Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
21#include "xfs_buf_item.h"
22#include "xfs_inode_item.h"
23#include "xfs_ialloc.h"
24#include "xfs_bmap.h"
25#include "xfs_bmap_util.h"
26#include "xfs_errortag.h"
27#include "xfs_error.h"
28#include "xfs_quota.h"
29#include "xfs_filestream.h"
30#include "xfs_trace.h"
31#include "xfs_icache.h"
32#include "xfs_symlink.h"
33#include "xfs_trans_priv.h"
34#include "xfs_log.h"
35#include "xfs_bmap_btree.h"
36#include "xfs_reflink.h"
37#include "xfs_ag.h"
38
39kmem_zone_t *xfs_inode_zone;
40
41/*
42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
49 struct xfs_inode *);
50
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
58 /*
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
61 */
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
64 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
65 return ip->i_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69}
70
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
76 */
77xfs_extlen_t
78xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80{
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
92}
93
94/*
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
105 *
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
108 */
109uint
110xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
112{
113 uint lock_mode = XFS_ILOCK_SHARED;
114
115 if (xfs_need_iread_extents(&ip->i_df))
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
119}
120
121uint
122xfs_ilock_attr_map_shared(
123 struct xfs_inode *ip)
124{
125 uint lock_mode = XFS_ILOCK_SHARED;
126
127 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
128 lock_mode = XFS_ILOCK_EXCL;
129 xfs_ilock(ip, lock_mode);
130 return lock_mode;
131}
132
133/*
134 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
135 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
136 * various combinations of the locks to be obtained.
137 *
138 * The 3 locks should always be ordered so that the IO lock is obtained first,
139 * the mmap lock second and the ilock last in order to prevent deadlock.
140 *
141 * Basic locking order:
142 *
143 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
144 *
145 * mmap_lock locking order:
146 *
147 * i_rwsem -> page lock -> mmap_lock
148 * mmap_lock -> i_mmap_lock -> page_lock
149 *
150 * The difference in mmap_lock locking order mean that we cannot hold the
151 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
152 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
153 * in get_user_pages() to map the user pages into the kernel address space for
154 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
155 * page faults already hold the mmap_lock.
156 *
157 * Hence to serialise fully against both syscall and mmap based IO, we need to
158 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
159 * taken in places where we need to invalidate the page cache in a race
160 * free manner (e.g. truncate, hole punch and other extent manipulation
161 * functions).
162 */
163void
164xfs_ilock(
165 xfs_inode_t *ip,
166 uint lock_flags)
167{
168 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
169
170 /*
171 * You can't set both SHARED and EXCL for the same lock,
172 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
173 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
174 */
175 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
176 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
177 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
178 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
180 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
181 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
182
183 if (lock_flags & XFS_IOLOCK_EXCL) {
184 down_write_nested(&VFS_I(ip)->i_rwsem,
185 XFS_IOLOCK_DEP(lock_flags));
186 } else if (lock_flags & XFS_IOLOCK_SHARED) {
187 down_read_nested(&VFS_I(ip)->i_rwsem,
188 XFS_IOLOCK_DEP(lock_flags));
189 }
190
191 if (lock_flags & XFS_MMAPLOCK_EXCL)
192 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
193 else if (lock_flags & XFS_MMAPLOCK_SHARED)
194 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195
196 if (lock_flags & XFS_ILOCK_EXCL)
197 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
198 else if (lock_flags & XFS_ILOCK_SHARED)
199 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200}
201
202/*
203 * This is just like xfs_ilock(), except that the caller
204 * is guaranteed not to sleep. It returns 1 if it gets
205 * the requested locks and 0 otherwise. If the IO lock is
206 * obtained but the inode lock cannot be, then the IO lock
207 * is dropped before returning.
208 *
209 * ip -- the inode being locked
210 * lock_flags -- this parameter indicates the inode's locks to be
211 * to be locked. See the comment for xfs_ilock() for a list
212 * of valid values.
213 */
214int
215xfs_ilock_nowait(
216 xfs_inode_t *ip,
217 uint lock_flags)
218{
219 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
220
221 /*
222 * You can't set both SHARED and EXCL for the same lock,
223 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
224 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
225 */
226 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
227 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
228 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
229 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
231 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
232 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
233
234 if (lock_flags & XFS_IOLOCK_EXCL) {
235 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
236 goto out;
237 } else if (lock_flags & XFS_IOLOCK_SHARED) {
238 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
239 goto out;
240 }
241
242 if (lock_flags & XFS_MMAPLOCK_EXCL) {
243 if (!mrtryupdate(&ip->i_mmaplock))
244 goto out_undo_iolock;
245 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
246 if (!mrtryaccess(&ip->i_mmaplock))
247 goto out_undo_iolock;
248 }
249
250 if (lock_flags & XFS_ILOCK_EXCL) {
251 if (!mrtryupdate(&ip->i_lock))
252 goto out_undo_mmaplock;
253 } else if (lock_flags & XFS_ILOCK_SHARED) {
254 if (!mrtryaccess(&ip->i_lock))
255 goto out_undo_mmaplock;
256 }
257 return 1;
258
259out_undo_mmaplock:
260 if (lock_flags & XFS_MMAPLOCK_EXCL)
261 mrunlock_excl(&ip->i_mmaplock);
262 else if (lock_flags & XFS_MMAPLOCK_SHARED)
263 mrunlock_shared(&ip->i_mmaplock);
264out_undo_iolock:
265 if (lock_flags & XFS_IOLOCK_EXCL)
266 up_write(&VFS_I(ip)->i_rwsem);
267 else if (lock_flags & XFS_IOLOCK_SHARED)
268 up_read(&VFS_I(ip)->i_rwsem);
269out:
270 return 0;
271}
272
273/*
274 * xfs_iunlock() is used to drop the inode locks acquired with
275 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
276 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
277 * that we know which locks to drop.
278 *
279 * ip -- the inode being unlocked
280 * lock_flags -- this parameter indicates the inode's locks to be
281 * to be unlocked. See the comment for xfs_ilock() for a list
282 * of valid values for this parameter.
283 *
284 */
285void
286xfs_iunlock(
287 xfs_inode_t *ip,
288 uint lock_flags)
289{
290 /*
291 * You can't set both SHARED and EXCL for the same lock,
292 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
293 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
294 */
295 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
296 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
297 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
298 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
300 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
301 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
302 ASSERT(lock_flags != 0);
303
304 if (lock_flags & XFS_IOLOCK_EXCL)
305 up_write(&VFS_I(ip)->i_rwsem);
306 else if (lock_flags & XFS_IOLOCK_SHARED)
307 up_read(&VFS_I(ip)->i_rwsem);
308
309 if (lock_flags & XFS_MMAPLOCK_EXCL)
310 mrunlock_excl(&ip->i_mmaplock);
311 else if (lock_flags & XFS_MMAPLOCK_SHARED)
312 mrunlock_shared(&ip->i_mmaplock);
313
314 if (lock_flags & XFS_ILOCK_EXCL)
315 mrunlock_excl(&ip->i_lock);
316 else if (lock_flags & XFS_ILOCK_SHARED)
317 mrunlock_shared(&ip->i_lock);
318
319 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
320}
321
322/*
323 * give up write locks. the i/o lock cannot be held nested
324 * if it is being demoted.
325 */
326void
327xfs_ilock_demote(
328 xfs_inode_t *ip,
329 uint lock_flags)
330{
331 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
332 ASSERT((lock_flags &
333 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
334
335 if (lock_flags & XFS_ILOCK_EXCL)
336 mrdemote(&ip->i_lock);
337 if (lock_flags & XFS_MMAPLOCK_EXCL)
338 mrdemote(&ip->i_mmaplock);
339 if (lock_flags & XFS_IOLOCK_EXCL)
340 downgrade_write(&VFS_I(ip)->i_rwsem);
341
342 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
343}
344
345#if defined(DEBUG) || defined(XFS_WARN)
346int
347xfs_isilocked(
348 xfs_inode_t *ip,
349 uint lock_flags)
350{
351 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
352 if (!(lock_flags & XFS_ILOCK_SHARED))
353 return !!ip->i_lock.mr_writer;
354 return rwsem_is_locked(&ip->i_lock.mr_lock);
355 }
356
357 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
358 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
359 return !!ip->i_mmaplock.mr_writer;
360 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
361 }
362
363 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
364 if (!(lock_flags & XFS_IOLOCK_SHARED))
365 return !debug_locks ||
366 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
367 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
368 }
369
370 ASSERT(0);
371 return 0;
372}
373#endif
374
375/*
376 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
377 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
378 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
379 * errors and warnings.
380 */
381#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
382static bool
383xfs_lockdep_subclass_ok(
384 int subclass)
385{
386 return subclass < MAX_LOCKDEP_SUBCLASSES;
387}
388#else
389#define xfs_lockdep_subclass_ok(subclass) (true)
390#endif
391
392/*
393 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
394 * value. This can be called for any type of inode lock combination, including
395 * parent locking. Care must be taken to ensure we don't overrun the subclass
396 * storage fields in the class mask we build.
397 */
398static inline int
399xfs_lock_inumorder(int lock_mode, int subclass)
400{
401 int class = 0;
402
403 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
404 XFS_ILOCK_RTSUM)));
405 ASSERT(xfs_lockdep_subclass_ok(subclass));
406
407 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
408 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
409 class += subclass << XFS_IOLOCK_SHIFT;
410 }
411
412 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
413 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
414 class += subclass << XFS_MMAPLOCK_SHIFT;
415 }
416
417 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
418 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
419 class += subclass << XFS_ILOCK_SHIFT;
420 }
421
422 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
423}
424
425/*
426 * The following routine will lock n inodes in exclusive mode. We assume the
427 * caller calls us with the inodes in i_ino order.
428 *
429 * We need to detect deadlock where an inode that we lock is in the AIL and we
430 * start waiting for another inode that is locked by a thread in a long running
431 * transaction (such as truncate). This can result in deadlock since the long
432 * running trans might need to wait for the inode we just locked in order to
433 * push the tail and free space in the log.
434 *
435 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
436 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
437 * lock more than one at a time, lockdep will report false positives saying we
438 * have violated locking orders.
439 */
440static void
441xfs_lock_inodes(
442 struct xfs_inode **ips,
443 int inodes,
444 uint lock_mode)
445{
446 int attempts = 0, i, j, try_lock;
447 struct xfs_log_item *lp;
448
449 /*
450 * Currently supports between 2 and 5 inodes with exclusive locking. We
451 * support an arbitrary depth of locking here, but absolute limits on
452 * inodes depend on the type of locking and the limits placed by
453 * lockdep annotations in xfs_lock_inumorder. These are all checked by
454 * the asserts.
455 */
456 ASSERT(ips && inodes >= 2 && inodes <= 5);
457 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
458 XFS_ILOCK_EXCL));
459 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
460 XFS_ILOCK_SHARED)));
461 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
462 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
463 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
464 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
465
466 if (lock_mode & XFS_IOLOCK_EXCL) {
467 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
468 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
469 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
470
471 try_lock = 0;
472 i = 0;
473again:
474 for (; i < inodes; i++) {
475 ASSERT(ips[i]);
476
477 if (i && (ips[i] == ips[i - 1])) /* Already locked */
478 continue;
479
480 /*
481 * If try_lock is not set yet, make sure all locked inodes are
482 * not in the AIL. If any are, set try_lock to be used later.
483 */
484 if (!try_lock) {
485 for (j = (i - 1); j >= 0 && !try_lock; j--) {
486 lp = &ips[j]->i_itemp->ili_item;
487 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
488 try_lock++;
489 }
490 }
491
492 /*
493 * If any of the previous locks we have locked is in the AIL,
494 * we must TRY to get the second and subsequent locks. If
495 * we can't get any, we must release all we have
496 * and try again.
497 */
498 if (!try_lock) {
499 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
500 continue;
501 }
502
503 /* try_lock means we have an inode locked that is in the AIL. */
504 ASSERT(i != 0);
505 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
506 continue;
507
508 /*
509 * Unlock all previous guys and try again. xfs_iunlock will try
510 * to push the tail if the inode is in the AIL.
511 */
512 attempts++;
513 for (j = i - 1; j >= 0; j--) {
514 /*
515 * Check to see if we've already unlocked this one. Not
516 * the first one going back, and the inode ptr is the
517 * same.
518 */
519 if (j != (i - 1) && ips[j] == ips[j + 1])
520 continue;
521
522 xfs_iunlock(ips[j], lock_mode);
523 }
524
525 if ((attempts % 5) == 0) {
526 delay(1); /* Don't just spin the CPU */
527 }
528 i = 0;
529 try_lock = 0;
530 goto again;
531 }
532}
533
534/*
535 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
536 * the mmaplock or the ilock, but not more than one type at a time. If we lock
537 * more than one at a time, lockdep will report false positives saying we have
538 * violated locking orders. The iolock must be double-locked separately since
539 * we use i_rwsem for that. We now support taking one lock EXCL and the other
540 * SHARED.
541 */
542void
543xfs_lock_two_inodes(
544 struct xfs_inode *ip0,
545 uint ip0_mode,
546 struct xfs_inode *ip1,
547 uint ip1_mode)
548{
549 struct xfs_inode *temp;
550 uint mode_temp;
551 int attempts = 0;
552 struct xfs_log_item *lp;
553
554 ASSERT(hweight32(ip0_mode) == 1);
555 ASSERT(hweight32(ip1_mode) == 1);
556 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
557 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
558 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 temp = ip0;
571 ip0 = ip1;
572 ip1 = temp;
573 mode_temp = ip0_mode;
574 ip0_mode = ip1_mode;
575 ip1_mode = mode_temp;
576 }
577
578 again:
579 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
580
581 /*
582 * If the first lock we have locked is in the AIL, we must TRY to get
583 * the second lock. If we can't get it, we must release the first one
584 * and try again.
585 */
586 lp = &ip0->i_itemp->ili_item;
587 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
588 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
589 xfs_iunlock(ip0, ip0_mode);
590 if ((++attempts % 5) == 0)
591 delay(1); /* Don't just spin the CPU */
592 goto again;
593 }
594 } else {
595 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
596 }
597}
598
599uint
600xfs_ip2xflags(
601 struct xfs_inode *ip)
602{
603 uint flags = 0;
604
605 if (ip->i_diflags & XFS_DIFLAG_ANY) {
606 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
607 flags |= FS_XFLAG_REALTIME;
608 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
609 flags |= FS_XFLAG_PREALLOC;
610 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
611 flags |= FS_XFLAG_IMMUTABLE;
612 if (ip->i_diflags & XFS_DIFLAG_APPEND)
613 flags |= FS_XFLAG_APPEND;
614 if (ip->i_diflags & XFS_DIFLAG_SYNC)
615 flags |= FS_XFLAG_SYNC;
616 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
617 flags |= FS_XFLAG_NOATIME;
618 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
619 flags |= FS_XFLAG_NODUMP;
620 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
621 flags |= FS_XFLAG_RTINHERIT;
622 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
623 flags |= FS_XFLAG_PROJINHERIT;
624 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
625 flags |= FS_XFLAG_NOSYMLINKS;
626 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
627 flags |= FS_XFLAG_EXTSIZE;
628 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
629 flags |= FS_XFLAG_EXTSZINHERIT;
630 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
631 flags |= FS_XFLAG_NODEFRAG;
632 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
633 flags |= FS_XFLAG_FILESTREAM;
634 }
635
636 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
637 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
638 flags |= FS_XFLAG_DAX;
639 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
640 flags |= FS_XFLAG_COWEXTSIZE;
641 }
642
643 if (XFS_IFORK_Q(ip))
644 flags |= FS_XFLAG_HASATTR;
645 return flags;
646}
647
648/*
649 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
650 * is allowed, otherwise it has to be an exact match. If a CI match is found,
651 * ci_name->name will point to a the actual name (caller must free) or
652 * will be set to NULL if an exact match is found.
653 */
654int
655xfs_lookup(
656 xfs_inode_t *dp,
657 struct xfs_name *name,
658 xfs_inode_t **ipp,
659 struct xfs_name *ci_name)
660{
661 xfs_ino_t inum;
662 int error;
663
664 trace_xfs_lookup(dp, name);
665
666 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
667 return -EIO;
668
669 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
670 if (error)
671 goto out_unlock;
672
673 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
674 if (error)
675 goto out_free_name;
676
677 return 0;
678
679out_free_name:
680 if (ci_name)
681 kmem_free(ci_name->name);
682out_unlock:
683 *ipp = NULL;
684 return error;
685}
686
687/* Propagate di_flags from a parent inode to a child inode. */
688static void
689xfs_inode_inherit_flags(
690 struct xfs_inode *ip,
691 const struct xfs_inode *pip)
692{
693 unsigned int di_flags = 0;
694 xfs_failaddr_t failaddr;
695 umode_t mode = VFS_I(ip)->i_mode;
696
697 if (S_ISDIR(mode)) {
698 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
699 di_flags |= XFS_DIFLAG_RTINHERIT;
700 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
701 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
702 ip->i_extsize = pip->i_extsize;
703 }
704 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
705 di_flags |= XFS_DIFLAG_PROJINHERIT;
706 } else if (S_ISREG(mode)) {
707 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
708 xfs_sb_version_hasrealtime(&ip->i_mount->m_sb))
709 di_flags |= XFS_DIFLAG_REALTIME;
710 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
711 di_flags |= XFS_DIFLAG_EXTSIZE;
712 ip->i_extsize = pip->i_extsize;
713 }
714 }
715 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
716 xfs_inherit_noatime)
717 di_flags |= XFS_DIFLAG_NOATIME;
718 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
719 xfs_inherit_nodump)
720 di_flags |= XFS_DIFLAG_NODUMP;
721 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
722 xfs_inherit_sync)
723 di_flags |= XFS_DIFLAG_SYNC;
724 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
725 xfs_inherit_nosymlinks)
726 di_flags |= XFS_DIFLAG_NOSYMLINKS;
727 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
728 xfs_inherit_nodefrag)
729 di_flags |= XFS_DIFLAG_NODEFRAG;
730 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
731 di_flags |= XFS_DIFLAG_FILESTREAM;
732
733 ip->i_diflags |= di_flags;
734
735 /*
736 * Inode verifiers on older kernels only check that the extent size
737 * hint is an integer multiple of the rt extent size on realtime files.
738 * They did not check the hint alignment on a directory with both
739 * rtinherit and extszinherit flags set. If the misaligned hint is
740 * propagated from a directory into a new realtime file, new file
741 * allocations will fail due to math errors in the rt allocator and/or
742 * trip the verifiers. Validate the hint settings in the new file so
743 * that we don't let broken hints propagate.
744 */
745 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
746 VFS_I(ip)->i_mode, ip->i_diflags);
747 if (failaddr) {
748 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
749 XFS_DIFLAG_EXTSZINHERIT);
750 ip->i_extsize = 0;
751 }
752}
753
754/* Propagate di_flags2 from a parent inode to a child inode. */
755static void
756xfs_inode_inherit_flags2(
757 struct xfs_inode *ip,
758 const struct xfs_inode *pip)
759{
760 xfs_failaddr_t failaddr;
761
762 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
763 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
764 ip->i_cowextsize = pip->i_cowextsize;
765 }
766 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
767 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
768
769 /* Don't let invalid cowextsize hints propagate. */
770 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
771 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
772 if (failaddr) {
773 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
774 ip->i_cowextsize = 0;
775 }
776}
777
778/*
779 * Initialise a newly allocated inode and return the in-core inode to the
780 * caller locked exclusively.
781 */
782int
783xfs_init_new_inode(
784 struct user_namespace *mnt_userns,
785 struct xfs_trans *tp,
786 struct xfs_inode *pip,
787 xfs_ino_t ino,
788 umode_t mode,
789 xfs_nlink_t nlink,
790 dev_t rdev,
791 prid_t prid,
792 bool init_xattrs,
793 struct xfs_inode **ipp)
794{
795 struct inode *dir = pip ? VFS_I(pip) : NULL;
796 struct xfs_mount *mp = tp->t_mountp;
797 struct xfs_inode *ip;
798 unsigned int flags;
799 int error;
800 struct timespec64 tv;
801 struct inode *inode;
802
803 /*
804 * Protect against obviously corrupt allocation btree records. Later
805 * xfs_iget checks will catch re-allocation of other active in-memory
806 * and on-disk inodes. If we don't catch reallocating the parent inode
807 * here we will deadlock in xfs_iget() so we have to do these checks
808 * first.
809 */
810 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
811 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
812 return -EFSCORRUPTED;
813 }
814
815 /*
816 * Get the in-core inode with the lock held exclusively to prevent
817 * others from looking at until we're done.
818 */
819 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
820 if (error)
821 return error;
822
823 ASSERT(ip != NULL);
824 inode = VFS_I(ip);
825 set_nlink(inode, nlink);
826 inode->i_rdev = rdev;
827 ip->i_projid = prid;
828
829 if (dir && !(dir->i_mode & S_ISGID) &&
830 (mp->m_flags & XFS_MOUNT_GRPID)) {
831 inode_fsuid_set(inode, mnt_userns);
832 inode->i_gid = dir->i_gid;
833 inode->i_mode = mode;
834 } else {
835 inode_init_owner(mnt_userns, inode, dir, mode);
836 }
837
838 /*
839 * If the group ID of the new file does not match the effective group
840 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
841 * (and only if the irix_sgid_inherit compatibility variable is set).
842 */
843 if (irix_sgid_inherit &&
844 (inode->i_mode & S_ISGID) &&
845 !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
846 inode->i_mode &= ~S_ISGID;
847
848 ip->i_disk_size = 0;
849 ip->i_df.if_nextents = 0;
850 ASSERT(ip->i_nblocks == 0);
851
852 tv = current_time(inode);
853 inode->i_mtime = tv;
854 inode->i_atime = tv;
855 inode->i_ctime = tv;
856
857 ip->i_extsize = 0;
858 ip->i_diflags = 0;
859
860 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
861 inode_set_iversion(inode, 1);
862 ip->i_cowextsize = 0;
863 ip->i_crtime = tv;
864 }
865
866 flags = XFS_ILOG_CORE;
867 switch (mode & S_IFMT) {
868 case S_IFIFO:
869 case S_IFCHR:
870 case S_IFBLK:
871 case S_IFSOCK:
872 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
873 flags |= XFS_ILOG_DEV;
874 break;
875 case S_IFREG:
876 case S_IFDIR:
877 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
878 xfs_inode_inherit_flags(ip, pip);
879 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
880 xfs_inode_inherit_flags2(ip, pip);
881 fallthrough;
882 case S_IFLNK:
883 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
884 ip->i_df.if_bytes = 0;
885 ip->i_df.if_u1.if_root = NULL;
886 break;
887 default:
888 ASSERT(0);
889 }
890
891 /*
892 * If we need to create attributes immediately after allocating the
893 * inode, initialise an empty attribute fork right now. We use the
894 * default fork offset for attributes here as we don't know exactly what
895 * size or how many attributes we might be adding. We can do this
896 * safely here because we know the data fork is completely empty and
897 * this saves us from needing to run a separate transaction to set the
898 * fork offset in the immediate future.
899 */
900 if (init_xattrs && xfs_sb_version_hasattr(&mp->m_sb)) {
901 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
902 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
903 }
904
905 /*
906 * Log the new values stuffed into the inode.
907 */
908 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
909 xfs_trans_log_inode(tp, ip, flags);
910
911 /* now that we have an i_mode we can setup the inode structure */
912 xfs_setup_inode(ip);
913
914 *ipp = ip;
915 return 0;
916}
917
918/*
919 * Decrement the link count on an inode & log the change. If this causes the
920 * link count to go to zero, move the inode to AGI unlinked list so that it can
921 * be freed when the last active reference goes away via xfs_inactive().
922 */
923static int /* error */
924xfs_droplink(
925 xfs_trans_t *tp,
926 xfs_inode_t *ip)
927{
928 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
929
930 drop_nlink(VFS_I(ip));
931 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
932
933 if (VFS_I(ip)->i_nlink)
934 return 0;
935
936 return xfs_iunlink(tp, ip);
937}
938
939/*
940 * Increment the link count on an inode & log the change.
