cow blocks if there are any. */
1694	if (xfs_inode_has_cow_data(ip))
1695		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696
1697	if (VFS_I(ip)->i_nlink != 0) {
1698		/*
1699		 * force is true because we are evicting an inode from the
1700		 * cache. Post-eof blocks must be freed, lest we end up with
1701		 * broken free space accounting.
1702		 *
1703		 * Note: don't bother with iolock here since lockdep complains
1704		 * about acquiring it in reclaim context. We have the only
1705		 * reference to the inode at this point anyways.
1706		 */
1707		if (xfs_can_free_eofblocks(ip, true))
1708			xfs_free_eofblocks(ip);
1709
1710		goto out;
1711	}
1712
1713	if (S_ISREG(VFS_I(ip)->i_mode) &&
1714	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716		truncate = 1;
1717
1718	error = xfs_qm_dqattach(ip);
1719	if (error)
1720		goto out;
1721
1722	if (S_ISLNK(VFS_I(ip)->i_mode))
1723		error = xfs_inactive_symlink(ip);
1724	else if (truncate)
1725		error = xfs_inactive_truncate(ip);
1726	if (error)
1727		goto out;
1728
1729	/*
1730	 * If there are attributes associated with the file then blow them away
1731	 * now.  The code calls a routine that recursively deconstructs the
1732	 * attribute fork. If also blows away the in-core attribute fork.
1733	 */
1734	if (XFS_IFORK_Q(ip)) {
1735		error = xfs_attr_inactive(ip);
1736		if (error)
1737			goto out;
1738	}
1739
1740	ASSERT(!ip->i_afp);
1741	ASSERT(ip->i_forkoff == 0);
 
1742
1743	/*
1744	 * Free the inode.
1745	 */
1746	xfs_inactive_ifree(ip);
1747
1748out:
1749	/*
1750	 * We're done making metadata updates for this inode, so we can release
1751	 * the attached dquots.
1752	 */
1753	xfs_qm_dqdetach(ip);
1754}
1755
1756/*
1757 * In-Core Unlinked List Lookups
1758 * =============================
1759 *
1760 * Every inode is supposed to be reachable from some other piece of metadata
1761 * with the exception of the root directory.  Inodes with a connection to a
1762 * file descriptor but not linked from anywhere in the on-disk directory tree
1763 * are collectively known as unlinked inodes, though the filesystem itself
1764 * maintains links to these inodes so that on-disk metadata are consistent.
1765 *
1766 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1767 * header contains a number of buckets that point to an inode, and each inode
1768 * record has a pointer to the next inode in the hash chain.  This
1769 * singly-linked list causes scaling problems in the iunlink remove function
1770 * because we must walk that list to find the inode that points to the inode
1771 * being removed from the unlinked hash bucket list.
1772 *
1773 * What if we modelled the unlinked list as a collection of records capturing
1774 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1775 * have a fast way to look up unlinked list predecessors, which avoids the
1776 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1777 * rhashtable.
1778 *
1779 * Because this is a backref cache, we ignore operational failures since the
1780 * iunlink code can fall back to the slow bucket walk.  The only errors that
1781 * should bubble out are for obviously incorrect situations.
1782 *
1783 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784 * access or have otherwise provided for concurrency control.
1785 */
1786
1787/* Capture a "X.next_unlinked = Y" relationship. */
1788struct xfs_iunlink {
1789	struct rhash_head	iu_rhash_head;
1790	xfs_agino_t		iu_agino;		/* X */
1791	xfs_agino_t		iu_next_unlinked;	/* Y */
1792};
1793
1794/* Unlinked list predecessor lookup hashtable construction */
1795static int
1796xfs_iunlink_obj_cmpfn(
1797	struct rhashtable_compare_arg	*arg,
1798	const void			*obj)
1799{
1800	const xfs_agino_t		*key = arg->key;
1801	const struct xfs_iunlink	*iu = obj;
1802
1803	if (iu->iu_next_unlinked != *key)
1804		return 1;
1805	return 0;
1806}
1807
1808static const struct rhashtable_params xfs_iunlink_hash_params = {
1809	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1810	.key_len		= sizeof(xfs_agino_t),
1811	.key_offset		= offsetof(struct xfs_iunlink,
1812					   iu_next_unlinked),
1813	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1814	.automatic_shrinking	= true,
1815	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1816};
1817
1818/*
1819 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1820 * relation is found.
1821 */
1822static xfs_agino_t
1823xfs_iunlink_lookup_backref(
1824	struct xfs_perag	*pag,
1825	xfs_agino_t		agino)
1826{
1827	struct xfs_iunlink	*iu;
1828
1829	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830			xfs_iunlink_hash_params);
1831	return iu ? iu->iu_agino : NULLAGINO;
1832}
1833
1834/*
1835 * Take ownership of an iunlink cache entry and insert it into the hash table.
1836 * If successful, the entry will be owned by the cache; if not, it is freed.
1837 * Either way, the caller does not own @iu after this call.
1838 */
1839static int
1840xfs_iunlink_insert_backref(
1841	struct xfs_perag	*pag,
1842	struct xfs_iunlink	*iu)
1843{
1844	int			error;
1845
1846	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1848	/*
1849	 * Fail loudly if there already was an entry because that's a sign of
1850	 * corruption of in-memory data.  Also fail loudly if we see an error
1851	 * code we didn't anticipate from the rhashtable code.  Currently we
1852	 * only anticipate ENOMEM.
1853	 */
1854	if (error) {
1855		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856		kmem_free(iu);
1857	}
1858	/*
1859	 * Absorb any runtime errors that aren't a result of corruption because
1860	 * this is a cache and we can always fall back to bucket list scanning.
1861	 */
1862	if (error != 0 && error != -EEXIST)
1863		error = 0;
1864	return error;
1865}
1866
1867/* Remember that @prev_agino.next_unlinked = @this_agino. */
1868static int
1869xfs_iunlink_add_backref(
1870	struct xfs_perag	*pag,
1871	xfs_agino_t		prev_agino,
1872	xfs_agino_t		this_agino)
1873{
1874	struct xfs_iunlink	*iu;
1875
1876	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1877		return 0;
1878
1879	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880	iu->iu_agino = prev_agino;
1881	iu->iu_next_unlinked = this_agino;
1882
1883	return xfs_iunlink_insert_backref(pag, iu);
1884}
1885
1886/*
1887 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
1889 * wasn't any such entry then we don't bother.
1890 */
1891static int
1892xfs_iunlink_change_backref(
1893	struct xfs_perag	*pag,
1894	xfs_agino_t		agino,
1895	xfs_agino_t		next_unlinked)
1896{
1897	struct xfs_iunlink	*iu;
1898	int			error;
1899
1900	/* Look up the old entry; if there wasn't one then exit. */
1901	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902			xfs_iunlink_hash_params);
1903	if (!iu)
1904		return 0;
1905
1906	/*
1907	 * Remove the entry.  This shouldn't ever return an error, but if we
1908	 * couldn't remove the old entry we don't want to add it again to the
1909	 * hash table, and if the entry disappeared on us then someone's
1910	 * violated the locking rules and we need to fail loudly.  Either way
1911	 * we cannot remove the inode because internal state is or would have
1912	 * been corrupt.
1913	 */
1914	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1916	if (error)
1917		return error;
1918
1919	/* If there is no new next entry just free our item and return. */
1920	if (next_unlinked == NULLAGINO) {
1921		kmem_free(iu);
1922		return 0;
1923	}
1924
1925	/* Update the entry and re-add it to the hash table. */
1926	iu->iu_next_unlinked = next_unlinked;
1927	return xfs_iunlink_insert_backref(pag, iu);
1928}
1929
1930/* Set up the in-core predecessor structures. */
1931int
1932xfs_iunlink_init(
1933	struct xfs_perag	*pag)
1934{
1935	return rhashtable_init(&pag->pagi_unlinked_hash,
1936			&xfs_iunlink_hash_params);
1937}
1938
1939/* Free the in-core predecessor structures. */
1940static void
1941xfs_iunlink_free_item(
1942	void			*ptr,
1943	void			*arg)
1944{
1945	struct xfs_iunlink	*iu = ptr;
1946	bool			*freed_anything = arg;
1947
1948	*freed_anything = true;
1949	kmem_free(iu);
1950}
1951
1952void
1953xfs_iunlink_destroy(
1954	struct xfs_perag	*pag)
1955{
1956	bool			freed_anything = false;
1957
1958	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959			xfs_iunlink_free_item, &freed_anything);
1960
1961	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962}
1963
1964/*
1965 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1966 * is responsible for validating the old value.
1967 */
1968STATIC int
1969xfs_iunlink_update_bucket(
1970	struct xfs_trans	*tp,
1971	struct xfs_perag	*pag,
1972	struct xfs_buf		*agibp,
1973	unsigned int		bucket_index,
1974	xfs_agino_t		new_agino)
1975{
1976	struct xfs_agi		*agi = agibp->b_addr;
1977	xfs_agino_t		old_value;
1978	int			offset;
1979
1980	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981
1982	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984			old_value, new_agino);
1985
1986	/*
1987	 * We should never find the head of the list already set to the value
1988	 * passed in because either we're adding or removing ourselves from the
1989	 * head of the list.
1990	 */
1991	if (old_value == new_agino) {
1992		xfs_buf_mark_corrupt(agibp);
1993		return -EFSCORRUPTED;
1994	}
1995
1996	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997	offset = offsetof(struct xfs_agi, agi_unlinked) +
1998			(sizeof(xfs_agino_t) * bucket_index);
1999	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000	return 0;
2001}
2002
2003/* Set an on-disk inode's next_unlinked pointer. */
2004STATIC void
2005xfs_iunlink_update_dinode(
2006	struct xfs_trans	*tp,
2007	struct xfs_perag	*pag,
2008	xfs_agino_t		agino,
2009	struct xfs_buf		*ibp,
2010	struct xfs_dinode	*dip,
2011	struct xfs_imap		*imap,
2012	xfs_agino_t		next_agino)
2013{
2014	struct xfs_mount	*mp = tp->t_mountp;
2015	int			offset;
2016
2017	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018
2019	trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020			be32_to_cpu(dip->di_next_unlinked), next_agino);
2021
2022	dip->di_next_unlinked = cpu_to_be32(next_agino);
2023	offset = imap->im_boffset +
2024			offsetof(struct xfs_dinode, di_next_unlinked);
2025
2026	/* need to recalc the inode CRC if appropriate */
2027	xfs_dinode_calc_crc(mp, dip);
2028	xfs_trans_inode_buf(tp, ibp);
2029	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030}
2031
2032/* Set an in-core inode's unlinked pointer and return the old value. */
2033STATIC int
2034xfs_iunlink_update_inode(
2035	struct xfs_trans	*tp,
2036	struct xfs_inode	*ip,
2037	struct xfs_perag	*pag,
2038	xfs_agino_t		next_agino,
2039	xfs_agino_t		*old_next_agino)
2040{
2041	struct xfs_mount	*mp = tp->t_mountp;
2042	struct xfs_dinode	*dip;
2043	struct xfs_buf		*ibp;
2044	xfs_agino_t		old_value;
2045	int			error;
2046
2047	ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2048
2049	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2050	if (error)
2051		return error;
2052	dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053
2054	/* Make sure the old pointer isn't garbage. */
2055	old_value = be32_to_cpu(dip->di_next_unlinked);
2056	if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058				sizeof(*dip), __this_address);
2059		error = -EFSCORRUPTED;
2060		goto out;
2061	}
2062
2063	/*
2064	 * Since we're updating a linked list, we should never find that the
2065	 * current pointer is the same as the new value, unless we're
2066	 * terminating the list.
2067	 */
2068	*old_next_agino = old_value;
2069	if (old_value == next_agino) {
2070		if (next_agino != NULLAGINO) {
2071			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072					dip, sizeof(*dip), __this_address);
2073			error = -EFSCORRUPTED;
2074		}
2075		goto out;
2076	}
2077
2078	/* Ok, update the new pointer. */
2079	xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080			ibp, dip, &ip->i_imap, next_agino);
2081	return 0;
2082out:
2083	xfs_trans_brelse(tp, ibp);
2084	return error;
2085}
2086
2087/*
2088 * This is called when the inode's link count has gone to 0 or we are creating
2089 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
 
 
 
2090 *
2091 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2092 * list when the inode is freed.
2093 */
2094STATIC int
2095xfs_iunlink(
2096	struct xfs_trans	*tp,
2097	struct xfs_inode	*ip)
2098{
2099	struct xfs_mount	*mp = tp->t_mountp;
2100	struct xfs_perag	*pag;
2101	struct xfs_agi		*agi;
2102	struct xfs_buf		*agibp;
2103	xfs_agino_t		next_agino;
2104	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106	int			error;
 
2107
2108	ASSERT(VFS_I(ip)->i_nlink == 0);
2109	ASSERT(VFS_I(ip)->i_mode != 0);
2110	trace_xfs_iunlink(ip);
2111
2112	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113
2114	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2115	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116	if (error)
2117		goto out;
2118	agi = agibp->b_addr;
2119
2120	/*
2121	 * Get the index into the agi hash table for the list this inode will
2122	 * go on.  Make sure the pointer isn't garbage and that this inode
2123	 * isn't already on the list.
2124	 */
2125	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126	if (next_agino == agino ||
2127	    !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128		xfs_buf_mark_corrupt(agibp);
2129		error = -EFSCORRUPTED;
2130		goto out;
2131	}
2132
2133	if (next_agino != NULLAGINO) {
2134		xfs_agino_t		old_agino;
2135
2136		/*
2137		 * There is already another inode in the bucket, so point this
2138		 * inode to the current head of the list.
2139		 */
2140		error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141				&old_agino);
2142		if (error)
2143			goto out;
2144		ASSERT(old_agino == NULLAGINO);
2145
2146		/*
2147		 * agino has been unlinked, add a backref from the next inode
2148		 * back to agino.
2149		 */
2150		error = xfs_iunlink_add_backref(pag, agino, next_agino);
2151		if (error)
2152			goto out;
2153	}
2154
2155	/* Point the head of the list to point to this inode. */
2156	error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157out:
2158	xfs_perag_put(pag);
2159	return error;
2160}
2161
2162/* Return the imap, dinode pointer, and buffer for an inode. */
2163STATIC int
2164xfs_iunlink_map_ino(
2165	struct xfs_trans	*tp,
2166	xfs_agnumber_t		agno,
2167	xfs_agino_t		agino,
2168	struct xfs_imap		*imap,
2169	struct xfs_dinode	**dipp,
2170	struct xfs_buf		**bpp)
2171{
2172	struct xfs_mount	*mp = tp->t_mountp;
2173	int			error;
2174
2175	imap->im_blkno = 0;
2176	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177	if (error) {
2178		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179				__func__, error);
2180		return error;
2181	}
2182
2183	error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184	if (error) {
2185		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186				__func__, error);
2187		return error;
2188	}
2189
2190	*dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191	return 0;
2192}
2193
2194/*
2195 * Walk the unlinked chain from @head_agino until we find the inode that
2196 * points to @target_agino.  Return the inode number, map, dinode pointer,
2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198 *
2199 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200 * @agino, @imap, @dipp, and @bpp are all output parameters.
2201 *
2202 * Do not call this function if @target_agino is the head of the list.
2203 */
2204STATIC int
2205xfs_iunlink_map_prev(
2206	struct xfs_trans	*tp,
2207	struct xfs_perag	*pag,
2208	xfs_agino_t		head_agino,
2209	xfs_agino_t		target_agino,
2210	xfs_agino_t		*agino,
2211	struct xfs_imap		*imap,
2212	struct xfs_dinode	**dipp,
2213	struct xfs_buf		**bpp)
2214{
2215	struct xfs_mount	*mp = tp->t_mountp;
2216	xfs_agino_t		next_agino;
2217	int			error;
2218
2219	ASSERT(head_agino != target_agino);
2220	*bpp = NULL;
2221
2222	/* See if our backref cache can find it faster. */
2223	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224	if (*agino != NULLAGINO) {
2225		error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226				dipp, bpp);
2227		if (error)
2228			return error;
2229
2230		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231			return 0;
2232
 
2233		/*
2234		 * If we get here the cache contents were corrupt, so drop the
2235		 * buffer and fall back to walking the bucket list.
 
 
2236		 */
2237		xfs_trans_brelse(tp, *bpp);
2238		*bpp = NULL;
2239		WARN_ON_ONCE(1);
2240	}
2241
2242	trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243
2244	/* Otherwise, walk the entire bucket until we find it. */
2245	next_agino = head_agino;
2246	while (next_agino != target_agino) {
2247		xfs_agino_t	unlinked_agino;
2248
2249		if (*bpp)
2250			xfs_trans_brelse(tp, *bpp);
2251
2252		*agino = next_agino;
2253		error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254				dipp, bpp);
2255		if (error)
2256			return error;
2257
2258		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259		/*
2260		 * Make sure this pointer is valid and isn't an obvious
2261		 * infinite loop.
2262		 */
2263		if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264		    next_agino == unlinked_agino) {
2265			XFS_CORRUPTION_ERROR(__func__,
2266					XFS_ERRLEVEL_LOW, mp,
2267					*dipp, sizeof(**dipp));
2268			error = -EFSCORRUPTED;
2269			return error;
2270		}
2271		next_agino = unlinked_agino;
2272	}
2273
 
 
 
 
 
 
 
 
 
 
2274	return 0;
2275}
2276
2277/*
2278 * Pull the on-disk inode from the AGI unlinked list.
2279 */
2280STATIC int
2281xfs_iunlink_remove(
2282	struct xfs_trans	*tp,
2283	struct xfs_perag	*pag,
2284	struct xfs_inode	*ip)
2285{
2286	struct xfs_mount	*mp = tp->t_mountp;
2287	struct xfs_agi		*agi;
2288	struct xfs_buf		*agibp;
2289	struct xfs_buf		*last_ibp;
2290	struct xfs_dinode	*last_dip = NULL;
2291	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292	xfs_agino_t		next_agino;
2293	xfs_agino_t		head_agino;
2294	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295	int			error;
2296
2297	trace_xfs_iunlink_remove(ip);
2298
2299	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2300	error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301	if (error)
2302		return error;
2303	agi = agibp->b_addr;
2304
2305	/*
2306	 * Get the index into the agi hash table for the list this inode will
2307	 * go on.  Make sure the head pointer isn't garbage.
2308	 */
2309	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310	if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312				agi, sizeof(*agi));
2313		return -EFSCORRUPTED;
2314	}
2315
2316	/*
2317	 * Set our inode's next_unlinked pointer to NULL and then return
2318	 * the old pointer value so that we can update whatever was previous
2319	 * to us in the list to point to whatever was next in the list.
2320	 */
2321	error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322	if (error)
2323		return error;
2324
 
 
2325	/*
2326	 * If there was a backref pointing from the next inode back to this
2327	 * one, remove it because we've removed this inode from the list.
2328	 *
2329	 * Later, if this inode was in the middle of the list we'll update
2330	 * this inode's backref to point from the next inode.
2331	 */
2332	if (next_agino != NULLAGINO) {
2333		error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2334		if (error)
2335			return error;
2336	}
2337
2338	if (head_agino != agino) {
2339		struct xfs_imap	imap;
2340		xfs_agino_t	prev_agino;
2341
2342		/* We need to search the list for the inode being freed. */
2343		error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344				&prev_agino, &imap, &last_dip, &last_ibp);
2345		if (error)
 
 
 
 
 
2346			return error;
2347
2348		/* Point the previous inode on the list to the next inode. */
2349		xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350				last_dip, &imap, next_agino);
2351
 
 
 
 
 
 
 
 
 
 
 
 
 
2352		/*
2353		 * Now we deal with the backref for this inode.  If this inode
2354		 * pointed at a real inode, change the backref that pointed to
2355		 * us to point to our old next.  If this inode was the end of
2356		 * the list, delete the backref that pointed to us.  Note that
2357		 * change_backref takes care of deleting the backref if
2358		 * next_agino is NULLAGINO.
2359		 */
2360		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361				next_agino);
2362	}
2363
2364	/* Point the head of the list to the next unlinked inode. */
2365	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366			next_agino);
2367}
2368
2369/*
2370 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371 * mark it stale. We should only find clean inodes in this lookup that aren't
2372 * already stale.
2373 */
2374static void
2375xfs_ifree_mark_inode_stale(
2376	struct xfs_perag	*pag,
2377	struct xfs_inode	*free_ip,
2378	xfs_ino_t		inum)
2379{
2380	struct xfs_mount	*mp = pag->pag_mount;
2381	struct xfs_inode_log_item *iip;
2382	struct xfs_inode	*ip;
2383
2384retry:
2385	rcu_read_lock();
2386	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
 
 
 
2387
2388	/* Inode not in memory, nothing to do */
2389	if (!ip) {
2390		rcu_read_unlock();
2391		return;
2392	}
 
 
 
2393
2394	/*
2395	 * because this is an RCU protected lookup, we could find a recently
2396	 * freed or even reallocated inode during the lookup. We need to check
2397	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2398	 * valid, the wrong inode or stale.
2399	 */
2400	spin_lock(&ip->i_flags_lock);
2401	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402		goto out_iflags_unlock;
2403
2404	/*
2405	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406	 * other inodes that we did not find in the list attached to the buffer
2407	 * and are not already marked stale. If we can't lock it, back off and
2408	 * retry.
2409	 */
2410	if (ip != free_ip) {
2411		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412			spin_unlock(&ip->i_flags_lock);
2413			rcu_read_unlock();
2414			delay(1);
2415			goto retry;
2416		}
2417	}
2418	ip->i_flags |= XFS_ISTALE;
2419
2420	/*
2421	 * If the inode is flushing, it is already attached to the buffer.  All
2422	 * we needed to do here is mark the inode stale so buffer IO completion
2423	 * will remove it from the AIL.
2424	 */
2425	iip = ip->i_itemp;
2426	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428		ASSERT(iip->ili_last_fields);
2429		goto out_iunlock;
2430	}
2431
2432	/*
2433	 * Inodes not attached to the buffer can be released immediately.
2434	 * Everything else has to go through xfs_iflush_abort() on journal
2435	 * commit as the flock synchronises removal of the inode from the
2436	 * cluster buffer against inode reclaim.
2437	 */
2438	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439		goto out_iunlock;
2440
2441	__xfs_iflags_set(ip, XFS_IFLUSHING);
2442	spin_unlock(&ip->i_flags_lock);
2443	rcu_read_unlock();
2444
2445	/* we have a dirty inode in memory that has not yet been flushed. */
2446	spin_lock(&iip->ili_lock);
2447	iip->ili_last_fields = iip->ili_fields;
2448	iip->ili_fields = 0;
2449	iip->ili_fsync_fields = 0;
2450	spin_unlock(&iip->ili_lock);
2451	ASSERT(iip->ili_last_fields);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452
2453	if (ip != free_ip)
2454		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455	return;
2456
2457out_iunlock:
2458	if (ip != free_ip)
2459		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460out_iflags_unlock:
2461	spin_unlock(&ip->i_flags_lock);
2462	rcu_read_unlock();
2463}
2464
2465/*
2466 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467 * inodes that are in memory - they all must be marked stale and attached to
2468 * the cluster buffer.
2469 */
2470static int
2471xfs_ifree_cluster(
2472	struct xfs_trans	*tp,
2473	struct xfs_perag	*pag,
2474	struct xfs_inode	*free_ip,
2475	struct xfs_icluster	*xic)
2476{
2477	struct xfs_mount	*mp = free_ip->i_mount;
2478	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2479	struct xfs_buf		*bp;
2480	xfs_daddr_t		blkno;
2481	xfs_ino_t		inum = xic->first_ino;
2482	int			nbufs;
2483	int			i, j;
2484	int			ioffset;
2485	int			error;
 
 
 
 
 
 
2486
2487	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
 
 
2488
2489	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490		/*
2491		 * The allocation bitmap tells us which inodes of the chunk were
2492		 * physically allocated. Skip the cluster if an inode falls into
2493		 * a sparse region.
2494		 */
2495		ioffset = inum - xic->first_ino;
2496		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498			continue;
2499		}
2500
2501		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502					 XFS_INO_TO_AGBNO(mp, inum));
2503
2504		/*
2505		 * We obtain and lock the backing buffer first in the process
2506		 * here to ensure dirty inodes attached to the buffer remain in
2507		 * the flushing state while we mark them stale.
2508		 *
2509		 * If we scan the in-memory inodes first, then buffer IO can
2510		 * complete before we get a lock on it, and hence we may fail
2511		 * to mark all the active inodes on the buffer stale.
2512		 */
2513		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514				mp->m_bsize * igeo->blocks_per_cluster,
2515				XBF_UNMAPPED, &bp);
2516		if (error)
2517			return error;
 
2518
2519		/*
2520		 * This buffer may not have been correctly initialised as we
2521		 * didn't read it from disk. That's not important because we are
2522		 * only using to mark the buffer as stale in the log, and to
2523		 * attach stale cached inodes on it. That means it will never be
2524		 * dispatched for IO. If it is, we want to know about it, and we
2525		 * want it to fail. We can acheive this by adding a write
2526		 * verifier to the buffer.
2527		 */
2528		bp->b_ops = &xfs_inode_buf_ops;
2529
2530		/*
2531		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532		 * too. This requires lookups, and will skip inodes that we've
2533		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534		 */
2535		for (i = 0; i < igeo->inodes_per_cluster; i++)
2536			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537
2538		xfs_trans_stale_inode_buf(tp, bp);
2539		xfs_trans_binval(tp, bp);
2540	}
 
 
2541	return 0;
2542}
2543
2544/*
2545 * This is called to return an inode to the inode free list.
2546 * The inode should already be truncated to 0 length and have
2547 * no pages associated with it.  This routine also assumes that
2548 * the inode is already a part of the transaction.
2549 *
2550 * The on-disk copy of the inode will have been added to the list
2551 * of unlinked inodes in the AGI. We need to remove the inode from
2552 * that list atomically with respect to freeing it here.
2553 */
2554int
2555xfs_ifree(
2556	struct xfs_trans	*tp,
2557	struct xfs_inode	*ip)
 
2558{
2559	struct xfs_mount	*mp = ip->i_mount;
2560	struct xfs_perag	*pag;
2561	struct xfs_icluster	xic = { 0 };
2562	struct xfs_inode_log_item *iip = ip->i_itemp;
2563	int			error;
 
2564
2565	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566	ASSERT(VFS_I(ip)->i_nlink == 0);
2567	ASSERT(ip->i_df.if_nextents == 0);
2568	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569	ASSERT(ip->i_nblocks == 0);
2570
2571	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572
2573	/*
2574	 * Pull the on-disk inode from the AGI unlinked list.
2575	 */
2576	error = xfs_iunlink_remove(tp, pag, ip);
2577	if (error)
2578		goto out;
2579
2580	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581	if (error)
2582		goto out;
2583
2584	/*
2585	 * Free any local-format data sitting around before we reset the
2586	 * data fork to extents format.  Note that the attr fork data has
2587	 * already been freed by xfs_attr_inactive.
2588	 */
2589	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590		kmem_free(ip->i_df.if_u1.if_data);
2591		ip->i_df.if_u1.if_data = NULL;
2592		ip->i_df.if_bytes = 0;
2593	}
2594
2595	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2596	ip->i_diflags = 0;
2597	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2599	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602
2603	/* Don't attempt to replay owner changes for a deleted inode */
2604	spin_lock(&iip->ili_lock);
2605	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606	spin_unlock(&iip->ili_lock);
2607
2608	/*
2609	 * Bump the generation count so no one will be confused
2610	 * by reincarnations of this inode.
2611	 */
2612	VFS_I(ip)->i_generation++;
2613	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614
2615	if (xic.deleted)
2616		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617out:
2618	xfs_perag_put(pag);
2619	return error;
2620}
2621
2622/*
2623 * This is called to unpin an inode.  The caller must have the inode locked
2624 * in at least shared mode so that the buffer cannot be subsequently pinned
2625 * once someone is waiting for it to be unpinned.
2626 */
2627static void
2628xfs_iunpin(
2629	struct xfs_inode	*ip)
2630{
2631	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632
2633	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634
2635	/* Give the log a push to start the unpinning I/O */
2636	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637
2638}
2639
2640static void
2641__xfs_iunpin_wait(
2642	struct xfs_inode	*ip)
2643{
2644	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646
2647	xfs_iunpin(ip);
2648
2649	do {
2650		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651		if (xfs_ipincount(ip))
2652			io_schedule();
2653	} while (xfs_ipincount(ip));
2654	finish_wait(wq, &wait.wq_entry);
2655}
2656
2657void
2658xfs_iunpin_wait(
2659	struct xfs_inode	*ip)
2660{
2661	if (xfs_ipincount(ip))
2662		__xfs_iunpin_wait(ip);
2663}
2664
2665/*
2666 * Removing an inode from the namespace involves removing the directory entry
2667 * and dropping the link count on the inode. Removing the directory entry can
2668 * result in locking an AGF (directory blocks were freed) and removing a link
2669 * count can result in placing the inode on an unlinked list which results in
2670 * locking an AGI.
2671 *
2672 * The big problem here is that we have an ordering constraint on AGF and AGI
2673 * locking - inode allocation locks the AGI, then can allocate a new extent for
2674 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675 * removes the inode from the unlinked list, requiring that we lock the AGI
2676 * first, and then freeing the inode can result in an inode chunk being freed
2677 * and hence freeing disk space requiring that we lock an AGF.
2678 *
2679 * Hence the ordering that is imposed by other parts of the code is AGI before
2680 * AGF. This means we cannot remove the directory entry before we drop the inode
2681 * reference count and put it on the unlinked list as this results in a lock
2682 * order of AGF then AGI, and this can deadlock against inode allocation and
2683 * freeing. Therefore we must drop the link counts before we remove the
2684 * directory entry.
2685 *
2686 * This is still safe from a transactional point of view - it is not until we
2687 * get to xfs_defer_finish() that we have the possibility of multiple
2688 * transactions in this operation. Hence as long as we remove the directory
2689 * entry and drop the link count in the first transaction of the remove
2690 * operation, there are no transactional constraints on the ordering here.
2691 */
2692int
2693xfs_remove(
2694	xfs_inode_t             *dp,
2695	struct xfs_name		*name,
2696	xfs_inode_t		*ip)
2697{
2698	xfs_mount_t		*mp = dp->i_mount;
2699	xfs_trans_t             *tp = NULL;
2700	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2701	int                     error = 0;
 
 
2702	uint			resblks;
2703
2704	trace_xfs_remove(dp, name);
2705
2706	if (XFS_FORCED_SHUTDOWN(mp))
2707		return -EIO;
2708
2709	error = xfs_qm_dqattach(dp);
2710	if (error)
2711		goto std_return;
2712
2713	error = xfs_qm_dqattach(ip);
2714	if (error)
2715		goto std_return;
2716
 
 
 
 
 
2717	/*
2718	 * We try to get the real space reservation first,
2719	 * allowing for directory btree deletion(s) implying
2720	 * possible bmap insert(s).  If we can't get the space
2721	 * reservation then we use 0 instead, and avoid the bmap
2722	 * btree insert(s) in the directory code by, if the bmap
2723	 * insert tries to happen, instead trimming the LAST
2724	 * block from the directory.
2725	 */
2726	resblks = XFS_REMOVE_SPACE_RES(mp);
2727	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728	if (error == -ENOSPC) {
2729		resblks = 0;
2730		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731				&tp);
2732	}
2733	if (error) {
2734		ASSERT(error != -ENOSPC);
2735		goto std_return;
2736	}
2737
2738	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
 
2739
2740	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742
2743	/*
2744	 * If we're removing a directory perform some additional validation.
2745	 */
2746	if (is_dir) {
2747		ASSERT(VFS_I(ip)->i_nlink >= 2);
2748		if (VFS_I(ip)->i_nlink != 2) {
2749			error = -ENOTEMPTY;
2750			goto out_trans_cancel;
2751		}
2752		if (!xfs_dir_isempty(ip)) {
2753			error = -ENOTEMPTY;
2754			goto out_trans_cancel;
2755		}
2756
2757		/* Drop the link from ip's "..".  */
2758		error = xfs_droplink(tp, dp);
2759		if (error)
2760			goto out_trans_cancel;
2761
2762		/* Drop the "." link from ip to self.  */
2763		error = xfs_droplink(tp, ip);
2764		if (error)
2765			goto out_trans_cancel;
2766
2767		/*
2768		 * Point the unlinked child directory's ".." entry to the root
2769		 * directory to eliminate back-references to inodes that may
2770		 * get freed before the child directory is closed.  If the fs
2771		 * gets shrunk, this can lead to dirent inode validation errors.
2772		 */
2773		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2774			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2775					tp->t_mountp->m_sb.sb_rootino, 0);
2776			if (error)
2777				return error;
2778		}
2779	} else {
2780		/*
2781		 * When removing a non-directory we need to log the parent
2782		 * inode here.  For a directory this is done implicitly
2783		 * by the xfs_droplink call for the ".." entry.
2784		 */
2785		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2786	}
2787	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2788
2789	/* Drop the link from dp to ip. */
2790	error = xfs_droplink(tp, ip);
2791	if (error)
2792		goto out_trans_cancel;
2793
2794	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
 
 
2795	if (error) {
2796		ASSERT(error != -ENOENT);
2797		goto out_trans_cancel;
2798	}
2799
2800	/*
2801	 * If this is a synchronous mount, make sure that the
2802	 * remove transaction goes to disk before returning to
2803	 * the user.
2804	 */
2805	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2806		xfs_trans_set_sync(tp);
2807
 
 
 
 
2808	error = xfs_trans_commit(tp);
2809	if (error)
2810		goto std_return;
2811
2812	if (is_dir && xfs_inode_is_filestream(ip))
2813		xfs_filestream_deassociate(ip);
2814
2815	return 0;
2816
 
 
2817 out_trans_cancel:
2818	xfs_trans_cancel(tp);
2819 std_return:
2820	return error;
2821}
2822
2823/*
2824 * Enter all inodes for a rename transaction into a sorted array.
2825 */
2826#define __XFS_SORT_INODES	5
2827STATIC void
2828xfs_sort_for_rename(
2829	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2830	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2831	struct xfs_inode	*ip1,	/* in: inode of old entry */
2832	struct xfs_inode	*ip2,	/* in: inode of new entry */
2833	struct xfs_inode	*wip,	/* in: whiteout inode */
2834	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2835	int			*num_inodes)  /* in/out: inodes in array */
2836{
2837	int			i, j;
2838
2839	ASSERT(*num_inodes == __XFS_SORT_INODES);
2840	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842	/*
2843	 * i_tab contains a list of pointers to inodes.  We initialize
2844	 * the table here & we'll sort it.  We will then use it to
2845	 * order the acquisition of the inode locks.
2846	 *
2847	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2848	 */
2849	i = 0;
2850	i_tab[i++] = dp1;
2851	i_tab[i++] = dp2;
2852	i_tab[i++] = ip1;
2853	if (ip2)
2854		i_tab[i++] = ip2;
2855	if (wip)
2856		i_tab[i++] = wip;
2857	*num_inodes = i;
2858
2859	/*
2860	 * Sort the elements via bubble sort.  (Remember, there are at
2861	 * most 5 elements to sort, so this is adequate.)
2862	 */
2863	for (i = 0; i < *num_inodes; i++) {
2864		for (j = 1; j < *num_inodes; j++) {
2865			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2866				struct xfs_inode *temp = i_tab[j];
2867				i_tab[j] = i_tab[j-1];
2868				i_tab[j-1] = temp;
2869			}
2870		}
2871	}
2872}
2873
2874static int
2875xfs_finish_rename(
2876	struct xfs_trans	*tp)
 
2877{
 
 
2878	/*
2879	 * If this is a synchronous mount, make sure that the rename transaction
2880	 * goes to disk before returning to the user.
2881	 */
2882	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2883		xfs_trans_set_sync(tp);
2884
 
 
 
 
 
 
 
2885	return xfs_trans_commit(tp);
2886}
2887
2888/*
2889 * xfs_cross_rename()
2890 *
2891 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2892 */
2893STATIC int
2894xfs_cross_rename(
2895	struct xfs_trans	*tp,
2896	struct xfs_inode	*dp1,
2897	struct xfs_name		*name1,
2898	struct xfs_inode	*ip1,
2899	struct xfs_inode	*dp2,
2900	struct xfs_name		*name2,
2901	struct xfs_inode	*ip2,
 
 
2902	int			spaceres)
2903{
2904	int		error = 0;
2905	int		ip1_flags = 0;
2906	int		ip2_flags = 0;
2907	int		dp2_flags = 0;
2908
2909	/* Swap inode number for dirent in first parent */
2910	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
 
 
2911	if (error)
2912		goto out_trans_abort;
2913
2914	/* Swap inode number for dirent in second parent */
2915	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
 
 
2916	if (error)
2917		goto out_trans_abort;
2918
2919	/*
2920	 * If we're renaming one or more directories across different parents,
2921	 * update the respective ".." entries (and link counts) to match the new
2922	 * parents.
2923	 */
2924	if (dp1 != dp2) {
2925		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2926
2927		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2928			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2929						dp1->i_ino, spaceres);
 
2930			if (error)
2931				goto out_trans_abort;
2932
2933			/* transfer ip2 ".." reference to dp1 */
2934			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2935				error = xfs_droplink(tp, dp2);
2936				if (error)
2937					goto out_trans_abort;
2938				xfs_bumplink(tp, dp1);
 
 
2939			}
2940
2941			/*
2942			 * Although ip1 isn't changed here, userspace needs
2943			 * to be warned about the change, so that applications
2944			 * relying on it (like backup ones), will properly
2945			 * notify the change
2946			 */
2947			ip1_flags |= XFS_ICHGTIME_CHG;
2948			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2949		}
2950
2951		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2952			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2953						dp2->i_ino, spaceres);
 
2954			if (error)
2955				goto out_trans_abort;
2956
2957			/* transfer ip1 ".." reference to dp2 */
2958			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2959				error = xfs_droplink(tp, dp1);
2960				if (error)
2961					goto out_trans_abort;
2962				xfs_bumplink(tp, dp2);
 
 
2963			}
2964
2965			/*
2966			 * Although ip2 isn't changed here, userspace needs
2967			 * to be warned about the change, so that applications
2968			 * relying on it (like backup ones), will properly
2969			 * notify the change
2970			 */
2971			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972			ip2_flags |= XFS_ICHGTIME_CHG;
2973		}
2974	}
2975
2976	if (ip1_flags) {
2977		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2978		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2979	}
2980	if (ip2_flags) {
2981		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2982		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2983	}
2984	if (dp2_flags) {
2985		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2986		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2987	}
2988	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2990	return xfs_finish_rename(tp);
2991
2992out_trans_abort:
 
2993	xfs_trans_cancel(tp);
2994	return error;
2995}
2996
2997/*
2998 * xfs_rename_alloc_whiteout()
2999 *
3000 * Return a referenced, unlinked, unlocked inode that can be used as a
3001 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3002 * crash between allocating the inode and linking it into the rename transaction
3003 * recovery will free the inode and we won't leak it.
3004 */
3005static int
3006xfs_rename_alloc_whiteout(
3007	struct user_namespace	*mnt_userns,
3008	struct xfs_inode	*dp,
3009	struct xfs_inode	**wip)
3010{
3011	struct xfs_inode	*tmpfile;
3012	int			error;
3013
3014	error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3015				   &tmpfile);
3016	if (error)
3017		return error;
3018
3019	/*
3020	 * Prepare the tmpfile inode as if it were created through the VFS.
3021	 * Complete the inode setup and flag it as linkable.  nlink is already
3022	 * zero, so we can skip the drop_nlink.
 