941 */
942static void
943xfs_bumplink(
944 xfs_trans_t *tp,
945 xfs_inode_t *ip)
946{
947 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
948
949 inc_nlink(VFS_I(ip));
950 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
951}
952
953int
954xfs_create(
955 struct user_namespace *mnt_userns,
956 xfs_inode_t *dp,
957 struct xfs_name *name,
958 umode_t mode,
959 dev_t rdev,
960 bool init_xattrs,
961 xfs_inode_t **ipp)
962{
963 int is_dir = S_ISDIR(mode);
964 struct xfs_mount *mp = dp->i_mount;
965 struct xfs_inode *ip = NULL;
966 struct xfs_trans *tp = NULL;
967 int error;
968 bool unlock_dp_on_error = false;
969 prid_t prid;
970 struct xfs_dquot *udqp = NULL;
971 struct xfs_dquot *gdqp = NULL;
972 struct xfs_dquot *pdqp = NULL;
973 struct xfs_trans_res *tres;
974 uint resblks;
975 xfs_ino_t ino;
976
977 trace_xfs_create(dp, name);
978
979 if (XFS_FORCED_SHUTDOWN(mp))
980 return -EIO;
981
982 prid = xfs_get_initial_prid(dp);
983
984 /*
985 * Make sure that we have allocated dquot(s) on disk.
986 */
987 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
988 mapped_fsgid(mnt_userns), prid,
989 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
990 &udqp, &gdqp, &pdqp);
991 if (error)
992 return error;
993
994 if (is_dir) {
995 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
996 tres = &M_RES(mp)->tr_mkdir;
997 } else {
998 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
999 tres = &M_RES(mp)->tr_create;
1000 }
1001
1002 /*
1003 * Initially assume that the file does not exist and
1004 * reserve the resources for that case. If that is not
1005 * the case we'll drop the one we have and get a more
1006 * appropriate transaction later.
1007 */
1008 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009 &tp);
1010 if (error == -ENOSPC) {
1011 /* flush outstanding delalloc blocks and retry */
1012 xfs_flush_inodes(mp);
1013 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014 resblks, &tp);
1015 }
1016 if (error)
1017 goto out_release_dquots;
1018
1019 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020 unlock_dp_on_error = true;
1021
1022 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1023 XFS_IEXT_DIR_MANIP_CNT(mp));
1024 if (error)
1025 goto out_trans_cancel;
1026
1027 /*
1028 * A newly created regular or special file just has one directory
1029 * entry pointing to them, but a directory also the "." entry
1030 * pointing to itself.
1031 */
1032 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1033 if (!error)
1034 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1035 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1036 if (error)
1037 goto out_trans_cancel;
1038
1039 /*
1040 * Now we join the directory inode to the transaction. We do not do it
1041 * earlier because xfs_dialloc might commit the previous transaction
1042 * (and release all the locks). An error from here on will result in
1043 * the transaction cancel unlocking dp so don't do it explicitly in the
1044 * error path.
1045 */
1046 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1047 unlock_dp_on_error = false;
1048
1049 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1050 resblks - XFS_IALLOC_SPACE_RES(mp));
1051 if (error) {
1052 ASSERT(error != -ENOSPC);
1053 goto out_trans_cancel;
1054 }
1055 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1056 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1057
1058 if (is_dir) {
1059 error = xfs_dir_init(tp, ip, dp);
1060 if (error)
1061 goto out_trans_cancel;
1062
1063 xfs_bumplink(tp, dp);
1064 }
1065
1066 /*
1067 * If this is a synchronous mount, make sure that the
1068 * create transaction goes to disk before returning to
1069 * the user.
1070 */
1071 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1072 xfs_trans_set_sync(tp);
1073
1074 /*
1075 * Attach the dquot(s) to the inodes and modify them incore.
1076 * These ids of the inode couldn't have changed since the new
1077 * inode has been locked ever since it was created.
1078 */
1079 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1080
1081 error = xfs_trans_commit(tp);
1082 if (error)
1083 goto out_release_inode;
1084
1085 xfs_qm_dqrele(udqp);
1086 xfs_qm_dqrele(gdqp);
1087 xfs_qm_dqrele(pdqp);
1088
1089 *ipp = ip;
1090 return 0;
1091
1092 out_trans_cancel:
1093 xfs_trans_cancel(tp);
1094 out_release_inode:
1095 /*
1096 * Wait until after the current transaction is aborted to finish the
1097 * setup of the inode and release the inode. This prevents recursive
1098 * transactions and deadlocks from xfs_inactive.
1099 */
1100 if (ip) {
1101 xfs_finish_inode_setup(ip);
1102 xfs_irele(ip);
1103 }
1104 out_release_dquots:
1105 xfs_qm_dqrele(udqp);
1106 xfs_qm_dqrele(gdqp);
1107 xfs_qm_dqrele(pdqp);
1108
1109 if (unlock_dp_on_error)
1110 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1111 return error;
1112}
1113
1114int
1115xfs_create_tmpfile(
1116 struct user_namespace *mnt_userns,
1117 struct xfs_inode *dp,
1118 umode_t mode,
1119 struct xfs_inode **ipp)
1120{
1121 struct xfs_mount *mp = dp->i_mount;
1122 struct xfs_inode *ip = NULL;
1123 struct xfs_trans *tp = NULL;
1124 int error;
1125 prid_t prid;
1126 struct xfs_dquot *udqp = NULL;
1127 struct xfs_dquot *gdqp = NULL;
1128 struct xfs_dquot *pdqp = NULL;
1129 struct xfs_trans_res *tres;
1130 uint resblks;
1131 xfs_ino_t ino;
1132
1133 if (XFS_FORCED_SHUTDOWN(mp))
1134 return -EIO;
1135
1136 prid = xfs_get_initial_prid(dp);
1137
1138 /*
1139 * Make sure that we have allocated dquot(s) on disk.
1140 */
1141 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns),
1142 mapped_fsgid(mnt_userns), prid,
1143 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1144 &udqp, &gdqp, &pdqp);
1145 if (error)
1146 return error;
1147
1148 resblks = XFS_IALLOC_SPACE_RES(mp);
1149 tres = &M_RES(mp)->tr_create_tmpfile;
1150
1151 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1152 &tp);
1153 if (error)
1154 goto out_release_dquots;
1155
1156 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1157 if (!error)
1158 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1159 0, 0, prid, false, &ip);
1160 if (error)
1161 goto out_trans_cancel;
1162
1163 if (mp->m_flags & XFS_MOUNT_WSYNC)
1164 xfs_trans_set_sync(tp);
1165
1166 /*
1167 * Attach the dquot(s) to the inodes and modify them incore.
1168 * These ids of the inode couldn't have changed since the new
1169 * inode has been locked ever since it was created.
1170 */
1171 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1172
1173 error = xfs_iunlink(tp, ip);
1174 if (error)
1175 goto out_trans_cancel;
1176
1177 error = xfs_trans_commit(tp);
1178 if (error)
1179 goto out_release_inode;
1180
1181 xfs_qm_dqrele(udqp);
1182 xfs_qm_dqrele(gdqp);
1183 xfs_qm_dqrele(pdqp);
1184
1185 *ipp = ip;
1186 return 0;
1187
1188 out_trans_cancel:
1189 xfs_trans_cancel(tp);
1190 out_release_inode:
1191 /*
1192 * Wait until after the current transaction is aborted to finish the
1193 * setup of the inode and release the inode. This prevents recursive
1194 * transactions and deadlocks from xfs_inactive.
1195 */
1196 if (ip) {
1197 xfs_finish_inode_setup(ip);
1198 xfs_irele(ip);
1199 }
1200 out_release_dquots:
1201 xfs_qm_dqrele(udqp);
1202 xfs_qm_dqrele(gdqp);
1203 xfs_qm_dqrele(pdqp);
1204
1205 return error;
1206}
1207
1208int
1209xfs_link(
1210 xfs_inode_t *tdp,
1211 xfs_inode_t *sip,
1212 struct xfs_name *target_name)
1213{
1214 xfs_mount_t *mp = tdp->i_mount;
1215 xfs_trans_t *tp;
1216 int error;
1217 int resblks;
1218
1219 trace_xfs_link(tdp, target_name);
1220
1221 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1222
1223 if (XFS_FORCED_SHUTDOWN(mp))
1224 return -EIO;
1225
1226 error = xfs_qm_dqattach(sip);
1227 if (error)
1228 goto std_return;
1229
1230 error = xfs_qm_dqattach(tdp);
1231 if (error)
1232 goto std_return;
1233
1234 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1235 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1236 if (error == -ENOSPC) {
1237 resblks = 0;
1238 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1239 }
1240 if (error)
1241 goto std_return;
1242
1243 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1244
1245 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1246 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1247
1248 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1249 XFS_IEXT_DIR_MANIP_CNT(mp));
1250 if (error)
1251 goto error_return;
1252
1253 /*
1254 * If we are using project inheritance, we only allow hard link
1255 * creation in our tree when the project IDs are the same; else
1256 * the tree quota mechanism could be circumvented.
1257 */
1258 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1259 tdp->i_projid != sip->i_projid)) {
1260 error = -EXDEV;
1261 goto error_return;
1262 }
1263
1264 if (!resblks) {
1265 error = xfs_dir_canenter(tp, tdp, target_name);
1266 if (error)
1267 goto error_return;
1268 }
1269
1270 /*
1271 * Handle initial link state of O_TMPFILE inode
1272 */
1273 if (VFS_I(sip)->i_nlink == 0) {
1274 struct xfs_perag *pag;
1275
1276 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1277 error = xfs_iunlink_remove(tp, pag, sip);
1278 xfs_perag_put(pag);
1279 if (error)
1280 goto error_return;
1281 }
1282
1283 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1284 resblks);
1285 if (error)
1286 goto error_return;
1287 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1288 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1289
1290 xfs_bumplink(tp, sip);
1291
1292 /*
1293 * If this is a synchronous mount, make sure that the
1294 * link transaction goes to disk before returning to
1295 * the user.
1296 */
1297 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1298 xfs_trans_set_sync(tp);
1299
1300 return xfs_trans_commit(tp);
1301
1302 error_return:
1303 xfs_trans_cancel(tp);
1304 std_return:
1305 return error;
1306}
1307
1308/* Clear the reflink flag and the cowblocks tag if possible. */
1309static void
1310xfs_itruncate_clear_reflink_flags(
1311 struct xfs_inode *ip)
1312{
1313 struct xfs_ifork *dfork;
1314 struct xfs_ifork *cfork;
1315
1316 if (!xfs_is_reflink_inode(ip))
1317 return;
1318 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1319 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1320 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1321 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1322 if (cfork->if_bytes == 0)
1323 xfs_inode_clear_cowblocks_tag(ip);
1324}
1325
1326/*
1327 * Free up the underlying blocks past new_size. The new size must be smaller
1328 * than the current size. This routine can be used both for the attribute and
1329 * data fork, and does not modify the inode size, which is left to the caller.
1330 *
1331 * The transaction passed to this routine must have made a permanent log
1332 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1333 * given transaction and start new ones, so make sure everything involved in
1334 * the transaction is tidy before calling here. Some transaction will be
1335 * returned to the caller to be committed. The incoming transaction must
1336 * already include the inode, and both inode locks must be held exclusively.
1337 * The inode must also be "held" within the transaction. On return the inode
1338 * will be "held" within the returned transaction. This routine does NOT
1339 * require any disk space to be reserved for it within the transaction.
1340 *
1341 * If we get an error, we must return with the inode locked and linked into the
1342 * current transaction. This keeps things simple for the higher level code,
1343 * because it always knows that the inode is locked and held in the transaction
1344 * that returns to it whether errors occur or not. We don't mark the inode
1345 * dirty on error so that transactions can be easily aborted if possible.
1346 */
1347int
1348xfs_itruncate_extents_flags(
1349 struct xfs_trans **tpp,
1350 struct xfs_inode *ip,
1351 int whichfork,
1352 xfs_fsize_t new_size,
1353 int flags)
1354{
1355 struct xfs_mount *mp = ip->i_mount;
1356 struct xfs_trans *tp = *tpp;
1357 xfs_fileoff_t first_unmap_block;
1358 xfs_filblks_t unmap_len;
1359 int error = 0;
1360
1361 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1362 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1363 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1364 ASSERT(new_size <= XFS_ISIZE(ip));
1365 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1366 ASSERT(ip->i_itemp != NULL);
1367 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1368 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1369
1370 trace_xfs_itruncate_extents_start(ip, new_size);
1371
1372 flags |= xfs_bmapi_aflag(whichfork);
1373
1374 /*
1375 * Since it is possible for space to become allocated beyond
1376 * the end of the file (in a crash where the space is allocated
1377 * but the inode size is not yet updated), simply remove any
1378 * blocks which show up between the new EOF and the maximum
1379 * possible file size.
1380 *
1381 * We have to free all the blocks to the bmbt maximum offset, even if
1382 * the page cache can't scale that far.
1383 */
1384 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1385 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1386 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1387 return 0;
1388 }
1389
1390 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1391 while (unmap_len > 0) {
1392 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1393 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1394 flags, XFS_ITRUNC_MAX_EXTENTS);
1395 if (error)
1396 goto out;
1397
1398 /* free the just unmapped extents */
1399 error = xfs_defer_finish(&tp);
1400 if (error)
1401 goto out;
1402 }
1403
1404 if (whichfork == XFS_DATA_FORK) {
1405 /* Remove all pending CoW reservations. */
1406 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1407 first_unmap_block, XFS_MAX_FILEOFF, true);
1408 if (error)
1409 goto out;
1410
1411 xfs_itruncate_clear_reflink_flags(ip);
1412 }
1413
1414 /*
1415 * Always re-log the inode so that our permanent transaction can keep
1416 * on rolling it forward in the log.
1417 */
1418 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1419
1420 trace_xfs_itruncate_extents_end(ip, new_size);
1421
1422out:
1423 *tpp = tp;
1424 return error;
1425}
1426
1427int
1428xfs_release(
1429 xfs_inode_t *ip)
1430{
1431 xfs_mount_t *mp = ip->i_mount;
1432 int error = 0;
1433
1434 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1435 return 0;
1436
1437 /* If this is a read-only mount, don't do this (would generate I/O) */
1438 if (mp->m_flags & XFS_MOUNT_RDONLY)
1439 return 0;
1440
1441 if (!XFS_FORCED_SHUTDOWN(mp)) {
1442 int truncated;
1443
1444 /*
1445 * If we previously truncated this file and removed old data
1446 * in the process, we want to initiate "early" writeout on
1447 * the last close. This is an attempt to combat the notorious
1448 * NULL files problem which is particularly noticeable from a
1449 * truncate down, buffered (re-)write (delalloc), followed by
1450 * a crash. What we are effectively doing here is
1451 * significantly reducing the time window where we'd otherwise
1452 * be exposed to that problem.
1453 */
1454 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1455 if (truncated) {
1456 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1457 if (ip->i_delayed_blks > 0) {
1458 error = filemap_flush(VFS_I(ip)->i_mapping);
1459 if (error)
1460 return error;
1461 }
1462 }
1463 }
1464
1465 if (VFS_I(ip)->i_nlink == 0)
1466 return 0;
1467
1468 /*
1469 * If we can't get the iolock just skip truncating the blocks past EOF
1470 * because we could deadlock with the mmap_lock otherwise. We'll get
1471 * another chance to drop them once the last reference to the inode is
1472 * dropped, so we'll never leak blocks permanently.
1473 */
1474 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1475 return 0;
1476
1477 if (xfs_can_free_eofblocks(ip, false)) {
1478 /*
1479 * Check if the inode is being opened, written and closed
1480 * frequently and we have delayed allocation blocks outstanding
1481 * (e.g. streaming writes from the NFS server), truncating the
1482 * blocks past EOF will cause fragmentation to occur.
1483 *
1484 * In this case don't do the truncation, but we have to be
1485 * careful how we detect this case. Blocks beyond EOF show up as
1486 * i_delayed_blks even when the inode is clean, so we need to
1487 * truncate them away first before checking for a dirty release.
1488 * Hence on the first dirty close we will still remove the
1489 * speculative allocation, but after that we will leave it in
1490 * place.
1491 */
1492 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1493 goto out_unlock;
1494
1495 error = xfs_free_eofblocks(ip);
1496 if (error)
1497 goto out_unlock;
1498
1499 /* delalloc blocks after truncation means it really is dirty */
1500 if (ip->i_delayed_blks)
1501 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1502 }
1503
1504out_unlock:
1505 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1506 return error;
1507}
1508
1509/*
1510 * xfs_inactive_truncate
1511 *
1512 * Called to perform a truncate when an inode becomes unlinked.
1513 */
1514STATIC int
1515xfs_inactive_truncate(
1516 struct xfs_inode *ip)
1517{
1518 struct xfs_mount *mp = ip->i_mount;
1519 struct xfs_trans *tp;
1520 int error;
1521
1522 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1523 if (error) {
1524 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1525 return error;
1526 }
1527 xfs_ilock(ip, XFS_ILOCK_EXCL);
1528 xfs_trans_ijoin(tp, ip, 0);
1529
1530 /*
1531 * Log the inode size first to prevent stale data exposure in the event
1532 * of a system crash before the truncate completes. See the related
1533 * comment in xfs_vn_setattr_size() for details.
1534 */
1535 ip->i_disk_size = 0;
1536 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1537
1538 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1539 if (error)
1540 goto error_trans_cancel;
1541
1542 ASSERT(ip->i_df.if_nextents == 0);
1543
1544 error = xfs_trans_commit(tp);
1545 if (error)
1546 goto error_unlock;
1547
1548 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1549 return 0;
1550
1551error_trans_cancel:
1552 xfs_trans_cancel(tp);
1553error_unlock:
1554 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1555 return error;
1556}
1557
1558/*
1559 * xfs_inactive_ifree()
1560 *
1561 * Perform the inode free when an inode is unlinked.
1562 */
1563STATIC int
1564xfs_inactive_ifree(
1565 struct xfs_inode *ip)
1566{
1567 struct xfs_mount *mp = ip->i_mount;
1568 struct xfs_trans *tp;
1569 int error;
1570
1571 /*
1572 * We try to use a per-AG reservation for any block needed by the finobt
1573 * tree, but as the finobt feature predates the per-AG reservation
1574 * support a degraded file system might not have enough space for the
1575 * reservation at mount time. In that case try to dip into the reserved
1576 * pool and pray.
1577 *
1578 * Send a warning if the reservation does happen to fail, as the inode
1579 * now remains allocated and sits on the unlinked list until the fs is
1580 * repaired.
1581 */
1582 if (unlikely(mp->m_finobt_nores)) {
1583 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1584 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1585 &tp);
1586 } else {
1587 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1588 }
1589 if (error) {
1590 if (error == -ENOSPC) {
1591 xfs_warn_ratelimited(mp,
1592 "Failed to remove inode(s) from unlinked list. "
1593 "Please free space, unmount and run xfs_repair.");
1594 } else {
1595 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1596 }
1597 return error;
1598 }
1599
1600 /*
1601 * We do not hold the inode locked across the entire rolling transaction
1602 * here. We only need to hold it for the first transaction that
1603 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1604 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1605 * here breaks the relationship between cluster buffer invalidation and
1606 * stale inode invalidation on cluster buffer item journal commit
1607 * completion, and can result in leaving dirty stale inodes hanging
1608 * around in memory.
1609 *
1610 * We have no need for serialising this inode operation against other
1611 * operations - we freed the inode and hence reallocation is required
1612 * and that will serialise on reallocating the space the deferops need
1613 * to free. Hence we can unlock the inode on the first commit of
1614 * the transaction rather than roll it right through the deferops. This
1615 * avoids relogging the XFS_ISTALE inode.
1616 *
1617 * We check that xfs_ifree() hasn't grown an internal transaction roll
1618 * by asserting that the inode is still locked when it returns.
1619 */
1620 xfs_ilock(ip, XFS_ILOCK_EXCL);
1621 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1622
1623 error = xfs_ifree(tp, ip);
1624 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1625 if (error) {
1626 /*
1627 * If we fail to free the inode, shut down. The cancel
1628 * might do that, we need to make sure. Otherwise the
1629 * inode might be lost for a long time or forever.
1630 */
1631 if (!XFS_FORCED_SHUTDOWN(mp)) {
1632 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1633 __func__, error);
1634 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1635 }
1636 xfs_trans_cancel(tp);
1637 return error;
1638 }
1639
1640 /*
1641 * Credit the quota account(s). The inode is gone.
1642 */
1643 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1644
1645 /*
1646 * Just ignore errors at this point. There is nothing we can do except
1647 * to try to keep going. Make sure it's not a silent error.
1648 */
1649 error = xfs_trans_commit(tp);
1650 if (error)
1651 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1652 __func__, error);
1653
1654 return 0;
1655}
1656
1657/*
1658 * xfs_inactive
1659 *
1660 * This is called when the vnode reference count for the vnode
1661 * goes to zero. If the file has been unlinked, then it must
1662 * now be truncated. Also, we clear all of the read-ahead state
1663 * kept for the inode here since the file is now closed.
1664 */
1665void
1666xfs_inactive(
1667 xfs_inode_t *ip)
1668{
1669 struct xfs_mount *mp;
1670 int error;
1671 int truncate = 0;
1672
1673 /*
1674 * If the inode is already free, then there can be nothing
1675 * to clean up here.
1676 */
1677 if (VFS_I(ip)->i_mode == 0) {
1678 ASSERT(ip->i_df.if_broot_bytes == 0);
1679 goto out;
1680 }
1681
1682 mp = ip->i_mount;
1683 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1684
1685 /* If this is a read-only mount, don't do this (would generate I/O) */
1686 if (mp->m_flags & XFS_MOUNT_RDONLY)
1687 goto out;
1688
1689 /* Metadata inodes require explicit resource cleanup. */
1690 if (xfs_is_metadata_inode(ip))
1691 goto out;
1692
1693 /* Try to clean out the cow blocks if there are any. */
1694 if (xfs_inode_has_cow_data(ip))
1695 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1696
1697 if (VFS_I(ip)->i_nlink != 0) {
1698 /*
1699 * force is true because we are evicting an inode from the
1700 * cache. Post-eof blocks must be freed, lest we end up with
1701 * broken free space accounting.
1702 *
1703 * Note: don't bother with iolock here since lockdep complains
1704 * about acquiring it in reclaim context. We have the only
1705 * reference to the inode at this point anyways.
1706 */
1707 if (xfs_can_free_eofblocks(ip, true))
1708 xfs_free_eofblocks(ip);
1709
1710 goto out;
1711 }
1712
1713 if (S_ISREG(VFS_I(ip)->i_mode) &&
1714 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1715 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1716 truncate = 1;
1717
1718 error = xfs_qm_dqattach(ip);
1719 if (error)
1720 goto out;
1721
1722 if (S_ISLNK(VFS_I(ip)->i_mode))
1723 error = xfs_inactive_symlink(ip);
1724 else if (truncate)
1725 error = xfs_inactive_truncate(ip);
1726 if (error)
1727 goto out;
1728
1729 /*
1730 * If there are attributes associated with the file then blow them away
1731 * now. The code calls a routine that recursively deconstructs the
1732 * attribute fork. If also blows away the in-core attribute fork.
1733 */
1734 if (XFS_IFORK_Q(ip)) {
1735 error = xfs_attr_inactive(ip);
1736 if (error)
1737 goto out;
1738 }
1739
1740 ASSERT(!ip->i_afp);
1741 ASSERT(ip->i_forkoff == 0);
1742
1743 /*
1744 * Free the inode.
1745 */
1746 xfs_inactive_ifree(ip);
1747
1748out:
1749 /*
1750 * We're done making metadata updates for this inode, so we can release
1751 * the attached dquots.
1752 */
1753 xfs_qm_dqdetach(ip);
1754}
1755
1756/*
1757 * In-Core Unlinked List Lookups
1758 * =============================
1759 *
1760 * Every inode is supposed to be reachable from some other piece of metadata
1761 * with the exception of the root directory. Inodes with a connection to a
1762 * file descriptor but not linked from anywhere in the on-disk directory tree
1763 * are collectively known as unlinked inodes, though the filesystem itself
1764 * maintains links to these inodes so that on-disk metadata are consistent.
1765 *
1766 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1767 * header contains a number of buckets that point to an inode, and each inode
1768 * record has a pointer to the next inode in the hash chain. This
1769 * singly-linked list causes scaling problems in the iunlink remove function
1770 * because we must walk that list to find the inode that points to the inode
1771 * being removed from the unlinked hash bucket list.
1772 *
1773 * What if we modelled the unlinked list as a collection of records capturing
1774 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1775 * have a fast way to look up unlinked list predecessors, which avoids the
1776 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1777 * rhashtable.
1778 *
1779 * Because this is a backref cache, we ignore operational failures since the
1780 * iunlink code can fall back to the slow bucket walk. The only errors that
1781 * should bubble out are for obviously incorrect situations.
1782 *
1783 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1784 * access or have otherwise provided for concurrency control.
1785 */
1786
1787/* Capture a "X.next_unlinked = Y" relationship. */
1788struct xfs_iunlink {
1789 struct rhash_head iu_rhash_head;
1790 xfs_agino_t iu_agino; /* X */
1791 xfs_agino_t iu_next_unlinked; /* Y */
1792};
1793
1794/* Unlinked list predecessor lookup hashtable construction */
1795static int
1796xfs_iunlink_obj_cmpfn(
1797 struct rhashtable_compare_arg *arg,
1798 const void *obj)
1799{
1800 const xfs_agino_t *key = arg->key;
1801 const struct xfs_iunlink *iu = obj;
1802
1803 if (iu->iu_next_unlinked != *key)
1804 return 1;
1805 return 0;
1806}
1807
1808static const struct rhashtable_params xfs_iunlink_hash_params = {
1809 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1810 .key_len = sizeof(xfs_agino_t),
1811 .key_offset = offsetof(struct xfs_iunlink,
1812 iu_next_unlinked),
1813 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1814 .automatic_shrinking = true,
1815 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1816};
1817
1818/*
1819 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1820 * relation is found.
1821 */
1822static xfs_agino_t
1823xfs_iunlink_lookup_backref(
1824 struct xfs_perag *pag,
1825 xfs_agino_t agino)
1826{
1827 struct xfs_iunlink *iu;
1828
1829 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1830 xfs_iunlink_hash_params);
1831 return iu ? iu->iu_agino : NULLAGINO;
1832}
1833
1834/*
1835 * Take ownership of an iunlink cache entry and insert it into the hash table.
1836 * If successful, the entry will be owned by the cache; if not, it is freed.
1837 * Either way, the caller does not own @iu after this call.
1838 */
1839static int
1840xfs_iunlink_insert_backref(
1841 struct xfs_perag *pag,
1842 struct xfs_iunlink *iu)
1843{
1844 int error;
1845
1846 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1847 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1848 /*
1849 * Fail loudly if there already was an entry because that's a sign of
1850 * corruption of in-memory data. Also fail loudly if we see an error
1851 * code we didn't anticipate from the rhashtable code. Currently we
1852 * only anticipate ENOMEM.
1853 */
1854 if (error) {
1855 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1856 kmem_free(iu);
1857 }
1858 /*
1859 * Absorb any runtime errors that aren't a result of corruption because
1860 * this is a cache and we can always fall back to bucket list scanning.
1861 */
1862 if (error != 0 && error != -EEXIST)
1863 error = 0;
1864 return error;
1865}
1866
1867/* Remember that @prev_agino.next_unlinked = @this_agino. */
1868static int
1869xfs_iunlink_add_backref(
1870 struct xfs_perag *pag,
1871 xfs_agino_t prev_agino,
1872 xfs_agino_t this_agino)
1873{
1874 struct xfs_iunlink *iu;
1875
1876 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1877 return 0;
1878
1879 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
1880 iu->iu_agino = prev_agino;
1881 iu->iu_next_unlinked = this_agino;
1882
1883 return xfs_iunlink_insert_backref(pag, iu);
1884}
1885
1886/*
1887 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1888 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
1889 * wasn't any such entry then we don't bother.
1890 */
1891static int
1892xfs_iunlink_change_backref(
1893 struct xfs_perag *pag,
1894 xfs_agino_t agino,
1895 xfs_agino_t next_unlinked)
1896{
1897 struct xfs_iunlink *iu;
1898 int error;
1899
1900 /* Look up the old entry; if there wasn't one then exit. */
1901 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1902 xfs_iunlink_hash_params);
1903 if (!iu)
1904 return 0;
1905
1906 /*
1907 * Remove the entry. This shouldn't ever return an error, but if we
1908 * couldn't remove the old entry we don't want to add it again to the
1909 * hash table, and if the entry disappeared on us then someone's
1910 * violated the locking rules and we need to fail loudly. Either way
1911 * we cannot remove the inode because internal state is or would have
1912 * been corrupt.
1913 */
1914 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1915 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1916 if (error)
1917 return error;
1918
1919 /* If there is no new next entry just free our item and return. */
1920 if (next_unlinked == NULLAGINO) {
1921 kmem_free(iu);
1922 return 0;
1923 }
1924
1925 /* Update the entry and re-add it to the hash table. */
1926 iu->iu_next_unlinked = next_unlinked;
1927 return xfs_iunlink_insert_backref(pag, iu);
1928}
1929
1930/* Set up the in-core predecessor structures. */
1931int
1932xfs_iunlink_init(
1933 struct xfs_perag *pag)
1934{
1935 return rhashtable_init(&pag->pagi_unlinked_hash,
1936 &xfs_iunlink_hash_params);
1937}
1938
1939/* Free the in-core predecessor structures. */
1940static void
1941xfs_iunlink_free_item(
1942 void *ptr,
1943 void *arg)
1944{
1945 struct xfs_iunlink *iu = ptr;
1946 bool *freed_anything = arg;
1947
1948 *freed_anything = true;
1949 kmem_free(iu);
1950}
1951
1952void
1953xfs_iunlink_destroy(
1954 struct xfs_perag *pag)
1955{
1956 bool freed_anything = false;
1957
1958 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
1959 xfs_iunlink_free_item, &freed_anything);
1960
1961 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
1962}
1963
1964/*
1965 * Point the AGI unlinked bucket at an inode and log the results. The caller
1966 * is responsible for validating the old value.
1967 */
1968STATIC int
1969xfs_iunlink_update_bucket(
1970 struct xfs_trans *tp,
1971 struct xfs_perag *pag,
1972 struct xfs_buf *agibp,
1973 unsigned int bucket_index,
1974 xfs_agino_t new_agino)
1975{
1976 struct xfs_agi *agi = agibp->b_addr;
1977 xfs_agino_t old_value;
1978 int offset;
1979
1980 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
1981
1982 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1983 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1984 old_value, new_agino);
1985
1986 /*
1987 * We should never find the head of the list already set to the value
1988 * passed in because either we're adding or removing ourselves from the
1989 * head of the list.
1990 */
1991 if (old_value == new_agino) {
1992 xfs_buf_mark_corrupt(agibp);
1993 return -EFSCORRUPTED;
1994 }
1995
1996 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1997 offset = offsetof(struct xfs_agi, agi_unlinked) +
1998 (sizeof(xfs_agino_t) * bucket_index);
1999 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2000 return 0;
2001}
2002
2003/* Set an on-disk inode's next_unlinked pointer. */
2004STATIC void
2005xfs_iunlink_update_dinode(
2006 struct xfs_trans *tp,
2007 struct xfs_perag *pag,
2008 xfs_agino_t agino,
2009 struct xfs_buf *ibp,
2010 struct xfs_dinode *dip,
2011 struct xfs_imap *imap,
2012 xfs_agino_t next_agino)
2013{
2014 struct xfs_mount *mp = tp->t_mountp;
2015 int offset;
2016
2017 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2018
2019 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
2020 be32_to_cpu(dip->di_next_unlinked), next_agino);
2021
2022 dip->di_next_unlinked = cpu_to_be32(next_agino);
2023 offset = imap->im_boffset +
2024 offsetof(struct xfs_dinode, di_next_unlinked);
2025
2026 /* need to recalc the inode CRC if appropriate */
2027 xfs_dinode_calc_crc(mp, dip);
2028 xfs_trans_inode_buf(tp, ibp);
2029 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2030}
2031
2032/* Set an in-core inode's unlinked pointer and return the old value. */
2033STATIC int
2034xfs_iunlink_update_inode(
2035 struct xfs_trans *tp,
2036 struct xfs_inode *ip,
2037 struct xfs_perag *pag,
2038 xfs_agino_t next_agino,
2039 xfs_agino_t *old_next_agino)
2040{
2041 struct xfs_mount *mp = tp->t_mountp;
2042 struct xfs_dinode *dip;
2043 struct xfs_buf *ibp;
2044 xfs_agino_t old_value;
2045 int error;
2046
2047 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
2048
2049 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
2050 if (error)
2051 return error;
2052 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
2053
2054 /* Make sure the old pointer isn't garbage. */
2055 old_value = be32_to_cpu(dip->di_next_unlinked);
2056 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
2057 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2058 sizeof(*dip), __this_address);
2059 error = -EFSCORRUPTED;
2060 goto out;
2061 }
2062
2063 /*
2064 * Since we're updating a linked list, we should never find that the
2065 * current pointer is the same as the new value, unless we're
2066 * terminating the list.
2067 */
2068 *old_next_agino = old_value;
2069 if (old_value == next_agino) {
2070 if (next_agino != NULLAGINO) {
2071 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2072 dip, sizeof(*dip), __this_address);
2073 error = -EFSCORRUPTED;
2074 }
2075 goto out;
2076 }
2077
2078 /* Ok, update the new pointer. */
2079 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
2080 ibp, dip, &ip->i_imap, next_agino);
2081 return 0;
2082out:
2083 xfs_trans_brelse(tp, ibp);
2084 return error;
2085}
2086
2087/*
2088 * This is called when the inode's link count has gone to 0 or we are creating
2089 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2090 *
2091 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2092 * list when the inode is freed.
2093 */
2094STATIC int
2095xfs_iunlink(
2096 struct xfs_trans *tp,
2097 struct xfs_inode *ip)
2098{
2099 struct xfs_mount *mp = tp->t_mountp;
2100 struct xfs_perag *pag;
2101 struct xfs_agi *agi;
2102 struct xfs_buf *agibp;
2103 xfs_agino_t next_agino;
2104 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2105 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2106 int error;
2107
2108 ASSERT(VFS_I(ip)->i_nlink == 0);
2109 ASSERT(VFS_I(ip)->i_mode != 0);
2110 trace_xfs_iunlink(ip);
2111
2112 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2113
2114 /* Get the agi buffer first. It ensures lock ordering on the list. */
2115 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2116 if (error)
2117 goto out;
2118 agi = agibp->b_addr;
2119
2120 /*
2121 * Get the index into the agi hash table for the list this inode will
2122 * go on. Make sure the pointer isn't garbage and that this inode
2123 * isn't already on the list.
2124 */
2125 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2126 if (next_agino == agino ||
2127 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
2128 xfs_buf_mark_corrupt(agibp);
2129 error = -EFSCORRUPTED;
2130 goto out;
2131 }
2132
2133 if (next_agino != NULLAGINO) {
2134 xfs_agino_t old_agino;
2135
2136 /*
2137 * There is already another inode in the bucket, so point this
2138 * inode to the current head of the list.
2139 */
2140 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
2141 &old_agino);
2142 if (error)
2143 goto out;
2144 ASSERT(old_agino == NULLAGINO);
2145
2146 /*
2147 * agino has been unlinked, add a backref from the next inode
2148 * back to agino.
2149 */
2150 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2151 if (error)
2152 goto out;
2153 }
2154
2155 /* Point the head of the list to point to this inode. */
2156 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2157out:
2158 xfs_perag_put(pag);
2159 return error;
2160}
2161
2162/* Return the imap, dinode pointer, and buffer for an inode. */
2163STATIC int
2164xfs_iunlink_map_ino(
2165 struct xfs_trans *tp,
2166 xfs_agnumber_t agno,
2167 xfs_agino_t agino,
2168 struct xfs_imap *imap,
2169 struct xfs_dinode **dipp,
2170 struct xfs_buf **bpp)
2171{
2172 struct xfs_mount *mp = tp->t_mountp;
2173 int error;
2174
2175 imap->im_blkno = 0;
2176 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2177 if (error) {
2178 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2179 __func__, error);
2180 return error;
2181 }
2182
2183 error = xfs_imap_to_bp(mp, tp, imap, bpp);
2184 if (error) {
2185 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2186 __func__, error);
2187 return error;
2188 }
2189
2190 *dipp = xfs_buf_offset(*bpp, imap->im_boffset);
2191 return 0;
2192}
2193
2194/*
2195 * Walk the unlinked chain from @head_agino until we find the inode that
2196 * points to @target_agino. Return the inode number, map, dinode pointer,
2197 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2198 *
2199 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2200 * @agino, @imap, @dipp, and @bpp are all output parameters.
2201 *
2202 * Do not call this function if @target_agino is the head of the list.
2203 */
2204STATIC int
2205xfs_iunlink_map_prev(
2206 struct xfs_trans *tp,
2207 struct xfs_perag *pag,
2208 xfs_agino_t head_agino,
2209 xfs_agino_t target_agino,
2210 xfs_agino_t *agino,
2211 struct xfs_imap *imap,
2212 struct xfs_dinode **dipp,
2213 struct xfs_buf **bpp)
2214{
2215 struct xfs_mount *mp = tp->t_mountp;
2216 xfs_agino_t next_agino;
2217 int error;
2218
2219 ASSERT(head_agino != target_agino);
2220 *bpp = NULL;
2221
2222 /* See if our backref cache can find it faster. */
2223 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2224 if (*agino != NULLAGINO) {
2225 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2226 dipp, bpp);
2227 if (error)
2228 return error;
2229
2230 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2231 return 0;
2232
2233 /*
2234 * If we get here the cache contents were corrupt, so drop the
2235 * buffer and fall back to walking the bucket list.
2236 */
2237 xfs_trans_brelse(tp, *bpp);
2238 *bpp = NULL;
2239 WARN_ON_ONCE(1);
2240 }
2241
2242 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
2243
2244 /* Otherwise, walk the entire bucket until we find it. */
2245 next_agino = head_agino;
2246 while (next_agino != target_agino) {
2247 xfs_agino_t unlinked_agino;
2248
2249 if (*bpp)
2250 xfs_trans_brelse(tp, *bpp);
2251
2252 *agino = next_agino;
2253 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2254 dipp, bpp);
2255 if (error)
2256 return error;
2257
2258 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2259 /*
2260 * Make sure this pointer is valid and isn't an obvious
2261 * infinite loop.
2262 */
2263 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
2264 next_agino == unlinked_agino) {
2265 XFS_CORRUPTION_ERROR(__func__,
2266 XFS_ERRLEVEL_LOW, mp,
2267 *dipp, sizeof(**dipp));
2268 error = -EFSCORRUPTED;
2269 return error;
2270 }
2271 next_agino = unlinked_agino;
2272 }
2273
2274 return 0;
2275}
2276
2277/*
2278 * Pull the on-disk inode from the AGI unlinked list.
2279 */
2280STATIC int
2281xfs_iunlink_remove(
2282 struct xfs_trans *tp,
2283 struct xfs_perag *pag,
2284 struct xfs_inode *ip)
2285{
2286 struct xfs_mount *mp = tp->t_mountp;
2287 struct xfs_agi *agi;
2288 struct xfs_buf *agibp;
2289 struct xfs_buf *last_ibp;
2290 struct xfs_dinode *last_dip = NULL;
2291 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2292 xfs_agino_t next_agino;
2293 xfs_agino_t head_agino;
2294 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2295 int error;
2296
2297 trace_xfs_iunlink_remove(ip);
2298
2299 /* Get the agi buffer first. It ensures lock ordering on the list. */
2300 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
2301 if (error)
2302 return error;
2303 agi = agibp->b_addr;
2304
2305 /*
2306 * Get the index into the agi hash table for the list this inode will
2307 * go on. Make sure the head pointer isn't garbage.
2308 */
2309 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2310 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
2311 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2312 agi, sizeof(*agi));
2313 return -EFSCORRUPTED;
2314 }
2315
2316 /*
2317 * Set our inode's next_unlinked pointer to NULL and then return
2318 * the old pointer value so that we can update whatever was previous
2319 * to us in the list to point to whatever was next in the list.
2320 */
2321 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
2322 if (error)
2323 return error;
2324
2325 /*
2326 * If there was a backref pointing from the next inode back to this
2327 * one, remove it because we've removed this inode from the list.
2328 *
2329 * Later, if this inode was in the middle of the list we'll update
2330 * this inode's backref to point from the next inode.
2331 */
2332 if (next_agino != NULLAGINO) {
2333 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
2334 if (error)
2335 return error;
2336 }
2337
2338 if (head_agino != agino) {
2339 struct xfs_imap imap;
2340 xfs_agino_t prev_agino;
2341
2342 /* We need to search the list for the inode being freed. */
2343 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2344 &prev_agino, &imap, &last_dip, &last_ibp);
2345 if (error)
2346 return error;
2347
2348 /* Point the previous inode on the list to the next inode. */
2349 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
2350 last_dip, &imap, next_agino);
2351
2352 /*
2353 * Now we deal with the backref for this inode. If this inode
2354 * pointed at a real inode, change the backref that pointed to
2355 * us to point to our old next. If this inode was the end of
2356 * the list, delete the backref that pointed to us. Note that
2357 * change_backref takes care of deleting the backref if
2358 * next_agino is NULLAGINO.
2359 */
2360 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2361 next_agino);
2362 }
2363
2364 /* Point the head of the list to the next unlinked inode. */
2365 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2366 next_agino);
2367}
2368
2369/*
2370 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2371 * mark it stale. We should only find clean inodes in this lookup that aren't
2372 * already stale.
2373 */
2374static void
2375xfs_ifree_mark_inode_stale(
2376 struct xfs_perag *pag,
2377 struct xfs_inode *free_ip,
2378 xfs_ino_t inum)
2379{
2380 struct xfs_mount *mp = pag->pag_mount;
2381 struct xfs_inode_log_item *iip;
2382 struct xfs_inode *ip;
2383
2384retry:
2385 rcu_read_lock();
2386 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2387
2388 /* Inode not in memory, nothing to do */
2389 if (!ip) {
2390 rcu_read_unlock();
2391 return;
2392 }
2393
2394 /*
2395 * because this is an RCU protected lookup, we could find a recently
2396 * freed or even reallocated inode during the lookup. We need to check
2397 * under the i_flags_lock for a valid inode here. Skip it if it is not
2398 * valid, the wrong inode or stale.
2399 */
2400 spin_lock(&ip->i_flags_lock);
2401 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2402 goto out_iflags_unlock;
2403
2404 /*
2405 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2406 * other inodes that we did not find in the list attached to the buffer
2407 * and are not already marked stale. If we can't lock it, back off and
2408 * retry.
2409 */
2410 if (ip != free_ip) {
2411 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2412 spin_unlock(&ip->i_flags_lock);
2413 rcu_read_unlock();
2414 delay(1);
2415 goto retry;
2416 }
2417 }
2418 ip->i_flags |= XFS_ISTALE;
2419
2420 /*
2421 * If the inode is flushing, it is already attached to the buffer. All
2422 * we needed to do here is mark the inode stale so buffer IO completion
2423 * will remove it from the AIL.
2424 */
2425 iip = ip->i_itemp;
2426 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2427 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2428 ASSERT(iip->ili_last_fields);
2429 goto out_iunlock;
2430 }
2431
2432 /*
2433 * Inodes not attached to the buffer can be released immediately.
2434 * Everything else has to go through xfs_iflush_abort() on journal
2435 * commit as the flock synchronises removal of the inode from the
2436 * cluster buffer against inode reclaim.
2437 */
2438 if (!iip || list_empty(&iip->ili_item.li_bio_list))
2439 goto out_iunlock;
2440
2441 __xfs_iflags_set(ip, XFS_IFLUSHING);
2442 spin_unlock(&ip->i_flags_lock);
2443 rcu_read_unlock();
2444
2445 /* we have a dirty inode in memory that has not yet been flushed. */
2446 spin_lock(&iip->ili_lock);
2447 iip->ili_last_fields = iip->ili_fields;
2448 iip->ili_fields = 0;
2449 iip->ili_fsync_fields = 0;
2450 spin_unlock(&iip->ili_lock);
2451 ASSERT(iip->ili_last_fields);
2452
2453 if (ip != free_ip)
2454 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2455 return;
2456
2457out_iunlock:
2458 if (ip != free_ip)
2459 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2460out_iflags_unlock:
2461 spin_unlock(&ip->i_flags_lock);
2462 rcu_read_unlock();
2463}
2464
2465/*
2466 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2467 * inodes that are in memory - they all must be marked stale and attached to
2468 * the cluster buffer.
2469 */
2470static int
2471xfs_ifree_cluster(
2472 struct xfs_trans *tp,
2473 struct xfs_perag *pag,
2474 struct xfs_inode *free_ip,
2475 struct xfs_icluster *xic)
2476{
2477 struct xfs_mount *mp = free_ip->i_mount;
2478 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2479 struct xfs_buf *bp;
2480 xfs_daddr_t blkno;
2481 xfs_ino_t inum = xic->first_ino;
2482 int nbufs;
2483 int i, j;
2484 int ioffset;
2485 int error;
2486
2487 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2488
2489 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2490 /*
2491 * The allocation bitmap tells us which inodes of the chunk were
2492 * physically allocated. Skip the cluster if an inode falls into
2493 * a sparse region.
2494 */
2495 ioffset = inum - xic->first_ino;
2496 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2497 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2498 continue;
2499 }
2500
2501 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2502 XFS_INO_TO_AGBNO(mp, inum));
2503
2504 /*
2505 * We obtain and lock the backing buffer first in the process
2506 * here to ensure dirty inodes attached to the buffer remain in
2507 * the flushing state while we mark them stale.
2508 *
2509 * If we scan the in-memory inodes first, then buffer IO can
2510 * complete before we get a lock on it, and hence we may fail
2511 * to mark all the active inodes on the buffer stale.
2512 */
2513 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2514 mp->m_bsize * igeo->blocks_per_cluster,
2515 XBF_UNMAPPED, &bp);
2516 if (error)
2517 return error;
2518
2519 /*
2520 * This buffer may not have been correctly initialised as we
2521 * didn't read it from disk. That's not important because we are
2522 * only using to mark the buffer as stale in the log, and to
2523 * attach stale cached inodes on it. That means it will never be
2524 * dispatched for IO. If it is, we want to know about it, and we
2525 * want it to fail. We can acheive this by adding a write
2526 * verifier to the buffer.
2527 */
2528 bp->b_ops = &xfs_inode_buf_ops;
2529
2530 /*
2531 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2532 * too. This requires lookups, and will skip inodes that we've
2533 * already marked XFS_ISTALE.
2534 */
2535 for (i = 0; i < igeo->inodes_per_cluster; i++)
2536 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2537
2538 xfs_trans_stale_inode_buf(tp, bp);
2539 xfs_trans_binval(tp, bp);
2540 }
2541 return 0;
2542}
2543
2544/*
2545 * This is called to return an inode to the inode free list.
2546 * The inode should already be truncated to 0 length and have
2547 * no pages associated with it. This routine also assumes that
2548 * the inode is already a part of the transaction.
2549 *
2550 * The on-disk copy of the inode will have been added to the list
2551 * of unlinked inodes in the AGI. We need to remove the inode from
2552 * that list atomically with respect to freeing it here.
2553 */
2554int
2555xfs_ifree(
2556 struct xfs_trans *tp,
2557 struct xfs_inode *ip)
2558{
2559 struct xfs_mount *mp = ip->i_mount;
2560 struct xfs_perag *pag;
2561 struct xfs_icluster xic = { 0 };
2562 struct xfs_inode_log_item *iip = ip->i_itemp;
2563 int error;
2564
2565 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2566 ASSERT(VFS_I(ip)->i_nlink == 0);
2567 ASSERT(ip->i_df.if_nextents == 0);
2568 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2569 ASSERT(ip->i_nblocks == 0);
2570
2571 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2572
2573 /*
2574 * Pull the on-disk inode from the AGI unlinked list.
2575 */
2576 error = xfs_iunlink_remove(tp, pag, ip);
2577 if (error)
2578 goto out;
2579
2580 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2581 if (error)
2582 goto out;
2583
2584 /*
2585 * Free any local-format data sitting around before we reset the
2586 * data fork to extents format. Note that the attr fork data has
2587 * already been freed by xfs_attr_inactive.
2588 */
2589 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2590 kmem_free(ip->i_df.if_u1.if_data);
2591 ip->i_df.if_u1.if_data = NULL;
2592 ip->i_df.if_bytes = 0;
2593 }
2594
2595 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2596 ip->i_diflags = 0;
2597 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2598 ip->i_forkoff = 0; /* mark the attr fork not in use */
2599 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2600 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2601 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2602
2603 /* Don't attempt to replay owner changes for a deleted inode */
2604 spin_lock(&iip->ili_lock);
2605 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2606 spin_unlock(&iip->ili_lock);
2607
2608 /*
2609 * Bump the generation count so no one will be confused
2610 * by reincarnations of this inode.