3023	 */
3024	xfs_setup_iops(tmpfile);
3025	xfs_finish_inode_setup(tmpfile);
3026	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3027
3028	*wip = tmpfile;
3029	return 0;
3030}
3031
3032/*
3033 * xfs_rename
3034 */
3035int
3036xfs_rename(
3037	struct user_namespace	*mnt_userns,
3038	struct xfs_inode	*src_dp,
3039	struct xfs_name		*src_name,
3040	struct xfs_inode	*src_ip,
3041	struct xfs_inode	*target_dp,
3042	struct xfs_name		*target_name,
3043	struct xfs_inode	*target_ip,
3044	unsigned int		flags)
3045{
3046	struct xfs_mount	*mp = src_dp->i_mount;
3047	struct xfs_trans	*tp;
 
 
3048	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3049	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3050	int			i;
3051	int			num_inodes = __XFS_SORT_INODES;
3052	bool			new_parent = (src_dp != target_dp);
3053	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3054	int			spaceres;
3055	int			error;
3056
3057	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3058
3059	if ((flags & RENAME_EXCHANGE) && !target_ip)
3060		return -EINVAL;
3061
3062	/*
3063	 * If we are doing a whiteout operation, allocate the whiteout inode
3064	 * we will be placing at the target and ensure the type is set
3065	 * appropriately.
3066	 */
3067	if (flags & RENAME_WHITEOUT) {
3068		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3069		error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3070		if (error)
3071			return error;
3072
3073		/* setup target dirent info as whiteout */
3074		src_name->type = XFS_DIR3_FT_CHRDEV;
3075	}
3076
3077	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3078				inodes, &num_inodes);
3079
 
3080	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3081	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3082	if (error == -ENOSPC) {
3083		spaceres = 0;
3084		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3085				&tp);
3086	}
3087	if (error)
3088		goto out_release_wip;
3089
3090	/*
3091	 * Attach the dquots to the inodes
3092	 */
3093	error = xfs_qm_vop_rename_dqattach(inodes);
3094	if (error)
3095		goto out_trans_cancel;
3096
3097	/*
3098	 * Lock all the participating inodes. Depending upon whether
3099	 * the target_name exists in the target directory, and
3100	 * whether the target directory is the same as the source
3101	 * directory, we can lock from 2 to 4 inodes.
3102	 */
 
 
 
 
 
 
3103	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3104
3105	/*
3106	 * Join all the inodes to the transaction. From this point on,
3107	 * we can rely on either trans_commit or trans_cancel to unlock
3108	 * them.
3109	 */
3110	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3111	if (new_parent)
3112		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3113	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3114	if (target_ip)
3115		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3116	if (wip)
3117		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3118
3119	/*
3120	 * If we are using project inheritance, we only allow renames
3121	 * into our tree when the project IDs are the same; else the
3122	 * tree quota mechanism would be circumvented.
3123	 */
3124	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3125		     target_dp->i_projid != src_ip->i_projid)) {
3126		error = -EXDEV;
3127		goto out_trans_cancel;
3128	}
3129
 
 
3130	/* RENAME_EXCHANGE is unique from here on. */
3131	if (flags & RENAME_EXCHANGE)
3132		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3133					target_dp, target_name, target_ip,
3134					spaceres);
3135
3136	/*
3137	 * Check for expected errors before we dirty the transaction
3138	 * so we can return an error without a transaction abort.
3139	 *
3140	 * Extent count overflow check:
3141	 *
3142	 * From the perspective of src_dp, a rename operation is essentially a
3143	 * directory entry remove operation. Hence the only place where we check
3144	 * for extent count overflow for src_dp is in
3145	 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3146	 * -ENOSPC when it detects a possible extent count overflow and in
3147	 * response, the higher layers of directory handling code do the
3148	 * following:
3149	 * 1. Data/Free blocks: XFS lets these blocks linger until a
3150	 *    future remove operation removes them.
3151	 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3152	 *    Leaf space and unmaps the last block.
3153	 *
3154	 * For target_dp, there are two cases depending on whether the
3155	 * destination directory entry exists or not.
3156	 *
3157	 * When destination directory entry does not exist (i.e. target_ip ==
3158	 * NULL), extent count overflow check is performed only when transaction
3159	 * has a non-zero sized space reservation associated with it.  With a
3160	 * zero-sized space reservation, XFS allows a rename operation to
3161	 * continue only when the directory has sufficient free space in its
3162	 * data/leaf/free space blocks to hold the new entry.
3163	 *
3164	 * When destination directory entry exists (i.e. target_ip != NULL), all
3165	 * we need to do is change the inode number associated with the already
3166	 * existing entry. Hence there is no need to perform an extent count
3167	 * overflow check.
3168	 */
3169	if (target_ip == NULL) {
3170		/*
3171		 * If there's no space reservation, check the entry will
3172		 * fit before actually inserting it.
3173		 */
3174		if (!spaceres) {
3175			error = xfs_dir_canenter(tp, target_dp, target_name);
3176			if (error)
3177				goto out_trans_cancel;
3178		} else {
3179			error = xfs_iext_count_may_overflow(target_dp,
3180					XFS_DATA_FORK,
3181					XFS_IEXT_DIR_MANIP_CNT(mp));
3182			if (error)
3183				goto out_trans_cancel;
3184		}
3185	} else {
3186		/*
3187		 * If target exists and it's a directory, check that whether
3188		 * it can be destroyed.
3189		 */
3190		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3191		    (!xfs_dir_isempty(target_ip) ||
3192		     (VFS_I(target_ip)->i_nlink > 2))) {
3193			error = -EEXIST;
3194			goto out_trans_cancel;
3195		}
3196	}
3197
3198	/*
3199	 * Lock the AGI buffers we need to handle bumping the nlink of the
3200	 * whiteout inode off the unlinked list and to handle dropping the
3201	 * nlink of the target inode.  Per locking order rules, do this in
3202	 * increasing AG order and before directory block allocation tries to
3203	 * grab AGFs because we grab AGIs before AGFs.
3204	 *
3205	 * The (vfs) caller must ensure that if src is a directory then
3206	 * target_ip is either null or an empty directory.
3207	 */
3208	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3209		if (inodes[i] == wip ||
3210		    (inodes[i] == target_ip &&
3211		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3212			struct xfs_buf	*bp;
3213			xfs_agnumber_t	agno;
3214
3215			agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3216			error = xfs_read_agi(mp, tp, agno, &bp);
3217			if (error)
3218				goto out_trans_cancel;
3219		}
3220	}
3221
3222	/*
3223	 * Directory entry creation below may acquire the AGF. Remove
3224	 * the whiteout from the unlinked list first to preserve correct
3225	 * AGI/AGF locking order. This dirties the transaction so failures
3226	 * after this point will abort and log recovery will clean up the
3227	 * mess.
3228	 *
3229	 * For whiteouts, we need to bump the link count on the whiteout
3230	 * inode. After this point, we have a real link, clear the tmpfile
3231	 * state flag from the inode so it doesn't accidentally get misused
3232	 * in future.
3233	 */
3234	if (wip) {
3235		struct xfs_perag	*pag;
3236
3237		ASSERT(VFS_I(wip)->i_nlink == 0);
3238
3239		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3240		error = xfs_iunlink_remove(tp, pag, wip);
3241		xfs_perag_put(pag);
3242		if (error)
3243			goto out_trans_cancel;
3244
3245		xfs_bumplink(tp, wip);
3246		VFS_I(wip)->i_state &= ~I_LINKABLE;
3247	}
3248
3249	/*
3250	 * Set up the target.
3251	 */
3252	if (target_ip == NULL) {
3253		/*
3254		 * If target does not exist and the rename crosses
3255		 * directories, adjust the target directory link count
3256		 * to account for the ".." reference from the new entry.
3257		 */
3258		error = xfs_dir_createname(tp, target_dp, target_name,
3259					   src_ip->i_ino, spaceres);
 
3260		if (error)
3261			goto out_trans_cancel;
3262
3263		xfs_trans_ichgtime(tp, target_dp,
3264					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3265
3266		if (new_parent && src_is_directory) {
3267			xfs_bumplink(tp, target_dp);
 
 
3268		}
3269	} else { /* target_ip != NULL */
3270		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3271		 * Link the source inode under the target name.
3272		 * If the source inode is a directory and we are moving
3273		 * it across directories, its ".." entry will be
3274		 * inconsistent until we replace that down below.
3275		 *
3276		 * In case there is already an entry with the same
3277		 * name at the destination directory, remove it first.
3278		 */
3279		error = xfs_dir_replace(tp, target_dp, target_name,
3280					src_ip->i_ino, spaceres);
 
3281		if (error)
3282			goto out_trans_cancel;
3283
3284		xfs_trans_ichgtime(tp, target_dp,
3285					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286
3287		/*
3288		 * Decrement the link count on the target since the target
3289		 * dir no longer points to it.
3290		 */
3291		error = xfs_droplink(tp, target_ip);
3292		if (error)
3293			goto out_trans_cancel;
3294
3295		if (src_is_directory) {
3296			/*
3297			 * Drop the link from the old "." entry.
3298			 */
3299			error = xfs_droplink(tp, target_ip);
3300			if (error)
3301				goto out_trans_cancel;
3302		}
3303	} /* target_ip != NULL */
3304
3305	/*
3306	 * Remove the source.
3307	 */
3308	if (new_parent && src_is_directory) {
3309		/*
3310		 * Rewrite the ".." entry to point to the new
3311		 * directory.
3312		 */
3313		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3314					target_dp->i_ino, spaceres);
 
3315		ASSERT(error != -EEXIST);
3316		if (error)
3317			goto out_trans_cancel;
3318	}
3319
3320	/*
3321	 * We always want to hit the ctime on the source inode.
3322	 *
3323	 * This isn't strictly required by the standards since the source
3324	 * inode isn't really being changed, but old unix file systems did
3325	 * it and some incremental backup programs won't work without it.
3326	 */
3327	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3328	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3329
3330	/*
3331	 * Adjust the link count on src_dp.  This is necessary when
3332	 * renaming a directory, either within one parent when
3333	 * the target existed, or across two parent directories.
3334	 */
3335	if (src_is_directory && (new_parent || target_ip != NULL)) {
3336
3337		/*
3338		 * Decrement link count on src_directory since the
3339		 * entry that's moved no longer points to it.
3340		 */
3341		error = xfs_droplink(tp, src_dp);
3342		if (error)
3343			goto out_trans_cancel;
3344	}
3345
3346	/*
3347	 * For whiteouts, we only need to update the source dirent with the
3348	 * inode number of the whiteout inode rather than removing it
3349	 * altogether.
3350	 */
3351	if (wip) {
3352		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3353					spaceres);
3354	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3355		/*
3356		 * NOTE: We don't need to check for extent count overflow here
3357		 * because the dir remove name code will leave the dir block in
3358		 * place if the extent count would overflow.
3359		 */
3360		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3361					   spaceres);
3362	}
3363
3364	if (error)
3365		goto out_trans_cancel;
3366
3367	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3368	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3369	if (new_parent)
3370		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3371
3372	error = xfs_finish_rename(tp);
3373	if (wip)
3374		xfs_irele(wip);
3375	return error;
3376
 
 
3377out_trans_cancel:
3378	xfs_trans_cancel(tp);
3379out_release_wip:
3380	if (wip)
3381		xfs_irele(wip);
3382	return error;
3383}
3384
3385static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386xfs_iflush(
3387	struct xfs_inode	*ip,
3388	struct xfs_buf		*bp)
3389{
3390	struct xfs_inode_log_item *iip = ip->i_itemp;
3391	struct xfs_dinode	*dip;
3392	struct xfs_mount	*mp = ip->i_mount;
 
 
3393	int			error;
3394
 
 
3395	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3396	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399	ASSERT(iip->ili_item.li_buf == bp);
3400
3401	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
3402
3403	/*
3404	 * We don't flush the inode if any of the following checks fail, but we
3405	 * do still update the log item and attach to the backing buffer as if
3406	 * the flush happened. This is a formality to facilitate predictable
3407	 * error handling as the caller will shutdown and fail the buffer.
 
 
3408	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409	error = -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411			       mp, XFS_ERRTAG_IFLUSH_1)) {
3412		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3414			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415		goto flush_out;
3416	}
3417	if (S_ISREG(VFS_I(ip)->i_mode)) {
3418		if (XFS_TEST_ERROR(
3419		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421		    mp, XFS_ERRTAG_IFLUSH_3)) {
3422			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3424				__func__, ip->i_ino, ip);
3425			goto flush_out;
3426		}
3427	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428		if (XFS_TEST_ERROR(
3429		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432		    mp, XFS_ERRTAG_IFLUSH_4)) {
3433			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3435				__func__, ip->i_ino, ip);
3436			goto flush_out;
3437		}
3438	}
3439	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3440				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3441		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442			"%s: detected corrupt incore inode %Lu, "
3443			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3444			__func__, ip->i_ino,
3445			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3446			ip->i_nblocks, ip);
3447		goto flush_out;
3448	}
3449	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450				mp, XFS_ERRTAG_IFLUSH_6)) {
3451		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3453			__func__, ip->i_ino, ip->i_forkoff, ip);
3454		goto flush_out;
3455	}
3456
3457	/*
3458	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3459	 * count for correct sequencing.  We bump the flush iteration count so
3460	 * we can detect flushes which postdate a log record during recovery.
3461	 * This is redundant as we now log every change and hence this can't
3462	 * happen but we need to still do it to ensure backwards compatibility
3463	 * with old kernels that predate logging all inode changes.
3464	 */
3465	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3466		ip->i_flushiter++;
3467
3468	/*
3469	 * If there are inline format data / attr forks attached to this inode,
3470	 * make sure they are not corrupt.
3471	 */
3472	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473	    xfs_ifork_verify_local_data(ip))
3474		goto flush_out;
3475	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3476	    xfs_ifork_verify_local_attr(ip))
3477		goto flush_out;
3478
3479	/*
3480	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3481	 * copy out the core of the inode, because if the inode is dirty at all
3482	 * the core must be.
3483	 */
3484	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3485
3486	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3487	if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3488		if (ip->i_flushiter == DI_MAX_FLUSH)
3489			ip->i_flushiter = 0;
3490	}
3491
3492	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3493	if (XFS_IFORK_Q(ip))
3494		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3495
3496	/*
3497	 * We've recorded everything logged in the inode, so we'd like to clear
3498	 * the ili_fields bits so we don't log and flush things unnecessarily.
3499	 * However, we can't stop logging all this information until the data
3500	 * we've copied into the disk buffer is written to disk.  If we did we
3501	 * might overwrite the copy of the inode in the log with all the data
3502	 * after re-logging only part of it, and in the face of a crash we
3503	 * wouldn't have all the data we need to recover.
3504	 *
3505	 * What we do is move the bits to the ili_last_fields field.  When
3506	 * logging the inode, these bits are moved back to the ili_fields field.
3507	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3508	 * we know that the information those bits represent is permanently on
3509	 * disk.  As long as the flush completes before the inode is logged
3510	 * again, then both ili_fields and ili_last_fields will be cleared.
 