2611 */
2612 VFS_I(ip)->i_generation++;
2613 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2614
2615 if (xic.deleted)
2616 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2617out:
2618 xfs_perag_put(pag);
2619 return error;
2620}
2621
2622/*
2623 * This is called to unpin an inode. The caller must have the inode locked
2624 * in at least shared mode so that the buffer cannot be subsequently pinned
2625 * once someone is waiting for it to be unpinned.
2626 */
2627static void
2628xfs_iunpin(
2629 struct xfs_inode *ip)
2630{
2631 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2632
2633 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2634
2635 /* Give the log a push to start the unpinning I/O */
2636 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2637
2638}
2639
2640static void
2641__xfs_iunpin_wait(
2642 struct xfs_inode *ip)
2643{
2644 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2645 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2646
2647 xfs_iunpin(ip);
2648
2649 do {
2650 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2651 if (xfs_ipincount(ip))
2652 io_schedule();
2653 } while (xfs_ipincount(ip));
2654 finish_wait(wq, &wait.wq_entry);
2655}
2656
2657void
2658xfs_iunpin_wait(
2659 struct xfs_inode *ip)
2660{
2661 if (xfs_ipincount(ip))
2662 __xfs_iunpin_wait(ip);
2663}
2664
2665/*
2666 * Removing an inode from the namespace involves removing the directory entry
2667 * and dropping the link count on the inode. Removing the directory entry can
2668 * result in locking an AGF (directory blocks were freed) and removing a link
2669 * count can result in placing the inode on an unlinked list which results in
2670 * locking an AGI.
2671 *
2672 * The big problem here is that we have an ordering constraint on AGF and AGI
2673 * locking - inode allocation locks the AGI, then can allocate a new extent for
2674 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2675 * removes the inode from the unlinked list, requiring that we lock the AGI
2676 * first, and then freeing the inode can result in an inode chunk being freed
2677 * and hence freeing disk space requiring that we lock an AGF.
2678 *
2679 * Hence the ordering that is imposed by other parts of the code is AGI before
2680 * AGF. This means we cannot remove the directory entry before we drop the inode
2681 * reference count and put it on the unlinked list as this results in a lock
2682 * order of AGF then AGI, and this can deadlock against inode allocation and
2683 * freeing. Therefore we must drop the link counts before we remove the
2684 * directory entry.
2685 *
2686 * This is still safe from a transactional point of view - it is not until we
2687 * get to xfs_defer_finish() that we have the possibility of multiple
2688 * transactions in this operation. Hence as long as we remove the directory
2689 * entry and drop the link count in the first transaction of the remove
2690 * operation, there are no transactional constraints on the ordering here.
2691 */
2692int
2693xfs_remove(
2694 xfs_inode_t *dp,
2695 struct xfs_name *name,
2696 xfs_inode_t *ip)
2697{
2698 xfs_mount_t *mp = dp->i_mount;
2699 xfs_trans_t *tp = NULL;
2700 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2701 int error = 0;
2702 uint resblks;
2703
2704 trace_xfs_remove(dp, name);
2705
2706 if (XFS_FORCED_SHUTDOWN(mp))
2707 return -EIO;
2708
2709 error = xfs_qm_dqattach(dp);
2710 if (error)
2711 goto std_return;
2712
2713 error = xfs_qm_dqattach(ip);
2714 if (error)
2715 goto std_return;
2716
2717 /*
2718 * We try to get the real space reservation first,
2719 * allowing for directory btree deletion(s) implying
2720 * possible bmap insert(s). If we can't get the space
2721 * reservation then we use 0 instead, and avoid the bmap
2722 * btree insert(s) in the directory code by, if the bmap
2723 * insert tries to happen, instead trimming the LAST
2724 * block from the directory.
2725 */
2726 resblks = XFS_REMOVE_SPACE_RES(mp);
2727 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2728 if (error == -ENOSPC) {
2729 resblks = 0;
2730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2731 &tp);
2732 }
2733 if (error) {
2734 ASSERT(error != -ENOSPC);
2735 goto std_return;
2736 }
2737
2738 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2739
2740 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2741 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2742
2743 /*
2744 * If we're removing a directory perform some additional validation.
2745 */
2746 if (is_dir) {
2747 ASSERT(VFS_I(ip)->i_nlink >= 2);
2748 if (VFS_I(ip)->i_nlink != 2) {
2749 error = -ENOTEMPTY;
2750 goto out_trans_cancel;
2751 }
2752 if (!xfs_dir_isempty(ip)) {
2753 error = -ENOTEMPTY;
2754 goto out_trans_cancel;
2755 }
2756
2757 /* Drop the link from ip's "..". */
2758 error = xfs_droplink(tp, dp);
2759 if (error)
2760 goto out_trans_cancel;
2761
2762 /* Drop the "." link from ip to self. */
2763 error = xfs_droplink(tp, ip);
2764 if (error)
2765 goto out_trans_cancel;
2766
2767 /*
2768 * Point the unlinked child directory's ".." entry to the root
2769 * directory to eliminate back-references to inodes that may
2770 * get freed before the child directory is closed. If the fs
2771 * gets shrunk, this can lead to dirent inode validation errors.
2772 */
2773 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2774 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2775 tp->t_mountp->m_sb.sb_rootino, 0);
2776 if (error)
2777 return error;
2778 }
2779 } else {
2780 /*
2781 * When removing a non-directory we need to log the parent
2782 * inode here. For a directory this is done implicitly
2783 * by the xfs_droplink call for the ".." entry.
2784 */
2785 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2786 }
2787 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2788
2789 /* Drop the link from dp to ip. */
2790 error = xfs_droplink(tp, ip);
2791 if (error)
2792 goto out_trans_cancel;
2793
2794 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2795 if (error) {
2796 ASSERT(error != -ENOENT);
2797 goto out_trans_cancel;
2798 }
2799
2800 /*
2801 * If this is a synchronous mount, make sure that the
2802 * remove transaction goes to disk before returning to
2803 * the user.
2804 */
2805 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2806 xfs_trans_set_sync(tp);
2807
2808 error = xfs_trans_commit(tp);
2809 if (error)
2810 goto std_return;
2811
2812 if (is_dir && xfs_inode_is_filestream(ip))
2813 xfs_filestream_deassociate(ip);
2814
2815 return 0;
2816
2817 out_trans_cancel:
2818 xfs_trans_cancel(tp);
2819 std_return:
2820 return error;
2821}
2822
2823/*
2824 * Enter all inodes for a rename transaction into a sorted array.
2825 */
2826#define __XFS_SORT_INODES 5
2827STATIC void
2828xfs_sort_for_rename(
2829 struct xfs_inode *dp1, /* in: old (source) directory inode */
2830 struct xfs_inode *dp2, /* in: new (target) directory inode */
2831 struct xfs_inode *ip1, /* in: inode of old entry */
2832 struct xfs_inode *ip2, /* in: inode of new entry */
2833 struct xfs_inode *wip, /* in: whiteout inode */
2834 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2835 int *num_inodes) /* in/out: inodes in array */
2836{
2837 int i, j;
2838
2839 ASSERT(*num_inodes == __XFS_SORT_INODES);
2840 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2841
2842 /*
2843 * i_tab contains a list of pointers to inodes. We initialize
2844 * the table here & we'll sort it. We will then use it to
2845 * order the acquisition of the inode locks.
2846 *
2847 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2848 */
2849 i = 0;
2850 i_tab[i++] = dp1;
2851 i_tab[i++] = dp2;
2852 i_tab[i++] = ip1;
2853 if (ip2)
2854 i_tab[i++] = ip2;
2855 if (wip)
2856 i_tab[i++] = wip;
2857 *num_inodes = i;
2858
2859 /*
2860 * Sort the elements via bubble sort. (Remember, there are at
2861 * most 5 elements to sort, so this is adequate.)
2862 */
2863 for (i = 0; i < *num_inodes; i++) {
2864 for (j = 1; j < *num_inodes; j++) {
2865 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2866 struct xfs_inode *temp = i_tab[j];
2867 i_tab[j] = i_tab[j-1];
2868 i_tab[j-1] = temp;
2869 }
2870 }
2871 }
2872}
2873
2874static int
2875xfs_finish_rename(
2876 struct xfs_trans *tp)
2877{
2878 /*
2879 * If this is a synchronous mount, make sure that the rename transaction
2880 * goes to disk before returning to the user.
2881 */
2882 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2883 xfs_trans_set_sync(tp);
2884
2885 return xfs_trans_commit(tp);
2886}
2887
2888/*
2889 * xfs_cross_rename()
2890 *
2891 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2892 */
2893STATIC int
2894xfs_cross_rename(
2895 struct xfs_trans *tp,
2896 struct xfs_inode *dp1,
2897 struct xfs_name *name1,
2898 struct xfs_inode *ip1,
2899 struct xfs_inode *dp2,
2900 struct xfs_name *name2,
2901 struct xfs_inode *ip2,
2902 int spaceres)
2903{
2904 int error = 0;
2905 int ip1_flags = 0;
2906 int ip2_flags = 0;
2907 int dp2_flags = 0;
2908
2909 /* Swap inode number for dirent in first parent */
2910 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2911 if (error)
2912 goto out_trans_abort;
2913
2914 /* Swap inode number for dirent in second parent */
2915 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2916 if (error)
2917 goto out_trans_abort;
2918
2919 /*
2920 * If we're renaming one or more directories across different parents,
2921 * update the respective ".." entries (and link counts) to match the new
2922 * parents.
2923 */
2924 if (dp1 != dp2) {
2925 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2926
2927 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2928 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2929 dp1->i_ino, spaceres);
2930 if (error)
2931 goto out_trans_abort;
2932
2933 /* transfer ip2 ".." reference to dp1 */
2934 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2935 error = xfs_droplink(tp, dp2);
2936 if (error)
2937 goto out_trans_abort;
2938 xfs_bumplink(tp, dp1);
2939 }
2940
2941 /*
2942 * Although ip1 isn't changed here, userspace needs
2943 * to be warned about the change, so that applications
2944 * relying on it (like backup ones), will properly
2945 * notify the change
2946 */
2947 ip1_flags |= XFS_ICHGTIME_CHG;
2948 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2949 }
2950
2951 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2952 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2953 dp2->i_ino, spaceres);
2954 if (error)
2955 goto out_trans_abort;
2956
2957 /* transfer ip1 ".." reference to dp2 */
2958 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2959 error = xfs_droplink(tp, dp1);
2960 if (error)
2961 goto out_trans_abort;
2962 xfs_bumplink(tp, dp2);
2963 }
2964
2965 /*
2966 * Although ip2 isn't changed here, userspace needs
2967 * to be warned about the change, so that applications
2968 * relying on it (like backup ones), will properly
2969 * notify the change
2970 */
2971 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972 ip2_flags |= XFS_ICHGTIME_CHG;
2973 }
2974 }
2975
2976 if (ip1_flags) {
2977 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2978 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2979 }
2980 if (ip2_flags) {
2981 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2982 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2983 }
2984 if (dp2_flags) {
2985 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2986 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2987 }
2988 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2989 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2990 return xfs_finish_rename(tp);
2991
2992out_trans_abort:
2993 xfs_trans_cancel(tp);
2994 return error;
2995}
2996
2997/*
2998 * xfs_rename_alloc_whiteout()
2999 *
3000 * Return a referenced, unlinked, unlocked inode that can be used as a
3001 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3002 * crash between allocating the inode and linking it into the rename transaction
3003 * recovery will free the inode and we won't leak it.
3004 */
3005static int
3006xfs_rename_alloc_whiteout(
3007 struct user_namespace *mnt_userns,
3008 struct xfs_inode *dp,
3009 struct xfs_inode **wip)
3010{
3011 struct xfs_inode *tmpfile;
3012 int error;
3013
3014 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3015 &tmpfile);
3016 if (error)
3017 return error;
3018
3019 /*
3020 * Prepare the tmpfile inode as if it were created through the VFS.
3021 * Complete the inode setup and flag it as linkable. nlink is already
3022 * zero, so we can skip the drop_nlink.
3023 */
3024 xfs_setup_iops(tmpfile);
3025 xfs_finish_inode_setup(tmpfile);
3026 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3027
3028 *wip = tmpfile;
3029 return 0;
3030}
3031
3032/*
3033 * xfs_rename
3034 */
3035int
3036xfs_rename(
3037 struct user_namespace *mnt_userns,
3038 struct xfs_inode *src_dp,
3039 struct xfs_name *src_name,
3040 struct xfs_inode *src_ip,
3041 struct xfs_inode *target_dp,
3042 struct xfs_name *target_name,
3043 struct xfs_inode *target_ip,
3044 unsigned int flags)
3045{
3046 struct xfs_mount *mp = src_dp->i_mount;
3047 struct xfs_trans *tp;
3048 struct xfs_inode *wip = NULL; /* whiteout inode */
3049 struct xfs_inode *inodes[__XFS_SORT_INODES];
3050 int i;
3051 int num_inodes = __XFS_SORT_INODES;
3052 bool new_parent = (src_dp != target_dp);
3053 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3054 int spaceres;
3055 int error;
3056
3057 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3058
3059 if ((flags & RENAME_EXCHANGE) && !target_ip)
3060 return -EINVAL;
3061
3062 /*
3063 * If we are doing a whiteout operation, allocate the whiteout inode
3064 * we will be placing at the target and ensure the type is set
3065 * appropriately.
3066 */
3067 if (flags & RENAME_WHITEOUT) {
3068 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3069 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
3070 if (error)
3071 return error;
3072
3073 /* setup target dirent info as whiteout */
3074 src_name->type = XFS_DIR3_FT_CHRDEV;
3075 }
3076
3077 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3078 inodes, &num_inodes);
3079
3080 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3081 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3082 if (error == -ENOSPC) {
3083 spaceres = 0;
3084 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3085 &tp);
3086 }
3087 if (error)
3088 goto out_release_wip;
3089
3090 /*
3091 * Attach the dquots to the inodes
3092 */
3093 error = xfs_qm_vop_rename_dqattach(inodes);
3094 if (error)
3095 goto out_trans_cancel;
3096
3097 /*
3098 * Lock all the participating inodes. Depending upon whether
3099 * the target_name exists in the target directory, and
3100 * whether the target directory is the same as the source
3101 * directory, we can lock from 2 to 4 inodes.
3102 */
3103 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3104
3105 /*
3106 * Join all the inodes to the transaction. From this point on,
3107 * we can rely on either trans_commit or trans_cancel to unlock
3108 * them.
3109 */
3110 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3111 if (new_parent)
3112 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3113 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3114 if (target_ip)
3115 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3116 if (wip)
3117 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3118
3119 /*
3120 * If we are using project inheritance, we only allow renames
3121 * into our tree when the project IDs are the same; else the
3122 * tree quota mechanism would be circumvented.
3123 */
3124 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
3125 target_dp->i_projid != src_ip->i_projid)) {
3126 error = -EXDEV;
3127 goto out_trans_cancel;
3128 }
3129
3130 /* RENAME_EXCHANGE is unique from here on. */
3131 if (flags & RENAME_EXCHANGE)
3132 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3133 target_dp, target_name, target_ip,
3134 spaceres);
3135
3136 /*
3137 * Check for expected errors before we dirty the transaction
3138 * so we can return an error without a transaction abort.
3139 *
3140 * Extent count overflow check:
3141 *
3142 * From the perspective of src_dp, a rename operation is essentially a
3143 * directory entry remove operation. Hence the only place where we check
3144 * for extent count overflow for src_dp is in
3145 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3146 * -ENOSPC when it detects a possible extent count overflow and in
3147 * response, the higher layers of directory handling code do the
3148 * following:
3149 * 1. Data/Free blocks: XFS lets these blocks linger until a
3150 * future remove operation removes them.
3151 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3152 * Leaf space and unmaps the last block.
3153 *
3154 * For target_dp, there are two cases depending on whether the
3155 * destination directory entry exists or not.
3156 *
3157 * When destination directory entry does not exist (i.e. target_ip ==
3158 * NULL), extent count overflow check is performed only when transaction
3159 * has a non-zero sized space reservation associated with it. With a
3160 * zero-sized space reservation, XFS allows a rename operation to
3161 * continue only when the directory has sufficient free space in its
3162 * data/leaf/free space blocks to hold the new entry.
3163 *
3164 * When destination directory entry exists (i.e. target_ip != NULL), all
3165 * we need to do is change the inode number associated with the already
3166 * existing entry. Hence there is no need to perform an extent count
3167 * overflow check.
3168 */
3169 if (target_ip == NULL) {
3170 /*
3171 * If there's no space reservation, check the entry will
3172 * fit before actually inserting it.
3173 */
3174 if (!spaceres) {
3175 error = xfs_dir_canenter(tp, target_dp, target_name);
3176 if (error)
3177 goto out_trans_cancel;
3178 } else {
3179 error = xfs_iext_count_may_overflow(target_dp,
3180 XFS_DATA_FORK,
3181 XFS_IEXT_DIR_MANIP_CNT(mp));
3182 if (error)
3183 goto out_trans_cancel;
3184 }
3185 } else {
3186 /*
3187 * If target exists and it's a directory, check that whether
3188 * it can be destroyed.
3189 */
3190 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3191 (!xfs_dir_isempty(target_ip) ||
3192 (VFS_I(target_ip)->i_nlink > 2))) {
3193 error = -EEXIST;
3194 goto out_trans_cancel;
3195 }
3196 }
3197
3198 /*
3199 * Lock the AGI buffers we need to handle bumping the nlink of the
3200 * whiteout inode off the unlinked list and to handle dropping the
3201 * nlink of the target inode. Per locking order rules, do this in
3202 * increasing AG order and before directory block allocation tries to
3203 * grab AGFs because we grab AGIs before AGFs.
3204 *
3205 * The (vfs) caller must ensure that if src is a directory then
3206 * target_ip is either null or an empty directory.
3207 */
3208 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3209 if (inodes[i] == wip ||
3210 (inodes[i] == target_ip &&
3211 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3212 struct xfs_buf *bp;
3213 xfs_agnumber_t agno;
3214
3215 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3216 error = xfs_read_agi(mp, tp, agno, &bp);
3217 if (error)
3218 goto out_trans_cancel;
3219 }
3220 }
3221
3222 /*
3223 * Directory entry creation below may acquire the AGF. Remove
3224 * the whiteout from the unlinked list first to preserve correct
3225 * AGI/AGF locking order. This dirties the transaction so failures
3226 * after this point will abort and log recovery will clean up the
3227 * mess.
3228 *
3229 * For whiteouts, we need to bump the link count on the whiteout
3230 * inode. After this point, we have a real link, clear the tmpfile
3231 * state flag from the inode so it doesn't accidentally get misused
3232 * in future.
3233 */
3234 if (wip) {
3235 struct xfs_perag *pag;
3236
3237 ASSERT(VFS_I(wip)->i_nlink == 0);
3238
3239 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3240 error = xfs_iunlink_remove(tp, pag, wip);
3241 xfs_perag_put(pag);
3242 if (error)
3243 goto out_trans_cancel;
3244
3245 xfs_bumplink(tp, wip);
3246 VFS_I(wip)->i_state &= ~I_LINKABLE;
3247 }
3248
3249 /*
3250 * Set up the target.
3251 */
3252 if (target_ip == NULL) {
3253 /*
3254 * If target does not exist and the rename crosses
3255 * directories, adjust the target directory link count
3256 * to account for the ".." reference from the new entry.
3257 */
3258 error = xfs_dir_createname(tp, target_dp, target_name,
3259 src_ip->i_ino, spaceres);
3260 if (error)
3261 goto out_trans_cancel;
3262
3263 xfs_trans_ichgtime(tp, target_dp,
3264 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3265
3266 if (new_parent && src_is_directory) {
3267 xfs_bumplink(tp, target_dp);
3268 }
3269 } else { /* target_ip != NULL */
3270 /*
3271 * Link the source inode under the target name.
3272 * If the source inode is a directory and we are moving
3273 * it across directories, its ".." entry will be
3274 * inconsistent until we replace that down below.
3275 *
3276 * In case there is already an entry with the same
3277 * name at the destination directory, remove it first.
3278 */
3279 error = xfs_dir_replace(tp, target_dp, target_name,
3280 src_ip->i_ino, spaceres);
3281 if (error)
3282 goto out_trans_cancel;
3283
3284 xfs_trans_ichgtime(tp, target_dp,
3285 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3286
3287 /*
3288 * Decrement the link count on the target since the target
3289 * dir no longer points to it.
3290 */
3291 error = xfs_droplink(tp, target_ip);
3292 if (error)
3293 goto out_trans_cancel;
3294
3295 if (src_is_directory) {
3296 /*
3297 * Drop the link from the old "." entry.
3298 */
3299 error = xfs_droplink(tp, target_ip);
3300 if (error)
3301 goto out_trans_cancel;
3302 }
3303 } /* target_ip != NULL */
3304
3305 /*
3306 * Remove the source.
3307 */
3308 if (new_parent && src_is_directory) {
3309 /*
3310 * Rewrite the ".." entry to point to the new
3311 * directory.
3312 */
3313 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3314 target_dp->i_ino, spaceres);
3315 ASSERT(error != -EEXIST);
3316 if (error)
3317 goto out_trans_cancel;
3318 }
3319
3320 /*
3321 * We always want to hit the ctime on the source inode.
3322 *
3323 * This isn't strictly required by the standards since the source
3324 * inode isn't really being changed, but old unix file systems did
3325 * it and some incremental backup programs won't work without it.
3326 */
3327 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3328 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3329
3330 /*
3331 * Adjust the link count on src_dp. This is necessary when
3332 * renaming a directory, either within one parent when
3333 * the target existed, or across two parent directories.
3334 */
3335 if (src_is_directory && (new_parent || target_ip != NULL)) {
3336
3337 /*
3338 * Decrement link count on src_directory since the
3339 * entry that's moved no longer points to it.
3340 */
3341 error = xfs_droplink(tp, src_dp);
3342 if (error)
3343 goto out_trans_cancel;
3344 }
3345
3346 /*
3347 * For whiteouts, we only need to update the source dirent with the
3348 * inode number of the whiteout inode rather than removing it
3349 * altogether.
3350 */
3351 if (wip) {
3352 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3353 spaceres);
3354 } else {
3355 /*
3356 * NOTE: We don't need to check for extent count overflow here
3357 * because the dir remove name code will leave the dir block in
3358 * place if the extent count would overflow.
3359 */
3360 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3361 spaceres);
3362 }
3363
3364 if (error)
3365 goto out_trans_cancel;
3366
3367 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3368 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3369 if (new_parent)
3370 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3371
3372 error = xfs_finish_rename(tp);
3373 if (wip)
3374 xfs_irele(wip);
3375 return error;
3376
3377out_trans_cancel:
3378 xfs_trans_cancel(tp);
3379out_release_wip:
3380 if (wip)
3381 xfs_irele(wip);
3382 return error;
3383}
3384
3385static int
3386xfs_iflush(
3387 struct xfs_inode *ip,
3388 struct xfs_buf *bp)
3389{
3390 struct xfs_inode_log_item *iip = ip->i_itemp;
3391 struct xfs_dinode *dip;
3392 struct xfs_mount *mp = ip->i_mount;
3393 int error;
3394
3395 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3396 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3397 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3398 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3399 ASSERT(iip->ili_item.li_buf == bp);
3400
3401 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3402
3403 /*
3404 * We don't flush the inode if any of the following checks fail, but we
3405 * do still update the log item and attach to the backing buffer as if
3406 * the flush happened. This is a formality to facilitate predictable
3407 * error handling as the caller will shutdown and fail the buffer.
3408 */
3409 error = -EFSCORRUPTED;
3410 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3411 mp, XFS_ERRTAG_IFLUSH_1)) {
3412 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3413 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3414 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3415 goto flush_out;
3416 }
3417 if (S_ISREG(VFS_I(ip)->i_mode)) {
3418 if (XFS_TEST_ERROR(
3419 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3420 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3421 mp, XFS_ERRTAG_IFLUSH_3)) {
3422 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3423 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3424 __func__, ip->i_ino, ip);
3425 goto flush_out;
3426 }
3427 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3428 if (XFS_TEST_ERROR(
3429 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3430 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3431 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3432 mp, XFS_ERRTAG_IFLUSH_4)) {
3433 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3434 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3435 __func__, ip->i_ino, ip);
3436 goto flush_out;
3437 }
3438 }
3439 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3440 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3441 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3442 "%s: detected corrupt incore inode %Lu, "
3443 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3444 __func__, ip->i_ino,
3445 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3446 ip->i_nblocks, ip);
3447 goto flush_out;
3448 }
3449 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3450 mp, XFS_ERRTAG_IFLUSH_6)) {
3451 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3452 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3453 __func__, ip->i_ino, ip->i_forkoff, ip);
3454 goto flush_out;
3455 }
3456
3457 /*
3458 * Inode item log recovery for v2 inodes are dependent on the flushiter
3459 * count for correct sequencing. We bump the flush iteration count so
3460 * we can detect flushes which postdate a log record during recovery.
3461 * This is redundant as we now log every change and hence this can't
3462 * happen but we need to still do it to ensure backwards compatibility
3463 * with old kernels that predate logging all inode changes.
3464 */
3465 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3466 ip->i_flushiter++;
3467
3468 /*
3469 * If there are inline format data / attr forks attached to this inode,
3470 * make sure they are not corrupt.
3471 */
3472 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3473 xfs_ifork_verify_local_data(ip))
3474 goto flush_out;
3475 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3476 xfs_ifork_verify_local_attr(ip))
3477 goto flush_out;
3478
3479 /*
3480 * Copy the dirty parts of the inode into the on-disk inode. We always
3481 * copy out the core of the inode, because if the inode is dirty at all
3482 * the core must be.
3483 */
3484 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3485
3486 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3487 if (!xfs_sb_version_has_v3inode(&mp->m_sb)) {
3488 if (ip->i_flushiter == DI_MAX_FLUSH)
3489 ip->i_flushiter = 0;
3490 }
3491
3492 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3493 if (XFS_IFORK_Q(ip))
3494 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3495
3496 /*
3497 * We've recorded everything logged in the inode, so we'd like to clear
3498 * the ili_fields bits so we don't log and flush things unnecessarily.
3499 * However, we can't stop logging all this information until the data
3500 * we've copied into the disk buffer is written to disk. If we did we
3501 * might overwrite the copy of the inode in the log with all the data
3502 * after re-logging only part of it, and in the face of a crash we
3503 * wouldn't have all the data we need to recover.
3504 *
3505 * What we do is move the bits to the ili_last_fields field. When
3506 * logging the inode, these bits are moved back to the ili_fields field.
3507 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3508 * we know that the information those bits represent is permanently on
3509 * disk. As long as the flush completes before the inode is logged
3510 * again, then both ili_fields and ili_last_fields will be cleared.
3511 */
3512 error = 0;
3513flush_out:
3514 spin_lock(&iip->ili_lock);
3515 iip->ili_last_fields = iip->ili_fields;
3516 iip->ili_fields = 0;
3517 iip->ili_fsync_fields = 0;
3518 spin_unlock(&iip->ili_lock);
3519
3520 /*
3521 * Store the current LSN of the inode so that we can tell whether the
3522 * item has moved in the AIL from xfs_buf_inode_iodone().
3523 */
3524 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3525 &iip->ili_item.li_lsn);
3526
3527 /* generate the checksum. */
3528 xfs_dinode_calc_crc(mp, dip);
3529 return error;
3530}
3531
3532/*
3533 * Non-blocking flush of dirty inode metadata into the backing buffer.
3534 *
3535 * The caller must have a reference to the inode and hold the cluster buffer
3536 * locked. The function will walk across all the inodes on the cluster buffer it
3537 * can find and lock without blocking, and flush them to the cluster buffer.
3538 *
3539 * On successful flushing of at least one inode, the caller must write out the
3540 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3541 * the caller needs to release the buffer. On failure, the filesystem will be
3542 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3543 * will be returned.
3544 */
3545int
3546xfs_iflush_cluster(
3547 struct xfs_buf *bp)
3548{
3549 struct xfs_mount *mp = bp->b_mount;
3550 struct xfs_log_item *lip, *n;
3551 struct xfs_inode *ip;
3552 struct xfs_inode_log_item *iip;
3553 int clcount = 0;
3554 int error = 0;
3555
3556 /*
3557 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3558 * can remove itself from the list.
3559 */
3560 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3561 iip = (struct xfs_inode_log_item *)lip;
3562 ip = iip->ili_inode;
3563
3564 /*
3565 * Quick and dirty check to avoid locks if possible.
3566 */
3567 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3568 continue;
3569 if (xfs_ipincount(ip))
3570 continue;
3571
3572 /*
3573 * The inode is still attached to the buffer, which means it is
3574 * dirty but reclaim might try to grab it. Check carefully for
3575 * that, and grab the ilock while still holding the i_flags_lock
3576 * to guarantee reclaim will not be able to reclaim this inode
3577 * once we drop the i_flags_lock.
3578 */
3579 spin_lock(&ip->i_flags_lock);
3580 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3581 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3582 spin_unlock(&ip->i_flags_lock);
3583 continue;
3584 }
3585
3586 /*
3587 * ILOCK will pin the inode against reclaim and prevent
3588 * concurrent transactions modifying the inode while we are
3589 * flushing the inode. If we get the lock, set the flushing
3590 * state before we drop the i_flags_lock.
3591 */
3592 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3593 spin_unlock(&ip->i_flags_lock);
3594 continue;
3595 }
3596 __xfs_iflags_set(ip, XFS_IFLUSHING);
3597 spin_unlock(&ip->i_flags_lock);
3598
3599 /*
3600 * Abort flushing this inode if we are shut down because the
3601 * inode may not currently be in the AIL. This can occur when
3602 * log I/O failure unpins the inode without inserting into the
3603 * AIL, leaving a dirty/unpinned inode attached to the buffer
3604 * that otherwise looks like it should be flushed.
3605 */
3606 if (XFS_FORCED_SHUTDOWN(mp)) {
3607 xfs_iunpin_wait(ip);
3608 xfs_iflush_abort(ip);
3609 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3610 error = -EIO;
3611 continue;
3612 }
3613
3614 /* don't block waiting on a log force to unpin dirty inodes */
3615 if (xfs_ipincount(ip)) {
3616 xfs_iflags_clear(ip, XFS_IFLUSHING);
3617 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3618 continue;
3619 }
3620
3621 if (!xfs_inode_clean(ip))
3622 error = xfs_iflush(ip, bp);
3623 else
3624 xfs_iflags_clear(ip, XFS_IFLUSHING);
3625 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3626 if (error)
3627 break;
3628 clcount++;
3629 }
3630
3631 if (error) {
3632 bp->b_flags |= XBF_ASYNC;
3633 xfs_buf_ioend_fail(bp);
3634 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3635 return error;
3636 }
3637
3638 if (!clcount)
3639 return -EAGAIN;
3640
3641 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3642 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3643 return 0;
3644
3645}
3646
3647/* Release an inode. */
3648void
3649xfs_irele(
3650 struct xfs_inode *ip)
3651{
3652 trace_xfs_irele(ip, _RET_IP_);
3653 iput(VFS_I(ip));
3654}
3655
3656/*
3657 * Ensure all commited transactions touching the inode are written to the log.
3658 */
3659int
3660xfs_log_force_inode(
3661 struct xfs_inode *ip)
3662{
3663 xfs_csn_t seq = 0;
3664
3665 xfs_ilock(ip, XFS_ILOCK_SHARED);
3666 if (xfs_ipincount(ip))
3667 seq = ip->i_itemp->ili_commit_seq;
3668 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3669
3670 if (!seq)
3671 return 0;
3672 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3673}
3674
3675/*
3676 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3677 * abide vfs locking order (lowest pointer value goes first) and breaking the
3678 * layout leases before proceeding. The loop is needed because we cannot call
3679 * the blocking break_layout() with the iolocks held, and therefore have to
3680 * back out both locks.
3681 */
3682static int
3683xfs_iolock_two_inodes_and_break_layout(
3684 struct inode *src,
3685 struct inode *dest)
3686{
3687 int error;
3688
3689 if (src > dest)
3690 swap(src, dest);
3691
3692retry:
3693 /* Wait to break both inodes' layouts before we start locking. */
3694 error = break_layout(src, true);
3695 if (error)
3696 return error;
3697 if (src != dest) {
3698 error = break_layout(dest, true);
3699 if (error)
3700 return error;
3701 }
3702
3703 /* Lock one inode and make sure nobody got in and leased it. */
3704 inode_lock(src);
3705 error = break_layout(src, false);
3706 if (error) {
3707 inode_unlock(src);
3708 if (error == -EWOULDBLOCK)
3709 goto retry;
3710 return error;
3711 }
3712
3713 if (src == dest)
3714 return 0;
3715
3716 /* Lock the other inode and make sure nobody got in and leased it. */
3717 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3718 error = break_layout(dest, false);
3719 if (error) {
3720 inode_unlock(src);
3721 inode_unlock(dest);
3722 if (error == -EWOULDBLOCK)
3723 goto retry;
3724 return error;
3725 }
3726
3727 return 0;
3728}
3729
3730/*
3731 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3732 * mmap activity.
3733 */
3734int
3735xfs_ilock2_io_mmap(
3736 struct xfs_inode *ip1,
3737 struct xfs_inode *ip2)
3738{
3739 int ret;
3740
3741 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3742 if (ret)
3743 return ret;
3744 if (ip1 == ip2)
3745 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3746 else
3747 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3748 ip2, XFS_MMAPLOCK_EXCL);
3749 return 0;
3750}
3751
3752/* Unlock both inodes to allow IO and mmap activity. */
3753void
3754xfs_iunlock2_io_mmap(
3755 struct xfs_inode *ip1,
3756 struct xfs_inode *ip2)
3757{
3758 bool same_inode = (ip1 == ip2);
3759
3760 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3761 if (!same_inode)
3762 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3763 inode_unlock(VFS_I(ip2));
3764 if (!same_inode)
3765 inode_unlock(VFS_I(ip1));
3766}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_inum.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_mount.h"
30#include "xfs_inode.h"
31#include "xfs_da_format.h"
32#include "xfs_da_btree.h"
33#include "xfs_dir2.h"
34#include "xfs_attr_sf.h"
35#include "xfs_attr.h"
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
38#include "xfs_buf_item.h"
39#include "xfs_inode_item.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
42#include "xfs_bmap_util.h"
43#include "xfs_error.h"
44#include "xfs_quota.h"
45#include "xfs_filestream.h"
46#include "xfs_cksum.h"
47#include "xfs_trace.h"
48#include "xfs_icache.h"
49#include "xfs_symlink.h"
50#include "xfs_trans_priv.h"
51#include "xfs_log.h"
52#include "xfs_bmap_btree.h"
53
54kmem_zone_t *xfs_inode_zone;
55
56/*
57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
58 * freed from a file in a single transaction.
59 */
60#define XFS_ITRUNC_MAX_EXTENTS 2
61
62STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
63
64STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
65
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
80/*
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
91 *
92 * The functions return a value which should be given to the corresponding
93 * xfs_iunlock() call.
94 */
95uint
96xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
98{
99 uint lock_mode = XFS_ILOCK_SHARED;
100
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
103 lock_mode = XFS_ILOCK_EXCL;
104 xfs_ilock(ip, lock_mode);
105 return lock_mode;
106}
107
108uint
109xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
111{
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
119}
120
121/*
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
125 *
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
128 *
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
140 */
141void
142xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
145{
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
147
148 /*
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
152 */
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
158
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168}
169
170/*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182int
183xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186{
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 /*
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
193 */
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
199
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
206 }
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
213 }
214 return 1;
215
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
223}
224
225/*
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
230 *
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
235 *
236 */
237void
238xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
241{
242 /*
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
246 */
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
253
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265}
266
267/*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271void
272xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275{
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
283
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
285}
286
287#if defined(DEBUG) || defined(XFS_WARN)
288int
289xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
297 }
298
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
303 }
304
305 ASSERT(0);
306 return 0;
307}
308#endif
309
310#ifdef DEBUG
311int xfs_locked_n;
312int xfs_small_retries;
313int xfs_middle_retries;
314int xfs_lots_retries;
315int xfs_lock_delays;
316#endif
317
318/*
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
321 */
322static inline int
323xfs_lock_inumorder(int lock_mode, int subclass)
324{
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
329
330 return lock_mode;
331}
332
333/*
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
336 *
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
343 */
344void
345xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
349{
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
352
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
354
355 try_lock = 0;
356 i = 0;
357
358again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
361
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
364
365 /*
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
369 */
370
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
376 }
377 }
378 }
379
380 /*
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
385 */
386
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
389 /*
390 * try_lock means we have an inode locked
391 * that is in the AIL.
392 */
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
396
397 /*
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
401 */
402
403 for(j = i - 1; j >= 0; j--) {
404
405 /*
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
410 */
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
414
415 xfs_iunlock(ips[j], lock_mode);
416 }
417
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420#ifdef DEBUG
421 xfs_lock_delays++;
422#endif
423 }
424 i = 0;
425 try_lock = 0;
426 goto again;
427 }
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
430 }
431 }
432
433#ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
440 }
441#endif
442}
443
444/*
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
449 */
450void
451xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
455{
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
459
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
463
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
468 }
469
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
472
473 /*
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
477 */
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
485 }
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
488 }
489}
490
491
492void
493__xfs_iflock(
494 struct xfs_inode *ip)
495{
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
498
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
504
505 finish_wait(wq, &wait.wait);
506}
507
508STATIC uint
509_xfs_dic2xflags(
510 __uint16_t di_flags)
511{
512 uint flags = 0;
513
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
543 }
544
545 return flags;
546}
547
548uint
549xfs_ip2xflags(
550 xfs_inode_t *ip)
551{
552 xfs_icdinode_t *dic = &ip->i_d;
553
554 return _xfs_dic2xflags(dic->di_flags) |
555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
556}
557
558uint
559xfs_dic2xflags(
560 xfs_dinode_t *dip)
561{
562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
564}
565
566/*
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
571 */
572int
573xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
578{
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
582
583 trace_xfs_lookup(dp, name);
584
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return XFS_ERROR(EIO);
587
588 lock_mode = xfs_ilock_data_map_shared(dp);
589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
590 xfs_iunlock(dp, lock_mode);
591
592 if (error)
593 goto out;
594
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
598
599 return 0;
600
601out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604out:
605 *ipp = NULL;
606 return error;
607}
608
609/*
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
614 *
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
620 *
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
628 *
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
634 *
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
639 */
640int
641xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
644 umode_t mode,
645 xfs_nlink_t nlink,
646 xfs_dev_t rdev,
647 prid_t prid,
648 int okalloc,
649 xfs_buf_t **ialloc_context,
650 xfs_inode_t **ipp)
651{
652 struct xfs_mount *mp = tp->t_mountp;
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
655 uint flags;
656 int error;
657 timespec_t tv;
658 int filestreams = 0;
659
660 /*
661 * Call the space management code to pick
662 * the on-disk inode to be allocated.
663 */
664 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
665 ialloc_context, &ino);
666 if (error)
667 return error;
668 if (*ialloc_context || ino == NULLFSINO) {
669 *ipp = NULL;
670 return 0;
671 }
672 ASSERT(*ialloc_context == NULL);
673
674 /*
675 * Get the in-core inode with the lock held exclusively.
676 * This is because we're setting fields here we need
677 * to prevent others from looking at until we're done.
678 */
679 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
680 XFS_ILOCK_EXCL, &ip);
681 if (error)
682 return error;
683 ASSERT(ip != NULL);
684
685 ip->i_d.di_mode = mode;
686 ip->i_d.di_onlink = 0;
687 ip->i_d.di_nlink = nlink;
688 ASSERT(ip->i_d.di_nlink == nlink);
689 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
690 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
691 xfs_set_projid(ip, prid);
692 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
693
694 /*
695 * If the superblock version is up to where we support new format
696 * inodes and this is currently an old format inode, then change
697 * the inode version number now. This way we only do the conversion
698 * here rather than here and in the flush/logging code.
699 */
700 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
701 ip->i_d.di_version == 1) {
702 ip->i_d.di_version = 2;
703 /*
704 * We've already zeroed the old link count, the projid field,
705 * and the pad field.
706 */
707 }
708
709 /*
710 * Project ids won't be stored on disk if we are using a version 1 inode.
711 */
712 if ((prid != 0) && (ip->i_d.di_version == 1))
713 xfs_bump_ino_vers2(tp, ip);
714
715 if (pip && XFS_INHERIT_GID(pip)) {
716 ip->i_d.di_gid = pip->i_d.di_gid;
717 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
718 ip->i_d.di_mode |= S_ISGID;
719 }
720 }
721
722 /*
723 * If the group ID of the new file does not match the effective group
724 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
725 * (and only if the irix_sgid_inherit compatibility variable is set).
726 */
727 if ((irix_sgid_inherit) &&
728 (ip->i_d.di_mode & S_ISGID) &&
729 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
730 ip->i_d.di_mode &= ~S_ISGID;
731 }
732
733 ip->i_d.di_size = 0;
734 ip->i_d.di_nextents = 0;
735 ASSERT(ip->i_d.di_nblocks == 0);
736
737 nanotime(&tv);
738 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
739 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
740 ip->i_d.di_atime = ip->i_d.di_mtime;
741 ip->i_d.di_ctime = ip->i_d.di_mtime;
742
743 /*
744 * di_gen will have been taken care of in xfs_iread.
745 */
746 ip->i_d.di_extsize = 0;
747 ip->i_d.di_dmevmask = 0;
748 ip->i_d.di_dmstate = 0;
749 ip->i_d.di_flags = 0;
750
751 if (ip->i_d.di_version == 3) {
752 ASSERT(ip->i_d.di_ino == ino);
753 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
754 ip->i_d.di_crc = 0;
755 ip->i_d.di_changecount = 1;
756 ip->i_d.di_lsn = 0;
757 ip->i_d.di_flags2 = 0;
758 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
759 ip->i_d.di_crtime = ip->i_d.di_mtime;
760 }
761
762
763 flags = XFS_ILOG_CORE;
764 switch (mode & S_IFMT) {
765 case S_IFIFO:
766 case S_IFCHR:
767 case S_IFBLK:
768 case S_IFSOCK:
769 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
770 ip->i_df.if_u2.if_rdev = rdev;
771 ip->i_df.if_flags = 0;
772 flags |= XFS_ILOG_DEV;
773 break;
774 case S_IFREG:
775 /*
776 * we can't set up filestreams until after the VFS inode
777 * is set up properly.
778 */
779 if (pip && xfs_inode_is_filestream(pip))
780 filestreams = 1;
781 /* fall through */
782 case S_IFDIR:
783 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
784 uint di_flags = 0;
785
786 if (S_ISDIR(mode)) {
787 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
788 di_flags |= XFS_DIFLAG_RTINHERIT;
789 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
790 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
791 ip->i_d.di_extsize = pip->i_d.di_extsize;
792 }
793 } else if (S_ISREG(mode)) {
794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
795 di_flags |= XFS_DIFLAG_REALTIME;
796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
797 di_flags |= XFS_DIFLAG_EXTSIZE;
798 ip->i_d.di_extsize = pip->i_d.di_extsize;
799 }
800 }
801 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
802 xfs_inherit_noatime)
803 di_flags |= XFS_DIFLAG_NOATIME;
804 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
805 xfs_inherit_nodump)
806 di_flags |= XFS_DIFLAG_NODUMP;
807 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
808 xfs_inherit_sync)
809 di_flags |= XFS_DIFLAG_SYNC;
810 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
811 xfs_inherit_nosymlinks)
812 di_flags |= XFS_DIFLAG_NOSYMLINKS;
813 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
814 di_flags |= XFS_DIFLAG_PROJINHERIT;
815 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
816 xfs_inherit_nodefrag)
817 di_flags |= XFS_DIFLAG_NODEFRAG;
818 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
819 di_flags |= XFS_DIFLAG_FILESTREAM;
820 ip->i_d.di_flags |= di_flags;
821 }
822 /* FALLTHROUGH */
823 case S_IFLNK:
824 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
825 ip->i_df.if_flags = XFS_IFEXTENTS;
826 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
827 ip->i_df.if_u1.if_extents = NULL;
828 break;
829 default:
830 ASSERT(0);
831 }
832 /*
833 * Attribute fork settings for new inode.
834 */
835 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
836 ip->i_d.di_anextents = 0;
837
838 /*
839 * Log the new values stuffed into the inode.
840 */
841 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
842 xfs_trans_log_inode(tp, ip, flags);
843
844 /* now that we have an i_mode we can setup inode ops and unlock */
845 xfs_setup_inode(ip);
846
847 /* now we have set up the vfs inode we can associate the filestream */
848 if (filestreams) {
849 error = xfs_filestream_associate(pip, ip);
850 if (error < 0)
851 return -error;
852 if (!error)
853 xfs_iflags_set(ip, XFS_IFILESTREAM);
854 }
855
856 *ipp = ip;
857 return 0;
858}
859
860/*
861 * Allocates a new inode from disk and return a pointer to the
862 * incore copy. This routine will internally commit the current
863 * transaction and allocate a new one if the Space Manager needed
864 * to do an allocation to replenish the inode free-list.
865 *
866 * This routine is designed to be called from xfs_create and
867 * xfs_create_dir.
868 *
869 */
870int
871xfs_dir_ialloc(
872 xfs_trans_t **tpp, /* input: current transaction;
873 output: may be a new transaction. */
874 xfs_inode_t *dp, /* directory within whose allocate
875 the inode. */
876 umode_t mode,
877 xfs_nlink_t nlink,
878 xfs_dev_t rdev,
879 prid_t prid, /* project id */
880 int okalloc, /* ok to allocate new space */
881 xfs_inode_t **ipp, /* pointer to inode; it will be
882 locked. */
883 int *committed)
884
885{
886 xfs_trans_t *tp;
887 xfs_trans_t *ntp;
888 xfs_inode_t *ip;
889 xfs_buf_t *ialloc_context = NULL;
890 int code;
891 void *dqinfo;
892 uint tflags;
893
894 tp = *tpp;
895 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
896
897 /*
898 * xfs_ialloc will return a pointer to an incore inode if
899 * the Space Manager has an available inode on the free
900 * list. Otherwise, it will do an allocation and replenish
901 * the freelist. Since we can only do one allocation per
902 * transaction without deadlocks, we will need to commit the
903 * current transaction and start a new one. We will then
904 * need to call xfs_ialloc again to get the inode.
905 *
906 * If xfs_ialloc did an allocation to replenish the freelist,
907 * it returns the bp containing the head of the freelist as
908 * ialloc_context. We will hold a lock on it across the
909 * transaction commit so that no other process can steal
910 * the inode(s) that we've just allocated.
911 */
912 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
913 &ialloc_context, &ip);
914
915 /*
916 * Return an error if we were unable to allocate a new inode.
917 * This should only happen if we run out of space on disk or
918 * encounter a disk error.
919 */
920 if (code) {
921 *ipp = NULL;
922 return code;
923 }
924 if (!ialloc_context && !ip) {
925 *ipp = NULL;
926 return XFS_ERROR(ENOSPC);
927 }
928
929 /*
930 * If the AGI buffer is non-NULL, then we were unable to get an
931 * inode in one operation. We need to commit the current
932 * transaction and call xfs_ialloc() again. It is guaranteed
933 * to succeed the second time.
934 */
935 if (ialloc_context) {
936 struct xfs_trans_res tres;
937
938 /*
939 * Normally, xfs_trans_commit releases all the locks.
940 * We call bhold to hang on to the ialloc_context across
941 * the commit. Holding this buffer prevents any other
942 * processes from doing any allocations in this
943 * allocation group.
944 */
945 xfs_trans_bhold(tp, ialloc_context);
946 /*
947 * Save the log reservation so we can use
948 * them in the next transaction.
949 */
950 tres.tr_logres = xfs_trans_get_log_res(tp);
951 tres.tr_logcount = xfs_trans_get_log_count(tp);
952
953 /*
954 * We want the quota changes to be associated with the next
955 * transaction, NOT this one. So, detach the dqinfo from this
956 * and attach it to the next transaction.
957 */
958 dqinfo = NULL;
959 tflags = 0;
960 if (tp->t_dqinfo) {
961 dqinfo = (void *)tp->t_dqinfo;
962 tp->t_dqinfo = NULL;
963 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
964 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
965 }
966
967 ntp = xfs_trans_dup(tp);
968 code = xfs_trans_commit(tp, 0);
969 tp = ntp;
970 if (committed != NULL) {
971 *committed = 1;
972 }
973 /*
974 * If we get an error during the commit processing,
975 * release the buffer that is still held and return
976 * to the caller.