 
 
 
 
 
 
 
 
3511	 */
3512	error = 0;
3513flush_out:
3514	spin_lock(&iip->ili_lock);
3515	iip->ili_last_fields = iip->ili_fields;
3516	iip->ili_fields = 0;
3517	iip->ili_fsync_fields = 0;
3518	spin_unlock(&iip->ili_lock);
3519
3520	/*
3521	 * Store the current LSN of the inode so that we can tell whether the
3522	 * item has moved in the AIL from xfs_buf_inode_iodone().
3523	 */
3524	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3525				&iip->ili_item.li_lsn);
3526
3527	/* generate the checksum. */
3528	xfs_dinode_calc_crc(mp, dip);
3529	return error;
3530}
3531
3532/*
3533 * Non-blocking flush of dirty inode metadata into the backing buffer.
3534 *
3535 * The caller must have a reference to the inode and hold the cluster buffer
3536 * locked. The function will walk across all the inodes on the cluster buffer it
3537 * can find and lock without blocking, and flush them to the cluster buffer.
3538 *
3539 * On successful flushing of at least one inode, the caller must write out the
3540 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3541 * the caller needs to release the buffer. On failure, the filesystem will be
3542 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3543 * will be returned.
3544 */
3545int
3546xfs_iflush_cluster(
3547	struct xfs_buf		*bp)
3548{
3549	struct xfs_mount	*mp = bp->b_mount;
3550	struct xfs_log_item	*lip, *n;
3551	struct xfs_inode	*ip;
3552	struct xfs_inode_log_item *iip;
3553	int			clcount = 0;
3554	int			error = 0;
3555
3556	/*
3557	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3558	 * can remove itself from the list.
 
 
3559	 */
3560	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3561		iip = (struct xfs_inode_log_item *)lip;
3562		ip = iip->ili_inode;
3563
3564		/*
3565		 * Quick and dirty check to avoid locks if possible.
3566		 */
3567		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3568			continue;
3569		if (xfs_ipincount(ip))
3570			continue;
3571
3572		/*
3573		 * The inode is still attached to the buffer, which means it is
3574		 * dirty but reclaim might try to grab it. Check carefully for
3575		 * that, and grab the ilock while still holding the i_flags_lock
3576		 * to guarantee reclaim will not be able to reclaim this inode
3577		 * once we drop the i_flags_lock.
3578		 */
3579		spin_lock(&ip->i_flags_lock);
3580		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3581		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3582			spin_unlock(&ip->i_flags_lock);
3583			continue;
3584		}
3585
3586		/*
3587		 * ILOCK will pin the inode against reclaim and prevent
3588		 * concurrent transactions modifying the inode while we are
3589		 * flushing the inode. If we get the lock, set the flushing
3590		 * state before we drop the i_flags_lock.
3591		 */
3592		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3593			spin_unlock(&ip->i_flags_lock);
3594			continue;
3595		}
3596		__xfs_iflags_set(ip, XFS_IFLUSHING);
3597		spin_unlock(&ip->i_flags_lock);
3598
3599		/*
3600		 * Abort flushing this inode if we are shut down because the
3601		 * inode may not currently be in the AIL. This can occur when
3602		 * log I/O failure unpins the inode without inserting into the
3603		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3604		 * that otherwise looks like it should be flushed.
3605		 */
3606		if (XFS_FORCED_SHUTDOWN(mp)) {
3607			xfs_iunpin_wait(ip);
3608			xfs_iflush_abort(ip);
3609			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610			error = -EIO;
3611			continue;
3612		}
3613
3614		/* don't block waiting on a log force to unpin dirty inodes */
3615		if (xfs_ipincount(ip)) {
3616			xfs_iflags_clear(ip, XFS_IFLUSHING);
3617			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618			continue;
3619		}
3620
3621		if (!xfs_inode_clean(ip))
3622			error = xfs_iflush(ip, bp);
3623		else
3624			xfs_iflags_clear(ip, XFS_IFLUSHING);
3625		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626		if (error)
3627			break;
3628		clcount++;
3629	}
3630
3631	if (error) {
3632		bp->b_flags |= XBF_ASYNC;
3633		xfs_buf_ioend_fail(bp);
3634		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635		return error;
3636	}
3637
3638	if (!clcount)
3639		return -EAGAIN;
3640
3641	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3642	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3643	return 0;
3644
3645}
3646
3647/* Release an inode. */
3648void
3649xfs_irele(
3650	struct xfs_inode	*ip)
3651{
3652	trace_xfs_irele(ip, _RET_IP_);
3653	iput(VFS_I(ip));
3654}
3655
3656/*
3657 * Ensure all commited transactions touching the inode are written to the log.
3658 */
3659int
3660xfs_log_force_inode(
3661	struct xfs_inode	*ip)
3662{
3663	xfs_csn_t		seq = 0;
3664
3665	xfs_ilock(ip, XFS_ILOCK_SHARED);
3666	if (xfs_ipincount(ip))
3667		seq = ip->i_itemp->ili_commit_seq;
3668	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3669
3670	if (!seq)
3671		return 0;
3672	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3673}
3674
3675/*
3676 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3677 * abide vfs locking order (lowest pointer value goes first) and breaking the
3678 * layout leases before proceeding.  The loop is needed because we cannot call
3679 * the blocking break_layout() with the iolocks held, and therefore have to
3680 * back out both locks.
3681 */
3682static int
3683xfs_iolock_two_inodes_and_break_layout(
3684	struct inode		*src,
3685	struct inode		*dest)
3686{
3687	int			error;
3688
3689	if (src > dest)
3690		swap(src, dest);
3691
3692retry:
3693	/* Wait to break both inodes' layouts before we start locking. */
3694	error = break_layout(src, true);
3695	if (error)
3696		return error;
3697	if (src != dest) {
3698		error = break_layout(dest, true);
3699		if (error)
3700			return error;
3701	}
3702
3703	/* Lock one inode and make sure nobody got in and leased it. */
3704	inode_lock(src);
3705	error = break_layout(src, false);
3706	if (error) {
3707		inode_unlock(src);
3708		if (error == -EWOULDBLOCK)
3709			goto retry;
3710		return error;
3711	}
3712
3713	if (src == dest)
3714		return 0;
3715
3716	/* Lock the other inode and make sure nobody got in and leased it. */
3717	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3718	error = break_layout(dest, false);
3719	if (error) {
3720		inode_unlock(src);
3721		inode_unlock(dest);
3722		if (error == -EWOULDBLOCK)
3723			goto retry;
3724		return error;
3725	}
3726
3727	return 0;
3728}
3729
3730/*
3731 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3732 * mmap activity.
3733 */
3734int
3735xfs_ilock2_io_mmap(
3736	struct xfs_inode	*ip1,
3737	struct xfs_inode	*ip2)
3738{
3739	int			ret;
3740
3741	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3742	if (ret)
3743		return ret;
3744	if (ip1 == ip2)
3745		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3746	else
3747		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3748				    ip2, XFS_MMAPLOCK_EXCL);
3749	return 0;
3750}
3751
3752/* Unlock both inodes to allow IO and mmap activity. */
3753void
3754xfs_iunlock2_io_mmap(
3755	struct xfs_inode	*ip1,
3756	struct xfs_inode	*ip2)
3757{
3758	bool			same_inode = (ip1 == ip2);
3759
3760	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3761	if (!same_inode)
3762		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3763	inode_unlock(VFS_I(ip2));
3764	if (!same_inode)
3765		inode_unlock(VFS_I(ip1));
3766}
v4.6
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
 
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
 
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
 
 
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define	XFS_ITRUNC_MAX_EXTENTS	2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69	struct xfs_inode	*ip)
  70{
  71	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72		return ip->i_d.di_extsize;
 
 
 
 
 
 
  73	if (XFS_IS_REALTIME_INODE(ip))
  74		return ip->i_mount->m_sb.sb_rextsize;
  75	return 0;
  76}
  77
  78/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95	struct xfs_inode	*ip)
  96{
  97	uint			lock_mode = XFS_ILOCK_SHARED;
  98
  99	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101		lock_mode = XFS_ILOCK_EXCL;
 102	xfs_ilock(ip, lock_mode);
 103	return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 113	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114		lock_mode = XFS_ILOCK_EXCL;
 115	xfs_ilock(ip, lock_mode);
 116	return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151	xfs_inode_t		*ip,
 152	uint			lock_flags)
 153{
 154	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156	/*
 157	 * You can't set both SHARED and EXCL for the same lock,
 158	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160	 */
 161	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169	if (lock_flags & XFS_IOLOCK_EXCL)
 170		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171	else if (lock_flags & XFS_IOLOCK_SHARED)
 172		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 
 
 
 173
 174	if (lock_flags & XFS_MMAPLOCK_EXCL)
 175		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179	if (lock_flags & XFS_ILOCK_EXCL)
 180		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181	else if (lock_flags & XFS_ILOCK_SHARED)
 182		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *	 of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199	xfs_inode_t		*ip,
 200	uint			lock_flags)
 201{
 202	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204	/*
 205	 * You can't set both SHARED and EXCL for the same lock,
 206	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208	 */
 209	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217	if (lock_flags & XFS_IOLOCK_EXCL) {
 218		if (!mrtryupdate(&ip->i_iolock))
 219			goto out;
 220	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 221		if (!mrtryaccess(&ip->i_iolock))
 222			goto out;
 223	}
 224
 225	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226		if (!mrtryupdate(&ip->i_mmaplock))
 227			goto out_undo_iolock;
 228	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229		if (!mrtryaccess(&ip->i_mmaplock))
 230			goto out_undo_iolock;
 231	}
 232
 233	if (lock_flags & XFS_ILOCK_EXCL) {
 234		if (!mrtryupdate(&ip->i_lock))
 235			goto out_undo_mmaplock;
 236	} else if (lock_flags & XFS_ILOCK_SHARED) {
 237		if (!mrtryaccess(&ip->i_lock))
 238			goto out_undo_mmaplock;
 239	}
 240	return 1;
 241
 242out_undo_mmaplock:
 243	if (lock_flags & XFS_MMAPLOCK_EXCL)
 244		mrunlock_excl(&ip->i_mmaplock);
 245	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246		mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248	if (lock_flags & XFS_IOLOCK_EXCL)
 249		mrunlock_excl(&ip->i_iolock);
 250	else if (lock_flags & XFS_IOLOCK_SHARED)
 251		mrunlock_shared(&ip->i_iolock);
 252out:
 253	return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *	 of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270	xfs_inode_t		*ip,
 271	uint			lock_flags)
 272{
 273	/*
 274	 * You can't set both SHARED and EXCL for the same lock,
 275	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277	 */
 278	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285	ASSERT(lock_flags != 0);
 286
 287	if (lock_flags & XFS_IOLOCK_EXCL)
 288		mrunlock_excl(&ip->i_iolock);
 289	else if (lock_flags & XFS_IOLOCK_SHARED)
 290		mrunlock_shared(&ip->i_iolock);
 291
 292	if (lock_flags & XFS_MMAPLOCK_EXCL)
 293		mrunlock_excl(&ip->i_mmaplock);
 294	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295		mrunlock_shared(&ip->i_mmaplock);
 296
 297	if (lock_flags & XFS_ILOCK_EXCL)
 298		mrunlock_excl(&ip->i_lock);
 299	else if (lock_flags & XFS_ILOCK_SHARED)
 300		mrunlock_shared(&ip->i_lock);
 301
 302	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311	xfs_inode_t		*ip,
 312	uint			lock_flags)
 313{
 314	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags &
 316		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318	if (lock_flags & XFS_ILOCK_EXCL)
 319		mrdemote(&ip->i_lock);
 320	if (lock_flags & XFS_MMAPLOCK_EXCL)
 321		mrdemote(&ip->i_mmaplock);
 322	if (lock_flags & XFS_IOLOCK_EXCL)
 323		mrdemote(&ip->i_iolock);
 324
 325	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331	xfs_inode_t		*ip,
 332	uint			lock_flags)
 333{
 334	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335		if (!(lock_flags & XFS_ILOCK_SHARED))
 336			return !!ip->i_lock.mr_writer;
 337		return rwsem_is_locked(&ip->i_lock.mr_lock);
 338	}
 339
 340	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342			return !!ip->i_mmaplock.mr_writer;
 343		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344	}
 345
 346	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347		if (!(lock_flags & XFS_IOLOCK_SHARED))
 348			return !!ip->i_iolock.mr_writer;
 349		return rwsem_is_locked(&ip->i_iolock.mr_lock);
 
 350	}
 351
 352	ASSERT(0);
 353	return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374	int subclass)
 375{
 376	return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)	(true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391	int	class = 0;
 392
 393	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394			      XFS_ILOCK_RTSUM)));
 395	ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399		ASSERT(xfs_lockdep_subclass_ok(subclass +
 400						XFS_IOLOCK_PARENT_VAL));
 401		class += subclass << XFS_IOLOCK_SHIFT;
 402		if (lock_mode & XFS_IOLOCK_PARENT)
 403			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404	}
 405
 406	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408		class += subclass << XFS_MMAPLOCK_SHIFT;
 409	}
 410
 411	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413		class += subclass << XFS_ILOCK_SHIFT;
 414	}
 415
 416	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436	xfs_inode_t	**ips,
 437	int		inodes,
 438	uint		lock_mode)
 439{
 440	int		attempts = 0, i, j, try_lock;
 441	xfs_log_item_t	*lp;
 442
 443	/*
 444	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445	 * support an arbitrary depth of locking here, but absolute limits on
 446	 * inodes depend on the the type of locking and the limits placed by
 447	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448	 * the asserts.
 449	 */
 450	ASSERT(ips && inodes >= 2 && inodes <= 5);
 451	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452			    XFS_ILOCK_EXCL));
 453	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454			      XFS_ILOCK_SHARED)));
 455	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524			xfs_lock_delays++;
 525#endif
 526		}
 527		i = 0;
 528		try_lock = 0;
 529		goto again;
 530	}
 531
 532#ifdef DEBUG
 533	if (attempts) {
 534		if (attempts < 5) xfs_small_retries++;
 535		else if (attempts < 100) xfs_middle_retries++;
 536		else xfs_lots_retries++;
 537	} else {
 538		xfs_locked_n++;
 539	}
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 
 
 548 */
 549void
 550xfs_lock_two_inodes(
 551	xfs_inode_t		*ip0,
 552	xfs_inode_t		*ip1,
 553	uint			lock_mode)
 
 554{
 555	xfs_inode_t		*temp;
 
 556	int			attempts = 0;
 557	xfs_log_item_t		*lp;
 558
 559	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 
 
 
 
 
 
 
 564
 565	ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567	if (ip0->i_ino > ip1->i_ino) {
 568		temp = ip0;
 569		ip0 = ip1;
 570		ip1 = temp;
 
 
 
 571	}
 572
 573 again:
 574	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576	/*
 577	 * If the first lock we have locked is in the AIL, we must TRY to get
 578	 * the second lock. If we can't get it, we must release the first one
 579	 * and try again.
 580	 */
 581	lp = (xfs_log_item_t *)ip0->i_itemp;
 582	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584			xfs_iunlock(ip0, lock_mode);
 585			if ((++attempts % 5) == 0)
 586				delay(1); /* Don't just spin the CPU */
 587			goto again;
 588		}
 589	} else {
 590		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591	}
 592}
 593
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	__uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 
 
 653	}
 654
 655	if (has_attr)
 656		flags |= FS_XFLAG_HASATTR;
 657
 658	return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663	struct xfs_inode	*ip)
 664{
 665	struct xfs_icdinode	*dic = &ip->i_d;
 666
 667	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 668}
 669
 670uint
 671xfs_dic2xflags(
 672	struct xfs_dinode	*dip)
 673{
 674	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 693
 694	trace_xfs_lookup(dp, name);
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 698
 699	xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 701	if (error)
 702		goto out_unlock;
 703
 704	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 705	if (error)
 706		goto out_free_name;
 707
 708	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709	return 0;
 710
 711out_free_name:
 712	if (ci_name)
 713		kmem_free(ci_name->name);
 714out_unlock:
 715	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716	*ipp = NULL;
 717	return error;
 718}
 719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720/*
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753	xfs_trans_t	*tp,
 754	xfs_inode_t	*pip,
 755	umode_t		mode,
 756	xfs_nlink_t	nlink,
 757	xfs_dev_t	rdev,
 758	prid_t		prid,
 759	int		okalloc,
 760	xfs_buf_t	**ialloc_context,
 761	xfs_inode_t	**ipp)
 762{
 763	struct xfs_mount *mp = tp->t_mountp;
 764	xfs_ino_t	ino;
 765	xfs_inode_t	*ip;
 766	uint		flags;
 767	int		error;
 768	struct timespec	tv;
 769	struct inode	*inode;
 
 770
 771	/*
 772	 * Call the space management code to pick
 773	 * the on-disk inode to be allocated.
 