977 */
978 if (code) {
979 xfs_buf_relse(ialloc_context);
980 if (dqinfo) {
981 tp->t_dqinfo = dqinfo;
982 xfs_trans_free_dqinfo(tp);
983 }
984 *tpp = ntp;
985 *ipp = NULL;
986 return code;
987 }
988
989 /*
990 * transaction commit worked ok so we can drop the extra ticket
991 * reference that we gained in xfs_trans_dup()
992 */
993 xfs_log_ticket_put(tp->t_ticket);
994 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
995 code = xfs_trans_reserve(tp, &tres, 0, 0);
996
997 /*
998 * Re-attach the quota info that we detached from prev trx.
999 */
1000 if (dqinfo) {
1001 tp->t_dqinfo = dqinfo;
1002 tp->t_flags |= tflags;
1003 }
1004
1005 if (code) {
1006 xfs_buf_relse(ialloc_context);
1007 *tpp = ntp;
1008 *ipp = NULL;
1009 return code;
1010 }
1011 xfs_trans_bjoin(tp, ialloc_context);
1012
1013 /*
1014 * Call ialloc again. Since we've locked out all
1015 * other allocations in this allocation group,
1016 * this call should always succeed.
1017 */
1018 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1019 okalloc, &ialloc_context, &ip);
1020
1021 /*
1022 * If we get an error at this point, return to the caller
1023 * so that the current transaction can be aborted.
1024 */
1025 if (code) {
1026 *tpp = tp;
1027 *ipp = NULL;
1028 return code;
1029 }
1030 ASSERT(!ialloc_context && ip);
1031
1032 } else {
1033 if (committed != NULL)
1034 *committed = 0;
1035 }
1036
1037 *ipp = ip;
1038 *tpp = tp;
1039
1040 return 0;
1041}
1042
1043/*
1044 * Decrement the link count on an inode & log the change.
1045 * If this causes the link count to go to zero, initiate the
1046 * logging activity required to truncate a file.
1047 */
1048int /* error */
1049xfs_droplink(
1050 xfs_trans_t *tp,
1051 xfs_inode_t *ip)
1052{
1053 int error;
1054
1055 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1056
1057 ASSERT (ip->i_d.di_nlink > 0);
1058 ip->i_d.di_nlink--;
1059 drop_nlink(VFS_I(ip));
1060 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1061
1062 error = 0;
1063 if (ip->i_d.di_nlink == 0) {
1064 /*
1065 * We're dropping the last link to this file.
1066 * Move the on-disk inode to the AGI unlinked list.
1067 * From xfs_inactive() we will pull the inode from
1068 * the list and free it.
1069 */
1070 error = xfs_iunlink(tp, ip);
1071 }
1072 return error;
1073}
1074
1075/*
1076 * This gets called when the inode's version needs to be changed from 1 to 2.
1077 * Currently this happens when the nlink field overflows the old 16-bit value
1078 * or when chproj is called to change the project for the first time.
1079 * As a side effect the superblock version will also get rev'd
1080 * to contain the NLINK bit.
1081 */
1082void
1083xfs_bump_ino_vers2(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *ip)
1086{
1087 xfs_mount_t *mp;
1088
1089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1090 ASSERT(ip->i_d.di_version == 1);
1091
1092 ip->i_d.di_version = 2;
1093 ip->i_d.di_onlink = 0;
1094 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1095 mp = tp->t_mountp;
1096 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1097 spin_lock(&mp->m_sb_lock);
1098 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1099 xfs_sb_version_addnlink(&mp->m_sb);
1100 spin_unlock(&mp->m_sb_lock);
1101 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1102 } else {
1103 spin_unlock(&mp->m_sb_lock);
1104 }
1105 }
1106 /* Caller must log the inode */
1107}
1108
1109/*
1110 * Increment the link count on an inode & log the change.
1111 */
1112int
1113xfs_bumplink(
1114 xfs_trans_t *tp,
1115 xfs_inode_t *ip)
1116{
1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1118
1119 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1120 ip->i_d.di_nlink++;
1121 inc_nlink(VFS_I(ip));
1122 if ((ip->i_d.di_version == 1) &&
1123 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1124 /*
1125 * The inode has increased its number of links beyond
1126 * what can fit in an old format inode. It now needs
1127 * to be converted to a version 2 inode with a 32 bit
1128 * link count. If this is the first inode in the file
1129 * system to do this, then we need to bump the superblock
1130 * version number as well.
1131 */
1132 xfs_bump_ino_vers2(tp, ip);
1133 }
1134
1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1136 return 0;
1137}
1138
1139int
1140xfs_create(
1141 xfs_inode_t *dp,
1142 struct xfs_name *name,
1143 umode_t mode,
1144 xfs_dev_t rdev,
1145 xfs_inode_t **ipp)
1146{
1147 int is_dir = S_ISDIR(mode);
1148 struct xfs_mount *mp = dp->i_mount;
1149 struct xfs_inode *ip = NULL;
1150 struct xfs_trans *tp = NULL;
1151 int error;
1152 xfs_bmap_free_t free_list;
1153 xfs_fsblock_t first_block;
1154 bool unlock_dp_on_error = false;
1155 uint cancel_flags;
1156 int committed;
1157 prid_t prid;
1158 struct xfs_dquot *udqp = NULL;
1159 struct xfs_dquot *gdqp = NULL;
1160 struct xfs_dquot *pdqp = NULL;
1161 struct xfs_trans_res tres;
1162 uint resblks;
1163
1164 trace_xfs_create(dp, name);
1165
1166 if (XFS_FORCED_SHUTDOWN(mp))
1167 return XFS_ERROR(EIO);
1168
1169 prid = xfs_get_initial_prid(dp);
1170
1171 /*
1172 * Make sure that we have allocated dquot(s) on disk.
1173 */
1174 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1175 xfs_kgid_to_gid(current_fsgid()), prid,
1176 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1177 &udqp, &gdqp, &pdqp);
1178 if (error)
1179 return error;
1180
1181 if (is_dir) {
1182 rdev = 0;
1183 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1184 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1185 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
1186 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1187 } else {
1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1189 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1190 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
1191 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1192 }
1193
1194 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1195
1196 /*
1197 * Initially assume that the file does not exist and
1198 * reserve the resources for that case. If that is not
1199 * the case we'll drop the one we have and get a more
1200 * appropriate transaction later.
1201 */
1202 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1203 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1204 if (error == ENOSPC) {
1205 /* flush outstanding delalloc blocks and retry */
1206 xfs_flush_inodes(mp);
1207 error = xfs_trans_reserve(tp, &tres, resblks, 0);
1208 }
1209 if (error == ENOSPC) {
1210 /* No space at all so try a "no-allocation" reservation */
1211 resblks = 0;
1212 error = xfs_trans_reserve(tp, &tres, 0, 0);
1213 }
1214 if (error) {
1215 cancel_flags = 0;
1216 goto out_trans_cancel;
1217 }
1218
1219 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1220 unlock_dp_on_error = true;
1221
1222 xfs_bmap_init(&free_list, &first_block);
1223
1224 /*
1225 * Reserve disk quota and the inode.
1226 */
1227 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1228 pdqp, resblks, 1, 0);
1229 if (error)
1230 goto out_trans_cancel;
1231
1232 error = xfs_dir_canenter(tp, dp, name, resblks);
1233 if (error)
1234 goto out_trans_cancel;
1235
1236 /*
1237 * A newly created regular or special file just has one directory
1238 * entry pointing to them, but a directory also the "." entry
1239 * pointing to itself.
1240 */
1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1242 prid, resblks > 0, &ip, &committed);
1243 if (error) {
1244 if (error == ENOSPC)
1245 goto out_trans_cancel;
1246 goto out_trans_abort;
1247 }
1248
1249 /*
1250 * Now we join the directory inode to the transaction. We do not do it
1251 * earlier because xfs_dir_ialloc might commit the previous transaction
1252 * (and release all the locks). An error from here on will result in
1253 * the transaction cancel unlocking dp so don't do it explicitly in the
1254 * error path.
1255 */
1256 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1257 unlock_dp_on_error = false;
1258
1259 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1260 &first_block, &free_list, resblks ?
1261 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1262 if (error) {
1263 ASSERT(error != ENOSPC);
1264 goto out_trans_abort;
1265 }
1266 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1267 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1268
1269 if (is_dir) {
1270 error = xfs_dir_init(tp, ip, dp);
1271 if (error)
1272 goto out_bmap_cancel;
1273
1274 error = xfs_bumplink(tp, dp);
1275 if (error)
1276 goto out_bmap_cancel;
1277 }
1278
1279 /*
1280 * If this is a synchronous mount, make sure that the
1281 * create transaction goes to disk before returning to
1282 * the user.
1283 */
1284 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1285 xfs_trans_set_sync(tp);
1286
1287 /*
1288 * Attach the dquot(s) to the inodes and modify them incore.
1289 * These ids of the inode couldn't have changed since the new
1290 * inode has been locked ever since it was created.
1291 */
1292 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1293
1294 error = xfs_bmap_finish(&tp, &free_list, &committed);
1295 if (error)
1296 goto out_bmap_cancel;
1297
1298 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1299 if (error)
1300 goto out_release_inode;
1301
1302 xfs_qm_dqrele(udqp);
1303 xfs_qm_dqrele(gdqp);
1304 xfs_qm_dqrele(pdqp);
1305
1306 *ipp = ip;
1307 return 0;
1308
1309 out_bmap_cancel:
1310 xfs_bmap_cancel(&free_list);
1311 out_trans_abort:
1312 cancel_flags |= XFS_TRANS_ABORT;
1313 out_trans_cancel:
1314 xfs_trans_cancel(tp, cancel_flags);
1315 out_release_inode:
1316 /*
1317 * Wait until after the current transaction is aborted to
1318 * release the inode. This prevents recursive transactions
1319 * and deadlocks from xfs_inactive.
1320 */
1321 if (ip)
1322 IRELE(ip);
1323
1324 xfs_qm_dqrele(udqp);
1325 xfs_qm_dqrele(gdqp);
1326 xfs_qm_dqrele(pdqp);
1327
1328 if (unlock_dp_on_error)
1329 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1330 return error;
1331}
1332
1333int
1334xfs_create_tmpfile(
1335 struct xfs_inode *dp,
1336 struct dentry *dentry,
1337 umode_t mode,
1338 struct xfs_inode **ipp)
1339{
1340 struct xfs_mount *mp = dp->i_mount;
1341 struct xfs_inode *ip = NULL;
1342 struct xfs_trans *tp = NULL;
1343 int error;
1344 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1345 prid_t prid;
1346 struct xfs_dquot *udqp = NULL;
1347 struct xfs_dquot *gdqp = NULL;
1348 struct xfs_dquot *pdqp = NULL;
1349 struct xfs_trans_res *tres;
1350 uint resblks;
1351
1352 if (XFS_FORCED_SHUTDOWN(mp))
1353 return XFS_ERROR(EIO);
1354
1355 prid = xfs_get_initial_prid(dp);
1356
1357 /*
1358 * Make sure that we have allocated dquot(s) on disk.
1359 */
1360 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1361 xfs_kgid_to_gid(current_fsgid()), prid,
1362 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1363 &udqp, &gdqp, &pdqp);
1364 if (error)
1365 return error;
1366
1367 resblks = XFS_IALLOC_SPACE_RES(mp);
1368 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1369
1370 tres = &M_RES(mp)->tr_create_tmpfile;
1371 error = xfs_trans_reserve(tp, tres, resblks, 0);
1372 if (error == ENOSPC) {
1373 /* No space at all so try a "no-allocation" reservation */
1374 resblks = 0;
1375 error = xfs_trans_reserve(tp, tres, 0, 0);
1376 }
1377 if (error) {
1378 cancel_flags = 0;
1379 goto out_trans_cancel;
1380 }
1381
1382 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1383 pdqp, resblks, 1, 0);
1384 if (error)
1385 goto out_trans_cancel;
1386
1387 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1388 prid, resblks > 0, &ip, NULL);
1389 if (error) {
1390 if (error == ENOSPC)
1391 goto out_trans_cancel;
1392 goto out_trans_abort;
1393 }
1394
1395 if (mp->m_flags & XFS_MOUNT_WSYNC)
1396 xfs_trans_set_sync(tp);
1397
1398 /*
1399 * Attach the dquot(s) to the inodes and modify them incore.
1400 * These ids of the inode couldn't have changed since the new
1401 * inode has been locked ever since it was created.
1402 */
1403 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1404
1405 ip->i_d.di_nlink--;
1406 error = xfs_iunlink(tp, ip);
1407 if (error)
1408 goto out_trans_abort;
1409
1410 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1411 if (error)
1412 goto out_release_inode;
1413
1414 xfs_qm_dqrele(udqp);
1415 xfs_qm_dqrele(gdqp);
1416 xfs_qm_dqrele(pdqp);
1417
1418 *ipp = ip;
1419 return 0;
1420
1421 out_trans_abort:
1422 cancel_flags |= XFS_TRANS_ABORT;
1423 out_trans_cancel:
1424 xfs_trans_cancel(tp, cancel_flags);
1425 out_release_inode:
1426 /*
1427 * Wait until after the current transaction is aborted to
1428 * release the inode. This prevents recursive transactions
1429 * and deadlocks from xfs_inactive.
1430 */
1431 if (ip)
1432 IRELE(ip);
1433
1434 xfs_qm_dqrele(udqp);
1435 xfs_qm_dqrele(gdqp);
1436 xfs_qm_dqrele(pdqp);
1437
1438 return error;
1439}
1440
1441int
1442xfs_link(
1443 xfs_inode_t *tdp,
1444 xfs_inode_t *sip,
1445 struct xfs_name *target_name)
1446{
1447 xfs_mount_t *mp = tdp->i_mount;
1448 xfs_trans_t *tp;
1449 int error;
1450 xfs_bmap_free_t free_list;
1451 xfs_fsblock_t first_block;
1452 int cancel_flags;
1453 int committed;
1454 int resblks;
1455
1456 trace_xfs_link(tdp, target_name);
1457
1458 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1459
1460 if (XFS_FORCED_SHUTDOWN(mp))
1461 return XFS_ERROR(EIO);
1462
1463 error = xfs_qm_dqattach(sip, 0);
1464 if (error)
1465 goto std_return;
1466
1467 error = xfs_qm_dqattach(tdp, 0);
1468 if (error)
1469 goto std_return;
1470
1471 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1472 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1473 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1474 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1475 if (error == ENOSPC) {
1476 resblks = 0;
1477 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1478 }
1479 if (error) {
1480 cancel_flags = 0;
1481 goto error_return;
1482 }
1483
1484 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1485
1486 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1487 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1488
1489 /*
1490 * If we are using project inheritance, we only allow hard link
1491 * creation in our tree when the project IDs are the same; else
1492 * the tree quota mechanism could be circumvented.
1493 */
1494 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1495 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1496 error = XFS_ERROR(EXDEV);
1497 goto error_return;
1498 }
1499
1500 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1501 if (error)
1502 goto error_return;
1503
1504 xfs_bmap_init(&free_list, &first_block);
1505
1506 if (sip->i_d.di_nlink == 0) {
1507 error = xfs_iunlink_remove(tp, sip);
1508 if (error)
1509 goto abort_return;
1510 }
1511
1512 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1513 &first_block, &free_list, resblks);
1514 if (error)
1515 goto abort_return;
1516 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1517 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1518
1519 error = xfs_bumplink(tp, sip);
1520 if (error)
1521 goto abort_return;
1522
1523 /*
1524 * If this is a synchronous mount, make sure that the
1525 * link transaction goes to disk before returning to
1526 * the user.
1527 */
1528 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1529 xfs_trans_set_sync(tp);
1530 }
1531
1532 error = xfs_bmap_finish (&tp, &free_list, &committed);
1533 if (error) {
1534 xfs_bmap_cancel(&free_list);
1535 goto abort_return;
1536 }
1537
1538 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1539
1540 abort_return:
1541 cancel_flags |= XFS_TRANS_ABORT;
1542 error_return:
1543 xfs_trans_cancel(tp, cancel_flags);
1544 std_return:
1545 return error;
1546}
1547
1548/*
1549 * Free up the underlying blocks past new_size. The new size must be smaller
1550 * than the current size. This routine can be used both for the attribute and
1551 * data fork, and does not modify the inode size, which is left to the caller.
1552 *
1553 * The transaction passed to this routine must have made a permanent log
1554 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1555 * given transaction and start new ones, so make sure everything involved in
1556 * the transaction is tidy before calling here. Some transaction will be
1557 * returned to the caller to be committed. The incoming transaction must
1558 * already include the inode, and both inode locks must be held exclusively.
1559 * The inode must also be "held" within the transaction. On return the inode
1560 * will be "held" within the returned transaction. This routine does NOT
1561 * require any disk space to be reserved for it within the transaction.
1562 *
1563 * If we get an error, we must return with the inode locked and linked into the
1564 * current transaction. This keeps things simple for the higher level code,
1565 * because it always knows that the inode is locked and held in the transaction
1566 * that returns to it whether errors occur or not. We don't mark the inode
1567 * dirty on error so that transactions can be easily aborted if possible.
1568 */
1569int
1570xfs_itruncate_extents(
1571 struct xfs_trans **tpp,
1572 struct xfs_inode *ip,
1573 int whichfork,
1574 xfs_fsize_t new_size)
1575{
1576 struct xfs_mount *mp = ip->i_mount;
1577 struct xfs_trans *tp = *tpp;
1578 struct xfs_trans *ntp;
1579 xfs_bmap_free_t free_list;
1580 xfs_fsblock_t first_block;
1581 xfs_fileoff_t first_unmap_block;
1582 xfs_fileoff_t last_block;
1583 xfs_filblks_t unmap_len;
1584 int committed;
1585 int error = 0;
1586 int done = 0;
1587
1588 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1589 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1590 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1591 ASSERT(new_size <= XFS_ISIZE(ip));
1592 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1593 ASSERT(ip->i_itemp != NULL);
1594 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1595 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1596
1597 trace_xfs_itruncate_extents_start(ip, new_size);
1598
1599 /*
1600 * Since it is possible for space to become allocated beyond
1601 * the end of the file (in a crash where the space is allocated
1602 * but the inode size is not yet updated), simply remove any
1603 * blocks which show up between the new EOF and the maximum
1604 * possible file size. If the first block to be removed is
1605 * beyond the maximum file size (ie it is the same as last_block),
1606 * then there is nothing to do.
1607 */
1608 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1609 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1610 if (first_unmap_block == last_block)
1611 return 0;
1612
1613 ASSERT(first_unmap_block < last_block);
1614 unmap_len = last_block - first_unmap_block + 1;
1615 while (!done) {
1616 xfs_bmap_init(&free_list, &first_block);
1617 error = xfs_bunmapi(tp, ip,
1618 first_unmap_block, unmap_len,
1619 xfs_bmapi_aflag(whichfork),
1620 XFS_ITRUNC_MAX_EXTENTS,
1621 &first_block, &free_list,
1622 &done);
1623 if (error)
1624 goto out_bmap_cancel;
1625
1626 /*
1627 * Duplicate the transaction that has the permanent
1628 * reservation and commit the old transaction.
1629 */
1630 error = xfs_bmap_finish(&tp, &free_list, &committed);
1631 if (committed)
1632 xfs_trans_ijoin(tp, ip, 0);
1633 if (error)
1634 goto out_bmap_cancel;
1635
1636 if (committed) {
1637 /*
1638 * Mark the inode dirty so it will be logged and
1639 * moved forward in the log as part of every commit.
1640 */
1641 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1642 }
1643
1644 ntp = xfs_trans_dup(tp);
1645 error = xfs_trans_commit(tp, 0);
1646 tp = ntp;
1647
1648 xfs_trans_ijoin(tp, ip, 0);
1649
1650 if (error)
1651 goto out;
1652
1653 /*
1654 * Transaction commit worked ok so we can drop the extra ticket
1655 * reference that we gained in xfs_trans_dup()
1656 */
1657 xfs_log_ticket_put(tp->t_ticket);
1658 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1659 if (error)
1660 goto out;
1661 }
1662
1663 /*
1664 * Always re-log the inode so that our permanent transaction can keep
1665 * on rolling it forward in the log.
1666 */
1667 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1668
1669 trace_xfs_itruncate_extents_end(ip, new_size);
1670
1671out:
1672 *tpp = tp;
1673 return error;
1674out_bmap_cancel:
1675 /*
1676 * If the bunmapi call encounters an error, return to the caller where
1677 * the transaction can be properly aborted. We just need to make sure
1678 * we're not holding any resources that we were not when we came in.
1679 */
1680 xfs_bmap_cancel(&free_list);
1681 goto out;
1682}
1683
1684int
1685xfs_release(
1686 xfs_inode_t *ip)
1687{
1688 xfs_mount_t *mp = ip->i_mount;
1689 int error;
1690
1691 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1692 return 0;
1693
1694 /* If this is a read-only mount, don't do this (would generate I/O) */
1695 if (mp->m_flags & XFS_MOUNT_RDONLY)
1696 return 0;
1697
1698 if (!XFS_FORCED_SHUTDOWN(mp)) {
1699 int truncated;
1700
1701 /*
1702 * If we are using filestreams, and we have an unlinked
1703 * file that we are processing the last close on, then nothing
1704 * will be able to reopen and write to this file. Purge this
1705 * inode from the filestreams cache so that it doesn't delay
1706 * teardown of the inode.
1707 */
1708 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1709 xfs_filestream_deassociate(ip);
1710
1711 /*
1712 * If we previously truncated this file and removed old data
1713 * in the process, we want to initiate "early" writeout on
1714 * the last close. This is an attempt to combat the notorious
1715 * NULL files problem which is particularly noticeable from a
1716 * truncate down, buffered (re-)write (delalloc), followed by
1717 * a crash. What we are effectively doing here is
1718 * significantly reducing the time window where we'd otherwise
1719 * be exposed to that problem.
1720 */
1721 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1722 if (truncated) {
1723 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1724 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1725 error = -filemap_flush(VFS_I(ip)->i_mapping);
1726 if (error)
1727 return error;
1728 }
1729 }
1730 }
1731
1732 if (ip->i_d.di_nlink == 0)
1733 return 0;
1734
1735 if (xfs_can_free_eofblocks(ip, false)) {
1736
1737 /*
1738 * If we can't get the iolock just skip truncating the blocks
1739 * past EOF because we could deadlock with the mmap_sem
1740 * otherwise. We'll get another chance to drop them once the
1741 * last reference to the inode is dropped, so we'll never leak
1742 * blocks permanently.
1743 *
1744 * Further, check if the inode is being opened, written and
1745 * closed frequently and we have delayed allocation blocks
1746 * outstanding (e.g. streaming writes from the NFS server),
1747 * truncating the blocks past EOF will cause fragmentation to
1748 * occur.
1749 *
1750 * In this case don't do the truncation, either, but we have to
1751 * be careful how we detect this case. Blocks beyond EOF show
1752 * up as i_delayed_blks even when the inode is clean, so we
1753 * need to truncate them away first before checking for a dirty
1754 * release. Hence on the first dirty close we will still remove
1755 * the speculative allocation, but after that we will leave it
1756 * in place.
1757 */
1758 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1759 return 0;
1760
1761 error = xfs_free_eofblocks(mp, ip, true);
1762 if (error && error != EAGAIN)
1763 return error;
1764
1765 /* delalloc blocks after truncation means it really is dirty */
1766 if (ip->i_delayed_blks)
1767 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1768 }
1769 return 0;
1770}
1771
1772/*
1773 * xfs_inactive_truncate
1774 *
1775 * Called to perform a truncate when an inode becomes unlinked.
1776 */
1777STATIC int
1778xfs_inactive_truncate(
1779 struct xfs_inode *ip)
1780{
1781 struct xfs_mount *mp = ip->i_mount;
1782 struct xfs_trans *tp;
1783 int error;
1784
1785 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1786 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1787 if (error) {
1788 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1789 xfs_trans_cancel(tp, 0);
1790 return error;
1791 }
1792
1793 xfs_ilock(ip, XFS_ILOCK_EXCL);
1794 xfs_trans_ijoin(tp, ip, 0);
1795
1796 /*
1797 * Log the inode size first to prevent stale data exposure in the event
1798 * of a system crash before the truncate completes. See the related
1799 * comment in xfs_setattr_size() for details.