 
 
 774	 */
 775	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776			    ialloc_context, &ino);
 777	if (error)
 778		return error;
 779	if (*ialloc_context || ino == NULLFSINO) {
 780		*ipp = NULL;
 781		return 0;
 782	}
 783	ASSERT(*ialloc_context == NULL);
 784
 785	/*
 786	 * Get the in-core inode with the lock held exclusively.
 787	 * This is because we're setting fields here we need
 788	 * to prevent others from looking at until we're done.
 789	 */
 790	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791			 XFS_ILOCK_EXCL, &ip);
 792	if (error)
 793		return error;
 
 794	ASSERT(ip != NULL);
 795	inode = VFS_I(ip);
 
 
 
 796
 797	/*
 798	 * We always convert v1 inodes to v2 now - we only support filesystems
 799	 * with >= v2 inode capability, so there is no reason for ever leaving
 800	 * an inode in v1 format.
 801	 */
 802	if (ip->i_d.di_version == 1)
 803		ip->i_d.di_version = 2;
 804
 805	inode->i_mode = mode;
 806	set_nlink(inode, nlink);
 807	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 809	xfs_set_projid(ip, prid);
 810
 811	if (pip && XFS_INHERIT_GID(pip)) {
 812		ip->i_d.di_gid = pip->i_d.di_gid;
 813		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814			inode->i_mode |= S_ISGID;
 815	}
 816
 817	/*
 818	 * If the group ID of the new file does not match the effective group
 819	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820	 * (and only if the irix_sgid_inherit compatibility variable is set).
 821	 */
 822	if ((irix_sgid_inherit) &&
 823	    (inode->i_mode & S_ISGID) &&
 824	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825		inode->i_mode &= ~S_ISGID;
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_d.di_nextents = 0;
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_fs_time(mp->m_super);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 835
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (ip->i_d.di_version == 3) {
 842		inode->i_version = 1;
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 846	}
 847
 848
 849	flags = XFS_ILOG_CORE;
 850	switch (mode & S_IFMT) {
 851	case S_IFIFO:
 852	case S_IFCHR:
 853	case S_IFBLK:
 854	case S_IFSOCK:
 855		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856		ip->i_df.if_u2.if_rdev = rdev;
 857		ip->i_df.if_flags = 0;
 858		flags |= XFS_ILOG_DEV;
 859		break;
 860	case S_IFREG:
 861	case S_IFDIR:
 862		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863			uint64_t	di_flags2 = 0;
 864			uint		di_flags = 0;
 865
 866			if (S_ISDIR(mode)) {
 867				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868					di_flags |= XFS_DIFLAG_RTINHERIT;
 869				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871					ip->i_d.di_extsize = pip->i_d.di_extsize;
 872				}
 873				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874					di_flags |= XFS_DIFLAG_PROJINHERIT;
 875			} else if (S_ISREG(mode)) {
 876				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877					di_flags |= XFS_DIFLAG_REALTIME;
 878				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879					di_flags |= XFS_DIFLAG_EXTSIZE;
 880					ip->i_d.di_extsize = pip->i_d.di_extsize;
 881				}
 882			}
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884			    xfs_inherit_noatime)
 885				di_flags |= XFS_DIFLAG_NOATIME;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887			    xfs_inherit_nodump)
 888				di_flags |= XFS_DIFLAG_NODUMP;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890			    xfs_inherit_sync)
 891				di_flags |= XFS_DIFLAG_SYNC;
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893			    xfs_inherit_nosymlinks)
 894				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 895			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896			    xfs_inherit_nodefrag)
 897				di_flags |= XFS_DIFLAG_NODEFRAG;
 898			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899				di_flags |= XFS_DIFLAG_FILESTREAM;
 900			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901				di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903			ip->i_d.di_flags |= di_flags;
 904			ip->i_d.di_flags2 |= di_flags2;
 905		}
 906		/* FALLTHROUGH */
 907	case S_IFLNK:
 908		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909		ip->i_df.if_flags = XFS_IFEXTENTS;
 910		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911		ip->i_df.if_u1.if_extents = NULL;
 912		break;
 913	default:
 914		ASSERT(0);
 915	}
 
 916	/*
 917	 * Attribute fork settings for new inode.
 918	 */
 919	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920	ip->i_d.di_anextents = 0;
 
 
 
 
 
 
 
 
 921
 922	/*
 923	 * Log the new values stuffed into the inode.
 924	 */
 925	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926	xfs_trans_log_inode(tp, ip, flags);
 927
 928	/* now that we have an i_mode we can setup the inode structure */
 929	xfs_setup_inode(ip);
 930
 931	*ipp = ip;
 932	return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947	xfs_trans_t	**tpp,		/* input: current transaction;
 948					   output: may be a new transaction. */
 949	xfs_inode_t	*dp,		/* directory within whose allocate
 950					   the inode. */
 951	umode_t		mode,
 952	xfs_nlink_t	nlink,
 953	xfs_dev_t	rdev,
 954	prid_t		prid,		/* project id */
 955	int		okalloc,	/* ok to allocate new space */
 956	xfs_inode_t	**ipp,		/* pointer to inode; it will be
 957					   locked. */
 958	int		*committed)
 959
 960{
 961	xfs_trans_t	*tp;
 962	xfs_inode_t	*ip;
 963	xfs_buf_t	*ialloc_context = NULL;
 964	int		code;
 965	void		*dqinfo;
 966	uint		tflags;
 967
 968	tp = *tpp;
 969	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971	/*
 972	 * xfs_ialloc will return a pointer to an incore inode if
 973	 * the Space Manager has an available inode on the free
 974	 * list. Otherwise, it will do an allocation and replenish
 975	 * the freelist.  Since we can only do one allocation per
 976	 * transaction without deadlocks, we will need to commit the
 977	 * current transaction and start a new one.  We will then
 978	 * need to call xfs_ialloc again to get the inode.
 979	 *
 980	 * If xfs_ialloc did an allocation to replenish the freelist,
 981	 * it returns the bp containing the head of the freelist as
 982	 * ialloc_context. We will hold a lock on it across the
 983	 * transaction commit so that no other process can steal
 984	 * the inode(s) that we've just allocated.
 985	 */
 986	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987			  &ialloc_context, &ip);
 988
 989	/*
 990	 * Return an error if we were unable to allocate a new inode.
 991	 * This should only happen if we run out of space on disk or
 992	 * encounter a disk error.
 993	 */
 994	if (code) {
 995		*ipp = NULL;
 996		return code;
 997	}
 998	if (!ialloc_context && !ip) {
 999		*ipp = NULL;
1000		return -ENOSPC;
1001	}
1002
1003	/*
1004	 * If the AGI buffer is non-NULL, then we were unable to get an
1005	 * inode in one operation.  We need to commit the current
1006	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007	 * to succeed the second time.
1008	 */
1009	if (ialloc_context) {
1010		/*
1011		 * Normally, xfs_trans_commit releases all the locks.
1012		 * We call bhold to hang on to the ialloc_context across
1013		 * the commit.  Holding this buffer prevents any other
1014		 * processes from doing any allocations in this
1015		 * allocation group.
1016		 */
1017		xfs_trans_bhold(tp, ialloc_context);
1018
1019		/*
1020		 * We want the quota changes to be associated with the next
1021		 * transaction, NOT this one. So, detach the dqinfo from this
1022		 * and attach it to the next transaction.
1023		 */
1024		dqinfo = NULL;
1025		tflags = 0;
1026		if (tp->t_dqinfo) {
1027			dqinfo = (void *)tp->t_dqinfo;
1028			tp->t_dqinfo = NULL;
1029			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031		}
1032
1033		code = xfs_trans_roll(&tp, 0);
1034		if (committed != NULL)
1035			*committed = 1;
1036
1037		/*
1038		 * Re-attach the quota info that we detached from prev trx.
1039		 */
1040		if (dqinfo) {
1041			tp->t_dqinfo = dqinfo;
1042			tp->t_flags |= tflags;
1043		}
1044
1045		if (code) {
1046			xfs_buf_relse(ialloc_context);
1047			*tpp = tp;
1048			*ipp = NULL;
1049			return code;
1050		}
1051		xfs_trans_bjoin(tp, ialloc_context);
1052
1053		/*
1054		 * Call ialloc again. Since we've locked out all
1055		 * other allocations in this allocation group,
1056		 * this call should always succeed.
1057		 */
1058		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059				  okalloc, &ialloc_context, &ip);
1060
1061		/*
1062		 * If we get an error at this point, return to the caller
1063		 * so that the current transaction can be aborted.
1064		 */
1065		if (code) {
1066			*tpp = tp;
1067			*ipp = NULL;
1068			return code;
1069		}
1070		ASSERT(!ialloc_context && ip);
1071
1072	} else {
1073		if (committed != NULL)
1074			*committed = 0;
1075	}
1076
1077	*ipp = ip;
1078	*tpp = tp;
1079
1080	return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int				/* error */
1089xfs_droplink(
1090	xfs_trans_t *tp,
1091	xfs_inode_t *ip)
1092{
1093	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095	drop_nlink(VFS_I(ip));
1096	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098	if (VFS_I(ip)->i_nlink)
1099		return 0;
1100
1101	return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109	xfs_trans_t *tp,
1110	xfs_inode_t *ip)
1111{
1112	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114	ASSERT(ip->i_d.di_version > 1);
1115	inc_nlink(VFS_I(ip));
1116	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117	return 0;
1118}
1119
1120int
1121xfs_create(
 
1122	xfs_inode_t		*dp,
1123	struct xfs_name		*name,
1124	umode_t			mode,
1125	xfs_dev_t		rdev,
 
1126	xfs_inode_t		**ipp)
1127{
1128	int			is_dir = S_ISDIR(mode);
1129	struct xfs_mount	*mp = dp->i_mount;
1130	struct xfs_inode	*ip = NULL;
1131	struct xfs_trans	*tp = NULL;
1132	int			error;
1133	xfs_bmap_free_t		free_list;
1134	xfs_fsblock_t		first_block;
1135	bool                    unlock_dp_on_error = false;
1136	prid_t			prid;
1137	struct xfs_dquot	*udqp = NULL;
1138	struct xfs_dquot	*gdqp = NULL;
1139	struct xfs_dquot	*pdqp = NULL;
1140	struct xfs_trans_res	*tres;
1141	uint			resblks;
 
1142
1143	trace_xfs_create(dp, name);
1144
1145	if (XFS_FORCED_SHUTDOWN(mp))
1146		return -EIO;
1147
1148	prid = xfs_get_initial_prid(dp);
1149
1150	/*
1151	 * Make sure that we have allocated dquot(s) on disk.
1152	 */
1153	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154					xfs_kgid_to_gid(current_fsgid()), prid,
1155					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156					&udqp, &gdqp, &pdqp);
1157	if (error)
1158		return error;
1159
1160	if (is_dir) {
1161		rdev = 0;
1162		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163		tres = &M_RES(mp)->tr_mkdir;
1164		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165	} else {
1166		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167		tres = &M_RES(mp)->tr_create;
1168		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_reserve(tp, tres, resblks, 0);
 
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_reserve(tp, tres, resblks, 0);
1182	}
1183	if (error == -ENOSPC) {
1184		/* No space at all so try a "no-allocation" reservation */
1185		resblks = 0;
1186		error = xfs_trans_reserve(tp, tres, 0, 0);
1187	}
1188	if (error)
1189		goto out_trans_cancel;
1190
1191
1192	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194	unlock_dp_on_error = true;
1195
1196	xfs_bmap_init(&free_list, &first_block);
1197
1198	/*
1199	 * Reserve disk quota and the inode.
1200	 */
1201	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202						pdqp, resblks, 1, 0);
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	if (!resblks) {
1207		error = xfs_dir_canenter(tp, dp, name);
1208		if (error)
1209			goto out_trans_cancel;
1210	}
1211
1212	/*
1213	 * A newly created regular or special file just has one directory
1214	 * entry pointing to them, but a directory also the "." entry
1215	 * pointing to itself.
1216	 */
1217	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218			       prid, resblks > 0, &ip, NULL);
 
 
1219	if (error)
1220		goto out_trans_cancel;
1221
1222	/*
1223	 * Now we join the directory inode to the transaction.  We do not do it
1224	 * earlier because xfs_dir_ialloc might commit the previous transaction
1225	 * (and release all the locks).  An error from here on will result in
1226	 * the transaction cancel unlocking dp so don't do it explicitly in the
1227	 * error path.
1228	 */
1229	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230	unlock_dp_on_error = false;
1231
1232	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233					&first_block, &free_list, resblks ?
1234					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235	if (error) {
1236		ASSERT(error != -ENOSPC);
1237		goto out_trans_cancel;
1238	}
1239	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242	if (is_dir) {
1243		error = xfs_dir_init(tp, ip, dp);
1244		if (error)
1245			goto out_bmap_cancel;
1246
1247		error = xfs_bumplink(tp, dp);
1248		if (error)
1249			goto out_bmap_cancel;
1250	}
1251
1252	/*
1253	 * If this is a synchronous mount, make sure that the
1254	 * create transaction goes to disk before returning to
1255	 * the user.
1256	 */
1257	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258		xfs_trans_set_sync(tp);
1259
1260	/*
1261	 * Attach the dquot(s) to the inodes and modify them incore.
1262	 * These ids of the inode couldn't have changed since the new
1263	 * inode has been locked ever since it was created.
1264	 */
1265	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267	error = xfs_bmap_finish(&tp, &free_list, NULL);
1268	if (error)
1269		goto out_bmap_cancel;
1270
1271	error = xfs_trans_commit(tp);
1272	if (error)
1273		goto out_release_inode;
1274
1275	xfs_qm_dqrele(udqp);
1276	xfs_qm_dqrele(gdqp);
1277	xfs_qm_dqrele(pdqp);
1278
1279	*ipp = ip;
1280	return 0;
1281
1282 out_bmap_cancel:
1283	xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285	xfs_trans_cancel(tp);
1286 out_release_inode:
1287	/*
1288	 * Wait until after the current transaction is aborted to finish the
1289	 * setup of the inode and release the inode.  This prevents recursive
1290	 * transactions and deadlocks from xfs_inactive.
1291	 */
1292	if (ip) {
1293		xfs_finish_inode_setup(ip);
1294		IRELE(ip);
1295	}
1296
1297	xfs_qm_dqrele(udqp);
1298	xfs_qm_dqrele(gdqp);
1299	xfs_qm_dqrele(pdqp);
1300
1301	if (unlock_dp_on_error)
1302		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303	return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
 
1308	struct xfs_inode	*dp,
1309	struct dentry		*dentry,
1310	umode_t			mode,
1311	struct xfs_inode	**ipp)
1312{
1313	struct xfs_mount	*mp = dp->i_mount;
1314	struct xfs_inode	*ip = NULL;
1315	struct xfs_trans	*tp = NULL;
1316	int			error;
1317	prid_t                  prid;
1318	struct xfs_dquot	*udqp = NULL;
1319	struct xfs_dquot	*gdqp = NULL;
1320	struct xfs_dquot	*pdqp = NULL;
1321	struct xfs_trans_res	*tres;
1322	uint			resblks;
 
1323
1324	if (XFS_FORCED_SHUTDOWN(mp))
1325		return -EIO;
1326
1327	prid = xfs_get_initial_prid(dp);
1328
1329	/*
1330	 * Make sure that we have allocated dquot(s) on disk.
1331	 */
1332	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333				xfs_kgid_to_gid(current_fsgid()), prid,
1334				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335				&udqp, &gdqp, &pdqp);
1336	if (error)
1337		return error;
1338
1339	resblks = XFS_IALLOC_SPACE_RES(mp);
1340	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342	tres = &M_RES(mp)->tr_create_tmpfile;
1343	error = xfs_trans_reserve(tp, tres, resblks, 0);
1344	if (error == -ENOSPC) {
1345		/* No space at all so try a "no-allocation" reservation */
1346		resblks = 0;
1347		error = xfs_trans_reserve(tp, tres, 0, 0);
1348	}
1349	if (error)
1350		goto out_trans_cancel;
1351
1352	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353						pdqp, resblks, 1, 0);
1354	if (error)
1355		goto out_trans_cancel;
1356
1357	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358				prid, resblks > 0, &ip, NULL);
 
 
1359	if (error)
1360		goto out_trans_cancel;
1361
1362	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363		xfs_trans_set_sync(tp);
1364
1365	/*
1366	 * Attach the dquot(s) to the inodes and modify them incore.
1367	 * These ids of the inode couldn't have changed since the new
1368	 * inode has been locked ever since it was created.
1369	 */
1370	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372	error = xfs_iunlink(tp, ip);
1373	if (error)
1374		goto out_trans_cancel;
1375
1376	error = xfs_trans_commit(tp);
1377	if (error)
1378		goto out_release_inode;
1379
1380	xfs_qm_dqrele(udqp);
1381	xfs_qm_dqrele(gdqp);
1382	xfs_qm_dqrele(pdqp);
1383
1384	*ipp = ip;
1385	return 0;
1386
1387 out_trans_cancel:
1388	xfs_trans_cancel(tp);
1389 out_release_inode:
1390	/*
1391	 * Wait until after the current transaction is aborted to finish the
1392	 * setup of the inode and release the inode.  This prevents recursive
1393	 * transactions and deadlocks from xfs_inactive.
1394	 */
1395	if (ip) {
1396		xfs_finish_inode_setup(ip);
1397		IRELE(ip);
1398	}
1399
1400	xfs_qm_dqrele(udqp);
1401	xfs_qm_dqrele(gdqp);
1402	xfs_qm_dqrele(pdqp);
1403
1404	return error;
1405}
1406
1407int
1408xfs_link(
1409	xfs_inode_t		*tdp,
1410	xfs_inode_t		*sip,
1411	struct xfs_name		*target_name)
1412{
1413	xfs_mount_t		*mp = tdp->i_mount;
1414	xfs_trans_t		*tp;
1415	int			error;
1416	xfs_bmap_free_t         free_list;
1417	xfs_fsblock_t           first_block;
1418	int			resblks;
1419
1420	trace_xfs_link(tdp, target_name);
1421
1422	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424	if (XFS_FORCED_SHUTDOWN(mp))
1425		return -EIO;
1426
1427	error = xfs_qm_dqattach(sip, 0);
1428	if (error)
1429		goto std_return;
1430
1431	error = xfs_qm_dqattach(tdp, 0);
1432	if (error)
1433		goto std_return;
1434
1435	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438	if (error == -ENOSPC) {
1439		resblks = 0;
1440		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441	}
1442	if (error)
1443		goto error_return;
1444
1445	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
 
 
 
 
 
1450
1451	/*
1452	 * If we are using project inheritance, we only allow hard link
1453	 * creation in our tree when the project IDs are the same; else
1454	 * the tree quota mechanism could be circumvented.
1455	 */
1456	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458		error = -EXDEV;
1459		goto error_return;
1460	}
1461
1462	if (!resblks) {
1463		error = xfs_dir_canenter(tp, tdp, target_name);
1464		if (error)
1465			goto error_return;
1466	}
1467
1468	xfs_bmap_init(&free_list, &first_block);
1469
1470	/*
1471	 * Handle initial link state of O_TMPFILE inode
1472	 */
1473	if (VFS_I(sip)->i_nlink == 0) {
1474		error = xfs_iunlink_remove(tp, sip);
 
 
 
 
1475		if (error)
1476			goto error_return;
1477	}
1478
1479	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480					&first_block, &free_list, resblks);
1481	if (error)
1482		goto error_return;
1483	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486	error = xfs_bumplink(tp, sip);
1487	if (error)
1488		goto error_return;
1489
1490	/*
1491	 * If this is a synchronous mount, make sure that the
1492	 * link transaction goes to disk before returning to
1493	 * the user.
1494	 */
1495	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496		xfs_trans_set_sync(tp);
1497
1498	error = xfs_bmap_finish(&tp, &free_list, NULL);
1499	if (error) {
1500		xfs_bmap_cancel(&free_list);
1501		goto error_return;
1502	}
1503
1504	return xfs_trans_commit(tp);
1505
1506 error_return:
1507	xfs_trans_cancel(tp);
1508 std_return:
1509	return error;
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/*
1513 * Free up the underlying blocks past new_size.  The new size must be smaller
1514 * than the current size.  This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.  Some transaction will be
1521 * returned to the caller to be committed.  The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction.  On return the inode
1524 * will be "held" within the returned transaction.  This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not.  We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535	struct xfs_trans	**tpp,
1536	struct xfs_inode	*ip,
1537	int			whichfork,
1538	xfs_fsize_t		new_size)
 
1539{
1540	struct xfs_mount	*mp = ip->i_mount;
1541	struct xfs_trans	*tp = *tpp;
1542	xfs_bmap_free_t		free_list;
1543	xfs_fsblock_t		first_block;
1544	xfs_fileoff_t		first_unmap_block;
1545	xfs_fileoff_t		last_block;
1546	xfs_filblks_t		unmap_len;
1547	int			error = 0;
1548	int			done = 0;
1549
1550	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553	ASSERT(new_size <= XFS_ISIZE(ip));
1554	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555	ASSERT(ip->i_itemp != NULL);
1556	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559	trace_xfs_itruncate_extents_start(ip, new_size);
1560
 
 
1561	/*
1562	 * Since it is possible for space to become allocated beyond
1563	 * the end of the file (in a crash where the space is allocated
1564	 * but the inode size is not yet updated), simply remove any
1565	 * blocks which show up between the new EOF and the maximum
1566	 * possible file size.  If the first block to be removed is
1567	 * beyond the maximum file size (ie it is the same as last_block),
1568	 * then there is nothing to do.
 