1800 */
1801 ip->i_d.di_size = 0;
1802 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1803
1804 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1805 if (error)
1806 goto error_trans_cancel;
1807
1808 ASSERT(ip->i_d.di_nextents == 0);
1809
1810 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1811 if (error)
1812 goto error_unlock;
1813
1814 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1815 return 0;
1816
1817error_trans_cancel:
1818 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1819error_unlock:
1820 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1821 return error;
1822}
1823
1824/*
1825 * xfs_inactive_ifree()
1826 *
1827 * Perform the inode free when an inode is unlinked.
1828 */
1829STATIC int
1830xfs_inactive_ifree(
1831 struct xfs_inode *ip)
1832{
1833 xfs_bmap_free_t free_list;
1834 xfs_fsblock_t first_block;
1835 int committed;
1836 struct xfs_mount *mp = ip->i_mount;
1837 struct xfs_trans *tp;
1838 int error;
1839
1840 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1841 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1842 if (error) {
1843 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1844 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1845 return error;
1846 }
1847
1848 xfs_ilock(ip, XFS_ILOCK_EXCL);
1849 xfs_trans_ijoin(tp, ip, 0);
1850
1851 xfs_bmap_init(&free_list, &first_block);
1852 error = xfs_ifree(tp, ip, &free_list);
1853 if (error) {
1854 /*
1855 * If we fail to free the inode, shut down. The cancel
1856 * might do that, we need to make sure. Otherwise the
1857 * inode might be lost for a long time or forever.
1858 */
1859 if (!XFS_FORCED_SHUTDOWN(mp)) {
1860 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1861 __func__, error);
1862 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1863 }
1864 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1865 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1866 return error;
1867 }
1868
1869 /*
1870 * Credit the quota account(s). The inode is gone.
1871 */
1872 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1873
1874 /*
1875 * Just ignore errors at this point. There is nothing we can
1876 * do except to try to keep going. Make sure it's not a silent
1877 * error.
1878 */
1879 error = xfs_bmap_finish(&tp, &free_list, &committed);
1880 if (error)
1881 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1882 __func__, error);
1883 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1884 if (error)
1885 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1886 __func__, error);
1887
1888 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1889 return 0;
1890}
1891
1892/*
1893 * xfs_inactive
1894 *
1895 * This is called when the vnode reference count for the vnode
1896 * goes to zero. If the file has been unlinked, then it must
1897 * now be truncated. Also, we clear all of the read-ahead state
1898 * kept for the inode here since the file is now closed.
1899 */
1900void
1901xfs_inactive(
1902 xfs_inode_t *ip)
1903{
1904 struct xfs_mount *mp;
1905 int error;
1906 int truncate = 0;
1907
1908 /*
1909 * If the inode is already free, then there can be nothing
1910 * to clean up here.
1911 */
1912 if (ip->i_d.di_mode == 0) {
1913 ASSERT(ip->i_df.if_real_bytes == 0);
1914 ASSERT(ip->i_df.if_broot_bytes == 0);
1915 return;
1916 }
1917
1918 mp = ip->i_mount;
1919
1920 /* If this is a read-only mount, don't do this (would generate I/O) */
1921 if (mp->m_flags & XFS_MOUNT_RDONLY)
1922 return;
1923
1924 if (ip->i_d.di_nlink != 0) {
1925 /*
1926 * force is true because we are evicting an inode from the
1927 * cache. Post-eof blocks must be freed, lest we end up with
1928 * broken free space accounting.
1929 */
1930 if (xfs_can_free_eofblocks(ip, true))
1931 xfs_free_eofblocks(mp, ip, false);
1932
1933 return;
1934 }
1935
1936 if (S_ISREG(ip->i_d.di_mode) &&
1937 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1938 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1939 truncate = 1;
1940
1941 error = xfs_qm_dqattach(ip, 0);
1942 if (error)
1943 return;
1944
1945 if (S_ISLNK(ip->i_d.di_mode))
1946 error = xfs_inactive_symlink(ip);
1947 else if (truncate)
1948 error = xfs_inactive_truncate(ip);
1949 if (error)
1950 return;
1951
1952 /*
1953 * If there are attributes associated with the file then blow them away
1954 * now. The code calls a routine that recursively deconstructs the
1955 * attribute fork. We need to just commit the current transaction
1956 * because we can't use it for xfs_attr_inactive().
1957 */
1958 if (ip->i_d.di_anextents > 0) {
1959 ASSERT(ip->i_d.di_forkoff != 0);
1960
1961 error = xfs_attr_inactive(ip);
1962 if (error)
1963 return;
1964 }
1965
1966 if (ip->i_afp)
1967 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1968
1969 ASSERT(ip->i_d.di_anextents == 0);
1970
1971 /*
1972 * Free the inode.
1973 */
1974 error = xfs_inactive_ifree(ip);
1975 if (error)
1976 return;
1977
1978 /*
1979 * Release the dquots held by inode, if any.
1980 */
1981 xfs_qm_dqdetach(ip);
1982}
1983
1984/*
1985 * This is called when the inode's link count goes to 0.
1986 * We place the on-disk inode on a list in the AGI. It
1987 * will be pulled from this list when the inode is freed.
1988 */
1989int
1990xfs_iunlink(
1991 xfs_trans_t *tp,
1992 xfs_inode_t *ip)
1993{
1994 xfs_mount_t *mp;
1995 xfs_agi_t *agi;
1996 xfs_dinode_t *dip;
1997 xfs_buf_t *agibp;
1998 xfs_buf_t *ibp;
1999 xfs_agino_t agino;
2000 short bucket_index;
2001 int offset;
2002 int error;
2003
2004 ASSERT(ip->i_d.di_nlink == 0);
2005 ASSERT(ip->i_d.di_mode != 0);
2006
2007 mp = tp->t_mountp;
2008
2009 /*
2010 * Get the agi buffer first. It ensures lock ordering
2011 * on the list.
2012 */
2013 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2014 if (error)
2015 return error;
2016 agi = XFS_BUF_TO_AGI(agibp);
2017
2018 /*
2019 * Get the index into the agi hash table for the
2020 * list this inode will go on.
2021 */
2022 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2023 ASSERT(agino != 0);
2024 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2025 ASSERT(agi->agi_unlinked[bucket_index]);
2026 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2027
2028 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2029 /*
2030 * There is already another inode in the bucket we need
2031 * to add ourselves to. Add us at the front of the list.
2032 * Here we put the head pointer into our next pointer,
2033 * and then we fall through to point the head at us.
2034 */
2035 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2036 0, 0);
2037 if (error)
2038 return error;
2039
2040 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2041 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2042 offset = ip->i_imap.im_boffset +
2043 offsetof(xfs_dinode_t, di_next_unlinked);
2044
2045 /* need to recalc the inode CRC if appropriate */
2046 xfs_dinode_calc_crc(mp, dip);
2047
2048 xfs_trans_inode_buf(tp, ibp);
2049 xfs_trans_log_buf(tp, ibp, offset,
2050 (offset + sizeof(xfs_agino_t) - 1));
2051 xfs_inobp_check(mp, ibp);
2052 }
2053
2054 /*
2055 * Point the bucket head pointer at the inode being inserted.
2056 */
2057 ASSERT(agino != 0);
2058 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2059 offset = offsetof(xfs_agi_t, agi_unlinked) +
2060 (sizeof(xfs_agino_t) * bucket_index);
2061 xfs_trans_log_buf(tp, agibp, offset,
2062 (offset + sizeof(xfs_agino_t) - 1));
2063 return 0;
2064}
2065
2066/*
2067 * Pull the on-disk inode from the AGI unlinked list.
2068 */
2069STATIC int
2070xfs_iunlink_remove(
2071 xfs_trans_t *tp,
2072 xfs_inode_t *ip)
2073{
2074 xfs_ino_t next_ino;
2075 xfs_mount_t *mp;
2076 xfs_agi_t *agi;
2077 xfs_dinode_t *dip;
2078 xfs_buf_t *agibp;
2079 xfs_buf_t *ibp;
2080 xfs_agnumber_t agno;
2081 xfs_agino_t agino;
2082 xfs_agino_t next_agino;
2083 xfs_buf_t *last_ibp;
2084 xfs_dinode_t *last_dip = NULL;
2085 short bucket_index;
2086 int offset, last_offset = 0;
2087 int error;
2088
2089 mp = tp->t_mountp;
2090 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2091
2092 /*
2093 * Get the agi buffer first. It ensures lock ordering
2094 * on the list.
2095 */
2096 error = xfs_read_agi(mp, tp, agno, &agibp);
2097 if (error)
2098 return error;
2099
2100 agi = XFS_BUF_TO_AGI(agibp);
2101
2102 /*
2103 * Get the index into the agi hash table for the
2104 * list this inode will go on.
2105 */
2106 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2107 ASSERT(agino != 0);
2108 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2109 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2110 ASSERT(agi->agi_unlinked[bucket_index]);
2111
2112 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2113 /*
2114 * We're at the head of the list. Get the inode's on-disk
2115 * buffer to see if there is anyone after us on the list.
2116 * Only modify our next pointer if it is not already NULLAGINO.
2117 * This saves us the overhead of dealing with the buffer when
2118 * there is no need to change it.
2119 */
2120 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2121 0, 0);
2122 if (error) {
2123 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2124 __func__, error);
2125 return error;
2126 }
2127 next_agino = be32_to_cpu(dip->di_next_unlinked);
2128 ASSERT(next_agino != 0);
2129 if (next_agino != NULLAGINO) {
2130 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2131 offset = ip->i_imap.im_boffset +
2132 offsetof(xfs_dinode_t, di_next_unlinked);
2133
2134 /* need to recalc the inode CRC if appropriate */
2135 xfs_dinode_calc_crc(mp, dip);
2136
2137 xfs_trans_inode_buf(tp, ibp);
2138 xfs_trans_log_buf(tp, ibp, offset,
2139 (offset + sizeof(xfs_agino_t) - 1));
2140 xfs_inobp_check(mp, ibp);
2141 } else {
2142 xfs_trans_brelse(tp, ibp);
2143 }
2144 /*
2145 * Point the bucket head pointer at the next inode.
2146 */
2147 ASSERT(next_agino != 0);
2148 ASSERT(next_agino != agino);
2149 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2150 offset = offsetof(xfs_agi_t, agi_unlinked) +
2151 (sizeof(xfs_agino_t) * bucket_index);
2152 xfs_trans_log_buf(tp, agibp, offset,
2153 (offset + sizeof(xfs_agino_t) - 1));
2154 } else {
2155 /*
2156 * We need to search the list for the inode being freed.
2157 */
2158 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2159 last_ibp = NULL;
2160 while (next_agino != agino) {
2161 struct xfs_imap imap;
2162
2163 if (last_ibp)
2164 xfs_trans_brelse(tp, last_ibp);
2165
2166 imap.im_blkno = 0;
2167 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2168
2169 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2170 if (error) {
2171 xfs_warn(mp,
2172 "%s: xfs_imap returned error %d.",
2173 __func__, error);
2174 return error;
2175 }
2176
2177 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2178 &last_ibp, 0, 0);
2179 if (error) {
2180 xfs_warn(mp,
2181 "%s: xfs_imap_to_bp returned error %d.",
2182 __func__, error);
2183 return error;
2184 }
2185
2186 last_offset = imap.im_boffset;
2187 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2188 ASSERT(next_agino != NULLAGINO);
2189 ASSERT(next_agino != 0);
2190 }
2191
2192 /*
2193 * Now last_ibp points to the buffer previous to us on the
2194 * unlinked list. Pull us from the list.
2195 */
2196 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2197 0, 0);
2198 if (error) {
2199 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2200 __func__, error);
2201 return error;
2202 }
2203 next_agino = be32_to_cpu(dip->di_next_unlinked);
2204 ASSERT(next_agino != 0);
2205 ASSERT(next_agino != agino);
2206 if (next_agino != NULLAGINO) {
2207 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2208 offset = ip->i_imap.im_boffset +
2209 offsetof(xfs_dinode_t, di_next_unlinked);
2210
2211 /* need to recalc the inode CRC if appropriate */
2212 xfs_dinode_calc_crc(mp, dip);
2213
2214 xfs_trans_inode_buf(tp, ibp);
2215 xfs_trans_log_buf(tp, ibp, offset,
2216 (offset + sizeof(xfs_agino_t) - 1));
2217 xfs_inobp_check(mp, ibp);
2218 } else {
2219 xfs_trans_brelse(tp, ibp);
2220 }
2221 /*
2222 * Point the previous inode on the list to the next inode.
2223 */
2224 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2225 ASSERT(next_agino != 0);
2226 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2227
2228 /* need to recalc the inode CRC if appropriate */
2229 xfs_dinode_calc_crc(mp, last_dip);
2230
2231 xfs_trans_inode_buf(tp, last_ibp);
2232 xfs_trans_log_buf(tp, last_ibp, offset,
2233 (offset + sizeof(xfs_agino_t) - 1));
2234 xfs_inobp_check(mp, last_ibp);
2235 }
2236 return 0;
2237}
2238
2239/*
2240 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2241 * inodes that are in memory - they all must be marked stale and attached to
2242 * the cluster buffer.
2243 */
2244STATIC int
2245xfs_ifree_cluster(
2246 xfs_inode_t *free_ip,
2247 xfs_trans_t *tp,
2248 xfs_ino_t inum)
2249{
2250 xfs_mount_t *mp = free_ip->i_mount;
2251 int blks_per_cluster;
2252 int inodes_per_cluster;
2253 int nbufs;
2254 int i, j;
2255 xfs_daddr_t blkno;
2256 xfs_buf_t *bp;
2257 xfs_inode_t *ip;
2258 xfs_inode_log_item_t *iip;
2259 xfs_log_item_t *lip;
2260 struct xfs_perag *pag;
2261
2262 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2263 blks_per_cluster = xfs_icluster_size_fsb(mp);
2264 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2265 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2266
2267 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2268 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2269 XFS_INO_TO_AGBNO(mp, inum));
2270
2271 /*
2272 * We obtain and lock the backing buffer first in the process
2273 * here, as we have to ensure that any dirty inode that we
2274 * can't get the flush lock on is attached to the buffer.
2275 * If we scan the in-memory inodes first, then buffer IO can
2276 * complete before we get a lock on it, and hence we may fail
2277 * to mark all the active inodes on the buffer stale.
2278 */
2279 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2280 mp->m_bsize * blks_per_cluster,
2281 XBF_UNMAPPED);
2282
2283 if (!bp)
2284 return ENOMEM;
2285
2286 /*
2287 * This buffer may not have been correctly initialised as we
2288 * didn't read it from disk. That's not important because we are
2289 * only using to mark the buffer as stale in the log, and to
2290 * attach stale cached inodes on it. That means it will never be
2291 * dispatched for IO. If it is, we want to know about it, and we
2292 * want it to fail. We can acheive this by adding a write
2293 * verifier to the buffer.
2294 */
2295 bp->b_ops = &xfs_inode_buf_ops;
2296
2297 /*
2298 * Walk the inodes already attached to the buffer and mark them
2299 * stale. These will all have the flush locks held, so an
2300 * in-memory inode walk can't lock them. By marking them all
2301 * stale first, we will not attempt to lock them in the loop
2302 * below as the XFS_ISTALE flag will be set.
2303 */
2304 lip = bp->b_fspriv;
2305 while (lip) {
2306 if (lip->li_type == XFS_LI_INODE) {
2307 iip = (xfs_inode_log_item_t *)lip;
2308 ASSERT(iip->ili_logged == 1);
2309 lip->li_cb = xfs_istale_done;
2310 xfs_trans_ail_copy_lsn(mp->m_ail,
2311 &iip->ili_flush_lsn,
2312 &iip->ili_item.li_lsn);
2313 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2314 }
2315 lip = lip->li_bio_list;
2316 }
2317
2318
2319 /*
2320 * For each inode in memory attempt to add it to the inode
2321 * buffer and set it up for being staled on buffer IO
2322 * completion. This is safe as we've locked out tail pushing
2323 * and flushing by locking the buffer.
2324 *
2325 * We have already marked every inode that was part of a
2326 * transaction stale above, which means there is no point in
2327 * even trying to lock them.
2328 */
2329 for (i = 0; i < inodes_per_cluster; i++) {
2330retry:
2331 rcu_read_lock();
2332 ip = radix_tree_lookup(&pag->pag_ici_root,
2333 XFS_INO_TO_AGINO(mp, (inum + i)));
2334
2335 /* Inode not in memory, nothing to do */
2336 if (!ip) {
2337 rcu_read_unlock();
2338 continue;
2339 }
2340
2341 /*
2342 * because this is an RCU protected lookup, we could
2343 * find a recently freed or even reallocated inode
2344 * during the lookup. We need to check under the
2345 * i_flags_lock for a valid inode here. Skip it if it
2346 * is not valid, the wrong inode or stale.
2347 */
2348 spin_lock(&ip->i_flags_lock);
2349 if (ip->i_ino != inum + i ||
2350 __xfs_iflags_test(ip, XFS_ISTALE)) {
2351 spin_unlock(&ip->i_flags_lock);
2352 rcu_read_unlock();
2353 continue;
2354 }
2355 spin_unlock(&ip->i_flags_lock);
2356
2357 /*
2358 * Don't try to lock/unlock the current inode, but we
2359 * _cannot_ skip the other inodes that we did not find
2360 * in the list attached to the buffer and are not
2361 * already marked stale. If we can't lock it, back off
2362 * and retry.
2363 */
2364 if (ip != free_ip &&
2365 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2366 rcu_read_unlock();
2367 delay(1);
2368 goto retry;
2369 }
2370 rcu_read_unlock();
2371
2372 xfs_iflock(ip);
2373 xfs_iflags_set(ip, XFS_ISTALE);
2374
2375 /*
2376 * we don't need to attach clean inodes or those only
2377 * with unlogged changes (which we throw away, anyway).
2378 */
2379 iip = ip->i_itemp;
2380 if (!iip || xfs_inode_clean(ip)) {
2381 ASSERT(ip != free_ip);
2382 xfs_ifunlock(ip);
2383 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2384 continue;
2385 }
2386
2387 iip->ili_last_fields = iip->ili_fields;
2388 iip->ili_fields = 0;
2389 iip->ili_logged = 1;
2390 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2391 &iip->ili_item.li_lsn);
2392
2393 xfs_buf_attach_iodone(bp, xfs_istale_done,
2394 &iip->ili_item);
2395
2396 if (ip != free_ip)
2397 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2398 }
2399
2400 xfs_trans_stale_inode_buf(tp, bp);
2401 xfs_trans_binval(tp, bp);
2402 }
2403
2404 xfs_perag_put(pag);
2405 return 0;
2406}
2407
2408/*
2409 * This is called to return an inode to the inode free list.
2410 * The inode should already be truncated to 0 length and have
2411 * no pages associated with it. This routine also assumes that
2412 * the inode is already a part of the transaction.
2413 *
2414 * The on-disk copy of the inode will have been added to the list
2415 * of unlinked inodes in the AGI. We need to remove the inode from
2416 * that list atomically with respect to freeing it here.
2417 */
2418int
2419xfs_ifree(
2420 xfs_trans_t *tp,
2421 xfs_inode_t *ip,
2422 xfs_bmap_free_t *flist)
2423{
2424 int error;
2425 int delete;
2426 xfs_ino_t first_ino;
2427
2428 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2429 ASSERT(ip->i_d.di_nlink == 0);
2430 ASSERT(ip->i_d.di_nextents == 0);
2431 ASSERT(ip->i_d.di_anextents == 0);
2432 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2433 ASSERT(ip->i_d.di_nblocks == 0);
2434
2435 /*
2436 * Pull the on-disk inode from the AGI unlinked list.
2437 */
2438 error = xfs_iunlink_remove(tp, ip);
2439 if (error)
2440 return error;
2441
2442 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2443 if (error)
2444 return error;
2445
2446 ip->i_d.di_mode = 0; /* mark incore inode as free */
2447 ip->i_d.di_flags = 0;
2448 ip->i_d.di_dmevmask = 0;
2449 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2450 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2451 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2452 /*
2453 * Bump the generation count so no one will be confused
2454 * by reincarnations of this inode.
2455 */
2456 ip->i_d.di_gen++;
2457 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2458
2459 if (delete)
2460 error = xfs_ifree_cluster(ip, tp, first_ino);
2461
2462 return error;
2463}
2464
2465/*
2466 * This is called to unpin an inode. The caller must have the inode locked
2467 * in at least shared mode so that the buffer cannot be subsequently pinned
2468 * once someone is waiting for it to be unpinned.
2469 */
2470static void
2471xfs_iunpin(
2472 struct xfs_inode *ip)
2473{
2474 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2475
2476 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2477
2478 /* Give the log a push to start the unpinning I/O */
2479 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2480
2481}
2482
2483static void
2484__xfs_iunpin_wait(
2485 struct xfs_inode *ip)
2486{
2487 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2488 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2489
2490 xfs_iunpin(ip);
2491
2492 do {
2493 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2494 if (xfs_ipincount(ip))
2495 io_schedule();
2496 } while (xfs_ipincount(ip));
2497 finish_wait(wq, &wait.wait);
2498}
2499
2500void
2501xfs_iunpin_wait(
2502 struct xfs_inode *ip)
2503{
2504 if (xfs_ipincount(ip))
2505 __xfs_iunpin_wait(ip);
2506}
2507
2508/*
2509 * Removing an inode from the namespace involves removing the directory entry
2510 * and dropping the link count on the inode. Removing the directory entry can
2511 * result in locking an AGF (directory blocks were freed) and removing a link
2512 * count can result in placing the inode on an unlinked list which results in
2513 * locking an AGI.
2514 *
2515 * The big problem here is that we have an ordering constraint on AGF and AGI
2516 * locking - inode allocation locks the AGI, then can allocate a new extent for
2517 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2518 * removes the inode from the unlinked list, requiring that we lock the AGI
2519 * first, and then freeing the inode can result in an inode chunk being freed
2520 * and hence freeing disk space requiring that we lock an AGF.
2521 *
2522 * Hence the ordering that is imposed by other parts of the code is AGI before
2523 * AGF. This means we cannot remove the directory entry before we drop the inode
2524 * reference count and put it on the unlinked list as this results in a lock
2525 * order of AGF then AGI, and this can deadlock against inode allocation and
2526 * freeing. Therefore we must drop the link counts before we remove the
2527 * directory entry.
2528 *
2529 * This is still safe from a transactional point of view - it is not until we
2530 * get to xfs_bmap_finish() that we have the possibility of multiple
2531 * transactions in this operation. Hence as long as we remove the directory
2532 * entry and drop the link count in the first transaction of the remove
2533 * operation, there are no transactional constraints on the ordering here.
2534 */
2535int
2536xfs_remove(
2537 xfs_inode_t *dp,
2538 struct xfs_name *name,
2539 xfs_inode_t *ip)
2540{
2541 xfs_mount_t *mp = dp->i_mount;
2542 xfs_trans_t *tp = NULL;
2543 int is_dir = S_ISDIR(ip->i_d.di_mode);
2544 int error = 0;
2545 xfs_bmap_free_t free_list;
2546 xfs_fsblock_t first_block;
2547 int cancel_flags;
2548 int committed;
2549 int link_zero;
2550 uint resblks;
2551 uint log_count;
2552
2553 trace_xfs_remove(dp, name);
2554
2555 if (XFS_FORCED_SHUTDOWN(mp))
2556 return XFS_ERROR(EIO);
2557
2558 error = xfs_qm_dqattach(dp, 0);
2559 if (error)
2560 goto std_return;
2561
2562 error = xfs_qm_dqattach(ip, 0);
2563 if (error)
2564 goto std_return;
2565
2566 if (is_dir) {
2567 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2568 log_count = XFS_DEFAULT_LOG_COUNT;
2569 } else {
2570 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2571 log_count = XFS_REMOVE_LOG_COUNT;
2572 }
2573 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2574
2575 /*
2576 * We try to get the real space reservation first,
2577 * allowing for directory btree deletion(s) implying
2578 * possible bmap insert(s). If we can't get the space
2579 * reservation then we use 0 instead, and avoid the bmap
2580 * btree insert(s) in the directory code by, if the bmap
2581 * insert tries to happen, instead trimming the LAST
2582 * block from the directory.
2583 */
2584 resblks = XFS_REMOVE_SPACE_RES(mp);
2585 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2586 if (error == ENOSPC) {
2587 resblks = 0;
2588 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2589 }
2590 if (error) {
2591 ASSERT(error != ENOSPC);
2592 cancel_flags = 0;
2593 goto out_trans_cancel;
2594 }
2595
2596 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2597
2598 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2600
2601 /*
2602 * If we're removing a directory perform some additional validation.