1569	 */
1570	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572	if (first_unmap_block == last_block)
1573		return 0;
 
1574
1575	ASSERT(first_unmap_block < last_block);
1576	unmap_len = last_block - first_unmap_block + 1;
1577	while (!done) {
1578		xfs_bmap_init(&free_list, &first_block);
1579		error = xfs_bunmapi(tp, ip,
1580				    first_unmap_block, unmap_len,
1581				    xfs_bmapi_aflag(whichfork),
1582				    XFS_ITRUNC_MAX_EXTENTS,
1583				    &first_block, &free_list,
1584				    &done);
1585		if (error)
1586			goto out_bmap_cancel;
1587
1588		/*
1589		 * Duplicate the transaction that has the permanent
1590		 * reservation and commit the old transaction.
1591		 */
1592		error = xfs_bmap_finish(&tp, &free_list, ip);
1593		if (error)
1594			goto out_bmap_cancel;
 
1595
1596		error = xfs_trans_roll(&tp, ip);
 
 
 
1597		if (error)
1598			goto out;
 
 
1599	}
1600
1601	/*
1602	 * Always re-log the inode so that our permanent transaction can keep
1603	 * on rolling it forward in the log.
1604	 */
1605	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607	trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610	*tpp = tp;
1611	return error;
1612out_bmap_cancel:
1613	/*
1614	 * If the bunmapi call encounters an error, return to the caller where
1615	 * the transaction can be properly aborted.  We just need to make sure
1616	 * we're not holding any resources that we were not when we came in.
1617	 */
1618	xfs_bmap_cancel(&free_list);
1619	goto out;
1620}
1621
1622int
1623xfs_release(
1624	xfs_inode_t	*ip)
1625{
1626	xfs_mount_t	*mp = ip->i_mount;
1627	int		error;
1628
1629	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630		return 0;
1631
1632	/* If this is a read-only mount, don't do this (would generate I/O) */
1633	if (mp->m_flags & XFS_MOUNT_RDONLY)
1634		return 0;
1635
1636	if (!XFS_FORCED_SHUTDOWN(mp)) {
1637		int truncated;
1638
1639		/*
1640		 * If we previously truncated this file and removed old data
1641		 * in the process, we want to initiate "early" writeout on
1642		 * the last close.  This is an attempt to combat the notorious
1643		 * NULL files problem which is particularly noticeable from a
1644		 * truncate down, buffered (re-)write (delalloc), followed by
1645		 * a crash.  What we are effectively doing here is
1646		 * significantly reducing the time window where we'd otherwise
1647		 * be exposed to that problem.
1648		 */
1649		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650		if (truncated) {
1651			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652			if (ip->i_delayed_blks > 0) {
1653				error = filemap_flush(VFS_I(ip)->i_mapping);
1654				if (error)
1655					return error;
1656			}
1657		}
1658	}
1659
1660	if (VFS_I(ip)->i_nlink == 0)
1661		return 0;
1662
 
 
 
 
 
 
 
 
 
1663	if (xfs_can_free_eofblocks(ip, false)) {
1664
1665		/*
1666		 * If we can't get the iolock just skip truncating the blocks
1667		 * past EOF because we could deadlock with the mmap_sem
1668		 * otherwise.  We'll get another chance to drop them once the
1669		 * last reference to the inode is dropped, so we'll never leak
1670		 * blocks permanently.
1671		 *
1672		 * Further, check if the inode is being opened, written and
1673		 * closed frequently and we have delayed allocation blocks
1674		 * outstanding (e.g. streaming writes from the NFS server),
1675		 * truncating the blocks past EOF will cause fragmentation to
1676		 * occur.
1677		 *
1678		 * In this case don't do the truncation, either, but we have to
1679		 * be careful how we detect this case. Blocks beyond EOF show
1680		 * up as i_delayed_blks even when the inode is clean, so we
1681		 * need to truncate them away first before checking for a dirty
1682		 * release. Hence on the first dirty close we will still remove
1683		 * the speculative allocation, but after that we will leave it
1684		 * in place.
1685		 */
1686		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687			return 0;
1688
1689		error = xfs_free_eofblocks(mp, ip, true);
1690		if (error && error != -EAGAIN)
1691			return error;
1692
1693		/* delalloc blocks after truncation means it really is dirty */
1694		if (ip->i_delayed_blks)
1695			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696	}
1697	return 0;
 
 
 
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707	struct xfs_inode *ip)
1708{
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
1713	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715	if (error) {
1716		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717		xfs_trans_cancel(tp);
1718		return error;
1719	}
1720
1721	xfs_ilock(ip, XFS_ILOCK_EXCL);
1722	xfs_trans_ijoin(tp, ip, 0);
1723
1724	/*
1725	 * Log the inode size first to prevent stale data exposure in the event
1726	 * of a system crash before the truncate completes. See the related
1727	 * comment in xfs_setattr_size() for details.
1728	 */
1729	ip->i_d.di_size = 0;
1730	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733	if (error)
1734		goto error_trans_cancel;
1735
1736	ASSERT(ip->i_d.di_nextents == 0);
1737
1738	error = xfs_trans_commit(tp);
1739	if (error)
1740		goto error_unlock;
1741
1742	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743	return 0;
1744
1745error_trans_cancel:
1746	xfs_trans_cancel(tp);
1747error_unlock:
1748	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749	return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759	struct xfs_inode *ip)
1760{
1761	xfs_bmap_free_t		free_list;
1762	xfs_fsblock_t		first_block;
1763	struct xfs_mount	*mp = ip->i_mount;
1764	struct xfs_trans	*tp;
1765	int			error;
1766
1767	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769	/*
1770	 * The ifree transaction might need to allocate blocks for record
1771	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772	 * allow ifree to dip into the reserved block pool if necessary.
1773	 *
1774	 * Freeing large sets of inodes generally means freeing inode chunks,
1775	 * directory and file data blocks, so this should be relatively safe.
1776	 * Only under severe circumstances should it be possible to free enough
1777	 * inodes to exhaust the reserve block pool via finobt expansion while
1778	 * at the same time not creating free space in the filesystem.
1779	 *
1780	 * Send a warning if the reservation does happen to fail, as the inode
1781	 * now remains allocated and sits on the unlinked list until the fs is
1782	 * repaired.
1783	 */
1784	tp->t_flags |= XFS_TRANS_RESERVE;
1785	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786				  XFS_IFREE_SPACE_RES(mp), 0);
 
 
 
 
1787	if (error) {
1788		if (error == -ENOSPC) {
1789			xfs_warn_ratelimited(mp,
1790			"Failed to remove inode(s) from unlinked list. "
1791			"Please free space, unmount and run xfs_repair.");
1792		} else {
1793			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794		}
1795		xfs_trans_cancel(tp);
1796		return error;
1797	}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799	xfs_ilock(ip, XFS_ILOCK_EXCL);
1800	xfs_trans_ijoin(tp, ip, 0);
1801
1802	xfs_bmap_init(&free_list, &first_block);
1803	error = xfs_ifree(tp, ip, &free_list);
1804	if (error) {
1805		/*
1806		 * If we fail to free the inode, shut down.  The cancel
1807		 * might do that, we need to make sure.  Otherwise the
1808		 * inode might be lost for a long time or forever.
1809		 */
1810		if (!XFS_FORCED_SHUTDOWN(mp)) {
1811			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812				__func__, error);
1813			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814		}
1815		xfs_trans_cancel(tp);
1816		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817		return error;
1818	}
1819
1820	/*
1821	 * Credit the quota account(s). The inode is gone.
1822	 */
1823	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825	/*
1826	 * Just ignore errors at this point.  There is nothing we can do except
1827	 * to try to keep going. Make sure it's not a silent error.
1828	 */
1829	error = xfs_bmap_finish(&tp, &free_list, NULL);
1830	if (error) {
1831		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832			__func__, error);
1833		xfs_bmap_cancel(&free_list);
1834	}
1835	error = xfs_trans_commit(tp);
1836	if (error)
1837		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838			__func__, error);
1839
1840	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841	return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero.  If the file has been unlinked, then it must
1849 * now be truncated.  Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854	xfs_inode_t	*ip)
1855{
1856	struct xfs_mount	*mp;
1857	int			error;
1858	int			truncate = 0;
1859
1860	/*
1861	 * If the inode is already free, then there can be nothing
1862	 * to clean up here.
1863	 */
1864	if (VFS_I(ip)->i_mode == 0) {
1865		ASSERT(ip->i_df.if_real_bytes == 0);
1866		ASSERT(ip->i_df.if_broot_bytes == 0);
1867		return;
1868	}
1869
1870	mp = ip->i_mount;
 
1871
1872	/* If this is a read-only mount, don't do this (would generate I/O) */
1873	if (mp->m_flags & XFS_MOUNT_RDONLY)
1874		return;
 
 
 
 
 
 
 
 
1875
1876	if (VFS_I(ip)->i_nlink != 0) {
1877		/*
1878		 * force is true because we are evicting an inode from the
1879		 * cache. Post-eof blocks must be freed, lest we end up with
1880		 * broken free space accounting.
 
 
 
 
1881		 */
1882		if (xfs_can_free_eofblocks(ip, true))
1883			xfs_free_eofblocks(mp, ip, false);
1884
1885		return;
1886	}
1887
1888	if (S_ISREG(VFS_I(ip)->i_mode) &&
1889	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891		truncate = 1;
1892
1893	error = xfs_qm_dqattach(ip, 0);
1894	if (error)
1895		return;
1896
1897	if (S_ISLNK(VFS_I(ip)->i_mode))
1898		error = xfs_inactive_symlink(ip);
1899	else if (truncate)
1900		error = xfs_inactive_truncate(ip);
1901	if (error)
1902		return;
1903
1904	/*
1905	 * If there are attributes associated with the file then blow them away
1906	 * now.  The code calls a routine that recursively deconstructs the
1907	 * attribute fork. If also blows away the in-core attribute fork.
1908	 */
1909	if (XFS_IFORK_Q(ip)) {
1910		error = xfs_attr_inactive(ip);
1911		if (error)
1912			return;
1913	}
1914
1915	ASSERT(!ip->i_afp);
1916	ASSERT(ip->i_d.di_anextents == 0);
1917	ASSERT(ip->i_d.di_forkoff == 0);
1918
1919	/*
1920	 * Free the inode.
1921	 */
1922	error = xfs_inactive_ifree(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1923	if (error)
1924		return;
 
 
 
 
 
 
 
 
 
 
1925
1926	/*
1927	 * Release the dquots held by inode, if any.
 
 
1928	 */
1929	xfs_qm_dqdetach(ip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
1938 *
1939 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944	struct xfs_trans *tp,
1945	struct xfs_inode *ip)
1946{
1947	xfs_mount_t	*mp = tp->t_mountp;
1948	xfs_agi_t	*agi;
1949	xfs_dinode_t	*dip;
1950	xfs_buf_t	*agibp;
1951	xfs_buf_t	*ibp;
1952	xfs_agino_t	agino;
1953	short		bucket_index;
1954	int		offset;
1955	int		error;
1956
 
1957	ASSERT(VFS_I(ip)->i_mode != 0);
 
 
 
 
 
 
 
 
 
1958
1959	/*
1960	 * Get the agi buffer first.  It ensures lock ordering
1961	 * on the list.
 
1962	 */
1963	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964	if (error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965		return error;
1966	agi = XFS_BUF_TO_AGI(agibp);
1967
1968	/*
1969	 * Get the index into the agi hash table for the
1970	 * list this inode will go on.
1971	 */
1972	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973	ASSERT(agino != 0);
1974	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975	ASSERT(agi->agi_unlinked[bucket_index]);
1976	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977
1978	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979		/*
1980		 * There is already another inode in the bucket we need
1981		 * to add ourselves to.  Add us at the front of the list.
1982		 * Here we put the head pointer into our next pointer,
1983		 * and then we fall through to point the head at us.
1984		 */
1985		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986				       0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987		if (error)
1988			return error;
1989
1990		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992		offset = ip->i_imap.im_boffset +
1993			offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995		/* need to recalc the inode CRC if appropriate */
1996		xfs_dinode_calc_crc(mp, dip);
1997
1998		xfs_trans_inode_buf(tp, ibp);
1999		xfs_trans_log_buf(tp, ibp, offset,
2000				  (offset + sizeof(xfs_agino_t) - 1));
2001		xfs_inobp_check(mp, ibp);
 
 
2002	}
2003
2004	/*
2005	 * Point the bucket head pointer at the inode being inserted.
2006	 */
2007	ASSERT(agino != 0);
2008	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009	offset = offsetof(xfs_agi_t, agi_unlinked) +
2010		(sizeof(xfs_agino_t) * bucket_index);
2011	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012	xfs_trans_log_buf(tp, agibp, offset,
2013			  (offset + sizeof(xfs_agino_t) - 1));
2014	return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022	xfs_trans_t	*tp,
2023	xfs_inode_t	*ip)
 
2024{
2025	xfs_ino_t	next_ino;
2026	xfs_mount_t	*mp;
2027	xfs_agi_t	*agi;
2028	xfs_dinode_t	*dip;
2029	xfs_buf_t	*agibp;
2030	xfs_buf_t	*ibp;
2031	xfs_agnumber_t	agno;
2032	xfs_agino_t	agino;
2033	xfs_agino_t	next_agino;
2034	xfs_buf_t	*last_ibp;
2035	xfs_dinode_t	*last_dip = NULL;
2036	short		bucket_index;
2037	int		offset, last_offset = 0;
2038	int		error;
 
 
 
 
2039
2040	mp = tp->t_mountp;
2041	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
 
 
 
 
 
 
 
2042
2043	/*
2044	 * Get the agi buffer first.  It ensures lock ordering
2045	 * on the list.
 
2046	 */
2047	error = xfs_read_agi(mp, tp, agno, &agibp);
2048	if (error)
2049		return error;
2050
2051	agi = XFS_BUF_TO_AGI(agibp);
2052
2053	/*
2054	 * Get the index into the agi hash table for the
2055	 * list this inode will go on.
 
 
 
2056	 */
2057	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058	ASSERT(agino != 0);
2059	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061	ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064		/*
2065		 * We're at the head of the list.  Get the inode's on-disk
2066		 * buffer to see if there is anyone after us on the list.
2067		 * Only modify our next pointer if it is not already NULLAGINO.
2068		 * This saves us the overhead of dealing with the buffer when
2069		 * there is no need to change it.
2070		 */
2071		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072				       0, 0);
2073		if (error) {
2074			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075				__func__, error);
2076			return error;
2077		}
2078		next_agino = be32_to_cpu(dip->di_next_unlinked);
2079		ASSERT(next_agino != 0);
2080		if (next_agino != NULLAGINO) {
2081			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082			offset = ip->i_imap.im_boffset +
2083				offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085			/* need to recalc the inode CRC if appropriate */
2086			xfs_dinode_calc_crc(mp, dip);
2087
2088			xfs_trans_inode_buf(tp, ibp);
2089			xfs_trans_log_buf(tp, ibp, offset,
2090					  (offset + sizeof(xfs_agino_t) - 1));
2091			xfs_inobp_check(mp, ibp);
2092		} else {
2093			xfs_trans_brelse(tp, ibp);
2094		}
2095		/*
2096		 * Point the bucket head pointer at the next inode.
 
 
 
 
 
2097		 */
2098		ASSERT(next_agino != 0);
2099		ASSERT(next_agino != agino);
2100		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101		offset = offsetof(xfs_agi_t, agi_unlinked) +
2102			(sizeof(xfs_agino_t) * bucket_index);
2103		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104		xfs_trans_log_buf(tp, agibp, offset,
2105				  (offset + sizeof(xfs_agino_t) - 1));
2106	} else {
2107		/*
2108		 * We need to search the list for the inode being freed.
2109		 */
2110		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111		last_ibp = NULL;
2112		while (next_agino != agino) {
2113			struct xfs_imap	imap;
2114
2115			if (last_ibp)
2116				xfs_trans_brelse(tp, last_ibp);
2117
2118			imap.im_blkno = 0;
2119			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122			if (error) {
2123				xfs_warn(mp,
2124	"%s: xfs_imap returned error %d.",
2125					 __func__, error);
2126				return error;
2127			}
2128
2129			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130					       &last_ibp, 0, 0);
2131			if (error) {
2132				xfs_warn(mp,
2133	"%s: xfs_imap_to_bp returned error %d.",
2134					__func__, error);
2135				return error;
2136			}
2137
2138			last_offset = imap.im_boffset;
2139			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140			ASSERT(next_agino != NULLAGINO);
2141			ASSERT(next_agino != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2142		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143
2144		/*
2145		 * Now last_ibp points to the buffer previous to us on the
2146		 * unlinked list.  Pull us from the list.
2147		 */
2148		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149				       0, 0);
2150		if (error) {
2151			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152				__func__, error);
2153			return error;
2154		}
2155		next_agino = be32_to_cpu(dip->di_next_unlinked);
2156		ASSERT(next_agino != 0);
2157		ASSERT(next_agino != agino);
2158		if (next_agino != NULLAGINO) {
2159			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160			offset = ip->i_imap.im_boffset +
2161				offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163			/* need to recalc the inode CRC if appropriate */
2164			xfs_dinode_calc_crc(mp, dip);
2165
2166			xfs_trans_inode_buf(tp, ibp);
2167			xfs_trans_log_buf(tp, ibp, offset,
2168					  (offset + sizeof(xfs_agino_t) - 1));
2169			xfs_inobp_check(mp, ibp);
2170		} else {
2171			xfs_trans_brelse(tp, ibp);
2172		}
2173		/*
2174		 * Point the previous inode on the list to the next inode.
2175		 */
2176		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177		ASSERT(next_agino != 0);
2178		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180		/* need to recalc the inode CRC if appropriate */
2181		xfs_dinode_calc_crc(mp, last_dip);
 
2182
2183		xfs_trans_inode_buf(tp, last_ibp);
2184		xfs_trans_log_buf(tp, last_ibp, offset,
2185				  (offset + sizeof(xfs_agino_t) - 1));
2186		xfs_inobp_check(mp, last_ibp);
2187	}
2188	return 0;
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198	xfs_inode_t		*free_ip,
2199	xfs_trans_t		*tp,
 
2200	struct xfs_icluster	*xic)
2201{
2202	xfs_mount_t		*mp = free_ip->i_mount;
2203	int			blks_per_cluster;
2204	int			inodes_per_cluster;
 
 
2205	int			nbufs;
2206	int			i, j;
2207	int			ioffset;
2208	xfs_daddr_t		blkno;
2209	xfs_buf_t		*bp;
2210	xfs_inode_t		*ip;
2211	xfs_inode_log_item_t	*iip;
2212	xfs_log_item_t		*lip;
2213	struct xfs_perag	*pag;
2214	xfs_ino_t		inum;
2215
2216	inum = xic->first_ino;
2217	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218	blks_per_cluster = xfs_icluster_size_fsb(mp);
2219	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223		/*
2224		 * The allocation bitmap tells us which inodes of the chunk were
2225		 * physically allocated. Skip the cluster if an inode falls into
2226		 * a sparse region.
2227		 */
2228		ioffset = inum - xic->first_ino;
2229		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231			continue;
2232		}
2233
2234		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235					 XFS_INO_TO_AGBNO(mp, inum));
2236
2237		/*
2238		 * We obtain and lock the backing buffer first in the process
2239		 * here, as we have to ensure that any dirty inode that we
2240		 * can't get the flush lock on is attached to the buffer.
 