2603 */
2604 cancel_flags |= XFS_TRANS_ABORT;
2605 if (is_dir) {
2606 ASSERT(ip->i_d.di_nlink >= 2);
2607 if (ip->i_d.di_nlink != 2) {
2608 error = XFS_ERROR(ENOTEMPTY);
2609 goto out_trans_cancel;
2610 }
2611 if (!xfs_dir_isempty(ip)) {
2612 error = XFS_ERROR(ENOTEMPTY);
2613 goto out_trans_cancel;
2614 }
2615
2616 /* Drop the link from ip's "..". */
2617 error = xfs_droplink(tp, dp);
2618 if (error)
2619 goto out_trans_cancel;
2620
2621 /* Drop the "." link from ip to self. */
2622 error = xfs_droplink(tp, ip);
2623 if (error)
2624 goto out_trans_cancel;
2625 } else {
2626 /*
2627 * When removing a non-directory we need to log the parent
2628 * inode here. For a directory this is done implicitly
2629 * by the xfs_droplink call for the ".." entry.
2630 */
2631 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2632 }
2633 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2634
2635 /* Drop the link from dp to ip. */
2636 error = xfs_droplink(tp, ip);
2637 if (error)
2638 goto out_trans_cancel;
2639
2640 /* Determine if this is the last link while the inode is locked */
2641 link_zero = (ip->i_d.di_nlink == 0);
2642
2643 xfs_bmap_init(&free_list, &first_block);
2644 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2645 &first_block, &free_list, resblks);
2646 if (error) {
2647 ASSERT(error != ENOENT);
2648 goto out_bmap_cancel;
2649 }
2650
2651 /*
2652 * If this is a synchronous mount, make sure that the
2653 * remove transaction goes to disk before returning to
2654 * the user.
2655 */
2656 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2657 xfs_trans_set_sync(tp);
2658
2659 error = xfs_bmap_finish(&tp, &free_list, &committed);
2660 if (error)
2661 goto out_bmap_cancel;
2662
2663 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2664 if (error)
2665 goto std_return;
2666
2667 /*
2668 * If we are using filestreams, kill the stream association.
2669 * If the file is still open it may get a new one but that
2670 * will get killed on last close in xfs_close() so we don't
2671 * have to worry about that.
2672 */
2673 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2674 xfs_filestream_deassociate(ip);
2675
2676 return 0;
2677
2678 out_bmap_cancel:
2679 xfs_bmap_cancel(&free_list);
2680 out_trans_cancel:
2681 xfs_trans_cancel(tp, cancel_flags);
2682 std_return:
2683 return error;
2684}
2685
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
2689STATIC void
2690xfs_sort_for_rename(
2691 xfs_inode_t *dp1, /* in: old (source) directory inode */
2692 xfs_inode_t *dp2, /* in: new (target) directory inode */
2693 xfs_inode_t *ip1, /* in: inode of old entry */
2694 xfs_inode_t *ip2, /* in: inode of new entry, if it
2695 already exists, NULL otherwise. */
2696 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2697 int *num_inodes) /* out: number of inodes in array */
2698{
2699 xfs_inode_t *temp;
2700 int i, j;
2701
2702 /*
2703 * i_tab contains a list of pointers to inodes. We initialize
2704 * the table here & we'll sort it. We will then use it to
2705 * order the acquisition of the inode locks.
2706 *
2707 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2708 */
2709 i_tab[0] = dp1;
2710 i_tab[1] = dp2;
2711 i_tab[2] = ip1;
2712 if (ip2) {
2713 *num_inodes = 4;
2714 i_tab[3] = ip2;
2715 } else {
2716 *num_inodes = 3;
2717 i_tab[3] = NULL;
2718 }
2719
2720 /*
2721 * Sort the elements via bubble sort. (Remember, there are at
2722 * most 4 elements to sort, so this is adequate.)
2723 */
2724 for (i = 0; i < *num_inodes; i++) {
2725 for (j = 1; j < *num_inodes; j++) {
2726 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2727 temp = i_tab[j];
2728 i_tab[j] = i_tab[j-1];
2729 i_tab[j-1] = temp;
2730 }
2731 }
2732 }
2733}
2734
2735/*
2736 * xfs_rename
2737 */
2738int
2739xfs_rename(
2740 xfs_inode_t *src_dp,
2741 struct xfs_name *src_name,
2742 xfs_inode_t *src_ip,
2743 xfs_inode_t *target_dp,
2744 struct xfs_name *target_name,
2745 xfs_inode_t *target_ip)
2746{
2747 xfs_trans_t *tp = NULL;
2748 xfs_mount_t *mp = src_dp->i_mount;
2749 int new_parent; /* moving to a new dir */
2750 int src_is_directory; /* src_name is a directory */
2751 int error;
2752 xfs_bmap_free_t free_list;
2753 xfs_fsblock_t first_block;
2754 int cancel_flags;
2755 int committed;
2756 xfs_inode_t *inodes[4];
2757 int spaceres;
2758 int num_inodes;
2759
2760 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2761
2762 new_parent = (src_dp != target_dp);
2763 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2764
2765 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2766 inodes, &num_inodes);
2767
2768 xfs_bmap_init(&free_list, &first_block);
2769 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2770 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2771 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2772 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2773 if (error == ENOSPC) {
2774 spaceres = 0;
2775 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2776 }
2777 if (error) {
2778 xfs_trans_cancel(tp, 0);
2779 goto std_return;
2780 }
2781
2782 /*
2783 * Attach the dquots to the inodes
2784 */
2785 error = xfs_qm_vop_rename_dqattach(inodes);
2786 if (error) {
2787 xfs_trans_cancel(tp, cancel_flags);
2788 goto std_return;
2789 }
2790
2791 /*
2792 * Lock all the participating inodes. Depending upon whether
2793 * the target_name exists in the target directory, and
2794 * whether the target directory is the same as the source
2795 * directory, we can lock from 2 to 4 inodes.
2796 */
2797 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2798
2799 /*
2800 * Join all the inodes to the transaction. From this point on,
2801 * we can rely on either trans_commit or trans_cancel to unlock
2802 * them.
2803 */
2804 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2805 if (new_parent)
2806 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2807 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2808 if (target_ip)
2809 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2810
2811 /*
2812 * If we are using project inheritance, we only allow renames
2813 * into our tree when the project IDs are the same; else the
2814 * tree quota mechanism would be circumvented.
2815 */
2816 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2817 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2818 error = XFS_ERROR(EXDEV);
2819 goto error_return;
2820 }
2821
2822 /*
2823 * Set up the target.
2824 */
2825 if (target_ip == NULL) {
2826 /*
2827 * If there's no space reservation, check the entry will
2828 * fit before actually inserting it.
2829 */
2830 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2831 if (error)
2832 goto error_return;
2833 /*
2834 * If target does not exist and the rename crosses
2835 * directories, adjust the target directory link count
2836 * to account for the ".." reference from the new entry.
2837 */
2838 error = xfs_dir_createname(tp, target_dp, target_name,
2839 src_ip->i_ino, &first_block,
2840 &free_list, spaceres);
2841 if (error == ENOSPC)
2842 goto error_return;
2843 if (error)
2844 goto abort_return;
2845
2846 xfs_trans_ichgtime(tp, target_dp,
2847 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2848
2849 if (new_parent && src_is_directory) {
2850 error = xfs_bumplink(tp, target_dp);
2851 if (error)
2852 goto abort_return;
2853 }
2854 } else { /* target_ip != NULL */
2855 /*
2856 * If target exists and it's a directory, check that both
2857 * target and source are directories and that target can be
2858 * destroyed, or that neither is a directory.
2859 */
2860 if (S_ISDIR(target_ip->i_d.di_mode)) {
2861 /*
2862 * Make sure target dir is empty.
2863 */
2864 if (!(xfs_dir_isempty(target_ip)) ||
2865 (target_ip->i_d.di_nlink > 2)) {
2866 error = XFS_ERROR(EEXIST);
2867 goto error_return;
2868 }
2869 }
2870
2871 /*
2872 * Link the source inode under the target name.
2873 * If the source inode is a directory and we are moving
2874 * it across directories, its ".." entry will be
2875 * inconsistent until we replace that down below.
2876 *
2877 * In case there is already an entry with the same
2878 * name at the destination directory, remove it first.
2879 */
2880 error = xfs_dir_replace(tp, target_dp, target_name,
2881 src_ip->i_ino,
2882 &first_block, &free_list, spaceres);
2883 if (error)
2884 goto abort_return;
2885
2886 xfs_trans_ichgtime(tp, target_dp,
2887 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2888
2889 /*
2890 * Decrement the link count on the target since the target
2891 * dir no longer points to it.
2892 */
2893 error = xfs_droplink(tp, target_ip);
2894 if (error)
2895 goto abort_return;
2896
2897 if (src_is_directory) {
2898 /*
2899 * Drop the link from the old "." entry.
2900 */
2901 error = xfs_droplink(tp, target_ip);
2902 if (error)
2903 goto abort_return;
2904 }
2905 } /* target_ip != NULL */
2906
2907 /*
2908 * Remove the source.
2909 */
2910 if (new_parent && src_is_directory) {
2911 /*
2912 * Rewrite the ".." entry to point to the new
2913 * directory.
2914 */
2915 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2916 target_dp->i_ino,
2917 &first_block, &free_list, spaceres);
2918 ASSERT(error != EEXIST);
2919 if (error)
2920 goto abort_return;
2921 }
2922
2923 /*
2924 * We always want to hit the ctime on the source inode.
2925 *
2926 * This isn't strictly required by the standards since the source
2927 * inode isn't really being changed, but old unix file systems did
2928 * it and some incremental backup programs won't work without it.
2929 */
2930 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2931 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2932
2933 /*
2934 * Adjust the link count on src_dp. This is necessary when
2935 * renaming a directory, either within one parent when
2936 * the target existed, or across two parent directories.
2937 */
2938 if (src_is_directory && (new_parent || target_ip != NULL)) {
2939
2940 /*
2941 * Decrement link count on src_directory since the
2942 * entry that's moved no longer points to it.
2943 */
2944 error = xfs_droplink(tp, src_dp);
2945 if (error)
2946 goto abort_return;
2947 }
2948
2949 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2950 &first_block, &free_list, spaceres);
2951 if (error)
2952 goto abort_return;
2953
2954 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2955 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2956 if (new_parent)
2957 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2958
2959 /*
2960 * If this is a synchronous mount, make sure that the
2961 * rename transaction goes to disk before returning to
2962 * the user.
2963 */
2964 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2965 xfs_trans_set_sync(tp);
2966 }
2967
2968 error = xfs_bmap_finish(&tp, &free_list, &committed);
2969 if (error) {
2970 xfs_bmap_cancel(&free_list);
2971 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2972 XFS_TRANS_ABORT));
2973 goto std_return;
2974 }
2975
2976 /*
2977 * trans_commit will unlock src_ip, target_ip & decrement
2978 * the vnode references.
2979 */
2980 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2981
2982 abort_return:
2983 cancel_flags |= XFS_TRANS_ABORT;
2984 error_return:
2985 xfs_bmap_cancel(&free_list);
2986 xfs_trans_cancel(tp, cancel_flags);
2987 std_return:
2988 return error;
2989}
2990
2991STATIC int
2992xfs_iflush_cluster(
2993 xfs_inode_t *ip,
2994 xfs_buf_t *bp)
2995{
2996 xfs_mount_t *mp = ip->i_mount;
2997 struct xfs_perag *pag;
2998 unsigned long first_index, mask;
2999 unsigned long inodes_per_cluster;
3000 int ilist_size;
3001 xfs_inode_t **ilist;
3002 xfs_inode_t *iq;
3003 int nr_found;
3004 int clcount = 0;
3005 int bufwasdelwri;
3006 int i;
3007
3008 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3009
3010 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3011 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3012 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3013 if (!ilist)
3014 goto out_put;
3015
3016 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3017 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3018 rcu_read_lock();
3019 /* really need a gang lookup range call here */
3020 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3021 first_index, inodes_per_cluster);
3022 if (nr_found == 0)
3023 goto out_free;
3024
3025 for (i = 0; i < nr_found; i++) {
3026 iq = ilist[i];
3027 if (iq == ip)
3028 continue;
3029
3030 /*
3031 * because this is an RCU protected lookup, we could find a
3032 * recently freed or even reallocated inode during the lookup.
3033 * We need to check under the i_flags_lock for a valid inode
3034 * here. Skip it if it is not valid or the wrong inode.
3035 */
3036 spin_lock(&ip->i_flags_lock);
3037 if (!ip->i_ino ||
3038 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3039 spin_unlock(&ip->i_flags_lock);
3040 continue;
3041 }
3042 spin_unlock(&ip->i_flags_lock);
3043
3044 /*
3045 * Do an un-protected check to see if the inode is dirty and
3046 * is a candidate for flushing. These checks will be repeated
3047 * later after the appropriate locks are acquired.
3048 */
3049 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3050 continue;
3051
3052 /*
3053 * Try to get locks. If any are unavailable or it is pinned,
3054 * then this inode cannot be flushed and is skipped.
3055 */
3056
3057 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3058 continue;
3059 if (!xfs_iflock_nowait(iq)) {
3060 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3061 continue;
3062 }
3063 if (xfs_ipincount(iq)) {
3064 xfs_ifunlock(iq);
3065 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3066 continue;
3067 }
3068
3069 /*
3070 * arriving here means that this inode can be flushed. First
3071 * re-check that it's dirty before flushing.
3072 */
3073 if (!xfs_inode_clean(iq)) {
3074 int error;
3075 error = xfs_iflush_int(iq, bp);
3076 if (error) {
3077 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3078 goto cluster_corrupt_out;
3079 }
3080 clcount++;
3081 } else {
3082 xfs_ifunlock(iq);
3083 }
3084 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3085 }
3086
3087 if (clcount) {
3088 XFS_STATS_INC(xs_icluster_flushcnt);
3089 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3090 }
3091
3092out_free:
3093 rcu_read_unlock();
3094 kmem_free(ilist);
3095out_put:
3096 xfs_perag_put(pag);
3097 return 0;
3098
3099
3100cluster_corrupt_out:
3101 /*
3102 * Corruption detected in the clustering loop. Invalidate the
3103 * inode buffer and shut down the filesystem.
3104 */
3105 rcu_read_unlock();
3106 /*
3107 * Clean up the buffer. If it was delwri, just release it --
3108 * brelse can handle it with no problems. If not, shut down the
3109 * filesystem before releasing the buffer.
3110 */
3111 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3112 if (bufwasdelwri)
3113 xfs_buf_relse(bp);
3114
3115 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3116
3117 if (!bufwasdelwri) {
3118 /*
3119 * Just like incore_relse: if we have b_iodone functions,
3120 * mark the buffer as an error and call them. Otherwise
3121 * mark it as stale and brelse.
3122 */
3123 if (bp->b_iodone) {
3124 XFS_BUF_UNDONE(bp);
3125 xfs_buf_stale(bp);
3126 xfs_buf_ioerror(bp, EIO);
3127 xfs_buf_ioend(bp, 0);
3128 } else {
3129 xfs_buf_stale(bp);
3130 xfs_buf_relse(bp);
3131 }
3132 }
3133
3134 /*
3135 * Unlocks the flush lock
3136 */
3137 xfs_iflush_abort(iq, false);
3138 kmem_free(ilist);
3139 xfs_perag_put(pag);
3140 return XFS_ERROR(EFSCORRUPTED);
3141}
3142
3143/*
3144 * Flush dirty inode metadata into the backing buffer.
3145 *
3146 * The caller must have the inode lock and the inode flush lock held. The
3147 * inode lock will still be held upon return to the caller, and the inode
3148 * flush lock will be released after the inode has reached the disk.
3149 *
3150 * The caller must write out the buffer returned in *bpp and release it.
3151 */
3152int
3153xfs_iflush(
3154 struct xfs_inode *ip,
3155 struct xfs_buf **bpp)
3156{
3157 struct xfs_mount *mp = ip->i_mount;
3158 struct xfs_buf *bp;
3159 struct xfs_dinode *dip;
3160 int error;
3161
3162 XFS_STATS_INC(xs_iflush_count);
3163
3164 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3165 ASSERT(xfs_isiflocked(ip));
3166 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3167 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3168
3169 *bpp = NULL;
3170
3171 xfs_iunpin_wait(ip);
3172
3173 /*
3174 * For stale inodes we cannot rely on the backing buffer remaining
3175 * stale in cache for the remaining life of the stale inode and so
3176 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3177 * inodes below. We have to check this after ensuring the inode is
3178 * unpinned so that it is safe to reclaim the stale inode after the
3179 * flush call.
3180 */
3181 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3182 xfs_ifunlock(ip);
3183 return 0;
3184 }
3185
3186 /*
3187 * This may have been unpinned because the filesystem is shutting
3188 * down forcibly. If that's the case we must not write this inode
3189 * to disk, because the log record didn't make it to disk.
3190 *
3191 * We also have to remove the log item from the AIL in this case,
3192 * as we wait for an empty AIL as part of the unmount process.
3193 */
3194 if (XFS_FORCED_SHUTDOWN(mp)) {
3195 error = XFS_ERROR(EIO);
3196 goto abort_out;
3197 }
3198
3199 /*
3200 * Get the buffer containing the on-disk inode.
3201 */
3202 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3203 0);
3204 if (error || !bp) {
3205 xfs_ifunlock(ip);
3206 return error;
3207 }
3208
3209 /*
3210 * First flush out the inode that xfs_iflush was called with.
3211 */
3212 error = xfs_iflush_int(ip, bp);
3213 if (error)
3214 goto corrupt_out;
3215
3216 /*
3217 * If the buffer is pinned then push on the log now so we won't
3218 * get stuck waiting in the write for too long.
3219 */
3220 if (xfs_buf_ispinned(bp))
3221 xfs_log_force(mp, 0);
3222
3223 /*
3224 * inode clustering:
3225 * see if other inodes can be gathered into this write
3226 */
3227 error = xfs_iflush_cluster(ip, bp);
3228 if (error)
3229 goto cluster_corrupt_out;
3230
3231 *bpp = bp;
3232 return 0;
3233
3234corrupt_out:
3235 xfs_buf_relse(bp);
3236 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3237cluster_corrupt_out:
3238 error = XFS_ERROR(EFSCORRUPTED);
3239abort_out:
3240 /*
3241 * Unlocks the flush lock
3242 */
3243 xfs_iflush_abort(ip, false);
3244 return error;
3245}
3246
3247STATIC int
3248xfs_iflush_int(
3249 struct xfs_inode *ip,
3250 struct xfs_buf *bp)
3251{
3252 struct xfs_inode_log_item *iip = ip->i_itemp;
3253 struct xfs_dinode *dip;
3254 struct xfs_mount *mp = ip->i_mount;
3255
3256 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3257 ASSERT(xfs_isiflocked(ip));
3258 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3259 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3260 ASSERT(iip != NULL && iip->ili_fields != 0);
3261
3262 /* set *dip = inode's place in the buffer */
3263 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3264
3265 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3266 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3267 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3268 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3269 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3270 goto corrupt_out;
3271 }
3272 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3273 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3274 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3275 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3276 __func__, ip->i_ino, ip, ip->i_d.di_magic);
3277 goto corrupt_out;
3278 }
3279 if (S_ISREG(ip->i_d.di_mode)) {
3280 if (XFS_TEST_ERROR(
3281 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3282 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3283 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3284 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3285 "%s: Bad regular inode %Lu, ptr 0x%p",
3286 __func__, ip->i_ino, ip);
3287 goto corrupt_out;
3288 }
3289 } else if (S_ISDIR(ip->i_d.di_mode)) {
3290 if (XFS_TEST_ERROR(
3291 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3292 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3293 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3294 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3295 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3296 "%s: Bad directory inode %Lu, ptr 0x%p",
3297 __func__, ip->i_ino, ip);
3298 goto corrupt_out;
3299 }
3300 }
3301 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3302 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3303 XFS_RANDOM_IFLUSH_5)) {
3304 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3305 "%s: detected corrupt incore inode %Lu, "
3306 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3307 __func__, ip->i_ino,
3308 ip->i_d.di_nextents + ip->i_d.di_anextents,
3309 ip->i_d.di_nblocks, ip);
3310 goto corrupt_out;
3311 }
3312 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3313 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3314 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3315 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3316 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3317 goto corrupt_out;
3318 }
3319
3320 /*
3321 * Inode item log recovery for v1/v2 inodes are dependent on the
3322 * di_flushiter count for correct sequencing. We bump the flush
3323 * iteration count so we can detect flushes which postdate a log record
3324 * during recovery. This is redundant as we now log every change and
3325 * hence this can't happen but we need to still do it to ensure
3326 * backwards compatibility with old kernels that predate logging all
3327 * inode changes.
3328 */
3329 if (ip->i_d.di_version < 3)
3330 ip->i_d.di_flushiter++;
3331
3332 /*
3333 * Copy the dirty parts of the inode into the on-disk
3334 * inode. We always copy out the core of the inode,
3335 * because if the inode is dirty at all the core must
3336 * be.
3337 */
3338 xfs_dinode_to_disk(dip, &ip->i_d);
3339
3340 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3341 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3342 ip->i_d.di_flushiter = 0;
3343
3344 /*
3345 * If this is really an old format inode and the superblock version
3346 * has not been updated to support only new format inodes, then
3347 * convert back to the old inode format. If the superblock version
3348 * has been updated, then make the conversion permanent.
3349 */
3350 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3351 if (ip->i_d.di_version == 1) {
3352 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3353 /*
3354 * Convert it back.
3355 */
3356 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3357 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3358 } else {
3359 /*
3360 * The superblock version has already been bumped,
3361 * so just make the conversion to the new inode
3362 * format permanent.
3363 */
3364 ip->i_d.di_version = 2;
3365 dip->di_version = 2;
3366 ip->i_d.di_onlink = 0;
3367 dip->di_onlink = 0;
3368 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3369 memset(&(dip->di_pad[0]), 0,
3370 sizeof(dip->di_pad));
3371 ASSERT(xfs_get_projid(ip) == 0);
3372 }
3373 }
3374
3375 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3376 if (XFS_IFORK_Q(ip))
3377 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3378 xfs_inobp_check(mp, bp);
3379
3380 /*
3381 * We've recorded everything logged in the inode, so we'd like to clear
3382 * the ili_fields bits so we don't log and flush things unnecessarily.
3383 * However, we can't stop logging all this information until the data
3384 * we've copied into the disk buffer is written to disk. If we did we
3385 * might overwrite the copy of the inode in the log with all the data
3386 * after re-logging only part of it, and in the face of a crash we
3387 * wouldn't have all the data we need to recover.
3388 *
3389 * What we do is move the bits to the ili_last_fields field. When
3390 * logging the inode, these bits are moved back to the ili_fields field.
3391 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3392 * know that the information those bits represent is permanently on
3393 * disk. As long as the flush completes before the inode is logged
3394 * again, then both ili_fields and ili_last_fields will be cleared.
3395 *
3396 * We can play with the ili_fields bits here, because the inode lock
3397 * must be held exclusively in order to set bits there and the flush
3398 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3399 * done routine can tell whether or not to look in the AIL. Also, store
3400 * the current LSN of the inode so that we can tell whether the item has
3401 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3402 * need the AIL lock, because it is a 64 bit value that cannot be read
3403 * atomically.
3404 */
3405 iip->ili_last_fields = iip->ili_fields;
3406 iip->ili_fields = 0;
3407 iip->ili_logged = 1;
3408
3409 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3410 &iip->ili_item.li_lsn);
3411
3412 /*
3413 * Attach the function xfs_iflush_done to the inode's
3414 * buffer. This will remove the inode from the AIL
3415 * and unlock the inode's flush lock when the inode is
3416 * completely written to disk.
3417 */
3418 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3419
3420 /* update the lsn in the on disk inode if required */
3421 if (ip->i_d.di_version == 3)
3422 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3423
3424 /* generate the checksum. */
3425 xfs_dinode_calc_crc(mp, dip);
3426
3427 ASSERT(bp->b_fspriv != NULL);
3428 ASSERT(bp->b_iodone != NULL);
3429 return 0;
3430
3431corrupt_out:
3432 return XFS_ERROR(EFSCORRUPTED);
3433}