2241		 * If we scan the in-memory inodes first, then buffer IO can
2242		 * complete before we get a lock on it, and hence we may fail
2243		 * to mark all the active inodes on the buffer stale.
2244		 */
2245		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246					mp->m_bsize * blks_per_cluster,
2247					XBF_UNMAPPED);
2248
2249		if (!bp)
2250			return -ENOMEM;
2251
2252		/*
2253		 * This buffer may not have been correctly initialised as we
2254		 * didn't read it from disk. That's not important because we are
2255		 * only using to mark the buffer as stale in the log, and to
2256		 * attach stale cached inodes on it. That means it will never be
2257		 * dispatched for IO. If it is, we want to know about it, and we
2258		 * want it to fail. We can acheive this by adding a write
2259		 * verifier to the buffer.
2260		 */
2261		 bp->b_ops = &xfs_inode_buf_ops;
2262
2263		/*
2264		 * Walk the inodes already attached to the buffer and mark them
2265		 * stale. These will all have the flush locks held, so an
2266		 * in-memory inode walk can't lock them. By marking them all
2267		 * stale first, we will not attempt to lock them in the loop
2268		 * below as the XFS_ISTALE flag will be set.
2269		 */
2270		lip = bp->b_fspriv;
2271		while (lip) {
2272			if (lip->li_type == XFS_LI_INODE) {
2273				iip = (xfs_inode_log_item_t *)lip;
2274				ASSERT(iip->ili_logged == 1);
2275				lip->li_cb = xfs_istale_done;
2276				xfs_trans_ail_copy_lsn(mp->m_ail,
2277							&iip->ili_flush_lsn,
2278							&iip->ili_item.li_lsn);
2279				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280			}
2281			lip = lip->li_bio_list;
2282		}
2283
2284
2285		/*
2286		 * For each inode in memory attempt to add it to the inode
2287		 * buffer and set it up for being staled on buffer IO
2288		 * completion.  This is safe as we've locked out tail pushing
2289		 * and flushing by locking the buffer.
2290		 *
2291		 * We have already marked every inode that was part of a
2292		 * transaction stale above, which means there is no point in
2293		 * even trying to lock them.
2294		 */
2295		for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297			rcu_read_lock();
2298			ip = radix_tree_lookup(&pag->pag_ici_root,
2299					XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301			/* Inode not in memory, nothing to do */
2302			if (!ip) {
2303				rcu_read_unlock();
2304				continue;
2305			}
2306
2307			/*
2308			 * because this is an RCU protected lookup, we could
2309			 * find a recently freed or even reallocated inode
2310			 * during the lookup. We need to check under the
2311			 * i_flags_lock for a valid inode here. Skip it if it
2312			 * is not valid, the wrong inode or stale.
2313			 */
2314			spin_lock(&ip->i_flags_lock);
2315			if (ip->i_ino != inum + i ||
2316			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2317				spin_unlock(&ip->i_flags_lock);
2318				rcu_read_unlock();
2319				continue;
2320			}
2321			spin_unlock(&ip->i_flags_lock);
2322
2323			/*
2324			 * Don't try to lock/unlock the current inode, but we
2325			 * _cannot_ skip the other inodes that we did not find
2326			 * in the list attached to the buffer and are not
2327			 * already marked stale. If we can't lock it, back off
2328			 * and retry.
2329			 */
2330			if (ip != free_ip &&
2331			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332				rcu_read_unlock();
2333				delay(1);
2334				goto retry;
2335			}
2336			rcu_read_unlock();
2337
2338			xfs_iflock(ip);
2339			xfs_iflags_set(ip, XFS_ISTALE);
2340
2341			/*
2342			 * we don't need to attach clean inodes or those only
2343			 * with unlogged changes (which we throw away, anyway).
2344			 */
2345			iip = ip->i_itemp;
2346			if (!iip || xfs_inode_clean(ip)) {
2347				ASSERT(ip != free_ip);
2348				xfs_ifunlock(ip);
2349				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350				continue;
2351			}
2352
2353			iip->ili_last_fields = iip->ili_fields;
2354			iip->ili_fields = 0;
2355			iip->ili_fsync_fields = 0;
2356			iip->ili_logged = 1;
2357			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358						&iip->ili_item.li_lsn);
2359
2360			xfs_buf_attach_iodone(bp, xfs_istale_done,
2361						  &iip->ili_item);
2362
2363			if (ip != free_ip)
2364				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365		}
2366
2367		xfs_trans_stale_inode_buf(tp, bp);
2368		xfs_trans_binval(tp, bp);
2369	}
2370
2371	xfs_perag_put(pag);
2372	return 0;
2373}
2374
2375/*
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it.  This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387	xfs_trans_t	*tp,
2388	xfs_inode_t	*ip,
2389	xfs_bmap_free_t	*flist)
2390{
 
 
 
 
2391	int			error;
2392	struct xfs_icluster	xic = { 0 };
2393
2394	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395	ASSERT(VFS_I(ip)->i_nlink == 0);
2396	ASSERT(ip->i_d.di_nextents == 0);
2397	ASSERT(ip->i_d.di_anextents == 0);
2398	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399	ASSERT(ip->i_d.di_nblocks == 0);
 
2400
2401	/*
2402	 * Pull the on-disk inode from the AGI unlinked list.
2403	 */
2404	error = xfs_iunlink_remove(tp, ip);
2405	if (error)
2406		return error;
2407
2408	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409	if (error)
2410		return error;
 
 
 
 
 
 
 
 
 
 
 
2411
2412	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2413	ip->i_d.di_flags = 0;
2414	ip->i_d.di_dmevmask = 0;
2415	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2416	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 
 
 
 
 
 
 
2418	/*
2419	 * Bump the generation count so no one will be confused
2420	 * by reincarnations of this inode.
2421	 */
2422	VFS_I(ip)->i_generation++;
2423	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425	if (xic.deleted)
2426		error = xfs_ifree_cluster(ip, tp, &xic);
2427
 
2428	return error;
2429}
2430
2431/*
2432 * This is called to unpin an inode.  The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438	struct xfs_inode	*ip)
2439{
2440	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444	/* Give the log a push to start the unpinning I/O */
2445	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451	struct xfs_inode	*ip)
2452{
2453	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456	xfs_iunpin(ip);
2457
2458	do {
2459		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460		if (xfs_ipincount(ip))
2461			io_schedule();
2462	} while (xfs_ipincount(ip));
2463	finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468	struct xfs_inode	*ip)
2469{
2470	if (xfs_ipincount(ip))
2471		__xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503	xfs_inode_t             *dp,
2504	struct xfs_name		*name,
2505	xfs_inode_t		*ip)
2506{
2507	xfs_mount_t		*mp = dp->i_mount;
2508	xfs_trans_t             *tp = NULL;
2509	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510	int                     error = 0;
2511	xfs_bmap_free_t         free_list;
2512	xfs_fsblock_t           first_block;
2513	uint			resblks;
2514
2515	trace_xfs_remove(dp, name);
2516
2517	if (XFS_FORCED_SHUTDOWN(mp))
2518		return -EIO;
2519
2520	error = xfs_qm_dqattach(dp, 0);
2521	if (error)
2522		goto std_return;
2523
2524	error = xfs_qm_dqattach(ip, 0);
2525	if (error)
2526		goto std_return;
2527
2528	if (is_dir)
2529		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530	else
2531		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533	/*
2534	 * We try to get the real space reservation first,
2535	 * allowing for directory btree deletion(s) implying
2536	 * possible bmap insert(s).  If we can't get the space
2537	 * reservation then we use 0 instead, and avoid the bmap
2538	 * btree insert(s) in the directory code by, if the bmap
2539	 * insert tries to happen, instead trimming the LAST
2540	 * block from the directory.
2541	 */
2542	resblks = XFS_REMOVE_SPACE_RES(mp);
2543	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544	if (error == -ENOSPC) {
2545		resblks = 0;
2546		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
 
2547	}
2548	if (error) {
2549		ASSERT(error != -ENOSPC);
2550		goto out_trans_cancel;
2551	}
2552
2553	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558
2559	/*
2560	 * If we're removing a directory perform some additional validation.
2561	 */
2562	if (is_dir) {
2563		ASSERT(VFS_I(ip)->i_nlink >= 2);
2564		if (VFS_I(ip)->i_nlink != 2) {
2565			error = -ENOTEMPTY;
2566			goto out_trans_cancel;
2567		}
2568		if (!xfs_dir_isempty(ip)) {
2569			error = -ENOTEMPTY;
2570			goto out_trans_cancel;
2571		}
2572
2573		/* Drop the link from ip's "..".  */
2574		error = xfs_droplink(tp, dp);
2575		if (error)
2576			goto out_trans_cancel;
2577
2578		/* Drop the "." link from ip to self.  */
2579		error = xfs_droplink(tp, ip);
2580		if (error)
2581			goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
2582	} else {
2583		/*
2584		 * When removing a non-directory we need to log the parent
2585		 * inode here.  For a directory this is done implicitly
2586		 * by the xfs_droplink call for the ".." entry.
2587		 */
2588		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589	}
2590	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592	/* Drop the link from dp to ip. */
2593	error = xfs_droplink(tp, ip);
2594	if (error)
2595		goto out_trans_cancel;
2596
2597	xfs_bmap_init(&free_list, &first_block);
2598	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599					&first_block, &free_list, resblks);
2600	if (error) {
2601		ASSERT(error != -ENOENT);
2602		goto out_bmap_cancel;
2603	}
2604
2605	/*
2606	 * If this is a synchronous mount, make sure that the
2607	 * remove transaction goes to disk before returning to
2608	 * the user.
2609	 */
2610	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611		xfs_trans_set_sync(tp);
2612
2613	error = xfs_bmap_finish(&tp, &free_list, NULL);
2614	if (error)
2615		goto out_bmap_cancel;
2616
2617	error = xfs_trans_commit(tp);
2618	if (error)
2619		goto std_return;
2620
2621	if (is_dir && xfs_inode_is_filestream(ip))
2622		xfs_filestream_deassociate(ip);
2623
2624	return 0;
2625
2626 out_bmap_cancel:
2627	xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629	xfs_trans_cancel(tp);
2630 std_return:
2631	return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
2636 */
2637#define __XFS_SORT_INODES	5
2638STATIC void
2639xfs_sort_for_rename(
2640	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2641	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2642	struct xfs_inode	*ip1,	/* in: inode of old entry */
2643	struct xfs_inode	*ip2,	/* in: inode of new entry */
2644	struct xfs_inode	*wip,	/* in: whiteout inode */
2645	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2646	int			*num_inodes)  /* in/out: inodes in array */
2647{
2648	int			i, j;
2649
2650	ASSERT(*num_inodes == __XFS_SORT_INODES);
2651	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653	/*
2654	 * i_tab contains a list of pointers to inodes.  We initialize
2655	 * the table here & we'll sort it.  We will then use it to
2656	 * order the acquisition of the inode locks.
2657	 *
2658	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659	 */
2660	i = 0;
2661	i_tab[i++] = dp1;
2662	i_tab[i++] = dp2;
2663	i_tab[i++] = ip1;
2664	if (ip2)
2665		i_tab[i++] = ip2;
2666	if (wip)
2667		i_tab[i++] = wip;
2668	*num_inodes = i;
2669
2670	/*
2671	 * Sort the elements via bubble sort.  (Remember, there are at
2672	 * most 5 elements to sort, so this is adequate.)
2673	 */
2674	for (i = 0; i < *num_inodes; i++) {
2675		for (j = 1; j < *num_inodes; j++) {
2676			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677				struct xfs_inode *temp = i_tab[j];
2678				i_tab[j] = i_tab[j-1];
2679				i_tab[j-1] = temp;
2680			}
2681		}
2682	}
2683}
2684
2685static int
2686xfs_finish_rename(
2687	struct xfs_trans	*tp,
2688	struct xfs_bmap_free	*free_list)
2689{
2690	int			error;
2691
2692	/*
2693	 * If this is a synchronous mount, make sure that the rename transaction
2694	 * goes to disk before returning to the user.
2695	 */
2696	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697		xfs_trans_set_sync(tp);
2698
2699	error = xfs_bmap_finish(&tp, free_list, NULL);
2700	if (error) {
2701		xfs_bmap_cancel(free_list);
2702		xfs_trans_cancel(tp);
2703		return error;
2704	}
2705
2706	return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716	struct xfs_trans	*tp,
2717	struct xfs_inode	*dp1,
2718	struct xfs_name		*name1,
2719	struct xfs_inode	*ip1,
2720	struct xfs_inode	*dp2,
2721	struct xfs_name		*name2,
2722	struct xfs_inode	*ip2,
2723	struct xfs_bmap_free	*free_list,
2724	xfs_fsblock_t		*first_block,
2725	int			spaceres)
2726{
2727	int		error = 0;
2728	int		ip1_flags = 0;
2729	int		ip2_flags = 0;
2730	int		dp2_flags = 0;
2731
2732	/* Swap inode number for dirent in first parent */
2733	error = xfs_dir_replace(tp, dp1, name1,
2734				ip2->i_ino,
2735				first_block, free_list, spaceres);
2736	if (error)
2737		goto out_trans_abort;
2738
2739	/* Swap inode number for dirent in second parent */
2740	error = xfs_dir_replace(tp, dp2, name2,
2741				ip1->i_ino,
2742				first_block, free_list, spaceres);
2743	if (error)
2744		goto out_trans_abort;
2745
2746	/*
2747	 * If we're renaming one or more directories across different parents,
2748	 * update the respective ".." entries (and link counts) to match the new
2749	 * parents.
2750	 */
2751	if (dp1 != dp2) {
2752		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756						dp1->i_ino, first_block,
2757						free_list, spaceres);
2758			if (error)
2759				goto out_trans_abort;
2760
2761			/* transfer ip2 ".." reference to dp1 */
2762			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763				error = xfs_droplink(tp, dp2);
2764				if (error)
2765					goto out_trans_abort;
2766				error = xfs_bumplink(tp, dp1);
2767				if (error)
2768					goto out_trans_abort;
2769			}
2770
2771			/*
2772			 * Although ip1 isn't changed here, userspace needs
2773			 * to be warned about the change, so that applications
2774			 * relying on it (like backup ones), will properly
2775			 * notify the change
2776			 */
2777			ip1_flags |= XFS_ICHGTIME_CHG;
2778			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779		}
2780
2781		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783						dp2->i_ino, first_block,
2784						free_list, spaceres);
2785			if (error)
2786				goto out_trans_abort;
2787
2788			/* transfer ip1 ".." reference to dp2 */
2789			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790				error = xfs_droplink(tp, dp1);
2791				if (error)
2792					goto out_trans_abort;
2793				error = xfs_bumplink(tp, dp2);
2794				if (error)
2795					goto out_trans_abort;
2796			}
2797
2798			/*
2799			 * Although ip2 isn't changed here, userspace needs
2800			 * to be warned about the change, so that applications
2801			 * relying on it (like backup ones), will properly
2802			 * notify the change
2803			 */
2804			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805			ip2_flags |= XFS_ICHGTIME_CHG;
2806		}
2807	}
2808
2809	if (ip1_flags) {
2810		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812	}
2813	if (ip2_flags) {
2814		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816	}
2817	if (dp2_flags) {
2818		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820	}
2821	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823	return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826	xfs_bmap_cancel(free_list);
2827	xfs_trans_cancel(tp);
2828	return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
 
2841	struct xfs_inode	*dp,
2842	struct xfs_inode	**wip)
2843{
2844	struct xfs_inode	*tmpfile;
2845	int			error;
2846
2847	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
 
2848	if (error)
2849		return error;
2850
2851	/*
2852	 * Prepare the tmpfile inode as if it were created through the VFS.
2853	 * Otherwise, the link increment paths will complain about nlink 0->1.
2854	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855	 * and flag it as linkable.
2856	 */
2857	drop_nlink(VFS_I(tmpfile));
2858	xfs_finish_inode_setup(tmpfile);
2859	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861	*wip = tmpfile;
2862	return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
 
2870	struct xfs_inode	*src_dp,
2871	struct xfs_name		*src_name,
2872	struct xfs_inode	*src_ip,
2873	struct xfs_inode	*target_dp,
2874	struct xfs_name		*target_name,
2875	struct xfs_inode	*target_ip,
2876	unsigned int		flags)
2877{
2878	struct xfs_mount	*mp = src_dp->i_mount;
2879	struct xfs_trans	*tp;
2880	struct xfs_bmap_free	free_list;
2881	xfs_fsblock_t		first_block;
2882	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2883	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
2884	int			num_inodes = __XFS_SORT_INODES;
2885	bool			new_parent = (src_dp != target_dp);
2886	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887	int			spaceres;
2888	int			error;
2889
2890	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892	if ((flags & RENAME_EXCHANGE) && !target_ip)
2893		return -EINVAL;
2894
2895	/*
2896	 * If we are doing a whiteout operation, allocate the whiteout inode
2897	 * we will be placing at the target and ensure the type is set
2898	 * appropriately.
2899	 */
2900	if (flags & RENAME_WHITEOUT) {
2901		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903		if (error)
2904			return error;
2905
2906		/* setup target dirent info as whiteout */
2907		src_name->type = XFS_DIR3_FT_CHRDEV;
2908	}
2909
2910	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911				inodes, &num_inodes);
2912
2913	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916	if (error == -ENOSPC) {
2917		spaceres = 0;
2918		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
 
2919	}
2920	if (error)
2921		goto out_trans_cancel;
2922
2923	/*
2924	 * Attach the dquots to the inodes
2925	 */
2926	error = xfs_qm_vop_rename_dqattach(inodes);
2927	if (error)
2928		goto out_trans_cancel;
2929
2930	/*
2931	 * Lock all the participating inodes. Depending upon whether
2932	 * the target_name exists in the target directory, and
2933	 * whether the target directory is the same as the source
2934	 * directory, we can lock from 2 to 4 inodes.
2935	 */
2936	if (!new_parent)
2937		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938	else
2939		xfs_lock_two_inodes(src_dp, target_dp,
2940				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944	/*
2945	 * Join all the inodes to the transaction. From this point on,
2946	 * we can rely on either trans_commit or trans_cancel to unlock
2947	 * them.
2948	 */
2949	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950	if (new_parent)
2951		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953	if (target_ip)
2954		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955	if (wip)
2956		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958	/*
2959	 * If we are using project inheritance, we only allow renames
2960	 * into our tree when the project IDs are the same; else the
2961	 * tree quota mechanism would be circumvented.
2962	 */
2963	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965		error = -EXDEV;
2966		goto out_trans_cancel;
2967	}
2968
2969	xfs_bmap_init(&free_list, &first_block);
2970
2971	/* RENAME_EXCHANGE is unique from here on. */
2972	if (flags & RENAME_EXCHANGE)
2973		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974					target_dp, target_name, target_ip,
2975					&free_list, &first_block, spaceres);
2976
2977	/*
2978	 * Set up the target.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979	 */
2980	if (target_ip == NULL) {
2981		/*
2982		 * If there's no space reservation, check the entry will
2983		 * fit before actually inserting it.
2984		 */
2985		if (!spaceres) {
2986			error = xfs_dir_canenter(tp, target_dp, target_name);
2987			if (error)
2988				goto out_trans_cancel;
 
 
 
 
 
 
2989		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990		/*
2991		 * If target does not exist and the rename crosses
2992		 * directories, adjust the target directory link count
2993		 * to account for the ".." reference from the new entry.
2994		 */
2995		error = xfs_dir_createname(tp, target_dp, target_name,
2996						src_ip->i_ino, &first_block,
2997						&free_list, spaceres);
2998		if (error)
2999			goto out_bmap_cancel;
3000
3001		xfs_trans_ichgtime(tp, target_dp,
3002					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004		if (new_parent && src_is_directory) {
3005			error = xfs_bumplink(tp, target_dp);
3006			if (error)
3007				goto out_bmap_cancel;
3008		}
3009	} else { /* target_ip != NULL */
3010		/*
3011		 * If target exists and it's a directory, check that both
3012		 * target and source are directories and that target can be
3013		 * destroyed, or that neither is a directory.
3014		 */
3015		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016			/*
3017			 * Make sure target dir is empty.
3018			 */
3019			if (!(xfs_dir_isempty(target_ip)) ||
3020			    (VFS_I(target_ip)->i_nlink > 2)) {
3021				error = -EEXIST;
3022				goto out_trans_cancel;
3023			}
3024		}
3025
3026		/*
3027		 * Link the source inode under the target name.
3028		 * If the source inode is a directory and we are moving
3029		 * it across directories, its ".." entry will be
3030		 * inconsistent until we replace that down below.
3031		 *
3032		 * In case there is already an entry with the same
3033		 * name at the destination directory, remove it first.
3034		 */
3035		error = xfs_dir_replace(tp, target_dp, target_name,
3036					src_ip->i_ino,
3037					&first_block, &free_list, spaceres);
3038		if (error)
3039			goto out_bmap_cancel;
3040
3041		xfs_trans_ichgtime(tp, target_dp,
3042					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044		/*
3045		 * Decrement the link count on the target since the target
3046		 * dir no longer points to it.
3047		 */
3048		error = xfs_droplink(tp, target_ip);
3049		if (error)
3050			goto out_bmap_cancel;
3051
3052		if (src_is_directory) {
3053			/*
3054			 * Drop the link from the old "." entry.
3055			 */
3056			error = xfs_droplink(tp, target_ip);
3057			if (error)
3058				goto out_bmap_cancel;
3059		}
3060	} /* target_ip != NULL */
3061
3062	/*
3063	 * Remove the source.
3064	 */
3065	if (new_parent && src_is_directory) {
3066		/*
3067		 * Rewrite the ".." entry to point to the new
3068		 * directory.
3069		 */
3070		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071					target_dp->i_ino,
3072					&first_block, &free_list, spaceres);
3073		ASSERT(error != -EEXIST);
3074		if (error)
3075			goto out_bmap_cancel;
3076	}
3077
3078	/*
3079	 * We always want to hit the ctime on the source inode.
3080	 *
3081	 * This isn't strictly required by the standards since the source
3082	 * inode isn't really being changed, but old unix file systems did
3083	 * it and some incremental backup programs won't work without it.
3084	 */
3085	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088	/*
3089	 * Adjust the link count on src_dp.  This is necessary when
3090	 * renaming a directory, either within one parent when
3091	 * the target existed, or across two parent directories.
3092	 */
3093	if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095		/*
3096		 * Decrement link count on src_directory since the
3097		 * entry that's moved no longer points to it.
3098		 */
3099		error = xfs_droplink(tp, src_dp);
3100		if (error)
3101			goto out_bmap_cancel;
3102	}
3103
3104	/*
3105	 * For whiteouts, we only need to update the source dirent with the
3106	 * inode number of the whiteout inode rather than removing it
3107	 * altogether.
3108	 */
3109	if (wip) {
3110		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111					&first_block, &free_list, spaceres);
3112	} else
3113		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114					   &first_block, &free_list, spaceres);
3115	if (error)
3116		goto out_bmap_cancel;
3117
3118	/*
3119	 * For whiteouts, we need to bump the link count on the whiteout inode.
3120	 * This means that failures all the way up to this point leave the inode
3121	 * on the unlinked list and so cleanup is a simple matter of dropping
3122	 * the remaining reference to it. If we fail here after bumping the link
3123	 * count, we're shutting down the filesystem so we'll never see the
3124	 * intermediate state on disk.
3125	 */
3126	if (wip) {
3127		ASSERT(VFS_I(wip)->i_nlink == 0);
3128		error = xfs_bumplink(tp, wip);
3129		if (error)
3130			goto out_bmap_cancel;
3131		error = xfs_iunlink_remove(tp, wip);
3132		if (error)
3133			goto out_bmap_cancel;
3134		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136		/*
3137		 * Now we have a real link, clear the "I'm a tmpfile" state
3138		 * flag from the inode so it doesn't accidentally get misused in
3139		 * future.
3140		 */
3141		VFS_I(wip)->i_state &= ~I_LINKABLE;
 
3142	}
3143
 
 
 
3144	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146	if (new_parent)
3147		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149	error = xfs_finish_rename(tp, &free_list);
3150	if (wip)
3151		IRELE(wip);
3152	return error;
3153
3154out_bmap_cancel:
3155	xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157	xfs_trans_cancel(tp);
 
3158	if (wip)
3159		IRELE(wip);
3160	return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165	xfs_inode_t	*ip,
3166	xfs_buf_t	*bp)
3167{
3168	xfs_mount_t		*mp = ip->i_mount;
3169	struct xfs_perag	*pag;
3170	unsigned long		first_index, mask;
3171	unsigned long		inodes_per_cluster;
3172	int			ilist_size;
3173	xfs_inode_t		**ilist;
3174	xfs_inode_t		*iq;
3175	int			nr_found;
3176	int			clcount = 0;
3177	int			bufwasdelwri;
3178	int			i;
3179
3180	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185	if (!ilist)
3186		goto out_put;
3187
3188	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190	rcu_read_lock();
3191	/* really need a gang lookup range call here */
3192	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193					first_index, inodes_per_cluster);
3194	if (nr_found == 0)
3195		goto out_free;
3196
3197	for (i = 0; i < nr_found; i++) {
3198		iq = ilist[i];
3199		if (iq == ip)
3200			continue;
3201
3202		/*
3203		 * because this is an RCU protected lookup, we could find a
3204		 * recently freed or even reallocated inode during the lookup.
3205		 * We need to check under the i_flags_lock for a valid inode
3206		 * here. Skip it if it is not valid or the wrong inode.
3207		 */
3208		spin_lock(&ip->i_flags_lock);
3209		if (!ip->i_ino ||
3210		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211			spin_unlock(&ip->i_flags_lock);
3212			continue;
3213		}
3214		spin_unlock(&ip->i_flags_lock);
3215
3216		/*
3217		 * Do an un-protected check to see if the inode is dirty and
3218		 * is a candidate for flushing.  These checks will be repeated
3219		 * later after the appropriate locks are acquired.
3220		 */
3221		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222			continue;
3223
3224		/*
3225		 * Try to get locks.  If any are unavailable or it is pinned,
3226		 * then this inode cannot be flushed and is skipped.
3227		 */
3228
3229		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230			continue;
3231		if (!xfs_iflock_nowait(iq)) {
3232			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233			continue;
3234		}
3235		if (xfs_ipincount(iq)) {
3236			xfs_ifunlock(iq);
3237			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238			continue;
3239		}
3240
3241		/*
3242		 * arriving here means that this inode can be flushed.  First
3243		 * re-check that it's dirty before flushing.
3244		 */
3245		if (!xfs_inode_clean(iq)) {
3246			int	error;
3247			error = xfs_iflush_int(iq, bp);
3248			if (error) {
3249				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250				goto cluster_corrupt_out;
3251			}
3252			clcount++;
3253		} else {
3254			xfs_ifunlock(iq);
3255		}
3256		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257	}
3258
3259	if (clcount) {
3260		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262	}
3263
3264out_free:
3265	rcu_read_unlock();
3266	kmem_free(ilist);
3267out_put:
3268	xfs_perag_put(pag);
3269	return 0;
3270
3271
3272cluster_corrupt_out:
3273	/*
3274	 * Corruption detected in the clustering loop.  Invalidate the
3275	 * inode buffer and shut down the filesystem.
3276	 */
3277	rcu_read_unlock();
3278	/*
3279	 * Clean up the buffer.  If it was delwri, just release it --
3280	 * brelse can handle it with no problems.  If not, shut down the
3281	 * filesystem before releasing the buffer.
3282	 */
3283	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284	if (bufwasdelwri)
3285		xfs_buf_relse(bp);
3286
3287	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289	if (!bufwasdelwri) {
3290		/*
3291		 * Just like incore_relse: if we have b_iodone functions,
3292		 * mark the buffer as an error and call them.  Otherwise
3293		 * mark it as stale and brelse.
3294		 */
3295		if (bp->b_iodone) {
3296			bp->b_flags &= ~XBF_DONE;
3297			xfs_buf_stale(bp);
3298			xfs_buf_ioerror(bp, -EIO);
3299			xfs_buf_ioend(bp);
3300		} else {
3301			xfs_buf_stale(bp);
3302			xfs_buf_relse(bp);
3303		}
3304	}
3305
3306	/*
3307	 * Unlocks the flush lock
3308	 */
3309	xfs_iflush_abort(iq, false);
3310	kmem_free(ilist);
3311	xfs_perag_put(pag);
3312	return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held.  The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326	struct xfs_inode	*ip,
3327	struct xfs_buf		**bpp)
3328{
 
 
3329	struct xfs_mount	*mp = ip->i_mount;
3330	struct xfs_buf		*bp;
3331	struct xfs_dinode	*dip;
3332	int			error;
3333
3334	XFS_STATS_INC(mp, xs_iflush_count);
3335
3336	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337	ASSERT(xfs_isiflocked(ip));
3338	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
3340
3341	*bpp = NULL;
3342
3343	xfs_iunpin_wait(ip);
3344
3345	/*
3346	 * For stale inodes we cannot rely on the backing buffer remaining
3347	 * stale in cache for the remaining life of the stale inode and so
3348	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349	 * inodes below. We have to check this after ensuring the inode is
3350	 * unpinned so that it is safe to reclaim the stale inode after the
3351	 * flush call.
3352	 */
3353	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354		xfs_ifunlock(ip);
3355		return 0;
3356	}
3357
3358	/*
3359	 * This may have been unpinned because the filesystem is shutting
3360	 * down forcibly. If that's the case we must not write this inode
3361	 * to disk, because the log record didn't make it to disk.
3362	 *
3363	 * We also have to remove the log item from the AIL in this case,
3364	 * as we wait for an empty AIL as part of the unmount process.
3365	 */
3366	if (XFS_FORCED_SHUTDOWN(mp)) {
3367		error = -EIO;
3368		goto abort_out;
3369	}
3370
3371	/*
3372	 * Get the buffer containing the on-disk inode.
3373	 */
3374	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375			       0);
3376	if (error || !bp) {
3377		xfs_ifunlock(ip);
3378		return error;
3379	}
3380
3381	/*
3382	 * First flush out the inode that xfs_iflush was called with.
3383	 */
3384	error = xfs_iflush_int(ip, bp);
3385	if (error)
3386		goto corrupt_out;
3387
3388	/*
3389	 * If the buffer is pinned then push on the log now so we won't
3390	 * get stuck waiting in the write for too long.
3391	 */
3392	if (xfs_buf_ispinned(bp))
3393		xfs_log_force(mp, 0);
3394
3395	/*
3396	 * inode clustering:
3397	 * see if other inodes can be gathered into this write
3398	 */
3399	error = xfs_iflush_cluster(ip, bp);
3400	if (error)
3401		goto cluster_corrupt_out;
3402
3403	*bpp = bp;
3404	return 0;
3405
3406corrupt_out:
3407	xfs_buf_relse(bp);
3408	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410	error = -EFSCORRUPTED;
3411abort_out:
3412	/*
3413	 * Unlocks the flush lock
3414	 */
3415	xfs_iflush_abort(ip, false);
3416	return error;
3417}
3418
3419STATIC int
3420xfs_iflush_int(
3421	struct xfs_inode	*ip,
3422	struct xfs_buf		*bp)
3423{
3424	struct xfs_inode_log_item *iip = ip->i_itemp;
3425	struct xfs_dinode	*dip;
3426	struct xfs_mount	*mp = ip->i_mount;
3427
3428	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429	ASSERT(xfs_isiflocked(ip));
3430	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432	ASSERT(iip != NULL && iip->ili_fields != 0);
3433	ASSERT(ip->i_d.di_version > 1);
3434
3435	/* set *dip = inode's place in the buffer */
3436	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443		goto corrupt_out;
3444	}
3445	if (S_ISREG(VFS_I(ip)->i_mode)) {
3446		if (XFS_TEST_ERROR(
3447		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451				"%s: Bad regular inode %Lu, ptr 0x%p",
3452				__func__, ip->i_ino, ip);
3453			goto corrupt_out;
3454		}
3455	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456		if (XFS_TEST_ERROR(
3457		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462				"%s: Bad directory inode %Lu, ptr 0x%p",
3463				__func__, ip->i_ino, ip);
3464			goto corrupt_out;
3465		}
3466	}
3467	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469				XFS_RANDOM_IFLUSH_5)) {
3470		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471			"%s: detected corrupt incore inode %Lu, "
3472			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3473			__func__, ip->i_ino,
3474			ip->i_d.di_nextents + ip->i_d.di_anextents,
3475			ip->i_d.di_nblocks, ip);
3476		goto corrupt_out;
3477	}
3478	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483		goto corrupt_out;
3484	}
3485
3486	/*
3487	 * Inode item log recovery for v2 inodes are dependent on the
3488	 * di_flushiter count for correct sequencing. We bump the flush
3489	 * iteration count so we can detect flushes which postdate a log record
3490	 * during recovery. This is redundant as we now log every change and
3491	 * hence this can't happen but we need to still do it to ensure
3492	 * backwards compatibility with old kernels that predate logging all
3493	 * inode changes.
 
 
 
 
 
 
3494	 */
3495	if (ip->i_d.di_version < 3)
3496		ip->i_d.di_flushiter++;
 
 
 
 
3497
3498	/*
3499	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3500	 * copy out the core of the inode, because if the inode is dirty at all
3501	 * the core must be.
3502	 */
3503	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3506	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507		ip->i_d.di_flushiter = 0;
 
 
3508
3509	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510	if (XFS_IFORK_Q(ip))
3511		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512	xfs_inobp_check(mp, bp);
3513
3514	/*
3515	 * We've recorded everything logged in the inode, so we'd like to clear
3516	 * the ili_fields bits so we don't log and flush things unnecessarily.
3517	 * However, we can't stop logging all this information until the data
3518	 * we've copied into the disk buffer is written to disk.  If we did we
3519	 * might overwrite the copy of the inode in the log with all the data
3520	 * after re-logging only part of it, and in the face of a crash we
3521	 * wouldn't have all the data we need to recover.
3522	 *
3523	 * What we do is move the bits to the ili_last_fields field.  When
3524	 * logging the inode, these bits are moved back to the ili_fields field.
3525	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526	 * know that the information those bits represent is permanently on
3527	 * disk.  As long as the flush completes before the inode is logged
3528	 * again, then both ili_fields and ili_last_fields will be cleared.
3529	 *
3530	 * We can play with the ili_fields bits here, because the inode lock
3531	 * must be held exclusively in order to set bits there and the flush
3532	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533	 * done routine can tell whether or not to look in the AIL.  Also, store
3534	 * the current LSN of the inode so that we can tell whether the item has
3535	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536	 * need the AIL lock, because it is a 64 bit value that cannot be read
3537	 * atomically.
3538	 */
 
 
 
3539	iip->ili_last_fields = iip->ili_fields;
3540	iip->ili_fields = 0;
3541	iip->ili_fsync_fields = 0;
3542	iip->ili_logged = 1;
3543
 
 
 
 
3544	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545				&iip->ili_item.li_lsn);
3546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547	/*
3548	 * Attach the function xfs_iflush_done to the inode's
3549	 * buffer.  This will remove the inode from the AIL
3550	 * and unlock the inode's flush lock when the inode is
3551	 * completely written to disk.
3552	 */
3553	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554
3555	/* generate the checksum. */
3556	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557
3558	ASSERT(bp->b_fspriv != NULL);
3559	ASSERT(bp->b_iodone != NULL);
 
 
 
 
 
 
3560	return 0;
 
 
 
 
 
 
 
 
 
3561
3562corrupt_out:
3563	return -EFSCORRUPTED;
 
 
 
 
3564}